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Chapter 1

Summary in French

La migration cellulaire joue un rôle essentiel dans divers processus physiologiques. Au cours
de la migration cellulaire, des protrusions en forme de feuille (les lamellipodes), entraînées
par des réseaux d’actine branchée, sont générées au niveau du bord avant de la cellule afin
de fournir la force nécessaire pour avancer. La formation des lamellipodes est contrôlée par
l’activité du complexe ARP2/3. Au bord des lamellipodes, la petite GTPase RAC1 active
le complexe régulateur WAVE (WRC), qui active à son tour le complexe ARP2/3 pour nu-
cléer les réseaux d’actine branchée. RAC1 maintient son activité lorsque l’actine branchée
a déjà été polymérisée, ce qui constitue une boucle de rétrocontrôle positive. Ainsi, les
cellules conservent leur capacité à migrer dans la même direction, un phénomène appelé
« persistance de la migration ». Au bord du lamellipode, RAC1 active également ARPIN,
une protéine inhibitrice d’ARP2/3, ainsi créant une boucle de rétrocontrôle négative, ce qui
permet aux cellules de freiner et de tourner pendant la migration. En combinant les boucles
de rétrocontrôle positif et négatif, la migration cellulaire est finement régulée. La formation
de lamellipodes pilotée par RAC1-WRC-ARP2/3 est également requise pour l’haptotaxis, le
processus de migration dirigée vers le gradient d’ECMs.

La voie RAC1-WRC-ARP2/3 est sous le contrôle de différents facteurs. Plusieurs ptotéines
ont été identifiés pour s’associer au WRC et réguler la persistance de la migration cellulaire
de différentes manières, comme le régulateur positif lamellipodine ou le régulateur négatif
récemment identifié, NHSL1. Il a été démontré que CYRI/Fam49, un autre régulateur négatif
de la migration cellulaire, entre en compétition avec le WRC pour la liaison avec le RAC1
via un domaine spécifique qui est structurellement similaire au domaine d’interaction avec
le RAC1 de CYFIP. Cependant, les facteurs de régulation qui se lient spécifiquement au
WRC n’ont pas été entièrement élucidés, en particulier dans le contexte d’une stimulation
différentielle de la voie RAC1-WRC-ARP2/3.
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Mon laboratoire d’accueil a conçu et réalisé un crible protéomique différentiel, pour les
effecteurs potentiels de la signalisation RAC1-WRC-ARP2/3 dans des diverses conditions.
Parmi les candidats issus de ce crible, PPP2R1A a été le plus fort, affichant une association
réduite avec le WRC lorsque la migration est plus persistante. PPP2R1A est une des sous-
unités du complexe phosphatase PP2A. La sous-unité catalytique du complexe phosphatase
PP2A a été aussi trouvée dans le crible, mais n’a pas montré de variations dans les différentes
conditions, ce qui suggère que PPP2R1A pourrait avoir un rôle indépendant de PP2A dans
la régulation de la persistance de la migration cellulaire. PPP2R1A est également un gène
associé au cancer, avec des mutants dans plusieurs types de cancer.

Mon projet de thèse visait à comprendre comment PPP2R1A régule la persistance de la
migration dans les cellules normales et cancéreuses et à caractériser les mécanismes molécu-
laires de cette voie de régulation. Pour atteindre ces objectifs, j’ai réalisé des expériences
de migration aléatoire et directionnelle de cellules en 2D et 3D. La purification par affinité
en tandem a été utilisée pour explorer les partenaires potentiels de PPP2R1A. Un test de
polymérisation de l’actine in vitro sur des billes recouvertes de GTPase a été établi pour
examiner le rôle de PPP2R1A dans la régulation de la polymérisation de l’actine. Un essai
d’acini en 3D pour imiter la structure du sein a été réalisé pour tester comment les mutations
associées au cancer affectent la fonction de PPP2R1A.

Grâce à ces approches, j’ai montré que PPP2R1A est nécessaire à la persistance de la mi-
gration cellulaire. De manière surprenante, j’ai découvert que PPP2R1A régule la migra-
tion cellulaire en interagissant spécifiquement avec une nouvelle forme de complexe WAVE
qui contient toutes les sous-unités du WRC, mais la sous-unité WAVE est remplacée par
une protéine de la famille du syndrome de Nance-Horan, NHSL1. Ce nouveau complexe a
été nommé le complexe WAVE Shell (WSC). De plus, en examinant l’effet des mutations
de PPP2R1A associées au cancer dans les cellules, j’ai découvert que ces mutations inter-
rompent considérablement l’interaction entre PPP2R1A et WSC et entraînent une persistance
migratoire altérée et une morphologie anormale des acini en 3D.

Pour résumer, dans ce projet, j’ai caractérisé le rôle de PPP2R1A en tant que régulateur
positif de la migration cellulaire directionnelle et démontré qu’un nouveau complexe multi-
protéique, le complexe WAVE shell (WSC), est essentiel à cette fonction de PPP2R1A.
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Chapter 2

Introduction

2.1 Cell migration

Cell migration is a fundamental process involved in a variety of physiological phenomena.
During embryonic development, cell migration is required during different stages. In gas-
trulation, a large number of cells inside the blastocyst migrate collectively to form the three
embryonic layers, the ectoderm, the mesoderm, and the endoderm. Cells from the three lay-
ers then migrate to specific locations for differentiation [1, 2]. During the immune response,
leukocytes and macrophages rapidly migrate towards the damaged or infected tissues [3,
4]. To repair a blood vessel, platelets are activated and accumulated at the vascular injury
site. Then, epithelial cells, macrophages and granulocytes migrate close to the injury site
to heal the wound and to clean the pathogens, respectively [5, 6]. Abnormal cell migration
contributes to many pathological processes, such as the cancer metastasis.

2.1.1 The modes of cell migration

Based on the cell types and the context of movement, cell migration can be roughly classified
into single cell migration and collective cell migration, which allow cells to move from one
location to another individually or as groups.

Despite the different patterns among diverse cell migration modes, the asymmetric spatial
morphology is the typical feature in migrating cells. By forming protrusions at the leading
edge and releasing attachment at the trailing edge, the asymmetric morphology generates the
intracellular forces in migrating cells and leads to the translocation of cell body.
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Single cell migration

Single cell migration can be divided into amoeboid migration and mesenchymal migration
(Figure 2.1).

• Amoeboid migration

Amoeboid migration is a rapid single cell migration mode that is driven by hydrostat-
ically generated blebs, actin-rich pseudopods, or reduced adhesion to the substratum
[7].

Bleb amoeboid migration is based on the bleb, which is a kind of spherical protru-
sion triggered by the hydrostatic pressure from the cytoplasm. This type of migration
is evolutionally conserved and observed in various cell types, such as amoebae, em-
bryonic cells, and some cancer cells [8]. The formation of blebs starts from the local
detachment or disruption of the cortex on the plasma membrane. Then the fluid cy-
toplasm flows out from the damaged site, which leads to membrane expansion. The
actin cortex under the bleb membrane is reformed during the expansion [9].

On 2D substrates, the migrating cells form blebs at the leading edge. The blebs attach
to the substrate through adhesion proteins on the membrane. Then the cell rear gen-
erates retraction force and detaches from the substrate to allow the cell body to move
forward [10]. In the 3D environment, the blebs enable cells with reduced adhesion
to squeeze through the gaps in the extracellular matrix network. This adhesion and
traction independent migration mechanism is also known as ‘chimneying’ [11].

Pseudopodal ameboid migration is a subtype of ameboid migration based on pseu-
dopods, which are highly dynamic 3D arm-like membrane protrusions filled with actin
filaments [12]. Pseudopodal migration is observed in the elongated fast moving cells
( ∼ 10µm/min ) with low affinity adhesion to the 3D extracellular environment, such
as neutrophils and dendritic cells [7, 13].

• Mesenchymal migration

Mesenchymal migration is the most common mode of cell migration. Single cells
with elongated, fibroblast-like, polarized morphology that can efficiantly adhere to the
extracellular matrix (ECM), such as fibroblast, epithelial, and cancer cells use mes-
enchymal migration to move forward. Mesenchymal migration is a slow cell migration
mode ( ∼ 1µm/min ), which is mediated by the actin-rich protrusions (thin, sheet-like
lamellipodial actin networks or finger-like filopodial actin bundles) at the leading edge
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[14, 15]. To migrate in the tissue with mesenchymal migration, cells can secrete ma-
trix metalloproteinases (MMPs) at the cell front and degrade the ECM to pass through
the tissue [16].

Some cell types prefer to exclusively use either amoeboid migration of mesenchymal mi-
gration [17]. For example, zebrafish primordial germ cells prefer amoeboid migration [18],
fish keratocytes cells prefer mesenchymal migration [19]. Many cell types are able to switch
between different cell migration modes in response to the intracellular and extracellular cues
[20, 21, 22]. For example, under the condition of confinement and low adhesion, mesenchy-
mal cells can migrate with amoeboid mode, which is known as mesenchymal-amoeboid tran-
sition [23]. Neutrophils with the genetic deficiency in forming branched actin networks can
switch from mesenchymal migration to bleb-based migration under the confined environ-
ment [24]. Cancer cells can display both amoeboid and mesenchymal migrations and switch
between these two modes in response to the changes in the environment to promote cancer
dissemination [25]. The plasticity of cell migration enables cells to adapt their migration
mode in the complex environment.
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Figure 2.1: Characterization of the modes of single cell migration. Mod-
ified from [22]. Cells with a nonmigrating state can transition into diverse
single cell migration modes. With amoeboid migration modes, cells show
roundish or ellipsoid morphology with short trailing edges but highly dynamic
front edges and weak adhesion towards the substrate. Cells with mesenchymal
migration mode show elongated cell shape, strong adhesion and traction force.
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Collective cell migration

In contrast to single cell migration, in collective migration, cells still maintain cell-cell junc-
tions and move as coordinated groups, in sheets, strands, tubes or clusters [17]. The collec-
tive morphology is dependent on the extracellular tissue environment and intercellular junc-
tion stability and types. Collective cell migration is an essential process during embryonic
development, wound healing and tissue regeneration in multicellular organisms. Collective
cell migration also contributes to tissue invasion in different cancer cells types [26].

Collective migration can be organized at different levels. At the cell level, with the low level
of cell-cell coordination, cell-cell interactions only act as a way to hold the cells together and
can not change the behavior of neighbor cells. The collective movement mainly depends on
the activities of individual cells, such as the collective movement in the Drosophila follicular
epithelium [13]. In this case, all the cells in the group contribute equally to the migration.
Each cell regulates its front-rear polarity and generates its own protrusions and force for
migration. With this migration mode, all cells are physically connected and required to move
in the same direction, and cells in the group exhibit more efficient migration than single cells.

At the tissue level, the cooperation and coordination level of cells in the group is high. Cells
communicate with others and affect the behaviors of the neighbor and faraway cells. In this
case, the whole group can be considered as a single cell. This collective migration mode is
also termed ‘supracellular migration’. In this mode, the entire cell group exhibits front-rear
supracellular polarity, the cells at the front of the migrating group (leaders) generate focal
adhesions and protrusions to sense the environment cues and guide the group to move in the
correct directions, which behaves like the front of an individual cell, and the cells at the rear
(followers) generate high actomyosin contractility and traction forces, thus behaving like the
rear of an individual cell [27] [28].

Single cell migration and collective cell migration modes can interconvert as well [26]. For
example, the neural crest cells during the delamination phase reduce their cell-cell adhesions
and migrate as mesenchymal cells with extensive migratory capabilities [29]. In addition,
individual cells can detach from the group when the cell-matrix or cell-cell adhesions are
weakened, leading to the collective to amoeboid transition [30] [31]. Moreover, epithelial
cancer cells switch their movement from collective to amoeboid mode and promote cancer
dissemination under hypoxia condition [32].
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Figure 2.2: Basic principles of cell migration Modified from [33]. A, To
initiate the migration, the cell generates the lamellipodia and filopodia pro-
trusions at the leading edge. B, New adhesions to the substratum are formed
under the leading edge. C, Next, the cell body translocates forward through
the actomyosin-based contraction force. D, Last, adhesions at the trailing edge

detach, and the cell rear retracts.
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2.1.2 The principles of cell migration

Random cell migration

In vitro, cells have the intrinsic ability to migrate in the absence of extracellular cues, which
is called random cell migration. But unlike Brownian motion, during random migration,
cells prefer to sustain their movement in the same direction than to change, although this
direction is randomly chosen at the beginning. The duration of a cell migrating in the same
direction is called directional persistence [34].

The basic principles of adherent random cell migration are well studied (Figure 2.2). Firstly,
the non-polarized cell distinguishes its front and rear and generates the actin-rich protrusions
(flat, sheet-like lamellipodia and/or finger-like filopodia) at the leading edge, to initiate the
migration. Then the new adhesions are formed at the leading edge to anchor the cell front to
the substrate. Next, the new adhesions associate with the actomyosin-based stress fibers to
produce contractile force and translocate the nucleus and cell body forward. Finally, the old
adhesions disassemble and detach from the substrate at the trailing edge, the traction force
pulls the rear of the cell forward [35, 36, 37].

Directional cell migration

In vivo, cells have to sense and respond to various environmental cues and migrate towards or
away from the cues to complete their mission during different physiological and pathological
processes. In contrast with random cell migration, cells exhibit directed migration to sense
and migrate towards the external cues [38, 36]. Based on the nature of the external cues,
different types of directed migration are defined. Chemotaxis refers to cell migration in
response to the gradient of diffusible chemical cues [39], durotaxis refers to cell migration in
response to the gradient of mechanical stiffness of the substrate [40], haptotaxis refers to cell
migration in response to the gradient of adhesive substrates or substrate-bound chemokines
[41], galvanotaxis refers to cell migration in response to the gradient of electric fields [42]
(Figure 2.3).

Except for the basic mechanism of cell migration, directed migration follows other principles
terms as the ‘four pillars of directed migration’. The four pillars refer to the four events that
must happen during all types of directed migration, including the generation of the gradient
signal, sensing of the signal, transmission of the signal, and execution of the signal [43].

• Chemotaxis
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Chemotaxis is the directed migration towards the gradients of soluble chemical cues,
such as growth factors or chemokines.

The chemotactic gradient can be self-generated by the migrating cells themselves.
Cells degrade the homogeneous chemoattractant produced initially and form the gra-
dient with low chemoattractant concentration at the high cell density region and high
concentration at the surrounding region [44]. In this case, cells keep chasing the high
level of chemoattractant and create robust self-generated gradients constantly at the
direction of cell movement [45]. Alternatively, cells can secrete migration-enhancing
factors at the front and positively stimulate the neighboring cells or leader cells them-
selves, in an autocrine and paracrine manner [46].

Chemotaxis is the best understood type of directed migration. The chemotaxis mech-
anisms have been studied in various cell types, such as Dictyostelium, immune cells,
germ cells, neurons, and tumor cells. To sense and trigger the chemotactic signal,
the receptors on the membrane of migrating cells bind the chemotactic cues to trigger
the intracellular signal [47]. The activation of receptors in the cell region with higher
chemoattractant concentration is stronger than in the low concentration region. The
asymmetric activation leads to the polarised downstream intracellular signals. The
specific signals accumulated at the cell front and rear promote directed migration [48].

• Durotaxis

Durotaxis is the directed migration towards the stiffness gradients.

The stiffness gradient can be self-generated by the surrounding or migrating cells
themselves. For example, in the mouse limb bud, the stiffness gradient can be gen-
erated through Wnt5a mediated fibronectin expression [49]. The stiffness gradient
also can be created by stiffening or softening the existing ECM. For example, the ly-
syl oxidase enzymes can stiffen the environment by crosslinking collagen and other
ECM components to stabilize ECM and increase stiffness [50]. The matrix metallo-
proteinases can soften the environment by degrading the ECM proteins to reduce the
external stiffness [51]. Stiffness gradients has been observed in vivo, and the stiff-
ness has been shown to be related to cell density. During Xenopus gastrulation, the
increased cell density below the neural crest leads to the increased head mesoderm
stiffness and triggers collective migration of Xenopus neural crest cells [52].
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To sense the mechanical force of durotactic cues, integrin-based focal adhesions (FAs)
are important. The FAs generate the high traction force to ECM by the focal adhe-
sion kinase (FAK)-phosphopaxillin-vinculin pathway. The traction force generated by
FAs senses the stiffness of the ECM in a dynamic and fluctuating manner and leads
to directed cell migration towards stiffer ECM [53]. Together with the integrins, the
mechanosensitive ion channel Piezo1 also contributes to stiffness sensing and is in-
volved in the durotactic response in neuronal growth [54]. The actin cytoskeleton-
related small GTPases [55, 56] and regulators [57] are critical mechanical sensors for
durotaxis, because they control the dynamics of protrusions and adhesions at the front
and the retraction at the rear.

• Haptotaxis

Haptotaxis is the directed migration towards gradients of adhesive substrates or substrate-
bound chemical cues.

Cells can secrete ECM components and form adhesive substrate gradients to drive
haptotaxis naturally [58, 59, 60]. The migrating cells can also secrete chemical factors
that diffuse across extracellular spaces and bind to ECM proteins from substrate-bound
immobilized gradients for haptotaxis [61] [62]. As the migrating cells have the abil-
ity to remodel the matrix, the haptotactic gradient can be modified by the migrating
cells themselves via various processes. For example, the deposition of laminin 5 onto
dermal collagen in keratinocytes changes adhesive signals required for keratinocytes
migration during wound healing [63]. Endothelial cells degrade local fibronectin and
produce fibronectin gradient to migrate by haptotaxis during angiogenesis [64]. Com-
pared to chemotactic cues, haptotactic cues are more long-lasting, since the gradients
with immobilized factors are more stable.

The substrate-bond haptotactic cues can be sensed by the receptor on the cell surface,
which is similar to the mechanism in chemotaxis. The haptotactic cues composed of
ECM components can be sensed by integrins. The nascent adhesions at the leading
edge recruit specific signals which are critical for ECM haptotaxis. The activation
of integrins at the nascent adhesions promotes FAK, SFK signalings and the RAC-
WAVE regulatory complex (WRC)-ARP2/3 complex feedback loop, thus facilitating
the formation of lamellipodia protrusions. The lamellipodia protrusions formed to-
wards higher ECM concentrations are reinforced by the feedback loop to drive directed
haptotaxis migration [65].
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Figure 2.3: Directed migration in response to different extracellular cues.
Modified from [37]. A-B, In chemotaxis, cells migrate towards or from soluble
chemical cues produced by the migratory cells themselves, or by others. C-D,
In durotaxis, cells migrate along a gradient of extracellular stiffness generated
by modifying the extracellular matrix or cell density. Stiffness is mechanically
sensed by integrins. E-F, In haptotaxis, cells migrate along a gradient of adhe-
sive substrates or substrate-bound cues, the underlying mechanistic principles
are similar to B or D. G-H, In galvanotaxis, cells migrate in response to an

electric field generated by the ion leakage from the wound tissue.
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Interestingly, the ARP2/3-mediated lamellipodial protrusions are crucial for hapto-
taxis, but dispensable for chemotaxis [66]. Myosin IIB is also required for the steering
and stabilizing the polarity of cell migration during haptotaxis [67].

• Galvanotaxis

Galvanotaxis is the directional migration towards the gradient of electric fields. The
endogenous electric fields are present in many biological tissues. When the epithelium
layer is disrupted by injury, the endogenous electric fields are generated immediately,
by the asymmetric flows of charged particles and ions [42]. During embryogenesis,
electric fields are established through trans-epithelial ion transport [68]

To sense the galvanotactic cues, membrane depolarization through the activation of
transmembrane voltage-gated ion channels can active the intracellular signaling path-
ways that affect cell polarisation and lead to directed migration [69].

Another model for galvanotactic sensing and transduction is the electrophoretic re-
distribution of membrane components within the plasma membranes of the migrating
cells, towards or away from the cathode. The redistribution of membrane compo-
nents induces cellular polarity, and the activation of intracellular signaling pathways
are commonly identified to play a role in chemotaxis to guide directed cell migration
[70].

In vivo, cells need to sense different environmental cues and migrate towards or away from
these cues correctly, during a variety of physiological processes. Failure to migrate in the
proper way leads to defects in neuronal development, immune deficiencies, and incomplete
wounds healing. Improperly initiated or misdirected cell migration can lead to invasive
metastatic cancer and autoimmune diseases. In addition, cells are being exposed to mul-
tiple directional cues in vivo and directed migration is likely to cooperate and guide cell
movement simultaneously [71]. But how cells respond to the complex environment and how
these different cues cooperate in regulating cell migration remains to be investigated.
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Figure 2.4: Strcture of actin monomer and actin filament assembly. Mod-
ified from [72]. A, Ribbon and space-filling models of the actin monomer
with a deep cleft for nucleotide-binding. B, Unstable actin monomers sponta-
neously nucleate and polymerize into stable filaments with a helical arrange-
ment. Actin filaments are polar since all subunits in the filament point in the
same direction, and the barbed end of the filament grows much faster than the

pointed end.
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2.2 Actin dynamics

2.2.1 Actin and actin filaments

Actin is a highly abundant and conserved protein in all eukaryotes. Actin monomers form
actin filaments to provide mechanical support for cells. Actin filaments participate in various
biological processes, such as cell migration, vesicle trafficking, cytokinesis, and exocytosis.

Actin monomer is a 42 kDa globular protein (G-actin) with 4 subdomains and a deep cleft for
ATP or ADP binding [73] [72]. In physiological conditions, actin monomers can polymerize
and form long, stable double-stranded helical actin filaments (F-actin) spontaneously [74].
To start the polymerization reaction, the unstable actin dimers composed of two monomers
are stabilized by forming a trimer or tetramer. This process is called the nucleation phase
[75]. The initial process is slow, but once the nucleation is complete, actin polymerizes
rapidly into actin filaments (F-actin), which is called the elongation phase. During the elon-
gation process, actin filament is assembled with actin monomers at the barbed end and de-
polymerized at the pointed end. The barbed end grows ten times faster than the pointed end
[76] (Figure 2.4).

Actin monomer binds to adenine nucleotide ATP or ADP. During the polymerization process,
once the actin monomer is assembled into filament, the ATP that binds to the actin monomer
is hydrolyzed and slowly dissociates with inorganic phosphate (Pi). The hydrolysis of ATP
results in the stable ADP-Pi bound filament at the barbed end for elongation, and dissociation
of Pi destabilizes the filament at the pointed end for depolymerization [77]. The steady-state
with ATP-actin assembling at the barbed end and ADP-actin disassembling at the pointed
end is called ‘treadmilling’, which is essential for cell motility [14] (Figure 2.5).
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Figure 2.5: Actin nucleation, elongation and recycling Modified from [78].
The actin polymerization is initiated once three ATP-actin monomers assem-
ble into a nucleus. Then the ATP-actin monomers polymerize quickly at the
barbed end (+), leading to the elongation of actin filaments. Actin depolymer-
izes at the pointed end (-) and releases ADP-actin monomers. The dynamics
of actin filament assembly are regulated by many factors, including profilin
which promotes the exchange of ADP to ATP on actin monomers, capping
protein that inhibits filament elongation, and severing proteins that disassem-

ble actin filaments.
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2.2.2 The regulation of actin filaments

Cells tightly control the polymerization and depolymerization of actin filaments for the needs
of different functions.

Compared to the fast elongating process, the nucleation process is a slow and rate-limiting
step since actin dimer is unstable, and actin monomers are commonly sequestered by actin
monomer-binding factors such as profilin and thymosin-β4, to prevent spontaneous nucle-
ation of new filaments [79]. To break the kinetic barrier and form a stable trimer or tetramer
for nucleation, actin nucleators are recruited to mimic the trimer/tetramer state and promote
the formation of actin filaments. The actin-related protein (ARP) 2/3 and formins are the
best-studied actin nucleating factors [80]. Furthermore, capping protein terminates filament
growth.

Actin binding proteins

Profilin is a small actin monomer binding protein that is involved in actin polymerization
in most eukaryotes [81]. Most of the non-polymerized actin monomers in the cytoplasm are
bound to profilin with a stoichiometry of 1:1. The profilin-actin complex provides the major
pool for actin polymerization [14]. Profilin-bound actin monomers only can be added to the
barbed end but not to the pointed end, which promotes the elongation at the barbed end and
prevent polymerization at the pointed ends [82], thus leading to the polarity of growing actin
filaments [83]. Profilin also can catalyze the exchange of ADP for ATP in actin, which refills
the pool of ATP-actin monomers for efficient polymerization [84].

Except for profilin, actin monomer can be sequestered by thymosin-β4, another small actin
monomer binding protein in many eukaryotes [85]. Thymosin-β4 has a higher binding affin-
ity to ATP-actin than ADP-actin and binds to actin monomer in equimolar amounts [86].
Different from profilin, thymosin-β4 inhibits the exchange of the nucleotide bound to actin
and stabilizes actin in monomeric form, thus preventing actin monomers from adding to the
filament [87] [88].

While thymosin-β4 and profilin have comparable affinities to ATP-actin, thymosin-β4 pro-
tein expression is more abundant than profilin in cells [89, 79]. Most of the ATP-actin
monomers in resting cells are held by thymosin-β4 as a pool which is ready for polymer-
ization [86]. Once the polymerization is activated in cells, the free profilin competes with
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thymosin-β4 for binding to ATP-actin and forms profilin-actin monomer pool for efficient
actin polymerization [90].

The actin monomer pool can be regulated by actin filament assembly and disassembly dy-
namics. Actin depolymerizing factors (ADF/cofilin) are a family of actin-binding proteins
which are essential in regulating actin filaments disassembly and actin network turnover [91].
ADF/cofilin is abundant in almost all types of eukaryotic cells [92]. ADF/cofilin can bind to
the barbed end of both actin monomers and to actin filaments. ADF/cofilin binds to ADP-
actin with higher affinity and inhibits nucleotide exchange [93]. It was originally shown that
ADF/cofilin can increase actin filament depolymerization by promoting actin dissociation at
the pointed end [91]. The main function of ADF/cofilin is to break down actin filaments
by fragmentation or severing, which is different from the depolymerization mechanism [94].
ADF/cofilin cooperatively binds to the side of actin filaments with a higher affinity with
ADP-actin than ATP-actin or ADP-Pi actin. The ADF/cofilin-actin binding contributes to
the increased dissociation rate of Pi from actin subunits, which leads to faster aging of actin
filament from ATP- to ADP-actin subunits [95]. Actin filament severed by ADF/cofilin in-
creases the number of free filament ends for actin polymerization and depolymerization,
resulting in increased general actin filament assembly dynamics [96].

The capping protein is a heterodimer that can bind to actin filaments. The capping protein
tightly binds to the existing actin filament at the fast-growing barbed ends and prevents the
actin monomer addition at the barbed ends, thus regulating elongation of filaments and actin
monomer pool [97, 98]. The micromolar concentration of capping protein in the cytoplasm
makes that most actin filament barbed ends are capped [99]. The capped barbed ends are
essential for efficient depolymerization of the filaments at pointed ends in cooperation with
other actin-binding proteins, like profilin and ADF/cofilin [100].

Actin nucleators

As mentioned above, actin monomer binding factors sequester actin monomers to prevent
spontaneous nucleation of new filaments, but enable fast addition of actin monomers for the
elongation of existing filaments. Thus, nucleation process is a slow and rate-limiting step
for filament formation in vivo. To break the nucleation barriers, cells express a variety of
actin nucleators that respond to different cellular signals and regulate filament formation at
a specific timing and subcellular locations [101] (Figure 2.6).
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The Formins

The Formins is a group of actin nucleators that can initiate the nucleation of linear actin
filaments at the barbed end. Formins are a family of proteins that involve in the assembling
of a variety of actin structures in vivo, such as cytokinetic actin rings, actin cables, filopodia,
and stress fibers [102, 103]. Formins contain an N-terminal proline-rich formin homology 1
(FH1) domain, and a unique and highly conserved C-terminal formin homology 2 (FH2) do-
main. Formins can stabilize spontaneously formed unstable actin dimers and trimers through
their donut-shaped dimeric FH2 domains [104]. After nucleation, the formin FH2 domain
remains bound to the filaments and moves with the growing barbed ends, thereby protecting
them from capping proteins [105, 106]. The processive binding of FH2 domain to the barbed
end combined with the association of FH1 domain with profilin allows the rapid addition of
new actin monomers at barbed ends. Moreover, the FH1-profilin-barbed end interaction fur-
ther stabilizes formin at the barbed ends by preventing the force-sensitive dissociation after
actin addition [107].

The ARP2/3 complex

The ARP2/3 complex (Actin-related protein 2/3 complex) is the unique actin nucleator of
branched actin filaments at the surface of membranes.

• Charactrization of the ARP2/3 complex

The ARP2/3 complex was first described in Acanthamoeba castellanii and has been
identified in almost all eukaryotes [108]. The ARP2/3 complex is a heteroheptameric
protein complex composed of seven conserved subunits: two actin-related proteins,
ARP2 and ARP3, that are highly similar to actin, and five smaller subunits referred
to as ARPC1, ARPC2, ARPC3, ARPC4, and ARPC5 (actin-related protein 1-5). In
many higher eukaryotes, several ARP2/3 subunits are encoded by more than one iso-
form. For example, in mammals, ARPC1 and ARPC5 are represented by two isoforms,
ARPC1A/ARPC1B and ARPC5/ARPC5L, with 67% identity [109]. The ARP2/3
complex containing of different subunit isoforms may have different functions in nu-
cleating.
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Figure 2.6: Different actin nucleators in regulating filaments nucleation
A, ARP2/3 complex nucleates new branches filaments from the side of pre-
existing filaments with the help of nuclear promoting factors (NPFs). B,
Formin nucleates new linear actin filaments at the barbed ends by cooperat-
ing with profilin. Modified from https://www.mechanobio.info/cytosk
eleton-dynamics/what-is-the-cytoskeleton/what-are-actin-fi
laments/how-does-arp23-mediate-the-nucleation-of-branched-

filaments/

https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/what-are-actin-filaments/how-does-arp23-mediate-the-nucleation-of-branched-filaments/
https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/what-are-actin-filaments/how-does-arp23-mediate-the-nucleation-of-branched-filaments/
https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/what-are-actin-filaments/how-does-arp23-mediate-the-nucleation-of-branched-filaments/
https://www.mechanobio.info/cytoskeleton-dynamics/what-is-the-cytoskeleton/what-are-actin-filaments/how-does-arp23-mediate-the-nucleation-of-branched-filaments/
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• Cellular functions of the ARP2/3 complex

As the unique branched actin nucleator, ARP2/3 complex initiates the branched actin
nucleation by binding to the side of a pre-existing filament (mother filament) and nu-
cleating the branch filament (daughter filament) at a ∼ 70◦ angle with a new barbed
end facing the membrane surface [110, 80].

ARP2/3 complex is involved in a variety of processes by generating branched actin
networks at diverse subcellular locations. ARP2/3 complex is critical for cell migra-
tion by promoting the formation of lamellipodia and the initiation of filopodia at the
leading edge of spreading cells [111, 112]. In 3D environments, the ARP2/3 complex
contributes to cell invasion and matrix degradation by generating invasive finger-like
protrusions at the leading edge, such as invadopodia in cancer cells or podosomes in
hematopoietic and endothelial cells [113, 114]. ARP2/3 complex also plays an im-
portant role in endocytosis and phagocytosis by generating branched actin networks
involved in endosomes and phagosomes [115, 116]. At the cell-cell adherens junc-
tions, ARP2/3 complex-dependent branched actin networks generate protrusive force
to push against each other and maintain cell-cell adhesion [117]. ARP2/3 complex
can also produce continuous actin flow to drive the cytoplasmic streaming [118]. In
the nucleus, ARP2/3 complex mediates actin polymerization that occurs at the dam-
aged chromatin undergoing homology-directed repair, which is required for chromatin
movement necessary for clustering the double-strand breaks [119]. The branched actin
networks generated by the ARP2/3 complex also contribute to the nuclear movement
from center to periphery in skeletal myofibre for proper muscle function [120].

• The regulation of the ARP2/3 complex

ARP2/3 complex is intrinsically inactive and can be activated by nucleation promoting
factors (NPF) [121, 122, 123].

In the inactive conformation of the ARP2/3 complex, ARP2 and ARP3 are maintained
distant from each other. Under the activation signaling, the ARP2/3 complex changes
its conformation by bringing ARP2 and ARP3 close to each other to mimic the end of
a new actin filament. Then, the ARP2/3 complex with activated conformation interacts
with a pre-existing actin filament at the side to initiate the elongation of a new branch
filament [110, 124]. The activated ARP2/3 complex acts as a branched junction of two
actin filaments.
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To activate ARP2/3 complexes, nucleation promoting factors (NPFs) are required.
Most NPFs in mammals are from the WASP (Wiskott-Aldrich Syndrome Protein) fam-
ily, which are called class-I NPFs. Several groups of NPFs have been identified in a
specific region of cells to promote ARP2/3 mediated branched actin networks: WASP
and N-WASP, WAVE1-3, WASH, WHAMM/JMY, and the newly identified WHIMP
[125, 126]. These NPFs all share the homology VCA/WCA domain at the C-terminal.
The VCA/WCA domain contains the Verprolin homology domain (also called WH2
for WASP homology 2), Cofilin homology domain (also called the central domain),
and C-terminal Acidic domain [127, 128]. The C and A domains allow NPFs to
bind the ARP2/3 complex, which promotes the conformational change of the ARP2/3
complex with closed ARP2 and ARP3. The V domain allows NPFs to bind an actin
monomer and bring actin monomer to the closed ARP2 and ARP3 conformation, thus
creating the structure that mimics the actin trimer nucleus that allows the initiation of
daughter filament elongation. By interacting with the mother actin filament and the
NPF, the ARP2/3 complex is stably maintained in the active conformation [122, 129]
(Figure 2.7).

Figure 2.7: Conformations of the ARP2/3 complex and the regulators be-
tween them. Modified from [124]. The inactive ARP2/3 complex shows a
conformation, where ARP2 and ARP3 are away from each other. Upon ac-
tivation, the ARP2/3 complex rearranges its structure and brings ARP2 and
ARP3 together to mimic the end of an actin filament. This active conformation
allows the ARP2/3 complex to bind to the pre-existing filament and nucleate
the new actin filament from the side. The ARP2/3 complex can be regulated

by various factors which are represented above and below the arrows.
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ARP2/3 complex is not only controlled by activators but also by inhibitory factors.
Several ARP2/3 inhibitory proteins are found in different regions of the cell: Arpin,
Gadkin, and PICK1.

Arpin (ARP2/3 inhibitory protein) is localized at the lamellipodium tip. Arpin con-
tains an acidic domain at its C-terminal. With its A domain, Aprin interacts with the
ARP2/3 complex and competes with NPF for ARP2/3 binding, thus sequestering the
complex in the inactive conformation [130]. A recent high-resolution cryo-EMs study
reveals the structure of Arpin bound to ARP2/3 complex and shows that Arpin con-
tains both C and A domains at its C-terminal, similar to NPFs. But unlike the C and A
domains of NPFs that bind to two sites(ARP2-ARPC1 and ARP3) on the ARP2/3 com-
plex, the CA region of Arpin only binds to ARP3. The C domain of Arpin restricts its
binding to the ARP3 subunit and stabilizes the C-terminal tail of ARP3. Thus allows
to maintain the complex in the inactive conformation and to antagonize the binding of
NPFs [131].

Gadkin, also known as γ-BAR, is another acidic domain-containing protein localized
at the surface of endosomes. Gadkin directly binds to the ARP2/3 complex through
its A domain but cannot activate ARP2/3-dependent actin polymerization. Gadkin is
thought to sequester the ARP2/3 complex to endosomal vesicles without inhibiting the
activity of the complex, thereby inhibiting cell spreading and motility in dendritic cells
[132, 133].

PICK1 (Protein interacting with C-kinase 1) contains N-terminal PDZ domain, cen-
tral BAR domain, and C-terminal acidic domain. PICK1 has been suggested to inac-
tivate ARP2/3 at the surface of clathrin-coated endocytic pits [134]. However, the
regulation is complex since it also has been shown that PICK1 does not bind nor in-
hibit ARP2/3 complex in vitro [135].

In addition, some proteins can interact with the ARP2/3 complex as branch regula-
tors. These proteins regulate the assembly and disassembly of branched actin networks
instead of regulating the activity of the Arp2/3 complex itself.

Cortactin is a branch-stabilizing protein that can bind both actin filaments and the
ARP2/3 complex. Cortactin stabilizes the branched actin network by competing for
ARP2/3 complex binding with NPF after branch nucleation [136, 137].
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GMF (Glial maturation factor) is a branch destabilizing protein that belongs to the
actin-depolymerizing factor (ADF)/cofilin family. However, in contrast to cofilin,
GMF is shown to bind the ARP2 subunit of the ARP2/3 complex, instead of actin.
GMF inhibits branch nucleation and promotes debranching by inserting itself between
ARP2 and daughter filament at the branch junction [138, 139].

Coronin is also a debranching protein that can bind to both the ARP2/3 complex and
actin filaments. Coronin destabilizes actin branches generated by ARPC1A/ARPC5-
containing ARP2/3 complex but not ARPC1B/ARPC5L. Coronin debranches the fila-
ments by stopping the ARP2/3 complex from binding the actin filaments [140, 109].

With the ARP2/3 and branch regulators, cells can control the actin network remodel-
ing, depending on the specific cellular context (Figure 2.8).

Figure 2.8: Cellular context of the activators, inhibitors, and branch regu-
lators of ARP2/3 complex. Modified from [141]. NPFs and branch stabilizers

are in green and inhibitors and branch destabilizers are in red.
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2.2.3 The nucleation promoting factors (NPFs)

As mentioned above, NPFs act as ARP2/3 complex activators to promote branched actin
filament nucleation via their conserved VCA domain at the C-terminal. The VCA domain is
sufficient to activate the ARP2/3 complex in vitro. In cells, the VCA domains are masked
in an autoinhibited conformation or embedded into a stable multi-protein complex to keep
NPFs in inactive form. NPFs can be modified upon activation signals and expose their VCA
domains for ARP2/3 complex activation. Based on the divergent domains at the N terminal,
NPFs can be classified into different families that activate the ARP2/3 complex at various
subcellular locations to exert specific functions, thus regulating ARP2/3-dependent branched
actin network formation spatially and temporally throughout the cells [125]. Four types of
NPFs are identified as N-WASP, WAVE, WASH, and WHAMM/JMY families in the human
genome (Figure 2.9).

Figure 2.9: Modular organization of NPFs. Modified from [124]. All NPFs
contain a VCA/WCA domain at the C-terminal, which can bind and activate
the ARP2/3 complex. The N-terminal of NPFs are different. SHD/WHD,
Scar/WAVE homology domain. B, basic domain. P, proline-rich region. WH1,
WASP homology 1. CRIB, CDC42 and RAC1 interactive binding region.
AI, autoinhibition domain. WAHD1, WASH homology domain 1. WMD,

WHAMM membrane-interacting domain.
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The WASP and N-WASP family

WASP (Wiskott-Aldrich syndrome protein) was originally identified as a mutated gene in the
Wiskott-Aldrich syndrome [142]. WASP is expressed specifically in hematopoietic cells in
mammals. N-WASP (Neuronal Wiskott-Aldrich syndrome protein) is homologous to WASP
but expressed in most cell types, and especially abundant in

the brain [143]. The following description will focus on N-WASP, the more ubiquitous one.

N-WASP is composed of several functional domains from N to C terminus: WH1 domain
(WASP homology domain 1), basic (B) domain, GBD domain (GTPase binding domain),
PRD domain (Proline-rich domain), and VCA domain. in vivo, the native N-WASP is au-
toinhibited since its VCA domain is masked by the N-terminal regulatory domains [144].
The N-WASP is stabilized at an inactive state by forming the heterodimeric complex with
WIP (WASP-interacting protein) or a related protein CR16 through its WH1 domain [145].

To activate the N-WASP/WIP complex, the small GTPase CDC42 and phosphoinositide PIP2
(Phosphatidylinositol-4,5-bisphosphate) work synergistically as N-WASP activators by bind-
ing to the GBD domain and basic domain of N-WASP, respectively [146, 147]. In addition,
many SH3 domain-containing proteins, such as adaptor proteins NCK1/2 (Non-catalytic ki-
nase 1 and 2), membrane-deforming factor TOCA1 (Transducer of Cdc42-dependent actin
assembly protein 1), and the kinase-interacting protein ABI1 (ABL interactor 1), contribute
to N-WASP activation by binding to the PRD domain of N-WASP [148, 149, 150]. By bind-
ing to the activator, the VCA domain of N-WASP is released from the autoinhibited con-
formation. Then, the released VCA domain interacts with both actin monomer and ARP2/3
complex to promote the nucleation of branched actin filaments. N-WASP also can be phos-
phorylated at different sites to increase its affinity of the VCA domain to the ARP2/3 complex
[151]. The multiple activation mechanisms can work cooperatively to activate N-WASP with
high efficiency [125].

In response to diverse signals, N-WASP-ARP2/3-dependent branched actin networks partic-
ipate in multiple cellular processes. N-WASP mediated actin polymerization is involved in
the filopodia formation, thus promoting cell migration [93]. N-WASP contributes to clathrin-
mediated endocytosis by promoting internalization of clathrin-coated vesicles [152, 153].
The N-WASP localizes at the surface of endosomal vesicles and promotes the motility of
intracellular vesicles by forming actin comet tails at the tip [154]. N-WASP plays an es-
sential role in the invasive phenotype of macrophages and cancer cells by forming dynamic
actin-rich podosomes and invadopodia structures, respectively [155, 113].
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The WASH family

The WASH (Wiskott-Aldrich Syndrome protein and scar homologue) protein is a VCA
domain-containing protein identified as the product of a subtelomeric gene that presents
extensive duplication in the human genome [156]. The WASH protein is composed of
an N-terminal region including WAHD1 domain (WASH homology domain 1) and TBR
(Tubulin-binding region), followed by a proline-rich domain and a C-terminal VCA do-
main. The WASH protein activates ARP2/3 complex by embedding into a stable pentameric
WASH complex with the other four proteins, FAM21 (Family with sequence similarity 21),
Strumpellin, SWIP (Strumpellin and WASH Interacting protein), and CCDC53 (Coiled-coil
domain containing protein 53) [157, 158]. In the WASH complex, SWIP, Strumpellin and
CCDC53 are encoded by a single gene, while WASH and FAM21 are encoded by paralogous
genes in the mammalian genome. In addition, the WASH complex recruits the heterodimer
of capping protein (CP) through the CP interaction (CPI) motif at the C-terminal of FAM21
[159]. The CP interaction has been shown to be important for WASH function in the amoeba
Dictyostelium [160].

The stability of the WASH complex depends on all subunits. The loss of one of the subunits
or the CP heterodimer leads to the destabilization of the entire complex. As a multiprotein
complex, the WASH complex is required to be assembled before performing its function.
HSBP1 (Heat shock factor binding protein 1) is identified as a critical assembly factor that
controls the level of the WASH complex. The homotrimeric HSBP1 binds to and dissociates
the precursor CCDC53 homotrimer to form a mixed heterotrimer with a single CCDC53
molecule. The homo to hetero trimer transition contributes a single CCDC53 subunit to
assemble WASH complex [161].

Even though WASH protein can induce ARP2/3-mediated actin nucleation in vitro, the
WASH complex is inactive in the native form with a masked VCA domain [158]. To ex-
pose the VCA domain and activate the WASH complex, WASH protein undergoes K63-
linked ubiquitination, which is important for modifying protein function. The WASH ubiq-
uitination is mediated by E3 ubiquitin ligase TRIM27 and enhanced by MAGE-L2 [162].
In addition, the endosomal phospholipid PI3P (Phosphatidylinositol 3-phosphate) and PI4P
(Phosphatidylinositol 4-phosphate) also contribute to WASH activation, but the details are
not clear [163, 164].



28 Chapter 2. Introduction

Figure 2.10: Regulation of the WASH complex. Modified from [165]. The
WASH complex can be recruited to the surface of endosomes by interacting
with the retromer complex on the endosomes via its FAM21 subunit. The
WASH complex is activated by K63 ubiquitination mediated by the E3 ubiqui-
tin ligase TRIM27 and its enhancer MAGEL2. The activated WASH complex
releases its VCA domain, thus activating the ARP2/3 complex and promoting

the branched actin network formation on the endosomal surface.
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The WASH complex has been shown to be recruited to the surface of the endosome through
the FAM21 subunit, which contains multiple binding sites of the retromer, an essential com-
plex in orchestrating cargo sorting within the endosomal network [166, 167]. The WASH
complex and retromer have been shown to label specific areas of the endosomal membrane,
referred to as microdomains, for further activation of ARP2/3 complex and actin polymer-
ization [168, 165]. The actin networks mediated by the WASH-ARP2/3 complex at the en-
dosome surface are required for endosomal fission and sorting, which is critical for receptor
trafficking in cells (Figure 2.10).

A recent study reveals that the WASH complex contributes to actin polymerization at the
surface of endosomes by directly binding and activating the ARP2/3 complex and converting
the dynactin complex into a seed for the mother filament simultaneously. The dynactin
complex is a multiprotein complex that contains an actin-like minifilament with the capped
barbed end. The WASH complex subunit FAM21 can bind and uncap dynactin complex via
its capping protein interaction (CPI) motif. Once the capping protein is released, the dynactin
minifilament elongates from the barbed end and creates a mother filament. Then another
WASH complex recruits and activates the ARP2/3 complex on the side of the dynactin-
associated filament, thus promoting actin polymerization [169] [170].

The WASH and ARP2/3 complex are also detected at the centrosome, which is known as
the main microtubule organizing centre (MTOC), in interphase cells [171]. The actin nu-
cleation at the centrosome is required for the regulation of lymphocyte polarity. In resting
lymphocytes, the ARP2/3 complex-mediated actin networks are generated at the centrosome
to promote the attachment of the centrosome to the nucleus. However, in active lympho-
cytes, the level of ARP2/3 complex and actin networks are decreased at the centrosome,
which allows the centrosome detachment from the nucleus and its subsequent recruitment
to the immune synapse [172]. The density of the centrosomal actin network also affects the
growth of the microtubule at the centrosome. The balance of actin network and microtubule
at the centrosome may play important roles in the capacity of cells to sense and adapt to
external cues [173] [174].
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The WHAMM/JMY family

WHAMM (WASP homolog associated with actin, membranes, and microtubules) and JMY
( Junction mediating regulatory protein) are two homologous proteins with nearly 35% iden-
tity. WHAMM and JMY share similar domain organizations: the N-terminal domain, a long
central proline-rich domain, and the C-terminal VCA domain. Both of these two proteins
are expressed in various tissues and cell types in mammals [125].

WHAMM is composed of an N-terminal WHAMM membrane interaction domain (WMD)
required for the interaction with the membrane, a central coiled-coil domain (CC) required
for microtubule (MT) binding, and a C-terminal VCA domain with two WH2 domains in-
volved in regulating actin nucleation [175]. Different from other NPFs, WHAMM is not
self-inhibited. By binding to MTs, WHAMM undergoes a structural change by exposing
the N-terminal WMD for vesicle recruiting and tubular structure remodeling, and masking
the C-terminal VCA domain for actin polymerization inhibition. The ability of WHAMM in
coordinating actin and MT cytoskeleton networks plays an important role in regulating the
membrane dynamics in cells [176, 177]

JMY is identified to have a C-terminal VCA domain consisting of three actin-binding WH2
domains. With the three actin-binding domains, JMY can bring together three actin monomers,
which enables JMY to nucleate unbranched actin filament independently of ARP2/3 com-
plex in vitro. JMY is the unique NPF protein that has the actin nucleating ability both in
ARP2/3-dependent and ARP2/3-independent manners [178, 179].

WHAMM and JMY both localize at the endoplasmic reticulum (ER) and the Golgi, cis-Golgi
for WHAMM and trans-Golgi for JMY, and contribute to the vesicle trafficking process [175,
180]. In addition, WHAMM and JMY play critical roles in regulating apoptotic cell death
and contribute to autophagosome biogenesis and motility in an ARP2/3-dependent manner
[181, 182, 183].
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The WAVE family

WAVE (WASP family Verprolin homolog) protein, which is also known as SCAR (Suppres-
sor of cyclic AMP receptor), was identified by sequence homology with WASP protein and
also plays an essential role in regulating actin polymerization via ARP2/3 complex [184,
185]. There are three isoforms of WAVE protein expressed in mammalian cells: WAVE1,
WAVE2, and WAVE3. WAVE2 is ubiquitously expressed in all human tissues, while WAVE1
and WAVE3 are expressed in specific tissues, mainly enriched in brain [186].

The WAVE protein is composed of an N-terminal SHD/WHD (SCAR/WAVE homology
domain), followed by a basic domain (B), a proline-rich domain domain (PRD), and a C-
terminal VCA domain. WHD is a coiled-coil region in all WAVEs and is responsible for het-
erocomplex formation. The WAVE protein is constitutively present within a complex called
WRC (WAVE regulatory complex) for its NPF function. The WRC is a ∼ 400 kDa com-
plex composed of five subunits: WAVE, ABI (ABL interactor), CYFIP/SRA (Cytoplasmic
FMR1-interacting protein/Specifically RAC1-associated protein), NCKAP (NCK-associated
protein), and HSPC300 (Hematopoietic stem progenitor cell 300, also known as BRK1)
[187].

The WRC is intrinsically inactive in resting cells, since the VCA domain on WAVE protein
is masked by interacting with other subunits in the complex. A large number of proteins
can interact with WRC directly to regulate the activity of WRC, thus promoting ARP2/3
activation. WRC-mediated actin networks play many essential functions in various cellular
processes, and the aberrant WRC expression is related to cancer cell invasion and metastasis
[124].

A detailed description of the WAVE regulatory complex will be presented in the next section.
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Figure 2.11: Composition and in vitro assembly of the WRC. Modified
from [188]. The scheme illustrates how the WRC is assembled through the
reconstitution in vitro. Curved lines and dotted lines indicate flexible se-
quences and unstructured sequences, respectively. NBF, NAP1-binding frag-
ment. WHD, WAVE homology domain. WCA/VCA, WH2 central acidic do-

main.
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2.3 The WAVE Regulatory Complex (WRC)

2.3.1 Composition of WRC

The WRC is a heteropentameric complex composed of WAVE, CYFIP/SRA, NCKAP, ABI,
BRK1/HSP300 proteins at a 1:1:1:1:1 molar ratio. These five subunits are highly conserved
in most eukaryotes. Several orthologs are known for four of the WRC subunits, including
CYFIP1 and CYFIP2; NCKAP1/NAP1 and NCKAP1L/HEM1; WAVE1, 2, and 3; ABI1,
2, and 3. ABI1 also undergoes alternative splicing to produce different variants [189]. The
orthologs of each subunit are supposed to be exchangeable, even though different orthologs
are differentially expressed in specific tissues, thus creating the combinatorial complexity
of WRC [190, 191]. In addition, all five subunits need to co-exist during evolution. An
organism either expresses all five WRC subunits or none of them, like in yeast [188].

The WRC is a stable complex. The stability of WRC components is inter-dependent. De-
pletion of any of its components reduces the levels of the other components, a phenomenon
which occurs in various organisms [192, 193, 194]. The majority of the WRC subunits
exist as a complex in the cytosol except for BRK1, which can exist in excess, forming a
homotrimer through its C-terminal coiled-coil domain [187, 194, 195]. To assemble the
complex, the homotrimeric pool of BRK1 serves as a precursor, even though BRK1 presents
as a single molecule in the assembled WRC complex. Single BRK1 dissociates from its
homotrimeric precursor to bind the N-terminal of WAVE and ABI and assemble the trimeric
subcomplex that contains a single molecule of each subunit. In vitro reconstitution and crys-
tal structure of WRC reveals that the complex is assembled with the combination of two
subcomplexes: a dimer formed by two large subunits CYFIP-NCKAP and a trimer formed
by WAVE-ABI-BRK1. The CYFIP-NCKAP dimer serves as a platform to associate with
WAVE-ABI-BRK1 trimer along the long axis [196, 195] (Figure 2.11).

Despite the recombinant WAVE protein being active with the exposed VCA domain, [185,
197], the WRC is maintained in an inactive form by masking its VCA domain via interacting
with other subunits in vivo [198]. In response to the upstream signals, such as the binding
of GTPase RAC to CYFIP1, WRC undergoes a conformational change by releasing the
sequestered VCA domain from WAVE to active the ARP2/3 complex, without dissociating
the complex [199, 200].
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The Nudel protein is identified as an assembly factor of WRC. Nudel stabilizes the subcom-
plexes subunits of WRC, including CYFIP1, NCKAP1, ABI1, and BRK1 against degrada-
tion through its dynamic interaction with CYFIP1 and tightly interaction with BRK1 [201].
However, the details about how the entire WRC is assembled from subunits synthesized in
cells and how cells regulate the protein levels of the different subunits for efficient assem-
bling remain to be elucidated.

2.3.2 Functions of WRC

The first-characterized function of WRC is to generate ARP2/3-dependent branched actin
networks at the lamellipodia and membrane ruffles of migrating cells, which can signifi-
cantly promote the efficiency of cell migration in various cell types. The ubiquitously ex-
pressed WAVE2 contributes to the formation of lamellipodia. WAVE1 promotes the for-
mation of ‘dorsal ruffles’ and stabilizes lamellipodia [202, 203]. WAVE3 is shown to be
enriched at the lamellipodium tip and contributes to lamellipodia formation [204]. The actin
remodeling mediated by WRC-ARP2/3 signaling at the plasma membrane is crucial for mor-
phogenetic processes in different systems, such as cancer or immune cells, zebrafish, fruit
flies, nematode worms, and Dictyostelium. The WRC-related plasma membrane protrusions
can coordinate with intracellular traffic processes. The WRC has been shown to participate
in the biogenesis of transporters involved in the TGN-to-endosomes transport pathway and
in specific types of endocytosis where the direct interaction between WRC and receptors
is required [205]. In epithelial cells, the RAC-WRC-ARP2/3 mediated actin reorganization
plays an important role in the cadherin-dependent cell-cell junction formation and mainte-
nance [206]. The WRC activity is also shown to be involved in cytokinesis. The activated
WRC at the polar cortex of dividing cells is essential for the separation of daughter cells
[207].

Consistent with multiple and diverse functions of the WRC-ARP2/3 mediated actin polymer-
ization pathway in cells, aberrant expression or mutations of WRC subunits are associated
with many diseases. Depletion of the ubiquitously expressed WRC subunits, like CYFIP1,
WAVE2, NCKAP1, and ABI1 in mammals leads to embryonic lethality, whereas a depletion
of their tissue-specific orthologs, like brain-specific WAVE1 or hematopoietic cell-specific
NCKAP1L, leads to the neural or immune function deficiency [188]. Overexpression of the
WRC components is frequently found in many types of cancers and is usually associated
with a poor prognosis for the patients. All three WAVE proteins have been found to be over-
expressed in various cancer types, such as the breast, colon, liver, lung, ovary, and prostate
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cancers [124], except for WAVE3 overexpression in colorectal cancers, which is associated
with a better prognosis [208]. Overexpression of ABI1 or BRK1 has been shown to asso-
ciate with poor prognosis in breast and ovary cancers or lung cancer, respectively [209, 210,
211]. Overexpression of NCKAP1 and NCKAP1L has been shown to associate with poor
prognosis in breast cancer and leukemia, respectively [212, 213]. The missense mutations of
WRC subunits found in patients are associated with human diseases. Structural analysis re-
veals that most missense mutations are spatially clustered as hotspots in the complex. There
are three mutation hotspots in CYFIP2, identified in patients with neurodevelopmental disor-
ders. Mutations near the RAC binding sites of CYFIP2 may disrupt the WRC autoinhibition
and/or affect its binding to RAC [214]. A hotspot in NCKAP1L/HEM1 has been identified
in patients with immune dysregulation disease, which causes the loss of NCKAP1L/HEM1
protein and WRC or disrupts the ARF1-mediated WRC activation, thus leading to impaired
actin polymerization in synapse formation, and deficient immune cell migration [215].

As WRC is the only known NPF for the ARP2/3 complex in plant cells, the complex plays an
important role in various processes in plants. Even though dynamic membrane protrusions
are lacking in plant cells, the dynamic actin cytoskeleton is required for multiple functions
in plant cells [216]. It has been shown that the WRC-ARP2/3 mediated actin polymerization
contributes to various processes of plant growth and development, including asymmetric cell
division, cell morphogenesis [217, 218], trichome morphology, root growth, intercellular
junctions [219, 220], infection thread formation and plant symbiosis [221, 222, 223].

The WAVE complex also has additional roles in cell morphogenesis beyond ARP2/3 com-
plex activation. A recent study reveals that the WRC may form linear oligomers with a pref-
erence for saddle curvatures and enriches the necks of membrane invaginations and transep-
ithelial holes [224].
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2.3.3 The regulation of WRC

The VCA domain responsible for ARP2/3 activation is present at the C-terminal of WAVE
proteins. The VCA domain in WAVE is inhibited within the WRC by binding to the sur-
face of CYFIP subunit. To promote ARP2/3-mediated actin polymerization, the WRC needs
to be recruited to the plasma membrane and activated at the lamellipodium tip. The WRC
recruitment and activation can be mediated by small GTPases, acidic phospholipids, phos-
phorylation, and protein-protein interactions [34] (Figure 2.12). These regulators are shown
to be present simultaneously and to function in a highly cooperative manner for efficient
WRC activation [225, 226].

• WRC regulation by small GTPases and phospholipids

WRC activation plays a central role in its regulation. The Rho family GTPase RAC1
(Ras-related C3 botulinum toxin substrate 1) is the ubiquitous activator of WRC, and
its activity is required for membrane protrusions at the lamellipodium tip [227]. Ac-
tivated RAC1 triggers the activation of WRC by releasing the masked VCA domain
from the complex, thus promoting ARP2/3 complex-mediated actin polymerization
[228].

A crystal structure of WRC proposed a RAC1 binding site named the A site on CYFIP
subunit [196]. Then, a recent cryo-EM analysis revealed the WRC-RAC1 complex
structure and identified another RAC1 binding site named the D site (the A and D
sites stand for Adjacent or Distant to the VCA domain binding sites, respectively).
The A and D are two different and physically distant sites on the opposite side of the
CYFIP subunit. Two activated RAC1 molecules can bind to these two sites simulta-
neously with ∼ 40-fold different affinity, and both interactions are essential for the
activation of WRC towards ARP2/3 complex in vitro [200]. Nevertheless, cellular
studies in mammals and Dictyostelium show that the low-affinity A site is the main
site for allosteric activation of WRC, while the high-affinity D site is dispensable for
WRC activation but required for optimizing WRC function to generate lamellipodial
protrusions efficiently, which indicates that the regulation of WRC in vivo is much
more complicated than in vitro [229].

Given the essential and complex role of the RAC-WRC-ARP2/3 pathway in regulat-
ing actin polymerization, it is not surprising that another RAC1-binding protein family
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called CYRI (CYFIP-related Rac interactor, also known as Fam49) was recently dis-
covered as a local inhibitor of actin polymerization. CYRI binds to RAC1 through
its DUF1394 domain shared with CYFIP. CYRI competes for RAC1 binding with the
WRC by this specific domain, thus inhibiting RAC1-mediated WRC activation [230,
231].

Aside from RAC, there are some other GTPases involved in WRC regulation. The
ARF family GTPases ARF1 and ARF6 have been shown to cooperate with RAC1 for
WRC activation [232]. The RAC-related Rho family GTPases RhoG and CDC42 (Cell
division control protein 42) also can fine-tune the WRC activity through the upstream
RAC or WRC binding [233]. However, these GTPases are not enough to activate the
WRC by themselves and need to work together with RAC to stimulate WRC activity
efficiently. This effect may be important for connecting RAC-WRC-ARP2/3 signaling
to other processes regulated by these GTPases.

To trigger ARP2/3 complex-mediated actin polymerization, WRC needs to be re-
cruited to the plasma membrane. PIP3 and IRSp53 are involved in the recruitment of
the WRC to the plasma membrane. PIP3 (Phosphatidylinositol 3,4,5-trisphosphate) is
the membrane lipid produced by PI3K (Phosphatidylinositol 3-kinase). During chemo-
taxis, the cells sense the chemoattractant gradient and produce PIP3 at the leading edge
to establish cell polarity. PIP3 can directly bind to the WRC at the basic region of
WAVE and recruit the complex to the polarized membrane. This WRC recruitment
by PIP3 enhances WRC activation by RAC1 and is crucial for lamellipodia formation
at the leading edge [234]. CHC (Clathrin heavy chain) was also shown to have the
ability to bind and recruit the WRC to the plasma membrane, promoting lamellipodia
formation [235].

IRSp53 (Insulin receptor substrate of 53 kDa) is described as an inverse BAR domain-
containing protein that links RAC and WAVE at the plasma membrane and participates
in lamellipodia formation [236, 225]. However, IRSp53 was also found to inhibit the
barbed end growth and switch the formation of lamellipodia to filopodia in cells by re-
cruiting and clustering Ena/VASP at the leading edge [237]. Moreover, a recent study
shows that IRSp53 requires its interaction with WRC to be enriched at the lamellipo-
dia, but IRSp53 is dispensable for the the proper localization and function of WRC at
the lamellipodia [224].

Lamellipodin is also identified as a RAC effector and contributes to WRC regulation.
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Lamellipodin directly binds active RAC1, which positively regulates the interaction
of lamellipodin with WRC at the SH3 domain of ABI, thus promoting lamellipodia
formation and the persistence of cell migration [238].

NHSL1 (Nance-Horan Syndrome-like 1 protein) is a newly identified WRC binding
partner, which can directly interact with the SH3 domain of ABI in WRC and nega-
tively regulate WRC activity. The NHS family, which is of particular interest for this
study, will be discussed later in the Introduction.

• WRC regulation by phosphorylation

Phosphorylation of the WRC subunits, controlled by multiple extracellular and in-
tracellular signals, plays an important role in regulating the WRC activity. Various
kinases promote WRC activation and trigger WRC conformation change by phospho-
rylating WAVE and ABI in different regions. Phosphorylation in the proline-rich re-
gions may regulate their interactions with other proteins, and phosphorylation in the
meander region of WAVE can destabilize its interactions with CYFIP and lead to the
release of the VCA domain and the WRC activation [196].

A tyrosine kinase ABL phosphorylates WAVE and ABI and localizes the complex at
the leading edge. ABL phosphorylates WAVE at the meander region and disrupts its
interaction with CYFIP, thereby releasing the masked VCA domain. Moreover, the
binding of ABI to ABL promotes the phosphorylation of WAVE by ABL [226, 239,
240]. A tyrosine kinase SRC phosphorylates WAVE and activates the WRC in a similar
way [241].

A neuron-specific serine/threonine kinase CDK5 (Cyclin-dependent kinase 5) phos-
phorylates multiple serine sites in WAVE1 proline-rich region, contributing to the in-
hibition of WRC and negatively regulating the dendritic spine formation. CDK5 phos-
phorylates one serine site in the WAVE2 meander region, leading to activated WRC
and increased oligodendrocyte precursor migration [242, 243].

A constitutively active serine/threonine kinase CK2 phosphorylates five serine sites of
WAVE2 in the acidic motif of the VCA domain. Phosphorylation of the first two sites
inhibits the activity of WRC for ARP2/3 complex activation, whereas phosphorylation
of the last three sites increases the negative charge of the acidic motif, thus increasing
the affinity of the WRC for ARP2/3 complex [244, 245].
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JNKs (JUN N-terminal kinases) and ERKs (Extracellular signal-regulated kinases)
also phosphorylate serine and threonine sites in the proline-rich region of WAVE2,
which is essential for regulating cell polarity during migration. ERK can phosphory-
late both WAVE2 and ABI1 to regulate WRC activity [246, 247, 248].

• WRC regulation by membrane receptors

The WRC can be recruited to the plasma membrane by diverse transmembrane or
membrane-associated receptors containing a short peptide motif called WIRS (WRC
interacting receptor sequence). The WIRS motif can directly interact with the con-
served surface of the WRC composed of CYFIP1 and ABI2. The WIRS-containing
proteins also seem to act as scaffolds and play different roles in regulating the WRC
activity by cooperating with other WRC regulators like RAC or kinases [199].

Figure 2.12: Regulation of the WRC at the plasma membrane. Modified
from [188]. The WRC needs to be recruited to the plasma membrane for its ac-
tivation. Various factors work cooperatively for the recruitment and activation
of WRC at the plasma membrane, leading to the release of the VCA from the
inhibited complex. Activated WRC binds to the ARP2/3 complex to promote

actin nucleation and the formation of branched actin networks.
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2.4 PPP2R1A

PPP2R1A is one of the scaffolding subunits that belongs to a well-known serine/threonine
phosphatase complex PP2A (Protein phosphatase 2A), which accounts for ∼ 1% of total
cellular proteins and is responsible for the majority of serine/threonine phosphatase activity
in eukaryotic cells.

2.4.1 The PP2A complex

The structure and composition of PP2A complex

• The PP2A is a heterotrimeric complex composed of a scaffolding A subunit, a reg-
ulatory B subunit, and a catalytic C subunit. In vertebrates, each subunit of PP2A
is represented by several isoforms. There are two isoforms for the catalytic C sub-
unit, PPP2CA (Cα) and PPP2CB (Cβ ), and two isoforms for the scaffolding A sub-
unit, PPP2R1A (Aα) and PPP2R1B (Aβ ). The isoforms of A and C subunits have
87% and 97% homology, respectively [249]. PPP2R1A (Aα) and PPP2CA (Cα)
are more abundant and compose the majority of PP2A complex in most cells [250,
251]. The regulatory B subunit proteins can be classified into four families: B family
(B55/PR55, gene symbol PPP2R2 series), B′ family (B56/PR61, PPP2R5 series), B′′

family (PR72/PR130, PPP2R3 series), and B′′′ family (Striatins/PR93/PR110, STRN),
each family contains 2-5 isoforms, and splice variants, which leads to over 100 distinct
combinations of the PP2A complex [252, 82, 253].

Different from the A and C subunits which are expressed ubiquitously, the B sub-
units show differential cellular localization and variable expression across different
cell types and tissues. The substrate specificity and subcellular localization of B sub-
units determine the diverse functions of the PP2A complex. In view of the diversity of
PP2A subunits, the PP2A complex is actually a family of enzymes instead of a single
enzyme [254].

• The PP2A A subunit is composed of 15 tandem HEAT (Huntingtin, EF3, PP2A A sub-
unit, and TOR1) repeats. Each repeat contains about 40 amino acid residues, organized
into two anti-parallel helices [255]. These 15 repeats form a hook-shaped structure to
bind B and C subunits at different ends. The C subunit is globular in structure and
contains catalytic phosphatase activity. The B subunits contain the binding sites both
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for the substrate and for the A subunit, thus directing the PP2A activity to distinct sets
of substrates [256].

To compose the PP2A holoenzyme, the A subunit interacts with an unstable monomeric
C subunit to generate the AC dimer, which is called the core enzyme. In the core en-
zyme, the C subunit binds the A subunit at its HEAT repeats 11–15 and exposes its
active site away from the ridge of the A subunit HEAT repeats. Then the core enzyme
is ready to interact with a specific B family protein. To form the active holoenzyme, A
subunit exhibits conformational flexibility by shifting its HEAT repeats when binding
to the other subunits [256].

Crystal structures for the PP2A complex with different B family subunits have been
published [256] (Figure 2.13). These studies show that a B family subunit binds to
the core enzyme at two interfaces of the A subunit, at HEAT domains 3-7, and HEAT
repeats 1-2. The B′ family subunit binds to the core enzyme by both binding to the A
subunit at HEAT repeats 2-8 and the C subunit. The B′′ family subunit binds to the
core enzyme with the HEAT repeats 1-7 of the A subunit at and the C subunit near the
active site [257, 258, 259]. The B′′′ family protein striatin constitutes the large non-
canonical phosphatase STRIPAK (Striatin-interacting phosphatase and kinase) com-
plex with PP2A/C dimer and several other components including STRIP1/STRIP2
(STRN-interacting protein 1/2) and MOB4 (MOB family member 4 protein), CCM3
(Cerebral cavernous malformation 3 protein) and recruits one GCKIII family kinase
(MST3, MST4, or STK25). In contrast to the canonical trimeric PP2A holoenzyme
containing one copy of each subunit, it has been shown that STRN3 binds to the HEAT
repeat 1 of PP2A A subunit via its coiled-coil domain and forms a 2:2 heterotetramer
complex [260, 261]. A recent study revealed the structure of the STRIPAK complex
and found that the STRIPAK contains four copies of STRN3, and the homotetrameric
STRN3 with coiled-coil domains provides an elongated scaffold to link the whole
complex together [262]. Thus, the B subunits can contribute to the structural diversity
of PP2A and its variants.
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Figure 2.13: Structures of PP2A core enzyme and holoenzymes. Modified
from [256, 262]. A, PP2A core enzyme consists of Aα subunit (in magenta)
and Cα subunit (in yellow). B,C,D, PP2A holoenzymes consist of Aα subunit,
Cα subunit, and B subunits (in cyan) from B, B′, B′′ family, respectively. E,
Structure of STRIPAK core in front and back views with surface (left) and

cartoon (right) representations.
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The functions of PP2A complex

• Given the compositional and structural diversity of PP2A holoenzyme, PP2A has been
suggested to dephosphorylate over 300 substrates. These substrates are components
involved in various important signaling pathways, key regulators of diverse cellular
functions, including but not limited to cell growth and proliferation, cell division, cell
death, cell migration, cell metabolism, and cell differentiation [263].

• PP2A complex in cell migration

PP2A was previously shown to be involved in cell migration, based on its phosphatase
activity. PP2A promotes YAP1 (Yes-associated protein 1) transcription in response to
VEGFR (Vascular endothelial growth factor receptor) signaling or stiffness, and thus
contributes to endothelial cell migration during angiogenesis [264]. The inhibition
of the phosphatase activity of PP2A by RhoB depletion promotes the AKT1-RAC1
pathway and contributes to mesenchymal cell migration and invasion in lung cells
across the 3D matrix [265].

The large STRIPAK complex composed of both PP2A and various kinases can also
be involved in cell migration through some of its components [253]. For example,
GCKIII kinases are found to play important roles in cell migration, and are at least
partially dependent on the PP2A activity in STRIPAK complex [266]. FGFR1OP2
is also indicated to be important for fibroblast cell migration, and the closure of the
wound [267]. Striatin is directly associated with ERα and targets it to the cell mem-
brane. The disruption of the striatin-ERα interaction in cells inhibits PP2A activation,
thus leading to abolished estrogen-mediated endothelial cell migration and vascular
smooth muscle cell growth [268, 269]. STRIP1 and STRIP2 are also involved in cell
migration and morphology in different ways. A knockdown of STRIP1 in PC3 prostate
cancer cells leads to increased cortical actin, broader lamellipodium, and reduced cell
spreading, while a STRIP2 knockdown in the same cells leads to altered microtubule
organization and elongated cell shape [270]. STRIP1 is also shown to be essential for
normal mesoderm migration in the mouse embryo, and STRIP1 deficiency in mouse
embryonic fibroblasts leads to decreased cell spreading and cell migration speed, and
altered actin organization [271].
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Figure 2.14: The frequency of PP2A mutations across tumor samples.
Modified from [256]. A, Pie chart of the frequency of PP2A mutations across
9759 tumor samples. B, Pie chart of the frequency of PP2A mutations divided
by PP2A subunit families: A, B, B′, B′′ and C. PPP2R1A in the red box shows

the highest mutation frequency across all tumor samples.
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• PP2A complex in diseases

Consistent with the central role of PP2A in regulating diverse biological functions,
the dysregulation of PP2A is observed in many diseases, and PP2A Aα and PP2A Cα

knockout mice undergo embryonic lethality, indicating the importance of PP2A during
the development [254].

As the main serine and threonine phosphatase in the brain, PP2A is essential for neu-
ronal signaling and the development of the nervous system. The dysfunction of PP2A
is found to be linked to neurodegenerative disorders such as Alzheimer’s disease, by
promoting tau hyperphosphorylation, amyloidogenesis, and synaptic deficits [272].
The mutations of PP2A subunits and regulators are also associated with various neu-
rodevelopmental disorders [273].

PP2A is widely described as a tumor suppressor. Its inactivation is a prerequisite
for tumor formation in many studies, and its activity can be selectively inhibited by
cancer-promoting chemical okadaic acid (OA) and specific viral oncoproteins: the
small tumor antigen (ST) of SV40 and polyomavirus. The OA inhibits PP2A activity
by directly interacting with the PP2A C subunit, while the ST inhibits PP2A activity
by binding to PP2A A subunit and displacing the B subunit, thereby enhancing protein
phosphorylation involved in cell growth [274, 275].

PP2A is functionally inactivated in cancers. Disruption of the PP2A activity con-
tributes to cancer development through one or several mechanisms. Cancer-associated
somatic mutations are commonly detected in genes encoding PP2A A subunits, espe-
cially in PPP2R1A, which has the highest mutation rate across various cancer types
(Figure 2.14). Decreased expression of specific B subunits or PTPA (phosphatase 2A
phosphatase activator) and increased expression of endogenous PP2A inhibitors, such
as CIP2A (Cancerous inhibitor of PP2A) and SET (Suvar/enhancer of zeste/trithorax),
are shown to be associated with cancer progression. Phosphorylation and methyla-
tion on C-terminal residues of the C subunit are also important for modulating PP2A
activity and contributing to tumorigenesis in humans [276, 254].
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Figure 2.15: Schematic representation of hotspot mutations in PPP2R1A.
Modified from [277].Three-dimensional protein structure of PPP2R1A.
PPP2R1A is composed of 15 repeat HEAT motifs. The HEAT 5 and 7 mo-
tifs are highlighted, and amino acid mutants in frequently mutated in cancer

patients are annotated.
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2.4.2 PPP2R1A

As mentioned above, PPP2R1A is one of the A subunits of the PP2A complex. Even though
the two isoforms of A subunits, PPP2R1A and PPP2R1B, show similar protein structures
and high sequence similarity except for the 12 amino acids extension at the N-terminal of
PPP2R1B, the expression levels and tissue distribution of these two isoforms are different.
Both isoforms are targets of viral antigens, but only PPP2R1A binds the SV40 ST antigen.
Some of PPP2R1B functions are unique and cannot be compensated by PPP2R1A, and an
overexpression of PPP2R1A cannot revert tumorigenesis induced by PPP2R1B deficiency,
which indicates that these two isoforms are functionally different [249].

PPP2R1A mutations in cancer

• PPP2R1A has been shown to have the highest mutation occurrence among all PP2A
subunits in cancers and is suggested to be a tumor suppressor gene since its cancer-
associated mutations in patient samples usually affect only one allele, which results
in a state of haploinsufficiency [278]. Around 40% of human high-grade serous type
endometrial cancers (type II ECs) have been shown to associate with missense muta-
tions in PPP2R1A [277]. A lower frequency of PPP2R1A mutations, about 5-10%, are
detected in endometrioid-type endometrial cancer (type I ECs), different types of ovar-
ian cancer, breast cancer, lung cancers and melanoma [279, 280]. Most of PPP2R1A

mutations cluster together in HEAT repeats 5 and 7, which are involved in B subunit
binding (Figure 2.15). These PPP2R1A mutations occur at the same residues across
different cancer types, forming hotspot mutations: P179R/L, R182W, R183W/Q at
HEAT repeat 5, and S256F/Y, W257C/G, R258C/H at HEAT repeat 7, according to
the data in COSMIC (Catalogue of somatic mutations in cancer).

Several of these hotspot mutations of PPP2R1A have been studied. P179R mutation in
PPP2R1A is highly specific to the high-grade endometrial cancer subtype, and shows a
much higher mutation rate in high-grade endometrial cancer subtype than other cancer
types. It has been shown that the P179R mutation in serious endometrial cancer cells
leads to a PP2A loss of function effect via the decreased stability of PP2A B and
C subunits and disrupted PP2A holoenzyme assembly [281]. Another study based
on the endometrial cancer cells shows that the S256F mutation in PPP2R1A leads
to increased tumor growth with a dominant-negative mechanism by increasing the
binding ability of PPP2R1A to PP2A inhibitor TIPRL1. However, this finding could
not be reproduced by others and remains controversial [282]. Among all the human
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cancer types, R183 is the most commonly mutated residue, and R183W shows the
highest mutation frequency. A study based on KARS-driven colorectal cells shows
that R183W mutation leads to loss of PP2A tumor-suppressive activity. PPP2R1A with
R183W mutation shows the decreased binding ability to the majority of B subunits, but
not to B′′′ (striatin) subunits, and this mutation shows no significant impact on PP2A
C subunit [283]. Although most of the studies suggest that PPP2R1A mutations in
cancer cause a loss of function effect, a study based on endometrial and ovarian cancer
cells shows that the W257G mutation in PPP2R1A leads to inhibited tumor growth
compared to WT cells, and has no effect on PP2A activity, even though its interaction
with PP2A B and C subunits is decreased [284].

In summary, PPP2R1A mutations affect PP2A B or C subunit binding and PP2A ac-
tivity in different ways, thereby leading to distinct functional consequences, but the
mechanistic reasons for these differences remain to be investigated.

PPP2R1A functions that are independent of PP2A complex

• So far, most of the functions of PPP2R1A rely on its role in the PP2A complex. But
from the quantitative proteome analysis of human cells, the A subunit, especially
PPP2R1A (Aα), is more abundant than the other PP2A subunits [285]. The extra
A subunit is thought to bind to the unstable monomeric C subunit and keep its stability
and activity in cells, or bind to B subunits for enhanced stability [286, 287, 288]. A re-
cent study also shows that PPP2R1A can localize at the surfaces of melanoma cells and
lymphatic endothelial cells and mediate cell-cell interaction by forming homodimers
[289]. These studies provided a possibility that the extra PPP2R1A may have other
functions, outside of the PP2A complex, which is worth being investigated further.
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2.5 NHSL1

2.5.1 The NHS (Nance-Horan Syndrome) family

The NHS gene was identified as the gene mutated in patients with a rare X-linked disorder,
Nance-Horan syndrome, which is characterized by congenital cataract, dental anomalies,
dysmorphic features, and mental retardation. The null mutations in NHS gene are suggested
as the cause of the syndrome.

There are at least five isoforms that have been detected in NHS gene. Among these isoforms,
the NHS-A and NHS-1A are thought to be essential for the pathogenesis of Nance-Horan
syndrome, since only these two isoforms contain exon 1 where the null mutations are iden-
tified. The NHS-A and NHS-1A isoforms with exon 1 contain the WHD domain at their
N-terminal (Figure 2.16). Moreover, the NHS isoforms have been shown to have different
distributions in tissues and cells, and only the isoforms containing exon 1 are expressed in
epithelia and localize to the cell periphery.

NHSL1 (NHS-like 1) and NHSL2 (NHS-like 2) are another two members identified in the
NHS protein family. Even though the overall amino acid conservation between different
NHS family members is only ∼30%, NHS, NHSL1, and NHSL2 are shown to share a similar
structure, with several homologous regions. The WHD domain of NHS is suggested to be
conserved among the NHS protein family, which indicates that the NHS protein family might
have roles in regulating actin dynamics [290, 291].

2.5.2 The function of NHS family proteins in cell migration

NHS was shown to localize to the leading edge of lamellipodia and to focal adhesions. The
WHD of NHS interacts with ABIs, BRK1, NCKAP1, and CYFIP1, reminiscent of the func-
tion of WHD in WAVE proteins. Depletion of NHS results in increased cell spreading and
disrupted actin assembly, and overexpression of the NHS isoform with WHD domain in-
hibits the lamellipodia formation under EGF stimulation, which indicates that NHS may act
as a regulator of actin dynamics and cell morphology, by controlling WRC related pathways
[292].

NHSL1 is also known to localize to the lamellipodium tip and is involved in regulating cell
migration recently. In addition to the conserved WHD domain, same as in NHS, two SH3
binding sites have been identified in NHSL1. NHSL1 can directly interact with the SH3
domain of the ABI subunit in WRC, through these two binding sites. The direct binding
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of NHSL1 to WRC is suggested to regulate WRC negatively, and lead to impaired ARP2/3
activity, thus controlling the stability of lamellipodia stability and cell migration efficiency.
Moreover, NHSL1 can also interact with active RAC, which indicates that NHSL1 acts as a
negative regulator in the RAC-WRC-ARP2/3 pathway. [293].

In addition, NHSL1 contains the FP4 motifs that can be recognized by the EVH1 domain of
actin regulator Ena/VASP protein ENAH, suggesting other NHSL1 functions in regulating
the actin network remodeling [294].

Figure 2.16: Schematic representation of the identified domains of NHS
protein and the alignment of NHS with WAVE1, 2, 3 at the N-terminal.
Modified from [292]. Under the alignment, letters in bold indicate con-
served residues in mammalian WAVEs, Drosophila SCAR, and Dictyostelium

SCAR. The underlined region indicates the ABI binding domain.
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Objectives of the thesis

Cell migration plays a critical function in various physiological processes. During cell migra-
tion, sheet-like protrusions driven by branched actin networks are generated at the leading
edge to provide cells with the force to move forward. These actin-based protrusions are
called lamellipodia. The lamellipodia formation is governed by the activity of ARP2/3 com-
plex. At the edge of lamellipodia, the small GTPase RAC1 activates the WAVE Regulatory
Complex (WRC), which in turn activates the ARP2/3 complex to nucleate branched actin
networks. RAC1 maintains its activity when branched actin was previously polymerized,
thus composing a positive feedback loop. Hence, cells keep their ability to migrate in the
same direction, a phenomenon referred to as migration persistence. RAC1 also activates the
ARP2/3 inhibitory protein Arpin at the lamellipodia edge and composes a negative feedback
loop by antagonizing the activation of the ARP2/3 complex, which allows cells to brake and
turn during migration. By combining the positive and negative feedback loops, cell migra-
tion is finely regulated. RAC1-WRC-ARP2/3 driven lamellipodia formation is also required
for haptotaxis, the directed migration process towards the gradient of ECMs.

The RAC1-WRC-ARP2/3 pathway is under the control of various factors. Several WRC in-
teracting partners have been identified to associate with the WRC and regulate cell migration
persistence in different ways, such as the positive regulator lamellipodin and the newly iden-
tified negative regulator NHSL1. CYRI/Fam49, another negative regulator of cell migration,
was shown to compete with WRC for RAC1 binding via a specific domain that is struc-
turally similar to the RAC1-interacting domain of CYFIP. However, the regulatory factors
that specifically bind to the WRC have not been fully elucidated, especially in the context of
differential stimulation of the RAC1-WRC-ARP2/3 pathway.

To dissect the novel factors regulating the WRC, my host lab designed and performed a
differential proteomics screen for potential effectors of RAC1-WRC-ARP2/3 signaling in
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various conditions. Among the candidates from the screen, PPP2R1A was the strongest,
displaying decreased association with WRC when migration is more persistent. PPP2R1A
is one of the scaffolding subunits of the PP2A phosphatase complex. The catalytic subunit
of the PP2A phosphatase complex was found in the proteomics screen but was not dis-
playing variations in the different conditions, which suggests that PPP2R1A might have a
PP2A-independent role in regulating cell migration persistence. PPP2R1A is also a cancer-
associated gene, with mutants on several hotspots in various cancer types.

My PhD project aims to understand how PPP2R1A regulates migration persistence in normal
and cancer cells and to characterize the molecular mechanisms of this regulatory pathway.

To achieve these goals, I performed experiments of random and directional single-cell mi-
gration in 2D and 3D. Tandem Affinity Purification was used to explore the potential partners
of PPP2R1A. In vitro actin polymerization assay on GTPase-coated beads was established
to examine the role of PPP2R1A in regulating actin polymerization. 3D acini assay to mimic
the structure of the breast was performed to test how cancer-associated mutations affect the
function of PPP2R1A.

Using these approaches, I have shown that PPP2R1A is required for cell migration persis-
tence. Surprisingly, I found that PPP2R1A regulates cell migration by specifically interacting
with a novel form of WAVE complex that contained all subunits of the WRC but the WAVE
molecule is replaced by a Nance-Horan Syndrome family protein, NHSL1. This new com-
plex was named the WAVE Shell Complex (WSC). In addition, by examining the effect of
cancer-associated mutations of PPP2R1A in cells, I found that these mutations dramatically
interrupt the interaction between PPP2R1A and WSC and lead to impaired migration persis-
tence and abnormal acini morphology in 3D.

Therefore, in this project, I characterized the role of PPP2R1A as a positive regulator of
directional cell migration and demonstrated that a novel multiprotein complex, the WAVE
shell complex (WSC) is essential for this function of PPP2R1A.
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Results

4.1 PPP2R1A regulates migration persistence through the
WAVE Shell Complex

Manuscript is under review at Nature Communications
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Chapter 5

Discussion

5.1 PPP2R1A, a novel regulator of cell migration persis-
tence

During cell migration, the RAC1-WRC-ARP2/3 pathway is essential for cells to control
their directional persistence. This pathway is regulated by both positive and negative factors,
such as lamellipodin, ARPIN, CYRI, and NHSL1. In this study, we addressed the question
of identification of novel, previously unknown regulatory proteins involved in the RAC1-
WRC-ARP2/3 pathway by associating with the ARP2/3 activator, the WRC. By performing
a proteomic screen, several proteins were identified to be differentially associated with WRC
when the RAC1-WRC-ARP2/3 pathway is activated or inhibited. Interestingly, PPP2R1A
protein turned out to be one of the strongest candidates. PPP2R1A is one of the scaffolding
subunits of a well-known phosphatase complex, PP2A, but the function of PP2A has not
been specifically implicated in the RAC1-WRC-ARP2/3 pathway. It is known that the PP2A
complex works as a holoenzyme composed of 3 subunits to play its phosphatase activity in
various cellular processes, and the substrate-specificity of the PP2A complex depends on the
diversity of its regulatory subunits. However, in our experiments, we have never detected any
of the regulatory subunits of the PP2A complex. Even though we have detected the catalytic
subunits of PP2A, their interaction with WRC shows no variation in different cell migration
conditions. The differential recruitment to WRC is strictly specific to PPP2R1A.

Although most of the studies about PPP2R1A are focused on its role in the PP2A complex,
PPP2R1A has been shown to form a homodimer at the cell surface by itself, and promote
lymphatic-melanoma cell interaction independently of the PP2A complex [289]. In addition,
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the quantitative proteomic analysis of human cells shows that PPP2R1A is much more abun-
dant than the other PP2A subunits [285], indicating that the extra PPP2R1A may form other
complexes and function independently of the PP2A complex. Therefore, we have attempted
to understand the novel role of the PPP2R1A protein in the regulation of WRC.

To this end, we analyzed the role of PPP2R1A in the migration of human normal epithelial
cells in 2D conditions and found that the loss of PPP2R1A led to a significant decrease
in cell migration persistence, or the ability of cells to sustain their movement at the same
direction, whereas even a two-fold overexpression of this protein increased it. Moreover,
in cancer cells, depletion of PPP2R1A decreased the migration persistence dramatically in
3D conditions. Other parameters of cell migration were also analyzed in our experiments,
such as cell speed and Mean Square Displacement (MSD). Although the speed and MSD
were affected by the PPP2R1A level in cells, their differences were not consistent, in full
agreement with the previous findings, which showed that these parameters are not the main
target of the RAC1-WRC-ARP2/3 pathway [34]. Thus, it became clear that PPP2R1A is
indeed a positive regulator of WRC within the RAC1-WRC-ARP2/3 pathway that controls
migration persistence in cells.

5.2 WAVE Shell Complex: a novel multiprotein complex

To further dissect how PPP2R1A interacts with the WRC, we analyzed all the potential part-
ners of PPP2R1A in normal or cancer human cells by mass spectrometry. Surprisingly, we
found that PPP2R1A was associated with a novel form of the WAVE complex, which con-
tains four subunits of the canonical WRC, NCKAP1, CYFIP, ABI1, and BRK1, but lacks
the WAVE subunit. Further immunoprecipitation assay validated the MS data and revealed
that another WHD containing protein, NHSL1 was required for the association of PPP2R1A
with the four remaining subunits of the canonical WRC. For this reason, we proposed that
there existed a novel form of WRC, which contains NHSL1 instead of WAVE protein, and
named this novel complex the WAVE Shell Complex (WSC). Interestingly, we observed that
the function of PPP2R1A in regulating migration persistence was totally dependent on the
presence of NHSL1, since the depletion of NHSL1 abolished the effect of PPP2R1A in cell
migration. This effect was not only detected in the random cell migration, but also in the
directed cell migration on the gradient of fibronectin, which is known as haptotaxis. As the
RAC1-WRC-ARP2/3 mediated actin polymerization is critical in random and haptotaxis, we
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performed the in vitro actin polymerization assay and found that PPP2R1A depletion dra-
matically impaired the actin polymerization on the surface of RAC1 Q61L coated beads, a
phenomenon that was abolished by depleting PPP2R1A and NHSL1 simultaneously. These
results indicated that the function of PPP2R1A in regulating migration persistence fully de-
pended on the WSC.

The canonical WRC is composed of five subunits, and all of these subunits are essential for
the stability of the complex [194]. A structural model has revealed that the WRC assem-
bly relies on two intermediate subcomplexes, CYFIP-NCKAP and WAVE-ABI-BRK1 [196,
195]. The WRC switches to the active conformation by exposing the VCA domain of the
WAVE subunit, in order to activate the ARP2/3 complex for branched actin nucleation at the
leading edge. After the nucleation event, the WRC dissociates from the ARP2/3 complex at
the branch junctions and might undergo recycling in cytosol [295, 296]. For example, the
Nudel protein is identified as a WRC assembly factor via its interaction with CYFIP1 and
BRK1, thus stabilizing the subcomplexes against degradation [201]. But the details about
how the entire complex is assembled from single subunits and recycled from the leading edge
for multiple rounds of ARP2/3 activation, and whether any other intermediate subcomplexes
exist for efficient WRC assembly, are still not clear.

Figure 5.1: Schematic representation of the WRC and WSC.

Our observation provided more possibilities for the assembly of WRC. It is possible that the
WSC participates in the turnover of the WRC during cell migration, and that the NHSL1
protein serves as a scaffold and a hub to ensure the transition between the canonical WRC
and the WSC. One hypothesis is that when the WRC is released from the branch junctions
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after activating the ARP2/3 complex, the WAVE subunit may detach from the complex, and
the cells will need a new WAVE protein or a replacement (for example, the NHSL1, a protein
with the WHD domain) to preserve the remaining subunits of WRC from degradation, thus
facilitating further WRC formation through an energy-saving mechanism. The WSC may
act as an intermediate subcomplex pool during the WRC assembly, and once cells need the
WRC for ARP2/3 activation, the NHSL1 in the pool of WSC can be replaced by WAVE
protein, to promote fast and efficient WRC assembly. More studies are needed to elucidate
these hypotheses to clarify how these two complexes co-exist and cooperate in normal and
cancer cell physiology (Figure 5.1).

5.3 The complexity of NHSL1

NHS family proteins have been identified to contain the WHD domain, which is conserved
in WAVE proteins and is important for the interaction of WAVE proteins with other WRC
subunits. NHS has been shown to interact with the WRC subunits ABI1, BRK1, NCKAP1,
and CYFIP1 via its WHD domain. And overexpression of the WHD domain-containing
isoforms of NHS was shown to inhibit the lamellipodia formation under the stimulation of
EGF in MTLn3 breast cancer cells [292].

A recent study also found that the NHSL1 protein acts as an inhibitor of directional cell
migration via interacting with the canonical WRC [293]. In this research, by studying a
specific NHSL1 isoform without the WHD domain, two SH3 domain binding sites were
identified in NHSL1 and shown to be important for the interaction of NHSL1 with ABI1.
Through the binding with ABI1, NHSL1 was shown to interact with all subunits of WRC.

Our results suggest that the role of NHSL1 is more complex. In our work, NHSL1 is not
only a regulator of the canonical WRC, but it also can replace the WAVE subunit in WRC
and compose a novel complex, the WAVE Shell Complex. The WSC can be selectively
recognized by PPP2R1A and is essential for the PPP2R1A to play a role in regulating mi-
gration persistence. By mapping the exact interacting region of NHSL1 with PPP2R1A, we
found that even though the middle region with ABI1 binding sites was important for the in-
teraction of NHSL1 with WRC, the C-terminal region of NHSL1 specifically interacted with
PPP2R1A. A stable expression of this C-terminal fragment in cells dramatically decreased
cell migration persistence, which indicated a dominant-negative effect that mimics the inter-
ruption of the PPP2R1A-NHSL1 interaction. This result clearly showed the importance of
the interaction of PPP2R1A to NHSL1/WSC in regulating efficient cell migration.
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Together, it seems that NHSL1 can regulate cell migration in different ways by forming
distinct complexes, but how NHSL1 selects the different complexes for proper function in
migrating cells remains to be investigated. In addition, as the WHD and ABI1 binding sites
are highly conserved in the NHS protein family (NHS, NHSL1, NHSL2), it will be interest-
ing to study NHS and NHSL2 for their potential functions in regulating cell migration. For
example, the observed absence of functional redundancy between NHS and NHSL1, even
though they are usually co-expressed in the same cells, is indeed very curious.

5.4 PPP2R1A cancer-associated mutations

PPP2R1A has been shown to mutate in various cancer types [256]. Most of the mutations
are clustered in the near region in PPP2R1A and form mutation hotspots in multiple cancer
types. PPP2R1A is suggested to be a tumor suppressor gene through a haploinsufficiency
effect since most of its cancer-associated mutations usually happen only in one allele [278].

Some of the PPP2R1A mutations have been studied previously, but mostly with regard to the
role of PPP2R1A in PP2A activity. The effect of different PPP2R1A mutations on the PP2A
complex varies and leads to different functional consequences. For example, the P179R mu-
tation is suggested to affect the stability of PP2A B and C subunits, thus disrupting the PP2A
holoenzyme activity [281, 282], the R183W mutation is suggested to impair the binding
ability to the majority of PP2A B subunits but has no significant impact on PP2A C subunit
[283], the S256F mutation is shown to increase the binding ability to PP2A inhibitor TIPRL1
and increases tumor growth with a dominant-negative mechanism [282], the W257G muta-
tion is shown to decrease PP2A B and C subunits and leads to inhibited tumor growth, but
has no effect on PP2A activity [284].

To investigate whether these cancer-associated mutations in PPP2R1A affect its role in cell
migration in our system, we generated the PPP2R1A knockout cell line with human breast
epithelial cells and then rescued the KO cells by wild-type or mutant PPP2R1A. In the 2D
migration assay, we observed a significant decrease in migration persistence in PPP2R1A
knockout cells, and this effect was only rescued by the wild-type PPP2R1A but not by the
mutant forms of PPP2R1A. Immunoprecipitation experiment showed that PPP2R1A mu-
tations specifically interrupted the interaction between PPP2R1A and NHSL1, but had no
effect on the interaction with PP2A C subunit. These results indicated that the impaired cell
migration persistence caused by PPP2R1A cancer-associated mutations was likely due to a
specific loss of interaction with NHSL1, and thus with other WSC subunits.
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By examining the oncogenic transformation potential of PPP2R1A mutations with a classical
long-term acini formation assay in human breast epithelial cells, we found that the mishap-
pen morphology caused by PPP2R1A knockout can be partially restored by the wild-type
PPP2R1A, but not by the cancer-derived mutants, which suggested that the tumor suppressor
function of PPP2R1A might be related to its specific role in the regulation of cell migration.
Hence, our study highlights the potential role of PPP2R1A-regulated cell migration in cancer
progression.
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Chapter 6

Conclusions and Perspectives

In conclusion, my work characterized the function of a novel cell migration regulator -
PPP2R1A, which was originally identified by my host lab via a differential proteomic screen.
I first studied the effect of PPP2R1A in cell migration and found that PPP2R1A is required
for both directional persistence in random cell migration and directional cell migration along
fibronectin gradients. I further demonstrated that PPP2R1A regulates cell migration by
specifically interacting with a novel complex, which contains four subunits of the canonical
WRC, but the WAVE subunit is replaced by NHSL1. We named it the WAVE Shell Complex
(WSC). NHSL1 is required for the association of PPP2R1A with other WSC subunits, and
for the function of PPP2R1A in regulating cell migration and cell-free actin polymerization.
In addition, I studied the effect of PPP2R1A cancer-associated mutations in regulating cell
migration and found that the mutant PPP2R1A exhibits impaired migration persistence and
decreased interaction with WSC. Together, this study revealed a novel multiprotein com-
plex, the WSC, that has a critical role in regulating migration persistence in normal and
cancer cells.

My work has revealed the importance of PPP2R1A and WSC in regulating migration persis-
tence, but the underlying molecular mechanisms are not fully elucidated yet. More studies
should be done, in order to investigate the exact role of WSC in migrating cells. For example,
a structural analysis of the complex by cryo-EM would be important to understand the exact
composition and conformation of the WSC. This analysis can be done either by purifying
the complex from human cells, as I have done in this study, or by reconstituting the WSC in

vitro. in vivo, putting cells in over-activated or fully inhibited cell migration conditions can
be useful to understand how WSC and WRC cooperate and regulate their relative abundance
in cells. Studying the turnover of PPP2R1A or of the complete WSC at the lamellipodium
tip, by advanced imaging of live cells, will be helpful to examine the dynamics of these
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molecules during cell migration. All this work, challenging but very interesting, awaits to be
done in the future.
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ABSTRACT 

 
Branched actin networks polymerized by the Arp2/3 complex are critical for cell migration. 

The WAVE complex is the major Arp2/3 activator at the leading edge of migrating cells. 

However, multiple distinct WAVE complexes can be assembled in a cell, due to the 

combinatorial complexity of paralogous subunits. When systematically analyzing the 

contribution of each WAVE complex subunit to the metastasis-free survival of breast cancer 

patients, we found that overexpression of the CYFIP2 subunit was surprisingly associated with 

good prognosis. Gain and loss of function experiments in transformed and untransformed 

mammary epithelial cells, as well as in prechordal plate cells in gastrulating zebrafish embryos, 

revealed that lamellipodium protrusion and cell migration were always inversely related to 

CYFIP2 levels. The role of CYFIP2 was systematically opposite to the role of the paralogous 

subunit CYFIP1 or of the NCKAP1 subunit, which determines levels of WAVE complexes. 

CYFIP2 showed no difference from CYFIP1 in assembling WAVE complexes or binding to 

active RAC1. CYFIP2-containing WAVE complexes, however, were less able to activate the 

Arp2/3 complex in response to RAC1 binding. CYFIP1- and CYFIP2-containing WAVE 

complexes thus compete for active RAC1 and produce different outcomes. Therefore, cell 

migration, lamellipodium protrusion and Arp2/3 activity are controlled by relative levels of 

CYFIP1 and CYFIP2.  
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INTRODUCTION 

 
Vertebrate genomes are the result of two genome-wide duplications 1. This explains why 

many protein families are encoded by up to four paralogous genes in the human genome, but 
by a single gene in invertebrates such as Drosophila or C. elegans. The availability of several 
paralogous genes in the human genome has permitted the emergence of new regulations or 
specialized functions of specific paralogs. In cancers, alteration of gene expression or mutation 
usually concerns a single specific member of the family, which has to be identified.  

 Ten to twenty percent of human proteins form stable multiprotein complexes 2. These 
complexes are often referred to as molecular machines to emphasize that they perform elaborate 
functions through the coordination of their subunits 3. When several subunits are encoded by 
paralogous genes, a combinatorial complexity arises. Different complexes, potentially 
displaying different regulations and functions, stem from the different assemblies of paralogous 
subunits. If a specific molecular machine is responsible for cancer progression, it is also critical 
to be able to identify it.  

Cell migration is controlled by several multiprotein complexes 4. The Arp2/3 complex 
generates branched actin networks, which power membrane protrusions. At the protrusive edge, 
WAVE complexes activate the Arp2/3 complex 5,6. The WAVE-Arp2/3 pathway depends on 
the activity of the small GTPase RAC1, which is necessary and sufficient to generate 
lamellipodia 7. The RAC1-WAVE-Arp2/3 pathway controls protrusion lifetime and migration 
persistence through numerous feedback and feedforward loops 8. This pathway has been 
implicated in the migration and invasion of tumor cells in various model systems 4. 

 The combinatorial complexity of WAVE complexes is daunting. A WAVE complex is 
composed of 5 generic subunits, hereafter referred to as WAVE, ABI, BRK, NAP and CYFIP. 
Except BRK, all human subunits are encoded by paralogous genes, 3 for WAVE and ABI, and 
2 for NAP and CYFIP 9. There are as many as 3x3x2x2, i.e. 36, possible WAVE complexes, 
just by combining the different paralogous subunits. Furthermore, the ABI1 gene has been 
shown to be alternatively spliced and the resulting isoforms do not possess the same ability to 
mediate macropinocytosis, which, like lamellipodium formation, depends on the ability of 
branched actin to drive protrusions 10. In mouse embryonic fibroblasts, WAVE2 is critical for 
the formation of peripheral ruffles, whereas WAVE1 is critical for dorsal ruffles 11. Thus, 
evidence already exists for functional specialization among WAVE complexes. 

WAVE complex subunits have been mostly reported to be overexpressed in tumors 4. In 
line with their function in promoting cell migration and invasion, their overexpression is 
generally associated with high grades and poor prognosis. High levels of WAVE subunits is of 
poor prognosis for patients in breast, ovary, lung and liver cancers 12–16. The overexpression of 
WAVE3 in colorectal cancers, however, is associated with good prognosis 17. Similar to the 
general trend, high expression of the NAP paralogs, NCKAP1 and NCKAP1L, has been 
associated with poor prognosis in breast cancer and leukemia, respectively 18,19. High 
expression of ABI1 has also been associated with poor prognosis in breast and ovary cancers 
20,21.  
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Whereas most studies, including cancer studies, focused on one subunit, we measured the 
expression levels of all the paralogous genes encoding subunits in a large cohort of breast cancer 
patients, in an attempt to tackle the complexity of the WAVE complex. This systematic 
endeavor allowed us to examine each of the 36 possible WAVE complexes for their possible 
association with metastasis-free survival (MFS). We found no evidence for the involvement of 
a specific WAVE complex assembly. The first order determinant of MFS was whether WAVE 
complexes contained the NCKAP1 subunit. The second order determinant was whether WAVE 
complexes contained the CYFIP2 subunit. Surprisingly, however, we found that high levels of 
CYFIP2 were associated with good prognosis. This unexpected effect on MFS could be 
accounted for by the fact that CYFIP2-containing complexes specifically impair cell migration 
in a variety of cell systems. CYFIP2-containing WAVE complexes are less activated by RAC1 
than CYFIP1-containing WAVE complexes, suggesting that they titrate out the major activator 
of the WAVE complex. 

 

RESULTS 

 

Systematic analysis of WAVE complex subunits in breast cancer 

 

In a cohort of 527 breast cancer patients (Table S1), we measured by qRT-PCR the 
mRNA levels of the 11 genes encoding WAVE complex subunits. Expression values in tumors 
were normalized to the expression in healthy breast tissue. We found that the expression of 
several subunits is profoundly deregulated in breast cancer (Table 1). CYFIP2, NCKAP1L and 
ABI3 were up-regulated in 37%, 22% and 12% of tumors, respectively. Cases of overexpression 
were in different subgroups of breast cancer patients. NCKAP1L is mostly overexpressed in the 
Hormone Receptor (HR)- ERBB2+ subgroup. ABI3 is mostly overexpressed in the HR- 
ERBB2-, triple negative subgroup. CYFIP2 is mostly overexpressed in the HR+ ERBB2- 
subgroup and in low-grade tumors of good prognosis (Table S1). WASF3 and WASF1 are down-
regulated in 46% and 27% of the cohort. Underexpression of these WAVE subunits is also 
mostly displayed in the good prognosis HR+ ERBB2- subgroup. We then examined if 
fluctuations in subunit expression were associated with prognosis. 

Since the outcome of patients is known in the cohort and given the role of the WAVE 
complex in tumor cell invasion, we were especially interested in the metastasis-free survival 
(MFS). MFS starts at the date of surgery and terminates at the date of the last news from the 
patient, of metastasis diagnostic, or of death. We applied to these right-censored data a classical 
Cox univariate model using the expression level of each subunit as the variable. We sorted the 
different subunit genes according to increasing p-values (Fig. S1). The first three genes were 
NCKAP1, CYFIP2 and NCKAP1L. The levels of NCKAP1 mRNA, within their natural 
fluctuations, were significantly associated with MFS (p=0.012, Fig. S1). Indeed, we previously 
reported that high levels of NCKAP1 were associated with poor MFS [18]. Levels of CYFIP2 
and NCKAP1L also appeared significantly associated with MFS, but with a lower significance, 
p=0.138 and 0.288, respectively. 
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Our goal when measuring expression levels of all WAVE subunits in the cohort was to 
examine whether a particular combination of subunits would create a specific WAVE complex 
conferring invasive properties to tumor cells. This is why we chose to perform highly accurate 
measurements by qRT-PCR in our cohort of 527 patients, even if global analyses were already 
available in public databases containing a larger number of patients. To analyze the association 
of various WAVE assemblies with MFS, we needed to transform and normalize our variables, 
i.e. subunit levels. Using a monotonous function of the type log(x-c), levels of each subunit 
fitted a Gaussian distribution. Then we normalized transformed variables around 0 with a 
variance of 1, to allow a better comparison between different subunit levels. Transformation 
and normalization did not change the relative association of subunit levels with MFS, since, by 
univariate Cox analysis, the 3 most powerful subunits to predict MFS were still, first, NCKAP1 
with a p-value of 0.005, second, CYFIP2 with a p-value of 0.059, just above the classical 5% 
significance level, but far above the third subunit, NCKAP1L, with a p-value of 0.397 (Fig. S1).  

During these simple Cox analyses of the original subunit levels or of the transformed and 
normalized variables, we were struck by the fact that NCKAP1 and CYFIP2 had opposite 
coefficients for the association with MFS. Indeed, high levels of NCKAP1 were associated with 
poor MFS, whereas high levels of CYFIP2 were associated with good MFS (Fig.S1).  

Using transformed and normalized variables, we were able to perform a multivariate Cox 
analysis to analyze the association of each of the 36 possible WAVE complexes with MFS 
(Fig.S1). We sorted the 36 WAVE complexes according to increasing p-values. The 18 best 
combinations all contained NCKAP1 as the NAP subunit, while the best 9 combinations also 
contained CYFIP2 as the CYFIP subunit, suggesting that NCKAP1 is the first order predictor, 
whereas CYFIP2 is the second order predictor in our cohort. The multivariate Cox analysis 
does not suggest a specific WAVE assembly that would be particularly associated with MFS, 
what seems to matter is whether the assembly contains NCKAP1 and/or CYFIP2. Computer 
simulations using random permutations of values confirmed that the prediction powers of 
NCKAP1 and CYFIP2 cannot be attributed to chance (Fig.S1).  

We then evaluated further multivariate Cox models by adding up to 5 variables using 
NCKAP1, CYFIP2, WASF3 and ABI2 and BRK1 subunits in this order. The log-likelihood 
criterium increased when more subunits were introduced, but the log-likelihood always 
increases when further variables are added. Therefore, we compared the models using Bayesian 
Information Criteria (BIC). BIC introduces a penalty term for the number of variables used in 
the model to avoid overfitting. The model with 2 variables, NCKAP1 and CYFIP2, had the 
smallest BIC (Fig.S1) and thus appeared as the optimal model of MFS in our cohort. MFS over 
time can be accurately predicted from mRNA levels of NCKAP1 and CYFIP2. In our optimal 
model, NCKAP1 is a first order predictor with a p-value of 0.001, whereas CYFIP2 is the second 
order predictor with a p-value of 0.012. Importantly, in this multivariate model, as in the initial 
univariate models, NCKAP1 and CYFIP2 have opposite coefficients, indicating that up-
regulation of NCKAP1, but down-regulation of CYFIP2, are associated with poor prognosis. In 
the model, the higher the CYFIP2 value, the better the MFS, for a given value of NCKAP1. To 
illustrate how the second order predictor CYFIP2 modulates the MFS, we ran the model with 
expression levels found in patient tumors populating the outskirts of the distribution (Fig.1A). 
The extreme values of NCKAP1 dominate the predicted MFS when CYFIP2 values are 
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intermediate (Fig.1B). In contrast, extreme values of CYFIP2 significantly oppose the effect of 
NCKAP1, when NCKAP1 values are not extreme. 

To validate the prediction of our statistical model that NCKAP1 and CYFIP2 control 
MFS, we used a public database of breast cancer patients, where the transcriptome of more than 
3900 tumors, was analyzed by Affymetrix chips 22. Given the large number of patients, more 
genes encoding WAVE complex subunits were significantly associated with relapse-free 
survival (RFS) than in our cohort containing slightly more than 500 patients. However, the two 
most strongly associated ones were NCKAP1 and CYFIP2, as in our analyses. As our model 
predicted, high levels of NCKAP1 were associated with poor RFS, whereas high levels of 
CYFIP2 were associated with good RFS (Fig.1C). All these results together indicate that 
CYFIP2 should have a function at odds with the major function of WAVE complexes, that is 
to promote cell migration 4. 

 

The WAVE complex subunit CYFIP2 inhibits the migration of mammary carcinoma cells 

 

Since the expression of WAVE subunits CYFIP2 and NCKAP1 are associated with 
opposite prognoses in breast cancer patients, we sought to compare their function in mammary 
carcinoma cells. Moreover, we compared the two paralogous subunits CYFIP1 and CYFIP2 in 
two classical breast cancer cell lines, MCF7, which is HR+ ERBB2-, and MDA-MB-231, which 
is HR- ERBB2- (triple negative). 

Depletion of the different subunits using RNAi had different impact on WAVE complex 
levels. Indeed, WAVE complexes are stable when fully assembled, providing an explanation 
as to why depletion of a subunit usually destabilizes the multiprotein complex it should be part 
of 9. Depletion of NCKAP1 in MCF7 cells leads to a severe downregulation of WAVE complex 
subunits, including CYFIP1 and CYFIP2 (Fig.2A). This result shows a key role of NCKAP1 
for the stability of CYFIP1- and CYFIP2-containing WAVE complexes in cells. Depletion of 
CYFIP1 leads to a significant destabilization of the WAVE complex, which can be appreciated 
on NCKAP1, WAVE2 and BRK1 levels. In contrast, depletion of CYFIP2 does not lead to a 
visible depletion of the same subunits. Since MCF7 cells have conserved their epithelial 
organisation, we assessed cell migration in a wound healing assay. CYFIP1 or NCKAP1 
depleted cells failed to close the wound before 78-81h compared to 30 h for control cells (Fig. 
2A and Movie S1). In sharp contrast, CYFIP2 depleted cells were not impaired in their ability 
to close the wound and were in fact significantly faster than controls (20 h vs. 30 h). 

We then turned to MDA-MB-231 cells, which displayed the same overall pattern of 
subunit expression upon depletion of NCKAP1 or CYFIP1/2 as MCF7 cells (Fig.2B). Briefly, 
WAVE complexes were destabilized upon NCKAP1 or CYFIP1 depletion, but not upon 
CYFIP2 depletion. We thus decided to measure levels of CYFIP1 and 2 using purified CYFIP1- 
or CYFIP2-containing WAVE complexes as standards, serial dilutions and Western blots in 
their linear range (Fig.S2). We found that MDA-MB-231 express roughly 6-times more 
CYFIP1 than CYFIP2 (Fig.2C), providing a first level of explanation as to why CYFIP1 
depletion affects more the stability of other subunits than CYFIP2. However, this was not the 
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only effect, since the depletion of each CYFIP protein resulted in approximately 50 % up-
regulation of its remaining CYFIP paralog. These up-regulations of the paralogous CYFIP 
proteins were not observed at the mRNA level and might represent stabilization of CYFIP 
subunits with other WAVE complex subunits when the paralogous CYFIP protein is not 
expressed (Fig.S3). 

We first evaluated in the Transwell assay the migration of MDA-MB-231 cells when 
CYFIP1, 2, or NCKAP1 were depleted using pools of siRNAs. Depletion of NCKAP1 and 
CYFIP1 significantly decreased the number of cells able to migrate through the filter, whereas 
the depletion of CYFIP2 had the converse effect (Fig.2D). The effect of transient siRNA-
mediated depletions was confirmed using stable MDA-MB-231 lines expressing either a 
shRNA targeting NCKAP1 or CYFIP2 5(Fig.S4). We then attempted to obtain stable MDA-
MB-231 lines overexpressing NCKAP1 or CYFIP2. We obtained lines expressing GFP-tagged 
CYFIP2, but repeatedly failed in obtaining clones expressing NCKAP1 in parallel selection 
schemes. The overexpression of CYFIP2 slightly decreased cell migration in the Transwell 
assay, whereas CYFIP2 depletion increased it (Fig.S4). Loss- and gain-of function of CYFIP2 
thus yield opposite phenotypes.  

MDA-MB-231 cells are mesenchymal, unlike epithelial MCF7 cells. Nonetheless, in a 
wound healing assay, CYFIP2 depleted MDA-MB-231 closed the wound faster than controls, 
and MDA-MB-231 cells depleted of NCKAP1 and CYFIP1 were significantly delayed in doing 
so (Fig.S4), exactly as we had observed in MCF7 cells. We then turned to a more 
physiopathological assay for MDA-MB-231. We seeded isolated MDA-MB-231 cells in 3D 
gels of collagen type I. In these settings, mimicking invasion of the mesenchyme, differences 
in cell migration were more dramatic (Fig. 2E). NCKAP1 depleted cells hardly migrated at all, 
as evidenced by strongly decreased Mean Squared Displacement (MSD), mostly due to reduced 
speed. NCKAP1 depleted cells ended up entering into apoptosis during the first 24 h (Movie 
S2).  CYFIP1 depleted cells were not significantly affected in their ability to migrate, even 
though they also appeared prone to die in these settings. CYFIP1 and NCKAP1 depleted cells 
formed significantly fewer protrusions than controls (Fig.2E). In contrast, CYFIP2 depleted 
cells often explored a significantly larger territory than controls. The increased MSD of CYFIP2 
depleted cells could be accounted for by the dramatically increased migration persistence. The 
protrusive activity of CYFIP2 depleted cells was significantly increased compared to controls. 
Finally, CYFIP2 depleted cells had no issue of survival in 3D collagen, unlike cells depleted of 
NCKAP1 or CYFIP1.  

 

In conclusion, in all the assays performed with the two breast cancer cell lines, the 
opposite roles of NCKAP1 and CYFIP2 were consistently observed and in line with their 
association with their prognostic roles in the metastasis-free survival of breast cancer patients.  

 

 

CYFIP2 inhibits cell migration of untransformed cells 
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We wondered if the anti-migratory role of CYFIP2 was its normal function or rather 
associated with cell transformation. To address this question, we used the immortalized, but not 
transformed, MCF10A mammary cell line. MCF10A expressed approximately 6-fold more 
CYFIP1 than CYFIP2 (Fig.3A). CYFIP2 is thus less abundant than CYFIP1 in two cell lines, 
MCF10A and MDA-MB-231. As in MDA-MB-231, siRNA-mediated depletion of NCKAP1 
and CYFIP1 from MCF10A cells significantly decreased protein levels of WAVE complex 
subunits, but not their mRNA levels (Fig.3B, Fig.S3), whereas CYFIP2 depletion did not affect 
the overall stability of WAVE complexes.  

MCF10A cells are more epithelial than MDA-MB-231 cells. They establish cell-cell 
junctions and form epithelial islets.  However, they are plastic epithelial cells. In 2D cultures, 
in their regular culture medium, which contains EGF, MCF10A cells display cell-cell junctions, 
but also frequently migrate as single cells. We depleted MCF10A cells with siRNA pools 
targeting either NCKAP1, CYFIP1 or CYFIP2. Cells depleted of NCKAP1 appeared as small 
and organized as a tight epithelium, whereas the cells depleted of CYFIP2 appeared larger with 
membrane protrusions, even if they remained associated with one another (Fig.3B, Movie S3). 
CYFIP1 depletion did not have a pronounced effect on cell morphology. We then recorded 
MCF10A cells to analyze cell migration. Trajectories corresponding to single cells were plotted 
(Fig.3C). NCKAP1 depleted single cells migrated much less than controls, an effect which was 
mostly due to decreased cell speed. In contrast, CYFIP2 depleted cells did not explore a wider 
territory than controls, nor did they migrate faster, but they significantly increased migration 
persistence. Importantly, same results were obtained with two single siRNA sequences for each 
gene (Fig.S5), indicating that these results were not due to off-targets. Such a phenotype, 
characterized by increased migration persistence of single MCF10A cells, was previously 
observed upon activation of RAC1 or upon depletion of the Arp2/3 inhibitory protein ARPIN 
23.  

To study differentiation of acini in Matrigel, we isolated CYFIP2 knock-out (KO) clones 
using CRISPR-Cas9. From about 100 independent MCF10A clones, we selected two CYFIP2 
negative clones, which turned out to be KO on both alleles due to insertions/deletions changing 
the ORF (Fig.S6A). As expected, CYFIP2 KO clones displayed increased migration persistence 
(Fig.S6BC). The initial KO of CYFIP2 led to an increase of the level of WAVE complex 
subunits, as previously shown for siRNA assays, but this effect disappeared in long-term 
cultures (Fig.S6DE). The differentiation of CYFIP2 KO clones was then assayed in Matrigel, 
where MCF10A cells develop acini structures. CYFIP2 inactivation did not affect the 
morphogenetic program, nor cell polarity, but resulted in significantly larger 3D structures 
containing more cells than the control (Fig.3D). Similar results were previously obtained when 
ARPIN was inactivated 23. CYFIP2 thus behaves like this well-established inhibitory protein of 
cell migration, ARPIN. This result on acini structures is consistent with the fact that the RAC1-
WAVE-Arp2/3 pathway controls cell cycle progression 23.  

 

To validate the anti-migratory function of CYFIP2 in a physiological system and to test 
whether this function is specific to breast cells or more general, we turned to the zebrafish 
embryo, and in particular to prechordal plate cells, which stereotypically migrate during 
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gastrulation 24,25. Prechordal plate cells migrate from the fish organizer (shield) to the animal 
pole of the embryo by forming actin-rich protrusions. These RAC1 dependent protrusions are 
the 3D equivalents of 2D lamellipodia and are easily distinguished from thin, filopodia-like 
extensions 26,27. We assessed the function of CYFIP1, CYFIP2 and NCKAP1 using both 
morpholino-mediated loss-of-function and mRNA over-expression.  

We first analyzed prechordal plate cell trajectories, in embryos injected with morpholino 
and/or mRNA for CYFIP1, CYFIP2 and NCKAP1 (Fig.4A). Experiments were performed in a 
goosecoid:GFP transgenic line, allowing easy identification of prechordal plate cells. Nuclei 
were labelled by expression of a Histone2B–mCherry construct, the cells were tracked (Movie 
S5), and cell trajectories were plotted. Similar to what was observed using human cell lines, 
CYFIP2 depletion increased migration persistence as compared to injection of a control 
morpholino. This effect was rescued by co-injection of a morpholino-insensitive CYFIP2 
mRNA, demonstrating the specificity of the phenotype. Consistently, overexpression of 
CYFIP2, i.e. injection of the same amount of mRNA as for the rescue but without the 
corresponding morpholino, decreased cell persistence. In contrast to CYFIP2, downregulation 
of CYFIP1 or NCKAP1 reduced cell persistence, both effects being rescued by the co-injection 
of the corresponding mRNAs. 

We then used cell transplants to look for cell autonomous defects and analyzed cell 
dynamics and protrusivity. Few prechordal plate cells from a donor embryo injected with 
morpholino and/or mRNA were transplanted to the prechordal plate of an uninjected host 
embryo (Fig.4B). Actin-rich protrusions were highlighted by the enrichment of the LifeAct-
mCherry marker (Fig.4B, Movie S6). CYFIP2 depletion doubled the number of protrusions 
compared to cells injected with a control morpholino (Fig.4B). This effect was rescued by a 
morpholino-insensitive CYFIP2 mRNA. Consistently, CYFIP2 overexpression decreased the 
number of protrusions, much like the depletion of NCKAP1 and CYFIP1. CYFIP2 depletion 
also significantly and specifically increased protrusion length (Fig.4B).  

The results using zebrafish embryos are thus perfectly in line with those obtained in 
human breast cells and demonstrate that the unexpected anti-migratory function of CYFIP2 is 
a general and conserved function of this subunit, at least across vertebrates.  

 

CYFIP2 rescues lamellipodium formation in CYFIP1/2 double KO cells 

To examine whether CYFIP2 was a functional subunit of the WAVE complex, we re-
expressed CYFIP2 in B16-F1 CYFIP1/2 double knock-out cells (DKO) 28. GFP-CYFIP2 
clearly rescued lamellipodium formation in DKO cells, like GFP-CYFIP1, even if CYFIP1 
appeared to induce more prominent lamellipodia than CYFIP2 (Fig.5AB, movie S6). We also 
analyzed two point mutations of CYFIP2, R87C and I664M, that are recurring mutations found 
in patients affected by intellectual disability 29. These two point mutations did not impair the 
ability of CYFIP2 to induce lamellipodia. On the opposite, the mutations seemed to induce 
more prominent lamellipodia (movie S7). 

We quantitatively analyzed the effect of CYFIP2 and of its mutated derivatives on 
protrusions using line scans. The expression of CYFIP2 was unable to restore the full speed of 
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protrusions observed in parental B16-F1 cells or in CYFIP1-rescued DKO cells (Fig.5C). R87C 
and I664M mutations rendered CYFIP2 significantly more efficient at rescuing the protrusion 
rate, up to the level of parental or CYFIP1 reconstituted cells. We then analyzed the width of 
lamellipodia, using immunofluorescence of the ARPC2 subunit of the Arp2/3 complex and of 
cortactin, a protein that stabilizes the Arp2/3 at the branched junction between filaments 4. In 
line with their faster protrusions, CYFIP1, R87C and I664M CYFIP2 induced lamellipodia 
deeper into the cell than wild type CYFIP2 (Fig.5DE). So CYFIP2 is a functional CYFIP 
protein, but less active than CYFIP1, and point mutations that induce developmental defects in 
patients alleviate this restrained activity of CYFIP2. 

 

CYFIP2 containing WAVE complexes are poorly activated by active RAC1 

CYFIP2 is 88 % identical to CYFIP1. So we replaced CYFIP1 with CYFIP2 in the 
molecular model of the WAVE complex derived from crystallography of a reconstitued 
complex containing a WAVE1 form lacking the central proline-rich region and a truncated 
ABI2 lacking the the disordered C-terminus 30. We mapped on this model the WIRS binding 
site that allows the WAVE complex to interact with various transmembrane receptors 31. None 
of these binding sites was affected by the substitutions in CYFIP2 (Fig.6A). Consistently, we 
observed by ultracentrifugation on sucrose gradients that CYFIP2 was incorporated into the 
native WAVE complex, which sediments at around 11 Swedbergs (Fig.6B)32. Two binding sites 
exist for active RAC1 at the surface of the WAVE complex: the so-called A site, which shares 
structural homology with the CYRI-B protein 33,34, and the D site 35. None of the RAC1 binding 
sites was affected by substitutions in CYFIP2. To examine the binding to RAC1 and activation 
by RAC1, we reconstituted a WAVE complex with either CYFIP1 or CYFIP2 using a 
previously described procedure 36. Both complexes interacted equally well with GTP-bound 
RAC1 (Fig.6C and D). In pyrene-actin polymerization assays, however, the CYFIP2-containing 
WAVE complex was poorly activated by RAC1 compared to the CYFIP1-containing WAVE 
complex (Fig.6E). These in vitro data are thus consistent with the observation that in cells 
CYFIP2 promotes lamellipodium formation, but not as well as CYFIP1.  

 

DISCUSSION 
 

Here we have systematically analyzed the expression levels of WAVE complex subunits 
in a cohort of breast cancer patients. Ad hoc statistical modeling, taking into account assembly 
rules among paralogous subunits, increased the statistical power of the analysis and revealed 
the unique role of the CYFIP2 subunit, whose overexpression is associated with good prognosis 
for metastasis-free survival. These findings were validated using an independent cohort of 
breast cancer patients available in public databases. CYFIP2 had previously been implicated in 
pathologies, since it is mutated in children affected with intellectual disability and epileptic 
encephalopathy 37,38. In zebrafish, CYFIP2 loss-of-function mutations result in defective axonal 
pathfinding in retinal ganglion cells 39. This function of CYFIP2 is also not redundant with the 
one of the paralogous subunit, CYFIP1, which is involved in axon growth 40. 
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We have experimentally validated the prediction of our model, which implies a protective 
role of CYFIP2 overexpression in breast cancer. CYFIP2 is at odds with other subunits, since 
it is the first subunit of the WAVE complex that is ever reported to oppose cell migration. 
Indeed, we found that CYFIP2 opposes cell migration in a variety of cell systems, MCF10A, 
MDA-MB-231 and prechordal plate cells from the zebrafish embryo. In these experiments, 
CYFIP2 depletion enhances cell migration, whereas CYFIP2 overexpression decreases cell 
migration. We were struck by this anti-migratory role of CYFIP2, which to our knowledge was 
never reported before, even if depletion of different subunits of the WAVE complex did not 
always give the same phenotype 41–45. 

In all cell systems we studied here, the main parameter that CYFIP2 controls is migration 
persistence, which relates to the persistence of lamellipodial protrusions 8. In fact, the role of 
CYFIP2 is very similar to the Arp2/3 inhibitory protein Arpin that directly inhibits the Arp2/3 
complex at the leading edge 46. In neuronal growth cones, CYFIP2 was found to localize at the 
tip of filopodia, structures composed of linear actin and not of branched actin 40, in line with an 
inhibitory function of CYFIP2 on branched actin formation we suggest here. 

CYFIP2 is highly related to CYFIP1, with 88 % identity. Both CYFIP proteins 
incorporate into WAVE complexes 47–49. Accordingly, we found here that CYFIP2 depends on 
NCKAP1 for its stability, like CYFIP1 and that CYFIP2 is found into the same WAVE complex 
migrating at 11 Swedbergs as CYFIP1. Importantly, the residues of CYFIP1 that are involved 
in binding active RAC1 are all conserved in CYFIP2. However, we found that CYFIP2-
containing WAVE complexes were less activatable by active RAC1 than CYFIP1-containing 
WAVE complexes. This property accounts for the observed phenotypes. Indeed, depletion of 
CYFIP2 can render available more active RAC1 to activate more CYFIP1-containing WAVE 
complexes, which are easily activatable (Fig.6F).  

Another effect is expected to increase migration upon CYFIP2 depletion and to decrease 
it upon CYFIP1 depletion. In RNAi experiments, CYFIP1-depleted cells were found to 
overexpress CYFIP2, whereas CYFIP2-depleted cells were found to overexpress CYFIP1. This 
compensatory expression of the paralogous CYFIP was marginally observed at the mRNA level 
in some cases and more significantly at the protein level, suggesting that CYFIP proteins might 
be stabilized by the availability of partner subunits 9. However, this compensatory expression 
of CYFIP1 is lost over time in the CYFIP2 KO clones that we isolated from MCF10A cells, 
while enhanced migration persistence of CYFIP2 KO clones is sustained, strongly suggesting 
that this effect has a minor contribution compared to the poor activation of CYFIP2-containing 
complexes by active RAC1.  

This modulation of phenotypes based on subunit composition of complexes was 
previously described for the Arp2/3 complex 50. The paralogous subunits ARPC1B and 
ARPC5L assemble Arp2/3 complexes, which are more activatable than the ones assembled 
around ARPC1A and ARPC5. The situation is perfectly analogous to the one described here 
for the WAVE complex assembled with CYFIP1 and CYFIP2 paralogous subunits. Vertebrate 
genomes encoding paralogous subunits for many stable multiprotein complexes thus offer 
numerous opportunities to fine tune cellular responses. The two examples of WAVE and 
Arp2/3 complexes illustrate that each cell of a vertebrate organism can regulate levels of cortical 
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branched actin, polymerized in response to signaling inputs, based on the expression of the 
paralogous genes that regulate the “activatability” of these molecular machines. 

 

 

METHODS 

 

Patient cohort for mRNA analysis  

All patients (mean age 60.9 years, range 29-91 years) met the following criteria: primary 
unilateral nonmetastatic breast carcinoma for which complete clinical, histological and 
biological data were available; no radiotherapy or chemotherapy before surgery; and full 
follow-up at Institut Curie - Hospital René Huguenin. All patients before 2007 were informed 
that their tumor samples might be used for scientific purposes and had the opportunity to 
decline. Since 2007, patients treated in our institution have given their approval by signed 
informed consent. This study was approved by the local ethics committee (Breast Group of 
René Huguenin Hospital). Treatment (information available for 524 patients) consisted of 
modified radical mastectomy in 320 cases (61%) or breast-conserving surgery plus locoregional 
radiotherapy in 204 cases (39%). The patients had a physical examination and routine chest 
radiotherapy every 3 months for 2 years, then annually. Mammograms were done annually. 
Adjuvant therapy was administered to 416 patients, consisting of chemotherapy alone in 130 
cases, hormone therapy alone in 178 cases and both treatments in 108 cases. During a median 
follow-up of 10.5 years (range 1 month to 36.3 years), 210 patients developed metastasis. 
Sixteen specimens of adjacent normal breast tissue from breast cancer patients or normal breast 
tissue from women undergoing cosmetic breast surgery were used as sources of normal RNA. 

 

qRT-PCR 

Specific mRNAs were quantified from the cycle number (Ct value) at which the increase in the 
fluorescence signal started to be detected by the laser detector of the ABI Prism 7900 sequence 
detection system (Perkin-Elmer Applied Biosystems, Foster City, CA) as previously described 
[52]. Specific transcripts were quantified using the following primers: WASF1-U (5’- 
CCTCTCATTTTGAAACAAGACCTCAG-3’) and WASF1-L (5’- 
CTAAATGGCAAGGCAGAAAGTGAGT-3’) for the WASF1 gene (PCR product of 79 pb); 
WASF2-U (5’- AAAGCTGGGGACTTCTGGGTATC-3’) and WASF2-L (5’- 
GTGAAGAAGCAGAGTCTGACTGTGGT-3’) for the WASF2 gene (PCR product of 122 pb); 
WASF3-U (5’- GAGTGATAAGCCACCGCCTCTG-3’) and WASF3-L (5’- 
GCCCATCCTTCTTGTCATCTCTGTA-3’) for the WASF3 gene (PCR product of 62 pb); 
ABI1-U (5’-GGGGAACACTGGGACGGAAT-3’) and ABI1-L (5’-
GCTGTCCTGCCTGGACTATGCT-3’) for the ABI1 gene (PCR product of 124 pb); ABI2-U 
(5’-CCGTGGGCTCCACGTTCTTACT-3’) and ABI2-L (5’-
TCCTTCCTGAAAGGACAGCTCATCT-3’) for the ABI2 gene (PCR product of 90 pb); 
ABI3-U (5’-TGCTGCGGGTCGCTGACTA-3’) and ABI3-L (5’-
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GCGCCTTCCGCTTGTCTGT-3’) for the ABI3 gene (PCR product of 63 pb); BRK1-U (5’-
AAAATCGCAGACTTTCTCAACTCGT-3’) and BRK1-L (5’-
TTCAAGGGCTGTCAATTTCTCGT-3’) for the BRK1 gene (PCR product of 84 pb); 
NCKAP1-U (5’-AGTGTACCCTTAGTGACCAGTTGCT-3’) and NCKAP1-L (5’- 
TCAGGTTCCCCTTTCTTACCAGT-3’) for the NCKAP1 gene (PCR product of 106 pb); 
NCKAP1L-U (5’- GAAAAGTCCATGGAACCATCTCTCA-3’) and NCKAP1L-L (5’- 
GTACTGGTCCTAAATGTTGCGTGCT-3’) for the NCKAP1L gene (PCR product of 91 pb); 
CYFIP1-U (5’-CACGAGTACGGCTCTCCTGGTATC-3’) and CYFIP1-L (5’- 
CCGCAGGTTCTGGAAGCACA-3’) for the CYFIP1 gene (PCR product of 102pb); CYFIP2-
U (5’-CCCACGTCATGGAGGTGTACTCT-3’) and CYFIP2-L (5’-
TAATTGTAGCGTGTGGCTCTCTCA-3’) for the CYFIP2 gene (PCR product of 112pb); 
TBP-U (5’-TGCACAGGAGCCAAGAGTGAA-3’) and TBP-L (5’-
CACATCACAGCTCCCCACCA-3’) for the TBP gene (PCR product of 132 bp), which was 
the reference gene used for normalization. Over and under-expression were defined as >3 and 
<0.33, respectively, the expression compared to the median expression of normal samples. 

Public transcriptomics data on breast cancer 22 were interrogated using the kmplot website 
(http://kmplot.com) on June 26, 2019 using best cut-offs for JetSet determined best probes 
(NCKAP1 207738_s_at, CYFIP2 220999_s_at, 51. 

 

Cell lines, transfection and establishment of stable clones 

MCF10A cells were grown in DMEM/F12 medium supplemented with 5% horse serum, 20 
ng/mL epidermal growth factor, 10 µg/mL insulin, 500 ng/mL hydrocortisone, and 100 ng/mL 
cholera toxin. MDA-MB-231 were grown in DMEM medium with 10% FBS. Medium and 
supplements were from Life Technologies and Sigma. Cells were incubated at 37°C in 5% CO2. 
MCF10A and MDA-MB-231 were from the collection of breast cell lines organized by Thierry 
Dubois (Institut Curie, Paris). 

Stable MCF10A cells expressing CYFIP2 were obtained by transfecting MCF10A cells, with 
the home-made plasmid MXS AAVS1L SA2A Puro bGHpA EF1Flag GFP CYFIP2 Sv40pA 
AAVS1R, or MXS AAVS1L SA2A Puro bGHpA EF1Flag GFP Blue Sv40pA AAVS1R as a 
control. Transfection was performed with Lipofectamine 2000 (Invitrogen). To obtain stable 
integration of the MXS plasmid at the AAVS1 site, cells were cotransfected with two TALEN 
plasmids inducing DNA double strand breaks at the AAVS1 locus (Addgene #59025 and 
59026; 52. Cells were selected with 1 µg/mL puromycine (Invivogen) and pooled. Stable 
MCF10A cells expressing shRNA were obtained by transfection with previously described 
pSUPER-Retro-Puro plasmids 5 and puromycin selection.  

The stable 293 Flp-In cell line expressing Flag-HA-CYFIP1 were previously described 53. An 
equivalent cell line expressing Flag-HA-CYFIP2 was obtained according to a published 
procedure54. 

MDA-MB-231 and MCF10A were depleted by siRNAs (OnTarget Smart Pools, Dharmacon), 
transfected at 20 nM final concentration using Lipofectamine RNAiMAX (Invitrogen), and re-
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transfected 72h later, for the total of 6 days. This protocol was necessary due to an unusually 
long half-life of CYFIP2 protein (AP, unpublished observations). 

The MCF10A CYFIP2 knockout cell line was generated with CRISPR/Cas9 system. The 
targeting sequence 5’-CAUUUGUCACGGGCAUUGCA-3’ was used to induce the double 
strand break. For the negative control the non-targeting sequence 5’-
AAAUGUGAGAUCAGAGUAAU-3’ was used. Cells were transfected with 
crRNA:trackRNA duplex and the purified Cas9 protein by Lipofectamine CRISPRMAX™ 
Cas9 Transfection Reagent (all reagents from Thermofisher Scientific). The next day, cells 
were subjected to dilution at 0.8 cells/well in 96 well plates. Single clones were expanded and 
analyzed by CYFIP2 Western blot. 2 positive clones were identified. The PCR products 
amplified from genomic DNA containing the gRNA recognition site were then cloned (Zero 
Blunt PCR Cloning Kit, Thermofisher Scientific) and sequenced. A frameshift of +1 and a -1 
in the 3rd exon of the CYFIP2 gene in both clones was confirmed by sequencing (see Fig. S6 
for details).  
 
Antibodies and Western blot 

Cells were lysed in RIPA buffer and analyzed by Western blot. SDS-PAGE was performed 
using NuPAGE 4-12% Bis-Tris and 3-8% Tris-Acetate gels (Life Technologies). Nitrocellulose 
membranes were developed with horseradish peroxidase (HRP) coupled antibodies (Sigma) 
and SuperSignal West Femto chemiluminescent substrate (Thermo Fisher Scientific). Home-
made rabbit polyclonal antibodies CYFIP1, ABI1, WAVE2 were previously described 32. The 
mouse monoclonal antibody, 231H9, targeting BRK1 was previously described 55. The 
antibodies targeting CYFIP-2 (Sigma SAB2701081), NCKAP1 (Bethyl A305-178A), cortactin 
(Millipore 4F11), ARPC2 (Millipore 07-227) and tubulin (Sigma T9026) were purchased. 
Quantification of wb was performed by densitometry, using the ImageJ software.   

 

Sucrose gradient 

For sucrose gradient analysis of WAVE subunits, Nitrogen cavitation (Parr instruments, 500 
Psi for 20 min) followed by centrifugation (16,000 × g, 20 min) and ultracentrifugation 
(150,000 × g, 60 min) were used to prepare cytosolic extracts from cells trypsinized from two 
15 cm dishes and resuspended in the XB buffer (20 mM HEPES, 100mM NaCl, 1mM MgCl2, 
0.1 mM EDTA, 1mM DTT, pH 7.7). 200 μL of extract was loaded on the 11 mL 5–20% sucrose 
gradient in the XB buffer and subjected to ultracentrifugation for 17 h at 197,000 ×g in the 
swinging bucket rotor SW41 Ti (Beckman). 0.5 mL fractions were collected and concentrated 
by using trichloroacetic acid precipitation with insulin as a carrier. The samples were washed 
with acetone, dried and then resuspended in the 1x LDS loading buffer with 2.5% of β-ME for 
Western blot analysis. 
 

Migration assays 

Transwell migration assays were performed using FluoroBlok inserts with 8 µm holes 
(Corning, 351152), covered with 20 μg/ml fibronectin (Sigma, F1141). MDA-MB-231 cells 
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were plated in serum-free medium and allowed to migrate towards serum-containing medium 
for 16 h, incubated with 4 μg/ml calcein AM (Sigma, C1359) for 1 h, and images of fluorescent 
cells were acquired and quantified using ImageJ software.   

2D migration was performed using 8 chamber Ibidi dishes (Biovalley 80826) covered with 20 
μg/ml fibronectin. 3D migration was performed in 2 mg/ml collagen gel polymerized at 37°C 
(rat tail collagen type I, Corning 354263), with the cells sandwiched between the two layers of 
collagen. An inverted Axio Observer microscope (Zeiss) equipped with a Pecon Zeiss incubator 
XL multi S1 RED LS (Heating Unit XL S, Temp module, CO2 module, Heating Insert PS and 
CO2 cover), a definite focus module and a Hamamatsu camera C10600 Orca-R2 was used to 
perform videomicroscopy. Pictures were taken every 5 min for 24 h for 2D migration, and every 
20 min for 48 h for 3D migration. Random migration of single cells and migration persistence, 
based on the angular shift between frames, was analyzed as previously described 46 using DiPer 
programs 56. 

 

Rescue of DKO cells  

B16-F1 mouse melanoma cells that are CYFIP1/2 double KO were a kind gift of Klemens 
Rottner (Helmholtz-Zentrum für Infektionsforschung, Braunschweig). GFP-tagged human 
CYFIP1 or CYFIP2 (wild type or mutant) were transiently transfected into the DKO cells, and 
48 h later, 10-minute videos (images taken every 10 seconds) were acquired using a confocal 
laser scanning microscope (TCS SP8, Leica) equipped with a high NA oil immersion objective 
(HC PL APO 63×/ 1.40, Leica), a white light laser (WLL, Leica) and controlled by the LasX 
software. Protrusion speed was measured using the Multi Kymograph tool in ImageJ software. 
For the LineScan analysis, images of fixed, stained cells were obtained, and analyzed as 
described in 46 and 23. 

 

Zebrafish embryos, cell transplantation and imaging 

Embryos were obtained by natural spawning of Tg(-1.8gsc:GFP)ml1 adult fishes 57. All animal 
studies were done in accordance with the guidelines issued by the Ministère de l’Education 
Nationale, de l’Enseignement Supérieur et de la Recherche and were approved by the Direction 
Départementale des Services Vétérinaires de l’Essonne and the Ethical Committee N°59.  

Translation blocking morpholinos (Gene Tool LLC Philomath) were designed against zebrafish 
CYFIP1 (AAAAACTATCCGCTTCGACTGTTCA) and CYFIP2 
(CGACACAGGTTCACTCACAAAACAG). The NCKAP1 morpholino 
(CCGAGACATGGCTCAAACGACCGTC) was described in 58. The control morpholino is a 
standard control (CCTCTTACCTCAGTTACAATTTATA). mRNAs were synthesized using 
pCS2+ plasmids containing the human genes described in 32 and the mMessage mMachine SP6 
kit (Thermo Fischer). 

For cell migration quantification, embryos were injected at the one-cell stage with 1.5 nl of a 
solution containing Histone2B-mCherry mRNA (30 ng/μl) and either control morpholino (0.1, 
0.2 or 0.8mM), MoCYFIP1 (0.2mM), MoCYFIP2 (0.1mM) or MoNCKAP1 (0.8mM), with or 
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without mRNAs encoding either human CYFIP1 (10ng/μl), human CYFIP2 (10ng/μl) or human 
NCKAP1 (10ng/μl). Injected embryos were mounted in 0.2% agarose in embryo medium and 
imaged between 60% and 80% epiboly (6.5-8.5 hpf) under an upright TriM Scope II (La Vision 
Biotech) two photon microscope equipped with an environmental chamber (okolab) at 28°C 
using a 25x water immersion objective. Visualization of 3D movies and nuclei tracking were 
done using Imaris (Bitplane). Cell migration parameters were extracted using custom Matlab 
(Math Works) code and autocorrelation was computed using published Excel macros 56. 

For protrusion analysis, embryos were injected in one cell at the four-cell stage with 1.5 nl of a 
solution containing Lifeact-mCherry mRNA (50 ng/μl) and either control morpholino (0.5 
mM), MoCYFIP1 (0.2mM), MoCYFIP2 (0.1mM) or MoNCKAP1 (0.8mM), with or without 
mRNAs encoding either human CYFIP1 (10ng/μl), human CYFIP2 (10ng/μl) or human 
NCKAP1 (10ng/μl). Small cell groups were transplanted at shield stage (6 hpf) from the shield 
of an injected embryo to the shield of an untreated host. Embryos were then cultured in embryo 
medium 59 with 10 U/mL penicillin and 10 μg/mL streptomycin. Transplanted embryos were 
mounted in 0.2% agarose in embryo medium and imaged between 60% and 80% epiboly (6.5-
8.5 hpf) under an inverted TCS SP8 confocal microscope equipped with environmental 
chamber (Leica) at 28°C using a HC PL APO 40x/1.10 W CS2 objective. Visualization of 
images was done on ImageJ, lamellipodia-like actin rich protrusions being quantified on the 
basis of morphological criteria as described in 26.  
 
Reconstitution of WAVE complexes and in vitro assays 

Recombinant WAVE complexes containing full-length human CYFIP1 or CYFIP2, full-length 
NCKAP1, full-length BRK1, ABI2 (1-158) and WAVE1 (1-230)-(GGS)6-WCA (485-559), 
referred to as WRC230WCA were purified as previously described 35,36. CYFIP1- and CYFIP2-
containing WAVE complexes behaved similarly during expression and purification by various 
chromatographic steps. Other proteins, including the Arp2/3 complex, actin, WAVE1 WCA, 
Tev, GST-RAC1 (Q61L P29S, 1-188), and untagged RAC1 (Q61L P29S, 1-188) were purified 
as previously described 35.  

GST pull-down experiments were performed as previously described 35. Briefly, 200 pmol of 
GST-RAC1 and 200 pmol of WAVE complex were mixed with 20 μL of Glutathione Sepharose 
beads (GE Healthcare) in 1 mL of binding buffer (10 mM HEPES pH 7, 50 or 100 mM NaCl, 
5% (w/v) glycerol, 2 mM MgCl2, 1 mM DTT, and 0.05% Triton X100) at 4 °C for 30 min, 
followed by three washes using 1 mL of the binding buffer in each wash. Finally, the bound 
proteins were eluted with GST elution buffer (100 mM Tris-HCl pH 8.5, 30 mM reduced 
glutathione, and 2 mM MgCl2) and examined on SDS-PAGE gels. 

GST equilibrium pull-down assays were performed in the EPD buffer (10 mM HEPES pH 7, 
50 mM NaCl, 5% (w/v) glycerol, 2 mM MgCl2, and 1 mM DTT) as previous described (Chen 
et al., 2017). Essentially, each 100 µL of reaction contained 0.1 µM WRC230WCA, varying 
concentrations of GST-Rac1(Q61L P29S, 1-188), 30 µL of the Glutathione Sepharose beads, 
and 0.05% Triton X100. All protein samples and beads were first dialyzed or equilibrated in 
the EPD buffer prior to use. After gentle mixing at 4°C for 30 min, the beads were pelleted by 
a brief centrifugation, and the supernatant was immediately transferred to SDS loading buffer 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted August 12, 2021. ; https://doi.org/10.1101/2020.07.02.184655doi: bioRxiv preprint 



17 
 

and analyzed by Coomassie blue-stained SDS-PAGE gels. Total intensity of the CYFIP1/2 and 
NCKAP1 bands was quantified by ImageJ to determine the unbound WAVE complex. The 
derived fractional occupancy from several independent experiments was pooled and globally 
fitted to obtain the binding isotherms and the apparent dissociation constants KD. 

Actin polymerization assays were performed as previously described 35 with slight 
modifications. Each reaction (120 µL) contained 4 µM actin (5% pyrene labeled), 10 nM 
Arp2/3 complex, 100 nM WRC230WCA or WAVE1 WCA, and desired concentration of 
untagged RAC1 (Q61L P29S, 1-188) in NMEH20GD buffer (50 mM NaCl, 1 mM MgCl2, 1 
mM EGTA, 10 mM HEPES pH7.0, 20% (w/v) glycerol, and 1 mM DTT). Pyrene-actin 
fluorescence was recorded every 5 seconds at 22 °C using a 96-well flat-bottom black plate 
(Greiner Bio-One™) in a Spark plater reader (Tecan), with excitation at 365 nm and emission 
at 407 nm (15 nm bandwidth for both wavelengths).  

 

Statistical analyses 

Patient cohort. Relationships with mRNA levels and clinical parameters were identified using 

the χ2 test. Statistical analyses using univariate and multivariate Cox proportional hazard 
models were performed with the R computing environment (R Development Core Team, 2017). 
Codes are available upon request.  

Migration persistence. Exponential decay and plateau fit (! = (1 − &) ∗ )!
!
" + &) was 

performed for all individual cells. Coefficients were then compared using one-way ANOVA. 
Statistical analysis was performed in R using linear mixed-effect models to take into account 
the resampling of the same statistical unit.  

Significance. Differences were considered significant at confidence levels greater than 95% (p 
< 0.05). Four levels of statistical significance were distinguished: *P<0.05; **P<0.01; 
***P<0.001; ****P<0.0001. 
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Figures 

 

 
Figure 1. CYFIP2 overexpression is associated with good prognosis in breast cancer 

patients. 

(A) Distribution of NCKAP1 and CYFIP2 mRNA levels in mammary carcinomas from a cohort 
of 527 breast cancer patients, before (left panel) or after transformation and normalization (right 
panel) (B) A multivariate Cox model predicting metastasis-free survival (MFS) based on 
NCKAP1 and CYFIP2 mRNA levels as the only two inputs was derived. The 4 highlighted 
tumors representing the different outskirts of gene expression in the cohort were chosen to run 
the model. The purple and turquoise patients developed metastases that were diagnosed after 
922 and 1487 days, respectively. The red and green patients did not develop metastasis and 
survived for 4248 and 4146 days, respectively. Even though extreme NCKAP1 values drive 
MFS in the red and purple patients, the extreme values of CYFIP2 rule the outcome of the green 
and turquoise patients at intermediate values of NCKAP1. The model thus predicts that high 
levels of NCKAP1 are associated with poor prognosis, whereas high levels of CYFIP2 are 
associated with good prognosis. (C) Validation of the prediction using a public database, 
kmplot.com, containing more than 3900 breast cancer patients. Kaplan-Meier representations. 
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Figure 2. CYFIP2 inhibits the migration of human breast cancer cells. (A) MCF7 cells 
were transfected with pools of siRNAs targeting CYFIP1 (C1), CYFIP2 (C2), NCKAP1 (N1) 
or non-targeting ones (CTR). Western blots of WAVE complex subunits and tubulin as a 
loading control. Wound healing of MCF7 cells. Still images corresponding to the time, where 
the first wound is healed (CYFIP2). Quantification of nine technical repeats. Scale bar: 400 
µm.  (B) MDA-MB-231 cells were transfected with pools of siRNAs and analyzed by Western 
blots as above. (C) Levels of CYFIP1 and CYFIP2 proteins in MDA-MB-231. Mean ± SD of 
3 biological repeats. (D) Quantification of Transwell migration efficiency of MDA-MB-231 
cells, n=9. (E) Depleted MDA-MB-231 cells depleted of the indicated proteins were embedded 
in 3D collagen type I gels and recorded by videomicroscopy. Trajectories, migration 
persistence, Mean Square Displacement (MSD), and average number of protrusions per frame 
are plotted, n=30. *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001. 
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Figure 3. CYFIP2 inhibits the migration of normal breast epithelial cells and the growth 

of 3D acini. (A) Levels of CYFIP1 and CYFIP2 proteins in MDA-MB-231. Mean ± SD of 3 
biological repeats. (B) MCF10A cells were transfected with pools of CYFIP1 (C1), CYFIP2 
(C2), NCKAP1 (N1) or non-targeting siRNAs (CTR). WAVE complex subunits and tubulin as 
a loading control were analyzed by Western blot. Phase-contrast images of depleted cells. Scale 
bar: 50 µm. (C) Trajectories, migration persistence, speed, MSD extracted from random 
migration of single MCF10A cells. 2D migration, Fibronectin coating, n=25. (D) CYFIP2 KO 
cells or parental MCF10A cells were differentiated at the surface of matrigel. Confocal 
microscopy of acini labeled with DAPI (blue) and the Golgi marker GM130 (red). Scale bar: 
40 µm. Quantification of acinus volume and the number of cells per acinus, n=20. (H), 
Quantification of cells’ polarity within acini, n=130. *P<0.05; ****P<0.0001. 
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Figure 4. CYFIP2 inhibits migration persistence and actin rich protrusions in zebrafish 

embryos during gastrulation. (A) Scheme of the experimental design. Embryos were injected 
with Histone2B-mCherry mRNA and morpholinos (Mo) targeting a control sequence (CTR), 
CYFIP1 (C1), CYFIP2 (C2), NCKAP1 (N1), alone or in combination with mRNAs encoding 
the same proteins (rescue). Dorsal view of a volume acquisition of a Tg(Gsc:GFP) zebrafish 
embryo. Scale bar is 50 µm. Animal pole is located at the right. Notochord and prechordal plate 
cells express GFP (green) and nuclei express histone2B-mCherry (in magenta). Nuclei of 
prechordal plate cells are 3D-tracked over time (color coded) (Movie S5). Trajectories of 10 
first time points (20 min) for 50 randomly selected cells for each condition, plotted at the same 
origin (axes in µm). Migration persistence of prechordal plate cells injected with the indicated 
MO and/or mRNA. (B) CYFIP2 inhibits actin rich protrusions in zebrafish embryos during 
gastrulation. Scheme of the experimental design. Donor embryos were injected with the actin 
filament marker LifeAct-mCherry mRNA and morpholinos (Mo) targeting a control sequence 
(CTR), CYFIP1 (C1), CYFIP2 (C2), NCKAP1 (N1), alone or in combination with mRNAs 
encoding the same proteins. Labeled prechordal plate cells from a donor embryo were 
transplanted into an uninjected embryo and recorded. Imaged of typical cells described in (A), 
red arrowheads indicate actin-rich protrusions. Scale bar: 20µm.  Quantification of the average 
number of protrusions per frame, n=17 to 32 cells from 4 to 5 embryos per condition. 
Quantification of protrusion length, n=95 (randomly selected protrusions per condition). 
ANOVA on linear mixed model accounting for the sampling biases. ns P>0.05; * P<0.05; ** 
P<0.01; *** P<0.001. The p-values without a bar refer to comparisons with the control 
condition. 
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Figure 5. CYFIP2 rescues CYFIP1/2 Double Knock-Out (DKO). GFP-tagged CYFIP1, 
CYFIP2, and two CYFIP2 mutants were expressed in B16-F1 control cells and in DKO cells. 
(A) Distribution of GFP fusion proteins and morphology of transfected cells. Scale bar: 20 µm. 
(B) Percentage of transfected cells forming protrusions, n=100, analysis by one-way ANOVA 
and Dunnett’s multiple comparisons test. (C) Average speed of protrusions. Only the significant 
differences as determined by one-way ANOVA and Tukey’s multiple comparisons test are 
indicated. (D) Recruitment of GFP-tagged CYFIP1, CYFIP2, and mutant CYFIP2 assessed by 
multiple radial line scans. Average profiles of the indicated markers upon registering line scans. 
Scale bars: 5µm. (E) Width of Arp2/3 and cortactin recruitment. ***P<0.001; ****P<0.0001. 
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Figure 6. CYFIP2-containing WAVE complexes are less activatable by RAC1 than 

CYFIP1-containing WAVE complexes. (A) Structural models of CYFIP1 and CYFIP2. 
Sequence identity between CYFIP1 and CYFIP2 is 88% and non-conserved positions are 
colour-coded. The vast majority of non conserved residues fall outside of binding sites for 
known protein partners. WAVE complex subunits and WIRS peptide were obtained from 
PDB:4N78. RAC1 binding was modelled using the CYRI-B Rac1 complex as template 
(PDB:7AJK). (B) Ultracentrifugation of MCF10A lysate on a sucrose gradient. WAVE 
complex subunits are revealed by Western blots. The CYFIP1 antibody cross-reacts with a 
lower molecular weight band. (C) Coomassie-blue stained SDS-PAGE gels showing 
reconstitution of WAVE complexes containing CYFIP1 or CYFIP2 and pull-down with GTP-
bound RAC1 (GST-RAC1 Q61L P29S). ABI2* and WAVE1* are not full length proteins (See 
Methods). (D) WAVE complexes containing supernatants upon pull-down with increasing 
amounts of GST-Rac1 Q61L P29S. Dissociation constants KD and standard errors are derived 
from fitting of quantification of 4 independent experiments at various concentrations. (E) 
Pyrene-actin polymerization assay of CYFIP1- or CYFIP2-containing WAVE complexes. 
Conditions: 4 µM actin (5% pyrene-labeled), 10 nM Arp2/3 complex, 100 nM WAVE 
complexes (WC) or WAVE1 WCA, and indicated amounts of untagged Rac1 Q61L P29S. 
Results are representative of two independent experiments. (F) Model: CYFIP2-containing 
WAVE complexes activate less Arp2/3 upon RAC1 binding than CYFIP1-containing WAVE 
complexes. Upon depletion of CYFIP2, Arp2/3 activity increases, because more CYFIP1 
containing complexes are activated by RAC1, leading to increased migration. On the opposite, 
upon depletion of CYFIP1, Arp2/3 activity decreases, despite compensatory increase in 
CYFIP2 levels, leading to reduced migration.  
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Table S1: Characteristics of the breast tumors relative to CYFIP2 mRNA levels 

 Number of 
patients (%) 

 
Number with 
metastases 

(%) 
 

p-value a 

 
CYFIP2 
mRNA 

normally 
expressed 

 

CYFIP2 
mRNA over 
expressed 

(> 3) 
p-value f 

Total 527 (100) 210 (39.8)  332 (63.0) 195 (37.0)  
Age    

<50 
>50 

125 (23.7) 
402 (76.3) 

52 (41.6) 
158 (39.3) 0.52 (NS) 82 (65.6) 

250 (62.2) 
43 (34.4) 
152 (37.8) 0.49 (NS) 

SBR histological grade b,c    

I 
II 
III 

60 (11.7) 
241 (47.1) 
211 (41.2) 

12 (20.0) 
100 (41.5) 
94 (44.5) 

0.0019 
34 (56.7) 
141 (58.5) 
150 (71.1) 

26 (43.3) 
100 (41.5) 
61 (28.9) 

0.011 

Lymph node status d    

0 
1-3 
>3 

159 (30.5) 
250 (47.9) 
113 (21.6) 

48 (30.2) 
88 (35.2) 
72 (63.7) 

<0.0000001 
96 (60.4) 
162 (64.8) 
70 (61.9) 

63 (39.6) 
88 (35.2) 
43 (38.1) 

0.66 (NS) 

Macroscopic tumor size e    

<25mm 
>25mm 

248 (48.0) 
269 (52.0) 

77 (31.0) 
132 (49.1) 0.000015 154 (62.1) 

172 (63.9) 
94 (37.9) 
97 (36.1) 0.66 (NS) 

ERα�status    
Negative 
Positive 

181 (34.3) 
346 (65.7) 

76 (42.0) 
134 (38.7) 0.10 (NS) 138 (76.2) 

194 (56.1) 
43 (23.8) 
152 (43.9) 0.0000052 

PR status    
Negative 
Positive 

255 (48.4) 
272 (51.6) 

110 (43.1) 
100 (36.8) 0.025 186 (72.9) 

146 (53.7) 
69 (27.1) 
126 (46.3) 0.0000047 

ERBB2 status    
Negative 
Positive 

397 (75.3) 
130 (24.7) 

153 (38.5) 
57 (43.8) 0.17 (NS) 235 (59.2) 

97 (74.6) 
162 (40.8) 
33 (25.4) 0.0016 

Molecular subtypes    
HR- ERBB2- 
HR- ERBB2+ 
HR+ ERBB2- 
HR+ ERBB2+ 

102 (19.4) 
72 (13.7) 
295 (56.0) 
58 (11.0) 

38 (37.3) 
36 (50.0) 
115 (39.0) 
21 (36.2) 

0.054 (NS) 

71 (69.6) 
60 (83.3) 
164 (55.6) 
37 (63.8) 

31 (30.4) 
12 (16.7) 
131 (44.4) 
21 (36.2) 

0.00011 
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Supplemental	figures	
	

	
	
Figure S1. Statistical modeling of the association of WAVE complexes with metastasis-
free survival (MFS). A Cox univariate analysis before and after transformation and 

normalization of mRNA levels of WAVE complex subunits. B Association of each WAVE 

assembly with MFS. C Random permutations. Experimental p values associated with the 36 

WAVE assemblies (black dots) are compared with computed p-values corresponding to 

hypotheses (purple; 1000 simulations to derive the 90 % confidence interval): all subunits can 

be permuted (0 gene); all subunits except the most significant one, NCKAP1, can be permuted 

(1 gene); all subunits except the two most significant ones, NCKAP1 and CYFIP2, can be 

permuted (2 genes); All subunits except the 3 most significant ones (3 genes) can be permuted. 

The small p-values obtained for the combination NCKAP1 and CYFIP2 are not obtained by 

chance, since computer simulations graphically illustrate the good agreement between what is 

observed and what is expected according to models when at least two of the most significant 

genes are fixed. D Comparison of the different models with Bayesian Information Criteria 

(BIC). The model with 2 fixed genes corresponds to the optimal statistical model, <hcih is used 

below and for Fig.1. E Kaplan-Meier of MFS as a function of NCKAP1 or CYFIP2 mRNA 

levels. Observed survival is modeled with the 2-variable Cox model. 
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Figure S2. Quantification of CYFIP1/2 proteins in MDA-MB-231 and MCF10A cells. (A) 

Colloidal coomassie-stained gel with FLAG-tagged, purified CYFIP1/2-containing WAVE 

complexes, and BSA standard. We have purified tagged CYFIP1 or CYFIP2-containing 

WAVE complexes from stable 293 Flp-In cell lines. (B) Quantification of CYFIP1, CYFIP2 

and NCKAP1 levels in MDA-MB-231 cells treated with siRNAs. Duplicate transfections of 

the siRNA smartpool were analyzed for each gene, the experiment was repeated twice (total 

n=4). (C) Quantification of CYFIP1, CYFIP2 and NCKAP1 levels in MDA-MB-231 stable cell 

lines expressing GFP or GFP-CYFIP2, n=3. (D) Quantification of CYFIP1, CYFIP2 and 

NCKAP1 levels in MCF10A cells treated with siRNAs. Duplicate transfections of the siRNA 

smartpool were analyzed for each gene, the experiment was repeated twice (total n=4). Mean ± 

SD. Shown are the statistically significant differences (one-way ANOVA). *P<0.05; **P<0.01; 

***P<0.001; ****P<0.0001. 
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Figure S3. qRT-PCR analysis of mRNA levels of WAVE subunits in MDA-MB-231 and 

MCF10A cells transfected with two independent siRNAs targeting either CYFIP1 (C1), 
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CYFIP2 (C2), or NCKAP1 (N1). Mean ± SD of n=3 independent biological experiments, 

shown are the statistically significant differences (one-way ANOVA). *P<0.05; **P<0.01; 

***P<0.001; ****P<0.0001. 

 

	
	

	
	

	
	
	

	
	
Figure S4. Wound healing and Transwell migration assays of MDA-MB-231 cells. (A) 

stable MDA-MB-231 cell lines expressing either the indicated shRNAs or overexpressing the 

GFP-CYFIP2 protein (GFP-C2) were analyzed by Western blots with NCKAP1 and CYFIP2 

antibodies. (B) Quantification of Transwell migration efficiency of cells shown in (A), mean ± 

SD of n=9 (technical repeats), statistical analysis by one-way ANOVA. (C) Cells were 

transfected with indicated siRNAs targeting NCKAP1 (N1), CYFIP1 (C1), CYFIP2 (C2) or 

non-targeting controls (CTR) for 5 days, and plated on Ibidi dishes with inserts  (Molinie & 

Gautreau, 2018). 24 h later, the inserts were removed, and wound healing was monitored by 

video microscopy as previously described. A picture was taken every 10 min for 18 h. Still 

images taken when the first wound is closed. Scale bar, 400 μm. Quantification of the closure 

time, mean ± SD of n=9 technical repeats, statistical analysis by one-way ANOVA. 
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Figure S5. Two independent siRNAs targeting CYFIP1, CYFIP2, and NCKAP1 were used to 

deplete the corresponding proteins from MCF10A cells. Depletion was evaluated by Western 

blot (A). From single cell trajectories of 2D random migration assays, migration persistence, 

speed and MSD were calculated and plotted (n=30 cells) (B-D). Statistical analysis was carried 

out by one-way ANOVA.  In panel (C), only the significant differences are indicated. 
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Figure S6. Characterization of CYFIP2 KO clones 1 and 2 in MCF10A cells. (A) The only 

two KO clones that were isolated appeared to have the same genetic alterations. Since they 

were truly independent, they were both analyzed in parallel in all subsequent assays. (B) 

Trajectories of CYFIP2 KO and control cells in 2D random migration assay, n=30. (C) Analysis 

of migration persistence, speed and MSD of cells shown in (B). (D-E) Expression of WAVE 

complex subunits and a quantification of three independent western blots in the above-shown 

cell lines immediately after selection (D) and after two months of culture (E). 
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Legend	to	supplemental	movies	
	
Movie	S1.	CYFIP2	inhibits	migration	of	MCF7	cells	in	a	wound	healing	assay.	Cells	
were	 transfected	 with	 indicated	 siRNAs	 targeting	 NCKAP1,	 CYFIP1,	 CYFIP2	 or	 non-
targeting	controls	(CTR)	 for	5	days,	and	plated	on	Ibidi	dishes	with	 inserts.	24	h	 later,	
inserts	were	removed,	and	wound	healing	was	monitored	by	video	microscopy.	A	picture	
was	taken	every	20	min.		Scale	bar:	400	μm.	
	
Movie	S2.	CYFIP2	inhibits	migration	of	MDA-MB-231	cells	in	3D	collagen	gel.	Cells	
transfected	with	the	indicated	siRNAs	were	recorded	by	phase	contrast	optics	for	48	h	
with	one	frame	every	20	min.	Scale	bar:	50	μm.	
 
Movie	 S3.	 CYFIP2	 inhibits	 migration	 of	 MCF10A	 cells.	 Cells	 transfected	 with	 the	
indicated	siRNAs	were	recorded	by	phase	contrast	optics	for	24	h	with	one	frame	every	5	
min.	For	the	calculation	of	migration	parameters,	only	single	cells	were	analyzed.	Scale	
bar:	50	μm.	
	
Movie	 S4.	 Four-dimensional	 tracking	 of	 prechordal	 plate	 nuclei.	 Nuclei	 of	 a	
Tg(gsc:GFP)	 embryo	were	 labeled	with	 Histone2B-mCherry	 (magenta).	 A	 Z-stack	was	
acquired	every	2	min.	Nuclei	of	prechordal	plate	cells	(identified	by	GFP	expression	and	
morphological	 criterion),	 not	 visible	 here,	 were	 3D-tracked	 in	 time	 (white	 squares).	
Tracks	are	building	up	as	cells	are	moving.	Animal	pole	is	to	the	right.	

Movie	 S5.	 CYFIP2	 inhibits	 actin	 rich	 protrusions	 in	 zebrafish	 embryos	 during	
gastrulation.	 Donor	 embryos	 were	 injected	 with	 the	 actin	 filament	 marker	 LifeAct-
mCherry	mRNA	and	morpholinos	(Mo)	targeting	CYFIP1	(C1),	CYFIP2	(C2),	NCKAP1	(N1),	
alone	or	 in	combination	with	mRNAs	encoding	the	same	proteins.	1	frame	per	minute.	
Scale	bar:	25	μm.	
	
Movie	S6.	GFP-CYFIP2	restores	 lamellipodium	protrusion	and	 is	recruited	 to	 the	
lamellipodial	edge.	B16-F1	mouse	melanoma	cells,	control	and	CYFIP1/2	double	knock-
out	(DKO)	were	transfected	with	the	indicated	GFP	plasmids	and	green	fluorescence	was	
recorded	every	10	s	for	10	min.		
	
Movie	 S7.	 R87C	 and	 I664M	 CYFIP2	 restore	 lamellipodium	 protrusion	 and	 are	
recruited	to	 the	 lamellipodial	edge.	CYFIP1/2	double	knock-out	 (DKO)	B16-F1	cells	
were	transfected	with	the	indicated	GFP	plasmids	and	green	fluorescence	was	recorded	
every	10	s	for	10	min.	
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Titre : PPP2R1A contrôle la persistance de la migration via le « WAVE Shell Complex ».  

Mots clés : migration cellulaire, lamellipodes, réseau d'actine branché, ARP2/3, WAVE, PPP2R1A 

Résumé : Lors de la migration cellulaire, la voie 
de signalisation RAC1-WAVE-ARP2/3 induit la 
polymérisation du réseau d'actine branché, qui 
sert de moteur à la protrusion des lamellipodes. 
Cette voie est finement régulée par de nombreux 
signaux de rétroaction qui contrôlent la durée de 
vie de la protrusion et la persistance de la 
migration. Nous avons choisi les cellules 
épithéliales du sein, la lignée MCF10A, afin 
d’identifier les protéines qui s'associent au 
complexe WAVE lors d'une migration 
persistante, mais dont l'association avec WAVE 
est modulée lorsque la production en aval 
d'actine branché est inhibée. Ce criblage 
protéomique différentiel a identifié PPP2R1A 
(une sous-unité régulatrice de la phosphatase 
trimérique PP2A) comme le candidat le plus 
intéressant pour une étude approfondie.  

J’ai pu démontrer que ce nouveau facteur associé 
à WAVE est requis pour la persistance de la 
migration dans les cellules humaines normales et 
cancéreuses, dans diverses conditions. Notre 
observation selon laquelle PPP2R1A interagit 
avec quatre sous-unités du complexe WAVE, 
mais pas avec WAVE/WASF, a conduit à la 
purification et à la caractérisation de « WAVE 
Shell Complex (WSC) », une nouvelle variante 
de WAVE contenant la protéine régulatrice de la 
migration NHSL1 qui s'est avérée être nécessaire 
à l'existence de WSC. Fait intéressant, PPP2R1A 
est muté sur plusieurs hotspots dans différents 
types de cancer, et ces mutations abolissent son 
interaction avec NHSL1 et WSC, suggérant un 
rôle critique de cette voie non seulement dans les 
cellules normales, mais aussi dans la progression 
du cancer. 

 

 

Title: PPP2R1A regulates migration persistence through the WAVE Shell Complex. 

Keywords:  cell migration, lamellipodia, branched actin network, ARP2/3, WAVE, PPP2R1A 

Abstract: During cell migration, the RAC1-
WAVE-ARP2/3 signaling pathway induces the 
network of branched actin, that serves as a motor 
for lamellipodia protrusion. This pathway is 
finely regulated by numerous feed-back and 
feed-forward signals that control the protrusion 
lifetime and migration persistence. 
We screened in MCF10A human breast 
epithelial cells for proteins that associate with 
the WAVE complex during persistent 
migration, but whose association with WAVE is 
modulated when the downstream production of 
branched actin is inhibited. The differential 
proteomics screen identified PPP2R1A (a 
regulatory subunit of the PP2A trimeric 
phosphatase) as the strongest hit and a novel 
WAVE-associated factor required for migration 
persistence in normal and cancer human cells, in 
various conditions. 

The differential proteomics screen identified 
PPP2R1A (a regulatory subunit of the PP2A 
trimeric phosphatase) as the strongest hit and a 
novel WAVE-associated factor required for 
migration persistence in normal and cancer 
human cells, in various conditions. Our 
observation that PPP2R1A interacts with four 
WAVE complex subunits, but not with 
WAVE/WASF, led to a purification and 
characterization of a “WAVE Shell Complex 
(WSC)”, a novel variant of WAVE containing 
the migration regulatory protein NHSL1 that 
turned out to be necessary for the existence of 
WSC. Interestingly, PPP2R1A is mutated on 
hotspots in different cancer types, and these 
mutations abolish its interaction with NHSL1 
and WSC, suggesting a critical role of for this 
pathway not only in normal cells, but also in 
cancer progression. 
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