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Abstract

The propagation of waves in an extended, irregular medium
is studied under the ''quasi-optics'" and the '"Markov random process'
approximations. Under these assumptions, a Fokker-Planck equation
satisfied by the characteristic functional of the random wave field is
derived. A complete set of the moment equations with different trans-
verse coordinates and different wavenumbers is then obtained from the
characteristic functional. The derivation does not require Gaussian
statistics of the random medium and the result can be applied to the

time-dependent problem. We then solve the moment equations for the

phase correlation function, angular broadening, temporal pulse smearing,
intensity correlation function, and the probability distribution of the
random waves. The necessary and sufficient conditions for strong

scintillation are also given.

We also comnsider the problem of diffraction of waves by a
random, phase-changing screen. The intensity correlation function is
solved in the whole Fresnel diffraction region and the temporal pulse

broadening function is derived rigorously from the wave equation.

The method of smooth perturbations is applied to interplanetary
scintillations. We formulate and calculate the effects of the solar-
wind velocity fluctuations on the observed intensity power spectrum and
on the ratio of the observed ''pattern'" velocity and the true velocity

of the solar wind in the three-dimensional spherical model. The r.m.s.
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solar-wind velocity fluctuations are found to be ~ 200 km/sec in the

region about 20 solar radii from the Sun.

We then interpret the observed interstellar scintillation
data using the theories derived under the Markov approximation, which
are also valid for the strong scintillation. We find that the
Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc
fits the scintillation data and that the ambient averaged electron
density in the interstellar medium is about 0.025 cm_3. It is also
found that there exists a region of strong electron density fluctuation
with thickness ~ 10 pc and mean electron density ~ 7 cm—3 between the

PSR 0833-45 pulsar and the earth.
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Chapter 1

Introduction

1. Phenomena in Astrophysical Scintillations

In many situations of astrophysical interest the electromagnetic
waves from a radio star propagate through a region of turbulent plasmas
and are scattered. The radio waves scattered by the turbulent plasmas
are superimposed on the transmitted waves and lead to amplitude and phase
fluctuations of the resultant wave field. This produces a wide variety
of observed phenomena such as intensity variations, angular broadening

and temporal pulse smearing of the radio waves.

The interplanetary medium and interstellar medium are two kinds
of medium of astrophysical interest that scatter radio waves. These

two media may be characterized respectively by their distances from the

0-1023cm; their typical electron density

fluctuations, ~ 1 electron/cm3 and 10-2-10—4 electron/cm3; the size of

earth, ~ 1.5x1013cm and 102

: - - . : 7
their irregularities important for the scintillations, ~ 10 cm

i 14 . oo
~10" 'cm; and the typical velocities of the plasma media trans-

and 101
verse to the line of sight, 350 km/sec, and ~ 50 km/sec. The phenomena
of scattering of radio waves by these two media are termed "interplanetary

~scintillations" (IPS) and "interstellar scintillations'" (ISS),

respectively.



In interplanetary scintillations, the root mean square of the
intensity variation is usually much smaller than the mean intensity
and the scintillations are weak. However, interstellar scintillations
are strong and the intensity fluctuation is of the same order as mean
intensity. The observed data for interplanetary and interstellar
scintillations are respectively: transverse scale of intensity fluctu-

ations, 100-200 km and 10°-10-°

em; the correlation time scale of intensity
scintillations, ~ 0.5 sec and several minutes; and the characteristic

angular broadenings, ~ 10_5 radian and ~ 10_7 radian.

An example of interstellar scintillations is shown in Figure
(1-1) for the CP 0328 pulsar observed by Rickett (1970). This figure
is a display of the wave intensity averaged over about 70 pulses as a
function of time and frequency. As shown in the figure, the correlation
time scale of intensity fluctuations is about 12 minutes and the decorre-

lation frequency of intensity fluctuations is about 130 kHz.

The objects of this thesis are (a) to develop a theory of wave
propagation in a random medium that relates the properties of turbulent
plasmas to the observed phenomena of the scattered radio waves, and (b)
to study the characteristics of the turbulent plasmas in the inter-
planetary medium and interstellar medium by utilizing the observed

effects.
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Spectra from CP 0328 at 408 MHz integrated over abour 70 pulses, plotted at
successive 50 second intervals. The frequency resolution is about 60 KHz= and the spectra
include the receiver bandpass, which gives a gradual cut-off at the edges of the diagram.

(from Rickett 1970)

Figure (1-1)



IT. Wave Equation in the Plasma Medium

The problems of wave propagation in a random medium can be studied
by considering the scattering of waves due to each small volume of irregu-
larities in the medium, summing up all the waves scattered by each irregu-
larity and then calculating the statistical properties of the scattered
waves. However, a more convenient way to tackle the problem is first to
derive a basic macroscopic equation governing the wave propagation in
the random medium and then to solve the basic equation and calculate the
statistical properties of the scattered waves. The second method will be
used in this thesis. In this section we will derive a basic equation
governing the propagation of waves with frequency w >> ab, the plasma
frequency of the medium, in the plasma medium. This wave equation applies
to the propagation of the radio waves in the ionosphere, interplanetary
space, or the interstellar medium.

We start from the Maxwell equations

B B
VxE-+ c 3¢ = 0 (1-1)
€, 3E bnJ
vEE- TR a-2)
v . eog = éﬁpe (1-3)
v .umw=0 (1-4)

Here E is the electric field, H the magnetic field, J the current density,
1 the permeability,e0 the dielectric constant of the medium, and c the speed

of light. Gaussian units are used here. In our case, U = g, = e



From Eqs. (1-1) and (1-2), we immediately have

a2

1=

oJ
3t

I

|-I>
(SR

+
ot c

=0 ) (1-5)

[y]

v x (E) + 5
C

The relation between the current density J and the electric field E
depends on the properties of the medium. A simple model for calculating
the current density J in a plasma medium is presented as follows. 1In the
presence of electric field E, the electrons will be accelerated by the
field and one has, neglecting the collision effect and magnetic force,

&y

mar =ek (1-6)

where v, m and e are the velocity, mass, and charge of an electron
respectively. Suppose Ne is the electron density in the plasma medium.

Then one has the current density
J=N ev . 1-7)

In Eq. (1-7), we have neglected the ion motion and the electron thermal
motions since the mass of an ion is much greater than that of an electron
and since the wave velocity we consider is much greater than the electron

thermal velocity. From Egs. (1-6) and (1-7) we have

=2
o

2.
|

- E . (1-8)

Inserting Eq. (1-8) into Eq. (1-5), one has

1 3 ZE lHtNe e ZE
v x (VxE) + — + = =0 . (1-9)
~ 2 2 m
c ?t
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Take the Fourier transform in time t of Eq. (1-9) and let f(r,w)e =

be the Fourier component of E(E’t)‘ Then one has

2
v x (vxf) - 55 6, (x) £ (r,) =0 (1-10)
c
where the refractive index
2 2

4ﬁNee w
E(D(E) = 1~ 2 = L = 2 ' (1—11)

mdd 4b)

1
4ﬁNee2 2
Here u% ol - is the plasma frequency of the medium.

From Eqs. (1-2), (1-3) and (1-8), one also has

v oo (e, (x) £ (r,™)) =0 . (1~12)

Note that Eq. (1-10) is a vector equation. However, using the
vector relation Vv x (WXE)= - vzg + v(V-E) and Eq. (1-12), we can write
Eq. (1-10) as

ve w2

VE(r,a) + ¢ (gg——%—)— £ e (Of = 0. (1-13)
@ ]

In our case Ne(E) and ew(g) fluctuate irregularly. Let <> denote an

average over an ensemble of propagation volumes. Then define

W w
(o]
= ¢ + 6
E::(L) eU.)o e(b

(1-14)
N () = N_(r)>+ &N_(x)

B(x)= - 4ﬂe26Ne(£)/mc2



w
k=0 ‘u
o
2
and (D) = B/ = beyfe, <1
to obtain from Eq. (1-13)
2 Vek 2
VE(r,w) + v(£- ) + kK (Q+e, (x)) £=0 (1-15)
~N ~ 1+ek k7~

where now ek(z) is a random variable with zero mean. Note that ek(g)
is different from em(g) and that B(E) is a wave-frequency independent

random wvariable.
£-ve

L+ek
2
is much larger than the wavelength N\ (= qfﬁ, this

Now consider the term V( Yo We show that if the smallest scale

of the fluctuation in €
term is negligible (see also Tatarskii 1961, 1971).

Define a scale ﬂe such that ]vgk‘ < eklzs and assume kze >> 1 (this
is equivalently to assuming the smallest scale of ¢ to be much larger than

N). Then it is clear that

ve ke
=5 = g —2 (1-16)

~

| v(£-
~ 1+€k

since the smallest variation scale of f is 1/k. The magnitude of this term
2

is much smaller than the magnitude of k gkﬁ_since kgs >> 1. And for each

component @w(g) of the vector field f, it is a very good approximation

to consider only the scalar equation

v'e, () + K (I+e, (£))8 (r) = 0 . (1-17a)

Let 3, (x) = 3, (x). Eq. (1-17a) becomes

vz@k(,g) & k2(1+ek(5)) 3 =0 (1-17b)



or,

B(x)
2

18 =0 . (1-17¢)

2 2
e (r) + k7 [+ Kk

This equation will reveal the effects of diffraction and refraction,
but will not yield information concerning polarization. These effects
are small if kze >> 1 and € << 1, but should be included in a future,
more complete treatmentl. Eq. (1-17) is the basic equation for the theory
of wave propagation in a random plasma medium from which all the statistical
properties of the observed random wave may be related to the statistical

properties of the medium ( in particular, the refractive index ek(r) or

B(x)).

1We also neglect here the effect of Faraday rotation due to any
ambient magnetic field. This is justifiable if the difference in
Faraday rotation between any optical paths which contribute to the ob-
served intensity is small. Hence even though the Faraday rotation of a
tygical meter wavelength wave in interstellar space is not small (of order
104 radians), the angular spread of the beam is also found below to be
small (less than about 1076 radians) and hence the difference in Faraday
rotation between contributing ray paths is very small (less than about
3x10~3 radians if the magnetic field varies by about 10-© Gauss over a
scale of 30 pc). Hence the neglect of Faraday rotation is justifiable
for the range of parameters considered here.



ITT. Power Spectrum of the Turbulent Plasmas

Eq. (1-17) gives the relation between the two random functions
ék(z) and ek(g) (or B(E))' In order to calculate the statistical proper-
ties of the random wave @k(g), one must know the statistical properties
of ek(E). The complete statistical properties of ek(g) are uniquely
specified by the joint probability distribution of the Ek(E)'S’ or
equivalent by a complete set of the moment functions of gk(z). By definition
the first moment of ek(z), (ek}, is equal to zero. As will be shown later
in the thesis, the relevant statistical property of Ek(E) that affects the
random wave @k(z) is usually only the second moment (or the two-point

correlation) of € (ek(g),ek(r')>-

We will assume in this thesis that the medium is statistically
homogeneous, in which case the correlation function (ek(E)ek(E')) depends
only on \E—E'\. And it is most convenient to specify the spatial power
spectrum of the fluctuations, which is related to the correlation function

through

- 'y

P (q) =fd35 <€k(§)ek(§+g)) e . (1-18)

Note that the mean square fluctuation in ¢, is given by

k

<€k2> =_/ﬂd3g Pe(q)/(Zn)3 g (1-19)

A simple and very commonly used form of the power spectrum Pe(q)

is the Gaussian

2; 2
-9 /q
P (@) =Be (1-20)
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where L = 1/qo is the coherence scale of the fluctuations.

However, observations of the solar wind and other turbulent media
indicate a more realistic form is given by the modified power-law spectrum
defined through 2
-q /ql

B e
Pe(Q) = s oTo (1-21)

Tl+g”§7

9

with q, << qq - This spectrum is flat for q < q,> is a power law with
index -a for q0< q < ;> and is cut off for q > qq - Here again L = 1/qo
is the coherence scale (or correlation length) and £ = l/q1 is termed
the inner scale. Usually 3 <& <4, and 0 = %% corresponds to the
Kolmogorov spectrum.

Evidence that the spectrum in the solar wind is essentially of the
form in Eq. (1-21) is presented in Jokipii (1973). Prior to about 1970,
the published papers on interplanetary scintillation all assumed a
Gaussian spectrum for the electron density fluctuation (corresponding to
ek(E)’ or B(E)L and in many the data were used uncritically to infer a
"dominant' density scale, which turned out to be of the order of 100 km.
(See, e.g., Hewish & Symond 1969.) This is many orders of magnitude less
than the directly observed dominant scale of lO6 km (Jokipii & Coleman
1968). But the discrepancy went unchallenged until nearly simultaneously
Cronyn (1970b), Lovelace et al. (1970), and Jokipii & Hollweg (1970) all
converged on this question and pointed out the previous discussions were

in error. These authors pointed out that a power-law density spectrum

was also consistent with the then-available data and that a dominant scale
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of 106 km or so was consistent with the scintillation data. A more de-
tailed analysis of the problem by Cronyn (1972) and the direct observation
of the power spectrum by Unti et al. (1973) also show that the plasma
density spectrum is of the form given by Eq. (1-21). Chapter 7 of this
thesis shows that the power-law spectrum is also consistent with the
interstellar scintillation data. Throughout this thesis we will use both
the power-law spectrum and the Gaussian spectrum in calculating the
statistical properties of the random wave. The Gaussian spectrum is used

mainly for comparison.

Carrying out the integrals in Eq. (1-19) and using the relations
in Eq. (1-14), one can write the constant B in Eq. (1-20) or Eq. (1-21),
in terms of the mean square electron density fluctuations and one finds

that
2

re -3 2
Y = 128~ (~Z—) d, (éNe b (1-22)
k

N |~

8ﬁ3/2q = e 4

= o \ k

for the Gaussian spectrum in Eq. (1-20), and

3/2

B =8 %q e,y T&ITE - D

-3_2
T

e

I

1281:7/2% k'4< 5Nez> r(%)/r(% % %) (1-23)

2
e

for power-law spectrum with o > 3. Note that r, = ( 2) is the classical
mc i

electron radius. In obtaining Eq. (1-23), q, << q;, is assumed.
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The following function defined by
(=]
= L ' ' _
=0

will be used extensively later in this thesis. By Egs. (1-14) and (1-18),

this function can be written as

b =~ 1g R
Ag(p) = o P (q,=0, gq;) e dg, (1-25)

where g, = (qxl,qyl) and p = (x,y). Note that the z-dependence of As(g) is

not explicitely expressed for convenience.

For Gaussian spectrum, we have from Eq. (1-20)
22
AB(Q) == 9 e . (1-26)
Consider the power-spectrum in Eq. (1-21). For \R\ >> 4, we neglect the
effect of the cut-off at q > q, so that

2 -a/2
P (g) = B(l+l) .
qO

From Eq. (1-24) it follows that

& B2
Bk q (qOo)11 Ku(qop)
Axlp) =

B
2?0 o k1)

(1-27)

where p = % -1, 2p + %‘ > 0, and K11 denotes a modified Bessel function of

the second kind. One can further show that for L >> p >> 4,
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. Bk4q02 r(z-%)
A (p) = ——— 1 =
B~ L (-2) T(%)
However for p < 4,
A 11(0)
Ae) = a,0) + B—= o2
B B
4 2
where A _{0) = Re qo
B Gr(-2)
- aa (o)
dp o=0

We also define for later uses

_ 4
AS ('Q) = AB('Q’) /k

and A

e e
o 9 5

(1-28)

(1-29a)

(1-29b)

(1-29¢)

(1-30a)

(1-30b)
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IV. Previous Work on the Theory of Wave Propagation in a Random Medium

Since 1950, many papers and books have been published discussing
the problem of wave propagation in a random medium. Due to the complexity
of the problem, various methods of approximation were employed to solve
the problem. The first approach is the "single-scattering" theory, in
which perturbation method is used to solve the stochastic wave equation
in Eq. (1-17). (Booker & Gordon 1950, Chernov 1960, Tatarskii 1961,
Keller 1962, Hoffman 1964, Budden 1965a, 1965b.) Another approach is the
"geometric-optics' theory, in which the propagation of rays is considered
and used to calculate the various statistical properties of the random
waves, such as the angular distribution of the scattered power, the mean
ray displacement, the intensity fluctuation and the pulse profile of the
random waves. (Chandrasekhar 1952, Chermov 1960, Tatarskii 1961, Keller

1962, Salpeter 1967, Lovelace 1970 and Williamson 1972.)

However ''single-scattering' theory is valid only when the scintil-
lation is weak, i.e., the root mean square intensity fluctuation is much
less than the mean intensity. For strong scintillation, the "multiple-
scattering'" effect is important and must be considered. The range of
validity of geometrical optics is also quite limited. The method of geomet-
rical optics breaks down when the interference of the rays cannot be ne-
glected. TIn the interstellar medium and many other situations the scintil-
lations are strong, and both the "single-scattering' theory and the ''geo-
metrical optics' method cannot be applied. Therefore, a theory dealing with

the '"multiple-scattering' effect is needed.
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The angular distribution of the random wave for the case when
multiple-scattering must be taken into account has been discussed by
Fejer (1953) and Howells (1960). Basic mathematical treatments of
multiple scattering have been given by many authors including Foldy (1945),
Keller (1964), Twersky (1964), Tatarskii (1964), but much of this work

is of a formal nature and is difficult to evaluate in practical cases.

A new method called the 'Markov approximation' has been developed
recently. This method is valid for most strong scintillation cases, includ-
ing interstellar scintillations. A set of the moment equations for the
random waves with same frequency has been derived under this approximation
by many authors (Ho & Beran 1968, Tatarskii 1969, 1971, Beran & Ho 1969,
Molyneux 1971, and Brown 1972a). However, only the first and second moment
equations were solved. The equation of the fourth-mement, which directly
relates to the intensity correlation function, has not completely been solved.
Dagkesamanskaya & Shishov (1970) and Brown (1972b) gave numerical solutions of
the fourth-moment, but it is hard to draw qualitative properties of
the intensity correlation scale from the above numerical calculations.
Strohbehn & Wang (1972) and Wang & Strohbehn (1974a, 1974b) calculated

the intensity correlation function assuming that the probability function

of the random waves is "log-normal'' and got ''paradox' results.

In this thesis, the fourth-moment will be solved analytically and
the probability distribution of the random wave will also be determined.

We also extend the '"Markov approximation' to time-dependent cases and derive
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a complete set of the moment equations with different frequencies, which

is applied to the calculation of the pulse profile in the interstellar

scintillations.

We also mention here the 'thin screen diffraction' theory, in
which the diffraction of the electromagnetic waves by a "thin' layer of
random medium is studied. (Mercier 1962 , Salpeter 1967, Scheuer 1968,
Jokipii 1970, Lovelace 1970, Torrieri & Taylor 1971, Taylor 1972, Taylor
& Lekhyanada 1973.) However, for strong scintillation, the intensity
correlation function still has not been solved in the region of Fresnel
diffraction. In Chapter 3 of this thesis, we will solve this problem

using a new method.
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V. Outline of the Thesis

Chapter 1 is a general introduction to the thesis, in which we
also derive the basic stochastic wave equation, discuss the density power
spectrum of the plasma medium, and give some comments on the previous

work on scintillation theory.

Chapter 2 gives a discussion of various theories on the wave
propagation in a random medium. In this chapter we present an exact
formulation of the problem and briefly discuss various methods of approxi-
mation, including thin phase screen approximation, quasi-optic approximation,
Born approximation, method of smooth perturbation, geometric-optics approxi-

mation, perturbation of stochastic operator, and the Markov approximation.

Chapter 3 treats the "thin screen diffraction" theory. Previous
works on this problem are discussed and the intensity correlation function
in the region of Fresnel diffraction is calculated. However, the analytic
solution of the pulse broadening within the '"thin screen diffraction"
theory is given in Chapter 5, where the pulse broadening in a continuous

random medium is presented.

In Chapter 4, we derive a complete set of the moment equation of the
random wave field with different wave-numbers under the ''quasi-optics"
and the 'Markov random process'' approximations. The validity of these two

assumptions applied to the interstellar scintillation is also given.

In Chapter 5, we obtain and discuss the phase correlation function,
angular broadening, pulse smearing, intensity correlation and the probability

distribution function of the random waves from the moment equations derived

in Chapter 4.
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Chapter 6 is an application of the method of smooth perturbation
to the interplanetary scintillation. We formulate and calculate the effects
of the solar-wind velocity fluctuations on the observed intensity corre-
lation function and on the ratio of the observed '"pattern" velocity and the

true velocity of the solar wind in the three-dimensional spherical model.

In Chapter 7 we apply the results of Chapter 5 to interstellar
scintillations and find that the power-law spectrum of the interstellar

medium also fits the observed data.
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Chapter 2

Theories of Wave Propagation in a Random Medium

I. The Wave Equation
We consider the propagation of a monochromatic wave Ew(g,t) obeying

the scalar wave equation

2
2 W _ "
v @w(g) + Cz ew(z)éw(ﬁ) =0 (2-1)
with . .
- t
B, (x,t) = 8,(x)e” " . (2-2)

Here we treat Ew(z,t) as a complex wave field. The boundary condition
for equation (1) is @m(E) on the surface S which encircles the volume we
considered. Usually in an actual situation, the surface S is composed of
some surface S1 relatively near the observer and a surface 82 at infinity.

The boundary condition of @w(z) is given on surface S1 while the Sommerfeld

radiation condition is applied on the surface 82 at infinity.
éw(g) may be regarded as a Fourier component in time of a general
& W % ;
wave function. Here (EE) is the frequency of the monochromatic wave, c
is the speed of light and ew(z) is the refractive index of the medium in

which the wave propagates. Let A = ggg'be the wavelength.

The refractive index em(E) is taken to be a random function and
depends on both the position r and the wave frequency w. We will consider
in this thesis the propagation of the high frequency waves with w >> u%,
the plasma frequency of the medium, in the plasma medium. This applies
to the propagation of the radio waves in the ionosphere, the interplane-

tary space or the interstellar medium. If Ne is the electron density,



20
then from Chapter 1 we have by assuming the variation in Ne is small for

a distance of the order of the wavelength A\

w 2
€. () =1 -5~ (2-3)
w
and 2 LN e
w5 = —=— (2-4)
p m

where m is the mass and e is the charge of an electron.

Now N and Gw(r) fluctuate irregularly. Let < > denote an average
e ~
over an ensemble of propagation volumes. Then using the notations in

Eq. (1-14), we have (c.f. Eq. (1-17))

v @k(g)-+ k (1-%'::f—ﬂ @k(g) =0 (2-5a)
or 9 2
v @k(g) + k(1 + ek(£)) @k(z) = 0. (2-5b)

Consider an initial plane wave propagating in the + z - direction imping-

ing on our medium at z = 0. It is useful to define

kz

8, (x) = ulk,z) e (2-6)
from which we obtain
du(k,r) 32 a2 aZ
2ik + (25 + S5+ 25) ulk,p) + B() ulk,x) = 0 (2-7)
oz 3z oy >z

where r = (x,y,z). We also define p = (x,y), s = (p,k) for later use.

Equation (2-5) is a stochastic equation connecting the refraction

index and the wave field @k(g). The problem at hand is the determination
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of the probability distribution of @k, or of various statistical
properties of @k’ such as its expectation value, its variance and its

higher moments, in terms of the statistical properties of the refractive

index of the medium.

IL. Hierachy Equations and Equations for Characteristic Functionals

In this section we will present two formulations for obtaining the
statistical properties of the wave field @k(g) from equation (2-5) without
any approximation. One of these two formulations involves a set of
equations for the hierarchy of moments of the wave field. The other uses
a functional equation for the characteristic (or generating) functional

of the wave field.

Consider the wave field @k(£) satisfying the stochastic equation
(2-5b). 1In order to get an equation for the first moment (@k(£)>, we

take the ensemble average of equation (2-5b) and find

2 2 2
vl-: (8, (£)) + k(3 (£)) + k(e (£)&, (r)) = 0 (2-8)
g 5 B @
where the Laplacian operator V = g + . Since the quantity
r 2 2 2
~ ox dy 3z

(ek(E)ék(E)> appears in Eq. (2-8), we must find an equation for this
quantity. We multiply equation (2-5) by ek(£1) and take ensemble average

to get
25, (X)e (r)) + k(5 (x)e, (r1)) + k(e (r;)e, (£)E (£)) = O (2-9)
Ve V(R0 AR 3] MR A

Once the quantity (@k(g)ek(zl))is found from Eq. (2-9) we may evaluate

it at Iy =% and use it in Eq. (2-8) to compute (@k(r)). Since Eq. (2-9)
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involves a new moment (ek(El)ek(E)@k(£)> we must obtain another equation
for it, etc. Thus we find that the equation for a moment of any order
involves moments of higher order. Therefore an infinite system of
equations must be considered for the simultaneous determination of all
moments. Lf we want to determine higher moments of @k(s), we are led to

the following infinite set of equations by noting that (r) is treated

’k
as a complex quantity
*
(V 2 )( 8, ()3, (rl)-- 8 (r )@ (£;p1)° "2 k ) ek(£i+j+1)'°'
(2-10)
2
o Tip i) + K (e (D@8 (1) ey (xy, ., )) = 0
for i,j,£4=20,1,2,---,

where * denotes complex conjugate. Keller (1964) derives an equation

similar to equation (2-10).

Thus the complete statistical properties of the wave field @k(E)
requires simultaneous solution of all the moments given by the hierarchy
Eq. (2-10). This is an impossible job. The same sort of difficulty occurs
in statistical mechanics and in plasma kinetic theory. Various approxi-
mations made in order to solve the problems will be presented in the

next section.

An alternative way to describe the complete statistical properties
of a random field is to introduce the ''characteristic functional', which
generates the infinite set of moments appearing in Eq. (2-10). It was
introduced into statistical mechanics in 1947 by Bogolyubov (1959) and

into the theory of turbulence in 1952 by Hopf (1952), and was first used



23
to describe the random wave by Keller (1964).

The characteristic functional ¥ can be defined as

¥, = (exp i R) = Cexp 1{[v,3,] + v, 8,57 + [Ne I (2-11)
where A,B] = f A(E)B(E)dBE (2-12)
v
and
R =v,8. ]+ Fvx,8 %1 + [n,e ; (2-13)

Here V is the whole space bounded by the surface S where the boundary

conditions for @k(E) are given. We note that _k(r) is treated as a

complex variable, and an alternative way to define ¥ is to let

R = rvl,Reék] + Tvz,ImékW + [ﬂ,ek] (2-14)

where v and

k

respectively. We find

1 and v, are real independent variables, and where Re?

Im @k denote the real and the imaginary parts of @k

1 1
= = -1 K = = 1
N > (vl lVZ) and v 5 (v1+1v2).
Mathematically it is more convenient to treat V and y* as independent
variables, therefore we will use the form of V¥ given by Eq. (2-11).

Functional differentiation (Volterra 1930, Beran 1968) of Eq. (2-11)

yields

&7 nY(v,v*,ﬂ)

év(gl)'--év(gj)év*(£j+l)---6v*(r )5ﬂ(rJ+m+1) '6ﬂ(£j+m+n)
= O™ @D DR ) ) S i) e E
(2-15)

Evaluation of Eq. (2-15) at v(r) = 0,T(r) = O leads to the moments
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in Eq. (2-10) and we have

j+m-
53T Ny (v, u%, M)

6\,(’:51) L3 '6\)(£j)5\)’c(rj+l) L '6n(£j

+m+n)

= (@k(gl) e ‘@k(gj)?ﬁ*(gﬁl) . -@‘-‘(gjm)ek(gjml) e 'ek(£j+m+n)>

Fj’m,n (2-16)

Conversely the characteristic functional ¥ can be expressed as a

functional Taylor series in term of the moments T,

J,m,n
. Jjtmin
, 2 d) * -
Yy, r*,m) = ] z J!m!n! frj,m,nv(El) \J(EJ)\’ (£J+1) 'V*(E‘j_{_m)
J,m,n
M ™ W tn? 1 on . (2-17)

From Eq. (2-5), one can deduce the following equation satisfied by

the functional Y (v,v*,T)

2
2 .2 v 5%y _
W ) BNo T ewmenm 0 A

~

We note that with the Taylor expansion given in Eq. (2-17), Eq. (2-18)
yields the hierarchy equations in Eq. (2-10). In fact, Eq. (2-18)

can be considered as a compact form for the hierarchy equations in

Eq. (2-10). We also note that Eq. (2-18) can be considered as an equation

Bi%r) since V¥ does not occur. The boundary conditions for V¥ can be

for

obtained from the wave properties on the surface S.
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III. Methods of Approximation

Since the exact solution of the moment equations derived in the last
section is impossible, methods of approximation must be employed in order
to solve the problem. Each method of approximation has a certain range

of validity.

Before discussing various methods of approximation, we will write

the wave Eq. (2-5) in the following three forms:

w8 (£) + K (e, (£) 8, () = 0 (2-19a)
Julk,r) 2 2 32 )
2ik ———+ (T + T35+ ) ulk,r) + kg (Dulk,r) =0 (2-19b)
dz dx dy
and
2 2 2
2k Ba @425+ 8 94 gl + e @ = 0 (2-19¢)
ox oy 3z

where in (2-19c¢) we define @ as

5,.(0) = e™Pulk,r) = MEPIED) L (2-20)

In this thesis, we are interested in plane waves propagating initially

in the + z direction with E(g,t) = el(kz—am).

Below we discuss various methods of approximation.

(A) Thin Phase Screen Approximation
2 ' 2
If the terms Vv ¢ and (V-¢) in Eq. (2-19c) are neglected, then

one gets
d (k,r)

2ik 5% " kzek(g.;) = 0 (2-21)
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from which one immediately obtains

z
90,8 = [ Lke (x,y,2")dz' (2-22)
o

assuming at z = 0, @(k,z) = 0. DNote that (p/i) is the random phase of
the wave field @k(z). Equation (2-21) is valid only when the scattering
is weak and when the diffraction effect is small (very thin region of

turbulence). This approximation is very crude.

Note that the ''thin screen' approximation given in Eq. (2-21) is
different from the usual '"thin screen diffraction theory" (Mercier 1962,
Salpeter 1967). 1In the "thin screen diffraction theory'", the random
medium is assumed to be concentrated in a '"thin slab'". Inside the '"thin
slab", the "thin screen" approximation in Eq. (2-21) is applied, while be-
yond the slab diffraction theory is used for the propagating wave. This

problem is discussed in detail in Chapter 3.

(B) Quasi-Optic Approximation
Consider the initial wave propagating in the + z direction. When
the smallest scale of the fluctuating medium is much larger than the

wavelength A\ of the propagating wave, the scattering angle is small.
2
In this case, one can neglect the term (é—zu) in Eq. (2-19b) compared to
dz

the term (ik%; u), and one obtains

211%““"5% vpzu(k,g) + kzek(};)u(k,E) = [ (2-23)
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This is called the 'quasi-optic' approximation or ''parabolic-equation"

approximation since Eq. (2-23) is parabolic.

Insight into the parabolic approximation can be obtained as follows.

Note that if we define the operator L as,

2 2 2
=)
L= ok + (S 2+ 2, (2-26)
dz dy &%
then Eq. (2-19b) becomes
2
L ulk,x) == k ek(g)u(k,,{)
from which we get
-1, 2
U(k,g) = = L "k Gk(({)u(kai)
= f G(x,x")l -kzek(g')u(k,};')] dr’' (2-25)

where ]'_.-1 is the inverse operator of L and the Green's function G

G(r,g') = e K= e~ (2-26)

Physically, the value of u(k,E) in Eq. (2-25) can only be appreciably
affected by the inhomegeneities included in a cone with vertex at the
observation point (r), with axis directed towards the wave source, and
In most of this

with angular aperture €, which is assumed to be small.

region
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Therefore we expand \£—£
2 2
|-z’ = -z ‘VL p o el )

(z-z')

IR = u (2-27)

= (z-z') + — Ty
2(z-z'
ik|z-r'|

Using this expression in e ~ ~ ' and retaining only the first term of

the expansion in the denominator of Eq. (2-26), we obtain the approximate

formula for G(r,r') ik\g-g‘\z
—a 2(z-z")
G(r,zr') = (2+28)
4r(z-z'")

which is the exact Green's function of Eq. (2-23). Thus the '"quasi-optics'
approximation is equivalent to the approximation of the Green's function

in Eq. (2-28).

In what follows in this thesis, the 'quasi-optics' approximation will al-

ways be assumed. However, Eq. (2-23) is still not easy to solve, hence

further assumptions must. be made to solve the problem.

(C) Born Approximation
If the fluctuating part ek(£) of the refractive index is small,

and the fluctuation of the wave is small compared to the unperturbed

wave, then one can expand u(k,g) as a perturbation series

u = uO e U, e wea (2-23)

1

from which we have

(Zik§%-+ VZ) U, = 0 (2-30)
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and

s 4 2 2
(21sz + 9) up; + k ek(z) u, = 0 . (2-31)
We normalized uo such that

= =0 = 1 2
u (x) = u_(2=0,p) (2-32)
This is equivalent to plane wave of unit amplitude being incident from

-2 on a medium beginning at z = 0. Then Eq. (2-31) gives

(21k§z—+ Vz)ul + kzek(z) =0 . (2-33)

Note that Eq. (2-33) is valid only when
ol
|—=| << 1 . (2-34)

u
o

Define the amplitude A and phase S of the perturbed wave u as
u=Ae (2-35)

where A and S are real quantities. Then we have to first order,

u
log u = log A + iS = log (uo+u1) = log u + log (l+;l).
(o)

Since |u,/u | << 1, then
1" o

u u
E L
log (1+E_) R g
o o
Thus
o
log A + iS = log u + E;

is
Let M - Aoe 0, where A0 is the unperturbed amplitude and SO the phase,.
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We have
S |
log (A ) = x = Re(u (2-36)
fo o
u
and s - .
S = S0 = S1 = Im(uo) (2-37)

Thus we see that Born approximation is valid only if |x| << 1 and ‘Slt << 1,
In addition to the fluctuation in amplitude being small, the fluctuation

in phase must be small.

(D) Method of Smooth Perturbation (MSP)
If one uses Eq. (2-19c) instead of Eq. (2-19b) and neglects

2, . : ; ”
the non-linear term (vV°®) , one gets under the quasi-optic approximation,

2 2

-« R - N - N 2 5 .
Zlkaz + (axz + ayz) P + k Qk(E) =0 (2-38)

Equation (2-38) is called the method of Smooth Perturbation (MSP). This
method was first used by Rytov (1937) and Tatarskii (1961) gives a detailed
discussion. Since the quantities in Eq. (2-19c¢) involve only the

derivative of ¢ instead of ¢ itself, the linearization of Eq. (2-19c) is

valid if the derivative of ¢ is small.

Again define the amplitude A and phase S as in Eq. (2-35)
u=e’ =Ae (2-39a)

It is easy to show that

>
]
}—I
o}

0
>
I
W
o

S

(2-39b)
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Since the smallness of ¢ is not required, the fluctuation on S is not
limited to be small. Tatarskii (1971) has discussed the validity of

MSP and found that MSP is wvalid if
2
tx ) =1 (2-40)

2
{x") can be related to the intensity fluctuation by noting that

X:logA:%lOgI-

We note that Egqs. (2-33) and (2-38) are identical if we put u; = @.
TE ]¢\<< 1, u=ew=LH$ﬁ$z+---=1+u1+u2+---. Thus ¢=ul in the case ‘$]<< 1,
and the Born approximation and MSP are equivalent. Clearly MSP has a

broader range of wvalidity then the Born approximation.

We will discuss MSP in detail when we apply this approximation to the

interplanetary scintillation in Chapter 6.

(E) Geometrical Optics
When the diffraction term (vz@) in Eq. (2-19c) is small, we

negelct this term and obtain the equation of geometrical optics,

- 2 2

zlka%+ (7-0) " + k%, (x) = 0 (2-41)
Define i® = dikz + 3 (2-42)
end n¥(k,x) = 1 + e, () (2-43)

where ©® can be regarded as the generalized phase of the wave and n(k,r)
the index of refraction. From Eq. (2-41), we obtain the following

Eikonal equation in geometrical optics

(g2 - n%k? =0 (2-44)
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From Eq. (2-41), one obtains the following ''ray equation"

P (I'l —) = y}.n (2“4‘5)

where the position r of a light ray is parametrized by s, which is the

_ , 2 . : o
wave path, or ds = ‘dE‘ . The ray equation is equivalent to the famous

"Fermat's Principle', which states the following quantity I is stationary

along the ray path,

ds (2-46)

ray path

Thus Eqs. (2-41), (2-44), (2-45) and 6I = 0 are all equivalent.

The ray equation has been applied to calculate many quantities
for random wave propagation, such as the angular distribution of rays,
the mean ray displacement, the intensity fluctuation of the random wave
and the phase fluctuation of wave and the pulse broadening due to the
random medium. (Chandrasekhar 1952, Chernov 1960, Tatarskii 1961, Keller

1962, Salpeter 1967, Hollweg 1970 TLovelace 1970, and Williamsen 1972.)

However, the range of validity of geometrical optics is quite limited.
Let the scale of the fluctuation medium be L. The angle 6 due to
diffraction of the medium will be of the order of %‘. Also let the trans-
verse characteristic scale of the rays be a. Then when the wave propagates
a distance z, with

6z > a (2-47)
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two neighbor rays will intersect. Thus geometrical optics breaks down at
z > (%%). In Chapter 5 we will find a ~ (L/@O) where 8 1is the root mean

square phase fluctuation of the wave. Geometrical optics is valid only when

2

z << %— (2-48)
o

The condition in Eq. (2-48) for the validity of geometrical optics

is the same as that obtained by Salpeter (1967).

(F) Perturbation of Stochastic Operator (PSO)

All methods of approximations discussed above involve approxima-
tions made on the wave equation, which must be valid all the way through
the volume in which the random wave propagates if the methods of approxi-
mations are applicable. The criterion for the validity of approximations
is not easily met when the propagation distance is large, or when the
écattering is strong, or both. This is true especially for the thin screen
approximation, geometric optics and linearization approximations (i.e.

Born approximation and MSP).

In this and the next sections, we will present two methods of
approximation, in which the approximations are made locally. If the
approximations are valid in each step, then one can integrate the results
of each step and get the solution of the problem considered. In this
section, a method proposed by Keller (1962,1964) will be discussed.

We call this method '"'perturbation of stochastic operator'" (PS0O). The
Markov random process approximation, which is a speciallcase of

"perturbation of stochastic operator'", will be given in the next section.
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Following Keller, we consider the following linear stochastic

equation for &,
M(@)3 = g ' (2-49)
where M(¥) is a linear stochastic operator depending upon a random variable

a and g is a given function independent of . The solution of equation

(2-49) can be written as

g =M L(o)g (2-50)

Then take ensemble average of (2-50) ,

@) = i Ho)e (2-51)

from which we multiply (M_l}-l to obtain
= -1
M™) () =g. (2-52)

This is an exact equation satisfied by (&), although in this form it is

not yet useful.

To make Eq. (2-54) useful we assume that M is the sum of a non-random
operator Lo and a small random operator 6L1, where & is a small parameter.

Thus we write

N =T + 8L (2-53)

1
From Eq. (2-53), we have

=1 -1 =1 -1, -1 -1
(L (L+8L " Ly)) " = (L+6L L £

M 1) .

Therefore by expansion,

@

-1 n -1
T ((-8L "LDOL T,
n=0

oty
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from which we obtain

(M'1>‘1 = L°+6(Ll) 3 B2 [<L1>Lo'l(L1) - <L1L0'1L1>] + 0(53) . (2-54)

Assume (Ll) = 0 without any loss of generality. Eq. (2-54) then gives

L (8) - 82 <L1L°'1Ll><§> =g+ 0(8%) (2-55)

Now back to our problem, we compare Eq. (2-19a) with Eqs. (2-49) and

(2-53)
L0 = v2+k2 (2-56a)
8L, = kze (r) (2-56b)
1 kM~
and g = 0.
Also 1 f
L, (@) = V G(z,c")E(g")dr’ (2-57)
where —eiklE_E’\
Bt = e : (2-58)
4yt IEHE'\
Thus Eq. (2-55) gives to second order of §,
2 o 4 . ; : ’
(v'+k )8, (x)) - k d7r' 6(x,r"){e (x)e, (x"))(2(")) = 0 (2-59)

Vv

Eq. (2-59) is an integral equation for <§k(£)> and can be solved for
(@(E)} if <€k(£)€k(£l)> is known. The same technique can be used to derive
an equation for a higher moment. I call this method 'perturbation of

stochastic operator'" (PSO).
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The assumption made by Keller that 8 is small is not stated precisely.
As we can see clearly, the magnitude of the second term in equation (2-59)
depends not only on the magnitude of ek(z), but also on the correlation
scale of ek(z). Thus the smallness of ek(g) is not the criterion of the
validity of the expansion of the stochastic operator. The criterion can
roughly be stated as ''the change of the wave field due to the scattering
of the random medium within the scale size of the medium is small'. This
criterion is a local property as we pointed out at the beginning of this

section.

If in particular, the correlation scale of ek(g) approaches zero,
then Eq. (2-59) is exact. This is just the Markov random process approxi-
mation in method (G). (In fact, if the "quasi-optic'" approximation is used,
only the correlation scale in the propagation direction must be assumed

zero, for the Markov approximation to be valid.)

(G) Method of Markov Random Process Approximation and Quasi-Optic
Approximation (MQA)

Mathematically, if the following two assumptions are made

(i) Quasi-optic approximation is valid, i.e. equation (2-23) is

used.

(ii) The correlation scale of ek(E) or B(x) in the z-direction is

zero, i.e.

(B(z,p) B(z",p")) = 2 8(z-2") AB(Q-Q‘) (2-60)
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then a complete set of the moment equations of the random field u(k,r)
without coupling between different moments can be derived. This is worked
out and discussed completely in Chapter 4. The assumption made in Eq.

(2-60) is called the Markov random process approximation.

We will derive the equation for the first moment under the above
two assumptions using the result of Keller's method.

Under the assumption (i), we have

= [oRit 2 2
L, = (2ikg- + vg ¥y 8Ly = ke, (1) (2-61a)
and ik]g-g|2
1 -1 -z!
S(LE) = e T < 2]z-2"] . (2-61b)
Note that
lin G(5,x") = 7~ SGRD . (2-62)
Z —Z

We then have from Eqs. (2-60), (2-61), (2-62) and (2-59)

d 2 i
[2ikz> + VR + -Zk— AB(O):Hu(k,z,Q)} =0 (2-63)

which is exactly the same as we derived in Chapter 4. The higher order
term can be shown to be zero if ek(E) is a Gaussian variable or the
assumption made in Eq. (4-21b) is valid.

Note that MQA method can be applied to strong scintillation cases
where the scintillation index mz2 ~ 1, The scintillation index m is de-
fined to be the ratio between the root mean square intensity fluctuation

and the mean intensity of the random wave.
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Chapter 3

General Thin Screen Diffraction Theory

I. 1Introduction

Before considering the full problem of propagation of waves in a
random medium, consider the diffraction by a random, phase-changing screen.
The problem of diffraction of electromagnetic wave by a layer of random
medium has been studied. (Mercier 1962, Salpeter 1967, Jokipii 1970,
Lovelace 1970, Torrieri & Taylor 1971, Taylor 1972, Taylor & Lekhyanada
1973.) They used a "thin, phase-changing screen approximation'', in which the
random phase fluctuations of the wave are produced by the random medium
and the intensity fluctuations inside the medium are neglected. This is
a reasonable approximation if the medium is '"thin''. Suppose the complex
amplitude of the signal at the plane z = 0, where the screen is located,

. -iot . < .
is E(x,y,z = 0) e . Under the '"thin screen approximation', we have

id
Bleoyye = B = Al 7.5 = B s e ¢l
where A(x,y,z = 0) = 1, and &(x,y) is the phase fluctuations at the plane
z = 0. A schematic sketch of the problem is presented in Figure (3-1).

Let D be the thickness of the thin slab. From Eq. (2-22) we have

0
é(X;Y) = fkek(x)YJz')dz' (3-2)

-D

from which we have {(3(x,y)) 0. One defines the two-point correlation

function

A
g
&
~
o
N’
Il

{ @(Ql)§(gl+g)5 (3-3a)
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Figure (3-1)

A schematic sketch of the thin screen diffraction problem.
The random medium is confined to a thin layer of thick-
ness D (from z = ~D to z = 0). The plane wave ei(kz-&m)
hits the '"thin screen'" from the -z direction. After

passing the screen, the phase of the wave is randomized

and is characterized by the function 3(x,y).
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with P@(O) = 1. Here Pé(g) is the normalized phase correlation function
and @O is the root-mean-square phase fluctuation. 1In equation (3-3a) we
have assumed that the two-point correlation depends only on the distance
between the two points in the initial plane z = 0. If the thickness D is
greater than the correlation scale of the medium in the z-direction, then

by Eqs. (1-14), (1-24), (3-2) and (3-4), one has

2 D
& "P_(p) = 5 A, (p) (3-3b)
S *
2 D
@0 = ;;E AB(O) (3-3c)
and P§(p) = AB(D)/AB(O) . (3-3d)

The intensity fluctuations of the electromagnetic wave are then built
up by interference as the wave propagates to the observers. The object of
the diffraction theory is to calculate the intensity fluctuation at a
distance from the screen. Assuming the radiation conditions hold at large
distances, the Helmholtz formula gives without approximation the complex

amplitude E(x,y,z) in front of the screen (z > 0)

[--] -]
ikr ikr
1 g dE(x',y', 2= 2
E(x,y,2) = - 7= ff (er—) a_g(x »¥"52=0) E(x',y",2=0)5, er ))dx'dy"
-® - | (3-4)
1
e r = [Gx") 2y 3 (-0)217 .

Also, let E(x,y,z) = u(x,y,z)elkz.
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Assuming kz >> 1, one can use the stationary phase approximation,

putting (c.f. Eq. (2-27)

2 2
kr = kz + %i %(x-x') +(y-y"') z . £3-5)
Then using the Kirchhoff approximation %E(x,y,z=0)= ikE(x,y,0), one has

BlET,E) = 2—31};"[ fu(x',y',z=0) exp{iﬁ- Ex-x‘>2+<y-y')2]} dx'dy' . (3-6)

-0 ~co A

The approximation made in Eq. (3-5) is called Fresnel approximation
(Born & Wolf, 1959) or quasi-optics approximation (Chapter 2, Section III).
A sufficient condition for the validity of Eq. (3-5) can be obtained by

noting the higher order term in the expansion of (kr) be smaller than 1.
2
2 2
gt -ir
(XX)2+(yy) ] «< 1.

Z

Thus we have
kz

Noting that for the important region of the integrals in Eq.(3-6)
1

lx-x"|, |y-y'| <z (632

we have

1
—— . (3-7)
o2y 2

7 <<

In interstella~ scintillation, using k = 10-1cm_1 and the observed

-14 7

(92) ~ 10 Eq. (3-7) becomes z << 102 cm, which is true for all cases.

When the distance z is at such a position where the approximation
made in Eq. (3-5) or Eq. (3-6) i1s accurate, the observer is

said to be in the region of Fresnel diffraction (Born & Wolf, 1959). Note

that the criterion for the validity of Fresnel approximation in Eq. (3-7)

is different from that of classical diffraction theory.
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Assuming ¥(x,y) is a Gaussian random variable and using Eqs. (3-1),
(3-3) and (3=6), one finds
(I(x,5,2)) = (E(x,5,2) E (x,y,2)) =1 (3-8)

and 5
(I(gl,z)l(gl+g,z)\ =M "(p) +1

ik 2

k & i 2 2 2
= f"’fdgldfizdg3dg4 (EE) exp [- o (Ql Ryt Ry - g, )] x £ (3-9)

where I is the intensity of the wave and

1l

(E(R;-R52=0) E*(QZ-Q,Z=O) E(p4,2=0) E*(QA’FO))

2
— [-§o ;Z'P@(Qfﬁz) - PplRgRy) + PylRyRoRs)

+ P (eymamRs) - PylRimRoRy) - Pé(gz-g-g3)€ ]. (3-10)

The purpose of the diffraction theory is to carry out the integration
2
appearing in Eq. (3-9) for the intensity correlation function MZ () -

The scintillation index m, is defined as

mz = MZ (0),

which is the ratio of root mean square intensity fluctuation and mean

intensity.

It is hard to carry out the integration appearing in Eq. (3-9).
Various asymptotic forms of the intensity correlation function have been
obtained (Mercier 1962, Salpeter 1967, Jokipii 1970). Mercier (1962) has ob-
tained an asymptotic formula for the intensity fluctuation at a great distance

from the random screen. Under the assumption that the correlation function
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P§(Q) in Eq. (3-3) is Gaussian, Mercier found

Mzz(p) = P { - 2@02 [l-P@(gﬂ - exp [—2§02] (3-11)

2 2
if z > %? where L is the correlation scale of P§(Q). When z >> %r 3

the observer is said to be in the region of Fraunhofer diffraction.

Salpeter (1967) found a formula for MZ(Q) for the case @02 << 1.

2 ~
The results are expressed in terms of MZ (g)and Pa(g) which are the

Fourier transform of Mz(g) and P&(R), respectively,

(@) = (ﬁ)sz dpe MR %) (3-12)
o )
e P = ) dp e R p_(p) (3-13)
5\ = “on R € 3R :
-0 -0
One finds that
A 2 ~
g =4 sin® &G 3 P (@ . (3-14)

Lovelace (1970) presented a heuristic physical model considering
the propagation of each ray to calculate the intensity correlation.
However, his result is not rigorous.

Jokopii (1970) found that for B§(ﬂ) with a power-law spectrum,
Eq. (3~14) can be valid even when @02 >> 1. He found the sufficient

conditions for the validity of Eq. (3-14) as

(a) =z << kLg¢ where L and ¢ are the outer scale and inner scale

of the phase correlation function P&(g), respectively.
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(b) @22 = EQ(Q) dg << 1 where
lgl > Qe
1
a9, = 5° (3-15)
and
(c)zgg%- .
(o]

Condition (b) is equivalent to ngf 1 (weak scintillation).

Furthermore, one can easily show that for Pé(g) with a power law
= 2
spectrum, Eq. (3-11) of Mercier's result also holds if z >> %T where

L is the outer scale of P@(g).

Salpeter (1967) shows that in the case of Gaussian spectrum of

"~

Pa(g), geometric-optics applies when

2 2

L L
< —
z < . and z << )

= zo (focal length) (3-16)

Eo is called the focal length. From geometric-optics, one obtains

~ 2

2/\
%@ = 3,5 (@) (3-17a)
or 2
M 2000 = =2y v* B (o) (3-17b)
z R k o NR”

It can be shown from Eq. (3-17) that the scintillation index m, <1

when the conditions in Eq. (3-16) are applied.

Thus in conclusion, we find that the problem of strong scintillations

in the whole Fresnel diffraction region has not been solved. In this
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chapter we, instead of carrying out the integral in Eq. (3-9), will use
2
a new method to obtain the intensity correlation function MZ (p).

In the interstellar scintillation, the scintillation is strong and

one has that for Gaussian spectrum L o 1014-15cm (Salpeter 1969, Scheuer
1968) and for power-law spectrum, the outer scale L >> 1017_180m. There-
fore, for z 1021-24cm and N ~ 102cm, one has
24
L
<< = )
z n

Thus the scintillations are always not in the Fraunhofer diffraction

region and Mercier's result of Eq. (3-11) cannot be applied.
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II. New Method

A new method of solving the diffraction problem may be developed
by noting that the wave function u(x,y,z) in Eq.

following differential equation,

(3-6) satisfies the

du(z,p) i
32 "k Yy =) (3-18)
2 2
where p = (x,y) and v = = B + é—i .
ox dy
Define
*
TZ(Z;QPQZ) = (u(z;[{"l) u (ZJ92)> (3-19)
and
F4(27E1JR25Q3)Q4) =z <u(zsgl)u-k(zygz)u(ZJQ3)U*(Z)Q4)> . (3-20)
We note that
(1(z,0)) = T'y(z,p,p) (3-21)
and
(I(Z,E)I(Z,R')) = F4(Z’g’9u’,%"9,‘) (3-22)
= MZZ(Q-Q') + 1

From Eq. (3-18), we can obtain a differential equation for

Bu*(z,g')

FZ(Z’Ql’RZ)' We take the complex conjugate of Eq. (3-18) and obtain
oz

- =i I
- 2k VQ,' u(zyﬁ )

(3-19)
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*
Multiply Eq. (3-18) by u (z,p') and Eq. (3-18") by u(z,p), and then take
the ensemble average of the sum to get

3 i 2 2
= Dolzpp') = 5 (9% V1) TplzipR") - (3-23)

Eq. (3-23) is the differential equation for the second moment FZ(Z,Q,Q‘).
Similarly one can obtain the following differential equation for the

fourth moment F@(z’gl’RZ’QB’Eﬁ)’

3 . 2 - -
a_z r4(Z;R1;Q2;Q3)Q4) = 9% (VQ,]_ = ng + VQB VRLI_ ) FA - (3-24)

Eqs. (3-23) and (3-24) can be greatly simplified if the initial
condition is invariant relative to shifts and rotations in the initial
plane which we assume to be true in our problem. Thus, FZ(Z,Q,Q') depends

only on lg-g'\ and (vpz- Vp.z)fz = 0. One obtains from (3-23)

~

or
Ty(z,0,0") = T(0,p0,0") - (3-26)
In particular, FZ(Z,Q,Q) = {I(z)) = (1(0)) =1 . (3-26")

For F4(Z’Q1Q2’33’Q4)’ we change the variables P1:R93R4 and Rs to the

new variables Q@’QB’QY and Rs by defining

Rey = R17R2

70
™
i
be)
Nl
&

(3-27)

1
and Rs = 7 R1"Ry™R3™R4)
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Then Eq. (3-24) becomes

4 i
et [2v, =5 49 (v ~v_42v_ )] T, (= , 3-28

oy Vg Pus(Qa 2 ey 4 € R Rp7Ry7Rg) ( )
Since F4 is invariant to the shift and rotations in the plane z = constant,

the function Th is independent of Pg+ Thus VQ5F4 = 0 and

or :

4 _ L
== (an . VQB) FA(Z’QQ’RB’RY) : (3-29)

The fact that Eq. (3-29) does not contain any differential with respect

to the variablefgY allows us to simplify this equation further by equating
QY to zero. In effect, this means that we consider the case in which the
four points Qi(i=1,4) are located at the corners of a parallelogram.

With QT = 0 in mind, we will write Eq. (3-29) as

ﬂ (Z"‘O{’RB)
oz

ol [

(v -v_) T, (2,0 ,p,) (3-29")
Rry QB 47 R’ KB

where the dependence of F4 on the variable pY has been dropped. We note

that the correlation function MZZ(Q) is related to F4 by
2
1+ M (p) =T,(z,p,0) =T,(2,0,p) . (3-30)

Our new method to solve the diffraction problem is to solve Eq.{(3-29') in-

stead of carrying out the integral in Eq. (3-9).

The initial condition for FA(Z,QOJEﬁ) can be obtained as
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. _ * B e B
Fﬁ(z’QQ’RB) = (u(gl,z=0)u (QZ,Z—O)U(QB,Z—O)LI (Q4:z=0)>
= exp -@Oz[z_zPé(Qa)—2P§(QB)+P§(QOjRB)+P§(QQ-QB)]} (3-31)

The appropriate boundary condition is
T, (2500, = [T, (z,p + p)1? (3-32)
A ”\OCQ'B g ’N’Q'B,QC R

Pa, p=e

where the notation QB,@’ QG,B means that when Ry is infinite, QB appears
on the right side of the equation and vice versa. Eq. (3-32) means that
when Ry = @, the two pairs (u(gl,z),u(ga,z)) and (u(Rz,z),u(R3,z)) are

uncorrelated, and similarly for RB = ®, From Eq. (3-26) we have

TZ(Z’E’,’D +E) = FZ(O,Q,QQ-FR)

~
= exp |- @02 [1-%(9&)12 . (3-33)
Thus 2
F4(Z’QG’QB)| = exp 3-2@0 Fl-P§(E ,a)J ) (3-34)
P, p=oo

In the next subsections we will present the analytic and the
numerical result of the integration of Eq. (3-29) with the initial condition

(3-31) and boundary condition (3-34).
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IIL. Numerical Results

In this section, we will solve Eq. (3-29) numerically for two cases,
namely, (a) the phase correlation function P@(g) being Gaussian, and (b)
the phase correlation function having a Kolmogorov spectrum. For simplicity
of the calculation, we will consider only a 'one-dimensional phase screen'

at z = 0 (Salpeter 1967), so that the transverse variables Ry B in

~B

Eq. (3-29) reduce to x B and Eq. (3-29') becomes

=

2
i _3 ’
dz Kk axaaXB FQ(Z’XC‘C’XB) . (3-35)

(A) Gaussian Spectrum

For the Gaussian spectrum in Eq. (1-26)
4 2X2
2 2 o
5, P(0 = 5" exp( - ——) (3-36)

where L = qo-1 is the correlation scale of the phase function and @0

is the mean square of the phase fluctuation. From Eq. (3-11), we have

in the Fraunhofer diffraction region, the intensity correlaticn scale

VoL

X,= 5 for @02 1. For this we will introduce the following
o

dimensionless variables.

L = z/(kxzk) (3-37a)
™ e, (3-37b)
o= x./x (3-37¢c)

B B 7
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Then Eq. (3-35) becomes

B, Lt B 2
4§ vervgrrgt . B Ig E
3C T REE, Eilgrep/ ‘ b

We also note that the boundary condition (3-34) for large @O becomes

2
r‘l}-(c’ga) EB) \ = exp , P gﬁ,a f . (3‘39)
ga:B = 2

In practice, of course, we cannot apply the boundary condition given

in Eq. (3-34) as it stands because this would require an infinite number

of mesh points. We will truncate the Ea,§B at appropriately large values

of ga,EB. The truncated boundary, g (or x

EB.C. C.) must satisfy the

B.

following conditions:

(i) Since the correlation scale of Pé(g) is L, we must have

Ppg. Thor L 0 *8) | S

(ii) Since the mean scattering angle 90 for such a screen is

]

= e e
60 T 2kL
(see Chapter 5) and the transverse spreading of the ray after propagating

a distance z is =z 90, we must have

zd
o

2kL

XB-C- >z 60 =

or
8.c. > . (3-41)

2

In the Fraunhofer diffraction region { > B
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The numerical results for éo = 1,2,5 are shown in Figures

(3-2),(3-3),(3-4) and (3-5). We find that in the Fresnel region

(a) For @0 = 5, strong scintillation is developed somewhere be-
tween L = 1 and ( = @0. At C = 1, the scintillation is still weak. And

the peak of scintillation index occurs near z = focal length ({ = @0).
(b) For @0 = 1, the results are about the same as those predicted

by weak scintillation theory (Eq.(3-14)) when the scintillation is weak.
(c) When the scintillation is strong, the correlation scale of

intensity fluctuation is about the same as that in the Fraunhofer region.

The numerical result here is consistent with the asymptotic analytic

solution in the next subsection.
B. Kolmogorov Spectrum

For Kolmogorov Spectrum,

2 D
@o PQ(D) =" AB(D) (3-42)
2k
where AB(p) is given in Eq. (1-28) or Eq. (1-29) with a = %l . For one-
dimensional phase screemn, we have
8, P(x) = =5 A () (3-43)
i 2k
and
5,0 = 25 4,00 . (3-44)
2k
Introducing the following dimensionless variables,
51 = xa/x* (3-45a)
Sp = xp/x, (3-45b)
2
C = zf(kx,)

(3-45¢)
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Figure Captions

Figure (3-2). This figure shows the numerical results of the scintil-

2
lation index m, = M,z (0) as a function of the normalized propagating
distance { for the medium with a Gaussian spectrum. In curve (1),
@0 = 1; in curve (2), @o = 2; and in curve (3), @0 = 5. @o is the

root mean square of phase fluctuation,

Figure (3-3). For Gaussian spectrum with @0 = 1, the intensity corre-

2
lation function Mz (E) is plotted as a function of the normalized

transverse coordinate £ for various values of the normalized distance (.

Figure (3-4). As in Figure (3-3) with @o= 25

Figure (3-5). As in Figure (3-3) with @o = 5.
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where x, = L(§02/0.6)‘0'6, we have
3, (6567 Eg) T
T4ttty ST (3-46)
3 3F_QE
i B
and /
2 -5/3
T T P_(x) = 0.6Yy A(x)/A(0) (3-47)
lo} ® o
where _ _ _ 2 -0.6
E = x/x, and =g R, = (@0 /0.6)
Define
D(p) = Pg(0) - P.(p). (3-48)
For L >> x >> §, we have from Eq. (1-28)
n(E) ~ 1.115 (g3, (3-49)
In the Fraunhofer diffraction region, we have
2 2
M, “(p) = exp [~ 28 _"D(p)]
For L > x >> g,
2
M, (p) ~ exp [- 2.230\5[5/3] . (3-50)
So the characteristic scale of the intensity correlation function in
Fraunhofer region is about x,.
In the case L >> x, the boundary condition (34) becomes
_ 5/3 ]
1“4(6,%,?[3)1§ = exp {-2.30 &, (3-51)

CX’B_—..w
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and the initial condition (31l) becomes

5/3 5/3 5/3
e LA e

\5/3
o °B

ra(g=0,aa,§g) = exp{ - 1.115 [2|ga| ]

(3-52)

Again the boundary condition (51) is truncated at appropriately

large values of ga,g The results for @0= 1.5, are shown in Figures

8"
(3-6),(3-7),(3-8), and (3-9).
From the Figures (3-6,7,8,9) we find that in Fresnel regions,
(a) For @O > 1, the scintillation becomes strong and the
scintillation index is about 1.0 as ( > 1.

(b) When the scintillation is weak (msz 1), the correlation

scale Xq of intensity fluctuation increases as the propagation distance

z increases. This is consistent with that predicted by Eq. (3-14).

(c) The intensity correlation scale x_ for strong scintillation

I

is x,, which is the same as the scale in the Fraunhofer region. There-
fore the analytic solution of Mercier (1962) in the Fraunhofer region

can also approximately to be applied to Fresnel diffraction region.

This is also consistent with the asymptotic analytic solution in the next

subsection.
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Figure Captions

Figure (3-6). The scintillation index mz2 = MZZ(O) is plotted as a

function of the normalized propagating distance ([ for the medium with
a Kolmogorov spectrum. In curve (1), @o = 1; in curve (2), @0 = 5; and

in curve (3), B, =% B is the root mean square of the phase fluctu-

ation.

Figure (3-7). TFor Kolmogorov spectrum with @0 = 1, the intensity corre-

2
lation function Mz (E) is plotted as a function of the normalized trans-

verse coordinate § for various values of the normalized distance (.

Figure (3-8). As in Figure (3-7) with @0 S

I
8

Figure (3-9). As in Figure (3-7) with @0 3
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IV. Analytic Solutions
An asymptotic analytic solution of Eq. (3-29') can be obtained
by noting that Eq (3-29') is a diffusion-like equation for F4(Z,QO,QB).

The solution of F4 in Eq. (3-29') can be written immediately in terms

of the inital wvalue FA(Z=O’QQ‘RB) as
.k ' 1
=1 CIRy R " (RaRg)
ky 2 s
F4(Z’QQ’Q-B) s (;) ff r4(z=0,9a;9,3) e
X dgé‘d é (3-53)

Eq. (3-53) shows that for z > 0, the values of T4(z=0,g,ﬁ) are re-
distributed among different transverse coordinates. The mechanism of
re-distribution (or "diffusion') is continued until T&(Z,QOJQB) reaches

a steady—statel. For steady-state, we have from Eq. (3-29')

—% _ L s ’
= _kvga.vgﬂ T, (z50,08) = O (3-54)

from which we find that for large z, IL must be of the following form

[u(2:000Re) = £1(Ry) + £ (Rg) + ¢ (3-55)

(o]

lOne can easily show the existence of a steady-state for F (z,p ,p
at large z by the same argument as ln Mercier (1962) in o
obtaining the asymptotic form for (R R )/(AA*)Z which corresponds to
F4(Z’QQ’QB=O) in this thesis. 7

)
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where fl’ fz are arbitrary functions of P and p, respectively and O is

B
a constant. By applying the boundary conditions in Eq. (3-32), one

easily finds that from Eq. (3-55),
T, (z,0.,p,) = T (z,p +p)|2+\F (z +)\2
5 'R R LolZ50,R 7R, ) ;Q:QB o)

- ‘FZ(Z,Q;R" ee) ‘2 ‘ (3'56)

By Eq. (3-33), Eq. (3-56) can be written as

F4(Z’QQ’QB) = exp ; -ZQOZTI—Pé(Qa)] + exp g -2@02[1-P@(QB)]

p—— ; —2¢02 g } (3-57)

Combining Eqs. (3-30) and (3-57), we have the intensity correlation

function

2 2 2
Mz (Q) = exp 1-2@0 [lnP@(Q)W%— exp F-Z@O ] (3-58)
for large z. Note that Eq. (3-58) is the same as Eq. (3-11) derived by

Mercier (1962).

Next we determine how large the propagating distance z must be in
order that Eq. (3~57) is a wvalid solution for F4. Suppose the transverse
characteristic scale of F4(z,ga,gﬁ) with respect to By (or RB) is Pes
Then from Eq. (3-29%, we find that the ''transient scale" z, of the prop-

agating distance z is given by

z =kp (3-59)
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F4(Z,QQ,QB) reaches the steady-state solution in Eq. (3-57) when z > z, -
The transverse characteristic scale pc of F4(z,ga,gﬁ) can be determined

from the initial condition for F4 in Eq. (3-31). We consider two cases.
Case 1. 3 <1

For @02 <1, it is easy to show that from Eq. (3-31) the character-
istic scale Pe of T4 is equal to L, the correlation scale of the phase

function with a Gaussian spectrum or a Kolmogorov spectrum. Thus

z = kLz, for g - 21 . (3-60)
(o] o

2

Case 2. >1
o

We first consider the phase function with a Gaussian spectrum.

From Eqs. (1-26) and (3-3), we have

pzq 2
5 °p (p) = 3 2 B . (3-61a)
5 Tp\P) T %5 € % A
and DA_(0Q)
B > o i . (3-61b)
o Zk2

£q
For (—Eg) <1, PQ(p) can be expanded as

2. 2 4 4
P P q,
P(p) = 1-— e el I AL E ‘ (3-62)

Using Eq. (3-62), we can write TA(Z=O’QG’RB) in Eq. (3-31) as

5 3
¥ 1 4 4 4 4
T, (2=0,0,,29) = exp{- 5 [le+QB| +|D:-Qﬁl -2g | -ZloBl 1 (3-63)

from which we find B = L/1f§0. Thus

2
z, == kL /@o = Eo- ' (3-64)
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Here ﬂo is the focal length in Eq. (3-16).

Similarly, we find from Eq. (3-52) that for Kolmogorov spectrum,

= = §. = -1.2
Pe =I5 8., ] ~ =mif, (3-65a)

and
5 = W 3 ~he . (3-65b)

From the above discussions, we find that the intensity correlation
2
function Mz (p) given by Eq. (3-11) or Eq. (3-58) is valid only in the
) .
Fraunhofer diffraction region for @oz < 1. However for @O > 1, the Mzz(g) in

Eq. (3-11) or Eq. (3-58) is valid not only in the Fraunhofer region, but

also in the Fresnel region as can be seen from Eqs. (3-64) and (3-65).

2
Finally we will show that for B, = 1 the condition that

z >z, (3-66)

for the wvalidity of Eq. (3-58) is also the criterion for strong scintil-

lation 0m22= 1). From Eq. (3-58), we have the scintillation index m,

2 2
B = 1 - exp [- 2@0 1 ~ 1 for B, W 1. (3-67)

o . 5 . 2
Thus the scintillation is strong for B 1l and z > z,. For z < Z.s
Eq. (3-16) is satisfied for the phase function with a Gaussian spectrum
and Eq. (3-17') can be used to calculate the intensity correlation, from

which we find

z3
mzz = MZZ(Q=O) = (TO) : L% ~ (;z—)2 & 1. (3-68)
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Similarly for Kolmogorov spectrum, when z < z ., Eq. (3-15) is valid

and Eq.( -14) can be applied. One then finds for z << z,

m <1l . (3-69)

Combining Eqs. (3-67), (3-68) and (3-69), we conclude that the criterion

for strong scintillation is that

(i) @0 g (3-70a)
and
(ii) z > B kLzlio,for Gaussian spectrum
(3-70b)
kLz/éolZ/S, for Kolmogorov spectrum .

When 602 <1 and/or z < zZ., the scintillation is weak. The solution for
strong scintillation is given by Eq. (3-58) while Eq. (3-14) or Eq. (3-17)
is the solution for weak scintillation (mz << 1). We also note the
numerical solutions in the last subsection are in good agreement with the

analytic asymptotic solution here.
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Chapter 4

The Markov Random Process Approximation (A)

As mentioned in Chapter 1, most of the theories of wave propa-
gation in a random medium are based either on the "single-scattering"
theory (e.g. Born approximation, and M.S.P.), or on the geometric-optics
approximation. (Booker & Gordon 1950, Chandrasekhar 1952, Chernov 1960,
Tatarskii 1961, Keller 1962, Hoffman 1964, Budden 1965a, 1965b, Salpeter
1967, Lovelace 1970, and Williamson 1972.) However, single-scattering
theory is valid only when the scintillation is weak or the scintillation
index m, << 1 and geometric-optics breaks down when the interference of
the rays cannot be neglected. For strong scintillation where mz2 =1,
the multiple-scattering effect is important and neither the single-scattering
theory nor the geometric-optics approximation can be applied. A theory

dealing with the strong scintillations is needed.

In this and next chapters, we will develop a theory, which is
valid for strong scintillations, under the 'Markov random process'" and
the ''quasi-optics' approximations. In this chapter, a complete set of the
moment equations of the random wave fields with different frequencies
is derived and the wvalidity of the two approximations applied to the

interstellar scintillation is discussed. In Chapter 5, we apply ~he
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moment equations to solve the phase correlation function, angular

broadening,1 pulse smearing, intensity correlation and the probability

distribution function of the random waves.

Most of the text of this chapter is a published paper (Lee, 1974),
and for clarity the paper is presented in its entirety. In this paper,

A(R) corresponds to AB(R) in other places of this thesis.

Discussions of the validity of the Markov and quasi-optic approximations,
the phase correlation function and the angular broadening in this and the
following chapters come mostly from Lee & Jokipii (to be published in
the March 15th, 1975 issue of the Astrophysical Journal).
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Wave propagation in a random medium: A complete set of the
moment equations with difierent wavenumbers

L. C. Lee

Downs Laboratory of Physics, California Institute of Technology, Pasadena, Califernia 91109

(Received 7 March 1974)

Propagation of waves in a random medium is studied under the “quasioptics” and the “Markov

random process™

approximations. Under these assumptions, a Fokker—Planck equation satisfied by the

characteristic functional of the random wave ficld is derived. A complete sct of the moment
equations with different transverse coordinates and different wavenumbers is then obtained from the
Fokker-Planck equation of the characteristic functional. The applications of our results to the pulse
smearing of the pulsar signal and the frequency corrclation fnnctmn of the wave intensity in

interstellar scintillation are briefly discussed.

I. INTRODUCTION

Phenomena such as the twinkling of starlight and the
ionospheric, interplanetary, and interstellar radio wave
scintillations involve the propagation of an electromag-
netic wave in a random medium, A complete statistical
description of the wave field requires the solution of all
moments of the wave field with different positions and
different wavenumbers.

A complete set of the moment equations of the wave
field with different transverse coordinates but the same
wavenumbers has been derived under the “quasioptics”
and the “Markov random process” approximations,'+?
which can be applied to both weak and strong scatterings.
However, such a set of the moment equations with the
same wavenumbers is not sufficient to describe all the
statistical properties of the random wave field. Some ob-
served quantities in interstellar scintillations, such as
the pulse smearing and the correlation function of the
intensity fluctuation with different wavenumbers, > need
the solution of the moment equations with different wave-
numbers, It is the purpose of this paper to derive a com=
plete set of the moment equations with different trans-
verse positions and differenl wavenumbers under the
quasioptics and the Markov random process approxima-
tions. The results reduce to those of Tatarskii':? in the
case of the same wavenumbers. It is noted that the meth-
od of the derivation used here is new, and simpler than
that by Tatarskij.'?

It is the idea of Hopf® to introduce the “characteristic
functional” as an alternative way to describe the com~
plete statistical properiics ol @ random iieid. in Sec. II,
we will derive a Fokker —Planck equation for the charac-
teristic functional of the random electromagnetic field,
In Sec. III, a complete set of the moment equations will
be derived from the Fokker—Planck equation satisfied
by the characteristic functional. Some applications of the
results will be briefly discussed in Sec. IV.

1i. FOKKER—PLANCK EQUATION FOR THE
CHARACTERISTIC FUNCTIONAL CF THE WAVE
FIELD

We consider the propagation of a monochromatic wave
E_(r, !) obeying the scalar wave equation

V2p (r) + (0¥ c?)e, ()2 (r) =0, &)
where
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(2)

& ,(r) may be regarded as a Fourier component in time
of a general wavefunction. Here (w/27) is the frequency
of the monochromatic wave, c is the speed of light, and
€,(r) is the refractive index of the medium in which the
wave propagates.

E (r,0)=d (r)e =i,

The refractive index ¢ (r) is a random function and
depends on both the position r and the wave frequency w.
As an example, we will consider in this paper the pro-
pagation of the high frequency waves with w> w,, the
plasma frequency of the medium, in the plasma medium.
This applies to the propagation of the radio waves in the
ionosphere, the interplanetary space, or the interstellar
medium, If N, is the electron density, then we have

€, (r)=1-wYw?
and
wl=4uN,e*/m,

(3)

(4)
where m is the mass and e is the charge of an electron.

Now N, and ¢ (r) fluctuate irregularly. Let () denote
an average over an ensemble of propagation volumes.
Then define

e (r)=€(r),
N,(r)=(N,(r)} + 8N,(r),
B(r)=—4mc?dN,(r)/mc?.
We have
(5)

where now B(r) is a wave-frequency independent random
variable with zero mean and where the wavenumber

k=(w/c)Ve q.

1t is useful to define

V3§ (r) + #11 + B(r)/ & (r]) =0,

&, (r)=ulk, r)ei*:, (6)
from which we obtain

au(k r) ]
2ipaet s -D_z2+-?+—1)u(k r) + B(r)ulk, 1) =0 (7

Let
r=(z,p), p=(x,y), and s=(p, k).
In order to proceed further, we will make two assump-~
tions about the wave equation and the properties of the
medium.

Copyright © 1974 American Institute of Physics 1431
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First, we assume that the term 2%x/222 in E¢t. (7) can
be neglected. This is called the “quasioptics” approxi~
mation or “parabolic’” approximation. Physically this
assumption is equivalent to neglect the reflected wave
since the equation has been reduced to one with a first-
order derivative in ¢ from the one with a second-order
derivative. Thus we have

u(z,p.k) Vzu(f,p,k)+— Bz, p)u(z,p, k) =0, (8)

where

=0%/ax* + 8%/ ay°.
Second, we assume that B(z, p) is delta-correlated in
z direction. This is called the Markov random process
approximation. As we can sec later, this is equivalent
to assume that the correlation scale of B(z, p) in z direc-
tion is much less than the correlation scale of the wave
field u in z direction. We then have

(B(z, p)Blz’, p' ) =28(z — z")A(p - p") © (9a)
and

Alp -p)= [L(B(z,p)B(z", p")) dz’. (9b)

Note that the z dependence of A(p) is not explicitly ex~
pressed for convenience.

The validity of the above two assumptions has been
discussed, #7 We will only note that the “quasioptics”
approximation and the “Markov™ approximation can be
applied in the strong scattering cases.

It is known Lhat the probability distribution function at
time ¢ of a random variable x(f) that satisfies a differen-
tial equation of the first order in time with a delta-cer-
related external random force satisfies the Fokker—
Planck equation, In our case, z plays the role of time,
However, for a fixed value of z, the random field
u(z, p, k) does not have just a discrete value but has an
infinite number of values and is a function of p and k. It
is the idea of Hopf® to introduce a characteristic func-
tional ¥ to describe the statistical properties of a ran-
dom field. One defines the characteristic functional as

¥(z, v, v*)=(exp(iR,))
={exp{i [ [lulz,p, K)v(p, )
+u*(z, p, RW*(p, E)] dp dk}), (10)

where * denotes complex conjugate and the range of in-
tegration is over all the allowed values of p and k., Here
v and v* are treated as independent functions of p and k.

1t is the purpose of this section to derive a Fokker —
Planck equation for the characteristic functional ¥ de-
fined above. Tatarskii' derived an equation for the cha-
racteristic functional with constant wavenumber k, It is
noted that we treat in Eq. (10) the wavenumber k as a
variable.

Using s=(p, k), we write Eq. (10) as
Wz, v, v*) = (expli f [ulz, $)v(s) +u*(z, shv*(s)ldsP. (107)
We differentiate Eq. (10) with respect to z and obtain
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by Eq. (8)

aiz\l'(z, v, 17¥) .
:<m(m=):f [(;Tk){VZn(z, §) +B(z, phulz, )lu(s)

1
(Z:k)[v u*(z, s) + Bz, plu*(z, s)]y“(e)] ds> (11)
First we calculale the terms (exp(iR,)Viu(z, s)) and
(exp(:’I{‘)V’:u" (z,s) in Bq. (31). From Eq. (10), we have

0¥ (z, v, v*)
dv(s)

and

=i{u(z, s)exp(iR,)) © (12a)

6¥(z, v,
oo (s }
The operators 6/6v(s) and 6/6v*(s) denote functional de-
rivatives. ®* Operating V2 on Eqs. (12a) and (12b), we
have respectively

=iG*(z, s) exp(iR ). (12b)

(Viu(z, s)exp(iR) = Loz Zla 1, 27) (13a)
and
(% (2, s) expliR, ))—_vz R (2, 5; V%) (13b)

Toor (S) '

Next we consider the other terms in Eq. (11), namely,
{exp(iR,)B(z, phe(z, s)) and {exp(iR )B(z, p)u*(z, s)). We
define

&lv,v*, 2, 8) = (exp(iR,)B(z, P)). (14)
Expand exp(iR_) in power series as follows:
exp(iRk,)

._Z; -,—1-7{7 [ Lutz, s);:(,q) +u*(z, s)re(s)] ds}m. (15)

Then we have

= jm
gy, v*, 2,5) =§o-’-n—!([f(ylvl +ufv}) ds‘]

x| [ (o, + 0 vd) ds,] one [f G, v, +urvt)ds 18(z, p)),
(16)

where we define s,g (g, k), vy=v(s)), u,=u(z,s,), and
ete. for i=1,2,3, In the expansion of Eq. (16), the
existence of moments of all orders is assumed.

Consider now the term in Eq. (16) like (uff1282 -+ u%mB),
where u$f denotes either «, or u}. From Eq. (8), we
may write u(z, s) as

i f*1
u(z, s) =n(0, s) + 7.[ 5
X[V";u(z’,s) + Bz, pulz’, 8)] dz’. (1)
Note that u(z, s) does not depend on B(z’, s) for 2z’ > z.

Let 4z be an increment in z, which is larger than the
correlation scale of f(z, p) in z direclion, and write

e Sa X 54
u(z, s)=u{z A"’S)+2j,-_“k

x[Virt(z',s) +B(z’, plu(z*, s)] dz*, (18)
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where u{z - &z, 8) has no correlation with 8(z, p). Sup-
pose Az is small, and expand «(z, s) as

u(z,s)=ulz — Az, s)+ 21 (-?3) Viilz - Az, s)

i ufz —Az,s)

it 2 k

Blz’, p)dz' + O(a22). (19)

z-A

Under the Markov approximation, the correlation scale
of B(z,p) in z direclion is zero. Therefore, we let Az
— 0. We note that

lm u(z -Az, s)=u(z, s) (20)
Az-0

and

(2,0 [ %y, Blz’,p) dz"y=Alp —p"). (21a)

For higher momenis such as

T, =(Blz,p) [*, , Bley, py) dz, -

vz-A e

LA'B(:", pdz), i>2,
we will assume as in the derivation of ordinary Fokker —
Planck equation®

lim T,=0,
82-0

i=2, (21b)

This assumption can be satisfied if the random function
B(z, p) has a Gaussian, or narmal statistics, However,
the assumption made in (21b) is more general and does
not require the Gaussian statistics of f{z, p) in general.

1t follows directly from Egs. (16), (19), (20), (21a),

and (21b) that, as &z— 0,

(ulz, 5,)6(z, p)y=(i/2R,) u(z, s, )A(p - p;)
and, in general,

(v, +utv¥)p(z, p))

. _
=5 Alp~p) (gi) Cars + ) -

v, +uFvr)--

Xlaegy vy, +uf vl M w, —whvt)
X (g ¥ gy F Uk 00) e (v FukpE)) (22)

by noting that (u(z — Az, s)B(z, p*))=0. Other than the as-
sumption made in (21b), Eq. (22) is exact under the
delta~correlation assumption. But we seec that really we
only require the existence of an intermediate scale Az
vhich is larger than the coherence scale of (z, p) but
smaller than the scale of variation of » such that

u(z — Az, s)=u(z, s). The existence cf the intermediate
scale and Eq. (21) are the essence of the Fokker-Planck
equation.

Substituting Eq. (22) into (16) and noting that all the
s,’s are dummy variables, we then have

g(l’! V*’z,s)

—“—%.Z CT;T) ('g%;)(m) f "'IA(P“D,,.)((UIV, FufpE) e
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X (¥ gy F2 g0 Mo v~k uE)y ds) e ds (23)

We can also write Eq. (23) as

gv,v*,2,5)
—E!%F( )f' /-}:—,A(pwp’)((u'v’-=N*’U“")

X{wgvy +udvd) oo (e, v, Hud vE ) ds’ dsyeds,
(24)
where s'=(p’, k"), ' =u(z,s"), and v’ =v(s").
Setting m ~ 1=, we have
glv,v*, 2,5)
L] nt
i (:z)! ( ) f ]yA p = p'Y(u'v' —w*v¥)
X (v +uvf) oo (v, koY) ds'ds, - ds,. (25)
From Eq. (25) it is easy to show
-1 ds’ .
v, v*,2,5) = (—2—) ] ) Alp = pw(sNulz, s"yexpliR,))
~v*(sYu*(z, s"exp(iR )], (257)
By Egs. (12a) and (12b), we write g as
g(vl u*l z, s)
i ds’ A (e E
=(2) [ % 4t (105 gy =17 ) o)
(26)
Define the operator i\Al(s) as
5
IW(S)v V(S) o ( ) (?) m' (27)
We then have
#orvm,e,9)=(5) 5 4o -pitenn e, v 0). (20)
We also note that
1 8g{v,v*,2,s)
{B(z, pli(z, s)exp(iR )} = F i (29a)
and
{B(z, p)u*(z, s)exp(iR,)) = 68("6:: 2,9, (29p)
By Egs. (11), (13a), (13b), (28), (29a), and (29b), we
obtain
S¥(z, v, v*) i ds
2oz (3) [ % (ongh-ronsiy)

—7} f_[ di’i?/—*(p - p)M(s)M(s)E.  (30)

This is the Fokker —Planck equation for the characteris-
tic functional ¥ of the random electromagnetic field
u(z, p, k). Since the characteristic functional is the
Fourier transform of the probability functional, Eq. (30)
is in fact the Fourier transform of the Fokker-Planck
equation. Qur technique used here can also be applied to
the derivation of the Fokker-Planck equation for the or-
dinary characteristic function of a random function x(f).
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1. MOMENT EQUATIONS

We want to derive a complete set of moment equations
in this section. First, we expand ¥(z, v, v*) as a power

serics
vz, v, v*)= Z E ‘ (fu(z,s)v(z,s)rls)

om0 P1n]

X (fu"’(z,s')y“‘(z,s')ds’)

? 2 mln! m,n(zlvt v*), (31)
where
!‘m.n(zr”r”*):f 'f Lo alzs 85 o 5 8,580, 4 87)

Xy ooy VF e pXlds, e ds dsf - ds!

and
rm,n(zl Syy "ty ST, Y, sr’l)z(!llu?..."m"r’ "'”:’)- (32)

T, ,is the m-nth moment of the random field u(z, s).
The object of this section is to derive
tion satisfied by ", .

We note that, for any function f(s} of s, we have

ff(S)J'(S)
iy

weep PR p*rds . : ’
Xy, e v VY v¥'ds, -+ ds, ds{ - ds]

(z,v,v*)ds

H| n
m,n(zs S, 'ty

Sm;si’, Tty sr’c)f(sd)

(33a)
and

SR 5y ol 0 5

n
o f we | 5 T, (2,8 o8 sf sDf(s})
i=1
J
5 i [arm i (vf p vi o owp
muﬂncﬂ mint f By k., R
2)—‘ (Alp; —pi} +Aip;—p,)) +i‘; }:‘: Alp; "4’79))F ]
1ol gul Rk} i1 1 kik; Tl

Since v(s) and v*(s) are arbitrarily defined, the quantity
inside the bracket in Eq. (36) must be zero. We have
then the following differential equation for the moment
function ", 2

ar .
-——51;-4 (2,81 5,,8{-"5})
=‘_[l?_ — E’;_En’_’_..._fi]r
zLF, P By | =
(E} __.i__Ei). Z‘ 21 [A(ﬂi P,)" Alps=p, )}
TA\LE T RE, #x1 Ja1 kikj
non R )
ok Lf”:,_rf’:_))rm y (37
1=l gl i*y

[
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a differential equa~

vy e v pE e vX0ds, oo ds, ds] e dst =0,

1434
Moy e p W e ¥ dsy eeeds ds] e dst. (33b)
From (33a) and (33b) we obtain
-7 f f LS Ap = pIFSIT(IK,, (2, 0, v9)
=___f f(zjyfl(m Alpi=p))
PRI Y
_BH LA, = p)) + Alp; —p))]
il gat k(k}
n n ¥ i
+Z}Z}ﬂﬁjl_.ﬁﬁ)r Vyeso p Ryt
FRWESN.
delu.ds ds'...dsl (34)
We also note that
8K
v(s)v? 2 =l d
Jromy
= f e f(vih{ Vg Foees 4 vfn)rm."yl... 72 LES Pl
Xds, =+ ds, ds{ - ds/ (35a)
and
bK
*(s)Vv?
fv (s) s *(S) = ds

= f f(v;* AR TR L | SRR Y LR,

Xds, +++ ds, ds] ++ ds?, (35b)

where Vi=V? and V{ =V,
By Eqgs. (31), (34), (35a), and (35b), we can wrile
Eq. (30) as

o\ Alps = py)
4(‘?-_1 p A

(36)

[ It is noted that we can also derive the moment equa-
tion (37) directly from the wave cquation (8), using the
same technique in obtaining Eq. (22). Equation (37) thus
gives us a complele set of the moment equations of the
random wave field with different transverse coordinates
and different wavenumbers.

IV. APPLICATIONS

First we nole that we have derived a complete set of
the moment cquations with different transverse coordi-
nates and different wavenumbers for the high-frequency
waves propagaling in a plasma medium. However, we
can easily extend the argument to the other cases when
the index of refraction € (r) has a different frequency
dependence,
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Next we consider some applications.

A. Identical wavenumbers

When all the wavenumbers are identical, Eq. (37)
becomes

525 Py Py PL )

i 1
=gp (Vi en eV, =V [F - =T, =

X

T

ﬂ iA(p‘ = p/)

inl =1

-5 14, -0+ A -p))

§=1 ge1

+ t i Alp;} —p;)) 5

a1 g=1

(38)

which is identical to that obtained by Tatarskii.? How-
ever, the derivation by Tatarskii requires that the re-
fraction index fluctuations possess Gaussian stalistics
while we do not require the assumption of Gaussian sta-
tistics in our derivation in general.

B.T,, (z,5,,5,)
When m =1, and n=1, Eq. (37) gives

ol
—-:.512‘}- (2, 015 By, P2y Fo2)

-5 G- -l o
24, —pz)]rw (39)

where T, ,(z, 0, &y, £y, B) = (12, by, B)1* (2, Dy, B5)).

Equation (39) can be used to calculate the mean inten-
sity profile (I(r, () at position r. Consider the random
wave observed by a detector with a bandwidth function
fe (2). Then we have the total observed wave amplitude
h(z, p, 1) at position z,p and time ¢

Mz, p, )= [Tulz,p, k) expitie — il di.  (40)

The average intensity profile is then

e, h=(h(z, p, Di*(z, p, 1)
= [ [ ulz, p, Bz, p, k))fp ey )fp (k)
xexplilk,z - w(k) ]} exp{ — il kyz — w(k,) 1]} dRydk,.
(41)

Thus T, , is related to the average intensity profile
{(r, 1)) by Eq. {41). Equations (39) and (41) have been
applied to calculate the pulse profile of pulsar in inter-
stellar scintillation. The details will be given in a later
paper.
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C.ry,
When m =2, and n=2, Eq. (39) bccomes

@
_‘rz,z(z; S1 829 S5 54)

az
vz v vz
g = '_l__i)rﬁ 5
4

1{/1 1 1 1 Alp, = p,)
= il e = ; 1 2
7 [(’fi | 54 4 );,;r+ -E)A(OM 2=

172

Ay —p) 5 Alp, —pg) oAl —p,)
ik XD o Ter ke = Kyl

_oAl, —p)) 5 Alp, — pﬂ] L, .
AN lealey .

(42)

where

T,,2(2, 51, 52y 83, 84) =z, 8,)ulz, s )u* (2, sdu*(z, s.).

(43)
If one sets s;=s,, §,=S5,, and p, =p,, then
T, (2, 85, 52, 54, 5))
=(|ulz, p,, &) |*|ulz, py, k) | = Uz, oy, Fy),
Iz, py, b)) = Py(ky — ). (44)

Here 7 is the intensity and P, is the correlation function
of intensity at different frequencies. Thus T, , gives in
this speeial casc the intensity correlation function

Pk, —k,) at a givea observation point with different
wavenvmbers, The intensity correlation function has
been measured in interstellar scintillations, *%1° and
Eq. (42) provides a theorctical base of interpretation.
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V. Second Moment and Others

For the moment equations with same wavenumbers in Eq. (4-38),

we will consider in particular Fl,O’ Tl,l’ FZ,O and Fz 2 which satisfy,

2

respectively, the following equations

3T, (z,0) . A (0)
=7 "EY% et T (4-5)
z k 'p 1,07 .2 1,0
Oy 1(2,p750,)
1,1Y77°KR1’~27 i 2_ 2 _ 1 _ _
az = Zk (Vl VZ )Fl,l 2k2 [AB(O) AB(Ql Rz)rl’l (4-46)
BL . (2.0 :0:)
2.0\ *R1*R2? g4 2 B 1
i R —- —— - — - =
= % (Y19, )1‘“2’0 B I—AB(O)+AB(Q1 gz)jl"2,0 (4-47)
and
or (z,p P JQ'JR') . a 1
2,2 K rRa Ry PR 4 g 2 2 3 2 2
3z = 7 LV H0y 9y I, gkt

AB(Ql‘Q2)+AB(Ei'Qé)‘AB(QI'Qi)‘AB(Ql‘Qé)'AB(QZ‘Qi)'AB(QZ-Qé)J . (4-48)

We assume throughout this thesis that ek of the random

medium is statistically homogeneous in the transverse plane and that u is
homogeneous in the initial plane. Therefore Fl O(Z,Q) does not depend on
£
p and Fl 1(Z’Q¢’E2) depends only on z and the difference of the arguments
2

21 and Ros |R1'Q2\' Thus we have ¥ . (z,g) = 0 and

(vlz-vzz)rl l(Z,Ql,gz) = 0. Egs. (4-45) and (4-46) can be written
2 N

1,0
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respectively as

A_(0)
- R :
= Fl,O(z’E) 4k2 rl,O (4-49)
and
=) 1

where in Eq. (4-49), P=R1Ro and Tl,l(z,g) = Fl,l(z,gl,gz). Since we
have normalized our incident wave such that u(z=0,E)= 1, we have

immediately upon integrating Eqs. (4-49) and (4-50) the general results

i zAZ(O)
Iy =e (4-51)
- =Z— [A_(0)-A
N Tz -]
Fl’l(z,g) = e z (4-52)

rl’o(z,g) = (u(z,g)) is called the "mean wave'' or the ''coherence
wave'', which describes the coherent part of the random wave. Eq. (4-51)
shows that the ''mean wave'" decays as wave propagates in the random medium.
Fl,l(z,g) is called the "mutual coherence function'" and is the quantity
that describes the loss of coherence of an initial coherent wave propagating
in a random medium. Fl,l(z,O) = (I(z,g)) is the mean intensity observed at
z and from Eq. (4-52), (I(z,p)? = 1 for all z. Fl,l(z,g) is directly re-
lated to the angular spectrum of the random waves, which will be discussed
in detail in Chapter 5. Whitman & Beran (1970) have solved Fl,l for the

beam spread of laser light propagating in a random medium where u is

2 2
initially inhomogeneous and in Eq. (4-45), (v1 -Vq )Fl 1 # 0.
2
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Eq. (4-52) is very similar to the expression for the angular
spectrum discussed by Fejer (1953), Bramley (1954) and Ratcliffe(1956),
who use 'angular spectrum method" which can only be applied for the homo-
geneous cases. Eq. (4-45) is the general equation describing the second

moment Fl 1 for both homogeneous and inhomogeneous cases.
2

TZ,O and F2,2 will be discussed in Chapter 5. We note that FZ,Z
is directly related to the intensity correlation function of the random

wave.
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VI. Validity of the Markov and Quasi-optics Approximation

The limits of validity of the Markov and parabolic approximation

for T are discussed thoroughly by Tatarskii (1971) and we simply quote

1,1

2 2
his results here. He shows that incorporating the term 3 /23z which is
neglected in the parabolic approximation leads to a second-order approxi-

mation
2

| 5
k“A_(0) 2 _[3A (p)
Ff’zi - rﬂi {1 + ———-Ig;-— o [2“k3z( a: ) + erv_Ler (p)]} . (4-53)

(L
1.1

brackets must be small compared with unity. That is, we require

Clearly, for T to be a good approximation, the second term in curly

2 2
kA _(0) , [2 2 (aA

7k Z € 2 o
——-&—1&( z Sl +2nle€] << 1. (4-53)

Tatarskii derives this condition assuming Gaussian refractive index fluctu-
ations, but it is readily generalized to non-Gaussian statistics by the
techniques used in Section II of this chapter.

Tatarskii also derives the criterion for assuming that the coherence
length of the fluctuations is short (the Markov approximation) and finds
that it is effectively the same as that given in Eq. (4-53').

In what follows, representative calculation will be presented for
both types of spectra given in Chapter 1, Section III. 1In order to apply
the above results we must first ascertain the limits on the parameters for
which the correlation terms in Eq. (4-53) are small. Clearly this will not
be satisfied for z large enough. In addition, the condition also depends

on the value of p, and may break down for large enough p.
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For the Gaussian spectrum given in Eq. (1-21) we have

2. 2
B s ~(eTg )/4
A(R) =87 9, © : (4-54)

in which case we require

2

2 2 2
B qo2 ZZ [Zﬂkzz B iq % P4, 14
128ﬁ2 3 16 " "o

4 2 2 s B
Bq, q, P \ -Pq /4 *
+ 3 -2+ > e << 1 " (4-55)

For the power law spectrum in Eq. (1-21) the expression for A(Q) cannot

be evaluated exactly. However, it will be sufficient to consider only

intermediate values of p, L >> p >> 4 or . << % << 9 in which case one

may show that
[0 a-2
B 2 1 T(Z-E) q0p
AR =37 % 52 | Twry V2 : E
(c.f. Eq. (1-28)) so that our condition (4-53')becomes

-3 2
P

2 2 Q e
b 99 1 z2 {Zﬂkzz qu 1—‘(2'-2)
2

™ B 3 A C )

& o g (4-57)
Bq T(2== _

v S @) p‘“} <,

27 T3
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Now, it is desirable to remove the dependence on p from Eqs. (4-55)
and (4-57) in order to find the maximum value of z, the propagation
distance, for which these equations are valid. First we note from Eq.
(4-51) that the transverse coherence scale of rl,l may be much smaller
than the coherence scale of ¢. It is also clear that we are not interested
in p much larger than the transverse scale of Fl,l' Hence we may evaluate
this scale and substitute it in Eqs. (4-55) and (4-57) to obtain equatioms

giving the allowed value of z in terms of B,q0 and C.

From Eq. (4-51), we see that the transverse scale of 11 is simply
. P4

that value of p for which

zk2
=5 [Ag(O) - Ae(g)} = ] % (4-58)

For our Gaussian spectrum this becomes for the cases of interest where

p<<l
(o]

?

sz2 4

( 2
64w P4,

) = 1. | (4-59)

Defining P, as the transverse scale, we have

1/2
1 64
0. =3 (—’5) - (4-60)
q Bzk :
o

Substituting this for p in Eq. (4-55) and remembering that q,P. <1,

we have

1
2 2 - = 4
Bl 4 2 2nk2z B . 2 [ 64\ 2 qu << 1 L-61
z A 3 \Tex % 2 T2 - LBl
128x Bzk
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This limit on z is illustrated in Figure (4-1) for typical values of the
parameters.

Proceeding similarly for the power law spectrum, we obtain

(if Pe > 2)
2 D
zk2 qu T(Z-%) qopc -
e Ie) e
- L
or 2 85t I‘(—Z-) (a-2) -2
P ™ o 2 2 o > (4-63)
9 | Bzk g~ F(25)

In this case our condition on z becomes

4 2 ' 2, o oy, 7,206 ]
Bkq_ 2 omk2z B4y [T gr [ -2) (a_z)'(i)(za 6)
64 (0-2)x" S e S W) Bzk’q” T'(2-D) a,

(04
Bq_°T(2-3) ot
a-1_ .o
27 TR

where we have noted that the second term on the left is always less than
its value where p = g, the inner scale. The limitation on z, as a function
of L = éL-, provided by Eq. (4-64) for a power-law spectrum is plotted in

o
Figure (4-2) for o = 11/

3, corresponding to the Kolmogorov spectrum, for
parameters of interest for the interstellar medium. It is readily seen

that if <5nez> ~ 10-4cm-6 and € > 108 hz, one may apply our equation at

typical galactic distances.
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Figure Captions

Figure (4-1). Upper limits on z for the validity of the Markov approxi-

mation, for the Gaussian refractive index spectrum given by Eq. (1-20).

The maximum value of z is plotted as a function of electromagnetic wave

4

frequency £. Curve (1) is for <5Ne2> = 10" cm“6 and curve (2) is for

2 -6

= 2 .= 3
<6Ne > = 10 5cm . Note that the value of z « (<:6Ne >) 1 B ..

Figure (4-2). As in Figure (4-1) for the power-law refractive index

spectrum given in Eq. (1-21) with the Kolmogorov value for o = 11/3.

The maximum value of z is plotted as a function of outer scale L for

various values of <$Ne2> and £. Curve (1) is for <$Ne2> = 10‘40111_6 and
= - 8
f = 108 Hz, curve (2): <5Ne%> = 10 5crn . and £ = 10 Hz, curve (3):
<5Nez> = lo—hcm_6 and £ = 3x108 Hz and curve (4): <6Ne2> = 10_5cm_6 and
-2/11

£f = 3x108 Hz. Note that the value of z scales « (<5Ne2>0-1 L
£ 32/11.
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Chapter 5

The Markov Random Process Approximation (B)

I. Introduction

In Chapter 4, we have derived a complete set of the moment equations
of the random waves with different frequencies under the Markov and the
quasi-optics approximations, which are valid for both strong scintillations
Onz = 1) and weak scintillations (mZ << 1). Iﬁ this chapter,
we will apply the moment equations to study the various statistical prop-
erties of the waves propagating in a thick random medium. The multiple-
gscattering effect, which is important for strong scintillations and for a

thick medium, is included in our treatment here,

In Section II of this chapter, we discuss the angular distribution
of the scattered wave and calculate the root mean square scattering angle
and the characteristic scattering angle. Section III gives the spectrum
of phase fluctuations. In Section IV, we calculate and discuss the temporal
smearing of pulses propagating in the turbulent plasmas. In Section V,
the spatial intensity correlation function is calculated. In Section VI,
we discuss the probability distribution of the random wave. Finally in
Section VII, we calculate the intensity correlation function of the waves
observed at the same point but with different frequency-bands, and

determine the decorrelation bandwidth of the random waves.
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I1. Angular Power Spectrum

In this section, we will derive an expression for the angular
broadening of waves scattered by a random medium. Before proceeding we
recall the result that the angular distribution of radiation is essentially
the Fourier transform of the Fljl(z,g) in Eq. (4-46) with respect to the
transverse coordinate p (Booker & Clemmow 1950, Booker, Ratcliffe & Shinn
1950, Ratcliffe 1956). Suppose we regard our wave field as being a super-
position of plane waves which are propagating at a small angle relative to
the z axis. For these waves, define the angles 9x=kX/k, 9y=ky/k and

e = 62 + 92. It may be shown that for waves with random phases, the

X

distribution of intensity over angle, W(QX By) is related to Fl 1 (z,%x,y)
2 2

by the relationship

2
k 5
W(ex,ey) = 4ﬂ2 ~/:/~ Fljl(z,x,y) exp [-1k(x6i+y6y)] dxdy (5-1)

with the inverse relationship

Iy, 1Y) -f do_ fd9y¢ (6,,6)) exp [+ik(xd, +y0 )] . (5-2)

¥ (e ,Gy) is commonly called the "angular power spectrum', and gives the
X
intensity as a function of angle. Thus the average total intensity at any

given point is

(vy= [ dsxfdeyq,(ex,ey) (5-3)
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and the mean square angular deviation is

2
87y = "{%_) f de_ _"dley[ex2 + eyzj ¥ (ex,ey)- (5-4)

Using the expression in Eq. (4-52) for Fl 1 ve have immediately for an
2

extended, homogeneous medium,

2
N - 2 .z . g y l P
¥(o,,0) = 5 f a% exp{ 3l (0)-4p ()] -1k (2 JEe

4y

and, after some manipulation

(6% = %~y 2 A,®| _ . (5-6)
2k L at p=0

Note that the mean square angle (62) is always proportional to K4 (or k—a).

We now consider the functional form of the angular spectrum for our
two representative refractive index power spectra. We note that the
angular spectrum as given in Eq. (5-5) is not in general a Gaussian.
However, as z becomes large it asymptotically approaches a Gaussian and

we now derive the conditions under which this occurs.

It is most convenient to discuss the two angles Sx and QY separately
(for isotropic spectra the distributions of SX and Gy are equal). It is

clear from Eq. (5-5) that the moments of Bx are given by
2n 2n
(Bx ) t/zlﬁex ¢(6x,9y)d9xd9y

T 2 [A,(0)-A, ()] (5-7)
= () P (- A (0)-A (p ) =
k 2n |} 2 B g R

dx
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: : 2n .
with an analogous expression for <6y Y. Consider now the second and

fourth moments.

2
3A
@b -~ (5)

2k X
p=0
= X Yy X
(qz=0,qx,qy) (5-8)
and BAA
by, __=z 2.2
(8% = = (—Lax4 ) ey
R=0

- 8 % 2
T 22 J-J' dq, 49,9 P (9,<0,9 ,9.)+3((€ D). (5-9)

Now, if the distribution of QX is a Gaussian it is necessary that the
moments satisfy the relation
2n 2n)! 2, \n
CREP I B () (5-10)

n
Zn!

It is apparent from Eqs. (5-9) and (5-10) that a necessary condition for
(6x4) to satisfy the Gaussian relation (5-10) is that the first term on
the right in Eq. (5-9) be much smaller than the second term on the right.

Thus we require
165> N} dqxdqux P.(4,=0,9,,9.)

2
3k
[j:f d4g.dq.9, Pe(qz=0,qx,qy%]

z >> 2 (5-11)
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in order that the fourth moment satisfies the Gaussian condition. The
corresponding conditions for the higher moments of GX are essentially
equivalent to (5-10) for Gaussian spectrum and power law spectrum with
0 <a <4. So we take Eq. (5-10) as the condition for Y(ex,ey) to be

approximately Gaussian.

This condition can be written explicitly for our representative
refractive index spectra given in Egqs. (1-20) and (1-21). For the

Gaussian spectrum we have

16w

z >> sz 5 (5-12)
q(.')
and for the power law spectrum
Q=2 [0}
gn 91 G
z >> (5-13)

2 o o :
kB qa, F(2-2)
The conditions (5-12) and (5-13) are plotted for various values of the
parameters in Figures (5-la,b). It is clear that rather extreme values
of the parameters are required for Y(Bx,ey) to be Gaussian, and that for a

power law spectrum we do not expect a Gaussian angular distribution for

reagsonable values of the parameters.
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Figure Captions

Figure (5-la). The value of z, beyond which the angular spectrum is

approximately Gaussian, plotted versus the correlation scale L, for the

Gaussian refractive index spectrum in Eq. (1-20) curve (1) is for

<6Nez> o 10_40111_6 and £ = 108 Hz; curve (2): <5Ne2) = 10_4cr1r1_6 and

2 .
£f=3x 108 Hz, curve (3): (éNe Y = 10 SCm and £ = 108 Hz, and curve

(4): <6Ne2> = 10_5cm-6 and £ = 3 x 108 Hz. The value of z scales

= L"1(<6Nez>)“1f2_

Figure (5-1b). As in Figure (5-1la) for the Kolmogorov power-law refractive

2 -
index spectrum. In all curves (éNe Y =10 cm 6. Here the result is

sensitive to the inner scale £ = ql_l. In curve (1), £ = 108 Hz and

£ = 106cm; curve (2): £ = 3 x 108 Hz and £ = 106cm, curve (3): £ = 108 Hz

and g = 105cm and curve (4): £ = 3 x 108 Hz and ¢ = 105cm. Note that
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We now compute the mean angular broadening as a function of the
parameters for our representative spectra. This is represented by

(GXZ) + (Gyz) = (92). We have for the Gaussian spectrum
2 quo4
(% = =2 (5-14)

and for our power law (if @ > 4 and q << qo)
2, 2B o 4 -a.,.,C
(€0 =%6r W TGP - (5-15)

2.1/2

Again, the value of (87) for various values of the parameters is

illustrated in Figures (5-2a,b).

Finally, we note that observations of angular broadening usually
refer to a 1/e power angle, or some other angle characteristic of the fall-
off of the angular spectrum with increasing \9]. We define a characteristic
angle GC such that if e is the characteristic scale of T 4 (see Eq. (4-58)

1

and following discussion) then

_ -1
g, = (kpc) . (5-16)
s ’ . 2,1/2
It is readily shown that for a Gaussian spectrum, 6c~ (87) , but that for
a power-law spectrum, Bc may differ considerably from (62>1/2. Using
Eqs. (4-63) and (5-16) we have for a power law
L
2 2 =
qa, Bzk d, T(Z—%D 2
% =% |8~ T2 . A=y
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Note that GC for a power law is independent of 9 and is proportional to

64
(a—z) 2
A in contrast to {07). The value of Gc is illustrated in Figure

(5-3) for Kolmogorov spectrum.
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s

Figure (5-2a). The root-mean-square scattering angle (92>1 2 plotted

versus the correlation scale L for a Gaussian refractive index spectrum.

In both cases (SNez) = 10.”4cm-6 and z = 103 PC. In curve (1) f = 108 Hz

and in curve (2) £ = 3 x 108 Hz. The value of (92)1/2 scales « (<6Ne2))1/2

z1/2L_1/2f-2.

Figure (5-2b). As in Figure (5-2a) for a Kolmogorov power-law refractive

index spectrum. In curve (1) £ = 3 x 108 Hz and the inner scale f{ = 106cm,

curve (2): £ = 108 Hz and ¢ = 106cm and curve (3): £ = 108 Hz and g = 105cm.

-

- 3
In all cases (6Ne2) = 10 4cm and z = 10 PC, The value of (62)1/2 scales

o (<5Ne23)1/2 21/2L-1/3£-1/6f—2.

Figure (5-3). Characteristic half-power angle ec plotted versus correlation

length L for a Kolmogorov power-law refractive index spectrum. In curve

8
(1) £ = 10 Hz and in curve (2) f = 3 x 108 Hz. In both cases z = 103 PC

-4 - -11/5 -
and <5Ne2> = 10 4cm 6. The value of Qc scales < 23/5 <6Ne2>3/5f /SL 2/5.
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IIT. Phase Fluctuations Induced by the Medium

An interesting and useful result concerning the phase fluctuations
induced by the medium may be derived using the results for Tl 1 derived
2

in Eq. (4-52). We express the wave function u (z,g) in the form
u(z,p) = A(z,p) exp [iS(z,p)] (5-18)

(c.f. Eq. (2-39))where the (non-negative)amplitude A and the phase S

are real functions of z and p.

If the medium is thick enough that the phase fluctuation induced
is large compared with unity (strong scattering) then it is expected that
the correlation between the amplitude and phase is mnegligible. Then we

may express [ (z,p) in the form

3.4

Ty 1€2,0) = {A(z.0) A(z,p)) ( exp {i [s(z,0) - s(z,g)]}> : (5-19)
Since Fl,l (z,0) = 1, we have also
(A(z,0) A(z,0)) = (A(z,p) A(z,p)) = 1. (5-20)

It will be shown in Section V that in strong scintillations the fluctuation

o 5 5 ; 2
in intensity is approximately equal to the mean, Onz ~ 1), so that
4 2
(A7 (z,0)) = ]_+-mz == 2 . (5-21)

Further, the phase S is the result of a large number of independent,
random increments, so that by the central limit theorem S (z,p) has a
Gaussian probability distribution. Hence if the fluctuation of S about

its mean {S) is denoted by 88, we have
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- g 1 2
{exp (iS)) = exp(i(S) exp (- 3 (657Y). (5-22)
Now define the correlation function of the phase function S as
cg(z,0) = (85(z,p;) 85(z,p) + p)) . (5-23)

Eqs. (5-19), (5-22) and (5-23) yield immediately

Fl’l(z,g) = (A(z,0) A(z,p)) exp FCS(z,g) - CS(z,O)7 . (5-24)

From our solution for Tl 1 in Eq. (4-52), we then have
2

C(2,0) - Co(z,p) = -;—2 TA_(0) - AB(Q)j + 1n [({A(z,0)A(z,0))] (5-25)

B

(A(z,0)A(z,0)) ]
’ (5°26)

or £
Cg(z,0) = ;;5 AB(Q) = In [(A(z,O)A(z,”)F

where we have made use of the fact that CS (z,2) = 0. Eq. (5-26)

is quite similar to earlier results obtained by Bramley (1954) and Ratcliffe
(1956) who used a thin screen approximation to obtain the phase fluctuations.
(c.f. Eqs. (2-22), (3-3).)Little and Matheson (1973) used a similar ex-

pression. Indeed, if the second term on the right in Eq. (5-26) were zero,

we would have precisely the previous result for the phase.

In fact, this term is not in general zero. However, some general
consideration suggests that itmay be quite small for strong scintillations.

This may be seen as follows. We note from Eq. (5-20) and the fact that

A is non-negative, that

0 < (A(z,0) A (z,p)) < 1. (5-27)
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Now for (p) small, we have seen in Eq. (5-20) that 1n [{A(z,0)A(z,p))]

approaches zero. For (Q) large, this term is
In [{A(z,0) A(z,p)>] = 2 1n (A(z,0)) . (5-28)

But the probability distribution of A, P(A), must satisfy the constraints

f P(A)dA = 1 (5-29a)
(8]

? 2

(8]

f A*p(ayda = 1 + mzz = B . (5-29¢)
(8]

It is possible to demonstrate that for any P(A) such that Eq. (5-29) is
142

satisfied, (A(z,0)) = (1+mzz) = .,707 for mz2 =1 and that probably

(A(z,0)) is even closer to unity. A proof of this lower bound on (A)

is given in Appendix A. For example, if P(A) were log normal (A) = .915

and if A had a Rayleigh distribution, {(A)Y = .89. Hence,

C.(z,0) = 25 A_(0) - d (5-30)
% a’ P

where 0 = d < .69. Since in most cases of interest the quantity
(z/2k2)AB(O) is very large, Eq. (5-30) neglecting d is in fact a very
good approximation for Cs(z,O). For the same reason, we expect that

2
CS(z,g) is also approximately given by (z/2k™)A (p), although we have been

B

unable to find a rigorous proof.
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It is clear from the above that identifying (z/ZkZ)AB(Q) with
the phase correlation function is not always correct, but that within
the Markov approximation Eq. (4-52) for Fl,l is exact. It appears to be
an accident that setting CS(Z’R) = (z/2k2)AB(Q), and then neglecting

the fluctuations in A entirely, leads to the correct expression for

1“1’1(2,;3)-
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IV. Pulse Broadening

(81). Introduction

It has been observed that the pulses received from pulsars are tempo-
rally broadened at low frequencies. (Staelin & Sutton 1970; Rankin et al.
1970; Counselman & Rankin 1971; Ables et al. 1970; Lang 1971; Sutton 1971.)
The theoretical works about pulse broadening have been based on '"thin
screen'" model (Scheuer 1968; Cronyn 1970; Lovelace 1970) and on ray optics
(Williamson 1972; Mathews & Jokipii 1972). The thin screen approximation is
not necessarily realistic in interstellar scintillation since the fluctu-
ating electron density may not be confined to a small region between source
and observers, and the ray optics approximation is not justified in strong
scintillation. Furthermore the calculations of the pulse broadening
within the thin screen model by Scheuer (1968), Cronyn (1970) and Lovelace
(1970) are not rigorous. The estimations by Scheuer (1968) and Cronyn
(1970) are based on ray optics. Lovelace (1970) calculates the pulse
broadening function using a heuristic physical model in which the prop-

agation of rays is also considered.

In this section, we will consider the broadening of pulses prop-
agating in a thick medium and through a thin phase-changing screen. First
we will calculate the pulse broadening for the waves propagating in a thick
medium in which the multiple-scattering effect is important. Then we will
derive the pulse broadening function rigorously from the wave equation

for the thin screen case.
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(82). Some General Consideration

Suppose the source emits a pulse in the initial plane z = 0. Let
h(z=0,p,t) be the wave function in the plane z = 0. As the wave prop-
agates through the turbulent medium, the wave function becomes h(z,p,t)
in the observing plane z = z; We write h(z=0,g,t) and h(z,g,t) in terms
of their Fourier components in time, @w(z=0,g) and @m(z,g) respectively.

We have then

" .
h(z=0,0,t) = 3= f 5,(2=0,p) e O (5-31)
-C0
and -]
1 -iwt
h(z,g,t) = 3= f 3,(z,0) e O du ) (5-32)
-0

We note that each Fourier component‘@w(z,g) propagates independently

and is described by Eq. (1-17) or (2-1).

The quantity h(z,p,t) will be observed only if the receiver has an
infinite bandwidth. In practice, the receiver has a finite bandwidth and

the "observed" wave function is given by

(-]

hy (z,0,t) = 2%{ f 8,(2,0) fp(w) e “EE (5-33)

-0
where fB(QQ is the bandpass function of the receiver. In what follows we
assume that fBﬁb) can be characterized by a mean frequency @, and a band-

width 2A, and that it can be written in the form

2
(- ) }

£.(w) = exp {- R (5-34)

24
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(1)

We suppose that the initial wave function is a delta functionm,

h(z=0,g,t) = §6(t) é (5-35)

Then we have @w(z=0,g) = 1. We note that the argument below can be

easily generalized to cases with any other pulse shape.

Following Eq. (4-6), we write

5,(2,0) = ulk,z,0) e 17 (5-36)

where u(k,z,p) is the fluctuating part of @w(z,g).

Suppose first that the medium is free space, then u(k,z,p) =1

and k = w/c. We have

hiz,g;t) = a(% - t) (5-37a)
d A (t-=)"A
an hB(z,g,t) = 5. exp { R S g— (5-37b)

as expected. The finite width (%) of hB is just an example of the uncer-

tainty principle.

Now conéider the case where the medium through which the wave prop-

agates is a plasma with a uniform electron density Ne. The dispersion

relation is 2 1/2
w

k() = $ (15 (5-38)
w

where u% is given by Eq. (4-4). 1If the bandwidth A is narrow, we may write

1, 2 4%

k(w) = k(mb) + (u»a))(da)a) + 5 (o ) (—~—) + ««« . (5-39)
o

O

(1)
In fact it is the intensity that has the delta function. But the

difference is just a matter of normalization.
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Assuming that the third and high-order terms in Eq. (5-39) are

small and can be neglected, we find from Eq. (5-33) that for h(z=0,t)=§(t),

2
IB(Z’R’t) = l hB(Z)R)t)I
2.2
1 (t-vig) A
= %;—(L+RZA2) 2 " exp{ B e } (5-40)
(IL+R7A )
_ 1 - ; d k ; i
where v_ = T is the group velocity and R = z[(;—z) ‘. It is readily
(@we_ © %

demonstrated that the neglect of the third order term in Eq. (5-40) for the

expansion of exp(ikz) requires

2
3 zZA W
3
|2 a2y | = —P— <1 (5-41)
6 3 4
dw ab Zab o

which is generally well satisfied in astrophysical problems.

With the dispersion given by Eq. (5-38) and the fact that abz << wz,
we have i i 2 o 2
< E . 5 B =
L 1/ T T F '1— N 5 C(lzu,z) (5-42a)
e o o
ZW
and R == —%— 3 (5-42b)
cw_

From Eq. (5-41), we find that

(a) The reception time (fL) of pulse from pulsar depends on the
8
observing frequency . If Ll and t2 denote the reception times of a pulse
48] o,

at frequencies ('ﬁ) and (,—)—;lf) respectively, then
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2
zW

_ 2 L, _
1 2 ( 2c ) ( 2

t., -k
b | @y

This effect has been observed (Counselman & Rankin, 1971).

5) " (5-43)

(b) Even in the absence of scattering, a pulse is broadened
upon passing through a dispersive medium such as a plasma. The character-
istic time for the broadened pulse is tl = -v1+R2A4/A. In cases of interest
in the interplanetary and interstellar gas it appears certain that the

broadening indicated in Eq. (5-40) is not large enough to be interesting.

We next go on to the cases of present interest in which the electron
density (and hence the index of refraction) varies randomly. 1In this
case Gk(z’ﬂ) also varies randomly and it is most useful to consider the
average of the various quantities over an ensemble of propagation volumes.

Let ( % denote an ensemble average. We have from Eqs. (5-33) and (5-36),

<IB(Z)Q)t)> = <hB (ZJQ’t) hB*(ZgQ‘)t)>

-5 [[ ez ,2,0) g@e @)

ilkz-ot] - i[k'z-w't] :
X e dw dw (5-44)

whase k = k(w) and k' = k(w').
Now we have to calculate the frequency correlation function
kS
(u(k,z,0) u (k'.z,p)). This correlation depends on both ® (or w') and
the differences (w-®') in general. But if the bandwidth of the receiver
is narrow, then the dependence of this correlation function on w within

the bandwidth can be neglected and one has immediately
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(T5(2,0,8)) = Py (2,£)P,(2,0,t) (5-45)

where 4 represents the convolution of P1 and P2 with respect to t, and

2.2
where ’ (t-ﬁi) A
- A R - —
P.(z,t) = ——=——— exp{ - (5-46)
152 2 2
25t Vl—FRzAl’ (T+HR A7)
and @ : —is(t—iaj
P,y(z.t) = j%- ~[d dsu(k(w),z,p) u (k(wts),z,p)) e B . (5-47)

Note that Pl(z,t) is identical to IB in Eq. (5-40) and represents the

pulse profile due to dispersiom. P2 is then the pulse profile due to the

random index of refraction. Eq. (5-47) can be written in terms of k

. z
. o . —1ck1(t-V )
Pz(z,t) = EE'.[~ dkl(u(k,z,g)u (k+k1,z,g)> e & dk1 (5-48)
-0
2
w “ w
where k = E 1-—%— o ; is used in the transformation from w to k. In

W
order to proceed further, we must determine Tl,l(z,gl,kl,gz,kz)

= (u(kl,z,ul)uw(kz.z,QQ)S, which satisfies the differential Eq. (4-39).

(83). Calculation of (u(kl,z,g)u*(kz,z,g))

—_—

From Eq. (4-39), we have for Fl,l(z,gl,kl,gz,kz)

ar (ot 92 285(R17Ry)
dz 2 \ Iy ke, 1,1 4 K K, B k k, i )

(5-49)



For a statistically homogeneous medium, Fl 1 depends on p =
P
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|QI-R2] instead

of 01 and o> and one has v12=V22=VQ2. Eq. (5-49) becomes
D 2A,(p)
T ks N A N DU P P TP S i
3z 2 kl k2 p 1,1 4 Kk 2 Kk 277°B klkZ 1
1 2
(5-49")
where _ .
rl,l(z’g’kl’kz) = Fl,l(z’gl’kl’QZ’kZ) and R=P1 Ly
Defime g =k + & (5-50a)
Ak
and k2 =k = > . (5-50b)
Also write
I'(z,p, k) = Tk(z,g,ﬁk) = Fl’l(z,g,kl,kz) . (5-51)
Expanding kl and k2 in Eq.(5-49" in terms of k and Ak, we have
5 ik 2 12 AkP
B T(z,p. M) + 555 AT+ =5 (k" + —Z*) rAB(O) - AB(O)] T
B k R 2k
1 AkZ 3
+ 5 S A (0T +0 (k") =0 (5-52)
4 Kt B

We assume Ak is small and \Ak\ << k and neglect terms of order AkB.

In addition we put (k2 + A%—) ==k

]%?‘ << 1 as assumed.

2
to N¢~, because at pp = 0 the

2

in the third term of Eq. (5-52) since

We must keep the fourth term which is proportional

third term vanishes. Note that if we neglect
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the diffraction term, (LA%) Apz T, one obtains
2k ~

2

Ak

=0 i ___.._AO =53
FR(Z,Q 5 k) exp { 4k4 B( )z} (5-53)

which can be termed the '"pure refraction'" effect and gives the effect of

the differing transit times due to the varying index of refraction.
this case, Eq.

In
(5-53) gives the spread due to this effect as
2 2(t-—z—')2k4c2
_ 2ck vg
PR(z,t) = /2 ©XP |- AB(O)Z 5 (5-54)
(2ﬂAB(0))
which is a symmetric Gaussian with width
1/2
A _(0)z
e, = 5 (25— (5-55)
R 2 2
k¢
The effect of diffraction can be found by defining a new FD(z,Q,Ak) by
T(Z:R; Ne) = FD(Z:,Q.’AR) I-‘R(ZJR=0, Ak) (5-56)
The equation for FD is then obtained by substituting Eq. (5-56) into
Eq. (5~54). Ome obtains
or ) 1
. 4 B R T rag(0) - A,(0)]) T =0 (5-57)
2k R 2k

with its associated

=]

-iAkc(t-fi)
C
B ey k) = 5 f Tp (2, tk,0=0) e

B acmk) . (5-58)
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PD(z,t) gives the pulse profile due to the pure "diffraction" term. We

have, finally, the convolution
Pz(z,t) = PR(z,t)«k PD(z,t) : (5-59)

The equation for Ib cannot be solved analytically, and we defer its dis-

cussion until later.

We note that from Eqs. (5-45) and (5-59), the time dependence of
(IB§ is given by the convolution of three functions, each one of which
is related to a specific physical effect. This simplifies the discussion
considerably, and if (as is usually the case) one effect gives a much
larger spread than the others, the temporal profile is dominated by the
P function for that effect. Thus, in most cases of interest, the
convolution need never be carried out. This is particularly valuable

since the functional form for T

D is not simple and carrying out the full

convolution would be difficult.

(84). Discussion of FD(Z,Q,t)

We will find that the dominant effect on the observed ﬁemporal
pulse smearing is given by the pure diffractive effect, represented by
FD and PD. Unfortunately, as has already been noted, the equation for
FD cannot be solved analytically. It is possible, however, to develop
scaling laws which permit a discussion of how the pulse smearing scales
with frequency, etc. Let the transverse characteristic scale for FD
be P The development depends critically on the behavior of Aﬂ(p) for

p < Pus and this is a strong function of the power spectrum of the

refractive~-index irregularities. 1In all cases of interest we may write



115

for p < pc,

Dy(R) = Ag(0) - Ag(R)
(5-60)
v

Bp

o

&

where v < 2. 1f the spectrum at large wavenumber falls off more rapidly

than q-4 (this includes Gaussian spectrum) then the value of v is the

2

same and equals to 2 in all cases. However, if the spectrum is less steep
A . -11/3 .
than q , (and this includes the Kolmogorov spectrum gq ) then v is

less than two. If the spectrum is given as q_u with 2 <« < 4, we have
B (pX = B p . (5-61)

Thus if for p < Pus DB(D) is given by Eq. (5-60), we may write

Eq. (56-57) as

ar B oV
?D+LA%A2FD+ s B i , (5-62)
2%” R 2k
For Ak # 0, we introduce the dimensionless variables T and £ through
2 2
2k 2
z = 2 () FVog (5-63)
Ne "B
1
24y
o= (B g (5-64)
Bo
in which case the equation for TD becomes
or 2
D 10 2 v
s ] — —— = 5..
5ﬂ+l[Ea§+ T, + 5§ Iy =10 g (5-65)

1



116
This equation must be solved only once for each value of the power law
index v, since the dependence of fb at p = 0 on both Ak and z have been
collapsed into one variable 7. Techniques for numerical solution for

Eq. (5-65) are discussed in Appendix (B).

Before discussing the shape of the smearing introduced by the
diffraction (given by PD(z,t))we note that from the computer results in
Appendix (B) we see that for pk # 0, the characteristic scale of FD as
a function of T for p =0 is at M~ 0(1). Hence from Eq. (5-65) we see
that for a given z, the characteristic value of Ak, Akc is given by

Eq. (5-63) with T\~ 1. Thus we have

2
- 2k2 Akc) 24y
Akc Bo
or _ 2 2(v+2) _ (v+2)
v v Z A -
Akc & Bo k (2 . (5-66)

Eq. (5-58) and the nature of Fourier transform then tell us immediately

that the characteristic time for smearing of the pulse due to diffraction

is 2
2 2
1 Bo ¥ B 2(3%;0 z (Eﬁ_)
ty % k. ¥ e k ) . (5-67)
Since Bo is independent of the wave number k, we have from Eq. (5-67)
5+ 2)
that th is proportional to A . For Gaussian spectrum, vy = 2 and
tD N . It can be shown that for both Gaussian and power-law spectra,

- 3 2 1
£y = zOc /2c (5-67")
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Figure Captions

Figure (5-4a). This figure shows the numerical values of the function

FD as a function of the frequency difference Aw for the Gaussian re-

fractive index spectrum in Eq. (1-20). Note that the subscript D for

1
T" is omitted in the figure, and that the abscissa is (Aw/mc)z, where
D
®, = ckc= cgglké(%)z. Re(T) and Im(T") are respectively the real and the

imaginary parts of FD'

Figure (5-4b). The pulse profile PD(t*) due to the "diffraction effect"

is plotted as a function of the normalized time t, = (t- ﬁL)/tc for the

, g
medium with a Gaussian spectrum. The scale for PD is arbitrary.

Figure (5-5a). As in Figure (5-4a) for a Kolmogorov spectrum in Eq.

-1.2 4.4 =22
k (%) 1

(1-21). 1In this figure = ckC = cBO

Figure (5-5b). As in Figure (5-4b) for the medium with a Kolmogorov

spectrum.
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where Qc is given by Eq. (5-16).
We thus have three characteristic broadening times given by Egs.
(5-46), (5-55) and (5-67), which represent the various physical effects.
In any given observational situation, the longest time will dominate the

pulse profile.

Finally, we discuss the effect of these various effects on the
pulse shape. The dispersion effect (Eq. (5-46)) and the pure refraction
effect (Eq. (5-55)) produce symmetrical Gaussian pulses centered on the
mean time of propagation of the pulse. The diffraction effect must be
computed numerically and is not a Gaussian function. The results for
a Gaussian spectrum (or any spectrum with index y = 2) are shown in
Figure (5-4a,b) and the results for a Kolmogorov power law spectrum
(a = %%, v = 5/3) are given in Figure (5-5a,b). The curves are quite
similar and suggest that the pulse shape is not sensitive to the precise
form of the power spectrum. The shape is surprisingly similar to that

derived by Williamson (1972) on the basis of a statistical, geometrical

optics calculation (compare, e.g., with his figure (9)).

§(5). Pulse Broadening in the Thin Screen Approximation

Scheuer (1968), Lovelace (1970) and Cronyn (1970) have calculated
the pulse broadening for waves propagating through a thin phase-changing
screen. However, their calculations are not rigorous. Scheuer (1968) and
Cronyn (1970) estimated the pulse broadening by considering the propagation
of rays. Lovelace(l970) derived the pulse broadening Fatadon using a

heuristic physical model in which the propagation of wave rays is considered.
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But ray optics breaks down for strong scintillation (mzx 1). 1In this
section we will calculate the pulse broadening function rigorously

from the wave equation. We also find a '"pure refraction effect' on the
pulse broadening, which cannot be found and is neglected in the calculations

by the authors mentioned above.

Figure (3-1) is a schematic sketch for the thin screen model. The
random medium is concentrated in a thin screen with thickness D at z = 0.
The observer is located at z. We want to calculate the average pulse

profile (IB(z,Q,t))observed at z. Again we have from Eq. (5-45) that

(IB(Z,Q,t)> = Pl(Z,t) ‘k Pz(z7t) (5-68)

where ¥ represents the convolution of Pl and P2 with respect to t, and where

Pl(z,t), representing the effects of instrument and dispersion, is given

by Eq. (5-46) and

L r . -1s (t-2)
P,(z,t) = 5= ds (u(k(w),z,p)u (k(wrs),z,0))e g -(5-69)
Again let
Tl’l(z,gl,kl,gz,kz) = (u(z,kl,gl)u*(z,kz,gz)) 2 (5-70)

Fl’l(z,gl,kl,gz,kz) is governed by Eq. (5-49). However, within the thin
screen with thickness D, the diffraction effect can be neglected and we

have from Eq. (5-49)

28K 0+* Pigd
_ _ 1 1 S _ _B™1 R27
I‘l’l(Z—O,Ql,klygz:kz) = exp T4 ( 2 + kzz)AB(O) k]_kz .
1

(5-71)
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. d = i
For homogeneous case, Fl,l epends on \Rl QZ\ instead of R1 and Lo and

Eq. (5-71) becomes as in Eq. (5-49'")

1§ 1 1 285 ()
Fl’l(z=0,g,kl,k2) = exp = e+ ——Z)AB(O) o .(5-72)
k k 12
1 2
In the free space between z = 0 and z = z, we have from Eq. (5-49')
3 1.1 1. 2
2e P11 EREE) =Y G ) Y T G=73

From Eq. (5-73), we have immediately

: 1 1
- daz G- )
_ 1 Z2 L Tz st B
Ty,1 02020,k ,k5) = (21) He Ty,1(=0:0%k5k)

-ig-p"
X e dg' dq (5-74)

where Tl 1(z=0,g.k1,k2) is given by Eq. (5-72).
P

Again define k1= k + %% and k2 =k - %? . Then one has

2 2
s - 1Py A -4, 00 )

Tl,l(z=0,g,k1,k2) = e 4k K e 2k 4k

(5-75)
and
i 22

1 +[—N%— -is:g'] :

Fl,l(z,g=0,k1,k2) = ——~—§‘J:[L: 2k Fl 1(z=0,g ?kl’kz)dQ'dﬂ
(2n) g

(5-76)

2
to the order of (Ak)z. For A%— << 1 as assumed the case, we set
k
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2
.- = QEZ DA_(0)
——5) = 1 in Eq. (5-75), while we keep the factor e &k B
4k

since at p = 0, A(0)-A(p) = 0 and the second factor in the right-hand

1+

side of Eq. (56-75) equals to 1. Then we have

2
_ ;AEE DAL (0 - =25 [A,(0)-A,(0)]
G~ B o P B
Fl,l(z=0,g,kl,k2) = e X e . (5-77)

Combining Eqs. (5-69), (5-76) and (5-77), it is easy to show that

Py(z,t) = Pr(z,t) %Py(z,t) (5-78)
&
HEE . -l P iemce-E)
PR(Z,t) = cd(Ak) e X e g
2 2c2k4(t-"—0
2ck g
= exp - (5-79)
1z A_(0)D
(ZEAB(O)D) B

and

. 2
- [defe(e-2)- 202 4 0.0
P_(z,t) = . ff cd(Ak)dp'dg e & B
D 3 <
(2r)

D
- — TA_(0)-A_ (pH]
2 B B
X e s . (5-80)

We note that the second moment with same wavenumber k, Tl 1(z,'Q)
2
given in Eq. (4-50),is invariant in the free space from z = 0 to all

z > 0, and one has
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- =5 [Ag(0)-A,(0)] (5-81)

2k B
I‘l,l(z,g) -

By setting g = k& in Eq. (5-80), we have

P (z,t) ﬂé(t—— = -—-—) x ¥ (e)de (5-82)

and

A
k2 - ik8-p

v =~ dp e Ty, 1(Z50) (5-83)
4

is angular distribution function of the random wave observed at z,

where 6 =

(c.f. Eq. (5-1)). Since in our case, ¥(8) = ¥(6), Eq. (5-82) can be

written as

ZC(t —*) Lig
P (z,t) = (2 ) for (t—i) >0 (5-84)
g : for (t-éL) <0

g

Note that from Eq. (5-82), we have

f P (z,t)dt =ff\?(g)dgz =1 ; (5-85)

Thus PD(z,t) is normalized.

Eq. (5-84) shows that if ¥(8) has a characteristic angle GC, then

the characteristic time scale tC of PD is
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z6 B
c

t = (5-86)

c 2c

The fact that PD(Z,t) = 0 for (t-fL) < 0 indicates that all the scattered
rays are delayed. Since ¥(8) usua%ly has a peak at 6 = 0, PD(z,t) will
also have a peak at t' = (t-éL) = 0. If ¥(P) is a Gaussian function,
then PD(z,t) is an exponentia% function for t' = 0. Section II of this
chapter shows that in the interstellar scintillation with a Gaussian
spectrum, ¥(6) is Gaussian, but with a power-law-spectrum, V(8) is not

Gaussian for reasonable values of the parameters in the interstellar

medium.

In conclusion, we compare the results of pulse broadening for both
scattering all the way (thick medium) case and thin screen case. The
dispersion and '"pure refraction' effects are the same in both cases. For

the "diffraction" effect, the pulse shapes in these two cases are different.

Z

In the thin screen case, the peak of PD(z,t) is at t' =t - i 0,

g
while PD(z,t) has its peak at t' =~ t,>o for thick medium case.
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V. Spatial Intensity Correlation Function

§(1) Introduction
In order to calculate the intensity correlation function, one has

to solve Eq. (4-48) for the 4th moment T However, no analytic

252"
solution for Eq. (4-48) has been given since the derivation of this
differential equation. Tatarskii (1971) gives an analytic solution for
r2,2 under the "single-scattering approximation', but his results are not
satisfactory since his result for correlation scale does not agree

with the interstellar scintillation data. Dagkesamanskaga &

Shishov (1970) have obtained a numerical solution of Eq. (4-48) for an
initially plane wave propagating in a random medium which has a Gaussian
correlation function. Brown(1972b) solved numerically this equation for

a "two dimensional" medium with Kolmogorov spectrum. Since the propagating
distance for numerical calculations is limited due to the accumulation of
numerical errors, it is hard to draw qualitative properties of the

intensity correlation scale from the numerical calculations mentioned

above.

In this section, an analytic asymptotic solution of Tz 2 for strong
b
scintillation will be presented and the properties of the spatial intensity-

correlation function obtained from FZ 2 will also be discussed.
- b

§(2) Analytic Asymptotic Solution for Ty 5
= >

From Eq. (4-48), we have for Fz 2
2
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ar 1 1
2 Z(Z’QJ]."QZ"Q].’E- ) 4

i 2 2 2 2
== (v, 4y, -v1 -v)71 T, ,-—T x
3z b DL TR W LA SRT LT,

L285+A5 (o) 2o HAg (0107 = Ap(R1-R1)-Ap(Ry R5) A5 (Ro7R1) A5 Ry R )]
(5-87)

where

k] *
Fz,z(z’Rl’Qz’Qi’Qé) = (u(z,p)u (z,p1)u(z,p,)u (z,p5)) . (5-88)

Suppose that the random medium is statistically homogeneous in the trans-
verse direction and that the problem has a homogeneous initial condition;

then Eq. (5-87) can be reduced to (c.f. Eq. (3-29"))

3 -1 L "
2 Ta(®Ry Rp) = % VQO[-VQUBF4 2 [245(0)-285(p ) -2A5 (R )+AL (R HR)
+ AB(QQ-QB)W T, (5-89)
where
Ty @500 = (u(z,p )0 (2,0 40 ulz,p tp Re)u (2,0400)) .+ (5-90)

We note that for Rp = 0 (or By * 0),
FQ(Z’QQ’EBZO) = (I(z,p )1(z p tp )) = PI(Z,Q3)+(I)2 (5-91)

where PI(z,Qa) is the spatial intensity correlation function. Thus the

solution of Eq. (5-89) for 1"4 gives immediately the intensity correlation

function PI(Z,Q).



130

We normalize the wave function such that at z = 0, u = 1. Then we have

the following initial condition for F4

at z = 0, Fh(z=0,ga,gﬂ) =1 . (5-92)

The boundary condition for large \EBI can be obtained by noting that for

large ‘R Eq. (5-90) becomes

b

F4(Z’QQ’QB) = (u(z,go)u*(z,go+ga)§(u(z,Qd+gd+gg)u*(z,go+gﬁ)>

%
= \Fl,l(z’ga)‘

where Fl 1(Z,Q) is the second moment given by Eq. (5-58). Thus we have

2
at "QB‘ - 9, FQ(Z’QCY’QB) = ‘Fl,l(z’gﬁ)‘ . (5-93a)

Similarly, we have

-

at |p,| = =, T'A(Z,QQ,QB) = Irl}l(z;gﬁ)\z ; (5-93b)
From Eq. (4-52), we have
2 o
3 [45(0)-4,(0)]

_ 2k
T1,1(Z’Q) = e . (5-94)

Let the correlation scale of AB(Q) be L. (c.f. Egs. (1-20) and (1-21).)
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We define

1

By =35 A,(D)
A 5,208

2
Y = BykL
M= B2 (5-95)
R = 18

= L

Pg = LB

and H(p) = Aﬁ(g)/Ag(O)-

Then Eq. (5-89) can be written as

VT I“a—f(g,g)r4 (5-96)

~

=< |

fa)
-a_.n T4(71;Q;E) =

where
£(@,B) = 2 - 2H(Q)-2H(B)+H(@-B)+H(Q-B) (5-97)

and ﬁ(a) = H(Qa) and etc.. We call y the "diffraction parameter' since it
determines the importance of the diffraction term (%Oqa-vgra for unit
propagating distance'(Aﬂ = 1). For y>> 1, the effect of the diffraction
term is small for AN = 1, while for vy << 1, the effect is large. The
initial condition is

T4(ﬂ=0,g,E) =1 . (5-98)

The boundary conditions in Eq. (5-93) become

. - 27 1-H(B)]
at fg| »=, T, (nap) =T ;"(N) =e (5-99a)
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and A
9 -27}[1—1—1(9})]
at |g| - =, T, (M, B) = F1,1 (M,a).= e X (5-99b)

We now consider the properties of the function £(Q,B) in Eq. (5-97).
We find that £(x,B) is of the order of 1 everywhere except near ¢¢ = 0

and/or B = 0. We have

at @ = 0 and /or B = 0, £(a,B) = 0,

and
at |a| >> 1, |g| > 1,

f@p x2+R@p = |2, for Ju-p| 321
3, for |a-p| << 1.

The numerical calculation of £(Q,B), for both Gaussian and Kolmogorov
spectra, also shows that £(Q,p) is of order of 1, except near @ = 0 and/or

B = 0. Note that in all cases f(g,g)?z 0.

We next discuss the properties of Eq. (5-89) for Th' The term

(~f(g,ﬁ)ra) in the right-hand side of Eq. (5-89) tends to make the function

; . ; i
Tﬁ decay. Without the diffraction term (v Z%'VET4)’ we have

% T(Ma,p) = - £(g,p)T, (5-100)

or - ﬂf(%-ﬁ)
F@(ﬂ:%)ﬁ) = Fl;('n:O’g’E) € - (5-100")
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From the properties of f(g,ﬁ) discussed above, we see that F4 will decay
to about e-1 of its initial value when AT = 1 for all points (%:E):

except near ¢ = 0 and/or B = 0.

The diffraction term (% v T4) in Eq. (5-89) tends to diffuse

zz'

the value of T4(ﬂ,g,ﬁ) among different transverse coordinates (Q,p).

Without the decay term (-fIh), Eq. (5-89) can be written as

d i
3 L (VoB =y Yy T (LB - (5-101)
The solution of the above equation can be written immediately as
=X '
2 e ) (BB
Y
I, (M, B) = ;‘z-ffl“A(TFO,g',ﬁ') e dg'dp' . (5-102)

Thus at T > 0, the values of Fa(ﬂ,g,ﬁ) are re-distributed as described
by the above equation. For example, if we set Ta(ﬂ=0,g,g)=6(%)6(ﬁ),

then we have

27X
Y2 i@

IL(MLLE =3 e (5-102")
M
However, if FA(H,Q,E) is of the following form
T, (M P) = £,(N,2) + £,(M,B) + ¢ (T (5-103)

where fl’ f2 are arbitrary functions of (ﬂ,g) and (ﬂ,E), respectively, and

co(ﬂ) is a function of 7, then the diffraction term (% v,V rh) is zero and

~

F4(H.Q,E) is not re-distributed as wave propagates. In this case,
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Tq(ﬂ,g,ﬁ) keeps the same value for all T| if the decay term is neglected.
We also note that Eq. (5-103) is the only form of 1"4 for which the
diffraction term is zero.

Physically, Eq. (5-96) for Ih can be considered as the combination
of Eq. (5-100) and Eq. (5-101). Consider the following '"multiple-thin-
screen' model for the wave propagation in the random medium as shown
in Figure (5-6). One divides the random medium between the incoming wave
and the observer into N thin layers where the i-th layer has thickness
Azi for i = 1,2,...,N. In the "multiple-thin-screen" model, the total
random medium in the i-th layer is considered to be concentrated in the
"thin screen' between z£ and z: where (zi-z;) << Azi. Within the '"thin-
screen' between z; and z:, the diffraction effect can be neglected and

+

T, is described by Eq. (5-100). Let the normalized quantities n;, T

4

- + "
and Aﬂi correspond to Z;5 24 and Azi respectively. We then have

+ - - AT £(2 B)
I, (2,8 = T,(,aB) e : (5-104)

Outside the "'thin screen' is a free space without random medium and for

T between ﬁi and ﬂ; , T4(n,g,ﬁ) is described by Eq. (5-101)., Thus in the
"multiple-thin-screen' model, TL is alternatively described by Eq. (5-100)
and Eq. (5-101), which give respectively the decay effect and the dif-
fraction effect. In the limit that the thickness Az of each layer is

very small, the "multiple-thin-screen'" model must correspond to the actual
situation where the random medium is evenly distributed over the whole
layer, since in the "multiple-thin-screen' model the position of the

random medium within each layer is just slightly shifted from that in the

actual situation.
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Figure (5-6)

In the "multiple-thin-screen" model, the total random

medium is divided into N thin layers where the i-th

layer has thickness bz for i = 1,2,...,N. The random

medium of the i-th layer is concentrated in the 'thin
" - + + = <

screen'' between z; and z, where (zi - zi) < Azi. Be-

i

tween two thin screens is a free space.
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From the above considerations, we find that due to the decay term,
FA(H’Q’E) will decay to zero when T > 1, for all o and B except near
a=0 and/or g = 0. However due to the diffraction effect the values of
fq(ﬂ,g,ﬁ) near ¢ = 0 and/or § = 0 will be re-distributed to all other
points except if T@(ﬂ,g,ﬁ) is of the form given by Eq. (5-103). Once
the values of FA(ﬂ,g,E) near Q@ = 0 and/or E = 0 are distributed to all
other points (Q,E) where f(g,g) £ 0, T4(ﬂ,g,ﬁ) will again decay to zero
because of the decay temm (—ffh). Thus we see that for large 1), Fa(ﬂ,g,g)

will decay to zero except if I', is of the form given by Eq. (5-103).

4

Therefore for large T, we can write Tq(ﬂ,g,ﬁ) as the following form,

TN B) = £ (Ma) + £,(0,B) + ¢ (D . (5-103")

In order to satisfy the boundary conditions in Eqs. (5-99a) and (5-99b),

we must have
as 1%\ =¥ oy I"[F(T\;%E) = rl’lz('ﬂyﬁ) = fl('ﬂ:% = ®) + fz(‘ﬂyﬁ) “f Co(ﬂ)-

Therefore,

5B = T 2B - £, = =) - c (D

and FA can be written as

L@ =T 12 + £M9 - £(g = =)

From Eq. (5-99b), we have

as ‘E\ e ’ F&-(ﬂ’g”@') = Fl’lz(’n)g) = 1_‘1’12('“5&) <& fl(ﬂ;g) - fl(ﬂ,m) 4
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from which we obtain the following expression

T, (e, p) = Fl,lz(ﬂ,g) + rl’lz(n,g) - 1"1,12(%”) . (5-105)

By Eqs. (5-99a,b), we write the above equation as
-2n[1-H(®) ] -2NM1-H(B)] -27
T, (Mo,B) = e + e - e . (5-105")

Eq. (5-105) or (5-105') is the asymptotic form for Iﬁ at large 7.

In Appendix (C), we will show that the asymptotic solution for F4
in Eq. (5-105) satisfies the partial differential equation in Eq. (5-96)
to terms of order (%?, and that the error of the asymptotic solution for

. 1
T4 is of the order of (ﬂ)'

Finally, we determine how large T must be in order that Eq. (1-105)

is a valid solution for TL. We consider two cases

(i) When y <1, we see that the diffraction term is effective
to diffuse the function FA as T propagates a unit distance. We expect that
Eq. (5-105) is wvalid for T > 1.

(ii) When y > 1, the effect of the diffraction term
% Y%‘VBFA) is still small as T propagates a unit distance and the re-
dist:ib:tion of TA is not large enough to make Eq. (5-105) a valid solu-
tion for T near or just greater than 1. Consider the case that the random
medium has a Kolmogorov spectrum, with the correlation scale L and the

inner scale {. For f << \Qal (and lQBl) << L, the function £(Q,B) can be

written as

£ ~ 1.86 x [2]al® %2(p > - jorp /% o) (5-106)
Define M = alt
@ = bys (5-107)
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nd b, = }:3/11

1= . Then we can write Eq. (5-96) as

Ty (ts2,8p) = 1 Vg Ty T -1.86[2}s_|*" 2| 5/3,

5/3 5/3
—]s +8 1 ol ]

x (5-108)

Ty

with Th(t=0 §3)=l. Note that the vy in Eq. (5-96) no longer appears in

28y
Eq. (5-108). We expect that for t 2 1, the diffraction effect will be
large enough to make LEq. (5-105) a good approximation for F4.

From Eqs. (5-105) and (5-91), we have for intensity correlation
function,

P (2,0) = Ty 1 (2,0) - i(2) (5-109)

by noting (I = 1 and az= Fl’l(z,gﬂw). For M > 1,

2
P (z,p) = Fl,l (z,0) . (5-110)

From the above discussions, we conclude that Eq. (5-109) is a wvalid

solution for the medium with a Kolmogorov spectrum when

@ N=—— =1, for y= 21— <1 (5-111a)
2k quo
and zA_(0)  5/11 A (0) >/ A (0)
iy n=—E— >y - ("Li) , for y-= —E—§ (5-111b)
2k 2kq, 2kq

Similarly, for a Gaussian spectrum in Eq. (1-20), the conditions for

Eq. (5-109) to be valid are



zA _(0) A,(0)
(i) M= ——ﬁi—w > 1, for y = —E__f < 1, (5-112a)
2k 2kq
o
ane o 2 ©) 2 (0)
zA (0 e A ey A
(ii) mn= '-—Ez-— > Y 3 = (—Lz—)3,, for v = —-g——z— > 1. (5-112b)
2%k Zkq 2kq_

When the conditions in Eq. (5-111) for Kolmogorov spectrum,
or in Eq. (5-112) for Gaussian spectrum, are satisfied, the scintillation

27

2 -
is strong and the scintillation index m = PI(Z,Q50)=1-e = 1.

§(3). Discussion and the Properties of PI(Z’Q)

In the last subsection, we found that when the conditions in Eq.
(5-111) for Kolmogorov spectrum, or in Eq. (5-112) for Gaussian spectrum
are satisfied, the spatial intensity correlation function PI(Z,Q) is
given by Eq. (5-109) and the scintillation is strong (mz2 == 1). However
we still do not know whether the conditions in Eq. (5-111) (or in Eq.
(5-112)) are the necessary conditions for strong scintillations. The method
of Smooth Perturbation (MSP) (Tatarskii 1961, 1971) gives the weak
scintillation result, which is valid when the mean square logarithmic
amplitude iz (or mzz) is smaller than unity. From the results of Tatarskii

(1961, 1971), one finds that i? is smaller than 1 when
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(i) M=<1l, for y=1 (5-113a)

{5111} fo

and (Ei) M<vy ry>1 (5-113b)

for Kolmogorov spectrum, and when
(i) M=1, fory <1 (5-114a)

and 2/3
(ii) M=y , for y = 1, (5-114b)

for Gaussian spectrum.

Comparing Eqs. (5-111), (5-112), (5-113) and (5-114), one finds
that the conditions in Eq. (5-111) for Kolmogorov spectrum, or in Eq.
(5-112) for Gaussian spectrum, are both the necessary and the sufficient
conditions for strong scintillation. We conclude that from Eq. (5-109),

for strong scintillation, the intensity correlation function is

PI(Z,Q) = exp [- i% (AB(O)-Aﬁ(Q))]

. (5-115)

1

0]

Fal
o
—

1

i im

(e |

The characteristic scale of PI(z,p), Pe.g can be obtained by
lad - -9

noting that for Kolmogorov spectrum, when £ <p <L,

1.86A,(0)z
Pr(z,p) = exp [- —-"ZL—(OqO)SBE = exp F-(;Q-—)wa] (5-116)
k c.s
and for Gaussian spectrum, when p <L = i—,
o
A,(0)z pq 2
Pp(z,p) = exp [- —‘B—z—‘ (—22) ] = exp f—(gp-)]. (5-117)

c.S8
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Thus for strong scintillation. the correlation scale is

-0.6

_ 1 i [P
pc.s(z) = [1.862AB(0)] q, k (5-118)
for Kolmogorov spectrum, and is
-0.5 -1
Pe.s(®) = 2 [24,(0)]  q 'k (5-119)

1.2
for a Gaussian spectrum. Hence Pe S(z) is proportional to k for a
Kolmogorov spectrum and proportional to k for the Gaussian spectrum, in

the strong scintillation region.

For the Kolmogorov spectrum, the correlation scale P..g @8 2 function

.

of z is plotted in Figure ‘5-7). 1In the weak scintillation region we

have pc.s(z) = ‘VZﬂz/k for the case where y > 1 or\IZﬂz/k < L (Tatarskii
1961). The scale . for weak scintillation is plotted on curve (1) of

Figure (5-7) where

pc-sfz) = \’Zﬂz/k . (5~120a)

Curve (2) shows the correlation scale for strong scintillation where

-0_6
1.86zA _(0) i
o, (@) = (—52D)  xq " . (5-120b)
C.8- k Qo

The intersection of the two curves is at P(z ) where

%7 R



143

Figure (5-7)

For Y > 1, the intensity correlation scale P..g. 88 2

function of z is shown in solid lines. Pe S(z) = 2rxz/k

1.86zA _(0) -0.6 _
is shown in curve (1), and pc s(z) = [____TTJ@__{] X q
L .

o
is shown in curve (2). P(z*,p*) is the point where curve

(1) and curve (2) intersect. This curve is plotted for

the medium with a Kolmogorov spectrum.
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6 1
5/11 2 = 2nz, =
k k 11 -10/11 * 2
= G TR % end ey = (07 . We note that
’ B
5 SITL
at z = z,, where P S(z) has its peak value, T = vy and that near

z = z,, the intensity correlation scale Pe.s makes the transition

-

from curve (1) to curve (2).

Eq. (5-108) is the same normalized equation used by Brown (1972),
who employed numerical method to solve the 4-th moment equation. The
results of Brown show that as t > 1, the scintillation is strong and
mz2 = 1, which is consistent with our result here. Concerning the
correlation scale, Brown finds that near t =1 (from t = 0.5 to t = 5),
the correlation scale is relatively insensitive to the propagating distance
z, which is consistent with the result shown in Figure (5-7) since near

%
t = 1 (corresponding to z = z ), the slope of the correlation scale is

nearly zero.

Finally we note that our result about the intensity correlation
function is consistent with that derived by Yura (1974), who generalized
Tatarskii's geometric-optics model to include both diffraction and the loss

of spatial coherence of wave as it propagates through the turbulent medium.
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VI. The Probability Distribution of the Random Wave

§(1) Introduction

As pointed out in Chapter 4, a complete statistical description
of the random wave requires the solution of all moments of the wave field.
However if the additional assumption is made that probability distribution
of the wave field is known, then usually only some few lowest-order
moments of the wave field are sufficient to describe all the statistical
properties of the wave field. For example, if the random wave has a
log-normal probability distribution (Strohbehn & Wang, 1972) or a joint-
normal distribution (Uscinskii 1968a,b) (detailed definitions are given in

subsection $(2)), then only the moments Fl 0’ T and Fz 0 of Eq.
b 2

1,17
(4-37) are sufficient to describe all the statistical properties of the
random field. All the higher moments of the random wave can be written

in terms of these three moments.

In this section, we will discuss, in particular, two kinds of
probability distribution, namely, the log-normal distributien and the joint-
normal distribution. Log-normal distribution is of interest because in
the weak scattering cases the probability is log-normal (Tatarskii 1971,
Young 1971). However Rice (1954) shows that the probability distribution
of noise plus sine wave has a Rice distribution, which is a particular case
of joint-normal distribution. Mercier (1962) shows that the probability
distribution in the Fraunhofer diffraction region, of a wave passing
through a random phase-modulation screen (see also Chapter 3) also has

a Rice-distribution.
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Under the log-normal assumption, Strohbehn & Wang (1972, 1974a,
1974b) have derived a relation between the intensity correlation function
I

and the lowest moments T’ and F2 0’ and have calculated the
2

140 *1.1

intensity correlation function when the diffraction parameter y (see
Section V) is small. 1In this section we will calculate, under the log-
normal assumption, the intensity correlation function for both small and
large values of the diffraction parameter Y and will give a more complete

discussion of the log-normal assumption.

In this section, we will also give a relation between intensity
correlation function and the three lower moments T, ., T and T
1,0 1,1 2,0
under joint-normal distribution and calculate the intensity correlation
function through these three lower moments. Our results are compared
to those of Uscinskii (1968a, 1968b), who calculated the intensity

correlation through complicated physical arguments under the joint-

normal assumption.

Finally we will show that the joint-normal distribution is valid
for strong scintillation in predicting the spatial intensity correlation

function.

§(2) Relation Between Intensity Correlation Function and Lower Moments
(a) Log-normal Distribution

The random wave u(z,k,p) can be written as

s PAZE)_ o WS _ 4 A8 (5-121)

il

u(z,k,g) = u(z,s)

(see Chapter 2, Eq. (38')) where s = (k,g), A is amplitude of the wave

and S is the phase measured relative to the free space value, kz. Let
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(5-122)

Under the assumption that u has a log-normal probability distribution,

© is a Gaussian variable and therefore X1 and S, are joint Gaussian

random variables with zero mean. If y is a Gaussian random variable

with zero mean, then it is easy to show that
1; 2
- Ky
(e?) = e 5
Define the correlation functions between x and S as
PX(Z’S].’SZ) = <X1(Z;S )Xl(z’sz)>

PS(Z’Sl’SZ) = (Sl(z,s )Sl(z,52)>

and =
sz(z,sl,sz) (Xl(z,sl)sl(z,sz)§

(5-123)

(5-124a)

(5-124b)

(5-124c¢c)

Using the formula in Eq. (5-123), one can express all the

moments of u, Iﬁ,n’ in terms of (x), {(8), PX’ Pq and PXS, The first

three moments, namely,

Fl’o(z,s) = {u(z,s8)) =1

Tl’ 1(ZJ 31, 32) = (u(z, Sl)u*(z! 82)>

and

rz,o(z,sl,sz) = {u(z,s )u(z,sz)}

determine the values of (%), (S), PX? Pg and PXS_

show that (Strohbehn & Wang, 1972)

2

(5-125a)

(5-125b)

(5-125¢)

It is easy to
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(x(z,8)) = Re [2 fn (u,(z,8)) - 5 I T, ((z,5,8)]  (5-126a)
(S(z,8)) = Im [2 fn {u(z,s)) - % in FZ O(Z,s,s)] (5-126b)
1

Px(z,sl,sz) = 5 Re [Enrl’l(z,sl,sz) + lan,O(z’Sl’SZ) -2 £n(u(z,sl))

- 2 nlu(z,s,))] (5-126¢)

= L % .
PS(Z’sl’Sz) =3 Re rﬂnfl,l(z,sl,sz) Enrz’o(z,sl,sz)] (5-1264d)

and
sz(z,sl,sz) = % [ﬂnfl,l(z,sl,sz) + ﬂnFZJO(Z,Sl,Sz) -2 ﬂn(U(Z,Sl)}j
(5-126e)
where Re and Im denote, respectively, the real part and the imaginary
part of the quantity following. Once the above five quantities in
Eq. (5-126) are known, all the higher moments can be determined from
these five quantities. For example, the normalized spatial intensity

correlation function PI is given as follows,

<I(Z’Q1)I(Z}R2)> - (I(Z)R1)><I(Z?Q2)>
(I(z,p1)(T(2,p,))

Pr(z,p05p,) =

= exp [4Px(z,gl,g2)] <« 1, (5-127)
where we have put kl = k2.
(b) Joint-normal Distribution

Let

u(z,s) = {u(z,s)) + ul(z,s) (5-128a)
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and
ul(z,s) = ulc(z,s) + uls(z,s) 3 (5-128b)
where ulc(z,s) is the component of uy "in phase'" with {u(z,s)) and

uls(z,s) is the component of uy "out of phase' with {(u(z,s)).

Under the joint-normal assumption, u is a Gaussian random
variable, or U and Uy are joint-normal random variables with zero
mean. When u is a normal random variable, all the higher moments can be
expressed in terms of the three lower moments Fl 0’ Tl 1 and Tz 0 given

2 2 2

by Eqs. (5-125a,b,c). It is easy to show that the normalized intensity

correlation function is given by

(I(z,87) I(z,5,)) - (1(z,5,)){I(z,s,))

(1(z,5))(L(z,5,))

PI(z,s15sz) =

lrljl(z’sl’sz)12+IP2,0(Z’31’32)\2_ 2 (u(z,sl))z(u(z,sz))2

Ty,1(2581581) Ty 4 (2,8,,8,) (5-129)

Consider two special cases of Eq. (5-129):
(a) When k1=k2, we have the normalized spatial intensity

correlation function

\1”1’1(2,&,1;9,2)‘2+|T'2,0(Z;Q1;Q2)\2* 2 (u(Z,Q1)>2<U(Z,Q2)>2

Pr(2Z,0:50,) =
I 1°K2
F1,1®Ry5Ry) Ty, q@5R00000)
(5-129a)
(b) When R1Ros We have the normalized intensity

correlation function with different frequencies
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Ty 1@k k) [ 54T g (orkey ) | °- 20uta k) Nuce,iey))

Lp,1®kk) Ty 4 (@k),k,))

PI (zikl)kz) =

(5-129b)

where each quantity is measured at the same point.

§(3) Results for the Log=normal Assumption

Throughout this thesi; we consider the case that the incoming
wave is a plane wave and the medium is statistically homogeneous,
Then (u(z,g)) is independent of the tramsverse coordinate p and
Fl,l(z,gl,gz) and TZ,O(Z’Rl’RZ) depend only on z and \Rl = ‘Rl'ﬁz" We
also normalize u such that u(z=0,p) = 1. Then Egs. (4-45), (4-46) and

(4-47) reduce to

oT, ,(2) A.(0)
1,0 B
- - r ; (5-130)
Az 41{2 1,0
er, (z,p)
A i 1
L oL rAL0)-A ()] T, (z,p) (5-131)
and
AT, o(z,0)
i e g o by s e TR GO A)T Po o lEp)
oz k p 2,0 R 2k2 B BRI T2,00R (5-132)
From Egqs. (5-130) and (5-131), we obtain immediately
) A@(O)z
leo(z) = {u(z)) = e 41{2 (5-133)
and & &
- EZ' [AB(O)-AS(D)W s FAB(O)—AB(O)}
Fy,1(zR) = I‘l’l(z=0,g) e =e

(5-134)
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The second moment Ti l(z,g) is also called the mutual coherence function
3
(MCF), and is the quantity that describes the loss of coherence of an

initial coherent wave propagating in the random medium.

Eqs. (5-127) and (5-126c) can then be written respectively as

PI(Z,Q) = exp [APX(Z,Q)] -1 (5-135)
and Ty 1(zp) Ty alz,p)
- ..].-. 111 K 2,0
Px(z,g) =< | % [ & (5-136)

Eq. (5-132) cannot be solved analytically. Writing r'y o(z,Q).
- &

as A_(0)z

e &% 1 (p , (5-137)

T2,0(:8)

we obtain from Eq. (5-132) an equation for Fc(z,g),

A_(0)
ST (z,0) = & VRZTC(Z,Q) - [—2;5— H(p)] T_(z,0) (5-138)

where H(R) = AB(Q)/AB(O). The initial condition for Fc(z,g) is
Fc(z,g) = 1 (5-139)
and the boundary conditiom is

at |p| = =, T (z,p) = 1. | (5-140)

For Gaussian spectrum, we have from Eq. (1-26)

4

_ Bk
AB(O) = 8x %

. (5-141)

and , -(q02p2/4)
H(E) = e . (5-142)
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Define the following new variables (c.f. Eq. (5-95)),

o -2
c qO

L TR
']'1 = z/zc (5-143)
A_(O
g B2
A 2k2
and _ _ ZAQ(O)
Y= B ™ 2
kqo

Then Eq. (5-138) can be written as

= 1.2 _
Eql r.(mg =3 VE, r (Mg - HEIT (2,5) (5-144)
- EZ-

where H(E) = e v 1s the diffraction parameter, which determines

2
£ IE). From Eqs. (5-133)-

~

the importance of the diffraction term (i v

(5-137), we have

1 1
P(ME =3 m T (L8| + 5 M H(E) (5-145a)
and 2
Pr(M,5) = exp [4P, (1,5)] - 1 = exp M2 ()] x T 1% - 1.
(5-145b)

Techniques for numerical solution of Eq. (5-144) are given
in Appendix (D). The numerical results for PI and P are presented in
K
Figures (5-8a,b,c). 1In the following we will also give some approximate

analytic solutions for Fc,
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Figure Captions

Figure (5-8a). This figure shows the log-amplitude variance cxz Vs
the normalized propagating distance T| = BAZ under the log-normal
assumption. Curve (1) is the theoretical curve for the diffraction
parameter Yy = 0, Curves (2-5) are the numerical results for y = 0.1,
1.0, 5.0 and 10.0 respectively. Curve (6) is the MSP variance for

Yy = 10. 1In the region T < 1, curves (5) and (6) are about the same.

2 ; ;
Note that o, 8rows without a saturation value for all curves.

Figure (5-8b). This figure shows the scintillation index mz2 as a

function of 1M for y = 0,0.1, 1 and 10. Curve (1) is the theoretical

curve for y = 0 and curves (3), (4), and (5) are the numerical results.

Figure (5-8c). For y = 100, the computed log-amplitude variance cxz

as a function of T is shown in curve (3). Curve (1) is the MSP variance

4t
il

3
0x2= % EE 1~ Eﬂ under large Yy approximation. The peak of ckz is at
Y

= % M- i% tanql( )] and curve (2) is the theoretical variance

2
N =3 and o, Bgoes to negative value for M > 4.
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Log-normal

Figure (5-8b)
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(a) Method of Smooth Perturbation (MSP)

We let

¥ (T.8)
L(nE) =e © (5-146)

and obtain an equation for Yc(ﬂ,g) from Eq. (5-144),

aw

"y T YWD + (W MEN] - A - (5-147)

Under the method of smooth perturbation, the non-linear term %(vwc)

is neglected and one has

HMD 3 2
G =g V:;, ‘i’c(”ﬂ,’é) = H(E) . (5-148)

The initial condition for Yc(ﬂ,E) is

¥_(T=0,E) = 0 . (5-149)

We then have from Eqs. (5-148) and (5-149)

2
. H(q) _ig t iq-E
¢ OE) =5 ff—%—(l—e ¥ ye *2 4%  (sasm
c < 27 3
where = - AE-4
H(g) = ;11; ff H(E) e dzg : (5-151)

For Gaussian spectrum, we have

H(E) = e ® and H(q) =% e (5-152)
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from which we obtain

7, (T Eel) = = -gf tan'l(iyﬂ) + 1 [% m tan-l(ﬁ?) - 3% (1 1523 2]
| (5-153)

Egs. (5-136) and (5-153) give us

2 _ Mg B -1.4M4 _ 2
e (W = B (M,E=0) = 3 [1- 75 tan ")) = 0 (- (5-154)

cxz('\'\) is the variance of the log-amplitude and UTZ(ﬂ) is called the

MSP variance (or Rytov variance).

3
47 2 8
s (BH <1,0 %M x 3 35 ; (5-155a)
41 2eay o D LY .
As (5)) == 1., o (M=a3-7 - (5-155b)

From Eq. (5-150) we also find that
as =1, | a% ¥(1,8)] . 31v52‘f(n,§) l (5-156)

and method of smooth perturbation is no longer valid. As shown in

Figure (5-8), Eq. (5-154) for cxz(ﬂ) is consistent with the numerical
2

results only when T < 1. = (T) given in Eq. (5-154) is the same as

obtained by MSP without using the log-normal assumption (Tatarskii 1961.)

(b) Approximation for large Yy
When y > 1, the diffraction term is not important. For a

Gaussian spectrum, we have from Eq. (5-144)
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3r_ (1, £) 5 _ g2
KXl =18 (vE Fc) - e K (5-157)
where § = %. We then expand Fc in term of the small parameter 8§ as
2
r (nLE) = T (ME) + 8Ty (M, E) + 6T _(,5) + ..., (5-158)
and set
FC(TFO,E) =1 and Fl(ﬂ=0,E) = Fz(ﬂ=0,E) = Lie =10,
Inserting Eq. (5-158) into Eq. (5-157), we have
or (M,8) _ g2
EXi B =8 Lo (5-159a)
3T, (M, 8) " _ g2 |
Bl =iv.p -e ; Fl (5-159b)
~ "o
or, (M, F) 2
N 2 -
—j% =1V Tl - e 5 Fz (5-159¢)

and etc... We solve Eq. (5-159) and obtain te second order in §,

4 3
2 8 x2. 5 8
6, O = 2 8P T = 2 1- g (5-160)
X
By
<)
For M < : L8 cxz(ﬂ) &:% 35 and cxz(ﬂ) is the same as given by the method

¥ i 2
of smooth perturbation. But as T = 1, the non-linear term i(vw) in

Eq. (5-147) cannot be neglected and Eq. (5-160) gives the correct gxz(ﬂ).

The peak of cxz(ﬂ) is

2
cx(max)

(-

2 .3
“3L = B acn=3 (5-161a)

Y

<



161

We also note that 2
UX (m =0, at N = 4, (5-161b)

and cxz(ﬂ) goes to negative when 1 > 4. Figure (5-8c) shows that at

v = 100, the approximate analytic solution is consistent with the
numerical results. cxz(ﬂ) has its peak near T = 3 and goes to negative
near T = 4. Eq. (5-160) for OXZ(TD also fits very well the numerical
solution at vy h=1.429x105 in Figure (7) of Wang & Strohbehn (1974a).

The series expansion for T' in Eq. (5-158) is valid only when
c

IT, @8 22 lory (| 22 16T, @D ..

from which we get

2
egg—) <1 . (5-162)

If we require the solution for cxz(ﬂ) in Eq. (5-160) to be wvalid for

M <4, then we have from Eq. (5-162)

v >> 32, (5-163)

oo

The results in Figure (5-8) are consistent with our prediction in Eq.
(5-163). For y = 100 > 32, cxz(ﬂ) is about the same as given by Eq.
(5-160), while for y = 10 < 32, the numerical result is completely

different from that given by Eq. (5-160).

In the extreme case that y = @, the diffraction term can be
neglected and

= o "R
TC(T]JE) = Fo(ﬂys) e

and we have PX = B ==
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(c) Approximation for Small vy

When y << 1, we have

or'_(t,E) 2 2
c _ _ = & £
5 = i V5 I,-ve Tc(tyé) (5-164)

where t = /Y and Fc(t,g) = Fc(ﬂ,g). Expand TE in terms of v as

T (6,8) = T,(6,8) + YT (658 + ¥ Ty(6,0 + ..., (5-165)

and set Fo(t=0,§) = 1 and Fl(t=0,§) = Tz(t=0,i) =... = 0. Inserting

Eq. (5-165) into Eq. (5-164), we have

or, (£, E) 2

=T = i Ve T (t,8) (5-166a)
31y (£, E) 5 e

B " T (E,8) e >T, (5-166b)

and etc... We solve Eq. (5-166) and obtain to first order in v,

2 T 3 -1 47 2
o, (m =5 1I1 Z tan (Y)fl . (5-167)

It is also easy to show that the expansion in Eq. (5-165) for Fc is

valid only when
¥E = 1] < Ly (5-168)

We note that the result for cxz(ﬂ) here is the same as that given by

method of smooth perturbation, which is also valid for T <1.

In the extreme case when y — 0, the diffraction term in Eq.

(5-164) dominates and Tc(ﬂ,E) = To = 1, from which we have gxz(ﬂ) = g

and Mzz = (ezn—l), which is also shown in Figure (5-8).



163

From the numerical results shown in Figure (5-8) and the above

approximate analytical solutions we find that

(i) For M = QAz‘5 1, MSP is valid and the calculated log-
amplitude variance cxz is consistent with the MSP wvariance UTZ. When
MSP is valid, it can be shown that the probability distribution of
intensity (or amplitude) is log-normal (Tatarskii 1971, Young 1971). We
conclude that for T = BAz < 1, the probability of the random wave is

log-normal.

(ii1) For M = BAz > 1, MSP is no longer valid. Under the
log-normal assumption numerical calculations show that for large v,
gxz becomes negative when T > 4 and for small y,:nzz(or GX?) becomes
much larger than unity when 1) Zi 1. A negative variance is physically
impossible and the fact that mz2 goes to infinity without a saturation
value is inconsistent with experiment results (Tatarskii 1971) and the
theoretical prediction in last section. We conclude that for T = BAz 21,
the probability distribution of u can not be log-normal.

(iii) The criterion here for the validity of MSP is different
from that given by Tatarskii (1971). Our cond;tion for MSP is 1 = BAz <1
while Tatarskii's condition is the log-amplitude cxz < 1. As shown in
Figure (5-8c), for y = 100 at BAz = 3, MSP is no longer valid but the

log=-amplitude OX2 is still much less than 1. (cX2 = ]..8:»{10-3

< s
The numerical results of Wang & Strohbehn (1974a) for Kolmogorov
spectrum also show that MSP is not valid even when UXZ << 1. Figure (3)

of Wang & Strohbehn (1974a) shows that the calculated GX? deviates from

the MSP variance cTz for GX?QE 0.05. Our condition that BAZ ff 1 is
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equivalent to the condition that the mean square phase fluctuation is
much less than unity. When y < 1, the condition that BAZ =<1 is

2 — = ;
equivalent to GX << 1. But for y > 1, our condition is more stringent

than that of Tatarskii.

&(4). Results of the Joint-normal Distribution

In this subsection we consider the spatial intensity correlation
function PI(Z,QI,QZ) under the joint-normal assumption. Using the

notation of the last subsection (8§(3)), we have

2 2 4
PI(Z,Q) = PI(Z’Ql’QZ) = lfl,l(z,g)l +‘F2,0(z,g)\ -2(u)
(5-169)
where p = -p,. And using the normalized coordinates as given Eq.
R = Q1R

(5-143), we have
P(M,E) = e “2NLL-R®] . , =2 It ) |%-2e"%N . (5-170)

The numerical calculation for FC in Appendix (D) gives PI(H,E). The
results are shown in Figures (5-9a,b,c,d,e,f). The scintillation index
& 5 "
m ~ is given by
2 -2 -2 2
m %= P (1,6=0) = 1-2 e Mt e '“]rc(n,g=0)| . (5-171)
2 = 3 3
The calculated m_ Vs the normalized propagating path T is
shown in Figure (9a) for various values of the diffraction parameter y.
Also shown in the figure are two theoretical curves for mz2 in the extreme

cases that y = 0 and y = ». In the case that y= 0, FC = 1 and we have
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~onf1-u(E] | -2m

PI(ﬂ,g) = e (5-172a)
and
mz2 o I, e g T . (5-172b)
Similarly for y = <, Tc = e _ﬂﬂ(g), and we have
PI(TL@ _ [e‘-ﬂ(l—H(g))_ : —n(1+H(§))] (5-173a)
and
mzz = e e (5-173b)

For all other values of y, numerical curves for mz2 lie between these two
theoretical curves. Eqs. (5-172a) and (5-173a) are the same as those de-
rived by Uscinskii (1968a, 1968b), who employed a complicated physical
model under the joint-normal agsumption. The numerical result in Figure
(5-9) shows that for T zi (I mz2 = 1. We note that since \Fc\ < 1 for all

Y, Eq. (5-170) gives us for M >> 1,

2

-2M[1-H(B) ] _ e 1(n,§)l2 and m © = 1,

PI(T\, %) N e
(5-174)
which check with the numerical results. For T »> 1, Egs. (5-172) and

(5-173) also reduce to Eq. (5-174).

Figure (9b) gives us the normalized spatial intensity corre-

lation function PI )

(z,p) = PI(Z,R)/PI(Z,O) at various normalized
distance T for y = 1. The normalized intensity functions are presented
in Figures (5-9c), (5-9d), (5-9e) and (5-9f) for other values of the
parameter y. As shown in the figures, PI(Z’R) is essentially equal to
lfl’l(z,gﬂz for BAz > 2,0, which checks with Eq. (5-174), The corre-

lation scale B s shovn in Figure (5-9) is
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Figure Captions

2
Figure (5-9a). This figure shows the scintillation index m Vs the

propagating distance T = BAz under joint-normal assumption for wvarious
values of the diffraction parameter y. Curve (1) is the theoretical
2 -21, 2
curve for y = ®, where m, = (1- e Y . For y =5 and 10, the
2 .
computed index m is essentially on curve (l1). Curves (2), (3), and
(4) are the computed curves for y =1, 0.5 and 0.1, respectively. Curve
2 -2
(5) is the theoretical curve for y = 0, where m = (1- e n). Note

that for M= 2, mz2 Sa 7

Figure (5-9b). This figure shows the computed normalized intensity
(M) ‘
I

correlation function P (p) vs the normalized transverse coordinate

£ p/pc under joint-normal assumption for various values of distance

Ll

scale of PI(N)(p) is nearly constant for BAZ < 1 and decreases as (BAz)

BAZ. The diffraction parameter vy is set equal to 1. The correlation

increases for BAz > 1.

Figures (5-9c,d,e, & £). The computed PI(N)(D)'S are shown in these

figures under the joint-normal assumption for various values of (BAZ) and
Y. We note that for M = BAz = 2, the computed curves for PI(N)(p) are

essentially the same as the theoretical curve PJ(p) = exp{ —Zﬂ[l-H(p)]} s
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2
Po g = a , for BAz <1 (5-175a)
and
2 1
= bl o N
Pe.s. a, 2,2 , for Bz =1 . (5-175b)

Under the joint-normal assumption, the scintillations are stxong
ﬁmzz = 1) for BAz > 1, which is different from the result of last
section for y > 1. Clearly the criterion here for strong scintillation
under the joint-normal assumption is not correct. In particular, in

the limit y = ®, the diffraction term is zero and there is no amplitude

2/3

fluctuation. Thus for y > 1, and 1 < ﬁAz <y for Gaussian spectrum
(or 1 < gAz < 75/11 for Kolmogorov spectrum), the probability distribution

of the random wave cannot be joint-normal. In subsection §(3), we have
showed that for BAz < 1, the probability distribution is log-normal, so
that for BAZ < 1, the distribution is not joint-normal either. In next
subsection we will show that the log-normal assumption is valid in the
strong scintillation region in predicting the spatial intensity corre-

lation function.

§(5). Validity of Joint-normal Assumption

In order to prove the validity of a certain kind of proBability
distribution, one must check the result of the distribution with every
moment of the random wave, which is an impractical work. Instead, we

will check the joint-normal assumption only with the 4-th moment IA.

From Eq. (5-96), we have for the 4-th moment TA,
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3
Fgﬁ+ L P T, (Me,p) =0 (5-176)
and <2
LB = 3 VoV £(Q, ) (5-177)
where
T, (Ma,p) = (u(ﬂ,g,o)u*(m%@)u(ﬂ,%wg)u*(n,go+§)) (5-178)
and # ~ A ~
£(,B) = 2 - 2H(Q)-2H(B)+H (B)+H(2-B) . (5-179)

Under the joint-normal assumption, it is easy to show that 4-th moment

L

4 is given by

L@ = Ty STy (pHT, ((@PIT, o (-p)- 25"

= r4(J)(n,g,E) ‘ (5-180)

where Fl 17 Tz 0 and T are given by Eqs. (5-130), (5-131), and (5-180).
2 b

We call T4(J)

It is easy to show that

(M,Q, B) the 4-th moment under joint-normal assumption.

=+ L@p1 T, P Map = Emep (5-181)

where

E(M,o,B) = E,+E +E _+E

ATERTESE, (5-182a)

Ey = - [ZH(E)~H(g+E)-§(g-E)]-exp {-zn[l-ﬁ(g)]}, (5-182b)
By = - rzﬁ(g)-ﬁ@g)-{i(g-g)]-exp{-zntl-ﬁ(g)]}, (5-182c)
B = - 2MHQ@QHH(B] T, (@) T, " (@B, (5-182d)
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b E, = 2[2H(Q)+2H(B) - H(o#) - H(a-B)] . (5-182e)

-21 =21

Since ﬁA = e and le 01 <e , the last two terms in the right-
44

hand side of Eq. (5-182a), EC and ED’ can be neglected for large 1.

Consider the E, in Eq. (5-182b). We see that EA is of order of e '2'”,

~

which is small for large 7, except for ]g] << 1, since [1-H(g)] in the
exponential of Eq. (5-182b) is of order of 1 except near \gl = 0. For
|a] << 1, it is easy to demonstrate that \EA(TLQ,E)l has its maximum

value at E = 0, Thus

for |a| <1, |E,(Ngp| < |E (M, 0)]

~ - -1
= 2[1-H(®)] e 'znfl'ﬂ(g)]S(in—)

(5-183)

Similarly, E_ can be shown to be of the order of, or less than
-1

(ET) . Thus

B

|E(M,0,8)| <0 (%) (5-184)
)

and for M > 1, TA satisfies the differential equation for ]T“LL in
Eq. (5-176). Furthermore, we have from Eq. (5-105) for strong scintil-
lation

2 2 4
F4(n9g}E) = Fl,l ('n,g) + Tl,l (T];E) - u

~1y P + 1 P (5-185)

The criterion for strong scintillation is given by Eq. (5-113) and Eq.

(5-114). For T >> 1, we have from LEq. (5-180)

r, P aep =1t + 1y LD G-1mE)
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by noting that lrz 0| < e _ﬂ. Comparing Eqs. (5-185) and (5-186),
2

J)

we find that F& , the 4-th moment under the joint-normal assumption,

is the same as the true 4-th moment rh for strong scintillation. Thus

the joint-normal assumption is valid in strong scintillation region in

predicting spatial intensity correlation function.

Finally we draw the following conclusions from the above dis-

cussion

(i) For ﬁAz < 1, the probability distribution is log-normal.

(ii) For strong scintillation, the distribution is joint-normal
as far as the intensity correlation function is concerned. The criterion
for strong scintillation is given by Egs. (5-113) and (5-114).

(iii) For y>1 and 1 < QAZ < 75/11 for Kolmogorov spectrum

213 for Gaussian spectrum), the distribution is not log-

< B,z <
(or 1 < B, ¥
normal, nor is joint-normal.

(iv) It can be shown that for large T, the joint-normal

distribution goes to Rice-distribution. Since {u) is real, let

u= (u) +u +iu (5-187)

where u, and u  are real. Under joint-normal assumption, u, and u_ are

joint-normal with zero mean. From Eq. (5-187) we have

Fl’l(z,géo) (u u*) = (u)27+ (ucz) + (usz) (5-188a)

and

Bh® <uc2> - <u52> + 21 (wpu)) .

T,002:270) |
(5-188b)
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|
we note (u) = e 2, ITZ,O‘ <e -1 and Ti,l(z,g=0) =1l. For Mm>1,

we then have from Eq. (5-188) that
2 2 1
(uc b (uS ) > »and (ucus) 0. (5-189)

Thus for strong scintillation, u, and u are two independent Gaussian
variable with same variance. Therefore the random wave u has a Rice-

distribution (Rice 1954).

|
Furthermore, since for strong scintillation (u) = e 2 1,
and from Eq. (5-189), (ucz) = (usz) = %, Rice distribution reduces to

Rayleigh distribution where we have for the probability distribution
P(I),

. 1/41) /<

P(I) = 1) (5-190)

where (I) is the mean intensity and (I) = 1 for normalized incoming
wave.

The above discussions are for waves propagating in a thick
medium. Similarly, for the thin screen case (see Chapter 3), one can
also show that the joint-normal assumption is valid in predicting the
spatial intensity correlation function and the probability distribution
for intensity I is given by Eq. (5-190) in the strong scintillation

region.
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VII. Intensity Correlation Function with Different Frequencies

§(1). Introduction

In interstellar scintillations, the intensity correlation function
with different frequencies has been measured (Scott & Collins 1968,
Komesaroff et al. 1971, Rickett 1969, Lang 1971, Sutton 1971.) 1In partic-

-

ular, the decorrelation frequency fI = (E;) of the intensity correlation
function can be determined. The decorrelation frequency fI is defined as
the frequency difference of two observing frequency-channels, beyond which
the intensities measured at these two channels are nearly uncorrelated.
Many authors (Salpeter 1969, Lang 1971, Cronyn 1970a ,Sutton 1970) have

tried to relate the decorrelation frequency f£_ to the characteristic time

I
tc of pulse broadening and they found 2nf;t.=1 under geometrical optics.
But as pointed out in Chapter 2, the region of validity of the geometrical

optics is limited. 1In Section IV of this chapter, we found that it is the

w ck
decorrelation frequency Eﬁ (= 7;?) of the second moment Fl 1 that relates
2

directly to the characteristic pulse broadening time tc and that aktc=* 1
It is the purpose of this section to find the intensity correlation

function and the decorrelation frequency fI'

§(2). Intensity Correlation Function in the Strong Scintillation Region
The intensity correlation function can be obtained by solving
Eq. (4-44) of the general 4-th moment Fz 2° However, it is a formidable
2

job to solve the complicated equation of T In Section VI of this

252"
chapter, we pointed out that the joint-normal distribution of the random
wave is valid for strong scintillation in predicting the spatial intensity
correlation function, which leads us to believe the probability distribu-

tion of the random wave is joint-normal. Therefore we will find in this
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section the intensity correlation function with different frequencies

under the joint-normal assumption.

For simplicity, we will assume in the initial plane
u(z=0,p,k) = 1 for all k and p. It follows from Eqs. (5-129b) and (5-133)
that the intensity correlation function measured at (Z,Ql) between two

wavenumbers kl and kz

2 2
Po(z,ky k) = \F1,1(z’k1’R1’k2’Rz‘R1)l "'|F2,0(z’k1’9:1”“2:9«2'9»1)l
A (0)z
e
2 27 D
. 8.5 1 3 . (5-191)

The function Tl 1 in Eq. (5-191) has been solved and discussed in

b J
Section IV. The last term in the right-hand side of Eq. (5-191) is
small and can be neglected for strong scintillation. We now consider

I From the complete set of moment equations in Eq. (37), we have

2,0°

in particular for T2 0’
2

2 2
v v
2 _ , e,
3z U2,0(@5k0R 3kpRy) = EEkl * kzjrz,o
B A A 0 .
AN I Ik, 2,0

(5-192)
Since the initial condition is homogeneous and the random medium
is also statistically homogeneous in the transverse plane, Fz 0 depends
2
2 2 2
on = - only. Therefore v, = v, = V_ where = - and
lel \Ql Rzl v 3 2 o R = R1Ra

Eq. (5-192) can be written as
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o oy = £ 1L 4
%= 2,00k kpiR) = g [ Y ]‘73 75,0
Ag (0) A_(0) A_(p)
_ 1 B B
3 -2 e g Bien ] a0 (5-192")
ky By e

Again, for small difference between kl and k2, we set as in Eq. (5-50)

of Sectiomn IV,

Ak Ne
kl =k + > s k2 =k - 5 s (5-193)
from which we obtain to the order of (%?)2,
. 2 I A_(0)
d i pk 2 2,0 3Ak B
= Ty alaik, sk,sp) = = [1k 18 T i S {[H ]
3z ~2,0 1772°% k 41(2 o 2,0 2 4k2 k2
A (o) 2
+ B g £ } . (5-194)
k 4k
Suppose that \ 1 << 1, which is always true in interstellar scintil-
lation. Then we have for Fz 0
2
2 o wlzik, okiosp) =5 ¥ I‘ . (0) + A (p)]T (5-195)
¥z *2.,0 1’72°% p "2,0 2k2 B B ~"-"2,0 ’

which shows that Tz O(Z;kl,kz;g) is about the same as the function
2

0(z,k,p) in Eq. (5-132), where the wave numbers are equal. From the
~ A (0)z
- gy

discussions in Section VI, we know |F2 O(Z,R)‘ <e 22 << 1
2
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for strong scintillations. Therefore we have for strong scintillation

ot 2
P (z,k k) lfl’l(z,g = 0, ky,k)) | (5-196)
. . o 1
where Tl’l(z,g,kl,kz) is given by Eq. (5-49').

It follows from Eqs. (5-56) and (5-53) that

P (z,k, Mk) = Pr(z,k;,k;) = Pop(2sk, Ak) x PID(z,k,Ak) (5-197)

2
where PIR(Z;k)Ak) - \FR(Z5,Q = O)Ak)‘z = exp { -~ -SI-I:Z AB(O)Z} k)
(5-198a)
and 2
Prp(2,k, 8k) = |Tp(z,=0,8) | . (5-198b)

PIR is the intensity correlation function where only 'pure refraction"

exists and PID is caused by the diffraction of the wave by the random

medium, The total intensity correlation P_ is simply the multiplication

T
of these two functions PIR and PID' PIR has a decorrelation frequency
“Ir 1
= VP @ (0)2)? (5-199)
“rr B .

The numerical solution of FD has been given in Section IV. From the re-
sults of Tb, we can easily compute PID' Figure (5-10) shows the numerical

result of P s k,Ak) for the medium with Kolmogorov spectrum. We note

(2

that the decorrelation frequency f__ = wID/Zn of PI is the same as that

iD D

of FD and is given from Eq; (5-66) by

-2/ k2(\)—}2) /v(zlz)—(v+2)/v

&iD = Akc.c = CBo

(5-200)
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Figure (5-10)

The frequency decorrelation function PID(AQD is
plotted as a function of frequency difference Aw for a
Kolmogorov spectrum. a&D is the decorrelation frequency

1
given by Eq. (5-200), Note that the abscissa is (Aﬂju&D)z
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where Bo is given by Egs. (B-3') and (B-18), and vy = 2 and 5/3 for the

Gaussian and the Kolmogorov spectra respectively. We also note that
- << d o ~ >> .
@p % O for Wy, <S @y and @p 3 @, for wp, 3> @,

Thus for strong scintillation, the decorrelation frequency
(ak/ZK) of intensity correlation function is the same as the decorre-
lation frequency of the second moment f1,1’ which is directly related
to the characteristic pulse broadening time tc' The relation between

wI(or fI) and tc can be written as

w t =1 (5-201)
or
2 £t = 1 ; (5-202)

The above discussions are for waves propagating in a thick medium.
Similarly one can show that Eq. (5-202) also holds for the decorrelation
frequency fI of intensity and the width tc of pulse-broadening in the

thin screen case (see Chapter 3).
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Chapter 6

Selected Applications to the Problem of Interplanetary Scintillations

1. Introduction

Interplanetary scintillations of radio waves provide an inexpensive
and sensitive probe which can determine many of the properties of the
solar wind. Since the discovery of these effects a decade or so ago
there have been a large number of papers concerning observations and
interpretation in terms of solar-wind fluctuations. (Clarke 1964,
Hewish et al. 1964, Cohen et al. 1967, Dennison & Hewish 1967,Salpeter
1967, Hollweg 1968, Cronynl970b, Hollweg 1970, Jokipii 1970, Jokipii &
Hollweg 1970, Ekers & Little 1971, Little & Ekers 1971, Lovelace et al.
1970, Young 1971, Armstrong & Coles 1972, Jokipii & Lee 1972, 1973.) The
scintillations are the manifestation of the diffraction and refraction of

radio waves by electron-density fluctuations in the interplanetary plasma.

Observations of interplanetary scintillations are one of two kinds,
they either refer to the correlation of the fluctuations -in intensity at
one point as a function of time, or they refer to observations at more than
one point and measure the correlation as a function of position and time.
As the plasma turbulence is convected outward from the sun, a stationary
observer on the earth will see temporal fluctuations of the radio waves
and will be able to calculate the correlation of the fluctuations in
intensity as function of time. The frequency power spectrum of intensity
fluctuations can then be obtained from the Fourier transform of the

correlation function in time. For two-station observations, one defines
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the "pattern velocity" of the solar wind as the distance between the two
stations divided by the correlation time at which the cross-correlation
function between the two stations gains its maximum value. (Jokipii & Lee,
1973.) (See Figures (6-1) and (6-2).) The measured "pattern velocity"

is, in general, different from the true mean wind velocity. Thus in
probing the solar-wind velocity by two-station (or multi-station) ob-
servations, one has to determine the relation between the '"pattern

velocity'" and the true wind velocity.

The fluctuations in the solar-wind velocity affect the shape of the
frequency pbwar spectrum of intensity fluctuations and the ratio between
"pattern velocity" and the wind velocity because in the existence of the
velocity fluctuations, different parts of the plasma turbulence is convected
past at different velocity and the fluctuations of velocity can destroy the
fluctuation pattern of the plasma turbulence. It is the purpose of this
chapter to study the effects of velocity fluctuations on the frequency
power spectrum and on the ratio between pattern velocity and true wind
velocity in three-dimensional model of interplanetary scinfillations

(Young 1971; Rytov 1971; Jokipii & Lee, 1972, 1973).

The effects of velocity fluctuations on the frequency power spectrum
and on the ratio between pattern velocity and mean wind velocity has been
estimated under "thin screen" model, in which the scattering medium is
replaced by a '"phase-changing screen' at some "mean'" distance z from the
observer (Little & Ekers 1971, Ekers & Little 1971, Armstrong & Coles
1972). Although the thin screen model provides a first-order estimate of

the effects of velocity fluctuations, it is not realistic in interplane-
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Figure Captions

Figure (6-1). Schematic representation of the parameters used in the

calculations. The y-axis is chosen normal to the ray path in the plane
formed by the source, sun and observer. 1L is the distance along the ray
path from the point of closest approach to the sun to the observer. A
and B are two observing points that determine the cross-correlation

Ck(x=0,y,z=L;T). 6 is the elongation angle.

Ficure (6-2). Schematic representation of observations at two points

*
A and B and the cross correlation. The parameter y/T is related to the

wind speed, as discussed in the text.
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tary scintillations for the following reasons.

(a) In the case of weak scattering, let Mzz(g) be the power spectrum
of intensity fluctuation contributed by a thin layer of plasma turbulence
at a distance z from the observer, and let ©02P§(35Q) be the two-dimensional
Fourier transform of the phase fluctuation caused by the thin layer of

plasma turbulence. Then one can show that
2 2 gzz 2
Mz (g) =4 sin " ( 2k) @0 P@(z;g) (6-1)

(c.f., Eq. (3-14)) and that the total power spectrum Mrz(g) of the intensity
fluctuation is the sum of the power spectrum contributed by each layer
(Salpeter 1967, Young 1971, Jokipii & Lee 1972, 1973). Since there is
only one thin screen in '"'thin screen' model, the total power spectrum
would be the same as given by Eq. (6-1) with z replaced by the mean
distance z. But in interplanetary scintillation, each layer of the
turbulence has a different z and, therefore, a different modulation factor
sin Z(H;E) for the power spectrum Mzz(g). The spread of z gives us the
total power spectrum Mrz(g) different from that predicted by the thin
screen model. Furthermore, the determination of the mean distance z is
complicated by the modulation factor sin Z(QE§).

(b) Since the solar wind flows radially outward from the sun, each
layer of turbulence perpendicular to the line of sight has different drift
velocity over the observer. This structure of the solar wind will reduce
the ratio between the pattern velocity and the wind velocity. Jokipii &

Lee (1972, 1973) have calculated the ratio in the absence of velocity

fluctuations when the radio source is at a position with small solar
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elongation angle (see Fig. (6-1)). 1In this chapter, we will also cal-
culate the ratio at large elongation angle. Thin screen model is not
able to calculate this effect.

(c) Little & Ekers (1971) found that the velocity fluctuations
have the effect of smearing the frequency power spectrum of intensity
fluctuations. In three-dimensional model, different drift velocity of the
turbulence layer has the same effect of smearing the frequency power
spectrum as do the velocity fluctuations. Thus if one uses '"thin screen"

model to predict the velocity fluctuations, then one tends to overestimate

the magnitude of velocity fluctuations.

It is the purpose of this chapter to study the effects of wind-
velocity fluctuations on the shape of intensity power spectrum and on the
ratio between the '"pattern'" and the true wind-velocity in the three-

dimensional model of interplanetary scintillation.
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II. Formulation

In this section, we will generalize the three-dimensional model
of interplanetary scintillation to take the velocity fluctuations into
account. The three-dimensional model has been presented by Young (1971),
Rytov (1971), and Jokipii & Lee (1972, 1973). The model is based on the
method of smooth perburbations (MSP) (see Chapter 2, Section III) presented
by Tatarskii (1961). For completeness, we will repeat the derivations
of Tatarskii (1961) and Jokipii & Lee (1972, 1973), and then generalize
the formulation to include the effects of velocity fluctuations.

From Eqs. (3-38), (3-39a) and (3-39b) of Chapter 2, we have

u=e ? = A eiS (6-2)
3(x) Be  3* 2
Bl — +S+ Sl + ke =0 (6-3)
&% dy

and {X log A = Re @ (6-4a)
S

Following Tatarskii (1961), we define d¥(z,q), dv(z,q), da(z,q) and

Im P . (6-4b)

ds(z,g) as the two-dimensional Fourier components of @(E), ek(E)’ X(E)

and S(r), respectively. We have



193

o) =ffei&'p“ av(z,9)

‘() = szeim dv, (2,9)

w@ = ffe ¥ an g
ani s = ff e ¥ as 0

(6-5a)

(6-5b)

(6-5¢)

(6-5d)

where p = (x,y) and q = (ql,qz). Take the Fourier transform (two-dimen-

sional) of Eq. (6-3) and get

2
o ig " -
v dY(z,g) + e dY(Z,g) 1kdvk(z,g) =0

If the perturbations are zero at z = Z s then Eq. (6-6) gives us

z v 2 7

- iq (z-z
d¥(z,q) = ik f e 2 d\:k(z',g) dz'

z
o

From Eqs. (6-4a), (6-4b) and (6-7), we can easily get

4

2 .
dak(z,g) = Ie ./F dz' sin [ﬂ_éﬁlé_l] dv(z',q)

zZ
o]

A

2 1
dsk(z,gu) = k f dz' cos [9__%2{_'.5_1] dv(z',q)

A
o

and

2 2 2
where q = q + 4, -

(6-6)

(6-7)

(6-8)

(6~9)
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Typically, one is interested in Fk(z’i)’ the two-dimensional
power spectrum of the fluctuations in % in the plane z = constant. By
the Wiener-Khinchine theorem, this may be obtained by considering
Eq. (6-8) and the product <dakd§k>' We generalize this result to the case
where the statistical properties of the medium vary with position, so that
we may apply the results to the solar wind. Such a generalization is
particularly simple if, as in the solar wind, the scale of variation of
the means is large compared with the correlation scale. This can be shown
to be true in the solar wind. If this condition of gradual variation is
satisfied, one may define a local spectrum dvk(z,g) precisely as above
since the random function is approximately stationary or homogeneous.

In this case, we may define a power spectrum as a function of position

£, Pk(z,ql,qz,qB) where

-ig-R
1 3
B {xyhy+0599:) S (e, (X)e (+R)) e dR™ . (6-10)
R R 4(2103.[[[ R ~

Then one can readily obtain the following result from Eq. (6-8) assuming
|z~zol is much greater than the correlation scale of Sk(E)’
z
2
- 2 ' gin® |9Xz=2') . »
Fk(z,ql,qz) =21 k ./. dz' sin [ o Pk(z ,ql,qz,q3—0)

@ (6-11)

where Py is to be evaluated along the line of sight, which is in the z

direction.
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A similar result may be obtained for the spectrum of fluctuations

in phase,

2
2 2 z-z'
G (2,9,,9,) = 2sk dz' cos [ % ]Pk(z',ql,qz,q3=o) . (6-12)

One can measure the spatial power spectrum given by Eq. (6-11) by
simultaneously recording the intensity of radio wave at a large number of
stations. But this kind of observation is not practical. As mentioned
above, observations of interplanetary scintillations are either to measure
the correlation of fluctuations in intensity at one point as a function
of time, or to measure at two (or more) stations the correlation as a
function of position and time. For this reason, it is useful to compute
the two-point, two-time correlation of the intensity. This may be done as
follows. Let Yw be the plasma velocity and assume the wind velocity is
much larger than any wave velocities, so we may treat the density fluctu-
ations as being frozen into the solar wind. Then we have the frozen-in

condition as
ek(:‘EJ t) = ek(ﬁ-YWT’ t-l-'T) (6']—3)

which is true over distances small compared with the mean density variations.
There is one more requirement for Eq. (6-13) to be true, namely, within the
region with radius IEWT" the velocity Ew must be nearly constant. This
condition cannot be satisfied if the fluctuations of velocity exist within
the scale size we are interested in. However, one can divide the plasma

turbulence into many classes. In each class, the plasma has the same wind
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velocity. Then Eq. (6-13) is still correct for each class of plasma
turbulence with same velocity. Since MSP is a linear approximation,

the total power spectrum can be written as the sum of the power spectrum
contributed by each class of plasma turbulence with same velocity provided

there is no correlation between different classes. In the following

approach, we will assume the density fluctuations and turbulent velocity

L
fluctuations are uncorrelated.

For each class, we have

®,V (r,t) = ek,v (EPYWT,t+T) (6-14)
~w AT

where the subscript yw denotes the class of turbulence convected at
velocity Yw' This can be shown to imply for the instantaneous spatial

Fourier transform of € (r,t)
JYW ~7

dvk’zw(g,b+T) = exp (-igszT) dvk,zw(g,t) . (6-15)

Of interest is dvk v (z,ql,qz,t), which is the two-dimensional transform
2
~

of ¢

K , as a function of z and t. Manipulation of Eq. (6-15) yields
2

Vv
r\.w
dvk,yw(z’ql’qZ’t+T) = exp (-iqZVZT_iq1V2T)dvk,EW(Z—VST’ql’qZ’t) (6-16)

where Ew = (Vl’VZ’VB)'

This is a reasonable assumption since in the solar wind the density
scales that are important in producing scintillations (£ ~ 100-200 km)
are small compared with the scales that contribute to fluctuations in V .

~W
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From Eq. (6-11), we may write the time-dependent amplitude

contributed from the class of velocity !w
z
2
d (z,q t) = k dz' sin z-z' dy
g% Bk 2k k,

Y
Z
o

. (6=17)
Using Eqs. (6-16) and (6-17), one may write

%*
(dak % (z,ql,qz,t+T) dak v (z,ql',qz',t)>
2 A D

z Z
2 2
=% f [.L(ﬂlzg_(z_-z_)_ :
=k “l: dz : dz" sin e sin o + exp (-1q1V1T-iq2V2T)

o o

{ * n 1 1 =
X (dvk’yﬁ(z V3T;quq2)t) dvk’yw (z ’ql ’qZ ;t)> ( 6-18)

Next make the following arguments:
(i) Following the argument of Tatarskii (1961, p.135), we see that
. 1 % " 2 = 1‘_ 1
since (dvk,yw(z ’ql’q2)dvk,2w(z »41,9,)) is important only for qlz'-z"| <1,
we may replace z'" by z'-VBZ in the sine function provided qc/k << 1 which
is true in interplanetary trubulence. q. is the characteristic scale of

Pk(s’%)'

*
(i1) “/P @y y @'54y,95,8) dyy ¢ ("9, "59,",8)) dz"
2 Xy 2 Xaa

s 2 ] = L ] L}
= 27 Py (z',4,,9,,95=0) & (q;-9;')8(q,-q,")dq,dq,dq, "dq, .
~w
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(1i1) (da_ o (2,9;.9,,t+7) da_ o (z,9;',9,",t))
"‘W an

- . . 1 1
= Ck’gw(ql,qz,z,w) 8(q,-a;")8(q,-q,")dq; dq, dq,' dq,

These allow us to write immediately

7 2 q*(z-2"-V,7)
- 2 atn [0 ] | 2|
Ck,V (ql’qz,z,T) = 27k J/ﬁ dz' sin T sin o
Y z
o
exp (—iqlvlT-iqiva) Pk,V (z',ql,qz,q3=0) (6-19)
~

2
Since we are interested in cases where (qC V3T/k) << 1 we can drop

(VST) in the sine factor of the integral in Eq. (6-19). Thus we have
P 2
N 2 . [g (z-z") ; ;
Ck’YW (ql,qz,z,T) = 2nk .J/ﬂ dz' sin o exp (-1q1V1T-1q2V27)

X Pk,V (Z'Jql;q2:q3=0) (6-20)
l\w

The total power Ck(ql’qZ’z’T) is the integration of Ck,gw(ql’qZ’z’T) over

all velocity space if we treat P as the power density in velocity space

K,V
K

(see footnote 1). Since velocity fluctuations and density fluctuations

are independent, we may write

Pk,V (Z';ql-QZ)Q3=O) = fzi(Yw) Pk(zl;ql:QZ:Q3=0) (6-21)
&
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And the total power spectrum Ck(ql,qz,z,'r)

z

- 2
_ 2 B i i [g gz—z'g] . .
Ck(ql,qz,z,T) = 2rtk ,/P dz' sin T (exp(—1q1V1¢—1q2V21))z,
z
o
x P (2',9,9,,95=0) (6-22)
where
(exp(-lqlvlT-lqzva);' = dlﬂfz,(yw) exp(—lqlvlT—iqzva) dyw .
(6-23)
Since exp(—iqlvlT—iqZVZT) is independent of V3, we can carry out the
interpretation over V3, and write
(exp(-iqlvlT-quVZT)> . = (exp(—lqlvlT-iqzva))
z,V z,Vl,Vz
==d/:/ﬂFZ(V1,V2) exp(-lqlvlT-quVZT) dVldV2 (6-24)
where _
F,(V,,V,) = ffz(gw) av,
Thus
Y 2
2 . 21q7(z-2" . 7
Ck(ql’qZ’Z’T) = 2k J/” dz' sin 2; = )] (exp(—lqlvlT-quVZT)i'V
z il

o

X Pk(zliqlﬁqz’qg’:()) . (6-25)

2

Vs
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Here Ck(ql,qz,z,w) may be interpretated as the contribution to the cross-
correlation of fluctuations in intensity at z from wavenumbers q4 and q,
at time-lag 7. Thus, the actual cross correlation for two points in the

(%x,v) plane separated by x and y at lag T is given by

[--] =]
1 ; g
C, (x,¥,2,7) 2qu1f dq, expli(q x+q,y)] C, (z,9;,9,,T
b S i
(6-26)
This is the desired result.
Consider some limiting cases. In the absence of the velocity

fluctuations, Egs. (6-25) and (6-26) reduce to that obtained by Jokipii

& Lee (1972, 1973). 1In the thin screen case, we replace the integral

over z' by some function G(ql,qz) and Eq. (6-25) becomes
Ck(ql)qzyz,o'r) = G(ql,QQ)<eXP(‘iqlV1T'1q2V2'T) >V1,V2' (6-27)

Eq. (6-27) is just the equation used by Little & FEkers (1971).
Regarding to the wvalidity of the MSP approximation, we will quote

from Tatarskii (1961,1971l) that MSP is valid if |vS| <<k, <& 1,

1
z-z << 4 4/h3 and <X?> < |, where ¢ is the smallest scale of the
fluctuations. For weak scattering where the scintillation index

mz2 ~ (xz} << |, these conditions are well satisfied in the solar wind

for &~ 102 en © and 2z << 10%2 o,



201

IITI. Effects on the Ratio between Pattern Velocity and Mean Wind Velocity

From Eqs. (6-25) énd (6-26) obtained in the last section, we can
calculate the ratio between pattern velocity and mean wind velocity pro-
vided the velocity distribution function F(Vl,VZ) and the electron density
power spectrum Pk(z',ql,qz,q3) are known. Eqs. (6-25) and (6-26) are
quite general. Consider now a spherically symmetric solar wind and the
specific geometry illustrated in Figure (6-1). Let the mean velocity
of the solar wind g& be radial and constant and assume that the density

spectrum is separable in the form
Pk(z';quq21q3=0) =g(z') h (q15q23q3=0) . (6-28)

We note that in Figure (6-1), the mean drift velocity perpendicular to
the line of sight is in the y-direction and the mean velocity in the
x-direction Vl is zero.

For demonstration, we assume that the velocity distribution

Fz(vl’VZ) is Gaussian with mean velocity Vi,?z and variances Uf and cg.

Referring to Figure (6-1), we express z' in terms of p, the distance

from the Sun. Clearly, V.=0 and Vz(z') = v;polp, where Py is the distance

1

2 2 <
of closest approach. Note that Ty and o4 are in general functions of the

position z'. Then we have

- T2 2 2 B 2
. = ' P i 1 1
-1(q,V,4q V)T iqV,(z")T -5 [a,70,7 (2")+q; 0y " (2")]
(e > = e e
%V, ¥V
e (6-29)
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p

s g(z') = g(p) = AO(??)n . (6-30)

From Eqs. (6-25), (6-26), (6-28), (6-29) and (6-30), one obtains

L o« )
k2
Ck(O,y,L,T) = (EE) Ao dz' dq1 dq2 h(ql,qz,q3=0)
- ) el -

2
. _'_ ' _I 2 2 1 2 2
. [g2£L_zr2] Bl iq,[y-V,(z )T]e > [4,70,7(2")+q; "0, “(2")]
2k f6)

(6-31)

The observation of Ck(O,y,L,T) is illustrated schematically in
Figures (6-2). We are interested in the time-lag T* for which the cross
correlation is a maximum, for a given separation of stations y. One de-
fines the pattern velocity Vp = y/T*. The computation of Vp from Eq.
(6-31) using a computer is quite straightforward. One calculates C, for

k

different T and finds T for which C

| 8ets maximum value. Then Vp =y/7,.

For simplicity we put ol=0. The ratio y = V@/VP depends in general omn
oz(z), the separation y, the solar elongation angle 0, the index n, and

the power spectrum h (g). Assume Kolmogorov spectrum for h(q),

-11/3
gt /

h(q) = B (6-32)
and assume 5
1y .. o\m ”
o,(z") Gzok;D) 3 (6-33)
Define also =
M= oy /V, - (6-34)



203

The computer results are shown in Figures (6-3a,b,c,d,e,f).
Computer calculations also show that y is insensitive to the separation
yv. In Figure (6-3) we put y = 75 km and m = 1. For m = 1, (02/62) is

constant for all p(or z). The figures show the ratio Yy as a function of

920

v
w

From the results, we can see the following features.

elongation angle O, the index n and the parameter T =

(1) For small elongation angle 6, and T = 0, the ratio vy is about
the same as given by Jokipii & Lee (1973) under analytic approximation.

(2) For elongation angle O near 90° or greater than 900, the
ratio Yy increases rapidly as the angle © increases. In this region, thin
screen model works very poorly,

(3) The larger the random velocity, the smaller the ratio Y.



204

Figure Captions

Figure (6-3a). The ratio y between the mean wind velocity V% and the
pattern velocity Vp is plotted as a function of the elongation angle ©
for various value of the index n (N is used in the figure). 1In this

figure, the velocity fluctuation is assumed to be zero (T=0).

Figure (6-3b). The figure shows the ratio y vs sin 6 (6 is the elonga-

tion angle ) for various value of the velocity-fluctuation parameter

T when the index n = 3. Note that the parameter T = 020/6%.

Figure (6-3c). As in Figure (6-3b) when n = 4.
Figure (6-3d). As in Figure (6-3b) when n = 5.
Figure (6-3e). As in Figure (6-3b) when n = 6.

Figure (6-3f). The ratio y is plotted as a function of the parameter T

at sin 8 = 0.5 for various values of the index n.
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IV. Effects on the Frequency Power Spectrum

The frequency power spectrum observed at one station can be ob-

tained from Eq. (6-31) by taking the Fourier transform in time,

o«
Ck(0,0,L,w) = _21:}- '[e i'(MCk(x=0,Y=0,L,'1') dr

-0

o
T 20’ ,[ dedzfd‘h [dqz g(z')h(q,,9,,95=0)sin [9_(14;_1]
T

2
= 2 2
1a,)[y-T,(z")7] - 5 [q,70, (2" >q, "0, (2] . (6-35)
e

Carrying out the integration in T, one obtains

L @
2
00,10 = % fdz qu1quz §(2")h(q;,0,,8,-0)s1n [-Uk——lw

- 2
(w-q,V (z'))
n i 3

e |20y 0p a4y oy . { 6-35)

\P?{ +q1 012

Eq. (6-36) gives the frequency power spectrum observed at one station with
the effect of velocity fluctuations considered. Although the integration

is complicated, the calculation is very straightforward. We will not do
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the integration here. Instead we will consider an example to demonstrate
the effect of velocity turbulence on the frequency power spectrum of wave

intensity.

Young (1971) has carried out the numerical computation of the
frequency power spectrum Ck(0,0,L,dD when the velocity fluctuations do

not exist. In the case 01509 = 0, Eq. (6-36) becomes

L @ )
0 i pyai kil (Lez)
C (0,0,L,w) = dz' Jdq, fdq,g(z')h(q,59,,9,=0)sin[ ]
k (zﬁ)z i} 2 1°92°93 2k
-0 -0 -0

Barq,V,(2")) . (6-37)

For large solar elongation angle, the C (0)(0,0,L,a9 in Eq. (6-37) fits

k
the observation data quite well for radial solar velocity of 300-350 km/sec.
However, for small elongation angles (6 =~ 50), Young found that there

exists a commonly observed discrepancy between computed and observed spectra:
the observed spectra are stronger than the computed at high and low fre-
quencies, and weaker in the region of the knee as shown in Figure (6-4). 1In
Figure (6-4), there is no way to fit the data by varying the wind velocity.

The observed data in Figure (6-4) is published by Cohen & Gundermann (1969)

for 3c 279 at » = 11 cm.

The discrepancy between computed and observed spectra can be ex-
plained by the existence of velocity fluctuation. Let 01=0,=0 in Eq. (6-36).
We try to find the best fit by varying ¢ for a given mean wind velocity

Vw_using an approximate method, which is presented in Appendix (E). The



213

Figure Captions

Figure (6-4). Computed (solid) and observed (dashed) power spectra at

6 = 5.055, N =11 cm, and m, (scintillation index) = 0.20, for three

different values of V%. The computed curves are based on the assumption

that there is no velocity fluctuation. (From Young 1971.)

Figure (6-5). Theoretical (dashed and dotted) and observed (solid) power

spectrum at 6 = 5.055, A = 11 cm. The observed spectrum is the same as

that in Figure (6-4). Curve (2) is the theoretical curve for V

20 = Yy =

200 km/sec and T = 1.13, and curve (3) is for V = ?; = 300 km/sec and

20
M=0.7
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results for 3c 279 data (Cohen & Gundermann 1969) are shown in Figure
(6-5) with VW = 200 and 300 km/sec. For ﬁ; = 200 km/sec, the best fit

is at 010=920~ 210 km/sec and for 5% = 300 km/sec, 910720~ 226 km/sec.
The curves in Figure (6-5) show that the discrepancy as pointed out by
Young (1971) no longer exists. From Figure (6-5), we expect that at

§%= 230 km/sec and clo=020=,220 km/sec, the computed pewer spectrum would

fit the observed one more or less exactly.

Thus our result predicts that the velocity turbulence exists even
in the three-dimensional model of interplanetary scintillation. And we
find that the data presented by Cohen & Gundermann (1969) show that near
the Sun the wind velocity is about 230 km/sec and the velocity fluctuation

is near 220 km/sec.
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Chapter 7

Interstellar Scintillations
I. Introduction

Interstellar scintillations of the radio waves from pulsars
provide a probe of the characteristics of the turbulent plasmas in the
interstellar medium (Hewish et al. 1968, Pilkington et al. 1968, Lyne
& Rickett 1968, Scheuer 1968, Salpeter 1969, Rickett 1969, 1970, Lang
1969, 1971, Huguenin & Taylor 1969, Cronyn 1970, Ables et al. 1970,
Rankin et al. 1970, Ewing et al. 1970, Sutton 1971, Counselman & Rankin
1971, Downs & Reichley 1971, Higgins et al. 1971, Komesaroff et al.
1971, 1972, Komesaroff 1971, Williamson 1972, Shitov 1972, Rankin &
Counselman 1973, Little & Matheson 1973, Backer 1974, Mutel et al. 1974,
and Cohen & Cronyn 1974.) The observed phenomena include intensity
fluctuations, angular broadening, temporal pulse smearing and decorre-
lation frequency. The scintillations of the radio waves in the inter-
stellar medium are strong (m, = 1) and the correct theory must take the
multiple-scattering effect into account. The geometrical optics and
the single-scattering theorv are not valid for interstellar scintil-

lations.

In this chapter, we try to interpret the observed interstellar
scintillation data using the theories developed in Chapters 3,4 and
5, which are valid for strong scintillation. In Section II, we summarize
the results of the strong scintillation theory and compare them with the
observed data of interstellar scintillations. We also plot the values

of the correlation scale of intensity fluctuation, the characteristic
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time of pulse broadening and the condition for strong scintillation for
various values of the parameters in interstellar scintillations. 1In
Section III, we will analyze the data of three pulsars, namely, CP 0328,
PSR 0833-45 and NP 0532. We find that the Kolmogorov spectrum of the

turbulent medium fits the observed data.
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II. Strong Scintillation in the Interstellar Medium

In this section, we will summarize the results of the strong
scintillation theory developed in the previous chapters and compare them with
the observed data in interstellar scintillations when possible. First

we rewrite the parameters B and A_(0) in terms of the properties of the

B

propagating wave and the plasma medium. For a medium with a Gaussian

spectrum in Eq. (1-20), we have

B = 128¢" % % %q 2w 2y (7-14)
e (0] e
and
Bkaqoz
AB(O) e (7-1b)

where qo—1 = L is the correlation scale of the random medium. For the

power-law spectrum in Eq. (1-21),

7/2 -4 -3 2 il a 3
B = 128" “r_*c a, e Hr&rd - 9 (7-2a)
and
Bkaqoz
AB(O) = In(@-2) . (7-2b)

(For a Kolmogorov spectrum, O = %%.)

(A) Scintillation Index

For strong scintillations, the scintillation index is

m, == I (7-3)
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(See Eq. (3-67) and Chapter 5, Section V.) 1In interstellar scintil-
lations, it has been observed that the scintillation index is unity

for most pulsars (Rickett 1969, 1970, Downes & Reichley 1971).

(B) Probability Distribution of Intensity
For strong scintillations, the probability distribution
of the random wave is a Rayleigh-distribution (special case of a Rice-
distribution), and the probability distribution of intensity is expo-

nential,

P(T) = (—]1:5- Ty, (7-4)

(See Eq. (5-190).) Eq. (7-4) fits the data in interstellar scintil-
lations for most pulsars (Rickett 1969, 1970, Downes & Reichley 1971).
The exponential distribution in Eq. (7-4) is different from the log-
normal distribution for the weak scintillation (Tatarskii 1971, Young

1971).
(C) Phase Fluctuations

2
The mean square phase fluctuation @0 for waves scattered

by the random medium is approximately

2 _ _z_ J
5.~ = ol A4(0) (7-5)

where AB(O) is given by Eqs. (7-1) and (7-2) for the Gaussian and the

Kolmogorov spectra respectively. Eq. (7-5) can be used to estimate the
2

phase fluctuations in interstellar scintillations. Note that @0 1

is one of the conditions for strong scintillations.
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(D) Spatial Correlation Scale and Decorrelation Time of

Intensity Fluctuations

The spatial intensity correlation function, PI(Z,Q), for

strong scintillations is given by
P_(z,p) = exp { - 5 [A,(0)-A ()] (7-6)
I ”“' kz = B B ~ ®

(See Eq. (5-110) or Eq. (5-115).) The correlation scale Pe .o is gimply

that value of p for which

Z - - s
A CIORENOIEE I (7-7)

For our Gaussian spectrum in Eq. (1-20) this becomes

sz2 2 4

321 (pc.sqo ) =1 (7-8a)

<< éL-= L (equivalent to @02 >> 1), which is always true for
o
the strong scintillations. Eq. (7-8a) gives immediately

for Pe. g

1
sz2q04 2 % h % 2" %
Pe.s. = 32z ) = £ 1%z © (6N,) . (7-8Db)

The value of p in Eq. (7-8b) for various values of the parameters
c.s.

in interstellar scintillations is plotted in Figure (7-1la).

Proceeding similarly for the power law spectrum in Eq. (1-21),

we expand A_(p) as in Eq. (1-28) for £ <p < L, and obtain

B
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Figure Captions

Figure (7-la). The correlation scale B g ,‘of intensity fluctuation
plotted versus the coherent scale L for a Gaussian refractive index

spectrum. In all cases £ = 3 x 108Hz and z = 103pc. In curve (1)
8 -6 -6

, and in curve (3)
.5 -0. 2.-0,
0 5z 0 5(6Ne y 0 5‘

cm-ﬁ, in curve (2) (ﬁNez} =10 “em

10_4cm_6. The value of Bo g scales o« f L

2 -
(6Ne ¥ = 10

R

Figure (7-1b). As in Figure (7-1la) for a Kolmogorov power-law re-

fractive index spectrum with ¢ < péol <L . In curve (1) (SNez) =
8 6 -4

10~ cm_ﬁ, in curve (2) (6Ne2) =10 , and in curve (3) (SNez) = 10

In all cases, f = 3 x 108Hz and z = 103pc. The value of P o scales

1.2 _ 0.4
z

i
o £ L 0‘6(6Ne2>"0'6. Note that AN = (5Nez>? ;

Figure (7-1lc). The correlation scale e o of intensity fluctuation

plotted versus the mean square electron density fluctuation (SNEZ)

for the Kolmogorov spectrum with £ > péoi . In curve (1) ¢ = 10120m

1
and L = 10 9cm, in curve (2) ¢ = 1012cm and L = 1018cm, in curve (3)

1
£ =10 Ocm and L = 1018cm, in curve (4) £ = 108cm and L = 1018cm, in

curve (5) 4 = 1012cm’L = 1015cm, and finally in curve (5) 4 = 1010cm

1
and L = 10 5cm. In all cases f = 3 x 108Hz and z = 103pc. The value
1 1
-0, -0.
of p, . scales = f z 5(6Ne2) a2 5L 34,6,



AEUvI_ (e1-,) @an81i
pi°! g0 20!

Ol ol ol
. 1 NO_

223

(wo)%°d

(1

wnu4o3dg upISSNDY

O_O_



224

(W) (q1-£) °an31d
g10! 119! 90! el

]

(9509 7 v.Mva 7)

wnipoadg Aosobow oy

_ g0l

(Wo)s2d

OnO_




225

,-0! g-Ol

(91-1) @an81g

.m.u
(9sDd 7 > So:

[ wnJpoadg Aosobow oy




226

-1
(o-2)

= 2. 2 o
i _ 2 [sz q,°T(2-3) ] _ L © -
el q Aﬁ(a-Z)Fé%) = Pog.

for 2 < < 4. However Eq. (7-9a) is correct only for the case where

A (0)

5 2 .
P g & < L (corresponding to @o >1) is

0 . ’
s. 2

C.

L2 < < L. The condition Pea
always satisfied for the strong scintillation. However when p
we must use the expansion in Eq. (1-29) and we obtain

l

P g = [%32ﬂ) sz2 e 1(4 a)r(a'a{] =0 (1) . (7-9b)

Again, the value of Pe.s in Eq. (7-%a) and Eq. (7-9b) for the
Kolmogorov spectrum (0:1%3 is illustrated in Figures (7-1b,c) for various

values of the parameters. We note that for the Kolmogorov spectrum,

0.5
(0) o g2y 0-4,-0.6 (8N 2) (7-10a)
CS e
At - é 1 -0.5 -0.5
B HEE g (6N > z 2 (7-10b)
(0)

The condition that Pe = { for the Kolmogorov spectrum (a:%%)

is plotted in Figure (7-2), in which pé?g < ¢ is on the upper side of
(0)

each curve and Po. g > ¢ is on the lower side.

The correlation scale P is related to the decorrelation

time T b
CaS. y

o) =T X v (7-10c)
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Figure (7-2)
The relation T £ is plotted on the ¢ - z plane for
the Kolmogorov power-law index spectrum. In all curves £ = 3 x 108 z
and L = 1018cm. From curve (1) to curve (6), (GNEZ) = 10-2,10-3,10-4,

=5 -6

10 7, 10 and 10_7cm—6 respectively. Note that the value of z scales

- 3 i
o fZLz/BE (BNez) 1.
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for the turbulent plasmas move at a velocity v, transverse to the line

of sight to the pulsar (frozen-in condition being assumed). Lang

(1969) has shown that the decorrelation times Tc.s. for the three

pulsars considered varies as f0'7_1'3. Rickett (1970) has also presented
data which indicate that T e fn, where n lies in the range

0.3 <n < 1.5 for all observations be made. The data for PSR 0833-45

i f1.0—1.3

(Backer 1974) show that T oz . The observation data are in

general consistent with that predicted by Eq. (7-8b) or Egs. (7-10a,b).
(E) Characteristic Scattering Angle

The angular power spectrum of the random waves, Y(9), is
given by Eq. (5-5). From the angular power spectrum, one can calculate

the characteristic scattering angle, GC, due to the random medium and has

(i) for the Gaussian spectrum,

1
5 =g 2(321)2 B S £—2L-O.SZO.5<6N 2>O.5 (7-11a)
o o 64w ‘[_ e
2 kp
Gl
(ii) for the power-law spectrum with 2 <o <4,
(N
2 2 Q7 -2
q, Bzk qa, F(Z"E) 1
8 =2 = (7-11b)
¢ | sr@-ard o
2 2 =2 kpc
. (0)
(1f £ <p_, o <L), .
(4-) , 22
1 ZBquoa‘ll I 1
0 == B — (7-11c)
o & 6h 2k
CiuiSin
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(if g > péoz }. For the Kolmogorov spectrum (a=%%), one has

-2.2 -0.4 0.6 g 0.6

6, = f 1 z <5Ne N (7-12a)

(if £ < péc_’i_ <L),
1 1 0.5
- == 0.5 2

ec s HT, 3 J2 B = <6Ne ) (7-12b)
) (0)
(if £ > pc.s.)'

In the interplanetary and the interstellar scintillations, it
-n
has been observed Gc o f ', where n = 2,05 + 0.25, which checks in general

with that given by Eq. (7-1la) or (7-12a.,b) (Erickson 1964), Readhead &

Hewish 1972, Mutel et al. 1974, Cohen & Cronyn 1974).

(F) Pulse Broadening and Decorrelation Frequency

From the results of Chapter 5, Section V, we learned that
the pulse emitted from a pulsar is broadened by the turbulent inter-
stellar medium. There are three physical effects causing the broadening
of the pulse: a dispersion effect, a pure refraction effect and a diffraction
effect. The characteristic broadening times for these three effects are

respectively ty> t, and tD where

R
2 4 zN reca
t; = YR A/A > Rp = —555 (7-13a)
27 £
& [hje =
1 2
k¢
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and z0 2
€ = -
D 2c 2

(7-13c)

A
where (Eaﬂ is the bandwidth of measurement instrument, and where

ec is given by Eqs. (7-1la,b,c) for various cases.

Let tC be the characteristic time of the temporal pulse broaden-
ing due to the combination of pure refraction and the diffraction effects.
Then the decorrelation frequency fI for strong scintillation

to tC by

20 £, £ =1 (7-14)

(See Eq. (5-202).)

Since the observation time for a pulse profile is short (usually
less than 1 day), the pure refraction effect (tR) can not be detected

and we will neglect this effect. Thus tC B We then have for the

D"

Gaussian spectrum,

I | ~4 2 -1 2
b = e, <« f ' z° L (aNe . (7-15a)

For a Kolmogorov spectrum, we have

i <
(¥ when § < Pg vais &
L2
e 1 -4.4 2.2 _-0.8 2
ty = ZﬂfI e« f z L (éNe ), (7-15b)
and
(ii) when Pe . s, < £y
22 1
1 -4 3 3 2 ; 2
£, = P2 « £ L L z~ (8N D (7-15¢)
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The value of tD(and fI) for various values of the parameters

in interstellar scintillations is illustrated in Figures (7-3a,b,c).

The "dispersion measure', DM, of the plasma medium from the
radio star to the observer is defined as
observer

DM = N (z')dz' = (N )z. (7-16)
star = ¢

Suppose that for all interstellar plasma media,

1
3.2
(6N, ") o (Ne) . (7-17)

We then have for the Gaussian spectrum and the Kolmogorov spectrum

: 0)
with pc.s. < 4,
_ 1 2
7 Zme, =0 (7-18a)
and for the Kolmogorov spectrum with £ < péog <& By
- i 2.2-2.4
7 g, =P - (7-18b)

The measurements of the decorrelation frequency fI and the pulse
bl

broadening t_ show that fI o f and f;l =< (DMflwhere n = 1.6-3.6

D
(Lang 1971, Sutton 1971 and Backer 1974), which are also in general

consistent with those given above.
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Figure Captions

Figure (7-3a). The characteristic time of pulse broadening, t

D’

versus the correlation scale L for a Gaussian refractive index spectrum

with f = 300 MHz and z = 1000 pc. From curve (1) to curve (4),

(6Ne2> = 10—4, 10q5, 10“6 and 10*7<:rn_6 respectively. The wvalue of t

scales &« 4 2L (6N ) Also shown in the figure is the decorrelation

D

frequency fI

Figure (7-3b). As in Figure (7-3a) for the Kolmogorov spectrum with

0
4 < pé : < L. In all cases, £ = 300 MHz and z = 1000 pc. From curve
2 - -3 - - - -
(1) to curve (5), (6Ne Yy =10 2, 10 7, 10 4, 10 e and 10 6cm . re-
spectively. The value of ty scales « f'4‘422 2(5N ¥ L il 8

Figure (7-3c). As in Figure (7-3a) for the Kolmogorov spectrum with

wiog . From curve (1) to curve (4), (6Ne2> _ 10,2’ 10_3, 10“4 o

£ - "

=

10_')(:m‘6 respectively. In all cases, £ = 300 MHz, z = 1000 pc and

18 -4 2 ¢ -3
L = 107 cm. The value of t) scales « f (GN } L3473,
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For the '"thin screen' case QC and P.. g, are the same as given in

.

this section with z replaced by the thickness of the thin layer D.
The characteristic broadening time £t and the decorrelation frequency

fI are related to the scattering angle 9c by the same relation as

Eq. (7-13c)
zGcz
ty = e (7-19)

where z is the distance between the thin screen and observers.
(G) Conditions for Strong Scintillation

Let

<
I

2
A5(0)/2kq, (7-20a)

el N = z AB(O)/ZRZ (=@02). (7-20b)

From Lgs. (5-11la,b) and (5-112a,b) we find that the conditions for

strong scintillation are

(i) for the Gaussian spectrum,

mn= @02 >1 (7-21a)
and
Ll >Y2/3 s (7-21b)
(ii) and for the Kolmogorov spectrum with £ < pé?;_ <L,
n= ¢ . P (7-22a)
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Y

1> (7-22b)

Using the same arguments as in obtaining Eq. (5-111), we find

that

(iii) for the Kolmogorov spectrum with
Déog < B (7-23)

the conditions for strong scintillations are

T = @02 >1 (7-24a)
and 1

% &0 (—‘E?)i—)? (7-24b)

A (0)
B

where

B

d’A_(0)

(%) B B _ .3 & 11/3 7/3_.7 Y
Ay (0) = o \p=o so—kg gy D) (7-25)

The condition @02 > 1 in Egs. (7-21a), (7-22a) and (7-24a),
for both the Gaussian and the Kolmogorov spectra is illustrated in
Figures (7-4a,b) for various values of the parameters in interstellar
scintillations. We mnote that for the Kolmogorov spectrum, the condition
@Oz > 1 is always satisfied for reasonable values of the parameters

in interstellar scintillations.

The conditions in Eqs. (7-21b), (7-22b) and (7-24b) are respec-
tively plotted in Figures (7-5a,b and c). We note that our results are

valid only for the point radio source.
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Figure Captions

; 2
Figure (7-4a). The value of z, beyond which the condition @o > 1 is

satisfied, is plotted versus the root mean square electron density
1
2
fluctuation AN = (6Ne )?, for the Gaussian refractive index spectrum.

1011cm and in curve (2) L = 1010cm. In both curves

In curve (1) L

f = 300 MHz. The value of z scales « sz—l(éNez)-l.

. e 2

Figure (7-4b). The value of z, beyond which the condition @0 >1
is satisfied, is plotted versus the correlation scale L, for the
1

Kolmogorov refractive index spectrum. In curve (1) AN = (SNEZ)Z =

10'6cm'3, in curve (2) AN = 10 e sl 0 entve (3) AN = B e

In all cases £ = 300 MHz. The value of z scales « f2L_1(6Ne2)_l.
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20

Gaussian Spectrum

1073 10-4 10”3 1078
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Figure (7-4a)
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Figure Captions

Figure (7-5a). The value of z, beyond which the strong scintillation

23

condition T > vy is satisfied, versus the correlation scale L, for the

4 -6

2 .
Gaussian refractive index spectrum. In curve (1) (6Ne Y =10 “cm

2 -8 -
and in curve (2) (sNe Y =10 8cm 6. In both cases f = 300 MHz. The
b

1
value of z scales « f 3 L (éNe2>_ 3.

2

Figure (7-5b). The value of z, beyond which the strong scintillation

5711

condition T > ¥y is satisfied, versus the correlation scale L, for

(0)
the Kolmogorov spectrum (f < B <
(3), (6Ne2> = 10_4, 10"6 and 10_8cm-6 respectively. 1In all cases

6
17/111,4/11(5Ne‘2>' T

<L case). From curve (1) to curve

f = 300 MHz. The value of z scales o f

Figure (7-5c¢). The value of z, beyond which the strong scintillation

condition in Eq. (7-24b) is satisfied, versus the inner scale g, for

the Kolmogorov spectrum (¢ > péoz case). From curve (1) to curve (5)
(éNez) = 10h8, 10#6, 10_4, 1(}“2 and 1.0 cm"6 respectively. In all case

18 A N
L =10 cm and £ = 300 MHz. The value of z scales « f §>(6Ne Y 319

2

S

7
29.
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III. Analysis of the Data for CP 0328, PSR 0833-45 and NP 0532

In this section, we will analyze in detail the data of three

pulsars, namely, CP 0328, PSR 0833-45 and NP 0532,

(A) CP 0328
The CP 0328 pulsar has been observed by Rickett (1970). The

dispersion measure is

DM = 26.7 pc em - = 801w T e 2, (7-25)

The decorrelation frequency fI and the characteristic broadening time

tc are related to the measured half-visibility bandwidth Bh by

1
2nf =t =B (7-26)

(Lovelace 1970). From the result of Rickett (1970), one has

Bh(408 MHz) = 8 x 105Hz. Therefore

£, (408 MHz) = 1.27 x 10°Hz (T-2Ta)

and -6
1.25 x 10 “sec. (7-27b)

t_ (408 Miz)

The decorrelation time T - at 408 MHz can be obtained from

Figure (11) of Rickett (1970) and one has

T (408 MHz) == 720 sec. (7-28)
8 .

Setting the propagating distance

z = 1000 pc = 3 x 1021cm (7-29)
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(c.f. Rickett 1970, Lang 1971), one has from Eq. (7-25)

(N) = -Dzﬂ = 0,0267 cp " . (7-30)

Using the relations between Pe.s.? Gc and t_ in Eqs. (7-11) and (7-13c),

D

one obtains from Eqs. (7-28) and (7-29) the correlation scale

o) = 1.7 x lOgcm § (7-31)

CeSe
Ve a and B in Eqs. (7-28) and (7-31) give us the relative transverse

velocity of the plasma medium

v == 24 km/sec (7-32)

which is of the correct order for interstellar space.

Assume that the turbulent plasmas have a Gaussian power spectrum
and are statistically evenly distributed between the pulsar and the earth.
Figure (7-6a) is a logarithmic plot of the AN, L plane as plotted by
Scheuer (1968) and Rickett (1970), where AN = (SNez)llz is the root mean
square electron density fluctuation and L is the coherent scale of
electron density fluctuation in the interstellar medium between the CP
0328 pulsar and the earth. Curve (1) of Figure (7-6a) is the constraint
for AN and L from the observed value of tC in Eq. (7-27b) at f = 408 MHz
and z = 3 % 1021cm. The values of AN and L must lie on the line of curve
(1). Since the scintillation is strong for CP 0328 pulsar at 408 MHz
(Rickett 1970), the conditions for strong scintillation in Eqs. (7-2la,b)

for £ = 408 MHz, z = 3 x 1021cm, are also plotted in the Figure. Curve

3 2
2t and curve (3) is M= 2 = e The fact that at

(2) is =y "

f = 610 MHz the scintillation is still strong will have a stronger re-

striction on the range of AN and L. From Figure (7-6a), we see that
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Figure Captions

Figure (7-6a). Conditions for the interstellar scintillation of

CP 0328. Curve (1) is the pulse broadening (or decorrelation frequency)
relation in Eq. (7-27). Curve (2) is the condition T > y2/3 and curve
(3) is the condition @02 > 1 for £ = 408 MHz. This figure is for the

Gaussian refractive index spectrum,

Figure (7-6b). As in Figure (7-6a) for the Kolmogorov spectrum with

g < péci < L. Curve (1) is the pulse broadening relation. Curve (2)

is the condition for strong scintillation, T > YS/ll. The values of

M and L must lie on curve (1).

Figure (7-6c). As in Figure (7-6a) for the Kolmogorov spectrum with

. : 2
> p(o) Curve (la) is the pulse broadening relation for L = 10 Ocm.
C.Se

L

Curve (1lb) is the condition of strong scintillation in Eq. (7-24b) and

curve (lc) is the condition péoi < g for L = IOZOcm. For L = 1020cm,

the values of AN and g must be on the section of curve (la) between

curve (1b) and (lc). For L = 1019 and 1018cm, the constraints are

plotted respectively in curves (2a,b,c) and (3a,b,c).



249

| AEUVI_ (e9-7) 2ind31d
g0l 90! 101 2101 010l g0l
. g-Cl
E 9-0l
>
2
o
w.
2
wnijoadg uDISSNDY -0l

82£0dD




250

020!

610!

(wd)

(99-£) @an814

80! M

Ol
o ol

(8502 1 >3°d > 7)

wnijoadg Aosobow|oy

82¢£0d2

(¢ WONV

o]

Ol




251

(99-¢) 2an81J

(W) 7
/0! g0l 210l 10! 00! 60!
_ _ : _ 9-0l
(3500 7 > %9 )

[ wnuyoadg rosobow|oy ) >
82¢0 dO 2
N
| o
m_
!

- I.V...O_

ro\mu
foZ




252
10 %m < 1 < 10M%m (7-33a)

-3 -3 -3

and 10-5cm <AON < 10 "em (7-33b)

for the turbulent medium between CP 0328 pulsar and the earth.

The results in Eqs. (7-33a,b) are about the same as obtained
by Rickett (1970). However as mentioned in Chapter 1, the Gaussian
spectrum is rather artificial in interpreting the scintillation data
and the power-law spectrum is a more realistic form. Observed turbulent
plasmas tend to have power spectra (e.g. Jokipii 1973). Figure (7-6b)

is a similar plot as Figure (7-6a) for the turbulent medium having a

0
Kolmogorov spectrum with ¢ < pé i < L. Again curve (1) is
tC (408 MHz) = 1.25 x 10—6 sec. Curve (2) shows one of the two condi-
tions for strong scintillation, T > YS/ll. The other condition for

strong scintillation (@02 =T > 1) is well satisfied for reasonable
values of the parameters, AN and L, and is not shown in the figure. The
values of AN and L must lie on curve (l1). We note that in Figure (7-6b),

5/11 has no constraint on the values of AN and L since

the condition T > ¥y
curve (1) and curve (2) are parallel. This is physically expectable for
the following reason. We note that the turbulent inhomogeneities
(eddies) with a scale of size much greater than the Fresnel scale

Pg =‘ﬁ§.have very little effect on the scintillations of the radio wave.
Therefore the scintillation pattern of the radio wave must remain the
same if one adds inhomogeneities of larger size (equivalent to increase

the value of the largest scale L) while keeping constant the magnitude

of the turbulent inhomogeneities which are important for the scintil-
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lations of the radio wave by increasing the value of AN. Thus from the
scintillation data, one can not set an upper limit on L and the strong

5/11

scintillation condition, T > ¥ must have no restriction on the wvalues

of AN and L.

In the interstellar medium, we expect that the largest scale
size of the turbulent inhomogeneities will be of the order of 10 pc to

100 pc (Jokipii and Lerche, 1969). For demonstrations, we choose

2
L =10 Ocm (= 33 pc). (7-34)

Then from Figure (7-6b), we find that
1

<5Ne?‘> =P 1D e

=0.75 (N . (7-35)

We note that the Kolmogorov spectrum gives a higher value of AN, the

root mean square of the electron density fluctuations, than the Gaussian
spectrum. The value of AN in the artificial Gaussian spectrum gives only
the density fluctuation of those inhomogeneities which are important in

causing the scintillation pattern.

We consider the other case in which the interstellar medium has
a Kolmogorov spectrum with pi?i. < f. Figure (7-6c¢) is a plot of ANZ
vs the smallest scale ¢ (inner scale or cut-off scale) for wvarious value
of the outer scale L. For L = 1020cm, curve (la) is tc =1.25 x 10_6sec
at £ = 408 MHz and z = 3 x 1021cm, curve (lb) is the condition of strong
scintillation in Eq. (7-24b) and curve (lc) is the condition pé?;. < L.

The condition @02 > 1 is satisfied and is not shown in the figure. For
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2
L= 1020cm, the values of AN and ¢ must lie on the section of curve (la)

between curves (lb) and (lc). Similarly, the constraints are shown
respectively in curves (2a,b,c) and (3a,b,c) for L = 1019cm and

L = 1018cm. For all values of L, we have from Figure (7-6c),

10
4=>=5x 10 cm (7-36)

within a factor of 4. 1t is of interest to note that the value of the
cut-off scale g in Eq. (7-36) for the Kolmogorov spectrum is about the
same as the coherent scale L in Eq. (7-33a) for the Gaussian spectrum.

For L = 1020cm, we have from Figure (7-6c¢)

=2 = 107 % (7-37)

which is the same as in Eq. (7-35) for the case without a cut-off at
£ =5 % 1010cm, since for the Kolmogorov spectrum, the value of AN comes
mostly from the large scale inhomogeneities. We also note that the

conditions for strong scintillation, in the case of a Kolmogorov spectrum

(0

with P g

< ¢, do not give L an upper limit either. The increase of
the value of L corresponds to an increase of AN while keeping constant
the strength of the inhomogeneities which are important for scintillation.

; (0) < (0
Comparing the above two cases (pc s < f and ¢ Pc.s < L) for the
Kolmogorov spectrum, we see that it is not necessary for the power

10

spectrum to have a cut-off at § =5 x 10" cm to fit the scintillation

data.

0)

Little and Matheson (1973) also considered the case pé s. <4
but their results are incorrect because they used an incorrect condition

for the strong scintillation. They used the condition z@c > L, for
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strong scintillation which is too strong since the largest scale
inhomogeneities have nearly no effect on the scintillations of the

radio wave.

In conclusion, we point out that both the Gaussian and the
Kolmogorov spectra fit the data of CP 0328 pulsar and that the Gaussian
spectrum is quite artificial and gives only the density of those in-

homogeneities which are important for the scintillation.

(B) PSR 0833-45

The average pulse profile of the pulses from the PSR 0833-45
pulsar has been measured for several frequencies between 300 and 1410
MHz (Ables et al. 1970, Komesaroff et al. 1972). Backer (1974) measured
the decorrelation frequency fI and the decorrelation time LA for the
same pulsar with frequencies ranging from 837 to 8085 MHz. The above
results are combined and plotted in Figure (7-7). fI at 300 MHz is from

the pulse-broadening measurement (Komesaroff et al. 1972) by using the

relation 2nf t =1 in Eq. (7-14). At £ = 300 MHz,

9.4 msec, (7-38)

t
Il

and therefore

B

17 Hz . (7-39)
All other points in Figure (7-7) are from the measurement of Backer

(1974). We note that the decorrelation bandwidth BS used by Backer

corresponds to fI/2_

For the frequency dependence of the decorrelation time in

Figure (7-7), curve (la) is the best fit for Ts s « f, corresponding
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Figure (7-7)

Estimates of the decorrelation bandwidth fI (I symbol and

left axis) and of the decorrelation time LI (+ symbol and right axis)

of interstellar scintillation for the PSR 0833-45 pulsar. The length
of the I-symbol indicates the spread of measurements. For the decorre-

lation time, curve (la) is the best fit for Te g, & f and curve (1b)

is for T < £ 1'2. For the decorrelation frequency, curve (2a) is

c.s.
the fit for fI o f4'0 and curve (2b) is for fI o f4'4,
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PSR 0OB33-45

Figure (7-7)

f (GHz)

100

T, (sec)
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3 5 .2
to the Gaussian spectrum and curve (1lb) is for Tc o = fl , corre-

- .S.

sponding to the Kolmogorov spectrum (4 <IpC o < L case). Note that

curve (lb) fits better than '(la). For the decorrelation frequency of
fI’ curve (2a) is the best fit with a slope +4 (fI o fa) for the

Gaussian spectrum, and curve (2b) is with a slope +4.4 (flm f4'4) for
the Kolmogorov spectrum. As shown in Figure (7-7), both the Gaussian

and the Kolmogorov spectra fit the data and the relation ZﬁfItC =1
is satisfied.

From Figure (7-7), we have the decorrelation time at
f = 300 MHz (by extrapolation),

(300 MHz) = 2.0 sec . (7-40)

The dispersion measure, DM, for PSR 0833-45 is

™ = 69.% % 0.0 pe em o (7-41)

(Ables et al. 1970). If we set the distance of the pulsar from the
earth to be

z =500 pc = 1.5 x 1021cm, (7-42)
(c.f. Komesaroff et al. 1972) then one has for the mean electron density

along the propagation path,
-3
(Ne) = 0.138 cm ~. (7-43)

Again using the relations between Pe.s.? Qc and £y in Egs. (7-11)

and (7-13c), one obtains from Eqs. (7-38) and (7-42) the correlation

scale

o (300 MHz) = 1.7 x 10%em, (=453
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which combining with the L. in Eq. (7-40) gives the transverse velocity
of the interstellar medium relative to the line between the pulsar and

the earth,

v = 30 km/sec, (7-45)
which shows that the distance z in Eq. (7-42) is of the correct order.

For the turbulent plasmas with a Gaussian power spectrum, the
relation tc(300 MHz) = 9.4 msec and the strong scintillation conditions
are plotted in Figure (7-8), similar to Figure (7-6a). From Figure
(7-8), we find that

L e-=1013cm (7-46a)

Al AN~ 0.1 cm > = 0.7 Ny (7-46b)

© <

c.8

For the Kolmogorov spectrum with f <p the relation
t. (300 MHz) = 9.4 msec and the strong scintillation condition, T > ys/ll,
are respectively plotted on curves (la) and (lb) in Figure (7-9), similar

to Figure (7-6b). From the plot in Figure (7-9), we find that if we set

the outer scale of the turbulent plasmas to be

Lot JB o e B TO omy 75T
then we have
AN = 0.85 em > = 6 <Ne>. (7-48)

(If we set L > 10 pc, then AN > 6 (Ne).)

Since the electron density Ne is always positive, the high ratio

between AN and (Ne} (%%m$ = ) for the Kolmogorov spectrum in Eq. (7-48)
e

is very unusual and we do not expect to have such a high ratio. The
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Figure Captions

Figure (7-8). As in Figure (7-6a) for the PSR 0833-45 pulsar.

Figure (7-9). As in Figure (7-6b), conditions for the interstellar

scintillation with the Kolmogorov refractive index spectrum
0
@ <.p§ : <L case). Curve (la) is the pulse broadening relation

5711

and curve (1b) is the condition T > ¥ for PSR 0833-45. Curve (2)

is the pulse broadening relation for NP 0532.

Figure (7-10). As in Figure (7-6a) for the NP 0532 pulsar.
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ratio <£N> =~ 0.7 in Eq. (7-46b) for the Gaussian spectrum is also very
e

unusual since AN in the Gaussian case measures only those inhomo-

geneities which are important for the scintillation. We note that we

obtain such a high ratio of Z__7 because we have assumed the random

N
e
medium is uniformly distributed between the pulsar and the observer.
If we assume the random medium to be concentrated in a thin layer with
thickness D, then we can use the thin-screen diffraction theory in

Chapter 3 (or in Eq. (7-19)) to fit the data of PSR 0833-45. We find that

for the thickness of the layer

D = 10 pc (7-4%9a)

and the outer scale of the Kolmogorov spectrum

L = 10 pc, (7-49b)
we have -3
(Ne>D‘“ 7 cm (7-50a)
Rl (M) >~ 6 cm > = 0.86 (N ) (7-50b)
D : e’'D ?

where the subscript D in Eqs. (7/-50a,b) denotes the average of the
quantity over the plasma layer of thickness D. We note that if we re-
quire (AN)D < (Ne)D, L> 10 pc and D > L, the values of D, L, (AN)D and
(Ne)D in Egs. (7-49a,b) and (7-50a,b) are unique. Similarly for the

Gaussian spectrum with D == 10 pc, we have

(M), > 0.7 cm 3 = 0.1 ¢ N,y - (7-51)

D

Thus if we want to avoid a high ratio of AN/(Ne), there must

exist a region of strong electron density fluctuation with thickness

D = 10 pc and mean electron density (Ne)D =7 cm-3.
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It is interesting to consider the mean shape of the pulse
profile from the PSR 0833-45 pulsar. The mean pulse shape at the point
just passing the plasma layer with thickness D is of the form shown in

Figure (5-4b) or (5-5b) with a characteristic time
(layer) B ?
g aver) . & (7-52)
c
2c

(c.f. Eq. (5-67').) However as the pulse propagating a distance z

in the (relatively) free space, a mean pulse shape of truncated ex-
ponential form for the Gaussian spectrum, (or nearly exponential form

for the Kolmogorov spectrum) with a characteristic time

20 .
" (free space) _ ¢ (7-53)
c 2c

will develop. (See Eqs. (5-84) and (5-86).) The resulting pulse shape

is approximately the convolution of the two mean pulse shape with

(free space)

(Lapee) and t. . It is noted that the

characteristic times tc
observed pulse shape can in general determine the ratio of D and z. 1In
particular, in the case % >> 1, the pulse shape is of truncated ex-

ponential form, and in the case D = z (i.e. the wave is scattered all

the way), the pulse shape is of the form given by Figure (5-4b) or (5-5b)

2
z6
with a rise time of the order of tC = ;; . For the PSR 0833-45
pulsar, % = 50 and tc(free space) dominates. Thus the mean pulse of

PSR 0833-45 due to the scattering of the interstellar medium will have an
exponential (or nearly exponential) form. The above analysis is con-
sistent with the observation of Komesaroff et al. (1972)., They found
that an exponential form for the broadened pulse fits best the observed

data.
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The above method of analysis can be used to probe the density
and the structure of the interstellar medium between the pulsars and
the earth. For the interstellar space between CP 0328 and the earth,
the mean electron density is about (Ne> ~ 0.0267 cm-3 and there is
probably no region of strong electron density fluctuation. However,
for the interstellar medium between PSR 0833-45 and the earth, there
exists a region of strong electron density fluctuation with thickness

D = 10 pc and mean electron density (Ne>D 57 an o,

(C) NP 0532
The dispersion, the temporal pulse smearing and the angular
broadening of the NP 0532 pulsar have been measured. (Rankin et al.
1970, Counselman & Rankin 1971, Rankin & Counselman 1973, Mutel et al.
1974). The results are summarized as follows. The dispersion measure
is
o = B89 55 i, (7-54a)
the characteristic time of pulse smearing at f = 300 MHz is
t, (300 MHz) = 1.8 x 107% sec, (7-54b)

and the characteristic scattering angle at 300 MHz is

6_(300 MHz) = 0.01 arc sec = 4.83 x 16™° sudtans.,

(7-54¢c)
ZQCZ
From the measured tc and QC, and the relation tc = e’ Ve

obtain the distance between NP 0532 and the earth,

z = 4.5 x 1021cm = 1500 pc. (7-55)
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It follows from the dispersion measure DM in Eq. (7-54a) that the mean

electron density between the pulsar and the earth is

<Ne> = 0.039 cm'3. (7-56)

Note that the values of z and (Ne) given above come directly from the

observation without any further assumption.

For the turbulent plasmas with a Gaussian spectrum, the relation
to (300 MHz) = 1.8 x 10-4 sec and the strong scintillation conditions are
plotted in Figure (7-10), similar to Figures(7-6a) and (7-8), assuming
the random medium is evenly distributed between the pulsar and the earth.
We find that the coherent scale

L 3’1013 cm (7-57a)

and the root mean square of electron density fluctuation

M ~10"2 em™3 =~ 0.25 (N_). (7-57b)

(W)

For the Kolmogorov spectrum with ¢ > Lo

< L, the relation
tC (300 MHz) = 1.8 x 10_4 sec is plotted in curve (2) of Figure (7-9).
The conditions for the strong scintillation are satisfied and are not

shown in the Figure. From Figure (7-9), we find, by setting the outer

scale of the turbulent medium

L = 1020 cm & 33 pc, (7-58a)

the mean electron density

AN = 0.09 em > = 2.3 o> . (7-58b)
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The relatively high value of AN in Eq. (7-57b) or (7-58b)
indicates that there exists a layer of relatively strong electron density

2
fluctuation. If we require L = 10 Ocm and zﬁgy = 1 for the Kolmogorov

e
spectrum, then we obtain the thickness of the plasma layer

D = 282 pc (= 0.2z), (7-59a)

the mean electron density inside the layer
(N ). ~0.212 em > (7-59b)
e D
and the electron density fluctuation

(), = 0.212 ot s (7-59¢)

For the Gaussian spectrum with D = 282 pc, we have

3

(&N), = 0.023 em ~ = 0.11 (Ne>D ; (7-60)

Using the same argument as for PSR 0833-45, we find that for
the observed mean pulse shape of NP 0532, the ratio of the two character-
istic times due to respectively the propagation in the layer and the

propagation in the (relatively) free space is

tc(layer)/tc(free space) .. D __ 0.2 ) (7-61)

N |

(free space)

We note that tC is more important and the pulse shape is

Z 5 layer) .
close to the exponential form. But since tc( Y )13 not very small

(t (layer) __ 0.2 t (free space)), " (layer)

can not completely b =
s ” r P y be neg

lected and the correct pulse shape can be obtained by the convolution

of these two effects.
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Note that in the above discussions, we have, for simplicity,
assumed a single layer of strong electron density fluctuation between
the pulsars and the earth. The existence of many regions of strong

fluctuation is possible but it will complicate the analysis.

In conclusion, we summarize in Table (7-1) the properties of the
interstellar media between the earth and the three pulsars discussed
above in this section assuming a Kolmogorov spectrum. From Table (7-1),
we believe that the mean electron density ((Ne) = 0.0267 cm_3) between
the CP 0328 pulsar and the earth is the ambient electron density in the
interstellar medium. For PSR 0833-45, the mean electron density
((Ne} =~ 0.138 cm-3) is much higher than the ambient density, which
indicates the existence of a plasma layer of very high electron density
(with thickness D == 10 pc and (Ne)D e T cm-3) in the interstellar space
between PSR 0833-45 and the earth. For NP 0532, (N_) (= 0.039 ™y
is slightly higher than the ambient density and there also exists a
plasma layer of relatively high electron density (D = 280 pc and

-3
= (0,21
(N cm 7).
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Table (7-1)

The Characteristics of the Interstellar Media between the

Earth and three Pulsars

Pulsar

Properties CP 0328 PSR 0833-45 NP 0532
M ( m-3

pc cm ) 26.7 69.2 58.2
z (pc) 1000 500 1500
(Ne> (cm'3) 0.0267 0.138 0.039
A layer of strong not needed strongly needed needed

fluctuation
D (thickness of layer) = 10 282

(pc)
(N ) (cm_3) - 7 0.2
e’D :
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Appendix A

Given a probability distribution P(A) which satisfies Eq. (5-29)

in the text, we wish to find a lower bound on (A)

@

_ ik
M= f A"P(A)aA,

o

so that our constraints are Mo = M2 =1, M4 =1+

lower bound on Ml.

Now, Mo and M, can always be built up for

2

m
Z

[=-]

f AP(A)dA. Define
(0]

(A-1)

and we look for a

any P(A) out of in-

crements dm whose total must be 1 and which are added in such a way that

dMo= dm and dM2= dm. To do this add & dm at %

where Xy and x, are otherwise arbitrary and where
2
_ X, - i
a ™ 2 2 -
Xy = Xg

The contribution of each increment to M1 is then

dM1 = kldm
where L+x1x2
kl = %y o + xz(l-a) gy
2 L
Similarly,
dM4 = k4dm
where 2 2 2 92
k4 = x2 + xl - xl x2

< 1 and (1-x) dm at x, = 1

2

(A-2)

. (A-3)

(A-4)
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It is readily demonstrated that akllaxl = 0 and akllaxz < 0, so that the
minimum value of kl (and hence Ml) occurs when X = 0 and X, is as large
as possible. From Eq. (A-4) and the constraints M4 = LHnZZ, we see that
2
the average value of x, over all the increments dm must be l+mzz. But
2 2 : 5 -
1—0, kl—l/x2 and ka—xz —-1/k1 . For this relationship between

kl and k4 it is readily seen that the minimum value of kl averaged over

2
the increments dm occurs when x2=v1-l-mZ for each increment dm. To see

also, if x

this clearly, the reader should plot k4 vs. kl and note that since the

curve is concave and since the average kq over the distribution of dm

is fixed, the minimum of the mean of kl occurs when all increments are

at one value of k4(or xz).

Hence, the minimum value of Ml is given by

= e 3 (A-5)
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Appendix B

In this appendix, we employ a numerical method to solve the following

equation,

Arp(z,p, Mk)
DYZ2R5 iAk 2 1 _
et + ————Zkz vR Iy ® ~=g [AB(O) A

@Iry=0 . (B-1)
4k

B

For a Gaussian spectrum, we have from Eq. (5-52)

2
& P q
2
D) = Ag(0) - Ay(0) = B q 1 - exp (-2 1. @-2)

Let the transverse scale of Tb(Z,D,Ak) be Pe- We expect Pe to be

of the order of the characteristic scale of Fl 1(Z,R) given by Eq. (4-60),
2

which can be shown to be smaller than L = 9, - Thus for o < L, we

2
can expand Dy(p) in Eq. (B-2) in powers of (%) and we have to first order

D(p) == 307 P = Bp (B-3)

where

Bo = 32ﬂo g (B-3")

We introduce the dimensionless variables T and E

2
3 = e, 1 (B-4)

(8<B)

and

p = (ﬁ&) % € 3 (B-5)
o .
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and have
ol - 2
D, .rl ® 2 2 _
RS e R R N T - (B-6)

Note that in Eq. (B-6), the dependences of FD on (Ak) and z have
been collapsed into one variable T. The quantity we need is Tb(z,géo,ﬁk).

For a given (Ak), we solve Eq. (B-6) and obtain TD at z by setting

1/2
axp )2,
= . For another value (Ak)', the equation to be solve,is
L : (ap Y/
z
exactly Eq. (B-6) and we get TD(z,QfO,Ak') by setting T = —————%—-———.

2k
Therefore it is enough to solve Eq. (B-6) only once to obtain the whole

spectrum of TD(,z,p=0,Ak) at position z with all different Ak by wvarying
M-
We employ the implicit schemes of numerical difference method to solve

Eq. (B-6) (Richtmyer & Morton, 1967). The initial condition is that

p(n=0,8) =1 . (8-7)

The boundary condition at E — o« is FD = 0. In practice, we cannot apply
this boundary condition because this would require an infitite number of
mesh points. The boundary condition that we use is

azr

at =5, =2 =0 ., (B-8)

3
The sensitivity of the solution of Eq. (B-6) to this assumption was tested

by extending the truncation point to £ = 10 and by setting

SE—— =0 , or Ty = j I (B-9)
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No significant difference in the solutions was detected for all these

variations.

0 is

The boundary condition at §

3
4 (B-10)

as can be seen from Eq. (B-6) by requiring (% g% FD) be finite at § = 0.

In order to calculate the value of (% g% FD) at £ = 0, we note that

2

TR

2
1 - .
= = §E7 Iy, at £ =0, (B~11)

2
3
Eq. (B-11) is obtained by assuming that LErg and 2. . are finite at
E QE D 3 2°D

£ =0,

The result is shown in Figure (5-4a) for E = 0. The characteristic

wavenumber kc is obtained by setting T = 1 in Eq. (B-4). We get

22
_ L 2T
kc =3 ( - ) . (B-12)
o
w, kcc
The characteristic correlation frequency £ = +-—= " .
c 2n 27
From Eq. (B-1l), it can be shown that

(B-13)

%
Ty(-k) = T, (Ak).

Next step is to calculate PD(z,t) as defined in Eq. (5-58).
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Let
* z
£ =Lk = 5E, (B-14)
g
I I3oz2
where £ & === = £ (B-15)
c w 4
[ bek
Then we have
B, ) = 1 Re d1.(1,5=0){ cos (1Pt )+Im {T (7,E=0) | sin(n?c,)
pLe? ot 75 il * p* *
Cc & i
x T dT - (B~-16)

The numerical result is shown in Figure (5-4b).

For Kolmogorov spectrum with L > p >> ¢, one has from Eq. (1-28)

Dﬁ(o) = AB(O)-A{S(D)
Bk&qou I‘(2~%) =2 v
= (O"‘Z) I p = Bop (B-17)
br(@-2) 207 TR
where a=_l?3l_’ \)=a—2=§3~and
11
Bkaqo 3 I"(']g)
B, = ¢ (B-18)

b x@ x 29/ Prdh

The numerical results are shown in Figure (5-5a,b). The characteristic
time scale tc and the characteristic wavenumber kc are given by

1.2 -4.4 2,2

By Kk %) : (B-19)

1 1

t = (A

= k ¢ ¢
Cc
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It can be shown from Eqs. (B-15) and (B-16) that for both

Gaussian and Kolmogorov spectra,
2
t = z6 /2(: (B"ZO)
c c

where Gc is given by Eq. (5-16). Eq. (B-20) can be interpreted as
follows. For a ray travelling a distance z and having a scattered-
angle GC, the additional ray path relative to the unscattered ray is

2
zOC /2, and therefore the delayed time for such a ray is tc = zec2/2c.
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Appendix C

Define the operator L as

L(,B)

v, * VJé + £(a,B) (c-1)

~

i
Y
where f(g,E) is given by Eq. (5-97). Then Eq. (5-96) can be written as

i+ 1) TP =0 . ©-2)

Let .
- -2 1-H(@)]  -2WL-H(E)]  -27
r, " (map =e +e e (c-3)

be the asymptotic solution of F4 at large T in Eq. (5-105'").

We obtain immediately from Eqs. (C-1) and (C-3)

N (A)_ N
(a'q + )T, = E (M2, B) (C-4)
where
Et(’n’g"ﬁ) = Ea (ﬂ,g,,@) + Eb(ﬂ:g:ﬁ) + Ec(n:ggﬁ); (C-5)
5 ~ A -211-11(@)
E, = - T2H(B) - u(aHp) - H(@-B)] e ) (C-6a)
g 5 % -2M[1-H(B) ]
Ey = - [2H(®) - H(a#B) -H(2-B)] e z (C-6b)
and
B_ = [2H(g) + 2H(P) - B+ - Hr-ple 21 . (C-6¢)

27

and can be neglected for large T|. Con-

sider Ea in Eq. (C-6a). We see that Ea(ﬂ,g,E) ig of order of e—Zﬂ,

The term EC is of order of e
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which is small for large T, except for 1%]<K 1, since [l—ﬁ(g)] in the
exponential of Eq. (C-6a) is of order 1 except neét Igl = 0. For
|g|<< 1, it is easy to demonstrate that \Ea(TLg,E)\ has its maximum

value at B = 0. Thus for ‘%\<K 1L,

|E_(no,B) | < |E, (M,2,0) |

-2mfil-H( ] -1

= 2[1-H(g)]e < (—?rﬂ s c-7
-1
Similarly \Eb\ can be shown to be of the order of, or less than (E?rﬂ.
Therefore,
1
E (VL] =0 (P (c-8)

(8) satisfies the differential equation for Fh in
1

Ul

and for T >> 1, Ta

Eq. (C-2) or (5-96) to terms of order ().

Next we estimate the error of the asymptotic solution for T4.

Define the difference function

- - @ E
5(Mhg,B) =T, - T, ; (c-9)

We then have from Eqs. (C-2) and (C-4),

d
(_a-ﬁ'*‘ L) 5(Tl,g,ﬁ) = - Et(rﬂ;%,ﬁ)- (C-10)
The boundary condition for 6(ﬂ,%,g) is
at |a| = ® and/or |B| = =, 8(M,,B) = 0 (c-11)
)

since at the boundary Tﬁ = TL

From Eq. (C-8), we can write to order (%),
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C(, B)
Et(ﬂ,a,ﬁ) = _—_ﬁ—_ + (higher order terms). (C-12)

=)
From the properties of the operator (Sﬁ + L) discussed in

Chapter 5, Section V, we find that TL does not grow as 7 increases, and

(&)

we expect that F4 will not oscillate as a function of T. Thus for TA in

Eq. (C-3), the difference function 5(ﬂ,g,ﬁ)(= TL-IL(A)

and will not oscillate as T increases. Therefore we can estimate the

) will not grow

difference function by expanding &(7,Q,B) as1

fgfg,g)
T1

ll

18

5(M,a,B) = , for M > 1. (C-13)

=]
1l
o

Substituting Eq. (C-12) and Eg. (C-13) into Eq. (C-10), we

have
L Bo(g,g) =0 (C-14a)
L 6,(2B) = -c(@,p) (C-14b)
and etc.. The boundary condition for ﬁn(g,g) are

at |a| = =, and/or |B| = =, 8 (@,p) =0, for n = 0,1,2,""".
(Cc-15)

With the boundary condition in Eq. (C-15), we find that
6,(2,0) =0 (C-16)

is a solution of Eq. (C-l4a). From Eq. (C-14b), we see that 61(g,§) is

of order of unity relative to T since él(g,ﬁ) is independent of T. Thus

lln writing 6(7M,x,B) as given by Eq. (C-13), we have neglected the
error which decays ™ exponentially as 7 increases.
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to the order of (l),

il

T (c-17)

(M, p) =

For large T, the error 8(TM,q,B) is small and can be neglected.
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Appendix D

We write Eq. (5-144) for a Gaussian spectrum as

2 2
3 i 9 1 3 -
—_— = - em——— o=l — = : - D-
The initial conditions at T = 0 are
T (1=0,E) =1 . (0-2)
The boundary condition at € = @ ig
T (ME==) =1 . (p-3)
The boundary condition at € = 0 is
BFC
SE 1g=0 =0 (D-4)
— 1 9 -
as can be seen from Eq. (D-1) by requiring (E gg FC) to be finite at
E = 0. In order to calculate the value of (% g% Fc) at £ = 0, we note
that
2
1 3 3
o s i - D.
g 3 Te 3¢2 Ly sEE T =N Cag
13 32
by assuming that —~ sz I’ and —5 " are finite near F = 0.
E 0 ¢ BEZ c

We employ the implicit schemes of numerical difference method
to solve Eq. (DP-1) (Richtmyer & Mortomn, 1967). Again the boundary

condition at € = ® in Eq. (D-3) is truncated (c.f. Appendix B). The
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boundary condition that we use for large E is

at§=5,l"c=1. (D-6)

The numerical results of Tc are then applied to calculate
the functions PX'and PI in Egqs. (5-145a), (5-145b), and (5-170). The

numerical values of P and PI are shown in Figures (5-8) and (5-9).
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Appendix E

The power spectrum Ck(0,0,L,w) in Eq. (6-36) can be obtained for

and o, by direct integration.

various values of the parameters VZ’ g, 1

However, direct integration is very time-consuming. Instead we will use

an approximate method, in which the power spectra for o =0 already

T Vg
computed by Young (1971) are employed to calculate the new Ck(0,0,L,w).

First we note that if we put gl=02=c=ﬂ Vé in Eq. (6-36) for a

constant T, we have at w=0,

; e
Ck(0,0,L,aFO) = g 4ﬂ2 1
) Y2 71 © IO(——Z) (E-1)
Ck (0,0,L,u=0) 4M
where IO is the modified Bessel function of the first kind and Ck(o) is

the power spectrum in Eq. (6-37) without velocity fluctuation (ol=52=0).

(0)

For O = 5.55° andV_ = 200,300 or 400 km/sec, Cy

(0,0,L,w) is shown

in Figure (6-4).

o
Next if we assume that 9, =0 and :gL-= TN = constant for all z,
Va
then the Ck in Eq. (6-36) can be written as

[==]

Ck(0,0.L,m) = J/‘duf Gc(uguﬂ) Ck(o)(0,0,L,m') G -2)

-0

where the weighting function Gc(w,m') is given by

1 1 - (-
Gc(w,w') = = —— exp { 3 2 ’ : (- 33

\JEE w'n
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Thus the desired power spectrum Ck(0,0,L,m) is easily obtained by

(0)

averaging the old one, Ck , with the weighting function Gc(w,w').

Unfortunately the Ck(0,0,L,uﬂ in Eq. €-2) is divergent at w = 0.
Physically the divergence at w = 0 is caused by the fact that there exist
some plasmas which are stationary (V2=§é+5V2=O) since the velocity prob-
ability distribution function is assumed Gaussian. Note that the divergence
at w = 0 exists for both the thin screen model and the three-dimensional
spherical model. For 01% 0 and 02# 0, there is no divergence
in Ck(0,0,L,w) at w=0. 1In particular, if we put cl=cz=ﬂ ﬁé, Ck(0,0,L,uFO)

is given by Eq. (E-1).

Our approximation scheme is to put cl=02=c=ﬂ in calculating
2 2 2 2 " .
Ck(uFO) and put 4, o; = 4, 0, in Eq. (6-36) for Ck(a#O), which is

equivalent to put g.= 0 and T5= ‘VEU in calculating Ck(ab for «#0. Thus

1
the power spectrum in Eq. (6-36) with cl=62=c=ﬂ Vz can be calculated

()
k

from the old spectrum C using Eqs. (E-1) and (E-2). For the 3¢ 279

data (Cohen & Gundermann, 1969) shown in Figure (6-4), we calculate the
(0)

power spectrum Ck(aD from the Ck also shown in the figure for §%= 200

and 300 km/sec and for various values of T. For V§= 200 km/sec, the

best fit is at T = 1.13 (or 510920~ 226 km/sec and for L 300 km/sec,

N=0.7 (or o 210 km/sec). The results are shown in Figure (6-5).

10 920°
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