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Abstract Semantic automata were developed to compare the complexity of gen-
eralized quantifiers based on the complexity of the string languages that describe
their truth conditions. An important point that has gone unnoticed so far is that the
generated string languages are remarkably simple for monomorphemic quantifiers.
Whereas complex quantifiers such as an even number of correspond to specific
regular languages, monomorphemic every, no, some as well as numerals do not reach
this level of complexity. Instead, they all stay close to the bottom of the so-called
subregular hierarchy. What more, the class of tier-based strictly local languages
provides a remarkably tight characterization of the class of monomorphemic quanti-
fiers. A significant number of recent publications have also argued for the central
role of tier-based strict locality in phonology, morphology and syntax. This suggests
that subregularity in general and tier-based strict locality in particular may be a
unifying property of natural language across all its submodules.
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1 Introduction

Generalized quantifiers have been a fruitful topic for mathematical investigation since
Barwise & Cooper (1981) and Keenan & Faltz (1985). Among the many techniques
to study generalized quantifiers (see Peters & Westerståhl 2006), semantic automata
(van Benthem 1986, Clark 2001, Steinert-Threlkeld & Icard 2013) are noteworthy
because they do not draw from mathematical logic but rather from formal language
theory. Even though there are some well-known connections between logics and
formal languages — e.g. the equivalence of regular languages and monadic second-
order logic (Büchi 1960) — formal language theory does recognize complexity
differences for which no logical correspondent is known at the moment. Therefore
the automata-theoretic approach to generalized quantifiers, albeit less common, adds
important facets to the dominant perspective rooted in logic and set-theory.
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At the same time, the semantic automata approach has not made full use of the
richness of formal language theory. The classification schema it uses to measure the
complexity of generalized quantifiers is built directly on the well-known Chomsky
hierarchy (Chomsky 1956):

regular ( context-free ( context-sensitive ( recursively enumerable

While this hierarchy still forms part of the core of formal language theory, the last 50
years of research have resulted in numerous refinements. Arguably the best-known
work along these lines is the search for a class between CFL and CSL that is suitable
for natural language syntax (see Huybregts 1984, Joshi 1985, Shieber 1985, Culy
1985, Radzinski 1991, Seki et al. 1991, Michaelis & Kracht 1997, Kobele 2006,
and references therein). But a very different enterprise has proven just as fruitful
for linguistics: the articulation of a subregular hierarchy (Schützenberger 1965,
McNaughton & Papert 1971, McNaugthon 1974, Simon 1975, Pin 1997, Ruiz et al.
1998). Rather than looking for more powerful classes beyond the realm of context-
freeness, this line of work extends the Chomsky hierarchy downwards to include
weaker classes. The monolithic class of regular languages is thus refined into an
articulate and very fine-grained hierarchy of subclasses.

Against the larger backdrop of the Chomsky hierarchy, the classes in the subreg-
ular hierarchy are extremely weak. Yet it is precisely this lack of expressivity that
has attracted the interest of computational linguists. In the last ten years, there has
been a torrent of papers that argue that phonology is subregular (see Heinz 2015,
Chandlee & Heinz 2016 and references therein). Subregularity has also been found
to play a central role in morphology (Aksënova et al. 2016, Chandlee 2016) and
syntax (Graf & Heinz 2015). One might suspect, then, that subregularity can be
detected in semantics, too, and this is exactly what I argue for in this paper.

If one follows the automata-theoretic approach in characterizing generalized
quantifiers via string languages that encode their truth conditions, it turns out that
almost all monomorphemic quantifiers are subregular. More precisely, these quanti-
fiers belong to the class of tier-based strictly local string languages (TSL; Heinz et al.
2011). TSL is a slightly enhanced variant of the n-gram models that are ubiquitous
in computational linguistics. In TSL, an n-gram model is combined with a function
that masks out specific symbols in a string so that non-adjacent segments can be
regarded as adjacent. The only typologically attested monomorphemic quantifiers
outside TSL are the proportionality quantifiers most and half. However, most has
been argued not to be monomorphemic (Hackl 2009), and it is unclear whether half
should be considered monomorphemic since its proportionality reading is limited to
fixed constructions such as half of the. Overall, then, it appears that membership in
TSL is a necessary property of monomorphemic quantifiers, and I conjecture that it
may even be a sufficient property when combined with a few additional restrictions.
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The paper proceeds as follows: I begin with a brief introduction to the automata-
theoretic view of type 〈1,1〉 quantifiers in Sec. 2 and prove that the quantifiers every
and no are much simpler than an even number of as only the former are strictly
local. Section 3 follows this up with an intuitive discussion of TSL and shows that
with the exception of most and half, monomorphemic quantifiers have TSL string
languages. I then argue in Sec. 4.1 that most and half can be excluded from the
class of monomorphemic quantifiers on principled grounds, so that the latter turns
out to be properly subsumed by the class of all TSL quantifiers. In an attempt to
arrive at an even tighter characterization, I demonstrate in Sec. 4.2 that a handful
of very natural restrictions on TSL are sufficient to limit it to exactly the class of
attested monomorphemic quantifiers. A formal proof is provided in Sec. 4.3. A few
remaining loose ends are discussed in Sec. 5, including the status of only (5.1) and
proportional many (5.2) as well as implications for the learnability of generalized
quantifiers (5.3).

2 Generalized Quantifiers as String Languages

In order to understand the relation between monomorphemic quantifiers and TSL
string languages, the reader first needs to know how generalized quantifiers can
be identified with specific string languages (2.1) and how string languages may
be classified according to their complexity. For the sake of exposition I focus on
only two language classes in this section, the strictly local languages and what I
call the refined strictly local languages, which are equivalent to the more familiar
regular languages (2.2). This bifurcation will be sufficient to demonstrate important
complexity differences between quantifiers that so far have all been conflated as
regular in the semantic automata tradition (2.3). But the distinction also greatly
simplifies the discussion of TSL as an extension of strict locality in Sec. 3.

2.1 From Quantifiers to Quantifier Languages

A generalized quantifier is a function that maps one or more relations to truth values.
In linguistics, the focus of research has been mostly on quantifiers of type 〈1〉
and 〈1,1〉. A type 〈1〉 quantifier maps a unary relation, i.e. a set, to a truth value.
Examples are everybody or nobody, but adverbs such as always may also be viewed
as type 〈1〉 quantifiers. Type 〈1,1〉 quantifiers, on the other hand, take two sets as
input and return a truth value. The prototypical quantifiers of English belong to
this category: every, some, and no. But among its members are also most, an even
number of, and numerals like five, at most five, and at least five. In the sentence at
most five dragons are chainsmokers, the 〈1,1〉 quantifier at most five takes the set of
dragons and the set of chainsmokers as its first and second argument, respectively,
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and returns true iff the intersection of the two sets contains at most five elements.
Due to the prominence of 〈1,1〉 quantifiers across natural languages, they are the
central object of study in generalized quantifier theory (another reason is that type
〈1〉 quantifiers may be regarded as a special case of type 〈1,1〉 quantifiers where the
first argument is fixed).

Given a type 〈1,1〉 quantifier Q and sets A and B, Q(A,B) will be either true
(= 1) or false (= 0), depending on the definition of Q. For example, every(A,B) is
true iff A⊆ B. So every cat is a mammal is true because the set of cats is a subset of
the set of mammals, wherefore every(cat,mammal) holds. On the other hand, no cat
is a mammal is false because no(A,B) holds iff A∩B = /0. The truth value of a 〈1,1〉
quantifier Q is thus contingent on the set relations that hold between A and B. For
natural language quantifiers, additional properties hold that ensure that the meaning
of a quantifier can be represented in terms of which members of A are members of
B. This is the key to studying them in terms of automata and string languages. The
basic idea is to convert the relation between A and B into a string of 0s and 1s so that
Q can be viewed as a formal language of such strings.

Given some arbitrary enumeration e of all the elements of A, f A
B is a total function

that converts e into a string over the alphabet {0,1}. Every element of A that also
belongs to B is replaced by 1, all others by 0. So with A := {a,b,c} and B := {a,d},
the enumeration e := bac of A would be rewritten as 010 by f A

B . For a more concrete
example, consider f A

B with A the set of all males and B the set of all US presidents
up to and including 2017. This function produces a string of length 45 where every
symbol is 1 because every member of the set of US presidents is also in the set of
male individuals. If B is the set of all humans, on the other hand, f produces a string
with approximately 7 billion symbols, about half of which are 0. The order of 0s and
1s in this string depends on the enumeration of humans and is thus arbitrary.

For any two (countably infinite) sets A and B, then, their relation is represented
by a (usually non-unique and possibly infinite) string over 0 and 1. I will call this a
binary string over A and B. A generalized quantifier Q, in turn, is equivalent to a
language L of binary strings. Throughout this paper, I refer to such sets of binary
strings as quantifier languages.1

Definition 1 (Binary Strings). Let A and B be two (countably infinite) sets, and E(A)
the smallest set of (possibly infinite) strings s over A such that every element of A
occurs exactly once in s. The total function f A

B maps each enumeration e ∈ E(A) to

1 Semantic automata theory usually assumes that all binary strings are finite because automata only
generate finite strings. But this is not a necessity. The theory of ω-automata (Perrin & Pin 2004), for
instance, allows for languages with infinite strings. More importantly, the grammar-based specification
adopted in this paper is completely agnostic about whether strings are finite or infinite, as long as
they are countably infinite.
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a (possibly infinite) string of 0s and 1s:

f A
B (e) :=


f A
B (a) · f A

B (e
′) if e = a · e′, and a ∈ A, and e′ is not the empty string

1 if e ∈ A∩B
0 otherwise

Here · denotes string concatenation. We call s a binary string of A under B iff there
is some e ∈ E(A) with s = f A

B (e).

Definition 2 (Quantifier Language). Let Q be a type 〈1,1〉 quantifier. Then its
quantifier language L(Q) is the unique set such that for all sets A and B and (possibly
infinite) binary string s of A under B, it holds that s ∈ L(Q) iff Q(A,B) is true.

Consider once more the case of every. Since every(A,B) is true iff A ⊆ B, a
binary string of A under B only contains 1s whenever every(A,B) holds. Conversely,
if every(A,B) is false there must be at least one a ∈ A that is not contained in B,
which implies that every binary string of A under B contains at least one 0. So a
binary string is in L(every) iff it only contains 1s. In other words, L(every) is the set
of all strings over the alphabet {1}, more succinctly denoted as 1∗.2 The same line
of reasoning shows that L(no) contains all and only those strings that contain no 1
(i.e. 0∗), while L(some) consists of exactly those strings with at least one 1.

Using |s|0 and |s|1 to denote the number of zeros and ones in a string s, respec-
tively, we can succinctly describe these languages:

Quantifier Language

every |s|0 = 0
no |s|1 = 0

some |s|1 ≥ 1

Note that these — and in fact all — quantifier languages are closed under permutation.
This follows immediately from the definitions above: a binary string of A under
B is built from any arbitrary enumeration of e of A, and the quantifier language
of a quantifier Q has to contain every binary string of A under B if Q(A,B) holds.
Permutation-closure will greatly simplify the discussion in Sec. 4.2 as to whether
every TSL quantifier language is instantiated by a monomorphemic quantifier in
some language.

Numerals are also easily described in terms of the required number of 0s and
1s. However, the string languages differ depending on whether the intended reading
establishes a lower bound, an upper bound, or an exact bound on numerosity.

2 The ∗-operator usually refers to the Kleene closure, which consists of all finite strings over a given
set. In this paper, I generalize this notation to also include all countably infinite strings.
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Quantifier Language

at least n |s|1 ≥ n
at most n |s|1 ≤ n
exactly n |s|1 = n

Other quantifiers have string languages for which the conditions are slightly trickier
to state.3

Quantifier Language

between m and n m≤ |s|1 ≤ n
an even number |s|1 mod 2 = 0

half |s|1 = |s|0
most |s|1 > |s|0

at least one third 3|s|1 ≥ |s|0 + |s|1

The fact that some quantifiers have simpler descriptions of their string languages
than others already suggests that certain complexity differences exist between them.
Formal language theory provides the tools to state this explicitly in computational
terms.

2.2 Two Formal Language Classes for Quantifiers

It is a well-known fact of generalized quantifier theory that proportional quantifiers
such as half, most, and at least one third are more complicated than the other
quantifiers discussed in the previous section. To establish the complexity split, it
suffices to show that the latter are definable in first-order logic whereas the former
are not. Formal language theory highlights the very same split, but couches it in
different terms: the non-proportional quantifiers like every, no and at least 5 have
regular quantifier languages, the proportional quantifiers do not.

Before we take a closer look at what it means for a language to be regular, it is
worth mentioning that the two views on the complexity split are not equivalent. Büchi
(1960) proved that a string language is regular iff it is definable in monadic second-
order logic, a proper extension of first-order logic. The logical characterization thus
gives us a tighter upper bound on the complexity of non-proportional quantifiers,

3 The definitions in the third table may be inadequate for statements about infinite sets, e.g. Most
natural numbers are not prime. Since the set of natural numbers and the set of prime numbers are
both countably infinite, the sentence would be false under the provided definition of most. Instead,
the sense seems to make a claim about the low likelihood that any random sample of natural numbers
will mostly consist of prime numbers. I do not explore this issue any further because it it arise only
with quantifiers that will turn out not to be subregular even when only finite sets are considered.
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whereas formal language theory pinpoints the lower bound of proportional quantifiers
more accurately:

non-proportional quantifiers < first-order logic < monadic second-order logic
monadic second-order logic = regular languages < proportional quantifiers

The correspondence between monadic second-order logic and regular languages is
not a fluke. Similar connections to logic exist for other formal language classes and
will be described in detail where appropriate.

Given the prominent status of regular languages in computer science, it is not
surprising that this class was quickly singled out as a major dividing line for the
complexity of quantifiers. But it is actually ill-suited to this purpose — despite their
low rank in the Chomsky hierarchy, regular languages are very expressive. Not only
are all the non-proportional quantifiers discussed so far regular, many unnatural
quantifiers are too. For example, the quantifier less than four or a multiple of three
has a regular quantifier language — this claim is not hard to establish but requires
some additional computational background.

Usually one would prove the regularity of a quantifier language by presenting
a finite-state automaton that recognize this language. But I will instead use refined
strictly local grammars to characterize regular languages because they are more
closely aligned with the TSL formalism that will dominate the rest of the paper (de-
pending on the reader’s computational background, refined strictly local grammars
may also be more intuitive than automata).

As is signaled prominently by their name, refined strictly local grammars are
an extension of strictly local grammars. A strictly local grammar is a finite set of
n-grams. Each n-gram represents a forbidden substring. The language generated by
a strictly local grammar contains all strings, and only those, that do not contain any
forbidden substrings. In linguistic parlance, strictly local grammars are a collection
of inviolable, locally bounded markedness constraints.

Definition 3 (n-gram). An n-gram over alphabet Σ is an element of Σn, i.e. a string
over Σ of length n. Given a string s over Σ, its set of n-grams contains all substrings
of s of length n and is denoted n-grams(s). For every such s, its n-augmented
counterpart ŝn :=on · s ·nn is obtained by adding n instances of the left and right
edge markers o and n to s. By assumption, o and n are distinguished symbols not
contained in Σ.

Definition 4. A strictly n-local grammar G over Σ is a finite (and possibly empty)
set of n-grams over the alphabet Σ∪{o,n}. The language of G is given by L(G) :=
{s | n-grams(ŝn−1)∩G = /0}. A string language L is strictly n-local only if there is
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some strictly n-local grammar G with L(G) = L. We say that L is strictly local iff it
is strictly n-local for some n≥ 0.

A brief remark is in order regarding the presentation of n-grams. According to
the definition, an n-gram is always exactly of length n, no longer and no shorter.
Strings are padded out with enough left and right edge markers to ensure that their
length is at least n. Often, though, it is convenient to shorten n-grams in the definition
of a strictly n-local grammar. For example, if a strictly 3-local grammar blocks the
empty string, it has to contain at least one of the trigrams oon and onn. Instead,
one can just use the bigram on given the implicit understanding that it must be
padded out to an equivalent trigram. I adopt this simpler notation throughout the
paper, which is of particular importance for Definition 6 in Sec. 4.2.

Let us now try to apply the notions above to some quantifier languages. Rather
than look immediately at the fairly complex case of less than four or a multiple of
three, it is prudent to start with some simpler, non-semantic examples from formal
language theory. Consider the language (ab)∗, which contains all strings that can
be built from zero or more iterations of ab: the empty string ε , ab, abab, and so on.
Among the illicit strings we find a, b, ba, aa, bb, aba, ababbab, and many more.
Using o and n to mark the left and right edge of a string, respectively, we can
characterize this language with a handful of markedness constraints.

Constraint Forbidden n-gram

Don’t start with b ob
Don’t end with a an
a never follows a aa
b never follows b bb

No member of (ab)∗ violates any of these constraints, and every string not belonging
to (ab)∗ violates at least one. Therefore the set {ob,an,aa,bb} forms a strictly
local grammar G that generates the language (ab)∗. Since G contains only bigrams
we also say that G is strictly 2-local.

Now consider the language (aa)∗, which is indirectly related to the quantifier an
even number of. This language contains the empty string ε , aa, aaaaa, aaaaaa, and
so on. In other words, it contains all strings of an even length, and only those. The
language is not generated by any strictly local grammar. A strictly local grammar
must only contain a finite number of n-grams, for some fixed n. Now pick some
string s in (aa)∗ whose length l is greater than n. Since s is in the language, the result
of adding one more a to s is an ill-formed string s′. Yet s and s′ contain exactly the
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same n-grams: oan−1, an, and an−1n.4 A grammar that does not generate s′ must
ban one of these n-grams. But then this grammar does not generate s, either. Since n
is arbitrary, this problem arises with every strictly local grammar. It follows that no
strictly local grammar generates (aa)∗.

Refined strictly local grammars, on the other hand, can generate (aa)∗. In a
refined strictly local grammar, strings are also annotated with a hidden alphabet
(which serves the same function as states in finite state automata). The n-grams of
a refined strictly local grammar reference this hidden alphabet to disallow certain
sequences. For (aa)∗, the grammar lists the following refined bigrams as forbidden:

e
oa

o
an

ee
aa

oo
aa

Intuitively, e and o are hidden symbols that keep track of whether the string contains
an even or an odd number of as up to and including the current position. The
forbidden refined bigrams ensure that a string must start with the hidden symbol o
and end with e, a requirement that can only be satisfied by strings of even length.

Let us first consider the well-formed string aa. There are four possible ways of
annotating this string with a hidden alphabet:

oe
aa

oo
aa

ee
aa

eo
aa

Only the first annotation scheme is licit because it does not contain any offending
refined bigram. The second string has o followed by o; in string three, e follows e;
and string four ends in o. All of these configurations are blocked by the grammar.
But even though only the first string constitutes a successful annotation, this is
sufficient to classify the string as well-formed. As long as we can find at least one
valid assignment of hidden symbols, the string will be generated by the grammar.

Now contrast this with the illicit string aaa. There are eight possible annotations,
but every single one of them necessarily involves an illicit refined bigram.

ooo
aaa

ooe
aaa

oeo
aaa

oee
aaa

eoo
aaa

eoe
aaa

eeo
aaa

eee
aaa

Since every logically possible annotation of aaa is blocked, the string is not generated
by the refined strictly local grammar.

I refrain from defining refined strictly local grammars in formal terms because
the complexity of the definition greatly outweighs the relevance of that class for this
paper. The important insight is that there are two classes of grammars, strictly local

4 Strictly speaking the set of n-grams consists of all strings of the form ouavnw, where u,v,w≥ 0 and
u+ v+w = n. This complication does not affect the validity of the argument but reduces the clarity
of exposition.

9



Graf

grammars and refined strictly local grammars. The latter are exactly as powerful as
finite-state automata and are thus capable of generating all regular languages (and
only those). Strictly local grammars are much weaker and can only generate strictly
local languages, which includes (ab)∗ but not (aa)∗. This split between strictly local
grammars on the one hand and refined strictly local on the other allows for a more
fine-grained characterization of the complexity of string languages. In the remainder
of this section, I demonstrate the usefulness of said split for quantifier languages.
Section 3 then argues that the distinctions are still too coarse and TSL is needed as
an intermediate class between strictly local and refined strictly local.

2.3 Examples of Strictly Local and Regular Quantifier Languages

With the basics of refined strictly local grammars in place, let us return to quantifier
languages and how many of them can be shown to be regular. The grammar for
(aa)∗ from the previous section is easily modified so that it generates the quantifier
language of an even number of. We now use e and o to keep track of the number of
1s rather than the number of symbols. The forbidden refined n-grams are a follows:

o
o0

e
o1

o
0n

o
1n

eo
00

oe
00

ee
01

oo
01

eo
10

oe
10

ee
11

oo
11

The n-grams ensure I) that the alternation between e and o proceeds as desired
depending on whether the current symbol is 0 or 1, and II) that only strings with e as
the final annotation are generated. A few illustrative examples of well-formed and
ill-formed binary strings are depicted below.

eoee
0110

eoeooe
011101

∗ eoeo
0111

∗ eoee
0111

Returning to our initial example of less than four or a multiple of three, we
can now show its quantifier language to be regular, too. However, the grammar is
much more complicated than anything we have seen so far (the grammar given
here treats less than as denoting strictly less than, which slightly simplifies things).
The hidden alphabet consists of 0, 1, 2, 30, 31, and 32. This is used to keep track
of the total number of 1s up to a threshold of 3, at which point counting switches
from absolute values to modulo 3. The grammar also contains many more forbidden
bigrams than any of the previous ones, and for this reason I use several notational
shorthands. First, ¬σ is a stand-in for any hidden symbol other than σ , and σ ¬σ
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denotes any sequence where the second hidden symbol does not match the first
one. Furthermore, σ ¬σ +1 represents any sequence of hidden symbols where the
second symbol is not the successor of the first one, according to the following order:
0 < 1 < 2 < 30 < 31 < 32 < 30 < 31 < 32 < 30 · · · .

¬0
o0

¬1
o1

31

0 n
31

1 n
32

0 n
32

1 n
σ ¬σ

0 0
σ ¬σ

1 0
σ ¬σ +1
0 1

σ ¬σ +1
1 1

Without the notational shorthands, this grammars has 134 refined bigrams. Annotated
examples of well-formed strings are shown below. The reader is invited to verify
that ill-formed strings like 11111 or 111011101 cannot be generated.

0
0

0 1 2 30

0 1 1 1
0 1 2 30 30 31 32 30

0 1 1 1 0 1 1 1

Let us consider one more example, the quantifier language for some. As the
complex less than four or a multipe of three has a regular quantifier language, it
is not surprising that some does, too. However, the grammar is much simpler and
forbids only a few refined n-grams.

1
o0

0
o1

0
0n

01
00

10
00

00
01

10
10

10
11

This grammar uses the hidden alphabet to keep track of whether at least one 1 occurs
in the string, which is sufficient for some.

Intuitively, it seems odd to say that some and less than four or a multiple of
three belong to the same class, whereas most or more than a third are more complex
because their quantifier languages are not regular. After all, some is not just simpler
than most and more than a third, it also appears much simpler than less than four
or a multiple of three. One reply to this observation is that some is indeed simpler
because its refined strictly local grammar is much smaller: instead of 134 bigrams, it
has only 8.

But such succinctness claims do not describe intrinsic properties of quantifier
languages, they are dependent on the formal machinery that generates these lan-
guages. Succinctness can vary a lot between different types of machinery — for
instance, formulas of monadic second-order logic can be much more succinct than
finite state automata, which in turn are more succinct than refined strictly local gram-
mars. So the difference we observe between some and less than four or a multiple of
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three may be much less pronounced with another description device. Suppose for
the sake of argument that we use monadic second-order logic with dedicated logical
operators <n and ×n for less than n and multiple of n, respectively, but without
the familiar first-order quantification. Then the quantifier language for less than
four or a multiple of three would be defined by <4 (1)∨×3(1), whereas L(some)
would correspond to ¬ <1 (1). Both descriptions are extremely succinct. In fact,
the formula for some (¬ <1 (1)) would be more complex than that for a multiple
of three (×3(1)). Artificial as the example may be, it illustrates that one should be
careful with succinctness claims in the absence of a firm, independently justified
basis for comparison.

It would be much more appealing if the intuitive contrast between some and
less than four or a multiple of three could be explained in the same manner as the
difference between some and most: the latter belongs to a more complex language
class. In fact, this is already possible for every and no. Their quantifier languages
aren’t just regular, they even belong to the much weaker class of strictly local
languages. For every, no binary string may contain any instance of 0. For no, on the
other hand, 1 must not occur in any string. This is expressed by the strictly 1-local
grammars {0} and {1}, respectively. These are the simplest non-trivial grammars
over the alphabet {0,1}.5 That every and no are strictly local conforms with the
intuition that they both are much simpler than less than four or a multiple of three,
which is regular but not strictly local.

It would be desirable to extend this kind of argument to some, but unfortunately
its quantifier language is not strictly local. Remember that L(some) consists of all
strings with at least one 1. The requirement for the presence of 1 cannot be translated
into a local ban against certain substrings, which is a prerequisite for describing it
with a strictly local grammar.

A formal proof is straight-forward. Consider any arbitrary string 0n10n ∈ L(some)
and contrast that with 0n /∈ L(some). All the n-grams of the latter are also part of
the former, so a strictly n-local grammar cannot block 0n without also incorrectly
blocking 0n10n. Since n is arbitrary, L(some) cannot be strictly local.

We see, then, that replacing the monolithic class of regular languages by the
hierarchy strictly local < regular is not enough to capture all apparent complexity
contrasts. While we do get a neat split with empty and no as strictly local and an
even number of or less than four or a multiple of three as regular, there is insufficient
room to properly accommodate quantifiers like some. In the next section, we will
see that there is a much more articulate hierarchy of regular string languages, with
strictly local at the bottom and regular at the top. Many natural language quantifiers

5 Only the empty grammar is even simpler, but this grammar generates every possible binary string.
In other words, the empty grammar generates {0,1}∗, the quantifier language of the tautological
quantifier >, where >(A,B) is true for every choice of A and B.
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can be found close to the bottom of the hierarchy, and in particular, all quantifiers
that can function as determiners and are widely believed to be monomorphemic are
captured by a minor extension of the strictly local grammars: TSL.

3 Subregular Quantifier Languages: Tier-Based Strict Locality

After their introduction in Chomsky (1956), it quickly became apparent that regular
languages are not the weakest conceivable class of string languages. The first results
along these lines are Schützenberger (1965) and McNaughton & Papert (1971), which
gave rise to an active research enterprise (see Pin 1997 for an extensive survey). The
result was the subregular hierarchy, which includes many classes besides the strictly
local languages we already encountered in the previous section. For a long time the
implications of the subregular hierarchy remained largely unexplored by theoretical
and computational linguists alike. But in recent years several researchers have
developed an interest in subregular languages with respect to animal communication
(Pullum & Rogers 2006, Rogers & Pullum 2011) and phonology (Heinz 2007, 2009,
2010a,b, 2014, 2015, Graf 2010, 2017, McMullin & Hansson 2015, McMullin 2016;
see also Bird 1995 and Potts & Pullum 2002 for early precursors). This perspective
proved so fruitful that it is now also being applied to morphology (Aksënova et al.
2016, Chandlee 2016) and syntax (Graf & Heinz 2015). The new-found interest
in subregular languages prompted several additions to the subregular hierarchy, an
up-to-date version of which is shown in Fig. 1.

Given the expansive nature of the subregular hierarchy, it is not feasible to
discuss all its language classes here (the interested reader is referred to Rogers &
Pullum 2011, Heinz 2015, and Graf 2017). Instead, I will focus on one particular
class that has already been found to play a central role in phonology, morphology,
and syntax: tier-based strictly local (TSL; Heinz et al. 2011). Like the refined
strictly local grammars, TSL grammars are a more powerful variant of strictly local
grammars. However, they are still much weaker than refined strictly local grammars.
Whereas those use an additional hidden alphabet for string annotations, a TSL
grammar combines a strictly local grammar with a mechanism for masking specific
non-adjacent symbols in the string adjacent via a tier.

Definition 5 (Tier-Based Strictly Local). A tier-based strictly local grammar G is a
pair 〈S,T 〉 where S is a strictly local grammar over a fixed alphabet Σ and T ⊆ Σ

is a tier alphabet. We say that G is tier-based strictly n-local (TSL-n) iff S is strictly
n-local (SL-n).
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Figure 1 The subregular as developed in Schützenberger (1965), McNaughton &
Papert (1971), McNaugthon (1974), Simon (1975), and Ruiz et al.
(1998), a.o., with recent extensions for computational phonology
(Rogers et al. 2010, Heinz et al. 2011, Graf 2017).

Given a string s over Σ, its T -tier T (s) is given by:

T (s) :=


T (u) ·T (s′) if u ∈ Σ and s = u · s′

s if s ∈ T
ε otherwise

The language generated by G is L(G) := {s ∈ Σ∗ | T (s) ∈ L(S)}, and a string set is
tier-based strictly local iff there is a tier-based strictly local grammar that generates
it.

Intuitively, a TSL grammar “masks out” all symbols in the string that do not
belong to the specified tier alphabet. If the remainder is well-formed with respect to
a given strictly local grammar, the whole string is considered well-formed. While
this ability to ignore certain parts of the string serves many purposes in phonology,
the main payoff for generalized quantifiers is the ability to do some limited counting.

Consider once more the quantifier language for some. As previously explained
in Sec. 2.3, this language is regular but not strictly local. However, L(some) is
TSL — the requirement that we have at least one 1 is satisfied iff masking out
all 0s does not produce the empty string. This translates into the TSL grammar
G := 〈{on} ,{1}〉. In phonological parlance, the grammar projects a 1-tier and
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requires said tier to be non-empty. The phonological conceptualization offers an
intuitive way of depicting the relevant contrast:

o 0 0 1 0 n

o 1 n

o 0 0 0 0 n

o n

The counting power of TSL grammars can be extended from some to any nu-
meral. For instance, replacing the bigram on by the 4-gram 1111 results in blocking
all strings with four or more 1s. In other words, this new grammar defines the
quantifier language for at most 3.

o 1 1 1 n

o 1 0 0 1 1 n

o 1 1 1 1 n

o 1 1 0 1 1 n

For at least 3, one has to forbid tiers with less than three 1s using the following set
of n-grams: {on,o1n,o11n}.

o 1 1 1 n

o 1 0 0 1 1 n

o 1 1 n

o 1 0 0 1 0 n

Adding the 4-gram 1111 to this set yields a TSL grammar that generates L(exactly 3).
If instead of 1111 we had added the 5-gram 11111, the resulting language would
have been L(between 3 and 4).

o 1 1 1 n

o 1 0 0 1 1 n

o 1 1 1 1 1 n

o 1 1 1 1 1 n

We see, then, that TSL is powerful enough to handle some as well as numerals and
related quantifiers.

Note that all these quantifiers are modeled by TSL grammars with tier alphabet
{1}. Instead of this tier alphabet, one could also have {0}, the empty set, and {0,1}.
Changing the tier alphabet to 0 allows for the expression of some other generalized
quantifiers.
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Grammar Quantifier
{on} not all

{on,00} all but one
{on,o0n,000} all but two

...

TSL grammars with an empty tier alphabet are useless, as this will always result in
an empty tier for every binary string. If the grammar blocks on, no binary strings
are allowed and we obtain the language /0 = L(⊥), where ⊥(A,B) is always false
irrespective of the choice of A and B. If, on the other hand, the grammar does not
block on on the tier, the generated language is {0,1}∗ = L(>), where >(A,B)
is true for every choice of A and B. Finally, a tier alphabet of {0,1} renders the
tier identical to the binary string it is projected from, and consequently such TSL
grammars are equivalent to strictly local grammars because they fail to exploit the
power of tier projection. As a welcome side-effect, this immediately establishes that
every strictly local quantifier language is also TSL, including L(every) and L(no).

Even though TSL accommodates a variety of quantifiers, there are still many
generalized quantifiers that are not TSL. Since every TSL language is also regular,
proportional quantifiers are not TSL by virtue of not being regular. Moreover, some
quantifiers are regular but not TSL. The most prominent example is an even number,
for reasons that are easy to verify.

Every proposed TSL-grammar for L(an even number) must have {1} as its tier
alphabet. Not projecting 1 makes it impossible to ensure that the binary string
contains an even number of 1s, whereas projecting both 0 and 1 reduces TSL
grammars to strictly local grammars, which we already know to be insufficient for
an even number. Assume, then, that only 1 is projected. In that case, well-formed
binary strings will have tiers of even length, whereas ill-formed binary strings have
tiers of odd length. But as we saw during the discussion of the string language (aa)∗

in Sec. 2.2, strictly local grammars cannot distinguish strings of even length from
those of odd length. Since every TSL grammar uses a strictly local grammar to
distinguish well-formed from ill-formed tiers, the quantifier language for an even
number simply cannot be TSL.

Putting all our findings together, we arrive at a more fine-grained view of quan-
tifier complexity, displayed in Tab. 1. The table makes it very clear that TSL en-
compasses most of the quantifiers that linguists are inclined to consider natural (as
opposed to more mathematical quantifiers like an even number). In the next section,
I argue that this is not a coincidence and that TSL plays a central role for natural
language quantifiers.
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strictly local < TSL < regular < context-free

every some an even number most
no not all half

at most n at least one third
at least n
exactly n

Table 1 Classification of natural language quantifiers by the complexity of their
quantifier languages

4 The TSL Nature of Monomorphemic Quantifiers

Our discussion so far has yielded a more refined classification of type 〈1,1〉 quanti-
fiers according to their automata-theoretic complexity. While this is a novel result, it
is not particularly useful in and of itself. In this section I argue that the subregular
hierarchy not only provides a more fine-grained classification of generalized quanti-
fiers, it also picks out natural classes. All monomorphemic quantifiers are TSL once
one excludes most and half (4.1), so TSL is an upper bound on the complexity of
non-proportional monomorphemic quantifiers. Since there are independent reasons
not to consider most and half as instances of monomorphemic quantifiers, one may
conjecture that all monomorphemic quantifiers in natural languages are TSL. In
fact, a few natural restrictions on TSL allow it to pick out exactly the class of all
monomorphemic quantifiers (4.2) modulo existential import.

4.1 All Monomorphemic Quantifiers are TSL

Based on articles from the Handbook of Quantifiers in Natural Language (Keenan &
Paperno 2012), Paperno (2011) presents a list of monomorphemic quantifiers sam-
pled from 13 languages: Adyghe, Basque, Garifuna, German, Hebrew, Hungarian,
Italian, Malagasy, Mandarin, Pima, Russian, Telugu, and Western Armenian. With
the exception of ‘one and a half‘ in Russian, this list does not contain any quantifiers
that aren’t also monomorphemic in English. If one puts aside temporal (always,
often) or inherently vague quantifiers (few, several, many), the remaining list consists
of every/all, no, some/one, most, half, and various numerals.

Except for the proportional quantifiers, all these quantifiers are TSL. While
this may seem like pure coincidence, the fact that many patterns in phonology,
morphology, and syntax have recently been shown to be TSL suggests that something
more profound may be at play.
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Conjecture 1. If a natural language contains a monomorphemic quantifier Q, then
L(Q) must be TSL.

Seeing how effortlessly TSL grammars captured a number of quantifiers in the
previous section, this conjecture may appear unambitious. But from the perspective
of formal language theory, TSL is a very small and weak fragment of the class of
regular languages. So the relative ease with which TSL can be applied to natural
language quantifiers only goes to show how simple many of them are.

That said, the conjecture is obviously threatened by the existence of at least two
apparent counterexamples in the form of most and half. One could point towards the
typological rarity of those quantifiers — in Paperno’s (2011) list, Telugu and Russian
are the only languages besides English with ‘most’ (homophonic with ‘many’),
and monomorphemic ‘half’, respectively. While this is certainly noteworthy and
may be the vantage point for a quantitative analysis correlating quantifier language
complexity with typological frequency, stronger arguments exist that preserve the
conjecture above as a universal rather than a statistical tendency. The crucial issue is
whether most and half qualify as monomorphemic quantifiers upon closer scrutiny.

Hackl (2009) presents a well-known analysis of most as the superlative of many.
Decomposing most in this fashion makes it easier to derive the difference in meaning
between John climbed most of the mountains and John climbed the most mountains.
Even though Hackl’s proposal has not been widely adopted in the generalized
quantifiers community, the two are far from incompatible. It is perfectly reasonable
to factor most into several components, the interaction of which yields the behavior
of the generalized quantifier most(A,B) iff |A∩B| > |A−B|. But crucially this
factorization no longer treats most as monomorphemic. Adopting Hackl’s analysis
of most thus has no major drawbacks for the enterprise of studying generalized
quantifiers yet it explains the otherwise mysterious placement of most outside TSL
and even the regular languages.

This leaves us with half, for which no decompositions analogous to Hackl (2009)
have been offered in the literature. The only tangible peculiarity of half is that it
cannot be used as a determiner in English or Russian, where it always requires
genitive marking on the noun, suggesting a different syntactic structure.

(1) a. half ∗(of the) men
b. polovina

half
čelovek∗(-a)
man-GEN

c. polčelovek∗(-a)
half.man-GEN

So if the term quantifier in the conjecture is taken to refer only to quantifiers that
function as determiners or numerals, half no longer constitutes a counterexample.
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Still, handwaving away a semantic counterexample via recourse to syntactic dis-
tinctions is unsatisfying. A proper semantic explanation would go much farther in
solidifying the empirical validity of the conjecture; hopefully one will be presented
in the near future.

The reader may still wonder why the TSL conjecture is appealing enough to war-
rant such an elaborate defense. After all, the subregular hierarchy in Fig. 1 furnishes
numerous classes, so maybe another one provides a better fit for monomorphemic
quantifiers. This is partially true. Among the classes that do not subsume TSL, the
locally threshold testable (LTT) languages — and only those — have comparable
empirical coverage to TSL. All other classes such as strictly piecewise and strictly
threshold testable fail even for basic quantifiers, e.g. some and at least n.

Between TSL and LTT, it is TSL that provides the better fit because it does not
overgenerate as much. A set of binary strings is LTT iff it can be defined in first-order
logic. For example, the quantifier language for between 3 and 5 is represented by the
following formula:

∃x1,x2,x3[
∧

1≤i≤3

1(xi)∧
∧

1≤i<3

xi 6= xi+1]∧¬
(
∃x1, . . . ,x6[

∧
1≤i≤6

1(xi)∧
∧

1≤i<6

xi 6= xi+1]
)

But the class of first-order definable quantifiers is clearly too large for natural lan-
guage. In first-order logic, one could define a quantifier Q such that Q(A,B) iff either
A contains exactly two elements or if at least five elements of A belong to B, then
ten elements of A do not belong to B. While such a quantifier can be paraphrased
in natural language, it certainly isn’t grammaticalized, let alone lexicalized as a
monomorphemic word. Not only does TSL avoid such cases of massive overgen-
eration, it can actually be restricted in a natural manner to generate only quantifier
languages of monomorphemic quantifiers.

4.2 (Almost) All TSL Quantifiers are Monomorphemic

Table 2 gives an overview of the quantifiers discussed in this paper. The strings
of their quantifier languages are described using the |s|i notation, which denotes
the number of occurrences of symbol i in string s. The table highlights that even if
TSL may be a necessary property for monomorphemic quantifiers (with the possible
exception of most and half ), it is not a sufficient one. No language has a monomor-
phemic equivalent of not all, all but n or between m and n, yet their quantifier
languages are TSL. But there are formal aspects of these quantifier languages that set
them apart from the rest so that a few natural restrictions on TSL suffice to narrow
down the class of definable quantifiers to exactly the monomorphemic ones. The
precise characterization depends on what exactly one takes to be the class of possible
monomorphemic quantifiers — several options are discussed below in an informal
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Quantifier String Condition Complexity Grammar
every |s|0 = 0 SL-1 {0} (T := {0,1})

no |s|1 = 0 SL-1 {1} (T := {0,1})
some |s|1 ≥ 1 TSL-2 {on}, T := {1}

not all |s|0 ≥ 1 TSL-2 {on}, T := {0}
(at least) n |s|1 ≥ n TSL-(n+1)

{
o1kn

}
k<n, T := {1}

(at most) n |s|1 ≤ n TSL-(n+1)
{

1n+1}, T := {1}
(exactly) n |s|1 = n TSL-(n+1)

{
1n+1,o1kn

}
k<n, T := {1}

between m and n m≤ |s|1 ≤ n TSL-(n+1)
{

1n+1,o1kn
}

k<m, T := {1}
all but n |s|0 = n TSL-(n+1)

{
0n+1,o0kn

}
k<n, T := {0}

an even number |s|1 = 2n,n≥ 0 regular
half |s|1 = |s|0 context-free
most |s|1 > |s|0 context-free

at least one third 3|s|1 ≥ |s|0 + |s|1 context-free

Table 2 String complexity for some generalized quantifiers in English

fashion, with Sec. 4.3 providing a rigorous summary of the different characteriza-
tions. All these characterizations, however, limit the set of possible tier alphabets
and require the TSL grammars to satisfy certain closure properties with respect to
the n-grams they contain.

Tier alphabet The first restriction concerns the tier alphabet. Let us temporarily
ignore every and no, which are strictly local and thus do not require any tier at all.
Among the remaining TSL quantifiers, not all and all but n stand out because they
require the tier alphabet to be {0} rather than {1} (recall the discussion towards
the end of Sec. 3). If for some reason {0} is not a licit tier alphabet, then these
quantifiers are no longer expected to have monomorphemic instantiations in any
natural languages. From the perspective of formal language theory, this restriction is
extremely ad hoc since 0 and 1 are just arbitrary symbols without special status. In the
case of binary string languages, however, the symbols do carry meaning: they encode
B-membership and B-non-membership, respectively. A tier alphabet of {0} gives
rise to a quantifier that prioritizes non-membership over membership. This seems
rather counterintuitive, and one might speculate that certain general preferences of
human cognition adjudicate against such an inverted notion of prominence. A tier
alphabet of {0,1}, on the other hand, is tantamount to having no tier at all and thus
conferring no special status to either 0 or 1. It appears, then, that monomorphemic
quantifiers across languages are such that either 0 and 1 have equal status or 1 is
more prominent than 0 (in other words, the tier alphabet must always contain 1).
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Excluding between and exactly Ruling out between m and n as a potential monomor-
phemic quantifier forces us to take less appealing steps. Close inspection of Tab. 2
reveals that it is impossible to block between m and n without also ruling out ex-
actly n. After all, exactly n is logically equivalent to between n and n. However,
removal of exactly n from the list of potential monomorphemic quantifiers is not
necessarily unwelcome. There is plenty of semantic and psycholinguistic evidence
that the semantic denotation of a numeral like four is at least four, with the exact
reading brought about by pragmatic strengthening. If we assume that exactly n is
not a viable denotation for numerals, then we can rule out the remaining undesired
quantifiers with a single restriction: the set of illicit tier n-grams must be of the form{
o1kn

}
k<n, n > 0. This also has the welcome benefit of ruling out monomorphemic

quantifiers with the meaning of “strictly less or strictly more than four”. Nonetheless
future work will have to further motivate this restriction if it is to prove more than a
technical trick.

Including vague quantifiers There is also an alternative way of dealing with
between m and n. The implicit assumption so far has been that this quantifier has no
monomorphemic instantiation. But vague quantifiers such as few, several, and many
can be viewed as lexicalized versions of between m and n where the values of m and
n are supplied by the context. Similarly, exactly n may be an instance of between
m and n where the context requires m = n. Or maybe semantics furnishes exactly n
as a reading of numerals without the help of pragmatics — any solution works for
our purposes as long as both between m and n and exactly n are either included in or
excluded from the class of monomorphemic quantifiers.

Excluding disjunctive quantifiers If between m and n and exactly n are included
in the set of monomorphemic quantifiers, a dedicated stipulation is required to ex-
clude “strictly less or strictly more than four” as a possible denotation for monomor-
phemic quantifiers: if o1nn is illicit, then so is o1n−1n. This amounts to a kind of
downwards closure requirement. Note that an analogues upwards closure require-
ment cannot be formulated. Such a condition would require a grammar to contain
o1nn whenever it contains o1n−1n. A TSL grammar can only contain a finite num-
ber of n-grams, whereas this closure property necessarily result in an infinite set. So
no TSL grammar can satisfy upwards closure. On the other hand, an upwards closure
requirement with respect to n-grams of the form 1n is redundant: any string with
1n+1 as a substring also has 1n as a substring and thus will be blocked by a grammar
with n-gram 1n. In a certain sense, then, TSL grammars already incorporate a kind
of upwards closure requirement, and downwards closure is simply its symmetric
counterpart.
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Excluding domain requirements There is one more case of overgeneration,
which arises when the tier alphabet is {0,1}, which is necessary for every and
no. Their respective quantifier languages are generated by the grammars {0} and
{1} over such tiers. Nothing so far prevents us to move from unigrams to larger
n-grams, in fact this is necessary to express the counting quantifiers at least n, at
most n, and exactly n as TSL grammars with the tier alphabet {1}. But with a tier
alphabet of {0,1}, moving beyond unigrams allows for highly unnatural quantifier
languages.

Consider the grammar G := {00,01,10,11}, which generates the set of all strings
whose length is at most 1. This set is permutation closed and thus a quantifier
language. The quantifier it encodes is at most one thing is an A, or more formally:
Q(A,B) iff |A|< 2. This is not a plausible meaning for a type 〈1,1〉 quantifier, let
alone a monomorphemic one. If one adds the bigram on to G, one instead obtains
the quantifier Q(A,B) iff |A|= 1. And the grammar {on,o1n} defines a quantifier
that requires A to contain more than two elements or at least one element that is not
a B. None of these may be part of a formal characterization of possible meanings of
monomorphemic quantifiers.

The central problem is that the ability to define minimum and maximum lengths
for strings is required for numerals, where the tier alphabet is {0,1}, but when
the tier alphabet is {0,1} this instead enforces size requirements on the domain A.
Admittedly this has the advantage that it becomes possible to capture existential
import by ruling out the empty string: the variant of every that presupposes a non-
empty domain of quantification is captured by the grammar {on,0}. But as we just
saw, this is a very limited use of the power that arbitrary n-grams afford. I do not have
an insightful explanation as to why counting is very productive over {1}-tiers but not
over tiers with alphabet {0,1}. At this point, this must be ruled out by stipulation: if
T := {0,1}, then G must be a unigram grammar. With this severe limitation, even
existential import becomes impossible to express, so one might relax it a bit to also
allow on as the only non-unigram.

While this stipulation is hardly insightful, it at least reduces the unavailability of
more complex strictly local quantifier languages to a well-established property of
natural language quantifiers: they do not pay attention to the size of the domain.

4.3 Formal Summary

The previous two sections have introduced a lot of conceivable scenarios for how
the class of monomormphemic quantifiers may be constituted and how TSL can
be restricted to generate only quantifier languages for members of this class. For
the sake of explicitness, let us once more summarize these conditions and how they
derive the posited range(s) of monomorphemic quantifiers.
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Definition 6. A TSL grammar G := 〈S,T 〉 over alphabet {0,1} is

• non-trivial iff G does not generate the empty language /0 or {0,1}∗;

• truth affine iff {1} ⊆ T ;

• domain agnostic iff T := {0,1} implies S⊆ {0,1,o,n};

• downward closed iff o1kn ∈ S implies o1k−1n ∈ S.

Theorem 1. Suppose L is permutation-closed and generated by a non-trivial, truth
affine, domain agnostic, downward closed TSL grammar over {0,1}. Then L is the
quantifier language for one of the following:

• every,

• no,

• some,

• at least n,

• at most n,

• exactly n,

• between m and n.

Proof. The theorem is established by enumeration all possible types of grammars
G := 〈S,T 〉 that meet the required conditions. We separate the cases by the choice
of T . We can immediately exclude T := {} and T := {0} because G is truth affine.

Case 1 T := {0,1}. In this case G behaves exactly like its strictly local grammar
S. Since S is domain agnostic, it may only contain unigrams. But since S is non-
trivial, it cannot contain o or n as this would imply L(G) = /0. Assume, then, that
S ⊆℘({0,1}). If S contains both 0 and 1, it blocks every string and L(G) = /0. If
S = /0, then L(G) = {0,1}∗. Neither is allowed because G is non-trivial. The only
possible values for S, then, are {0} and {1}. In those cases, G generates L(every)
and L(no), respectively.

Case 2 T := {1}. S cannot be empty as G must not generate {0,1}∗. Note that if
S contains 1k0,1k1,1k2, . . . ,1kn such that k0 < k1 < k2 < kn, all ki with i > 0 can be
removed without changing the language generated by G. Now suppose that S consists
only of 1k. Then G generates the quantifier language of at most k. On the other hand,
if S contains o1kn, then o1 jn is also a member of S for all 0≤ j ≤ k — otherwise,
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G would not be downward closed. Given such an S, G generates the quantifier
language of at least m, where m is the largest k such that o1kn ∈ S. If S contains
n-grams of both types, the generated language describes the quantifier exactly n or
between m and n (m≤ n holds because G does not generate the empty language).

This fully exhausts the range of possible grammars.

The class of monomorphemic quantifiers corresponds exactly to the list in the
theorem above if one regards many and few as context-dependent instantiations of
between m and n, includes exactly n as a basic meaning of numerals rather than
a pragmatically derived one, and ignores existential import. If between m and n
and exactly n are to be excluded from the list of monomorphemic quantifiers, an
additional property is needed.

Definition 7. A TSL grammar G := 〈S,T 〉 over alphabet {0,1} is unidirectional iff
either S ( {o}×{0,1}∗×{n} or S ( {0,1}∗.

Unidirectional quantifiers only establish upper bounds (at most n) or lower bounds
(at least n), but not both.

These additional restrictions on TSL grammars also prompt a strengthened
version of Conjecture 1:

Conjecture 2. If a natural language contains a monomorphemic quantifier Q, then
L(Q) is generated by a TSL grammar that is

• non-trivial, and

• truth affine, and

• domain agnostic, and

• downward closed and/or unidirectional.

The mathematical aspects of Theorem 1 and Conjecture 2 are on solid ground.
The contentious issue is what quantifiers one takes to be monomorphemic. Any one of
the proposed classification schemes may ultimately turn out to be untenable, but even
then the consequences would not be devastating. The conditions on TSL grammars
would need to be altered, and there may be some monomorphemic quantifiers that
exceed the expressivity of TSL. Nonetheless TSL is a very weak subclass of the
regular languages that can easily accommodate a large number of natural language
quantifiers. What more, most TSL grammars over binary strings define fairly simple
and natural quantifiers, and a small number of intuitively pleasing restrictions narrow
the range of TSL to at least a majority of monomorphemic quantifiers. All of
this demonstrates that the subregular approach to generalized quantifiers provides
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interesting new insights and a strong basis for future research, some facets of which
I briefly outline in the next and final section.

5 Discussion and Open Ends

5.1 The Status of Only

Throughout the paper I implicitly adopted the received view that the set of monomor-
phemic quantifiers does not include only. In contrast to monomorphemic quantifiers,
only is not conservative. Whereas every(A,B) is true iff every(A,A∩ B) is true,
only(A,B) may be false while only(A,A∩B) holds. This is illustrated by the follow-
ing contrast:

(2) a. Every boy sleeps.
b. Every boy is a boy who sleeps.

(3) a. Only boys sleep.
b. Only boys are boys who sleep.

In addition, only is usually analyzed as some kind of adverbial marker rather than
a determiner. So if one only considers generalized quantifiers that are determiners,
only is excluded for the same reason as half.

Nevertheless only can be studied from the perspective of quantifier languages.
The two examples below are logically equivalent, which shows that only has a
meaning similar to all:

(4) a. Only professors attended the ceremony.
b. All ceremony attendants were professors.

The difference is that all(A,B) holds iff A⊆ B, whereas only(A,B) is true iff B⊆ A.
So all and only only differ in the directionality of the subset relation. Suppose for
the sake of argument that all is defined over binary strings of A under B, whereas
only is stated with respect to binary strings of B under A. In other words, the binary
strings for all and only are computed by f A

B and f B
A , respectively. In this case, the

different subset relations turn into exactly the same string condition: no string may
contain any 0s. Consequently, L(all) = L(only). From a computational perspective,
the existence of only would then be entirely unsurprising since there is no reason
why binary strings should have to be computed by f A

B instead of f B
A .

However, this raises the question whether other quantifiers have comparable
counterparts that operate with f B

A rather than f A
B . To some extent that seems to be

the case. A comparable reversal also takes place when only occurs with numerals,
although multiple readings are available in these cases.
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(5) a. Only five professors attended the ceremony.
b. Exactly five ceremony attendants were professors.
c. All ceremony attendants were professors, of which there were exactly

five.

The paraphrase in (5b) shows once again the switch between A and B. While Ex-
actly five professors attended the ceremony corresponds to exactly five(A,B), (5b) is
equivalent to exactly five(B,A). The reading in (5c) is more involved, but reversal is
visible if one contrasts it with a more verbose version of (5a):

(6) a. Only professors attended the ceremony, and it was only five professors
that attended the ceremony.

b. All ceremony attendants were professors, and exactly five ceremony
attendants were professors.

Here once again the reversal of A and B is evident. An integral component of only,
then, is to indicate a switch from f A

B to f B
A .

Of course this still fails to address many essential issues. Why is five strengthened
to exactly five? Why is there no language where f B

A is the basic function and usage
of f A

B must be explictly indicated by a dedicated marker ynlo, the opposite of only?
And why is only(A,B) the analogue of every(A,B) rather than, say, some(A,B)? The
subregular perspective offers a tentative answer at least to the last question: it is
reasonable to regard L(every) as the simplest quantifier language, and it is intuitively
appealing that only would be based on the simplest case. The reader might not
find these speculations convincing, but this does not affect the main point: a very
minor change in the definition, namely the switch from f A

B to f B
A , greatly opens

up the subregular approach without losing the core insights of this paper. A better
computational understanding of f A

B and f B
A may be all that is needed for a unified

treatment of only and the standard monomorphemic quantifiers.

5.2 Proportional many

The claim that all quantifiers that are monomorphemic and act as determiners have
TSL quantifier languages rests on the assumption that no attested proportional
quantifiers fall into this class of quantifiers. For most, the argument is that it is
morphologically complex and thus not monomorphemic (Hackl 2009). Another
problematic case is half, which is excluded on the basis that it is not a determiner.
But this does not fully exhaust the set of potential counterexample because many
also admits a proportional reading.6

6 I am indebted to Lucas Champollion for bringing this to my attention.
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Consider the sentence below.

(7) Many actors are attractive.

Under the cardinal reading, ((7)) asserts that there is a large number of actors that
are attractive. But one could also interpret ((7)) such that the ratio of attractive to
unattractive actors is high. Since there is no reason to doubt that many is both a
determiner and monomorphemic, the availability of a proportional reading conflicts
with the conjecture that such quantifiers must have TSL quantifier languages.

But proportional many is not necessarily at odds with the TSL conjecture, as it
depends on what one takes to be the cognitively central aspect of a quantifier. If one
takes quantifiers to refer to different semantic objects, then the ambiguity of many is
due to there being two quantifiers Q and Q′ that just happen to both be pronounced
many. However, if one takes the morphological word as the central object, then many
is a single quantifier with multiple possible interpretations. Under the first view,
the existence of proportional many contradicts the TSL conjecture. But the second
view allows us to reinterpret the TSL conjecture as a condition on the make-up of
monomorphemic quantifiers such that they must have at least one reading that is
sufficiently simple to be TSL.

5.3 Learnability

One of the most important questions about generalized quantifiers is how their
meaning can be acquired from linguistic input (see e.g. Paperno 2011). The semantic
automata approach provides an immediate attack vector for this problem because the
learnability of string languages is an intensely studied research area. With respect to
the subregular hierarchy, it is known that even the class of strictly local languages
at the very bottom of the hierarchy is not learnable in the limit from positive text.
The proof is a simple corollary of Gold’s (1967) theorem that no language class
that contains all finite languages and at least one infinite language can be learned in
this paradigm. It is not particularly hard to extend this proof to the restricted case
of permutation-closed string languages. At face value, then, none of the quantifier
languages discussed in this paper are learnable in the limit from positive text.

However, some learnability results do hold after all. First, we now know that every
and no have strictly 1-local quantifier languages and, more importantly, these are
the only permutation-closed, non-trivial strictly local string languages generated by
domain agnostic grammars. This leaves only two strictly local quantifier languages:
1∗ (every) and 0∗ (no). This class is learnable by virtue of being finite, but beyond
that it is also efficiently learnable since each language can be inferred from at most
one string in the input:
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Language Required Input Strings

1∗ any member of 1+

0∗ any member of 0+

The fact that every finite class of languages is learnable also implies that the TSL
quantifier languages are learnable as long as one puts an upper bound on the length
of n-grams. However, this is too strong an assumption because a speaker who grasps
the concept of at least n does so for every n. Unfortunately, the class of at least n
quantifier languages, even considered in isolation, is not learnable in the limit from
text. This time, non-learnability is a corollary of Angluin’s (1980) subset theorem.
Without further research, then, we only have a choice between positing an upper
bound on the size of n-grams in order to obtain a trivial learnability result, or to shun
such an upper bound at the prize of a rather uninformative non-learnability result.

That said, not all finite classes are the same with respect to learnability even
though they are all learnable. Some finite classes are efficiently learnable because
they still display some internal regularity, whereas others are too random for mean-
ingful generalization from very little input. Every subclass of TSL that is limited to
n-grams of a fixed size is an instance of so-called string-extension classes (Heinz
2010b, Kasprzik & Kötzing 2010, Heinz et al. 2012), and those are efficiently
learnable. So the commitment to an upper bound for counting quantifiers may be
unappealing, but it nonetheless reveals that natural language quantifiers contain a lot
of internal regularity that can be exploited by learning algorithms.

Of course there are many other paradigms besides learning in the limit from
positive text, e.g. PAC learning (Valiant 1984), which is explored for quantifiers in
Paperno (2011). The advantage of studying quantifiers from a subregular perspective
is that any learning paradigm that was developed for string languages can be extended
to quantifiers, and that subregular classes are particularly easy to study this way
thanks to their simplicity.

5.4 Connections to Existing Work

Quantification in natural languages is not limited to individuals, it also includes
quantification over possible worlds, events, and points in time. The latter is of
particular interest as it intersects with ongoing work by Fernando (2011, 2015,
and references therein). Fernando represents time via strings of events and then
associates temporal operators with specific string languages in a fashion that is very
similar to how the semantic automata approach relates quantifiers to sets of binary
strings. He then provides a finite-state calculus for composing the meaning of these
operators. Unfortunately, the calculus relies on many closure properties of regular
languages that do not hold for any of the weaker classes, e.g. closure under union,
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complement, and concatenation. This makes it very hard to judge whether the power
of regular languages is fully utilized. I conjecture that first-order logic is sufficient
to describe the calculus, in which case Fernando’s string languages would be at
most star-free (the second highest class in the subregular hierarchy, see Fig. 1). The
relevant conditions may even be in the intersection closure of TSL, a class that is
also needed for selected phenomena in phonology according to De Santo (2017).

A very different issue is the psychological reality of the computational differences
established in this paper. As discussed in Steinert-Threlkeld & Icard (2013), there
is some evidence for complexity differences between quantifiers. If the automaton
computing a quantifier language consumes a large amount of memory, this can
be detected in neuro-linguistic experiments (McMillan et al. 2005). Whether one
equates processing difficulty with memory usage or the place in the subregular
hierarchy leads to different predictions. It would be interesting to see whether the
predictions of the subregular perspective can be reconciled with the neuro-linguistic
evidence, and whether different experimental paradigms such as self-paced reading
or eye-tracking confirm the neuro-linguistic measurements.

6 Conclusion

This paper has extended the semantic automata perspective of generalized quantifiers
beyond the familiar classes of the Chomsky hierarchy by considering the subregular
complexity of quantifier languages. Many natural language quantifiers turned out to
be very weak and occupy a place close to the bottom of the subregular hierarchy. In
particular, every and no are simpler than some and not all, which in turn are simpler
than numerals. All of these quantifiers belong to the class of tier-based strictly local
languages, which also plays an important role in phonology, morphology, and syntax.
This class excludes more complex quantifiers such as an even number, most, or at
least one third.

The importance of tier-based strict locality is given additional support by its
close correspondence to the set of monomorphemic quantifiers. With the exception
of most, half and possibly only, all monomorphemic quantifiers can be defined by
tier-based strictly local grammars. In addition, a few natural restrictions on these
grammars limit them to exactly the class of attested monomorphemic quantifiers.
Replacing the monolithic class of regular languages by a fine-grained hierarchy
thus has made it possible to put an explicit and very tight upper bound on the
power of monomorphemic quantifiers, decisively separating them from other natural
language quantifiers. The relative ease with which these results were obtained
suggests that other aspects of semantics may also be fruitfully studied from a
subregular perspective.
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