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Abstract. The first dated phylogeny of the weevil subfamily Cryptorhynchinae is pre-
sented within a framework of Curculionoidea. The inferred pattern and timing of weevil
family relationships are generally congruent with previous studies, but our data are the
first to suggest a highly supported sister-group relationship between Attelabidae and
Belidae. Our biogeographical inferences suggest that Cryptorhynchinae s.s. originated
in the Late Cretaceous (c. 86 Ma) in South America. Within the ‘Acalles group’ and the
‘Cryptorhynchus group’, several independent dispersal events to the Western Palaearctic
via the Nearctic occurred in the Late Cretaceous and Early Paleogene. A second southern
route via Antarctica may have facilitated the colonization of Australia in the Late Creta-
ceous (c. 82 Ma), where a diverse Indo-Australian clade probably emerged c. 73 Ma. In
the Early Eocene (c. 50–55 Ma), several clades independently dispersed from Australia
to proto-New Guinea, i.e. the tribe Arachnopodini s.l., the ‘Rhynchodes group’ and the
genus Trigonopterus. New Zealand was first colonized in the Late Palaeocene (c. 60 Ma).
Divergence time estimations and biogeographical reconstructions indicate that the col-
onization of New Guinea is older than expected from current geological reconstructions
of the region.

Introduction

With c. 400 000 described species, beetles are the most
species-rich group of known animals. Understanding the
mechanisms that govern the assembly of such an astonishing
diversity is therefore of great significance. Yet the evolution of
many major beetle groups remains little explored due to a lack
of fossil-based dated phylogenies. For the economically impor-
tant and evolutionarily interesting weevils (Curculionoidea),
only few studies have attempted to provide sound temporal
estimations of divergence times at higher taxonomic ranks (e.g.
McKenna et al., 2009; Gunter et al., 2016; Shin et al., 2018).
Delimitation of many larger weevil subfamilies and tribes is
often ambiguous, and current classifications are mainly based
on ad hoc decisions rather than phylogenetic reconstructions
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(Oberprieler et al., 2007, 2014). This often hampers the com-
pilation of reliable datasets to estimate divergence times and,
consequently, comprehensive phylogenetic reconstructions and
divergence dating are restricted to few well-defined weevil
subfamilies, such as Platypodinae (Jordal et al., 2011; Jordal,
2015), Apioninae (Winter et al., 2017), and Ceutorhynchinae
(Letsch et al., 2018). Another challenge for weevil dating is
the choice of reliable fossil calibrations. Weevil fossils are
legion, but many of these cannot be assigned to extant weevil
families or subfamilies without contention. Legalov (2012)
compiled an overview of weevil fossils from the Mesozoic,
with several recent updates (Legalov, 2014a, 2014b). However,
the assignment of many of these fossils to extant families is still
questionable and under debate (e.g. Oberprieler et al., 2014;
Gunter et al., 2016), leaving only a handful of suitable fossils
to use in divergence time dating analyses.

Cryptorhynchinae (hidden snout weevils) are one of the most
diverse groups of Curculionidae, themselves one of the two
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most species-rich families on Earth (Grebennikov & Newton,
2009). They share a unique morphological feature that distin-
guishes them from most other weevil groups. As a defensive
pose, they retract their rostrum into a canal formed by pro-
and mesosternal structures while their legs are usually folded
in a ventral position. Thus, feigning death, they often simulate
natural objects, such as seeds, small stones or twigs (Lyal, 1993;
van de Kamp et al., 2014).

The most comprehensive approach to address the phylogenetic
relationships of Cryptorhynchinae included 105 ingroup genera
representing all geographic regions (Riedel et al., 2016). This
study tested the monophyly of Cryptorhynchinae and revealed
a monophyletic Cryptorhynchinae s.s., excluding the tribes
Aedemonini and Camptorhinini. The taxonomic status and
classification of Cryptorhynchinae are under discussion because
their main character of morphological identification, i.e. a rostral
furrow combined with a mesosternal receptacle, is prone to
convergence (Lyal, 2014; Riedel et al., 2016). The choice of
uniting them within the polyphyletic subfamily ‘Molytinae’
(Oberprieler et al., 2007; Lyal, 2014) hardly improved the
situation.

Taxonomic diversity of Cryptorhynchinae peaks in the Aus-
tralian and Neotropical regions, followed by the Pacific Islands,
and then the Oriental and the Holarctic regions. Cryptorhynchi-
nae (s.s.) appear largely absent from the Afrotropics, where
they seem to be replaced by the tribe Aedemonini (Molyti-
nae). Even small isolated islands may host substantial radi-
ations (Paulay, 1985). Based on the high percentage of new
species added by recent taxonomic revisions, a total of > 15 000
Cryptorhynchinae species can be anticipated (e.g. Eberle et al.,
2012; Setliff, 2012; Tänzler et al., 2012; Riedel et al., 2013,
2014; Luna-Cozar et al., 2014; Riedel & Narakusumo, 2019).
Recent studies on the Western Palaearctic Cryptorhynchinae of
the Acalles group (Astrin & Stüben, 2008; Astrin et al., 2012)
and the Indo-Australian genus Trigonopterus Fauvel (Tänzler
et al., 2014, 2016; Toussaint et al., 2017b) provided insights into
their evolution, but the systematics and evolution of the highly
diverse South American and Indo-Australian faunas remain
largely unexplored. Many species and genera of the litter fauna
are still undescribed, while the relationships and composition of
major groups are in equal need of study.

The current classification of Cryptorhynchinae s.s. is more
than problematic: as most of the established tribes and subtribes,
such as Gasterocercini, Tylodina and Mecistostylina, appear
to be polyphyletic, Riedel et al. (2016) advocated for the
use of Cryptorhynchinae s.s. without any subcategories. Some
biogeographically defined groups appeared highly supported,
i.e. a large Indo-Australian clade or a smaller clade comprising
the majority of the New Zealand fauna, but these cannot be
named formally unless a larger portion of the existing genera
can be assigned and/or characters are identified that allow their
morphological diagnosis.

Estimates of reliable divergence times of major groups of
Cryptorhynchinae are still missing. However, methods inferring
the potentially differential diversification among clades, i.e. spe-
ciation and extinction over space and time, or the impact of spe-
cific traits (e.g. lifestyle features, morphological characters or

geographical distributions) as driving forces on diversification,
rely on the analyses of dated phylogenetic trees sufficiently rep-
resenting the species richness of focal clades (e.g. Morlon, 2014;
Ng & Smith, 2014; Maddison & FitzJohn, 2015; Rabosky &
Goldberg, 2015). Studies such as the ones focusing on the evolu-
tionary history of the extremely diverse Trigonopterus, possibly
with > 1000 species in New Guinea alone, also depend on sound
estimates of their evolutionary age. Thus, the retrieval of a robust
maximum age for Trigonopterus is one goal of the present study.
As the sister group of Trigonopterus remains unknown but is
presumably found among the wingless genera of Cryptorhyn-
chini, i.e. ‘Tylodina’, we tried to include as many lineages of
them as possible. A large portion of these edaphic species is still
undescribed, even at genus level, which leads to an unusually
high number of unidentified taxa contained in the dataset. In
some cases, taxonomic problems preclude a robust identifica-
tion (Riedel, 2017). Arachnobas Boisduval is a peculiar genus
recently recognized as belonging to the Indo-Australian clade
of Cryptorhynchinae (Riedel et al., 2016). It is endemic to the
Papuan region and absent from Australia, and thus a likely can-
didate of a radiation confined to New Guinea or a Proto-New
Guinea insular setting. As such, it may have a similar history of
diversification as Trigonopterus and, in combination, both taxa
may provide insights into the biogeographic history of this area.

The goals of the present study are to present a robust phy-
logeny of Cryptorhynchinae with comprehensive taxon sam-
pling of Cryptorhynchinae s.s. from all major geographic
regions (this forms the basis for a revised classification) and to
generate reliable divergence time estimates and historical bio-
geography of major clades within the group.

Materials and methods

Taxon sampling

The dataset of Riedel et al. (2016) is used here in part: some
species representing Aedemonini, Camptorhinini, Cleogonini
and Ithyporini (Cryptorhynchinae s.l.) have been deleted as rela-
tionships among ‘Molytinae’ are outside the scope of this study.
A considerable number of additional Cryptorhynchinae s.s.
(112 species) and outgroups representing other weevil families
(41 species) have been added. We included representatives of all
weevil families, i.e. Cimberididae (two species), Nemonychi-
dae (two species), Anthribidae (seven species), Attelabidae (six
species), Belidae (seven species), Caridae (one species), and
Brentidae (16 species) and important subfamilies of Curculion-
idae, e.g. Bagoinae (one species), Hyperinae (one species),
Platypodinae (two species) and Scolytinae (two species).
Sequences were retrieved from either GenBank, or the Barcode
Of Life Database (BOLD; Ratnasingham & Hebert, 2007).

Genomic DNA of 123 additional specimens were extracted
nondestructively (Riedel et al., 2010) using the DNeasy
(Qiagen, Hilden, Germany) and NucleoSpin 96 Tissue kits
(Macherey-Nagel, Düren, Germany). Primers and PCR con-
ditions principally follow Toussaint et al. (2017b). In total,
the dataset consisted of the mitochondrial 16S and the
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nuclear 18S and 28S ribosomal RNA genes, as well as the
protein-coding genes cytochrome c oxidase subunit 1 (COI),
arginine kinase (ArgK), carbamoyl-phosphate synthetase 2
(CAD), elongation-factor 1 alpha (EF1𝛼) and enolase (EN). For
an overview of samples, markers, and accession numbers, see
Appendix S1.

Phylogenetic analyses

Alignment procedures for all protein-coding and ribosomal
RNA genes were separately conducted with the online ver-
sion of the program mafft v.7.409 (Katoh & Standley, 2013;
Katoh et al., 2017), applying the automatic method search
(protein-coding genes, FFT-NS-1 method; rRNA genes, L-INS-i
method). Alignments of ribosomal RNA genes are challenging,
as positional homology of variable regions is hard to obtain. We
therefore excluded ambiguous positions in all ribosomal RNA
alignments with the software aliscore v.2.0 (Misof & Misof,
2009). The alignments of all genes were subsequently assembled
using the software FASCONCAT v.1.0 (Kück & Meusemann,
2010). Codon positions of each protein-coding gene, as well as
each ribosomal RNA gene were defined as distinct partitions a
priori. This resulted in a dataset comprising 5690 nucleotides
and 18 partitions.

We used modelfinder as implemented in iq-tree v.1.6.10
(Nguyen et al., 2015; Chernomor et al., 2016; Kalyaanamoor-
thy et al., 2017) to find the best-fitting partitioning and model
scheme. Due to small partitions, we deliberately refrained
from using the free-rate model approach in iq-tree (B. Q.
Minh, personal communication), and also restricted the model
search solely to those models supported by the Bayesian infer-
ence (BI) software package beast (Drummond et al., 2012)
for both maximum likelihood (ML) and BI analyses. For
ML tree reconstruction analyses, we used iq-tree v.1.6.10.
Based on the detected partition-model scheme, we performed
100 independent tree searches with a random start tree and
decreased perturbation strength (−pers 0.2). All analyses were
run with edge-proportional partition models (−spp). Nodal
support was assessed using 1000 ultrafast bootstrap repli-
cates (UFBoot; Minh et al., 2013), with the ‘bnni’ option to
reduce the risk of overestimating branch support (Hoang et al.,
2018), and an increased maximum number of iterations to stop

(−nm 10 000). Additionally, we also performed 1000 replicates
of the Shimodaira–Hasegawa-like approximate likelihood ratio
test (SH-aLRT, Guindon et al., 2010).

Divergence time estimation

Divergence times were estimated in a Bayesian Markov
chain Monte Carlo (MCMC) framework, using the software
beast v.1.10.2 (Lemey et al., 2018). For all beast analyses
we used the topology from the best ML tree obtained by
iq-tree as starting tree and constrained the monophyly of
all families, except Anthribidae, which was polyphyletic in
the ML analyses. Instead we constrained the monophyly of
Urodontinae and Anthribinae. Each analysis was run for 125
million generations (sampling every 10 000 generations). The
number of generations discarded as burn-in was based on
the examination of posterior distributions in tracer v.1.7.1
(Rambaut et al., 2014). Post burn-in samples were combined
across runs to summarize parameter estimates and used to
generate a maximum clade credibility (MCC) tree with median
node heights using treeannotator v.1.10.2 (Lemey et al.,
2018).

To test the impact of different tree priors, clock model parti-
tioning, fossil calibration schemes, and fossil calibration prior
densities on the age estimations of Cryptorhynchinae, we con-
ducted eight independent MCMC analyses (Table 1). In a first
setup (C0), we compared different tree models, i.e. diversifica-
tion process priors, using either a Yule (pure-birth) tree prior
(C01, C05) or a birth-death model (BD) prior (C02, C06). The
partitioning scheme and models of nucleotide substitution were
the same as for the ML analyses. For the clock model priors, we
used the uncorrelated lognormal relaxed-clock (UCLN) model
(Drummond et al., 2006). In the different analyses, the clock
models were either linked (C01, C02) or unlinked (C05, C06)
among the partitions. To test the fit of different parameter set-
tings, we used Bayes factors (BFs), obtained by marginal like-
lihood estimations (MLEs) of all four analyses, using the path
sampling (PS) and stepping-stone sampling (SS) methods in
beast with default parameter settings (Baele et al., 2012). Using
the resulting best model scheme, we ran additional analyses with
the fossil calibration schemes described in the following.

To calibrate the relaxed clocks in beast, we followed the
calibration schemes used in Shin et al. (2018). As our ML

Table 1. Results of beast model tests

No. Code Clock Tree Fossils Prior PS BF SS BF

1 C01 UCLN1 Yule 2 uni −335 444.44 2125.09 −335 461.85 2069.93
2 C02 UCLN1 BD 2 uni −335 442.33 2120.88 −335 455.94 2058.12
3 C05a UCLN13 Yule 2 uni −334 389.32 14.85 −334 426.88 –
4 C06 UCLN13 BD 2 uni −334 381.89 – −334 428.95 4.13
5 C11 UCLN13 BD 3a uni −334 429.98 96.17 −334 459.70 65.62
6 C13a UCLN13 BD 3a exp −334 443.97 124.14 −334 494.74 135.72
7 C21 UCLN13 BD 3b uni −334 468.74 173.69 −334 506.36 158.95
8 C23 UCLN13 BD 3b exp −334 485.30 206.80 −334 523.76 193.74

aRuns not converged. PS, path sampling; BF, Bayes factor; SS, stepping-stone sampling; BD, birth-death model.
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Table 2. Fossils used for calibration

No. Node Fossil taxon Formation/strata
Minimum
age (Ma) Reference documenting fossil

1 Curculionoidea (crown) Archaeorrhynchus and Eobelus Kazakhstan, Karabastau Formation 151.0 Arnoldi (1977)
2 Curculionidae (stem) Arariperhinus monnei Brazil, Crato Formation 113.0 Santos et al. (2011)
3 Brentidae (crown) Orapaeus cretaceus Botswana, Orapa Kimberlite 87.4 Kuschel (1994)
4 Entiminae (stem) Polydrusus Europe, Baltic amber 37.8 Yunakov & Kirejtshuk (2011)
4a Entiminae (stem) Dorotheus guidensis Chile, Dorotea Formation 66.0 Kuschel (1959)

tree reconstruction results differ slightly from those of Shin
et al. (2018), we only applied compatible fossil calibrations
(Table 2). Similar to Shin et al. (2018), we tested the effect
of two alternative fossils for Entiminae, using three different
fossil-calibrating schemes: C0, no Entiminae fossil; C1, includ-
ing the supposed oldest Entiminae fossil of the genus Dorotheus
(Kuschel, 1959); C2, including a younger Entiminae fossil of
the genus Polydrusus (Yunakov & Kirejtshuk, 2011). To con-
sider a potential impact of the fossil calibration prior densities
on the divergence dating analyses, we independently applied
exponential and uniform calibration priors (Ho & Phillips,
2009). Uniform prior estimates were applied with a hard lower
bound provided by the minimum age of particular fossil layer
intervals (Table 2). The hard upper bound for the maximum age
of Curculionoidea was provided by the age of oldest polyphagan
beetle †Leehermania prorova (223 Ma; Chatzimanolis et al.,
2012). For the maximum age of Curculionidae+Brentidae,
Brentidae and Entiminae, the upper bound was provided by the
proposed maximum age of Curculionidae (151 Ma; Oberprieler
et al., 2014). Exponential prior estimates were applied with
identical hard lower bounds defined by fossil layer intervals and
an adapted soft upper bound, so that 95% of the distribution lay
between the fossil age and 223 Ma.

Biogeographical analyses

Biogeographical analyses were conducted using biogeobears
v.1.1.2 (Matzke, 2013) as implemented in the r v.3.5.3 statistical
software (R Development Core Team, 2019). biogeobears esti-
mates ancestral ranges under different models; it uses the disper-
sal extinction cladogenesis (DEC) model (Ree & Smith, 2008),
as well as likelihood interpretations of the dispersal-vicariance
analysis (DIVA) model (Ronquist, 1997) and the BAYAREA
model (Landis et al., 2013). It further implements a parameter
describing founder-event speciation (+J), which allows cladoge-
netic events where one daughter lineage colonizes a new range
via founder-event speciation, while the other retains the ances-
tral range. While this parameter has been shown to result in
higher likelihood compared with models ignoring this param-
eter (Matzke, 2012, 2014), its use has recently been criticized
(Ree & Sanmartín, 2018). Models incorporating+J have the ten-
dency to underestimate anagenetic dispersal events at ancestral
nodes in favour of ‘jump dispersal’, which can potentially dis-
tort the ancestral range reconstruction of ancient groups with
a proposed widespread distribution, such as Cryptorhynchinae

Table 3. Results of the biogeobears analyses

Model Ln L No. d e j AICc AICw

DEC −434.3 2 0.01 0.01 0 872.7 1.00
DIVALIKE −443.8 2 0.01 0.01 0 891.7 0.00
BAYAREALIKE −457.5 2 0.01 0.01 0 919.1 0.00

AICc, bias corrected Akaike’s information criterion; AICw, Akaike
weight; DEC, Dispersal-Extinction-Cladogenesis; d, rate of dispersal;
e, rate of extinction; j, relative probability of founder-event speciation at
cladogenesis.

s.s., which are almost cosmopolitan. As the statistical com-
parison to models excluding founder-event speciation has also
been suggested to be inaccurate, we refrained from implement-
ing models including founder-event speciation in the present
study. The Akaike information criterion corrected for small
sample size was used to compare the fit of all models with
the given data (Table 3). Ancestral range reconstructions were
estimated using the MCC tree from the best BEAST analysis
(see later). Prior to the analysis, all outgroups except Piazu-
rus were removed to avoid an impact of more distant outgroups
on the area reconstruction. The number of maximum areas per
ancestral range was constrained to three. Studies focusing on
ancestral area reconstruction methodology have shown that a
larger maximum number of areas led to an overestimation of
ancestral area sizes, neglecting the often limited vagility of the
studied groups (Kodandaramaiah, 2009, 2010). Therefore, we
selected the following seven regions for the biogeobears analy-
ses: (A) Palaearctic, (B) Nearctic, (C) Neotropical, (D) Oriental,
(E) Australia, (F) (Proto-) New Guinea including Samoa, and
(G) New Zealand and New Caledonia. We also generated three
time slices to reflect tectonics throughout the Cenozoic follow-
ing recent palaeogeographic works (Ezcurra & Agnolín, 2012;
Seton et al., 2012). Appendix S3 provides details on dispersal
probabilities and area connections over time.

Results and Discussion

Phylogenetic analyses

Results of the MLE runs of the eight different BI analyses
are shown in Table 1. Based on BF comparisons between the
analyses with two fossil calibrations (C01, C02, C05 and C06),
unlinked clock models represented a better fit (C05 and C06).
Among the latter, the MLE comparisons were equivocal, as PS
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and SS sampling methods indicate different best model schemes.
SS suggested the analysis with a Yule tree model (C05) as
the best (BF = 4.13), whereas PS favoured a BD tree model
(C06; BF = 14.85). However, as the effective sample size of
log likelihood and other parameters of the C05 analysis did not
converge after 125 million generations, we relied on BD tree
models in all further analyses with additional fossil calibration
points (C11, C13, C21 and C21). However, the analysis with two
fossils (C06; shown in Fig. 1) generally shows a better marginal
likelihood value than the models with additional calibration
points. In the following, we discuss the results of all eight BI
runs, as well as the best ML tree reconstruction results.

Nodal supports from UFBoot and SH-aLRT of the best
ML analysis, as well as posterior probability (PP) values of
the best BI analysis (C06) are provided in the text for the
discussed relationships. All tree reconstruction analyses results
are provided in Appendix S2.

Both BI and ML tree reconstructions show some differences
in higher-level weevil relationships, mainly due to the inconsis-
tent position of Car (Caridae) and Urodontinae, whose relation-
ship generally lack strong nodal support. In the ML analyses,
as well as the BI analyses based on linked clock models (C01,
C02) and one BI analysis based on unlinked clock models (C23),
Anthribidae appeared polyphyletic as Anthribinae are recovered
sister to Nemonychidae (ML: SH-aLRT = 94.4, UFBoot = 50),
and Urodontinae are recovered sister to a clade comprising
the remaining families (ML: SH-aLRT = 96.7, UFBoot = 43),
except for Car as the single representative of the family Cari-
dae, which appeared as the first branch in the tree (ML:
SH-aLRT = 8.7, UFBoot = 61). By contrast, most analyses
based on unlinked clock and BD tree models (C05, C06, C11,
C13, C21) recovered Anthribidae (Anthribinae+Urodontinae)
as monophyletic (C06, BI: PP = 0.99) and Caridae as sister
to the clade Brentidae+Curculionidae (C06, BI: PP = 0.76).
The position of Caridae as sister group to the clade Bren-
tidae+Curculionidae in the BI analyses with unlinked clock
models, supports its recognition as a distinct family and is con-
sistent with phylogenetic studies based on adult and larval char-
acters (Morrone & Marvaldi, 2000; Marvaldi et al., 2002), as
well as recent large-scale molecular analyses (McKenna et al.,
2009; Shin et al., 2018). The inconsistent position of Urodonti-
nae among the analyses generally reflects the uncertainty of their
phylogenetic placement. The placement of Urodontinae as sister
to Anthribinae in most BI analyses corroborates their inclusion
into Anthribidae, as proposed by Kuschel (1995) and further
recovered by the phylogenomic study of Shin et al. (2018), as
well as by a molecular analysis of Australian weevils (Gunter
et al., 2016). By contrast, the isolated position of Urodontinae
in the ML analyses and their relationship to Attelabidae, or
Attelabidae+Belidae in the remaining BI analyses, corroborate
Crowson (1984) and Thompson (1992), which placed Urodon-
tidae as a family separate from Anthribidae.

A sister-group relationship of Attelabidae and Belidae
was recovered in the ML and in all BI analyses based on
unlinked clock models and usually had significant support (ML:
SH-aLRT = 95.7, UFBoot = 70; C06, BI: PP = 0.97). How-
ever, this relationship generally contrasts with most previous

morphological and molecular studies to date and was only
recovered in one of several analyses by Shin et al. (2018).
However, this study only included the subfamily Oxycoryninae
(Belidae), and the support for Attelabidae and Belidae was low.
The sister-group relationship of Brentidae and Curculionidae,
recovered in all analyses, is consistent with recent large-scale
molecular studies (McKenna et al., 2009; Haran et al., 2013;
Gillett et al., 2014; Gunter et al., 2016; Shin et al., 2018) and
studies based on morphological data (Morrone & Marvaldi,
2000; Marvaldi et al., 2002). Within the true weevils (Cur-
culionidae), the patterns among the early diverging clades are
also generally consistent with most previous molecular studies,
showing Brachycerinae (represented by Ocladius) as sister to
the remaining weevils (ML: SH-aLRT = 94.9, UFBoot = 78;
C06, BI: PP = 0.96), and a close relationship of the subfam-
ilies Dryophthorinae, Bagoinae (Bagous) and Platypodinae;
thus supporting an early monocot association of the true
weevils (see Marvaldi et al., 2002; Oberprieler et al., 2007).
The position of Bagous is generally ambiguous; it is inferred
either as sister to Platypodinae (C01, C05, C11), to Platypo-
dinae+Dryophthorinae (C02, C13, C21, C23) or as sister to
higher Curculionidae, i.e. Entiminae, Hyperinae, Molytinae,
Scolytinae, Curculioninae, Conoderinae and Cryptorhynchinae
s.l. (C06, BI: PP = 0.22). In the ML analyses, it is recovered
adelphic to Lyterius (Baridinae), but with low nodal support
(ML: SH-aLRT = 48.9, UFBoot = 37). This variable position
of Bagous further reflects the inconsistent status of this genus
as a member of Brachycerinae (Oberprieler et al., 2007; Gunter
et al., 2016), as isolated sister group to ‘higher’ Curculionidae
(Gillet et al., 2014; Shin et al., 2018), or nested within a clade
of Dryophthorinae and Platypodinae (McKenna et al., 2009).

A well-supported sister-group relationship between Entim-
inae and Hypera (single representative of Hyperinae) is fur-
ther recovered (ML: SH-aLRT = 99.5, UFBoot = 100; C06,
BI: PP = 1.00) as sister to the remaining assemblage of Cur-
culioninae, Molytinae, Conoderinae and Cryptorhynchinae s.l.
(ML: SH-aLRT = 99.8, UFBoot = 100; C06, BI: PP = 0.95),
thus supporting the ‘CEGH-clade’ (Cyclominae, Entiminae,
Gonipterini, and Hyperini), as defined by Gunter et al. (2016).
The genus Alcidodes, found nested within Cryptorhynchinae in
the BI analysis of Riedel et al. (2016) is now placed in Cur-
culioninae+Molytinae. The ML analysis shows Alcidodes as
sister to Chalcodermus (ML: SH-aLRT = 78, UFBoot = 81),
whereas the BI analyses suggest a weakly supported sister-group
relationship with Cleoninae (C06, BI: PP = 0.49).

Cryptorhynchinae s.s. were recovered as monophyletic in
all ML and BI analyses but only with moderate support (ML:
SH-aLRT = 84.7, UFBoot = 82). By contrast, the Conoderinae
s.s. appeared polyphyletic with the genus Piazurus as sister of all
Cryptorhynchinae s.s. (ML: SH-aLRT = 96.1, UFBoot = 61).
The sister-group relationship of Cryptorhynchinae s.s. and
Piazurus, as the only representative of the diverse and Neotrop-
ical Piazurini, is an interesting finding and should be tested in
future analyses by including additional species of Neotropical
Conoderinae. Within Cryptorhynchinae s.s., the major clades
retrieved are largely consistent with the analyses of Riedel et al.
(2016). However, the positions of these clades are not consistent

© 2019 The Authors. Systematic Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society. doi: 10.1111/syen.12396
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Belidae
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C

D

E

F

G

H
Porthetes hispidus
Pseuderodiscus sp
Trachodes hispidus
Camptorhinus sp
Camptorhinus cf dorsalis
Molytinae gen sp ARC4804
Deretiosus aridus
Tomicus piniperda
Dendroctonus sp
Talanthia sp
Mecopus bispinosus
Chalcodermus cf calidus
Lepidimerodes sp
Ochyromera sericea
Cleogonus cf rubetra
Melanterius aratus
Phyrdenus sp
Conotrachelus sp ARC3969
Conotrachelus sp USA
Conotrachelus sp ARC3961
Tychius quinquepunctatus
Curculio glandium
Cionus thapsus
Phaenomerus peregrinator 
Anthonomus rectirostris
Rhinoncus castor
Nedyus quadrimaculatus
Dorytomus longimanus
Rhynchaenus fagi
Lyterius sp
Rhinidotasia dentata
Pantoxystus rubricollis
Storeus sp W−Papua
Storeus sp Australia
Alcidodes sp
Alcidodes elegans
Bothynoderes sp
Larinus turbinatus
Adexius scrobipennis
Neolaemosaccus petulans
Ectatorhinus alatus
Otibazo sp Java
Molytinae gen sp ARC2564
Niphades cf costatus
Molytinae gen sp ARC2604
Peribleptus dealbatus
Tranes lyteroides
Demimaea sp pr strumosa
Heilipodus sp
Mechistocerus cf violatus
Praodes sp
Rhadinomerus sp
Rhyssomatus sp
Rhinusa tetra
Orthorhinus sp
Aclees indigenus
Magdalis ruficornis
Pinacopus sp
Liparus tenebrioides
Hylobius excavatus
Paramecops sp
Pimelocerus sp

Doydirhynchus austriacus
Cimberis pilosa
Rhynchitomacerinus kuscheli
Basilogeus podocarpi
Urodontus mesemoides
Urodontellus sp
Eupanteos sp
Telala sp
Phloeobius gigas
Araecerus sp
Dendropemon albopictus
Apoderus coryli
Attelabus sp
Eugnamptus angustatus
Deporaus betulae
Rhynchites cf auratus
Merhynchites sp
Rhopalotria sp
Oxycraspedus cribricollis
Isacantha sp
Rhinotia sp
Cyrotyphus sp
Sphinctobelus quadrimaculatus
Basiliobelus flavovittatus
Car cf condensatus
Hypophyes pallidulus
Nanodiscus transversus
Cylas formicarius
Aporhina sp
Eurhynchus laevior
Alissapion sp
Lissapion sp
Protapion dissimile
Rhinorhynchidius sp
Rhopalapion longirostre
Ankleineella subscripta
Kleineella barbata
Hormocerus fossulatus
Cerobates ophthalmicus
Ithystenus sp Moluccas
Ectocemus decemmaculatus
Ocladius sp
Notoplatypus elongatus
Platypus incompertus
Sitophilus granarius
Sphenophorus brunnipennis
Rhynchophorus cruentatus
Bagous americanus
Hypera postica
Naupactus xanthographus
Dermatodes sp
Strophosoma capitatum
Episomus chlorostigma
Oribius sp
Nothes sp
Pantorhytes huonarius
Pachyrrhynchus forsteni
Imathia sp
Imathia sp
Ipsichora longipes
Stenoscelis gedensis
Gloeodema sp

A

B

C

D

E

F

G

H

Fig. 1. Phylogeny of Curculionoidea, focused on Cryptorhynchinae s.s. Results of the best Bayesian inference analysis (C06) in beast, implementing
uniform calibration priors, unlinked clock models and a birth-death (BD) tree model. Pie charts represent the relative node support, as measured
by the posterior probability (PP). Red branches indicate members of the polyphyletic tribe Psepholacini. [Colour figure can be viewed at
wileyonlinelibrary.com].
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Q

P

Piazurus sp Peru
Setarhynchus sp Peru
Setarhynchus sp Guyana
Cophes sp Peru
Semnorhynchus sp Peru
Semnorhynchus cayennensis Guyana
Acalles sp Cuba
Cryptorhynchinae gen sp Chile ARC4864
Metoposoma sp pr funebris Peru
Tyrannion sp Peru
Cryptorhynchinae gen sp Guyana ARC2629
Cryptorhynchinae gen Venezuela ARC0886
Caenocryptorhynchus sp Malaysia
Cryptorhynchinae gen sp Bali ARC2346
Sybulus sp W−Papua
Sternochetus mangiferae Peru
Cryptorhynchus lapathi Germany
Coniferocryptus tamanukii Russia
Pappista aspis Guyana
Pappista sp Peru
Eubulus sp Peru ARC5141
Gen pr Eubulus Peru ARC5146
Zascelis cf irrorata USA
Eubulus sp Guyana
Eubulomus sp pr multicostatus Peru
Eubulus sp Peru ARC3957
Gen cf Tyrannion Peru ARC3958
Cylindrothecus sp Peru
Gen cf Zascelis Peru ARC3954
Gen cf Eubulus Peru ARC3955
Eucryptorhynchus chinensis China
Coelosternus sp Peru
Acallocrates denticollis
Cryptorhynchinae gen sp Peru ARC5131
Gasterocercus depressirostris Germany
Cryptorhynchus albopunctatus Peru
Gen cf Tyrannion Peru ARC3967
Gen pr Semnorhynchus sp Peru ARC3959
Echinodera hypocrita Germany
Onyxacalles vilae
Acalles lemur Germany
Kyklioacalles roboris Germany
Acalles sp pr hustachei Cuba
Torneuma deplanatum
Acalles cf indigens USA
Acalles sp Venezuela ARC0889
Acalles sp Venezuela ARC0888
Cryptorhynchinae gen sp Peru ARC3960
Semorhynchus sp Peru
Macromerus sp Peru
Hemiliopsis cf irregularis Peru
Arachnobas sectator PNG
Arachnobas sannio PNG
Arachnobas corpulentus W−Papua
Arachnobas pauxillus PNG
Arachnobas tricolor PNG
Arachnobas patronoides PNG
Tylodina gen sp Lombok
Poropterus sp PNG
Cryptorhychinae gen sp Australia ARC4853
Tragopus sp Malaysia
Cryptorhynchinae gen sp Bali ARC0911
Cryptorhynchinae gen sp PNG ARC1385
Cryptorhynchinae gen sp Java ARC2187
Poropterus sp W−Papua
Meroleptus sp PNG
Ptolycus sp W−Papua
Ectatotcyba permutata PNG
Salcus granulatus PNG
Salcus elevatus Australia
Tamphilus amplicollis Australia
Microporopterus interruptus PNG
Microporopterus cf setosus PNG
Thyestetha glabra PNG
Telaugia sp PNG
Gen pr Elichora PNG ARC1357
Telaugia cf subtilis PNG
Telaugia cf corpulenta PNG
Telaugia sp W−Papua
Blepiarda sp pr apicalis W−Papua
Blepiarda undulata Australia
Doetes sp W−Papua
Neomystocis cf squamiventris Australia
Pteroporopterus lacunosus Australia
Dermothrius farinosus New Zealand
Paromalia setiger New Zealand
Miocalles sp Australia
Miocalles sp W−Papua
Miocalles sp Java
Zeacalles incultus New Zealand
Crisius fasciculatus New Zealand
Trinodicalles sp New Zealand
Crisius ventralis New Zealand
Agacalles formosus New Zealand
Crooktacalles certus New Zealand
Crooktacalles abruptus New Zealand
Synacalles dorsalis New Zealand
Scelodolichus altulus New Zealand
Scelodolichus cf lineithorax New Zealand
Gymnoporopterus pictipes Australia
Panopides anticus Sulawesi
Asytesta cf rata W−Papua
Asytesta cf albifrons W−Papua
Trigonopterus squamosus Australia
Trigonopterus scissops W−Papua
Trigonopterus inflatus W−Papua
Trigonopterus pseudonasutus W−Papua
Trigonopterus ptolycoides PNG
Trigonopterus cf pusillus PNG
Trigonopterus sp pr caesipes Samoa
Trigonopterus crinipes Samoa
Trigonopterus submetallicus mendax Samoa
Cryptorhynchinae gen sp W−Papua ARC4378
Cryptorhynchinae gen sp W−Papua ARC4373
Cryptorhynchinae gen sp W−Papua ARC0895
Cryptorhynchinae gen sp Philipnes ARC5243
Acallophilus sp Vietnam
Cryptorhynchinae sp Borneo ARC2607
Trichacalles longipilis PNG
Simulacalles sp Bali
Poropteropis sp W−Papua
Poropteropis papillosus W−Papua
Poropteropis cf biconifer W−Papua
Pseudoporopterus sp W−Papua

I

J

K

I

J

K

L

N

O

Cryptorhynchinae s.s.

Cryptorhynchus group

Acalles group

Indo-Australian clade

Arachnopodini s.l.

Arachnobas spp.

New Zealand clade

Trigonopterus spp.

L

N

O

P

Q

Fig. 1. Continued. [Colour figure can be viewed at wileyonlinelibrary.com].
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Acrotychreus fasciculatus Australia
Baeodontocis sp Australia
Poropterus sp pr idolus Australia
Poropterus sphacelatus Australia
Mormosintes cf nodosus PNG

Cryptorhynchinae gen sp Australia ARC5198
Nototrigonopterus sp New Caledonia
Clypeolus ingens New Zealand
Clypeolus robustus New Zealand
Xychusa sp PNG
Idopelma sp PNG
Idopelma unicolor PNG
Idopelma sp W−Papua ARC0902
Idopelma sp W−Papua ARC0920
Neodecilaus picus Australia
Cryptorhynchinae gen sp Australia ARC5199
Cryptorhychinae gen sp Australia ARC4813
Tyrtaeosus coelosternoides W−Papua
Critomerus iliacus W−Papua
Perissops ochreonotatus Australia
Perissops cf apicalis PNG
Pantiala illusa W−Papua
Semiathe sp W−Papua ARC0707
Semiathe sp W−Papua ARC0689
Athyreocis sp Australia ARC4802
Athyreocis sp Australia ARC3489

Roptoperus sp Australia ARC1677
Roptoperus sp Australia ARC4860
Roptoperus sp Australia ARC3834

Cryptorhychinae gen sp Australia ARC4806
Cryptorhychinae gen sp Australia ARC4831
Cryptorhychinae gen sp Australia ARC4820

Ouroporopterus squamiventris Australia
Cryptorhynchinae gen sp Australia ARC3488
Athyreocis sp Australia
Tychreus sp Australia
Cryptorhychinae gen sp Australia ARC4848

Cryptorhychinae gen sp Australia ARC4851
Cryptorhychinae gen sp Australia ARC4755
Cryptorhychinae gen sp Australia ARC4858
Poropterus waterhousei Australia
Cryptorhychinae gen sp Australia ARC4855
Tapinosomus humeralis Australia
Poropterus cf variabilis Australia
Cryptorhychinae gen sp Australia ARC4856
Tropidotasia sp Australia
Gen sp pr Oreda Malaysia ARC5344
Psepholax sp Australia
Cyamobolus sp pr subsellatus W−Papua
Autillia cf horridipes PNG
Cyamobolus sp W−Papua
Nechyrus sp pr puncticollis W−Papua
Nechyrus sp pr porcatus W−Papua
Nechyrus sp pr laticollis W−Papua
Cryptorhychinae gen sp Australia ARC4847
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Cryptorhynchinae gen sp Chile ARC4865
Poropteroides sp Australia
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Cairnsicis sp Australia
Cryptops sp W−Papua
Cryptorhychinae gen sp Australia ARC4836
Cryptorhychinae gen sp Australia ARC4842
Cryptorhychinae gen sp Australia ARC4840
Cryptorhynchinae gen sp Australia ARC4010
Cryptorhychinae gen sp Australia ARC4838
Cryptorhynchinae gen sp Australia ARC4012
Cryptorhynchinae gen sp Australia ARC3775
Cryptorhychinae gen sp Australia ARC4805
Cryptorhychinae gen sp Australia ARC4850
Cryptorhychinae gen sp Australia ARC4833
Cryptorhynchinae gen sp Australia ARC3867
Cryptorhynchinae gen sp W−Papua ARC4387
Genuacalles sp Australia
Cryptorhychinae gen sp Australia ARC4862
Cryptorhynchinae gen sp Australia ARC3809
Cryptorhychinae gen sp Australia ARC4839
Cryptorhychinae gen sp Australia ARC4844
Ampagia sp Sulawesi
Ampagia sp W−Papua
Paletonidistus sp Australia
Methidrysis cf afflicta Australia
Hypsophorus dromidarius Australia
Dysopirhinus cf grandis Australia
Tyrtaeosus lateralis Australia
Tyrtaeosus sp PNG
Gen sp pr Perissops Australia ARC4821
Cryptorhychinae gen sp Australia ARC4758
Hexymus tuberosus Australia
Enteles vigorsi Australia
Paleticus sp Australia
Paleticus subereus Australia
Euthyrhinus meditabundus Australia
Gasterocercini gen sp Sulawesi ARC2927
Nyphaeba mimica W−Papua
Gen sp Gasterocercini Peru ARC5115
Alatidotasia sp PNG ARC1401
Alatidotasia sp PNG ARC1395
Euthyrhinus glabrous W−Papua
Odosyllis congesta Sulawesi
Lophocheirus sp W−Papua
Lophocheirus cf major PNG
Lophocheirus cf fuscotriangularis Australia
Semiathe cf puncticollis PNG
Semiathe cf linnei PNG
Semiathe sp PNG
Ephrycus sp Australia
Sympiezoscelus sp W−Papua
Mitrastethus sp W−Papua
Platytenes varius W−Papua
Roptoperus sp Australia ARC483

R Rhynchodes group

R

Fig. 1. Continued. [Colour figure can be viewed at wileyonlinelibrary.com].

among the different ML and BI analyses, and nodal support for
their relationships is generally low. The ‘Acalles group’ was
moderately supported (ML: SH-aLRT = 69.3, UFBoot = 36),
whereas the ‘Cryptorhynchus group’ was recovered with maxi-
mum nodal support (ML: SH-aLRT = 100, UFBoot = 100). The
‘Indo-Australian clade’ (ML: SH-aLRT = 100, UFBoot = 99)

was nested within lineages of American and Palaearctic
distribution. Within this group, a monophyletic Arachnopo-
dini s.l. (ML: SH-aLRT = 100, UFBoot = 100), including the
genus Arachnobas (Arachnopodini s.s., ML: SH-aLRT = 99.2,
UFBoot = 100), the ‘Rhynchodes group’ (ML: SH-aLRT = 100,
UFBoot = 100), as well as the ‘New Zealand clade’ (ML:
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SH-aLRT = 99.3, UFBoot = 95) and the nine species of
Trigonopterus included (ML: SH-aLRT = 99, UFBoot = 90),
all had significant nodal support. The tribe Psepholacini
in its current concept was recovered as polyphyletic. The
Indo-Australian genera Psepholax and Oreda were related
to a clade comprising Cyamobolus, Autilia and Nechyrus;
Sympiezoscelus was found sister to Mitrastethus, and the
clade of both is related to Platytenes and Roptoperus. The
Neotropical Hemiliopsis was related to other South Amer-
ican genera. The polyphyly of Psepholacini is not entirely
surprising as their main characters (cylindrical body shape,
tibiae with suprauncal projection; Lyal, 1993) are presumably
adaptations to their habit of tunnelling, respectively, in dead
wood or bark (Jordal et al., 2011). Interestingly, Mitrastethus
and Sympiezoscelus dwell in the decomposing bark of fallen
Araucaria hoop pines and both genera are related to Platytenes,
having a similar habitat in dead Areca palms. Psepholax, Oreda,
Cyamobolus, Autilia and Nechyrus are usually found on dry
wood of angiosperm trees. There was only one Neotropical
genus included, i.e. Hemiliopsis, which is related to other
South American genera.

Divergence times and historical biogeography
of Cryptorhynchinae

Differences in the divergence time estimates between the eight
analyses were only marginal, with largely overlapping credibil-
ity intervals (Table 4). According to the analysis with the best
marginal likelihood (C06), the origin of Cryptorhynchinae s.s.
was in the late Cretaceous c. 85.7 Ma [95% highest posterior
density (HPD): 79.41–96.45]. The Cryptorhynchus group,
which is mainly distributed in the Neotropics, also appeared in
the late Cretaceous c. 76.5 (95% HPD: 67.11–84.86), as well as
the Indo-Australian clade c. 72 Ma (95% HPD: 65.10–80.59).
The New Zealand clade appeared in the Palaeocene c. 57.8 Ma
(95% HPD: 50.60–64.75). Other relevant groups emerged in the
Early Eocene. Arachnopodini s.l., whose distribution is mostly
in the Indo-Australian region, has an origin c. 49.2 Ma (95%
HPD: 43.34–55.30), and the exclusively New Guinean genus
Arachnobas appeared c. 38.2 Ma (95% HPD: 31.35–43.52).
The genus Trigonopterus appeared at c. 53 Ma (95% HPD:
45.71–59.92) and the ‘Rhynchodes group’ at c. 52.3 Ma (95%
HPD: 45.43–58.54). The emergence of Curculionoidea in the
Late Jurassic c. 159 Ma (95% HPD: 151.0–172.17) is consis-
tent with earlier studies on beetle or weevil divergence time
estimations (Hunt et al., 2007;McKenna et al., 2009 ; Gunter
et al., 2016 ; Zhang et al., 2018). However, this age is consid-
erably younger than in the phylogenomic study of Shin et al.
(2018) and also younger than in Toussaint et al. (2017b), which
focused on higher-level relationships within beetles. Atte-
labidae and Belidae c. 135 Ma (95% HPD: 119.32–151.34),
as well as Brentidae and Curculionidae c. 136 Ma (95% HPD:
125.65–149.42), all emerged in the Early Cretaceous. The
appearance of these groups is congruent to most other studies
(McKenna et al., 2009; Gunter et al., 2016; Zhang et al., 2018),
but Shin et al. (2018) show an earlier emergence of Belidae Ta
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and Attelabidae. The inferred pattern further supports the
contemporary radiation of flowering plants, which probably
diversified in the Jurassic and Early Cretaceous (e.g. Magallón
et al., 2015; Sauquet et al., 2017), and major weevil groups.
The evolutionary success of weevils in relation to the radiation
of angiosperms has frequently been proposed (Farrell et al.,
1998; Marvaldi et al., 2002; McKenna et al., 2009), but is still
under debate. To test the impact of different factors that may
have shaped the diversification of weevils, such as insect–plant
associations, the focus of shallower phylogenetic levels (e.g.
subfamilies) has been proposed (Franz & Engel, 2010). There is
an ongoing process of establishing such a ‘mid-level classifica-
tion’ (Gunter et al., 2016) in weevil phylogenetics (e.g. Winter
et al., 2017; Letsch et al., 2018), and our present study pro-
vides a first dataset for the inference of evolutionary scenarios
in Cryptorhynchinae.

Among the different analyses performed in biogeobears, the
DEC model was significantly preferred over the DIVALIKE and
BAYAREA models (Akaike weight = 1; shown in Fig. 2). The
ancestral range estimated by the DEC model for Cryptorhynchi-
nae s.s. was South America (C = 0.62, CE = 0.16, CF = 0.21).
The initial radiation within Cryptorhynchinae s.s. was character-
ized by a further diversification of the ‘Cryptorhynchus group’
and its relatives in South America (C = 0.99). Within the ‘Cryp-
torhynchus group’ several species independently colonized
North America, Eurasia and the Australian region in the Eocene.
A similar pattern was recovered for members of the originally
Neotropical ‘Acalles group’ and its relatives (C = 0.86), which
also colonized the Western Holarctic even earlier in the Late
Cretaceous. A colonization of the Palaearctic from South Amer-
ica was also found, for instance, by Toussaint et al. (2017a)
for Hydrophilus water scavenger beetles and can be explained
by either long-distance dispersal or range expansion via the
Nearctic followed by regional extinction. The occurrence of
North American representatives in both groups supports the lat-
ter scenario. For the subsequent radiation of Cryptorhynchinae
s.s., a range expansion to Australia and Proto-New Guinea was
estimated (clade A: C = 0.28, CE = 0.31, CF = 0.40; clade B:
CE = 0.41, CF = 0.53) between 73 and 91 Ma, and the origin
of the Indo-Australian clade was recovered in Australia and/or
Proto-New Guinea (clade C: E = 0.26, F = 0.38, EF = 0.35) at
c. 73 Ma, indicating a continental range expansion via dispersal
from South America possibly through Antarctica in the Late
Cretaceous. This scenario is concordant with a proposed con-
nection between South America and Australia via a land bridge
through Antarctica until c. 60 Ma (Scotese, 2004; Seton et al.,
2012). This pattern has recently been suggested for several
beetle clades using a combination of Bayesian relaxed-clock
dating and parametric historical biogeography. For instance,
Kim & Farrell (2015) proposed a hypothesis in which Chiasog-
nathini stag beetles expanded their range towards Antarctica
in the Cretaceous. Gustafson & Miller (2017) suggested the
colonization of Antarctica by Macrogyrus whirligig beetles in
the Palaeocene. A similar pattern was suggested for Platynectes
diving beetles in the Eocene (Toussaint et al., 2017b), and for
Hydrobiusini and Oocyclus water scavenger beetles in the Cre-
taceous (Toussaint & Short, 2017, 2018). This pattern therefore

seems to be much more common than previously thought and
is supported by recent palaeoclimatic evidence. Antarctica had
a much warmer climate during most the Cenozoic due to its
connection with other components of the Gondwana supercon-
tinent. As a result, Cenozoic favourable landscapes existed in
Antarctica with dense forests (subtropical at times) that could
have hosted a diverse fauna before the setup of a polar climate
on this land mass (Poole & Cantrill, 2006; Francis et al., 2008).
Glaciations only initiated after Australia started rifting away in
the Oligocene and triggered ecosystem turnover in Antarctica
(Galeotti et al., 2016; McKay et al., 2016). With Australia’s
position between Antarctica and Proto-New Guinea, a colo-
nization of Australia prior to Proto-New Guinea is plausible.
The subsequent early radiation of the Indo-Australian clade in
Australia corroborates this hypothesis. However, the occurrence
of one Chilean species deeply nested in the ‘Indo-Australian
clade’ indicates that this clade may in fact have evolved in a
more widespread Gondwanan range, including South America,
possibly in the southern temperate environment of Nothofagus
forests. An equally plausible explanation could be a recoloniza-
tion of southern South America: the case of Strongylopterus
distributed in both New Zealand and Chile underlines the poten-
tial of dispersal of wood-inhabiting weevils in the subantarctic
region, possibly by sea currents. A denser taxon sampling in
southern Australia, New Zealand and Chile should be attempted
in the future.

Within the ‘Indo-Australian clade’, subsequent dispersal
events to Proto-New Guinea took place three times inde-
pendently at around the same time, i.e. c. 50–55 Ma, by
Arachnopodini s.l., the crown group of Trigonopterus (exclud-
ing the T. squamosus group), and the ‘Rhynchodes group’.
This timing is much earlier than expected and contrasts with
geological reconstructions that anticipate the first major land
areas not to have emerged before 35 Ma (‘peninsular orogeny’;
Ufford & Cloos, 2005) or 20 Ma (formation of the northern arc
of New Guinea; Hall, 2009), although the first volcanic arcs in
the area appeared as early as 60 Ma (Hall, 2009) and the Papuan
Ultramafic Belt ophiolite has an age of c. 58 Ma (Baldwin et al.,
2012). These latter dates are in line with our current reconstruc-
tion and indicate that New Guinea may have acted as a museum
of diversity in addition to being a cradle as suggested by recent
evolutionary studies focusing on the island fauna (e.g. Unmack
et al., 2013; Georges et al., 2014; Toussaint et al., 2014; Janda
et al., 2016; Oliver et al., 2017; Lam et al., 2018; Tallowin
et al., 2018). Our study brings more evidence to the potential
role of New Guinea as an older land mass that may have
hosted the early stages of several island clades. For instance, a
time-calibrated phylogeny of netwing beetles endemic to New
Guinea (Bocek & Bocak, 2019) recovers a similar age (51 Ma).
The origin of corvoid birds from New Guinea is dated from the
Eocene c. 45 Ma (Jønsson et al., 2011; Aggerbeck et al., 2014).
New Guinean endemic mayflies also possibly have originated as
early as the Eocene on the island (Cozzarolo et al., 2019). These
results suggest that substantial areas may have been subaerial
in Proto-New Guinea much earlier than hitherto expected. The
age of the Palaeocene ‘New Zealand clade’ conflicts with the
hypothesis of Oligocene marine transgression of New Zealand
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some 25–23 Ma (Waters & Craw, 2006), which is in line with
the multitaxon analysis of Wallis & Jorge (2018).

Conclusion

We reconstructed the biogeographical history of Cryp-
torhynchinae, with an origin in the Neotropical region during
the Cretaceous. Two distinct colonization routes are proposed: a
northern route, which led to at least two independent dispersals
to both North America and Eurasia, and a southern route, which
possibly facilitated the colonization of Australia, New Guinea
and New Zealand via Antarctica in the Late Cretaceous. Within
the Indo-Australian clade, the reconstructed lengths and diver-
gence times of the early branches are conspicuously short, and
many nodes are only moderately supported, leading to incongru-
ent relationship hypotheses between the distinct analyses. This
pattern further indicates a rapid radiation of the ‘Indo-Australian
clade’ after its arrival in Australia. Cryptorhynchinae constitute
c. 30% of the Australian weevil fauna (Pullen et al., 2014) and
further comprise the majority of Australian weevils using dead
wood as a food resource. This may indicate that the stage was
set for their rapid radiation once they reached the Australian
continent. However, ‘ancient rapid radiations’ phenomena have
been proposed to substantially impede phylogenetic reconstruc-
tions (Whitfield & Lockhart, 2007; Whitfield & Kjer, 2008).
Together with the still highly incomplete taxon sampling of the
Indo-Australian fauna (Riedel et al., 2013; Pullen et al., 2014;
Riedel & Tänzler, 2016), scenarios about the evolution of eco-
logical and/or morphological traits, which might have facilitated
their radiation, remain uncertain (Franz & Engel, 2010; Gunter
et al., 2016). We therefore propose to focus on lower taxonom-
ical levels that allow a denser taxon sampling and thus more
precise inferences of diversification pattern. Previous studies
on the evolution of the Indo-Australian genus Trigonopterus
could already reconstruct several radiations of these weevils in
the geologically complex Indo-Australian archipelago. They
generally place the colonization of New Guinea, Indonesia and
New Caledonia in the Late Miocene (Tänzler et al., 2016, 2016;
Toussaint et al., 2017c. However, these studies did not infer the
divergence times of Trigonopterus in a taxonomically larger
context and could not therefore implement calibration fossils.
The proposed age of Trigonopterus (c. 54 Ma) recovered in the
present study, however, indicates a much older diversification
of this genus. With this age estimation at hand, and in com-
bination with the ongoing taxonomic research (Riedel et al.,
2013, 2014; Riedel & Narakusumo, 2019), future studies on the
evolution of the genus Trigonopterus could help to elucidate the
Cenozoic history of Cryptorhynchinae weevil diversification in
the Indo-Australian regions.
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