

Adverse effects 2: Searching for adverse effects

Dr Su Golder, Cochrane Adverse Effects Methods Group

Trusted evidence.
Informed decisions.
Better health.

Today's Objectives

To help searchers select;

- Elements of PICOs to use
- Appropriate free-text and indexing terms
- Database and non-database sources

Trusted evidence.
Informed decisions.
Better health.

(Cochrane Planning your search...

Create your PICOs (Population, Intervention, Comparators, Outcomes, Study design) – whereby O (Outcomes) will be your adverse effects

Think which elements of the PICOs to search on (depends on lots of factors including the number of hits retrieved)...

Should you search on 'Population'?

- May be interested in specific groups, such as children, elderly or pregnant women
- May be interested in all conditions
 - For example, NSAIDS for headache, arthritis, toothache, chronic back or neck pain and strains and sprains.
- Some records may **not** mention the population
 - *'Fracture risk with rosiglitazone and pioglitazone compared' does not mention diabetes.

Should you search on 'Intervention'?

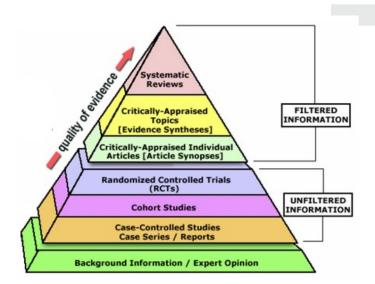
- Usually essential to search on the intervention
- Be careful if looking at a class of treatments rather than specific treatment
 - ❖ For example with selective COX2 inhibitors only rofecoxib and with nonselective COX2 inhibitors only diclofenac associated with increased risk of cardiovascular events

Should you search on 'Comparators'?

- Can be too numerous to search
- Difficult to search for 'no comparator'
- Some study designs do not have a control group
 - For example, case series, case reports, single-arm trials

Should you search on 'Outcomes'?

- ❖ May not know which adverse effects searching for but can use generic adverse effects terms and create list 'plausible adverse effects'
- Adverse effects are often secondary outcomes leading to **poor reporting** in titles, abstracts and indexing
- Research on recent records indicates that you may miss between 4% and 8% of studies if you add adverse effects terms to searches


(Golder 2014a, Golder 2012a)

Should you search on 'Study design'?

- *Range of study designs may be relevant not just RCTs
- ❖ Be careful filters for non-RCTs do not work as well as RCT filters, so you may miss studies

Searching for outcomes (adverse effects) in MEDLINE and Embase

Trusted evidence. Informed decisions. Better health.

Which types of adverse effects terms?

Specific named adverse effects terms (e.g. death, fatigue, fracture, insomnia, rash)

Most useful for adverse effects in hypothesis testing review.

Can search for expected adverse effects in *hypothesis generating review*. Identified from biological plausibility, textbooks, clinicians, patients, drug labels, social media, pharmacovigilance

Generic adverse effects terms (e.g. side effects, harms, adverse events, complications)

Most useful for unknown adverse effects in *hypothesis* generating review.

Searching on generic adverse effects terms

- Textwords (e.g. title or abstract)
- Indexing terms (e.g. MeSH or Emtree)
- Subheadings / qualifiers
- Search filters / hedges

Example MEDLINE record

Title: Adverse events associated with prolonged antibiotic use.

Source: Pharmacoepidemiology & Drug Safety. 17(5):523-32, 2008 May.

Adolescent
Adult
Adverse Drug Reaction Reporting Systems
Aged
Amoxicillin / ad [Administration & Dosage]
Amoxicillin / ae [Adverse Effects]
Anthrax / pc [Prevention & Control]
*Anti-Bacterial Agents / ae [Adverse Effects]

Subheading

Free text terms

Examples

adrs, adverse drug effect*, adverse drug reaction*, adverse effect*, adverse event*, adverse outcome*, adverse reaction*, complication*, harm, harmful, harms, risk, safe, safely, safety, side effect*, tolerability, toxicity, treatment emergent, undesirable effect*, undesirable event*, unexpected effect*, unexpected event*

Warning

False hits; 'relative risk', 'self-harm', 'patient safety', 'adverse effects were not considered'

Generic MeSH terms

Hazards

risk assessment/

Surgery

intraoperative complications/ postoperative complications/ postoperative pain/

Device

equipment contamination/
equipment failure/
equipment safety
medical device recalls/
safety-based medical device
withdrawals/

Drugs

abnormalities, drug induced/ adverse drug reaction reporting systems/ drug recalls drug hypersensitivity/ drug monitoring/ drug related side effects and adverse reactions/ poisoning/ safety-based drug withdrawals/ substance-related disorders/

Drug/device

product surveillance postmarketing/

Many of these terms can be exploded to include narrower indexing terms

Generic Emtree terms

Drug

adverse drug reaction/ drug safety/ drug monitoring/ drug hypersensitivity/ drug surveillance program/ intoxication/ side effect/ postmarketing surveillance/ drug recall/ product recall/

Surgery

postoperative complication/ periperative complication/ surgical risk

Non-drug

complication/

Device

medical device complication/ device recall/ adverse device effect/

Subheadings

MEDLINE

/adverse effects (ae)

/chemically induced (ci)

/complications (co)

/contraindications (ct)

/poisoning (po)

/toxicity (to)

Embase

/adverse device effect (am)

/adverse drug reaction (ae)

/complication (co)

/drug toxicity (to)

/side effect (si)

How to use subheadings (1)

Free floating subheadings

Subheadings attached to **any** indexing term

Examples for OVID MEDLINE

ae.fs. (adverse effects) (or exploded ae.xs. to include toxicity and poisoning)

ci.fs. (chemically induced), co.fs. (complications), ct.fs. (contraindications), de.fs. (drug effects), po.fs. (poisoning), to.fs. (toxicity)

Examples for OVID Embase

ae.fs. (adverse drug reaction), am.fs. (adverse device effect), co.fs. (complication), si.fs. (side effect), to.fs. (drug toxicity)

How to use subheadings (2)

MEDLINE Attached to intervention 'Aspirin/ae'

Aspirin is the MeSH term and adverse effects is the subheading

Attached to adverse effect 'headache/ci'

Headache is the MeSH term and chemically induced is the subheading

Embase

'Acetylsalicylic-acid/ae'

Acetylsalicylic-acid is the EMTREE term and adverse-drug-reaction is the subheading

'headache/si'

Headache is the EMTREE term and side effect is the subheading

Evaluated search strategies in MEDLINE

Badgett 1999

((ae **OR** co **OR** po **OR** de).fs. **OR** case report/) **AND** human/

Golder 2006

(ae OR co OR de).fs. OR (safe OR safety OR side effect* OR undesirable effect* OR treatment emergent OR tolerability OR toxicity OR adrs OR (adverse adj2 (effect OR effects OR reaction OR reactions OR event OR events OR outcome OR outcomes))).ti,ab.

Tested in 27 systematic reviews. Sensitivity ranged from 72% to 100% (Golder 2012b)

Quiz Time

Which search term retrieved the highest number of relevant records in MEDLINE?

A: 'adverse effects (ae) 'as a floating subheading

B: 'adverse adj3 event*' in title or abstract

C: 'safety' in title or abstract

(Sample of 27 systematic reviews, Golder 2012a)

() Cochrane Most sensitive search terms in **MEDLINE** (drugs)

1	Adverse effects (ae)	Floating subheading	51%
2	Adverse adj3 event*	Title or abstract	32%
3	Safety	Title or abstract	31%
4	Adverse adj2 events	Title or abstract	29%
5	Risk	Title or abstract	27%
6	Drug effects (de)	Floating subheading	27%
7	Complications (co)	Floating subheading	18%
8	Exp risk/	MeSH	12%
9	Tolerability	Title or abstract	10%
10	Side effect*	Title or abstract	10%
11	Pharmacology (pd)	Floating subheading	10%
12	Adverse adj3 effects	Title or abstract	8%
13	Risk factors/	MeSH	8%
14	Safe	Title or abstract	7%

Most sensitive search terms in Embase (drugs)

1	Adverse drug reaction(ae)	Floating subheading	83%
2	Side effect(si)	Floating subheading	83%
3	exp drug safety/	Emtree indexing term	38%
4	Adverse adj3 event*	Title or abstract	32%
5	Safety	Title or abstract	28%
6	Adverse adj2 events	Title or abstract	28%
7	Risk	Title or abstract	27%
8	Exp adverse drug reaction/	Emtree indexing term	19%
9	Tolerability	Title or abstract	11%
10	Complications(co)	Floating subheading	11%
11	Side effect*	Title or abstract	10%
12	Adverse adj3 effect*	Title or abstract	9%
13	Safe	Title or abstract	8%
14	Adverse adj2 effects	Title or abstract	7%

What about non-drug interventions?

Top terms for medical device interventions found to differ from top terms for drug interventions

(Golder 2014a, Farrah 2016)

Most sensitive search terms in MEDLINE (device)

1	Adverse effects (ae)	Floating subheading	47%
2	Complication*	Title or abstract	35%
3	Postoperative complications/	MeSH indexing term	27%
4	Safety	Title or abstract	20%
5	Safely	Title or abstract	20%
6	Safe	Title or abstract	12%
7	Risk	Title or abstract	12%
8	Adverse events	Title or abstract	12%
9	Complications (co)	Floating subheading	8%
10	Chemically induced (ci)	Floating subheading	8%
11	Adverse effects	Title or abstract	6%
12	Risk factors/	MeSH indexing term	6%

Most sensitive search terms in Embase (device)

1	Complication (co)	Floating subheading	49%
2	Complication*	Title or abstract	35%
3	Adverse drug reaction (ae)	Floating subheading	22%
4	Postoperative complication/	Emtree indexing term	20%
5	Safety	Title or abstract	18%
6	Side effect (si)	Floating subheading	16%
7	Adverse reaction titles	Embase section heading	16%
8	Adverse adj2 events	Title or abstract	15%
9	Risk	Title or abstract	15%
10	Safe	Title or abstract	13%
11	Adverse events	Title or abstract	13%
12	Drug safety/	Emtree indexing term	5%

Sources

Resources for your search

- Bibliographic databases (e.g. BIOSIS Previews)
- 'Grey' literature (e.g. theses, reports, internet, conferences)
- Trial registries/ Industry registries (e.g. ClinicalTrials.gov)
- * Regulatory data (e.g. US FDA, MHRA, EMA etc.)
- Handsearching (e.g. conference proceedings, journals)
- Citation tracking (e.g. Google Scholar, Web of Science)
- Contacting experts (e.g. authors)
- Contacting Industry (e.g. drug/manufacturers)
- Reference lists

Case study with a drug intervention

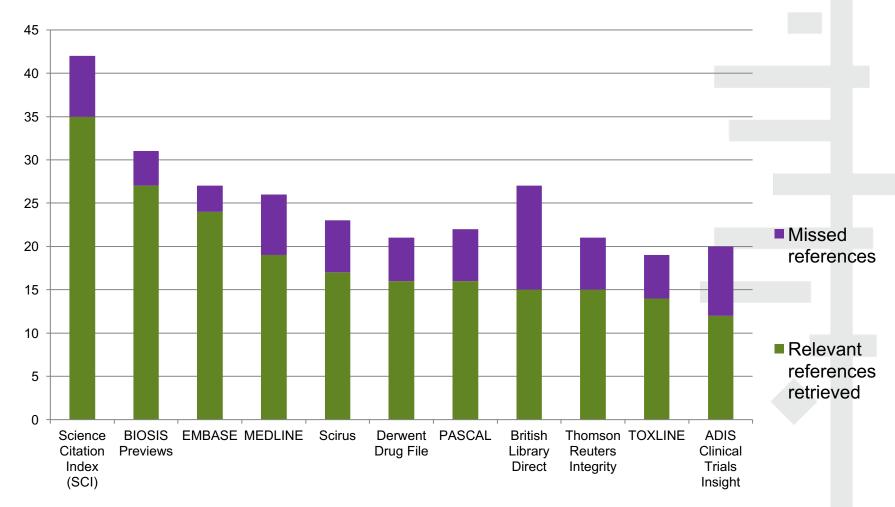
Long-term use of glitazones and fractures in type 2 diabetes

- Searched over 60 sources (beyond usual practice)
- Used intervention (glitazones) and outcome (fractures) search terms
- No diabetes terms used
- Multiple textwords and indexing

Quiz Time

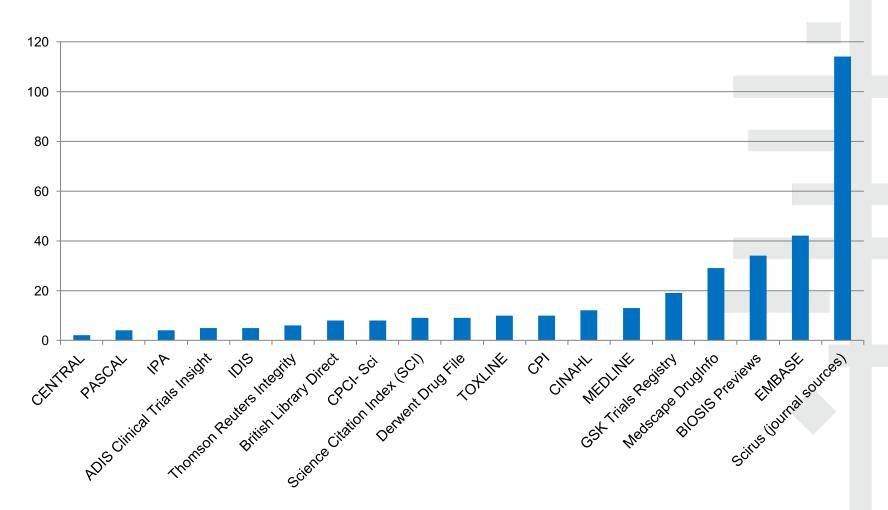
Which database retrieved the highest number of relevant records for the review on fracture and glitazones?

A: MEDLINE


B: Embase

C: Science Citation Index (SCI)

D: Other

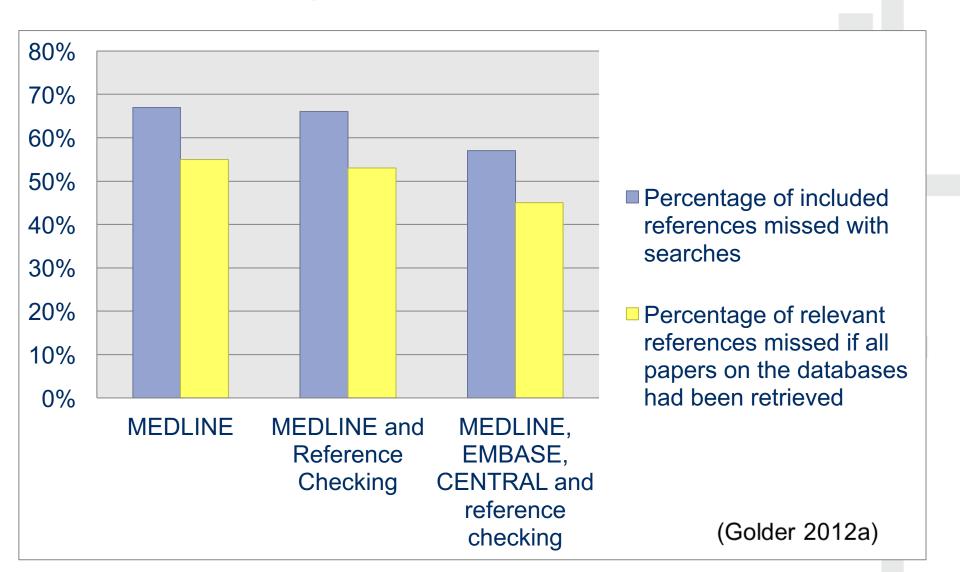


() Cochrane Included references retrieved in glitazone review (n=58)

Number needed to read (NNR)

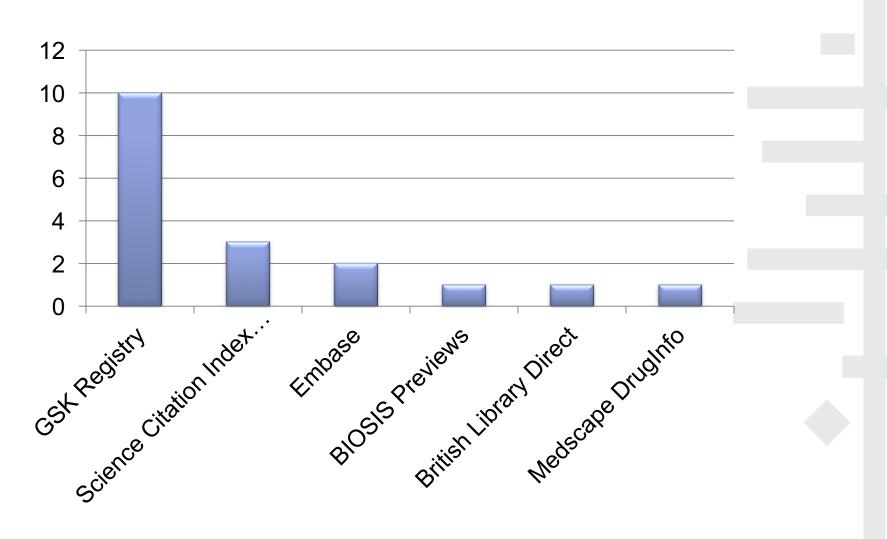
What percentage of papers would we have missed in the glitazone review if we had searched MEDLINE, EMBASE, CENTRAL and reference checking?

A: 25%


B: 8%

C: 57%

D: 0%



Relevant references missed in glitazone review

Unique records in glitazone review

() Cochrane Minimum combination of sources in glitazone review

Identifies all 58 included references with search strategy for 'glitazones' and 'fractures'

Medscape DrugInfo AHFS First

Thomson Reuters Integrity* Science Citation Index

Conference Papers Index* **EMBASE**

GSK website **BIOSIS Previews**

British Library Direct Handsearching**

Reference checking

*either database

**ten key journals

Cochrane Availability of relevant references in glitazone review

Minimum combination of sources in which the 58 included references were available

BIOSIS Previews

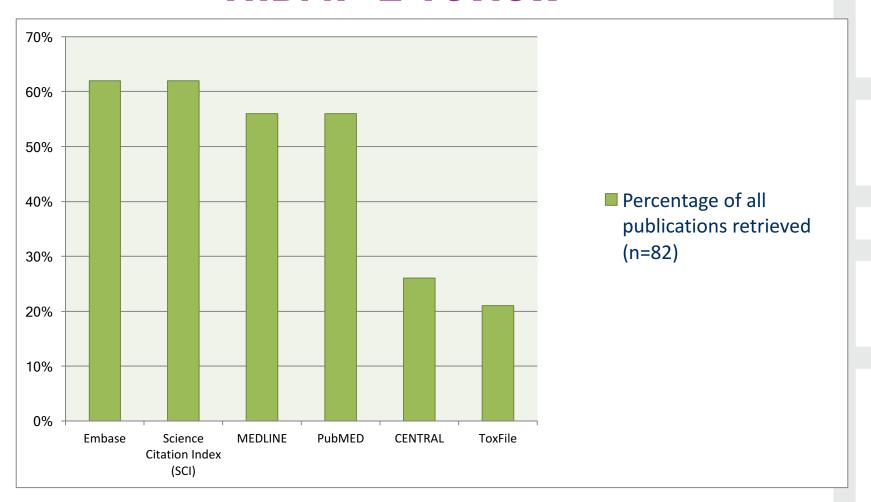
British Library Direct

Medscape DrugInfo

Science Citation Index

Handsearching

Case study with a medical device


Safety of recombinant human bone morphogenetic protein-2 (rhBMP-2)

- ❖ Searched 10 databases plus reference checking, contacting authors, industry and automated current awareness service
- Used intervention terms; recombinant human bone morphogenetic protein-2 (rhBMP-2) and spinal fusion
- Multiple textwords and indexing

(Golder 2014b)

() Cochrane Included references retrieved in rhBMP-2 review

Minimum combination of sources in rhBMP-2 review

- **❖**Industry
- Science Citation Index (SCI)
- **Embase**
- **CENTRAL**
- **❖** MEDLINE or PubMED
- Reference checking
- Contacting authors
- Automated current awareness service

The importance of unpublished data

More unpublished studies

- More unpublished studies contain adverse effects data compared to published studies (83% versus 43%)
- ❖ Even for the same study the unpublished version is more likely to contain adverse effects data than the published version (95% versus 43%)

The importance of unpublished data

More adverse effects reported

- A median of 64% of adverse effects (in terms of numbers) are missed if systematic reviews rely on published evidence (range 43% to 100%)
- More types of adverse effects are reported in unpublished than published versions of the same study

(Golder 2016b)

The importance of unpublished data

Searching for unpublished data

- ❖348 reviews of adverse effects from 2014
- ❖ 136/348 (39%) searched specific source for unpublished data
- ❖65/136 (48%) were **successful** in identifying unpublished data for inclusion
- Most successful sources searched were ClinicalTrials.gov, contacting authors and searching conferences

(Golder 2016a)

Summary

- 'Adverse effects' terms increasingly prevalent in title, abstract or indexing
- Subheadings are useful in Embase and MEDLINE
- Relevant sources will be dependent on search topic
- Key to searching for adverse effects is to search widely
- Much data on adverse effects are unpublished

(Cochrane What help is available?

Guidance

- **❖** Cochrane Handbook
- CRD's Guidance:
 www.york.ac.uk/inst/crd/systematic_reviews_book.htm
- **❖BMC Paper:** Loke YK et al. Systematic reviews of adverse effects: framework for a structured approach. BMC Med Res Methodol 2007;7:32.
- **❖AHRQ Paper:** Chou R et al. Assessing harms when comparing medical interventions. In Agency for Healthcare Research and Quality. Methods Guide for Comparative Effectiveness Reviews. Rockville, MD. 2009

Reporting standards

- **CONSORT** Extension for Harms
- PRISMA Harms Extension

Cochrane Adverse Effects Methods Group

- Website (http://aemg.cochrane.org/)
- Advisory Team
- Method Papers
- Discussion List (http://lists.cochrane.org/mailman/listinfo/aemg)
- ❖Twitter #CAEMG1
- Workshops
- Enquiry Database (FAQs)
- Ongoing Research

Any questions?

References

Badgett R, Chiquette E, Anagnostelis B, Mulrow C. Locating reports of serious adverse drug reactions (PowerPoint presentation).1999. http://medinformatics.uthscsa.edu/#FILTERS

Farrah K, Mierzwinski-Urban M, Cimon K. Effectiveness of adverse effects **search** filters: drugs versus medical devices. J Med Libr Assoc. 2016 Jul;104(3):221-5.

Golder S, McIntosh HM, Duffy S, Glanville J, Developing efficient search strategies to identify reports of adverse effects in MEDLINE and EMBASE. Health Info Libr J. 2006 Mar;23(1):3-12.

Golder S, Loke YK. Failure or success of electronic search strategies to identify adverse effects data. JMLA 2012a;100(2):130-4.

Golder S, Loke YK. The contribution of different information sources for adverse effects data. *Int J Technol Assess Health Care*. 2012a;28(2):133-7.

Golder S, Loke YK. The performance of adverse effects search filters in MEDLINE and EMBASE. *Health Info Libr J* 2012c;29(2):141-51.

Golder S, Wright K, Rodgers M. Failure or success of search strategies to identify adverse effects of medical devices: a feasibility study using a systematic review. *Systematic Reviews*, 2014a, 3:113.

Golder S, Wright K, Rodgers M. The contribution of different information sources to identify adverse effects of a medical device: a case study using a systematic review of spinal fusion. *International Journal of Health Technology Assessment in Health Care* 2014b 30:4,1-7.

Golder S, Loke YK, Wright K, Sterrantino C. Most systematic reviews of adverse effects did not include unpublished data. J Clin Epidemiol. 2016a

Golder S, Loke YK, Wright K, Norman G. Reporting of Adverse Events in Published and Unpublished Studies of Health Care Interventions: A Systematic Review. Plos Med. 2016b