
A RADIO FREQUENCY NON-RECIPROCAL NETWORK
BASED ON SWITCHED LOW-LOSS ACOUSTIC DELAY LINES

Ruochen Lu, Tomas Manzaneque, Yansong Yang, Anming Gao, Liuqing Gao and Songbin Gong
University of Illinois at Urbana-Champaign, USA

ABSTRACT
This work demonstrates the first non-reciprocal network based

on switched low-loss acoustic delay lines. A 21 dB non-reciprocal
contrast between insertion loss  (IL=6.6 dB) and isolation (25.4 dB)
has been achieved over a fractional bandwidth of 8.8% at a center
frequency 155MHz, using a record low switching frequency of
877.22 kHz. The 4-port circulator is built upon a newly reported
framework by the authors [1], but using two in-house fabricated
low-loss, wide-band lithium niobate (LiNbO3) delay lines with
single-phase unidirectional transducers (SPUDT) and commercial
available switches. Such a system can potentially lead to future
wide-band, low-loss chip-scale nonreciprocal RF systems with
unprecedented programmability [1].

INTRODUCTION
Microwave frequency non-reciprocal networks, e.g. circulators

and isolators, have been investigated for full-duplexing radios [2].
Non-reciprocity is conventionally achieved by Faraday effect in
ferrite materials [3]. Recently, magnet-free non-reciprocal systems
based on modulation of reactance or conductance have been
demonstrated [4]–[7]. Despite their promising performance, these
demonstrations require either a physically large structure for long
delays or a high-frequency modulation signals due to the fast phase
velocity of electromagnetic waves. Moreover, the bandwidth of non-
reciprocity is limited by the modulation frequency and required
phase matching condition. To overcome their limitations, we
harness shear horizontal acoustic waves in a LiNbO3 thin film to
produce long delays (280 ns) with sub-4 dB IL over 1-mm size [8],
[9]. Combining with our frequency-independent framework, this
work has achieved wideband non-reciprocity employing
unprecedentedly low temporal effort (e.g. frequency and modulation
depth).

DESIGN AND SIMULATION
The schematic of the 4-port non-reciprocal system [Fig. 1(a)]

consists of two delay lines and four single pole single throw
switches. The switches are controlled by four control signals [Fig.
1(b)], with a period (4δ) that is four times the delay line’s group
delay. Control signals on opposite sides of the delay lines are offset
by δ. In operation, the signals flowing into Port 1 are time-
multiplexed onto the two delay lines and subsequently de-
multiplexed to Port 2 by turning on the switches connected to Port
2 δ time after the signals launched from Port 1. The time-reversal
symmetry is broken through sequentially timing the switching from
one side of the delay lines to the other side. Consequently, signals
fed to Port 2 are rejected by Port 1’s closed switches and received
by Port 3. The assembled circulator performance is simulated [Fig.
5(b)] with the control signal frequency set to 877.2 kHz to match the
group delay. An IL of 5.6 dB and an isolation of 30 dB is obtained.

MEASUREMENT AND RESULTS
Experimentally, we implemented two standalone switch boards

and one delay line board, and assembled them as the circulator seen
in Fig. 1(c). The switch board design schematic and the constructed
board are shown in Fig. 2. On the delay line board, a pair of in-house
fabricated SPUDT [10]–[12] LiNbO3 acoustic delay lines [Fig. 3(a)-
(c)], were wirebonded to LC matching networks [Fig. 3(d)-(e)].

Measured and simulated S-parameters and group delays of the delay
line board are shown in Fig. 4. 4 dB IL and around 280 ns group
delay are measured.  As shown in Fig. 6, the measured S-parameters
exhibit great performance symmetry between ports, a minimum
insertion loss around 6.6 dB, and an isolation larger than 27 dB over
a bandwidth of 13.6 MHz (8.7% FBW). Currently, the loss is limited
by impedance matching networks and insufficient directionality in
the SPUDT design, which will be significantly reduced by further
optimization on acoustic delay lines. The spectral contents of
different ports are measured when port 1 is excited by a single tone
(Fig. 7). The intra-modulated tones are caused by the non-ideal
switching and multi-reflection on the delay lines exist in the
spectrum, which can be potentially diminished using a differential
structure [13] in future work.

CONCLUSION
We presented the first non-reciprocal network based on

switched acoustic delay lines. A 4-port circulator is then designed
and implemented with two switch modules and the delay line
module. The designs and the performance of different modules were

Figure 1: (a) Schematic of 4-port circulator based on switched
delay lines. (b) Switch control waveforms applied to the network for
producing nonreciprocal response. (c) Block diagram of the
constructed 4-port circulator, including switching modules,
impedance matching networks, and unidirectional acoustic delay
lines.

Figure 2: (a) Schematic of the switching module with labeled
components and interfaces. (b) Implemented switching module.
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individually analyzed, measured, and shown, before the circulator
was assembled. The measurement shows a highly symmetric
performance across the 4-ports with 18.8 dB non-reciprocal contrast
between the  IL  (6.6 dB) and isolation (25.4 dB) over a FBW of
8.8% at a center frequency 155 MHz, all of which are accomplish
with a record low switching frequency of 877.22 kHz. The system
also shows 25.9 dB difference between the carrier and the intra-
modulated tones. With the employment of faster switches, further
optimizations on delay lines and synchronization, such circulators
can potentially outperform ferrite-based devices in loss, bandwidth,
and isolation while offering a more compact size and reconfigurable
operation.
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