Extraposed relative clauses in Role and Reference Grammar.

An analysis using Tree Wrapping Grammars

Laura Kallmeyer

Heinrich-Heine-Universität Düsseldorf
19.12. 2019, CL Colloquium

Outline

(9) Introduction
(2) RRG as TWG
(3) Basic analysis of extraposed relative clauses

4 Obligatory (extraposed) relative clauses
(5) Conclusion

Introduction

The antecedent of an extraposed relative clause can be an argument of the main verb:
(1) Es fängt [der Spieler] an, der zuletzt in Portugal war .

Introduction

The antecedent of an extraposed relative clause can be an argument of the main verb:
(1) Es fängt [der Spieler] an, der zuletzt in Portugal war .

It can also be part of an adjunct PP.
(2) Ich fahre [mit dem Freund] nach Portugal, der gestern das Spiel gewonnen hat.

Introduction

The antecedent of an extraposed relative clause can be an argument of the main verb:
(1) Es fängt [der Spieler] an, der zuletzt in Portugal war .

It can also be part of an adjunct PP.
(2) Ich fahre [mit dem Freund] nach Portugal, der gestern das Spiel gewonnen hat.

Or it can be embedded in an argument.
(3) Es fängt [das Team des Spielers] an, der zuletzt in Portugal war .

Introduction

The antecedent of an extraposed relative clause can be an argument of the main verb:
(1) Es fängt [der Spieler] an, der zuletzt in Portugal war .

It can also be part of an adjunct PP.
(2) Ich fahre [mit dem Freund] nach Portugal, der gestern das Spiel gewonnen hat.

Or it can be embedded in an argument.
(3) Es fängt [das Team des Spielers] an, der zuletzt in Portugal war .

In principle, there is no limit to the level of embedding.
(4) Es fängt [die Figur aus dem Team desjenigen Spielers] an, der zuletzt in Portugal war.

Introduction

Consequently, one needs to find some "non-local" way for the antecedent NP and the relative clause to communicate with each other.

Introduction

Consequently, one needs to find some "non-local" way for the antecedent NP and the relative clause to communicate with each other.

Contribution of this talk:

- a precise analysis of extraposed relative clauses within Role and Reference Grammar (RRG; Van Valin \& LaPolla 1997; Van Valin 2005), which provides at the same time
■ an analysis of this phenomenon within a tree-rewriting formalism in the spirit of Lexicalized Tree Adjoining Grammar (LTAG Joshi \& Schabes, 1997; Abeillé \& Rambow, 2000) while overcoming the limitations of LTAG when dealing with extraposition.

Introduction

Consequently, one needs to find some "non-local" way for the antecedent NP and the relative clause to communicate with each other.

Contribution of this talk:

- a precise analysis of extraposed relative clauses within Role and Reference Grammar (RRG; Van Valin \& LaPolla 1997; Van Valin 2005), which provides at the same time
■ an analysis of this phenomenon within a tree-rewriting formalism in the spirit of Lexicalized Tree Adjoining Grammar (LTAG Joshi \& Schabes, 1997; Abeillé \& Rambow, 2000) while overcoming the limitations of LTAG when dealing with extraposition.

What this talk is not about:
■ Semantics and syntax-semantics interface.

Background: RRG as TWG

■ RRG assumes that clauses have a layered structure:

- The nucleus specifies the verb/the predication,
- the core layer consists of the nucleus and its arguments,

■ and the clause layer contains the core as well as extracted arguments.

Background: RRG as TWG

■ RRG assumes that clauses have a layered structure:
■ The nucleus specifies the verb/the predication,

- the core layer consists of the nucleus and its arguments,

■ and the clause layer contains the core as well as extracted arguments.

■ Each of the layers can have a periphery for attaching adjuncts.

Background: RRG as TWG

■ RRG assumes that clauses have a layered structure:

- The nucleus specifies the verb/the predication,

■ the core layer consists of the nucleus and its arguments,
■ and the clause layer contains the core as well as extracted arguments.

■ Each of the layers can have a periphery for attaching adjuncts.
■ Furthermore, operators (e.g., temporal operators, definiteness operators, modals etc.) are taken to be part of a separate operator projection which is, however, linked to the constituent structure. Each operator scopes over a specific layer.

Background: RRG as TWG

■ RRG assumes that clauses have a layered structure:
■ The nucleus specifies the verb/the predication,

- the core layer consists of the nucleus and its arguments,

■ and the clause layer contains the core as well as extracted arguments.

■ Each of the layers can have a periphery for attaching adjuncts.
■ Furthermore, operators (e.g., temporal operators, definiteness operators, modals etc.) are taken to be part of a separate operator projection which is, however, linked to the constituent structure. Each operator scopes over a specific layer.

■ Other projections of predicative elements (NPs, APs etc.) also come with layers of NUC, CORE and full phrase.

Background: RRG as TWG

An example from the RRGbank
(Bladier et al., 2018, rrgbank.phil.hhu.de):

Background: RRG as TWG

- Our formalization of RRG as a tree rewriting grammar has lead to the definition of Tree Wrapping Grammar (Kallmeyer et al., 2013; Osswald \& Kallmeyer, 2018).

■ Periphery and operators are integrated into the constituent structure while being marked as OP or ...-PERI respectively.

■ Both, OP and ...-PERI elements, are attached according to their surface position. Features on nodes and edges keep track of their scopal position (Kallmeyer \& Osswald, 2017).

Background: RRG as TWG

Three operations for combining trees:

Background: RRG as TWG

Three operations for combining trees:
■ Substitution = replacing a non-terminal leaf with a new tree, used for argument filling.

Background: RRG as TWG

Three operations for combining trees:
■ Substitution = replacing a non-terminal leaf with a new tree, used for argument filling.

■ Sister adjunction = adding a new adjunct tree (= a new daughter) to an internal node, used for adding periphery elements and operators.

Background: RRG as TWG

Three operations for combining trees:

- Substitution = replacing a non-terminal leaf with a new tree, used for argument filling.

■ Sister adjunction = adding a new adjunct tree (= a new daughter) to an internal node, used for adding periphery elements and operators.

- Wrapping substitution = adding a tree with a d-edge (= dominance edge) between a node v_{1} and its d-daughter v_{d} such that an argument slot is filled by the subtree below v_{d} and the root of the target tree merges with v_{1}. Used for adding arguments out of which something has been extracted.

Background: RRG as TWG

Example: substitution

Background: RRG as TWG

Example: substitution and sister adjunction
CLAUSE

little

Background: RRG as TWG

Example: substitution and sister adjunction

Background: RRG as TWG

Example: wrapping substitution

Background: RRG as TWG

Example: wrapping substitution

Extraposed relative clauses: analysis

A non-extraposed restrictive relative clause:
(5) a girl who was singing a song came in

Extraposed relative clauses: analysis

Extraposed relative clauses: analysis

(6) a girl came in who was singing a song

Structure we want to obtain:

Extraposed relative clauses: analysis

Analysis 1: Anaphoric approach

Extraposed relative clauses: analysis

Analysis 1: Anaphoric approach

Extraposed relative clauses: analysis

Problems of analysis 1 :
■ No explicit connection between antecedent NP and relative clause.

■ The link between the two must be established by some post-processing step of anaphora resolution.

- Agreement cannot be checked within syntax, and the same holds for obligatoriness of relative clauses.

Extraposed relative clauses: analysis

Problems of analysis 1 :
■ No explicit connection between antecedent NP and relative clause.

■ The link between the two must be established by some post-processing step of anaphora resolution.

- Agreement cannot be checked within syntax, and the same holds for obligatoriness of relative clauses.

We can establish a connection by putting the NP antecedent node and the higher CLAUSE node into the same elementary tree, with a d-edge in between.

Extraposed relative clauses: analysis

Analysis 2: NPs provide landing sites for relative clauses

Extraposed relative clauses: analysis

Extraposed relative clauses: analysis

Extraposed relative clauses: analysis

Problems of analysis 2:
■ Extra NP trees that anticipate the extraposed relative clause.

Extraposed relative clauses: analysis

Problems of analysis 2:
■ Extra NP trees that anticipate the extraposed relative clause.
■ Leads to spurious ambiguities.

Extraposed relative clauses: analysis

Problems of analysis 2:
■ Extra NP trees that anticipate the extraposed relative clause.
■ Leads to spurious ambiguities.
■ Allows for at most one extraposed relative clause. Can therefore not account for (7) (cited after Walker 2017)
(7) a. Someone picked some books up [which were lying on the table] [who really didn't want to].

Baltin (2006)
b. No one puts things in the sink [that would block it] [who wants to go on being a friend of mine].

Fodor (1978)

Extraposed relative clauses: analysis

Problems of analysis 2:
■ Extra NP trees that anticipate the extraposed relative clause.

- Leads to spurious ambiguities.
- Allows for at most one extraposed relative clause. Can therefore not account for (7) (cited after Walker 2017)
(7) a. Someone picked some books up [which were lying on the table] [who really didn't want to].

Baltin (2006)
b. No one puts things in the sink [that would block it] [who wants to go on being a friend of mine].

Fodor (1978)

- Technical problem: One has to find a way to avoid accidentally identifying the N -ID features of different NUC_{N} nodes.

Extraposed relative clauses: analysis

Analysis 3: Relative clauses incorporate their antecedent NPs

Extraposed relative clauses: analysis

Analysis 3: Relative clauses incorporate their antecedent NPs
CLAUSE
NP [NUC-ID 2] CLAUSE[PERI $n u c_{N}$, PERI-SCOPE 2]]

Extraposed relative clauses: analysis

Extraposed relative clauses: analysis

CLAUSE

Extraposed relative clauses: analysis

Analysis 3

- captures the link between antecedent NP and relative clause locally, i.e., within a single elementary tree,

Extraposed relative clauses: analysis

Analysis 3

- captures the link between antecedent NP and relative clause locally, i.e., within a single elementary tree,
■ does not require special NP-trees for NPs modified by an extraposed relative clause;

Extraposed relative clauses: analysis

Analysis 3

- captures the link between antecedent NP and relative clause locally, i.e., within a single elementary tree,
■ does not require special NP-trees for NPs modified by an extraposed relative clause;
■ allows for several extraposed relative clauses,

Extraposed relative clauses: analysis

Analysis 3

- captures the link between antecedent NP and relative clause locally, i.e., within a single elementary tree,
■ does not require special NP-trees for NPs modified by an extraposed relative clause;
■ allows for several extraposed relative clauses,
■ and allows even for several extraposed relative clauses modifying the same NP.

Extraposed relative clauses: analysis

Analysis 3

- captures the link between antecedent NP and relative clause locally, i.e., within a single elementary tree,

■ does not require special NP-trees for NPs modified by an extraposed relative clause;

■ allows for several extraposed relative clauses,
■ and allows even for several extraposed relative clauses modifying the same NP.
(8) a. The theory of light that Newton proposed that everyone laughed at was more accurate than the one that met with instance acceptance. (McCawley, 1998, ex. 3c, p. 382)
b. He explained the theory of light to her that Newton proposed that everyone laughed at at the time.
(8b) has been confirmed grammatical by Curt and Peter.

Obligatory (extraposed) relative clauses

Some determiners/pronouns, such as derjenige ("the one") in German, require a relative clause (Alexiadou et al., 2000; Sternefeld, 2008).
(9) a. Derjenige (Läufer), der zuerst ins Ziel läuft, gewinnt.
b. Derjenige (Läufer) gewinnt, der zuerst ins Ziel läuft.
c. *Derjenige (Läufer) gewinnt.

Obligatory (extraposed) relative clauses

Some determiners/pronouns, such as derjenige ("the one") in German, require a relative clause (Alexiadou et al., 2000; Sternefeld, 2008).
(9) a. Derjenige (Läufer), der zuerst ins Ziel läuft, gewinnt.
b. Derjenige (Läufer) gewinnt, der zuerst ins Ziel läuft.
c. *Derjenige (Läufer) gewinnt.

Idea: use percolating edge features in order to express the requirement for a relative clause.

Obligatory (extraposed) relative clauses

Reminder: edge features (Kallmeyer \& Osswald, 2017)
■ Nodes can have special features LEFT and RIGHT.
■ In the final derived tree, the LEFT feature of a node v unifies with the RIGHT feature of its immediate sister to the left.

Obligatory (extraposed) relative clauses

■ The LEFT feature of a node v on the left fringe unifies with the LEFT feature of the mother of v, provided this mother is not the root node of an elementary tree or the lower node of a d-edge. Similarly for RIGHT features on the right fringe.

Obligatory (extraposed) relative clauses

Example: enforcing the adjunction of a tense operator

Obligatory (extraposed) relative clauses

Example: enforcing the adjunction of a tense operator

\rightsquigarrow (before final unification)
CLAUSE

Obligatory (extraposed) relative clauses

■ Beyond the Kallmeyer \& Osswald (2017), we introduce further node features $L(E F T)$-D (AUGHTER)-EDGE and R(IGHT)-D(AUGHTER)-(LD-EDGE and RD-EDGE for short), for which the following holds: On the final derived tree, the L-DAUGHTER-EDGE feature of a node that has daughters unifies with the feature LEFT on the leftmost daughter and the feature R-DAUGHTER-EDGE unifies with the feature RIGHT on the rightmost daughter.

Obligatory (extraposed) relative clauses

Example: enforcing the adjunction of a tense operator
CLAUSE[LD-Edge [TNS +]]

Obligatory (extraposed) relative clauses

Example: enforcing the adjunction of a tense operator

Obligatory (extraposed) relative clauses

Obligatory relative clauses: we use a binary feature that expresses that a relative clause has been found, REL-CL-EXISTS or REL-EX for short.

Obligatory (extraposed) relative clauses

Obligatory relative clauses: we use a binary feature that expresses that a relative clause has been found, REL-CL-EXISTS or REL-EX for short.

"no rel clause seen on the right of the N so far", is passed upwards

Obligatory (extraposed) relative clauses

Obligatory relative clauses: we use a binary feature that expresses that a relative clause has been found, REL-CL-EXISTS or REL-EX for short.

"REL-EX no rel clause seen on the right of the N so far", is passed upwards

Obligatory (extraposed) relative clauses

Obligatory relative clauses: we use a binary feature that expresses that a relative clause has been found, REL-CL-EXISTS or REL-EX for short.

Obligatory (extraposed) relative clauses

LEFT and RIGHT unification if no relative clause is added:

Obligatory (extraposed) relative clauses

LEFT and RIGHT unification if no relative clause is added:

Obligatory (extraposed) relative clauses

LEFT and RIGHT unification if no relative clause is added:

Obligatory (extraposed) relative clauses

LEFT and RIGHT unification if no relative clause is added:

Obligatory (extraposed) relative clauses

LEFT and RIGHT unification if no relative clause is added:

Obligatory (extraposed) relative clauses

LEFT and RIGHT unification if no relative clause is added:

Unification failure because of conflicting values for 1

Obligatory (extraposed) relative clauses

Adding a relative clause switches REL-EX on the right from - to + :

Obligatory (extraposed) relative clauses

Obligatory (extraposed) relative clauses

$$
\text { CLAUSE }\left[\begin{array}{l}
\text { Ld-edge }[\text { REL-EX } \\
\text { RD-EDGE }
\end{array}\right]
$$

Before final unifications:

$$
\underbrace{N P\left[\begin{array}{ccc}
L & {[R E L-E X} & +] \\
R & {[R E L-E X} & -]
\end{array}\right]}_{\text {derjenige Läufer }} \operatorname{NUC}\left[\begin{array}{c}
{\left[\begin{array}{ll}
L[R E L-E X & 2] \\
R[R E L-E X & 2]
\end{array}\right]}
\end{array}\right.
$$

CLAUSE $_{\text {peri }[\mathrm{R}}[\mathrm{REL}-\mathrm{EX}+\mathrm{]}]$
der zuerst ins Ziel läuft

$$
\text { CLAUSE }\left[\begin{array}{ll}
\text { LD-EDGE } & {[R E L-E X ~+]} \\
R D-E D G E & {[R E L-E X ~+]}
\end{array}\right]
$$

After final unifications: $\quad \operatorname{CORE}\left[\begin{array}{cc}L & \left.\begin{array}{c}{[R E L-E X} \\ \mathrm{R} \\ {[\mathrm{RELLEX}} \\ \hline\end{array}\right]\end{array}\right]$
$\mathrm{CLAUSE}_{\text {peri }}\left[\begin{array}{ll}\mathrm{L} & {[\mathrm{REL-EX}} \\ \mathrm{R} & -] \\ {[\mathrm{REL}-\mathrm{EX}} & +]\end{array}\right]$

Obligatory (extraposed) relative clauses

■ This use of REL-EX makes sure that in a clause with a derjenige-NP, a relative clause is obligatory.

■ But: This NP is not necessarily the antecedent of the relative clause. I.e., (10) incorrectly gets an analysis.
(10) *Der Junge gibt demjenigen Mädchen ein Buch, der zuerst den Raum betritt.

Obligatory (extraposed) relative clauses

Enforcing substitution of correct antecedent NP:

Conclusion

■ Proposal of an RRG-analysis for extraposed relative clauses using the formalization as Tree Wrapping Grammar.

- Wrapping substitution is sufficiently non-local to account for the phenomenon while putting the antecedent NP and the relative clause into the same elementary tree.

■ Edge features can be used to enforce adding a relative clause in case of a derjenige-NP.

Conclusion

- Proposal of an RRG-analysis for extraposed relative clauses using the formalization as Tree Wrapping Grammar.

■ Wrapping substitution is sufficiently non-local to account for the phenomenon while putting the antecedent NP and the relative clause into the same elementary tree.

■ Edge features can be used to enforce adding a relative clause in case of a derjenige-NP.

■ Next steps: implementation of a German fragment using XMG and TuLiPA

Abeillé, Anne \& Owen Rambow. 2000. Tree Adjoining Grammar: An Overview. In Anne Abeillé \& Owen Rambow (eds.), Tree adjoining grammars: Formalisms, linguistic analysis and processing, 1-68. CSLI.
Alexiadou, Artemis, Paul Law, André Meinunger \& Chris Wilder. 2000. Introduction. In Artemis Alexiadou, Paul Law, André Meinunger \& Chris Wilder (eds.), The syntax of relative clauses, vol. 32 Linguistics Today, Amsterdam and Philadelphia: John Benjamins.
Baltin, Mark R. 2006. Extraposition. In Martin Everaert \& Henk van Riemsdijk (eds.), The blackwell companion to syntax, volume 2, 237-271. Malden, MA: Blackwell Publishing.
Bladier, Tatiana, Andreas van Cranenburgh, Kilian Evang, Laura Kallmeyer, Robin Möllemann \& Rainer Osswald. 2018. Rrgbank: a role and reference grammar corpus of syntactic structures extracted from the penn treebank. In Proceedings of treebanks and linguistic theories, 5-16. http://www.ep.liu.se/ecp/155/003/ecp18155003.pdf.
Fodor, Janet D. 1978. Parsing strategies and constraints on transformations. Linguistic Inquiry 9(3). 427-473.
Joshi, Aravind K. \& Yves Schabes. 1997. Tree-Adjoning Grammars. In G. Rozenberg \& A. Salomaa (eds.), Handbook of formal languages, 69-123. Berlin: Springer.
Kallmeyer, Laura \& Rainer Osswald. 2017. Combining predicate-argument structure and operator projection: Clause structure in role and reference grammar. In Proceedings of the 13th international workshop on tree adjoining grammars and related formalisms, 61-70. Umeå, Sweden: Association for Computational Linguistics.
Kallmeyer, Laura, Rainer Osswald \& Robert D. Van Valin, Jr. 2013. Tree wrapping for Role and Reference Grammar. In Glyn Morrill \& Mark-Jan Nederhof (eds.), Formal grammar (FG 2012/2013) (Lecture Notes in Computer Science 8036), 175-190. Springer.
McCawley, James D. 1998. The syntactic phenomena of english. University of Chicago Press. 2d edition.
Osswald, Rainer \& Laura Kallmeyer. 2018. Towards a formalization of Role and Reference Grammar. In Rolf Kailuweit, Eva Staudinger \& Lisann Künkel (eds.), Applying and expanding Role and Reference Grammar, 355-378. Freiburg University Press.
Sternefeld, Wolfgang. 2008. Syntax. eine morphologisch motivierte generative beschreibung des deutschen, volume 1. Tübingen: Stauffenburg. 3rd revised edition.
Van Valin, Robert D., Jr. 2005. Exploring the syntax-semantics interface. Cambridge University Press.
Van Valin, Robert D., J. \& Randy LaPolla. 1997. Syntax: Structure, meaning and function. Cambridge University Press.
Walker, Heike. 2017. The syntax and semantics of relative clause attachment: Johann Wolfgang Goethe-Universität zu Frankfurt am Main dissertation.

