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ABSTRACT

The main purpose of this project is experimental study of pack carburizing of carbon 

steels by using two parameters (holding time and carburizing temperature). This study 

was conducted by using furnace. This process is carried out at temperatures from 850°C 

to 950°C (1123 – 1223K) for three various durations time which are 4, 8 and 16 hours. 

From the experiment, the surface hardness and thickness of carbon layer was different 

according to the parameters used. The quenching medium that use in this experiment is 

water. For carburizing temperature at 950°C, the highest of surface hardness value is 

395.7 HV that carburized for 16 hours. For carburizing temperature at 900°C, the 

highest of surface hardness value is 373.4 HV that carburized for 16 hours and for 

carburizing temperature at 850°C which is the highest of surface hardness value is 345.5 

HV. The thickness of carbon layer for 950°C was between 40μm to 120μm. The 

thickness of carbon layer for 900°C was between 40μm to 80μm and for 850°C was 

between 20 μm to 60 μm. Activation energy was determined which is 142.55 kJ/mol. 

The result indicates the carburizing process accelerates the diffusion of carbon atoms 

into the surface, thus increasing the thickness of carburized layer as well as the surface 

hardness.
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ABSTRAK

Tujuan utama kajian ini adalah untuk mengkaji eksperimen karburisasi baja karbon 

dengan menggunakan dua (masa penahanan dan suhu karburasi). Kajian ini dijalankan 

dengan menggunakan kebuk pembakaran. Proses ini dilakukan pada suhu 850°C 

sehingga 950°C (1123 – 1223K) untuk tiga masa berbeza iaitu 4,8 dan 16 jam. Daripada 

eksperimen ini, kekerasan permukaan dan ketebalan lapisan karbon berlainan mengikut 

pembolehubah yang digunakan. Agen pnyejuk yang digunakan dalam eksperimen ini 

adalah air. Bagi karburasi pada suhu 950°C, nilai kekerasan permukaan yang paling 

tinggi ialah 395.7 HV yang dikarburasi selama 16 jam. Bagi karburasi pada suhu 900°C, 

nilai kekerasan permukaan yang paling tinggi ialah 373.4 HV yang dikarburasi selama 

16 jam dan bagi karburasi pada suhu 850°C dimana bacaan kekerasan permukaan yang 

paling tinggi ialah 345.5 HV. Bagi ketebalan lapisan karbon pada suhu 950°C ialah 

40μm hingga 120μm. Bagi ketebalan lapisan karbon pada suhu 900°C ialah 40μm 

hingga 80μm dan bagi suhu 850°C  ketebalan lapisan karbonnya antara 20 μm hingga 

60 μm. Tenaga pengaktifan dikirakan iaitu 142.55 kJ/mol. Keputusan ini menunjukkan 

proses karburasi mempercepatkan kemasukan atom karbon ke dalam lapisan lalu 

meningkatkan ketebalan lapisan karbon begitu juga dengan kekerasan lapisan. 
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Low-carbon steel used in many mechanical components is tough, but also soft 

and flexible. There are advantages to its ductility. However its very nature means that 

the low-carbon steel's surface is susceptible to battering and wear.  Generally, surface 

treatment processes will apply to produce ductile but tough components. After a 

component has been produced, it may still not have good condition in surface properties

(Parrish G, 1999).

Case hardening is ideal for parts that require a wear-resistant surface and must 

be tough enough internally to withstand heavy loading. Steels best suited for case 

hardening are the low-carbon and low-alloy series. When high-carbon steels are through 

hardening, the hardness penetrates the core and causes brittleness. In case hardening, the 

surface of the metal is change chemically by introducing a high carbide or nitride

content. The core remains chemically unaffected. When heat-treated, the high-carbon 

surface responds to hardening, and the core toughens. Typical applications for case 

hardening are gear teeth, cams, shaft, bearing, fasteners, pins, automotive clutch plates, 

tools, and dies (Parrish G, 1999).

Case hardening-also known as "pack carburising"-involves putting carbon (or a 

combination of carbon and nitrogen) into the surface of the steel to make it a high-

carbon steel which can be hardened by heat treatment, just as if it were tool steel or any 

other high-carbon steel. Only the outer skin of the steel gets hard in case hardening, 
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while the center remains tough and malleable. This makes for a strong part with a very 

tough, durable surface (Parrish G, 1999).

Carburising is a case-hardening process by which carbon is added to the surface 

of low-carbon steel. This results in carburized steel that has a high-carbon surface and a 

low-carbon interior. When the carburized steel is heat-treated, the case 

becomes hardened and the core remains soft and tough. Two methods are used for 

carburizing steel. One method consists of heating the steel in a furnace containing 

a carbon monoxide atmosphere. The other method has the steel placed in a container 

packed with charcoal or some other carbon rich material and then heated in a furnace.

1.2 PROBLEM STATEMENT

The case depth is controlled by the adjustment of the carburizing time and 

temperature. There is a limit to which temperature can be increased in case hardening. 

At high temperatures, the structure of the core can be worse and it can affect the 

diffusion process. At elevated temperature, the rate at which the diffusing element is 

deposited on the surface of the specimen is greater than the rate at which it diffuses 

towards the core of the steel. This leads to uneven distribution of the concentration of 

the element and a high concentration which may lead to the formation of networks of 

chemical compounds such as carbides and nitrides, which impacts high brittleness to the 

surface layer. The yield strength of the core of a carburized component may be 

exceeded, particularly as the core is in a state of tensile stress. It very difficult to control 

case depth during carburizing to close tolerances because there have relative with

heating and cooling times involved, which make the accurate control of actual 

carburizing temperature and time difficult.
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1.3 RESEARCH OBJECTIVES   

The objectives of this study are to:

i. Investigate the influence of time and temperature on pack carburizing

ii. Examine the activation energy on carburized layer based of varying time 

and temperature.

1.4 SCOPE OF THE RESEARCH

The scopes of this study are:

i. Pack carburizing using commercial grade carbon granule

ii. Using material which is AISI 1045.

iii. Using 3 different temperatures which are 850°C, 900°c and 950°C for 

carburizing. 

iv. Using 3 different times which are 4 hours, 8 hours and 16 hours in 

carburizing.

v. Using one medium which is water in quenching.

vi. Using Vickers test to determine the hardness of certain part on the 

carbon steel.

vii. Using optical microscope to determine the thickness of carburizing layer.



CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

Pure iron is not suitable for use as a structural material.  It is weak, soft, is very 

ductile and does not respond to heat treatment to any appreciable degree.  Steel, which 

is basically iron, alloyed with carbon and a few percent to a few tens of percent of other 

alloying elements can be heat treated to a wide range of strengths, toughnesses and 

ductilities.  Carbon is the most important of these alloying elements in terms of the 

mechanical properties of steel and most heat treatments of steel are based primarily on 

controlling the distribution of carbon. Heat treatment is a process to change certain 

characteristics of metals and alloys like physical properties by either heating or cooling

in order to make them more suitable for a particular kind of application. When heat 

treatment process occurs, the mechanical properties of metal will influence such as 

strength, hardness, ductility, toughness, and wear resistance.

2. 2 HEAT TREATMENT OF CARBON STEELS

Most carbon steels and carbon alloy steels can be heat treated for the purpose of 

improving mechanical properties such as hardness, tensile and yield strength. This is 

happen because heat treatment fundamentally altering the microstructure of the carbon 

steel (Parrish G, 1999).
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Firstly, it must begin with the understanding of the structure and phases of 

metals. The structure of steel is composed of two variables:

i. Grain Structure - The arrangement of atoms in a metal.

ii. Grain Size - The size of the individual crystals of metal. Large grain 

size is generally associated with low strength, hardness, and ductility.

The crystals in steel have a defined structure that is determined by the 

arrangement of the atoms. There are two common crystal structures in iron which are

body-centered-cubic (BCC) and face-centered-cubic (FCC). When the iron is arranged 

in the FCC structure, it is able to absorb higher amounts of carbon than a BCC structure 

because of an increase in interstitial sites where carbon can sit between the iron atoms. 

During the alloying process elements, carbons are introduced to the metal that makes 

crystal structures changing to be more strength. That mean heat treatment makes 

increasing strength in crystal structure (D. R. Askeland, 1984). 

Carbon steel can exist in various phases which are ferrite, austenite, and 

cementite. Figure 2.2 shows the phase in steel when heat treatment occur. The Y-axis 

(vertical) is a measurement of temperature while the X-axis (horizontal) is a 

measurement of the carbon content of the carbon steel. The far left hand side of the X-

axis represents the ferrite phase of carbon steel (low carbon content) while the far right 

hand side represents the cementite phase of steel (high carbon content), which is also 

known as iron carbide. The austenite phase is located between the phase lines and 

occurs only above 1333 °F (D. R. Askeland, 1984).
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(a) (b)

         

Figure 2.1: (a) Body-Centered Cubic (BCC), (b) Face-Centered Cubic (FCC)

Source: William D. Callister Jr., 1994

Figure 2.2: Iron-Carbon phase diagram

Source: William D. Callister Jr., 1994

Based Figure 2.2, ferrite is above the lined 1333°F. When ferrite (low carbon 

steel) is at room temperature, the crystal structure is a body-centered cubic structure, 

which is can only absorb a low amount of carbon. The un-absorbed carbon separates out 



7

of the body centered-cubic structure to form carbides which join together to create small 

pockets of an extremely hard crystal structure within the ferrite called cementite because 

of low amount of carbon. When ferrite is heated to a temperature above the 

transformation line at 1333 ºF (refer Figure 2.2), the body centered-cubic structure 

changes to a face-centered-cubic structure known as austenite. That mean amount of 

carbon absorbs in the crystal structure and make arrangement atom

When the carbon steel heat more than 1333 ºF, it in the austenitic phase and all 

of the cementite dissolves into austenite. If the steel is allowed to cool slowly, the 

carbon will separate out of the ferrite as the cubic-structure will change from face-

centered back to body-centered. Cementite will reform within the ferrite, and the carbon

steel will have the same properties that it did before it was heated but when the steel is 

rapidly cooled, or quenched, in a quenching medium (such as oil, water, or cold air) the 

carbon does not exit the cubic structure of the ferrite and it becomes bond with the 

structure. This leads to the formation of martensite which is the microstructure that 

produces the most sought after mechanical properties in steel fasteners (Parrish G, 

1999).

The successful heat treatment of steels to produce a predominantly martensitic 

microstructure throughout the cross section depends mainly on three factors

i. The composition of the alloy

ii. The type and character of the quenching medium

iii. The size and shape of the specimen

Carbon steel’s ability to transform into martensite with a particular quenching 

treatment is called hardenability. This is due to the composition of alloy in the carbon 

steel. Each steel alloy has a specific relationship between its mechanical properties and 

its cooling rate. It is to be noted that hardenability is not some kind of resistance to 

indentention but it is actually a hardness measurement which is used to estimate the 

extent of martensitic transformation inside the material. A steel alloy which formed into 

martensite has a high ability at the surface and also a large degree throughout the entire 
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interior. In much simply words, hardenability is a measure of the degree to which a 

specific alloy may be hardened (D. R. Askeland, 1984).

The martensite newly formed is considered as a grain structure and it is very 

hard and brittle. The steel which has been quenched from austenitizing temperatures 

requires tempering before it can be placed into service due to the brittleness property in 

martensite. Tempering is a process of heating the carbon steel to a specific temperature 

below that of transformation line and the carbon steel is allowed to cool slowly. The 

slow cooling process will increase the ductility and decrease the hardness to specified 

level of the crystal structure. Based on the desired results for the steel the specific 

tempering temperature will be varied (Parrish G, 1999).

2.2.1 Carburizing

The addition of carbon to the surface of low carbon steel at temperature 

generally 850-950 degree Celsius is called carburization. Carburization is the most 

widely used method of surface hardening. It consists of enrichment of surface layers of 

low carbon or mild steel with carbon up to 0.8 % to 1%. This will superimposed the 

good wear and fatigue resistance on a tough low carbon steel core. It usually has base-

carbon contents of about 0.2%, with the carbon content of the carburized layer generally 

being controlled at between 0.8 and 1% C. However, due to high carbon content it can

results in retained austenite and brittle martensite which is the main reason it is often 

limited to 0.9%. 

Carburizing process increases the grains size due to permanence for a long time 

in the austenitic region of the phase diagram and makes necessary a posterior heat 

treatment to refine the grains. Classic quenching generates a martensitic hard but brittle 

material. On the order hand, intercritical quenching transforms the outward carbon-rich 

solid solution into martensite, while the internal microstructures present a mixture of 

martensite, producing a less-brittle material (Parrish G, 1999).
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The following carburizing processes are commonly used in industrial 

application:

1. Pack carburizing

2. Gas carburizing

3. Liquid carburizing

2.2.2 Pack Carburizing

Pack carburizing is a process of packing parts in a high carbon medium such as 

carbon powder or cast iron shavings and heated in a furnace for 12 to 72 hours at 900 ºC 

(1652 ºF). CO gas is produced at this temperature which is a strong reducing agent. Due 

to high temperature, carbon is diffused into the surface as the reduction reaction occurs 

on the surface of the steel. Based on experimental and theoretical calculations on 

diffusion theory the parts are removed and can be subject to the normal hardening 

methods when enough carbon is absorbed inside the part (Krauss G, 1991)

During the process the part which needed to be carburized is packed in a steel 

container and surrounded by granules of charcoal. The charcoal is treated with an 

activating chemical such as Barium Carbonate (BaBO3) that promotes the formation of 

Carbon Dioxide (CO2). CO2 will then react with the excess carbon in the charcoal to 

produce carbon monoxide (CO). Next, carbon monoxide will react with low carbon 

steel surface to form atomic carbon which diffuses into the steel. Carbon gradient 

supplied by Carbon Monoxide is necessary for diffusion. It is to be noted that, 

carburizing process does not harden the steel but it just only increases the carbon 

content to some predetermined depth below the surface to a sufficient level to allow 

subsequent quench hardening. Figure 2.3 below show that about the carburizing 

process.

Carbon Monoxide reaction:

	+ 	 	→ 	2	
Reaction of Cementite to Carbon Monoxide:

2	 	+ 	3	 	→ 	 	+ 	
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Figure 2.3:  Pack carburizing process

Source: Romesh C.Sharma, 2003

2.2.3 Gas Carburizing

Gas carburizing consists of introducing carbon into the ferrous base material by 

heating in a gaseous atmosphere. Commercial gases, natural and propane, and easily 

vaporized hydrocarbon liquids are used to supply the desired quantity of carbon.

Batch type furnaces are used in this process. This furnace consists of an inner 

cylinder, made from noncarburizing alloy steel, and heated-insulated outer cylinder. The 

parts are placed in the inner cylinder. After that carburizing gas or oil will introduced, 

circulated by a fan. The furnace is sealed and the parts are soaked at the carburizing 

temperature for the required time for the depth of case desired. The carburizing 

temperature required is about 1700°F for case depths of 0.020ʺ to 0.030ʺ. Longer 

carburizing periods will produce greater depths.
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The parts are then quenched. Finally, they are reheated to a point above the 

transformation range of the case and quenched (Vijaya and Ranganjaran, 2004).

2.2.4 Liquid Carburizing

Liquid carburizing is a method of case-hardening or carburizing steel in molten 

baths. The baths are mixtures of cyanides, chlorides, and carbonates. The case that is

produced is comparable with one resulting from pack or gas carburizing. The salts 

produce carbon and nitrogen that penetrate the surface.

The carburizing action depends upon sodium cyanide or barium cyanide, which 

supplies the carbon and some nitrogen. Non-cyanide carburizing applications are 

available. They produce excellent results.

Liquid carburizing temperatures usually range from 1500°F to 1750°F. Faster 

penetration can be obtained if higher temperatures are used. However, this method 

increases material cost and causes rapid deterioration of equipment. Cases as deep as 

0.30ʺ can be obtained with a cyanide content of 20% using carburizing temperatures

from 1550°F to 1650°F (Vijaya and Ranganjaran, 2004).

This advantage of this method can be summarized as follows:

i. Uniform case depth and carbon content

ii. Rapid penetration depth

iii. Rusting, pitting, and corrosion minimized

iv. Reduction of time required for steel to reach carburizing temperature

v. Low installation cost.
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2.2.5 Quenching

The process to improve the mechanical properties of steel products, such as 

hardness, stiffness, and strength, by the means of opportune solid–solid phase changes, 

induced by a heating, holding, and cooling thermal cycle is called quenching process it 

is widely used and the main purpose of the heating and the holding stages is to 

transform starting material structure into a homogeneous austenitic phase. During the 

process, workpiece is undergoing forced cooling to induce the opportune decomposition 

of austenite into several microstructures such as martensite, pearlite, ferrite and Fe-

carbide that depending on the chemical composition of the processing carbon steel and 

the local cooling rate. (K.H. Prabudev, 1988).

The timing of each step such as heating, cooling rates and the holding 

temperature are very important. This is because high heating rates could results to 

excessive temperature gradients which will then causes internal stresses, deformations 

or cracks. For non-homogeneous austenite formation, the temperature and duration of 

the holding stage should be carefully planned to obtain a fully austenitic structure, 

avoiding excessive grain size, and reducing energy consumption and costs, due to 

extended holding at relatively high temperature. Finally, in order to induce the austenite 

decomposition into desired microstructures by reducing residual stresses and part 

distortions, the choice of cooling medium, cooling temperature and cooling technique is 

very crucial for the cooling stage. (K.H. Prabudev, 1988).

The most commonly used quenching media are:

1. Water (plain or salt water) 

2. Oil

3. Air
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After carburizing, carburized components are normally quenched from the 

austenite temperature range to obtain maximum hardness at the surface. A carburized 

component may either be quenched directly from carburizing temperature, or reheated 

(after slow cooling) to appropriate austenitizing temperature and quenched. Mildest 

possible quench, consistent with desired hardening, is normally used to minimize the 

possibility of quenching cracks and distortion of the components during quenching. 

Whenever possible, direct quenching from carburizing temperature is done to minimize 

operational time and costs. After pack carburizing, direct quenching is not possible, and 

hence, the components have to be reheated for quench hardening (Romesh C.Sharma, 

2003).

Sometimes, even the parts carburized by gas and liquid carburizing are slow 

cooled to room temperature, and then reheated for quench hardening. This may be done 

for one or more of the following reasons:

i. Some carburized components ay require some machining before the 

hardening operation. In such cases, parts are slowly cooled and machined 

in the soft state, before quench hardening.

ii. When grain coarsening has occurred during carburizing, it is desirable to 

reheat the components for quench hardening to refine the grain size to 

some extent.

iii. Surface carbon concentration of pack carburizing components is 

normally at saturation level, and that may be higher than the desired 

value. Liquid carburized components may also at the times have higher 

surface carbon content than desired. Such components, when quenched 

directly, would have relatively higher retained austenite levels, and 

consequently lower hardness values, near the surface. Furthermore, high 

retained austenite levels near the surface lead to problems during the 

grinding of these components. It may be recalled that retained austenite 

increases with increasing carbon content. Generally, the retained 

austenite should be less than 15%. When carburized components are 

reheated for hardening, carbon gradient near the surface get somewhat 

moderated by carbon diffusion and the surface carbon concentration is 

somewhat reduced, leading to reduced retained austenite.
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2.3 HARDNESS ANALYSIS

2.3.1 Activation Energy

The activation energy is determined by measuring the effect of temperature on 

the rate of the reaction.  At a higher temperature there is greater proportion of reactants 

with the required activation energy (E ≥ Ea), increasing the rate of the reaction. 

However change of temperature does not depend to activation energy. It only changes 

the frequency of collisions and the proportion of reactants with the kinetic energy, E 

that is greater than or equal to the activation energy, Ea (E ≥ Ea). Arrhenius proposed an 

equation to represent the proportion of molecules with E ≥ Ea (John M. Coulson, John 

Francis Richardson, 1995).

Figure 2.4: Graph number of molecules versus Energy

Figure 2.4 shows the relationship for equation 2.1.

	 	=
	 		 	 	= 	

(2.1)
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This mathematical model developed into now what is called the Arrhenius 

equation.

	= ( )									 (2.2)

Where;

	=	 the Arrhenius constant or frequency factor. It is related to the 

collision frequency and the probability that the molecules have 

the correct orientation/geometry at the point of collision.

= the activation energy in Jmol
-1

= the gas constant (8.314 JK-1mol
-1

) 

= the absolute temperature (K) 

= the rate constant (s
-1

)

From the Arrhenius equation, add natural log and the activation energy can be 

determined.	= 	 + 	 (2.3)

And then plot ln k versus 1/T (called an Arrhenuis plot) a straight line is 

obtained.

	 	 	=
	 	 	
/

(2.4)

The activation energy can be determined from the slope/gradient of the line 

using:

	 	 	= 	−
(2.5)
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This is example using Arrhenius equation to determined activation energy in 

pack carburizing. The activation energy of carburizing process can be determined by

using the thickness of carburized layer formed. Figure 2.5 shows the cross-sectional 

microstructure of superplastically carburized DSS at 1223K with 8 hours carburizing 

time. From Figure 2.5, the carburizing layer can be observed clearly with dropping 

hardness value (I. Jauhari, 2007). 

Figure 2.5:  Optical micrograph showing the hardness indentation 

variation from the outer layer to the interior of 

superplastically carburized DSS at 1223K for 8 h.

From Vickers test, the dropping hardness value can be determined with graph 

surface hardness (HV) versus distance from surface (µm) that takes from edge to core. It 

had been shown in Figure 2.6 (I. Jauhari, 2007).
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Figure 2.6: Cross-section hardness profiles of super plastically carburized DSS   

at 1223K for 8 hours.

When the thickness carburizing layer had been found, graph thickness of carbon 

layer (µm) versus carburizing time (hour) was plotting that shown in Figure 2.7. 

Figure 2.7: The variation of carbon layer thickness with carburizing time at 

1223K.

The thickness of carbon layer from the graph increasing with increasing time 

and follows parabolic law as below:

²	 = 	 (2.6)

Where;

d= the carbon layer thickness (μm)

K= carbon growth rate constant

t= carburizing time (s)
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Figure 2.8: Square of carbon layer thickness of superplastically carburized DSS 

vs. carburizing time.

Figure 2.8 shows the square of carbon layer thickness superplastically carburized 

DSS changes linearly with time that comes from Figure 2.6 and using parabolic law to 

make the graph linear. Therefore, the relationship between the diffusion coefficient, K 

(m
2
s

−1
), activation energy, Q(Jmol

-1
) and carburizing temperature, T (K) can be 

expressed by Arrhenius equation as follow:

= ( )
(2.7)

Where;

K0= pre-exponential constant

R = 8.314 Jmol
−1

K
−1

T = temperature (K)

Q= activation energy

Taking the natural logarithm of equation 2.7, equation 2.8 can be derived as 

follow:

	 = 	 + 	(− )( ) (2.8)
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Figure 2.9: Natural logarithm of carbon growth rate (ln K) vs. reciprocal 

carburizing temperature (T−1) for superplastically and conventionally 

carburized DSS.

Figure 2.9 shows the plot of natural logarithm of carbon growth rate (ln K) 

versus reciprocal of carburizing temperature (T−1) for both SPC and CC processes is 

linear. Thus, the slope of the straight line will determine the activation energy (Q) of

each carburizing process (I. Jauhari, 2007).

2.3.2 Diffusion Energy

Diffusion is the process by which atoms move in a material. Many reactions in 

solids and liquids are diffusion dependent.  Structural control in a solid to achieve the 

optimum properties is also dependent on the rate of diffusion. Diffusion can be defined 

as the mass flow process in which atoms change their positions relative to neighbors in 

a given phase under the influence of thermal and a gradient. The gradient can be a 

compositional gradient, an electric or magnetic gradient, or stress gradient (Vijaya and 

Ranganjaran, 2004).
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Diffusion processes can be either steady-state or non-steady-state that are 

distinguished by use of a parameter called flux. It is defined as net number of atoms 

crossing a unit area perpendicular to a given direction per unit time. For steady-state 

diffusion, flux is constant with time and for non-steady-state diffusion, flux varies with 

time. The graph of concentration gradient with distance for both steady-state and non-

steady-state diffusion processes are shown in Figure 2.10 (Vijaya and Ranganjaran, 

2004).

Figure 2.10: Steady-state and Non-steady-state diffusion processes.

Steady-state diffusion is described by Fick’s first law which states that fluxes 

(J), is proportional to the concentration gradient.  The constant of proportionality is 

called diffusion coefficient, D (cm2/sec). Diffusivity is characteristic of the system that 

depends on the nature of the diffusing species and the temperature at which diffusion 

occurs. Anyway, when the flux is independent of time and remains the same at any 

cross-sectional plane along the diffusion direction that is under steady-state flow. For

the one-dimensional case, Fick’s first law is given by

= − =
1

(2.9)

And
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≠ ( , ) (2.10)

Where;

D= the diffusion constant

= the gradient of the concentration c

= the number atoms crossing per unit time a cross-sectional 

     plane of area A

For non-steady-state processes there are concentrating to the position changes 

with time and make the flux changes with time too. This is because of diffusion flux 

were depends on time which means that a type of atoms accumulates in a region or 

depleted from a region that may cause them to accumulate in another region. For this 

process, the Fick’s law had been introduced, which is expressed by 

= − =

(2.11)

Where;

= the time rate of change of concentration at a particular 

     position x

If D is assumed to be a constant

=

(2.12)
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During carburizing, temperature has a most profound influence on the diffusivity 

and diffusion rates. It is known that there is a restriction to diffusion created by atoms 

those need to move to let the diffusing atom pass. Therefore, the temperature makes the 

atomic vibrations for assist diffusion. Empirical analysis of the system resulted in an 

Arrhenius type of relationship between diffusivity and temperature (Vijaya and 

Ranganjaran, 2004).

= (2.13)

Where;

= Temperature-independent pre exponential (m
2
s

-1
)

Q= the activation energy for diffusion (Jmol
-1

)

R= the gas constant (8.31 Jmol
-1

-K
-1

)

T= absolute temperature (K)

Taking the natural logarithm of equation 2.13, equation 2.14 can be derived as 

follow;

	 = 	 + 	(− )( ) (2.14)

From this equation, the graph In D versus T
-1 

will plot to find the activation 

energy which is from the gradients that shows in Figure 2.11.
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Figure 2.11: In D versus T
-1

This is example using diffusion energy to determined activation energy in pack 

carburizing. The carbon profiles along with case depth of the pack carburizing will 

derive by using Fick’s second law. A two-step optimization procedure will develop in 

order to compute the optimum values of the activation parameters (activation energy for 

diffusion and diffusivity coefficient) of carbon in austenite as well as carbon potential 

that is form at the surface of the carburizing specimen under different conditions of

temperature, time and coke-catalysts mixtures. This experiment will use SAE 8620 H 

steel and three different mixtures that will use for agent carbon in pack carburizing. 

Table 2.1 shows the mixture that use in this experiment

Table 2.1: Composition of the pack carburizing mixtures

Composition Mixture A Mixture B Mixture C

Coke 90 100 85

BaCO3 5 - 10

NaCO3 5 - 5

The carbon profile after carburizing was determined from chips obtained at 0.1 

mm intervals from the outer face of the samples until the chemical analysis was found 

close to the carbon composition of the base steel. The machining process was carried 
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out carefully without lubrication. The determination of the carbon content of the case

layer was conducted in a Leco CS-46 analyzer, taking the mean of three samples and 

the value obtained was then reported in relation to the midpoint of the cemented case, 

according to the ASTM standard G79-C. The carbon profile of the cemented case was 

also evaluated by means of SEM techniques (Phillips 505) employing a WDX analyzer 

(Microspec WDX-2A). In this case, the change in carbon content was evaluated linearly 

from the outer surface to the center of the samples (H. Jiminez, 1999).

Figure 2.12: Carbon concentration profile obtained with the carburizing

compound designated as mixture C, at 1173 K. The solid curve represents the 

theoretical description obtained by optimization of the parameters CS and D.

The Figure 2.12 shows the amount of carbon after pack carburizing in mixture C

for example. The carbon profiles determined by means of chemical analysis of the chips

machined from the specimens, after carburizing at 1173 K for 4 hours with mixtures C

employed. The carbon concentration is observed to decrease smoothly from the surface 

to the interior of the work- piece, with the trend to achieve asymptotically the carbon 

content of the steel. The solid lines shown in these figures correspond to the theoretical 
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