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Abstract: In this study, nematodes were first reported in the amphipods, Ischyrocerus commensalis,
collected from the introduced and commercially important red king crabs, Paralithodes camtschaticus,
in the coastal Barents Sea in July 2022. Commensal amphipods were registered on all red king crabs
captured (n = 70, prevalence 100%). Further laboratory analysis revealed that 11 out of 467 amphipod
individuals (prevalence 2.4%) harbored single third-stage larvae of Hysterothylacium sp. l. (Nematoda:
Anisakidae). The nematode larvae ranged from 0.63 to 6.10 mm in body length. Due to the low
prevalence of nematodes and lower vulnerability of the host amphipods to fish predators, negative
effects on the Barents Sea ecosystem through the range expansion of crab-associated amphipods and
their parasites are unlikely.

Keywords: nematode larvae; parasite; amphipod; Ischyrocerus commensalis; red king crab; Paralithodes
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Biological invasions are recognized as some of the most dramatic examples of changes
in species distribution [1]. In marine ecosystems, alien species may become invasive result-
ing in declines in biodiversity including displacing native species and the loss of native
genotypes [2]. Invasive species may lead to disruption of ecological processes including
changes in community structure, modified habitats, food-web properties, and ecosystem
processes [3]. They impede the provision of ecosystem services and are responsible for
detrimental impacts on human health and well-being and cause losses to multiple sectors of
the economy [4]. Organisms that live in association with their hosts, both epibionts and par-
asites, are frequent partners in biological invasions because they are either introduced into
new communities along with invading species or are left behind in the ancestral range of
the host, affording the host ‘enemy release’ [5,6]. Moreover, parasites are frequently impli-
cated in altering the outcome or impact of invasions, changing the strength of interactions
between invasive and native species [7,8].

The vast majority of biological invasions are human-mediated and some of these are
intentional [2]. An example of such introductions is the translocation of the red king crab,
Paralithodes camtschaticus, from the Pacific Ocean to the Barents Sea conducted by Soviet
scientists in the 1960s [9]. By the mid-1990s, this crab had formed a new self-sustaining
population. In the subsequent decade, the crab abundance had increased to levels suitable
for commercial and amateur fishing [9–13]. Positive effects from this introduction include
the income from the fishery sector [12,14–18] and tourism while negative effects are associ-
ated with some alterations in the structure of benthic communities [19–22]. At the same
time, red king crabs, like other marine crustaceans, are hosts for a variety of symbiotic
and epibiotic organisms [23–29]. Previous research has shown that no symbiotic species
were introduced into the Barents Sea from the Pacific Ocean together with the red king
crab [30], but this species has become a suitable host for local organisms including various
symbionts [23–25,28,29,31–35]. Moreover, the spread of red king crabs throughout the
coastal Barents Sea has been assumed to promote range extension of their associated fauna.
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For example, Norwegian authors reported that the red king crab can serve as a transport
host for the fish leech Johanssonia arctica, thus acting as an indirect vector for Trypanosoma
murmanense and promoting transmission of this blood parasite to the Barents Sea cod Gadus
morhua [36].

Another local species whose life cycle is closely associated with red king crabs is the
amphipod Ischyrocerus commensalis [34,37]. The advantages for this commensal amphipod
include protection from predators and feeding on food remnants of the host [25]. In contrast
to fish leeches, there are no data on the parasitic fauna of Ischyrocerus commensalis. For this
reason, our purpose was to survey the prevalence of parasites infecting this crab-associated
amphipod.

Red king crabs were collected by divers (depths 5–33 m, both soft- and hard-bottom lo-
cations, temperature 4–6 ◦C) according to standard protocols [27,33,38] in Dalnezelentskaya
Bay in July 2022. The study area is a typical semi-closed small bay located on the eastern
coast of the Kola Peninsula (for a more detailed description, see our previous papers [39–41].
In the coastal laboratory, each crab was visually examined for associated organisms. Am-
phipods were collected and fixed in 4% formaldehyde and then examined under a stere-
omicroscope MBS-10 for size and sex as described in Dvoretsky and Dvoretsky [37].

The amphipods were found on all red king crabs captured (n = 70; carapace length,
range 68.8–184 mm, mean ± SE 144.8 ± 2.4 mm), thus demonstrating a 100% prevalence
of infestation. The intensity of Ischyrocerus commensalis varied from 4 to 340 averaging
102.5 ± 6.4 ind. per crab. Larger amphipods were found predominantly on mouthparts
and limbs (Figure 1).
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A total of 467 amphipods ranging from 3.8 to 12.1 mm in body length were dissected 
and examined for parasites under a MBS-10 stereomicroscope. 

For the first time, third-stage nematode larvae belonging to the genus Hysterothyla-
cium were found in Ischyrocerus commensalis collected on red king crabs (Figure 2a). The 
worm specimens were fixed with a mixture of glycerin and lactic acid and then examined 
and photographed using a ZEISS Imager D2 equipped with an AxioCamMRc5 photo cam-
era (Figure 2b–d). 

Figure 1. Ischyrocerus commensalis amphipods (arrows) on the mouthparts (a) and limbs (b) of red
king crabs from Dalnezelentskaya Bay, July 2022. Scale bar 5 mm.

A total of 467 amphipods ranging from 3.8 to 12.1 mm in body length were dissected
and examined for parasites under a MBS-10 stereomicroscope.

For the first time, third-stage nematode larvae belonging to the genus Hysterothylacium
were found in Ischyrocerus commensalis collected on red king crabs (Figure 2a). The worm
specimens were fixed with a mixture of glycerin and lactic acid and then examined and
photographed using a ZEISS Imager D2 equipped with an AxioCamMRc5 photo camera
(Figure 2b–d).
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zones in their cuticles. A nerve ring was located 0.281 mm from the anterior end. The 
excretory pore was located at the level of the nerve ring, 0.413 mm from the anterior end. 
The muscular oesophagus, ventricular appendix, and intestinal caecum were 0.938, 0.64–
0.84, and 0.46–0.67 mm long, respectively. Each larvae had well-developed labia with a 
noticeable tooth and a conical tail with a single prominent spine. 

A total of 11 nematode larvae were found in the amphipods (Table 1). 
  

Figure 2. Nematode larva in Ischyrocerus commensalis. (a)—dissected amphipod with nematode
larva (arrow), scale bar 1 mm; (b)—light microphotograph of nematode larva, overall view, scale bar
0.1 mm; (c)—anterior end, scale bar 0.1 mm; (d)—posterior end, scale bar 0.1 mm.

The total body length of the larvae varied from 0.63 to 6.10 mm. Maximum body
width, labial region width, nerve ring diameter, oesophagus region width, and anal body
width were 0.25–0.41, 0.10, 0.08, 0.15, and 0.09 mm, respectively. The larvae had striated
zones in their cuticles. A nerve ring was located 0.281 mm from the anterior end. The
excretory pore was located at the level of the nerve ring, 0.413 mm from the anterior
end. The muscular oesophagus, ventricular appendix, and intestinal caecum were 0.938,
0.64–0.84, and 0.46–0.67 mm long, respectively. Each larvae had well-developed labia with
a noticeable tooth and a conical tail with a single prominent spine.

A total of 11 nematode larvae were found in the amphipods (Table 1).
The prevalence of infection for the whole sample was 2.4% (95% confidence interval,

1.2–4.2%) and the mean intensity was 1 ind. per amphipod. No significant differences were
found for the prevalence of Nematoda with regard to size and sex of the host amphipods
(Chi-squared tests, p > 0.05).
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Table 1. Infestation indices of Hysterothylacium nematode larvae in crab-associated Ischyrocerus
commensalis amphipods from Dalnezelentskaya Bay, Barents Sea, in July 2022.

Size Class,
mm

Male Female

N NI PI 95-% C.I. II N NI PI 95-% C.I. II

<6.1 80 2 2.5 0.3–8.7 1 75 0 0.0 – –
6.1–8.0 63 2 3.2 0.4–11.0 1 96 6 6.3 2.3–13.1 1
8.1–10.0 30 0 0.0 – – 83 1 1.2 0.0–6.5 1

>10.0 14 0 0.0 – – 26 0 0.0 – –
Total 187 4 2,1 0.6–5.4 1 280 7 2.5 1.0–5.1 1

Note: N—sample size, NI—number of infected amphipods, PI—prevalence (%), 95-% C.I.—95% confidence
interval for prevalence (%), II—intensity of infection, (ind. per amphipod).

Previous studies conducted in the coastal Barents Sea have shown that the caprel-
lid amphipod Caprella septentrionais is a host for the nematode Anisakis sp. with as low
prevalence as 0.12% [42] and amphipods belonging to the family Gammaridae (Gammarus
oceanicus, G. duebeni, and Marinogammarus obtusatus) are hosts for nematodes Spirurida sp.
(prevalence, 0.6–37.6%) and Ascarophis sp. (0.2–0.4%) [43,44]. There is only one record on
parasitic fauna of ischyrocerid amphipods in the Barents Sea: the amphipod Ischyrocerus
anquipes was reported to be a host for metacercaria of the trematode Podocotyle atomon
(prevalence, 4.0%) [42]. Thus, our findings update a list of amphipod parasites in the
Russian part of the coastal Barents Sea.

Nematodes belonging to the genus Hysterothylacium (family Raphidascarididae) infect
various species of marine fish in both the larval and adult stages [45–47]. Their larvae
also are known to occur in marine invertebrates [48–50]. Laboratory studies have shown
that the calanoid copepod Acartia tonsa and harpacticoid copepods became infected by
ingesting eggs containing infective third-stage larvae. Mysids, corophiid and gammarid
amphipods, and isopods easily became infected when exposed to a large number of
eggs [51]. Under natural conditions, the prevalence of Hysterothylacium was found to be
7.7% in the gammaridean amphipod Proboloides holmesi, 0.06% in the caprellid amphipod
Caprella linearis from eastern Canada [50], and 1.95% in hyperiid amphipods from the North
Sea [52].

Amphipods are known to be significant prey for fish and invertebrates and are consid-
ered a major food web link between pelagic production and upper trophic levels [53,54].
Although parasites can alter food web dynamics, in the case of nematodes infecting Is-
chyrocerus commensalis, this process seems to be negligible because of the low prevalence
of the nematode larvae and low vulnerability of the host amphipods to potential fish
predators such as cod, haddock, and saithe which are mostly infected when consuming
small planktivorous pelagic fishes [55]. Our assumption is supported by the fact that the
red king crab introduction and its growing population did not affect the production of
major fish stocks and traditional fisheries in the Barents Sea [56].

Finally, our findings seem to have no major practical implications for public health
because a laboratory study on cultivation of Hysterothylacium from third-stage larvae to
egg-laying adults showed that the highest survival rates and percentage of molting to
fourth-stage larvae occurred at 13 ◦C whereas at 37 ◦C nematodes survived only for a few
hours [57], thus indicating that Hysterothylacium are non-pathogenic to organisms with
high body temperatures including humans [58].
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