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ABSTRACT 
 
Aims: The objective of this study was to analyze the genome of endophytic actinomycete associated with orchids and 
evaluate its plant hormone activities, including phytohormone, siderophore, ammonia production, zinc and phosphate 
solubilization. 
Methodology and results: Strain DR1-2 isolated from the roots of the Thai orchid, Dendrobium christyanum Rchb.f., 
was closely related to Pseudonocardia alni DSM 44104T, P. antarctica DSM 44749T and P. carboxydivorans Y8T (99.93-
100% similarity) based 16S rRNA gene sequence. This strain exhibited IAA production (294.10 ± 12.17 μg/mL), 
phosphate solubilization (2.20 ± 0.08 solubilization Index, SI), positive for siderophore production and ammonia 
production (36.99 ± 2.24 µg/mL). It showed a maximum IAA of 489.73 ± 8.90 µg/mL, when optimized using 0.5% L-
tryptophan, pH 6 and incubated at 30 °C for 7 days. The IAA of strain enhanced the root length, shoot length, number of 
roots and fresh weight of rice seedlings (Oryza sativa L. cv. RD49). The draft genome of strain DR1-2 was 6,077,423 bp 
in 23 contigs with G+C content of 74.6%. The average nucleotide identity-Blast (ANIb) and average nucleotide identity- 
MUMmer (ANIm) values of strain DR1-2 and related type strains were 95.81 to 97.25% and the digital DNA-DNA 
hybridization (dDDH) values were 72.60 to 74.00%, respectively. Genomic analysis of strain DR1-2 revealed that the 
gene encodes the enzyme involved in the phytohormones biosynthesis and gene clusters involved in the biosynthesis of 
bioactive metabolites.  
Conclusion, significance and impact of study: Endophytic actinomycete, Pseudonocardia strain DR1-2 from Thai 
orchid, D. christyanum Rchb.f., exhibited significant IAA production and affected the growth of the plant, which was the 
potential source of plant hormones for agricultural applications. 
 
Keywords: Endophytic actinomycetes, indole-3-acetic acid, plant growth-promoting activity, Pseudonocardia, 
Dendrobium christyanum Rchb.f. 
 

INTRODUCTION 
 
Endophytic bacteria are the biological agent that 
promotes plant growth. They colonize the root system and 
create phytohormones to stimulate the development of 
the plant, including indole-3-acetic acid (IAA), gibberellic 
acid, cytokinin and ethylene and supply nutrients through 
siderophores production, nitrogen fixation and phosphate 
solubilization (Jiang et al., 2021). The interaction between 
plants and bacteria could provide the basis for future crop 
management by using less fertilizer and pesticides. 
Recently, actinobacteria are attractive among plant-
associated microbes and have become a more common 
practice in an agricultural system due to their ability to 
produce a variety of secondary metabolites and their plant 

growth-promoting potential (Yadav et al., 2018). 
Endophytic actinomycetes have been proven to 

promote host plant growth and reduce disease in various 
environmental conditions by producing multiple secondary 
metabolites. For example, Streptomyces sp. PT2 from 
Panicum turgidum produced a high amount of IAA and 
increased seed germination and root extension in tomato 
cv. Marmande (Goudjal et al., 2013). In the greenhouse 
experiment, Streptomyces sp. 34 produced 
phytohormones (IAA), solubilized inorganic phosphate, 
siderophores and ammonia, leading to increased shoot 
and root length of chili plant and also protecting the plant 
from phytopathogens (Passari et al., 2015). The 
inoculation of mung beans (Vigna radiata) with 
Streptomyces thermocarboxydus S3 made increasing the 
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fresh weight, root length and total length significantly 
(Lasudee et al., 2018). Furthermore, Streptomyces 
fradiae NKZ-259 produced nearly four times of IAA when 
it was optimized and the root, shoot length, fresh weight 
and dry weight of tomato seedlings were increased 
dramatically (Myo et al., 2019). 

In addition, members of the genus 
Pseudonocardia strains have been reported and 
recovered from different habitats, such as soil, insect and 
plant tissue. For example, P. antimicrobica YIM 63235 
from stems of Artemisia annua L. (Zhao et al., 2012), P. 
zijingensis YIM 61043 from root of Maytenus 
austroyunnanensis (Qin et al., 2009) and P. sichuanensis 
KLBMP 1115 from root of Jatropha curcas L. (Qin et al., 
2011). Some Pseudonocardia strains have been 
developed to improve agricultural crop yields. For 
instance, P. carboxydivorans T1LA3, isolated from 
Camellia sinensis L. showed the highest IAA and 
ammonia production (Borah and Thakur, 2020), 
Pseudonocardia sp. W34 obtained from wheat roots could 
produce siderophore and IAA (Gangwar et al., 2012). 
However, there have been few studies on the potential of 
Pseudonocardia in agricultural applications and no 
genome analysis to provide insights into the physiological 
properties and potential of the strain. The genome 
sequencing analysis proved helpful for identifying their 
critical metabolites (Zerikly and Challis, 2009).  In this 
study, Pseudonocardia strain from D. christyanum Rchb.f. 
orchid was characterized based on their phenotypic and 
genotypic characteristics. The plant growth-promoting 
potential of this strain is evaluated and its genome 
analysis is discussed. 
 
MATERIALS AND METHODS 
 
Isolation and cultivation 
 
Strain DR1-2 was isolated from the roots of the Thai 
orchid, D. christyanum Rchb.f. collected from Loei 
Province, Thailand (14°03’20.8’’N 102°17’21.2’’E). The 
roots of D. christyanum Rchb.f. were washed with running 
tap water and dried at room temperature and prepared 
according to our previously reported protocols (Tedsree et 
al., 2021). The suspension of the sample was serially 
diluted ten times. Each diluted suspension was spread on 
starch casein gellan gum (SCG) (Tedsree et al., 2021) 
supplemented with nalidixic acid (25 μg/mL) and 
cycloheximide (50 μg/mL). The bacterial colony was 
selected and purified after 3-4 weeks of incubation at 30 
°C. The purified strain was preserved on ISP 2 slants and 
freeze-dried for long-term storage. 
 
Identification 
 
Phenotypic characterization 
 
The morphological characteristics of strain DR1-2 
cultivated on yeast extract-malt extract (ISP 2) agar plates 
at 30 °C for 14 days were investigated by light microscopy 
(CX41; Olympus) and scanning electron microscopy 

(JSM-IT500HR, Jeol). Cultural characteristics were 
observed on ISP 2 agar, oatmeal agar (ISP 3), inorganic 
salts-starch agar (ISP 4), glycerol-asparagine agar (ISP 
5), peptone-yeast extract iron agar (ISP 6), tyrosine agar 
(ISP 7) (Shirling and Gottlieb, 1966) and nutrient agar 
after incubation at 30 °C for 14 days. The colors of aerial 
mycelia, substrate mycelia and diffusible pigment were 
determined using the NBS/IBCC color system (Kelly, 
1964). Physiological characteristics were evaluated by 
cultivating on ISP 2 agar at different temperatures (20-45 
°C) and NaCl concentrations (0-10%, w/v), while the 
effect of pH for growth, at a pH range of 4-12 (at intervals 
of 1 pH unit) was evaluated in ISP 2 broth at 30 °C for 14 
days by using the following buffer system: acetate buffer 
(pH 4-5), phosphate buffer (pH 6-8) and glycine-sodium 
hydroxide buffer (pH 9-12). Carbon utilization on ISP 9 
supplemented with 1% (w/v) carbon source, starch 
hydrolysis, nitrate reduction, coagulation, peptonization, 
gelatin liquefaction and H2S production were examined as 
previously mentioned by Arai et al. (1975). These 
biochemical characteristics were detected after incubation 
at 30 °C for 14 days. 
 
Genotypic characterization 
 
Genomic DNA was prepared using the technique earlier 
described (Kudo et al., 1998). The 16S rRNA gene 
sequence was amplified according to a well-established 
method (Suriyachadkun et al., 2009) and then sequenced 
on a DNA sequencer (Macrogen) using universal primers, 
27F forward (5’-AGAGTTTGATCMTGGCTCAG-3’) and 
1492R reverse (5’-TACGGYTACCTTGTTACGACTT-3’). 
The sequence similarity values between the isolates and 
their related neighbors were calculated using the 
EzBiocloud service (Yoon et al., 2017). The Kimura-2-
parameter (Kimura, 1980) was used to create a 
phylogenetic distance matrix. A phylogenic tree was 
constructed through the neighbor-joining (NJ) technique 
(Saitou and Nei, 1987) using MEGA 7.0 (Kumar et al., 
2016) based on 1000 replications of bootstrap value. 
 
Determination of plant growth-promoting activities  
 
The strain was prepared by cultivation in ISP 2 broth and 
incubated at 30 °C for 3 days, and then was subsequently 
used for plant growth-promoting assays. 
 
Ammonia production 
 
The seed culture of strain DR1-2 was cultured in peptone 
water and incubated at 30 °C with shaking (180 rpm) for 7 
days. The bacterial culture was centrifuged at 4 °C for 15 
min. The supernatant was mixed with 0.5 mL of Nessler’s 
reagent. A positive test for ammonia production was 
observed by the change of color from pale yellow to dark 
brown (Cappuccino and Sherman, 1992). A 
spectrophotometer was used to measure the absorbance 
at 450 nm and the results were compared to the standard 
curve of (NH4)2SO4 and expressed in µg/mL. 
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Phosphate solubilization 
 
Qualitative phosphate solubilization activity of strain DR1-
2 was determined using Pikovskaya medium (PVK agar). 
The 20 µL of seed culture of strain DR1-2 was spotted 
onto PKV agar and incubated at 30 °C for 7 days. A clear 
halo zone around a bacterial colony indicated the 
phosphate solubilization. The solubilization index (SI) was 
calculated as the ratio of the solubilization zone diameter 
to the colony diameter (Pande et al., 2017). 
 
Solubilization index (SI) = [Colony diameter + Clear zone 
diameter (mm)]/Colony diameter (mm) 
 
Zinc solubilization 
 
Qualitative zinc solubilization activity of strain DR1-2 was 
determined using Tris-mineral salts medium with glucose 
(1% w/v). The medium was separately supplemented with 
0.1% insoluble zinc compounds, including zinc sulfate 
(ZnSO4), zinc chloride (ZnCl2) and zinc oxide (ZnO). 
Subsequently, twenty μL of seed culture was spotted onto 
the agar plate and incubated at 30 °C for 7 days. After 
incubation, the diameter of the halo zone around the 
colony and bacterial colony was determined, and the 
values were used to calculate the SI. The clear zone 
formed by the isolates was determined using the equation 
above. 
 
Siderophore production 
 
Siderophore production was assessed using the universal 
procedure modified by Schwyn and Neilands (1987). 
Twenty microliters of seed culture were dropped on 
Chrome azurol S (CAS) agar plates and incubated for 
seven days at room temperature. Siderophore production 
was determined by the formation of a yellow-orange halo 
zone around the spot colony. 
 
Indole acetic acid production 
 
IAA production was estimated according to Gordon and 
Weber (1951). The seed culture was transferred to ISP 2 
broth (0.2% L-tryptophan, pH 7.0) and incubated at 30 °C 
with shaking (180 rpm) for 7 days. The culture was 
centrifuged at 6,500 rpm for 5 min and the supernatant 
was used to determine the amount of IAA production. 
One mL of supernatant was added to two mL of 
Salkowski reagent [0.5 M of FeCl3 in 35% HClO4 in a 
proportion of 1:50 (v/v)] and kept in the dark for 30 min 
(Sameera et al., 2018). A UV-Vis spectrophotometer was 
used to detect IAA at an absorbance of 530 nm. The 
uninoculated medium with reagent was used as a control. 
The amount of IAA was calculated based on the 
calibration curve of IAA and expressed in µg/mL. 
 
Optimization of IAA production  
 
IAA production was optimized based on the effects of 
incubation time, temperature, pH and L-tryptophan level. 

Strain DR1-2 was grown in a 500 mL flask with 100 mL of 
ISP 2 medium plus 0.2% L-tryptophan with shaking (180 
rpm). Salkowski's method was used to evaluate IAA 
production. The same cultural conditions were employed 
as mentioned above. The effect of incubation period on 
IAA production was investigated at 48 h intervals for 15 
days. The concentration of L-tryptophan (0.1, 0.2, 0.3, 
0.4, 0.5, 1.0 and 1.5%), pH (4, 5, 6, 7, 8, 9 and 10) and 
temperature (25, 30, 35, 37 and 40 °C) were determined 
for 7 days. The one-factor-at-a-time (OFAT) method was 
used to optimize all experiments (Czitrom, 1999). 
 
Extraction, purification and detection of IAA 
 
The seed culture of 1 mL of strain DR1-2 was used to 
inoculate 100 mL of ISP-2 broth supplemented with 0.5 
µg/mL of L-tryptophan and incubated at 30 °C with 180 
rpm shaking for 7 days. After 7 days of incubation, cells 
were separated from the supernatant by centrifugation at 
6,500 rpm for 10 min. 1 N HCl was used to acidify the 
supernatant to pH 2 before extracting it twice with ethyl 
acetate. The fraction of ethyl acetate was evaporated at 
low temperature by a rotary evaporator. The crude extract 
was dissolved with 1 mL of methanol and stored at 20 °C. 
The C18 SPE column was used to partially purify IAA 
from the crude extract by slightly modified from the 
method of Zhu (2020). The cartridges were activated with 
6.0 mL of methanol and equilibrated with 6.0 mL of 
methanol/water/formic acid (10/95/0.1, v/v/v). The sample 
was loaded into a cartridge and washed with 3.0 mL of 
methanol/water/formic acid (10/95/0.1, v/v/v), then the 
plant hormones were eluted with 3.0 mL of 
methanol/water/formic acid (80/20/0.1, v/v/v) (Zhu et al., 
2020). The eluates were dried using rotary evaporators 
and dissolved with 1 mL methanol. The purified IAA was 
confirmed by thin-layer chromatography (TLC). The ethyl 
acetate extract was spotted on a TLC plate and 
developed using the mobile phase propanol and distilled 
water in the ratio of 8:2 (v/v) (Sameera et al., 2018). After 
development, the TLC plate was dried and sprayed with 
Salkowski reagent. The spots with Rf values will be 
compared with authentic IAA.  
 
Growth-promoting activity of DR1-2 on rice  
 
To investigate the impact of IAA produced by the strain 
DR1-2 on seed germination and root elongation in rice 
(Oryza sativa L. cv. RD49), surface sterilization of rice 
seeds was performed by soaking in 10% sodium 
hypochlorite (NaOCl) for 1 min and 95% ethanol for 3 
min, followed by thorough washing in sterile distilled 
water. The treatment was carried out by soaking rice 
seeds in a standard IAA and IAA from DR1-2 with a 
concentration of 50 µg/mL. The control group was soaked 
in sterile distilled water. Seeds were placed in sterilized 
Petri dishes coated with two sheets of filter paper and 
soaked with 10 mL of sterile water (three replicates, ten 
seeds/plate). All the plates were incubated in a chamber 
with light at 30 °C for 16 h daily. Seed germination, root 
length, shoot length, number of roots, fresh weight and 
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Figure 1: Phylogenetic tree of strain DR1-2 based on 16S rRNA sequences using the neighbor-joining method. 
Bootstrap percentages at nodes were calculated with 1,000 replicates. 
 
dry weight were measured after 7 days.   
 
Genome sequence analysis 
 
Whole genome sequence analysis of strain was 
performed with an Illumina Miseq platform (Illumina, Inc., 
San Diego, US-CA) using 2× 250 bp paired-end reads. 
The assembling of the reads to contigs was managed 
using SPAdes 3.12 (Bankevich et al., 2012). The draft 
genome of strain DR1-2 was determined using the 
antiSMASH server (Blin et al., 2019) to detect putative 
biosynthetic gene clusters (BGCs). Gene prediction was 
accomplished using the Rapid Annotation using 
Subsystem Technology SEED viewer (Aziz et al., 2008). 
All genomes were annotated on Prokka software 1.13 
(Seemann, 2014) in line with the NCBI Prokaryotic 
Genome Annotation Pipeline (PGAP). Average nucleotide 
identity (ANI), ANI-Blast (ANIb) and ANI-MUMmer (ANIm) 
values between strain DR1-2 and closely related type 
strains were calculated pairwise using the JSpeciesWS 
web service (Richter et al., 2016). The digital DNA-DNA 
hybridization (dDDH) was evaluated using the Genome-
to-Genome Distance Calculator (GGDC 2.1) with the 
BLAST+ method (Meier-Kolthoff et al., 2013) and the 
results were dependent on recommended formula 2 
(identities/HSP length), which is proposed for use with 
incomplete whole-genome sequences. 

 
Statistical analysis 
 
Data were statistically analyzed by ANOVA using the 
SPSS software package (SPSS 28 for Windows). The 
grouping was performed by Duncan’s multiple range tests 
at p<0.05 on each of the significant variables measured. 
The data were reported as the standard deviation of the 
mean values of triplicates. 
 
RESULTS AND DISCUSSION 
 
Isolation and identification  
 
Strain DR1-2 was recovered from the roots of Thai orchid 
D. christyanum. The strain was aerobic and stained 
Gram-positive, with yellowish-white aerial mycelium and 
deep orange-yellow substrate mycelium on ISP 2 agar 
after 7 days of incubation. The strain grew very well on all 
media. Scanning electron micrograph of strain DR1-2 
revealed the aerial mycelium fragmented into rod-shaped 
spores and the spore surface was smooth (Figure 1). The 

optimum temperature of strain was 30 C and pH range 5-
10. The strain utilized various sugars and nitrogen for 
growth and grew in 5-10% NaCl concentrations. The 
cultural, physiological and biochemical characteristics of 
the strain are shown in Table 1. 
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Table 1: Phenotypic characteristics of the strain DR1-2. 
 

Characteristics  Results Characteristics  Results 

Growth Filamentous aerial  Carbon source utilization:  

Diffusible pigment production -   Fructose + 
Growth temperature range 25 C to 37 C   Glycerol + 

Growth optimal temperature  30 C   Raffinose + 

Growth pH range  5-10   Mannose + 
Optimal pH for growth  7.0   Mannitol + 
Production of H2S  -   Xylose + 
NaCl tolerant  2% to 10%   Cellobiose + 
Peptonization -   Galactose + 
Coagulation -   Maltose + 
Starch hydrolysis -   Melezitose + 
Gelatin liquefaction -   Lactose + 
Nitrate reduction +   myo-inositol + 

Colour of aerial mycelium Colour of substrate mycelium   Rhamnose + 

Yellowish white on ISP 2 Deep orange yellow on ISP 2   Sucrose + 
Yellowish white on ISP 3 Moderate yellow ISP 3   Melibiose + 

Pale yellow on ISP 4 Light olive brown ISP 4 Nitrogen source utilization:  

Yellowish white on ISP 5 Moderate orange yellow ISP 5   L-Arginine w 
Yellowish white on ISP 6 Strong yellowish brown ISP 6   L-Asparagine w 
Yellowish white on ISP 7 Deep orange yellow ISP 7   L-Proline + 
Yellowish white on NA Deep orange yellow on NA   L-Valine w 
    L-Cysteine w 
    L-Tyrosine + 
    L-Arabinose + 

All grew very good on all media. +, positive; w, weakly positive; -, negative. 

 
The pairwise alignment of DR1-2 showed relatively 

high 16S rRNA gene similarity to strains of P. alni DSM 
44104T (99.93%), P. antarctica DSM 44749T (99.93%) 
and P. carboxydivorans Y8T (100%). The phylogenetic 
tree based on the neighbor-joining algorithm, the strain 
DR1-2 and the 3 closest relatives were placed in the 
same position (Figure 2). The 16S rRNA gene sequence 
of this strain has been deposited in NCBI database, with 
accession numbers LC705538. 
 
Determination of plant growth-promoting activities 
 
Strain DR1-2 was evaluated for plant growth-promoting 
activities, including phytohormone, siderophore, ammonia 
production, zinc and phosphate solubilization. IAA 
production by DR1-2 was determined on ISP 2 broth 
0.2% L-tryptophan, pH 7.0 at 30 °C with 180 rpm shaking 
for 7 days. IAA production obtained was 294.10 ± 12.17 
µg/mL. The strain was able to dissolve phosphate in 
plates by producing a clear halo around the colony on 
Pikovskaya medium (2.20 ± 0.08) but lacked zinc 
solubilizing ability in all of the sources of insoluble zinc. 
Strain DR1-2 was positive for ammonia production at 
36.99 ± 2.24 μg/mL. Siderophore production was 
detected on CAS agar media by forming a clear orange 
halo zone around the colonies. Our results concurred with 
Borah and Thakur (2020), who discovered P. 
carboxydivorans T1LA3, an endophytic actinobacteria 
isolated from Camellia sinensis L.  showed IAA, ammonia 
and siderophore production (Borah and Thakur, 2020). 
 

 
 
Figure 2: Scanning electron micrograph of strain DR1-2. 

 
Extraction, purification and detection of IAA 
 
The crude extract of IAA of strain DR1-2 was extracted 
using ethyl acetate and partial purification of IAA by C18 
SPE column concentrated and then was detected on the 
TLC plate. The chromatograms were examined in visible 
and ultraviolet light (254 nm). Pink-colored spots were 
observed after spraying with Salkowski's reagent, with an 
Rf value of 0.82, identical to the standard IAA. The results 
show that the purified compound was identified as IAA 
using thin-layer chromatography and compared to the Rf 
value of the standard IAA. 
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Figure 3: (A) Effect of incubation time (day), (B) Effect of 
L-tryptophan concentrations, (C) Effect of pH and (D) 
Effect of temperature on IAA production by the selected 
isolates. Vertical bars represent standard deviation from 
triplicate experiments. 

 
Optimization of IAA production 
 
The mycelial growth and IAA formation by strain DR1-2 
were estimated at 24 h intervals during the incubation 
period of 15 days. The mycelial growth was increased 
gradually, with the incubation period reaching a maximum 
of 5-7 days. Also, IAA formation increased, reaching a 
maximum at 7 days of incubation and decreasing slowly 
(Figure 3A). The reduction of IAA might be due to the 
release of IAA degrading enzymes, such IAA oxidase and 
peroxidase, which degrade IAA (Datta and Basu, 2000). 
Maximum IAA production of the DR1-2 was observed in a 
medium containing 0.5% L-tryptophan (Figure 3B). When 
the concentration of L-tryptophan increased from 0.1 to 
0.5%, IAA production increased to maximum levels at 
469.98 ± 16.25% μg/mL. A higher concentration of L-
tryptophan above 0.5% decreased IAA production. 
Results indicated that different amounts of L-tryptophan 
had a variable influence on IAA production, with 
tryptophan as an essential element in increasing IAA 
production.  

Strain DR1-2 had the highest concentration of IAA at 
pH 6, (367.06 ± 11.09 μg/mL). IAA levels of DR1-2 
decreased when the pH value was less than 6 and 
greater than 7 (Figure 3C). The pH has an impact on the 
function of enzyme systems as well as the solubility of a 
variety of chemicals required for bacterial growth. 
Streptomyces and other actinomycete strains grew slowly 
in acidic or basic conditions because pH levels are 
important for IAA synthesis (Shirokikh et al., 2007). 
Different temperatures for IAA production are shown in 
Figure 3D. The optimum temperature for IAA production 
by DR1-2 was 30 °C at 278.84 ± 3.76 µg/mL; when the 
temperature exceeded 30 °C, IAA production decreased. 
A temperature of 30 °C was found to be optimal for this 
investigation. This result is related to Streptomyces sp. 
CMU H009 produced the largest IAA when cultivated at 
30 °C (Khamna et al., 2010). Accordingly, OFAT 
optimization experiments showed that the highest IAA 
production required cultivation in ISP 2 broth with 0.5% L-
tryptophan, pH 6 at 30 °C for 7 days. The maximum IAA 
value of DR1-2 was 489.73 ± 8.90 µg/mL, which 
increased almost equal IAA production after optimization.

(A) 

(B) 

(C) 

(D) 
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Table 2: Effect of strain DR1-2 on the growth of rice (O. sativa L. cv. RD49). 
 

Isolate Growth parameters of actinomycetes treated rice 

Root length 
(cm) 

Shoot length 
(cm) 

Number of 
roots 

Seedling fresh 
weight (g) 

Seedling dry 
weight (g) 

% Seed 
germination 

DR1-2 5.45 ± 0.64a 5.90 ± 0.83a 3.30 ± 0.67a 0.81 ± 0.07a 0.30 ± 0.05a 100 
IAA 5.10 ± 0.52a 5.25 ± 0.68ab 3.80 ± 0.79a 0.80 ± 0.08a 0.30 ± 0.06a 100 
Control 4.40 ± 0.66b 4.90 ± 0.74b 2.40 ± 0.52b 0.56 ± 0.08b 0.25 ± 0.03b 100 

Different superscripts indicate significantly different (P<0.05) mean ± SD. 

 
Table 3: Genome statistics, ANIb, ANIm and dDDH values among the draft genomes of strain DR1-2 and closely 
related strains. Strains: 1, DR1-2; 2, P. alni DSM 44104T; 3, P. antarctica DSM 44749T. The genome of type strains was 
obtained from GenBank. 
 

Genome of Features 

Accession no. Genome size 
(bp) 

G+C content 
(%) 

No. of contigs Protein coding 
genes 

1 JAMQOF000000000 6,077,423 74.6 23 5834 
2 PHUJ01000000 5,994,807 74.2 3 5777 
3 JACCCZ000000000 6,242,493 74.1 2 6015 

Genome of Reference genomes ANIb% ANIm% %dDDH 
(formula2a) 

Prob. DDH>=70% 

1 2 95.91 97.12 72.60% 82.51% 
1 3 95.81 97.25 74.00% 84.49% 

aRecommended formula (identities/HSP length), which is liberated of genome length and is thus prosperous against the use of 
incomplete draft genomes. 

 
According to earlier studies by Myo et al. (2019), S. 
fradiae NKZ-259 could be able to produce more IAA after 
being optimized. 

 
Growth-promoting activity of DR1-2 on rice   
 
The effects of IAA purified from DR1-2 on rice seed 
germination, root length and shoot length were 
determined. Rice seeds soaked under various conditions 
exhibited significant differences in root lengths, shoot 
lengths and quantity of roots compared to the controls 
(Table 2). Treatments with IAA from DR1-2 significantly 
influenced the quality of seedling root, with no significant 
differences identified between standard IAA. The fresh 
and dry weights of seedlings after treatment with IAA 
produced by DR1-2 and standard IAA were significantly 
different from the control. However, all treatments did not 
affect seed germination. Endophytic actinomycetes utilize 
root exudates to generate a variety of plant compounds. 
IAA from DR1-2 increased shoot length, root length and 
the number of roots, showing that DR1-2 can produce 
plant growth regulators such as IAA. Our study results 
related to screening bacteria for plant growth-promoting 
agents on rice seedling growth, as reported by Etesami et 
al. (2015) and IAA-producing bacteria isolated from orchid 
rhizoplanes of D. moschatum (Tsavkelova et al., 2007) 
and Cymbidium eburneum (Faria et al., 2013) also have 
been reported to improve plant seed germination. Our 
strain indicated the presence of IAA production as a good 
option for use as plant growth enhancement in both 
economic and agricultural systems. 
 
 

Genome sequence analysis 
 
Genome analysis of strain DR1-2 revealed the size of 
6,077,423 bp distributed in 23 contigs with G+C content of 
74.6%. The phylogenetic analysis based on whole-
genome sequences indicated that strain DR1-2 was 
phylogenetically closely related to P. alni DSM 44104T 

and P. antarctica DSM 44749T. The ANIb and ANIm 
values of the draft genomes between strain DR1-2, P. alni 
DSM 44104T and P. antarctica DSM 44749T were 95.91 
and 97.12%, and 95.81 and 97.25%, respectively (Table 
3). The digital DNA-DNA hybridization (dDDH) values 
between strain DR1-2 and its closest strains, P. alni DSM 
44104T and P. antarctica DSM 44749T were 72.60 and 
74.00%, respectively (Table 3). For genome comparison, 
ANI and dDDH values are considered well correlated 

when the values were 95% (ANI) and 70% (dDDH), 
respectively (Fitch, 1971; Seemann, 2014). Since the 
dDDH and the ANI values between strain DR1-2 and its 
closest strains were higher than the species cut off, strain 
DR1-2 should be the same species as P. alni, P. 
antarctica and P. carboxydivorans. Further taxonomic 
studies on P. antarctica and P. carboxydivorans should 
be described. 
 
Gene function annotation and secondary metabolism 
gene clusters 
 
The draft genome of DR1-2 has 5,834 protein-coding 
sequences (CDS), 51 transfer RNA (tRNA) genes and 3 
ribosomal RNA (rRNA) genes. The annotation included 
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Figure 4: Subsystems distribution statistic of strain DR1-2 based on RAST annotation server. 
 
Table 4: Biosynthetic gene clusters (BGCs) and secondary metabolites of strain DR1-2 based on the analysis of 
genome mining with AntiSMASH 5.0. 
 

Region Type Most similar known cluster 

Region 1 NAPAA Stenothricin 
Region 2 Terpene SF2575 
Region 3 NAPAA Streptobactin 
Region 4 Ectoine Ectoine 
Region 5 NAPAA CC-1065 
Region 6 RiPP-like - 
Region 7 NAPAA, T1PKS, NRPS - 
Region 8 Terpene Isorenieratene 
Region 9 Redox-cofactor Lankacidin C 
Region 10 Ranthipeptide - 
Region 11 RiPP-like - 
Region 12 NRPS, T1PKS, NRPS-like Amychelin 

NAPAA-non-alpha poly-amino acids like e-Polylysin; RiPP-like-Other unspecified ribosomally synthesized; NRPS-Nonribosomal 
peptide synthetases; NRPS-like-NRPS-like fragment; T1PKS-type 1 polyketide synthetases. 

 
2,293 hypothetical proteins and 3,541 proteins with 
functional assignments. The proteins with functional 
assignments included 1,246 proteins with Enzyme 
Commission (EC) numbers (Schomburg et al., 2004), 
1,091 with Gene Ontology (GO) assignments (Ashburner 
et al., 2000) and 983 proteins that were mapped to KEGG 
pathways (Kanehisa et al., 2016). RAST server 
annotation of the whole genome describes the subsystem 
distribution of strain DR1-2. Among the subsystem 
categories, there were genes for amino acids and 
derivatives (390 ORFs), carbohydrate metabolism (344 
ORFs), cofactors, vitamin, prosthetic groups, pigment 
(230), fatty acids, lipids and isoprenoids (198 ORFs) and 
protein metabolism (178 ORFs). Nucleosides and 
nucleotides (93), respiration (97), DNA metabolism (97) 
and stress response genes (51) were also found in Figure 
4. 

For phytohormone IAA production, the gene 
associated with the tryptophan synthase alpha and beta 
chain (EC 4.2.1.20), which catalyzes the final stage in 
tryptophan biosynthesis was discovered. The gene 
encoding enzymes, aromatic-L-amino-acid decarboxylase 

(EC 4.1.1.28), anthranilate phosphoribosyl transferase 
(EC 2.4.2.18), monoamine oxidase (EC 1.4.3.4) and 
phosphoribosylanthranilate isomerase (EC 5.3.1.24) 
involved in auxin biosynthetic pathways were found in 
strain DR1-2. PATRIC annotation revealed iaaM gene in 
genome DR1-2 that encodes the enzyme tryptophan-2-
monooxygenase, which converts tryptophan to the indole-
3-acetamide (IAM), intermedia in IAM pathway. In 
bacteria, the IAM pathway is the best-characterized 
pathway (Sekine et al., 1989) and has been suggested to 
convert exogenous tryptophan to IAA (Perley and Stowe, 
1966). Mevalonic acid pathway (MVA) and 
methylerythritol phosphate pathway (MEP), which 
produced a class of plant growth regulators, 
brassinosteroids (BRs) and gibberellins (GAs) were also 
found, respectively. Results indicated that DR1-2 might 
be a promising source of plant hormones for agricultural 
applications. 

The draft genome of strain DR1-2 was determined 
using the antiSMASH server to detect putative 
biosynthetic gene clusters (BGCs). The 12 gene clusters 
were observed on DR1-2 genome related to various 
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BGCs, mainly non-alpha poly-amino acids like e-Polylysin 
(NAPPA), terpene and ectoine (Table 4). The secondary 
metabolite biosynthetic gene clusters (smBGCs) exhibited 
similar genetic relatedness to the known clusters 
producing stenothricin (Liu et al., 2014), lankacidin C 
(Ahsan et al., 2017) and amychelin (Xie et al., 2020) have 
antimicrobial activity. Strain DR1-2 is predicted to produce 
anticancer, antitumor and antioxidant agents such as 
SF2575 (Pickens et al., 2009), CC-1-65 (Cacciari et al., 
2000) and isorenieratene (Chen et al. 2019), respectively. 
In addition, ectoine was predicted in DR1-2, which 
protects proteins and cellular membranes against 
damage caused by severe environments like heat, UV 
light, strong osmolarity or dryness (Richter et al., 2019; 
Bilstein et al., 2021). Thus, strain DR1-2 might be one of 
the sources of biological compounds used in 
pharmaceutical applications. Moreover, the predicted 
secondary metabolites, streptobactin (Matsuo et al., 
2011) and amychelin (Seyedsayamdost et al., 2011) can 
be used as siderophore, compounds that have a high-
affinity iron-chelating ability in agricultural farming. In 
addition, the genome of strain DR1-2 contained four 
smBGCs that displayed no similarity to any known 
smBGCs in antiSMASH (Table 4). These results 
suggested that strain DR1-2 might be a source of novel 
secondary metabolites. 
 
CONCLUSION 
 
In this study, strain DR1-2 associated with roots of D. 
christyanum orchid was closely related to P. 
carboxydivorans. The strain showed high IAA, ammonia, 
siderophore production and phosphate solubilizing 
activity. This strain could promote the number of roots, 
shoot length, root length and fresh weight of rice 
seedlings. The draft genome sequence analysis of strain 
DR1-2 indicated that gene clusters are involved in plant 
hormone biosynthesis. This strain will be helpful as 
phytohormone-producing bacteria for seed germination 
and plant growth improvement. 
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