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Abstract 

This paper is devoted to modelling and simulation of an E2/E2/1/m queueing system with 

a server subject to breakdowns. The paper introduces a mathematical model of the studied system and 

a simulation model created by using software CPN Tools, which is intended for modelling and 

a simulation of coloured Petri nets. At the end of the paper the outcomes which were reached by both 

approaches are statistically evaluated. 

Abstrakt 

Článek je věnován modelování a simulaci E2/E2/1/m systému hromadné obsluhy S obslužnou 

linkou podléhající poruchám. Příspěvek představuje matematický model studovaného systému 

a simulační model vytvořený S využitím software CPN Tools, který je určen pro modelování 

a simulaci barevných Petriho sítí. V závěru článku jsou výsledky dosažené oběma přístupy statisticky 

vyhodnoceny. 

1  INTRODUCTION 
Server working without its failures is usually assumed in the queueing theory (see for example 

in [1], [2] or [3]). Server failures can be neglected if they are not so frequent. In case of more fre-

quented failures the impact of server failures should not be neglected. Many authors studied a behav-

ior of the diverse unreliable queueing systems. Most of them investigated mathematically the sim-

plest queueing models – Markovian queueing systems – or mathematically the most difficult queue-

ing models with general distribution of costumers inter-arrival times, service times etc. For example 

paper [4] is devoted to modelling of the unreliable M/M/1/m queueing system, paper [5] introduces 

a model of the unreliable M/M/1/∞ queueing system with impatient costumers, papers [6] a [7] are 

focused on unreliable M/M/1/∞ queueing systems with failures causing departure of all customers 

finding in the system. Some unreliable M/G/1/∞ queueing systems are studied in paper [8]. In work 

[9] Mean value approach is applied for computation the mean number of customers in the system EK 

and the mean sojourn time of customer in the system ET for unreliable M/M/1/∞ and M/G/1/∞ 

queueing systems. The models of the queueing systems with Erlang customers inter-arrival times or 

Erlang service times (these queueing systems are sometimes called Semimarkovian) are not so com-

mon. This paper presents a mathematical and a simulation model of E2/E2/1/m queueing system with 

an unreliable server. 

Let assume the queueing system with a single unreliable server. Incoming customers wait for 

the service in a queue with capacity of m–1 customers. Thus there are m places in the system.  

Let consider that a server breakdown can occur at any time. That means the server can break if 

it is busy (a costumer is in the service) or idle (there is no customer in the service). Notice that we do 

not consider a possibility of the several failures occurrence at the same time. That means that after 
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occurrence of a breakdown another failure cannot occur until the server is broken (by other words 

failures which are incoming during server repairing are rejected). 

After occurrence of the breakdown two different events can occur (if there is a costumer in the 

service just at the moment): 

 If there are less than m–1 customers in the queue, costumer comes back to the queue 

and his service starts from the beginning after that. 

 If there are exactly m–1 customers in the queue, costumer leaves the system and cus-

tomer is considered to be rejected. 

Customers inter-arrival times follow Erlang distribution with shape parameter k = 2 and scale 

parameter 2 ; the mean value is then equal to 


1

2

2
 . Failures occur according to the Poisson pro-

cess with rate  . The time between failures is an exponential random variable with mean value 

equal to 


1
. 

Costumer service time is Erlang random variable with shape parameter k = 2 and scale parame-

ter 2 ; thus the mean service time is equal to 


1

2

2
 . Server repair time is exponential random 

variable with parameter  , mean server repair time is 


1
.  

Customers are served one by one according to FIFO (First In - First Out) discipline. On the ba-

sis of the assumptions we can say that the presented system is according to Kendall„s notation 

E2/E2/1/m system with an unreliable server. 

2  MATHEMATICAL MODEL 

The queueing system can be modeled by Method of stages (see for example [9]). The method 

exploits the fact that Erlang distribution with shape parameter K and scale parameter denoted as kλ or 

kμ is sum of K independent exponential distribution with the same parameter kλ or kμ. 

The states of the studied system can be divided into two groups: 

– states of the systems in which the server is failure-free, the states are denoted by nota-

tion k,v,o, where: 

o k represents a number of the customers finding in the system, 

o v represents a terminated phase of the customer arrival, 

o o represents a terminated phase of the customer service. 

– States of server failure are denoted by the notation Pk,v, where: 

o A letter P expresses the server failure, 

o k represents a number of the customers finding in the system, 

o v represents a terminated phase of the customer arrival. 

Let illustrate the queueing model graphically as a state transition diagram (see in Fig. 1). The 

vertices represent the states of the particular system and oriented edges indicate the possible transi-

tions with corresponding rate. Notice that the diagram in fig. 1 is drawn without loops. 
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Fig. 1 State transition diagram of unreliable E2/E2/1/m queueing system. 
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On the basis of the state transition diagram we can obtain finite system of the differential 

equations for probabilities of the particular states depending on time t. For t  we get the system 

of the linear equations for steady state probabilities that are not dependent on time t: 

  0,01,0,10,0,0 220 PPPP   , 

  1,01,1,10,1,00,0,0 2220 PPPPP   , 

  0,0,11,0,1 2220 PP   , 

  0,1,1,1,1,0, 22220 kkk PPP    for mk ,...,1 , 

  0,1,0,10,0,0,1,1 22220 Pkkkk PPPP     for 1,...,1  mk , 

  1,1,1,10,1,0,0, 22220 Pkkkk PPPP     for 1,...,1  mk , 

  0,0,1,0,1,1,1 22220 kkk PPP     for 1,...,2  mk ,
 

  0,0,1,1,1,0,1,1,1 222220 mmmm PPPP    , 

  0,1,0,0,0,1,1 22220 mmm PPP    , 

  0,1,0,0, 2220 mm PP   , 

  0,00,0,0 20 PPP   , 

  1,00,00,1,0 220 PP PPP   , 

    0,1,10,0,1,0, 220 PkkPkk PPPP     for 2,...,1  mk , 

  1,0,0,1,1,1, 220 PkPkkk PPPP    for 2,...,1  mk , 

       1,10,11,20,0,1,0,0,0,11,0,1 2220   mPmPmPmmmm PPPPPPP  , 

     1,10,10,1,1,1,0,1,11,1,1 220   mPmPmmmm PPPPPP   

including the condition  1
1

0

1

0
,

0

1

0

1

0
,, 



   

m

k v
vPk

m

k v o
ovk PP .              (1) 

By solving of this linear equations system (1) we get stationary probabilities of the particular 

states of the system that are needed for performance measures computing of studied queueing system. 

Let consider three selected performance measures – the mean number of the customers in the 

service ES, the mean number of the waiting customers EL and the mean number of the servers in 

failure EP. All of these performance measures can be computed according to the formula for mean 

value of discrete random variable computation. 

For the mean number of the costumers in the service ES we can write: 


  


m

k v o
ovkPES

1

1

0

1

0
,, .                (2) 

Notice that in the case of a single server queueing system the mean number of the customers 

in the service is equal to the server utilization usually denoted as κ and also represents the fraction of 

the time when the server is busy. 

The mean number of the waiting costumers EL can be expressed by the formula: 

   




  


1

0
,

1

12

1

0

1

0
,,1

v
vPk

m

k

m

k v o
ovk PkPkEL .              (3)   

And finally for the mean number of the servers in failure EP (this performance measure can be 

also interpreted as the fraction of the time when the server is broken) we get: 




 


1

0

1

0
,

m

k v
vPkPEP .                (4)   

3  PETRI NET MODEL 
To validate outcomes which were reached by above-mentioned mathematical model solution 

Petri net model of studied queueing system was created by using CPN Tools – Version 2.2.0. Soft-
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ware CPN Tools is designed for editing, simulating and analyzing coloured Petri nets. The model is 

compound of 14 places and 12 transitions. The presented Petri net models unreliable E2/E2/1/5 queue-

ing system fulfilling the conditions mentioned in chapter 2, values of random variable parameters are 

shown in tab. 1. 

Tab. 1 Values of random variable parameters. 

Random variable (RV) Random variable parameters 

Customers inter-arrival times – Erlang RV 1182.2  hk   

Service times – Erlang RV 1202.2  hk   

Breakdown inter-arrival times – Exponential RV 102.0  h  
Repair times – Exponential RV 12.0  h  

 

Concrete values of random variables are generated during a simulation through defined func-

tion fun ET(k, mi) = round(erlang(k, mi/3600.0)), thus a second is the applied unit of time. Notice 

that the values from exponential distribution can be generated through this function as well, because 

exponential distribution is the special case of Erlang distribution with shape parameter K = 1. There 

were executed 30 experiments; each experiment was terminated after a million steps (a step corre-

sponds to a transition firing).   

Created coloured Petri net uses 3 token colours – tokens colour c represent customers, tokens 

colour f model the server failures and the auxiliary tokens colour p model for example free queue 

places, free servers etc. Tokens c and f are timed.  

The place called “Customer” with initial marking c and the transition “Customer initializa-

tion” model arrival process of the customers, all tokens leaving this transition are labeled by corre-

sponding time stamp to model Erlang inter-arrival times.  a customer approaching to the queueing 

system finding in the place “Input place for customer” can come in the queue if there is a token p in 

the place “Free queue places” (initial marking of the place is equal to the queue capacity – 4`p), oth-

erwise the customer is rejected. The transition “Customer rejection” is enabled only if there are exact-

ly 4 customers in the queue because the transition is connected with the place “Queue” by a testing 

arc with arc expression 4`c. The transition “Input into service” is enabled if there is a customer in the 

queue and the server is free (that means the server is idle and failure-free; the place “Free servers” 

with initial marking p models available servers). In the place “Service” there are placed tokens mod-

eling service of customers, the appropriate service time is ensured by the time stamp update through 

the transition “Input into service” firing. The transition “Output” is enabled if there is a customer in 

the service and the server is working (there is a token p in the auxiliary place “Working servers”). 

Arrival process of the server failures is modeled analogously like the arrival process of cus-

tomers by the place “Breakdown” with initial marking e and the transition “Breakdown initializa-

tion”. The time stamp of all tokens leaving the transition is increased by a value arising out of expo-

nential distribution with appropriate parameter. The transition “Breakdown rejection” is enabled only 

if the server is already broken – the transition is connected by a testing arc with the auxiliary place 

“Broken servers”, the arc expression is equal to p. The transition “Idle server breakdown” is enabled 

if the server is idle and failure-free – the auxiliary places “Failure-free servers” with initial marking p 

and “Free servers” with initial marking p are input places of the transition. The transition “Busy serv-

er breakdown” is enabled if the server is busy and failure-free (there is a token p in the place “Work-

ing servers” and in the place “Failure-free servers”). The customer service abortion due to the break-

down occurrence is modeled through the place “Service abortion” and the transition “Service abor-

tion due to breakdown”, firing of the transition “Busy server breakdown” causes an input of the cus-

tomer to place “Input place for customer” according to assumptions of mathematical model. Firing of 

transition “Repair beginning” causes the time stamp update of a token f which models server break-

down, the server repair is terminated by firing the transition “Repair termination”. 

Created model in initial marking is shown in Fig. 2 below. 
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Fig. 2 Petri net model – initial marking 

 

3 marking size monitoring functions were applied for computing selected performance 

measures during simulation: 

 The monitorig function ES bonded with the place “Working servers” enables the mean 

number of the customers in the service estimation. 

 The monitoring function EL is bonded with the place “Queue” and serves to the mean 

number of the waiting customers estimation. 

 The monitoring function EP is associated with the place “Broken servers” and enables 

the mean number of the servers in failure estimation. 

4  EVALUATION OF EXECUTED EXPERIMENTS 
By simulation experiments three data sets (ES, EL, EP) with range 30n were obtained. With 

the view of the further statistical evaluation the normality of particular data sets was tested using 2  

goodness-of-fit test; the outcomes are shown in tab. 2. As for all data sets p-value is greater than 0,05, 

we do not reject particular hypotheses about normal distribution. Notice that all statistical computa-

tions were executed using software Statgraphics plus 5.0. 

Tab. 2 Outcomes of goodness-of-fit tests. 

Normal distribution parameters P-value 

00396.077237.0   σ,μ  0.61596 

01202.056313.1   σ,μ  0.91608 

00431.009089.0   σ,μ  0.52892 
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Let focus on the mean value confidence intervals for particular data sets and testing the hy-

pothesis the mean value of single performance measure gained by simulation experiments is equal to 

the value gained by mathematical model solution in steady state; let assume α = 0.05 and the alterna-

tive hypothesis is in the form not equal. Stationary probabilities were found numerically using soft-

ware Matlab as the solution of the finite linear equations system (1); notice that the penult equation 

was dropped. The performance measures were further computed according formulas (2), (3) and (4). 

Reached outcomes are summarized in table 3.  

Tab. 3 Comparison of analytic and simulation outcomes   

Data  set Value gained numerically Confidence interval P-value 

ES 0.77241 (0.77089; 0.77385) 0,95175 

EL 1.56324 (1.55865; 1.56762) 0.96148 

EP 0.09091 (0.08927; 0.09250) 0.97496 

On the basis of reached p-values we can state that there are no statistical significant differ-

ences between studied performance measures gained numerically in steady state and mean values of 

relevant performance measures gained simulation experiments.  

5  CONCLUSIONS 
This paper presents two models of E2/E2/1/m queueing system with a server subject to break-

downs – mathematical model created by using Method of stages and coloured Petri net simulation 

model created through CPN Tools. The major part of the paper is focused on mathematical models of 

the studied system. At the end of the paper the reached outcomes for m = 5 and concrete parameters 

of random variables used in the queueing system model are evaluated.  
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