In the format provided by the authors and unedited.

The marine fish food web is globally connected

Camille Albouy^{1*}, Philippe Archambault², Ward Appeltans³, Miguel B. Araújo^{4,5,6}, David Beauchesne⁷, Kevin Cazelles⁸, Alyssa R. Cirtwill^{9,20}, Marie-Josée Fortin¹⁰, Nuria Galiana¹¹, Shawn J. Leroux¹², Loïc Pellissier^{13,14}, Timothée Poisot^{15,16}, Daniel B. Stouffer⁹, Spencer A. Wood^{17,18} and Dominique Gravel^{15,19}

¹IFREMER, unité Ecologie et Modèles pour l'Halieutique, Nantes, France. ²Departement de biologie, Faculté des sciences et de génie, Université Laval, Québec, Québec, Canada. ³Ocean Biogeographic Information System, IODE, Intergovernmental Oceanographic Commission, UNESCO, Ostend, Belgium.
 ⁴Departmento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas, Madrid, Spain.
 ⁵InBio/Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade de Évora, Évora, Portugal. ⁶Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark. ⁷Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Québec, Canada. ⁸Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada. ⁹Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand. ¹⁰Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada. ¹¹Centre for Biodiversity Theory and Modelling Station d'Ecologie Théorique et Expérimentale du CNRS, Moulis, France.
 ¹²Department of Biology, Memorial University, St. John's, Newfoundland, Canada. ¹³Landscape Ecology, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland. ¹⁴Swiss Federal Research Institute WSL, Birmensdorf, Switzerland. ¹⁵Département des Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada. ¹⁰Cuébec Centre for Biodiversity Sciences, McGill University, Montréal, Québec, Canada. ¹⁷EarthLab, University of Washington, Seattle, WA, USA. ¹⁸eScience Institute, University of Washington, Seattle, WA, USA. ¹⁹Département de Biologie, Universite de Sherbrooke, Sherbrooke, Québec, Canada. ²⁰Present address: Department of Ecology, Evolution, and Plant SciencesPhysics, Chemistry and Biology

Supplementary Materials for

The marine fish food web is globally connected

Camille Albouy, Philippe Archambault, Ward Appeltans, Miguel B. Araújo, David Beauchesne, Kevin Cazelles, Alyssa R. Cirtwill, Marie-Josée Fortin, Nuria Galiana, Shawn J. Leroux, Loïc Pellissier, Timothée Poisot, Daniel B. Stouffer, Spencer A. Wood, Dominique Gravel.

Correspondence to: albouycamille@gmail.com

This PDF file includes:

Figs. S1 to S10 Tables S1 to S5

Fig. S1 | Distribution of the 13,916,517 Ocean Biogeographic System (OBIS) (*16*) occurrences (a) used for the construction of the 11,365 marine fish distribution maps species across the world and averaged across latitudes (b). The black bars on the chart represent the standard error of the mean. The blue line represents a GAM model fitted between the mean number of OBIS occurrences (log) and the latitude (b; adjusted $R^2 = 0.7$, estimated degrees of freedom = 8.8) within shaded grey the 95% confidence limits. The coastline was defined by using the Global Self-consistent, Hierarchical, High-resolution Geography Database (*51*).

Fig S2 | **Evaluation of the calibration process.** To avoid any circularity, we evaluated the calibration by only keeping a single interaction par combination body sizes and predator present in the Barnes data set. When including all the interaction, the mean Boyce index value reached 0.64 (sd =0.07, n=999), and when we kept only unique combination of predator- prey body sizes (mean Boyce index = 0.55, sd = 0.08, n = 999).

Fig. S3 | Maps of local food web indicators across the world ocean. The maps represent the distribution of, (a) omnivory index, (b) number of links, (c) number of top predators (d) number of basal species (e) number of intermediate species (f) vulnerability (mean number of consumer species per prey species), (g) generality (mean number of prey species per predator species), (h) modularity (i) percentage of shortest path length <3, (j) percentage of top predators (k) percentage of basal species and (l) percentage of intermediate species and for 11,365 fish species on a $1^{\circ}\times1^{\circ}$ grid. The coastline was defined by using the Global Self-consistent, Hierarchical, High-resolution Geography Database (51).

Fig. S4 |**Maps of environmental descriptors.** The maps represent the distribution of (a) mean primary productivity, (b) mean sea surface temperature, (c) mean sea surface salinity and (d) distance from land. For more details about the environmental descriptors, see table S2. The coastline was defined by using the Global Self-consistent, Hierarchical, High-resolution Geography Database (*51*).

Fig. S5 | **Partial spearman correlation matrix between estimated world trophic indicators and abiotic factors by excluding the effect of species richness.** We added to this figure the spearman correlation between species richness and other indicators. The red colour indicates a significant negative correlation, while blue colours indicate a significant positive correlation between two trophic indicators. The colour gradient (from red to blue) indicates the magnitude of the correlation. White colour means that the correlation between indicators is not significant according to the Spearman correlation statistical test. (SST: Sea Surface Temperature; SSS: Sea Surface Salinity; Primary productivity; Distance to land). The coastline was defined by using the Global Self-consistent, Hierarchical, High-resolution Geography Database (51).

:es

				es.	Range	Sin	set odet	de	indet		hlengt	\$		and	specie	5	ecles	hness	NYS .	ediate	spectulity in
		205	Justnes	pustnee	an Ger	retality	otherbi	nerabilit	mectan	intest pe	ansst	anss	ancet	of basa	Julatity	ottops	cies Ri	mberot	ofintern	and pro	in lengt
Robustnes	ss Range	0.8	0.73	0.32	0.3	0.16	0.28	0.53	0.39	-0.32	-0.31	-0.27	-0.61	-0.35	0.02	0.47	0.52	-0.03	-0:04	-0,15	0.31
F	Robustness	BS	0.82	0.37	0.34	0.15	0 <mark>.2</mark> 2	0.47	0.33	-0.33	-0.29	-0.24	-0.55	-0.34	0. 0 5	0.52	0.57	0.01	-0.04	-0.18	0.25
R	obustness	Rang	e S	0.44	0.39	0.16	0.21	0.43	0.32	-0.23	-0.29	-0.26	-0.49	-0.31	0. 0 4	0.58	0.62	0.03	-0.09	-0.17	0.26
	Mean C	Omnivo	ory in	dex	0.61	0.06	-0 <mark>.1</mark> 9	0.12	-0.02	0.09	0.01	0.1	0 .1 1	-0.09	-0.12	0.72	0.72	-0.03	-0.05	0	0.02
		Ge	enera	ality in	dex	0.09	-0 .1 4	0.3	0.18	-0.01	-0.04	-0.09	-0.05	-0.33	-0.35	0.91	0.93	-0.46	0	-0,18	-0 <mark>,1</mark> 3
			Ν	vp of	herbiv	/ore	0.1	0.31	0.36	0.17	-0.12	-0.37	-0.19	-0.28	0	0.56	0.56	0.03	0.01	-0.01	0.01
				Vuli	nerabi	ility in	dex	0.45	0.6	-0.42	-0.32	-0.35	-0.44	-0.57	0.29	0.89	0.92	-0.11	-0.01	-0.33	0.09
						Con	necta	nce	0.69	-0.36	-0.44	-0.38	-0.69	-0.76	-0.28	-0.61	-0.54	-0.5	0.06	-0.22	0,17
					3	Short	est pa	ath ler	ngth	-0.32	-0.33	-0.41	-0.5	-0.77	-0.04	-0.44	-0.41	-0.25	0.06	-0.31	0.02
								N	lean s	SST	0.55	0.25	0.43	0.36	-0.12	0.55	0.52	0.17	-0.07	0.29	-0.02
									Μ	lean S	SSS	0.4	0.49	0.31	-0:05	0.37	0.33	0.14	-0.15	0.23	-0.12
									D	istand	e to l	and	0.39	0.36	-0.1	-0.32	-0.35	0.12	-0.16	0.19	-0.09
										Nb of	basa	l spe	cies	0.46	-0:04	0.63	0.57	0.11	-0.06	0.12	-0.53
	Modularity 0.15 -0.21 -0.26 0.45 -0.11 0.31									0.31	0.03										
Nb of top species 0.98 0.98 0.63 0.04 -0.06										0.08											
Species_Richness 0.99 1 0.41 0.88										0.88	0.94										
Number of links 1 0.41 0.8										0.88	0.96										
Nb of intermediate species -0.01 0.23										0.28											
																Prima	ary pr	oduct	ivity	0	0.04
																		Cha	an ler	ngth	0.38

Fig. S6 | Spatial distribution of herbivorous species (a) on a $1^{\circ} \times 1^{\circ}$ grid and (b) averaged across latitudes. The GAM models were fitted between the mean number of herbivorous species (b; adjusted $R^2 = 0.85$, edf =8.8), and latitude, within shaded grey the 95% confidence limits. The black bars on the chart represent the standard error of the mean. The coastline was defined by using the Global Self-consistent, Hierarchical, High-resolution Geography Database (51).

Fig. S7 | **Map of local geometric mean body size (a) on a 1**° × **1**° **grid and (b) averaged across latitudes.** The GAM models were fitted between the mean number of herbivorous species (b; adjusted $R^2 = 0.96$, edf =8.9), and latitude, within shaded grey the 95% confidence limits. The black bars on the charts represent the standard error of the mean. The coastline was defined by using the Global Self-consistent, Hierarchical, High-resolution Geography Database (51).

Fig. S8 | **Spatial distribution of (a) the local food web robustness to random species extinctions and (b) its variance across the 99 scenarios.** The coastline was defined by using the Global Self-consistent, Hierarchical, High-resolution Geography Database (*51*).

Fig. S9 | **Representation of three different regression trees.** (a) Relation between environmental factors (primary productivity, habitat, SST: sea surface temperature, salinity) and the robustness to species extinctions ordered by decreasing species body size. (b) Relation between environmental factors (primary productivity, distance from land, SST, salinity), species richness and the robustness to species extinctions ordered by decreasing species body size. The variable distance from land was transformed in a categorical variable, i.e. cells with a depth between 0-200m were identified as coastal while the others as open ocean. (c) Relation between internal structure networks indicators and the robustness to species extinctions ordered by decreasing species body size. (d) Relation between internal structure networks indicators, species richness and the robustness to species extinctions ordered by decreasing species body size. We substituted the number of links by the species richness because these variables are highly correlated.

Fig S10 | **Transformations conducted on the Ocean Biogeographic System OBIS data to obtain the fine scale species distribution.** Here we use the distribution of the Mediterranean rainbow wrasse (*Coris julis*) as an example. Species data were obtained from the Ocean Biogeographic Information System (OBIS, http://www.iobis.org) on 08/27/2014. We reconstructed distribution maps for each species, defined as the convex polygon surrounding the area where each species was observed (see for details Fig. S3). The resulting polygon was divided into four parts across the world to integrate possible discontinuity between the two hemispheres and the Atlantic and Pacific Oceans. Then we refined each species distribution map by removing areas where maximal depths fell outside the minimum or maximum known depth range of the species (1). Bathymetry data were taken from ETOPO1 (2). Finally, we aggregated fish distributions on a 1° resolution grid covering all oceans. All the data are freely available at <u>https://figshare.com/s/c9ca229cc1f3548f8b5c</u>. The coastline was defined by using the Global Self-consistent, Hierarchical, High-resolution Geography Database (51).

- 1. Froese, R. & Pauly., D. Fishbase. FishBase World Wide Web electronic publication (2015). Available at: www.fishbase.org.
- 2. Amante, C. and B.W. Eakins. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. (2009).

Province numbers	Province codes	Short provinces description	Climatic biomes			
1	BPLR	Polar - Boreal Polar Province (POLR)	Polar			
2	ARCT	Polar - Atlantic Arctic Province	Polar			
3	SARC	Polar - Atlantic Subarctic Province	Polar			
4	NADR	Westerlies - N. Atlantic Drift Province (WWDR)	Temperate			
5	GFST	Westerlies - Gulf Stream Province	Subtropical			
6	NASTW	Westerlies - N. Atlantic Subtropical Gyral Province (West) (STGW)	Subtropical			
7	NATR	Trades - N. Atlantic Tropical Gyral Province (TRPG)	Tropical			
8	WTRA	Trades - Western Tropical Atlantic Province	Equatorial			
9	ETRA	Trades - Eastern Tropical Atlantic Province	Equatorial			
10	SATL	Trades - South Atlantic Gyral Province (SATG)	Tropical			
11	NECS	Coastal - NE Atlantic Shelves Province	Temperate			
12	CNRY	Coastal - Canary Coastal Province (EACB)	Equatorial			
13	GUIN	Coastal - Guinea Current Coastal Province	Tropical			
14	GUIA	Coastal - Guianas Coastal Province	Equatorial			
15	NWCS	Coastal - NW Atlantic Shelves Province	Temperate			
16	MEDI	Westerlies - Mediterranean Sea, Black Sea Province	Subtropical			
17	CARB	Trades - Caribbean Province	Tropical			
18	NASTE	Westerlies - N. Atlantic Subtropical Gyral Province (East) (STGE)	Subtropical			
19	BRAZ	Coastal - Brazil Current Coastal Province	Tropical			
20	FKLD	Coastal - SW Atlantic Shelves Province	Temperate			
21	BENG	Coastal - Benguela Current Coastal Province	Subtropical			
22	MONS	Trades - Indian Monsoon Gyres Province	Tropical			
23	ISSG	Trades - Indian S. Subtropical Gyre Province	Subtropical			
24	EAFR	Coastal - E. Africa Coastal Province	Tropical			
25	REDS	Coastal - Red Sea, Persian Gulf Province	Tropical			
26	ARAB	Coastal - NW Arabian Upwelling Province	Tropical			
27	INDE	Coastal - E. India Coastal Province	Tropical			
28	INDW	Coastal - W. India Coastal Province	Tropical			
29	AUSW	Coastal - Australia-Indonesia Coastal Province	Subtropical			
30	BERS	Polar - N. Pacific Epicontinental Province	Polar			
31	PSAE	Westerlies - Pacific Subarctic Gyres Province (East)	Temperate			
32	PSAW	Westerlies - Pacific Subarctic Gyres Province (West)	Temperate			
33	KURO	Westerlies - Kuroshio Current Province	Subtropical			
34	NPPF	Westerlies - N. Pacific Polar Front Province	Subtropical			
35	NPSW	Westerlies - N. Pacific Subtropical Gyre Province (West)	Tropical			
36	TASM	Westerlies - Tasman Sea Province	Temperate			
37	SPSG	Westerlies - S. Pacific Subtropical Gyre Province	Subtropical			
38	NPTG	Trades - N. Pacific Tropical Gyre Province	Tropical			
39	PNEC	Trades - N. Pacific Equatorial Countercurrent Province	Equatorial			
40	PEQD	Trades - Pacific Equatorial Divergence Province	Equatorial			
41	WARM	Trades - W. Pacific Warm Pool Province	Equatorial			
42	ARCH	Trades - Archipelagic Deep Basins Province	Equatorial			

Table S1. Information on the 56 biogeochemical provinces (39).

43	ALSK	Coastal - Alaska Downwelling Coastal Province	Temperate
44	CCAL	Coastal - California Upwelling Coastal Province	Subtropical
45	CAMR	Coastal - Central American Coastal Province	Equatorial
46	CHIL	Coastal - Chile-Peru Current Coastal Province	Tropical
47	CHIN	Coastal - China Sea Coastal Province	Subtropical
48	SUND	Coastal - Sunda-Arafura Shelves Province	Equatorial
49	AUSE	Coastal - East Australian Coastal Province	Subtropical
50	NEWZ	Coastal - New Zealand Coastal Province	Temperate
51	SSTC	Westerlies - S. Subtropical Convergence Province	Subtropical
52	SANT	Westerlies - Subantarctic Province	Polar
53	ANTA	Polar - Antarctic Province	Polar
54	APLR	Polar - Austral Polar Province	Polar
55	NPSE	Northeast Pacific subtropical	Subtropical
56	OCAL	California current	Subtropical
	1		

Layers	Description	Unit	Туре	Spatial Resolution	Temporal Range	Derivatives	Source	Primary Data Source	URL
Land distance	Distance (km) to the nearest land cell (water cells only) calculated using Euclidean distance formula using ArcGIS. Values represented in floating point integer.	km	-	5 arcmin	-	-	-	-	http://gmed.auckland.ac.nz/ layersd.html
Temperature	Sea surface temperature is the temperature of the water at the ocean surface. This parameter indicates the temperature of the topmost meter of the ocean water column.	°C	Monthly climatolog y	5 arcmin (9.2 km)	2002 - 2009	Mean	Bio-Oracle	1	http://oceancolor.gsfc.nasa.gov/
Salinity	Salinity indicates the dissolved salt content in the ocean surface.	PSS	In situ measure: WOD 2009	1°×1°	1961-2009	Mean	Bio-Oracle	2	http://www.nodc.noaa.gov/
Primary productivity	Proportion of annual primary production in a cell. See reference for details about the productivity calculation methods.	mgC· m-²·/ day/ cell	Annual climatolog y	5 arcmin (9 km)	-	Mean	Aquamaps HCAF v4	3, 4, 5	http://www.aquamaps.org/download/ main.php and http://www.seaaroundus.org/ doc/saup_manual.htm#3

Table S2 | Environmental variable descriptions

1. Feldman, G.C., C.R. McClain, N. Kuring (ed.), S.W. Bailey (ed.). 2006. Sea-viewing Wide Field-of-View Sensor (SeaWIFS) Level-3 Standard Mapped Images: Chlorophyll-a Mean Concentration Annual and Seasonal Climatologies. NASA Goddard Space Flight Center

2. Boyer, T. P., Stephens, C., J. I. Antonov, M. E. Conkright, R. A. Locarnini, T. D. O'Brien, H. E. Garcia, 2002: World Ocean Atlas 2001, Volume 2: Salinity. S. Levitus, Ed., NOAA Atlas NESDIS 50, U.S. Government Printing Office, Wash., D.C., 165 pp., CD-ROMs.

3. Bouvet, M., Hoepffner, N. & Dowell, M. D. Parameterization of a spectral solar irradiance model for the global ocean using multiple satellite sensors. *J. Geophys. Res. Ocean.* **107**, 8-1-8–18 (2002).

4. Hoepffner, N., Sturm, B., Finenko, Z. & Larkin, D. Depth-integrated primary production in the eastern tropical and subtropical North Atlantic basin from ocean colour imagery. *Int. J. Remote Sens.* **20**, 1435–1456 (1999).

5. Longhurst, A., Sathyendranath, S., Platt, T. & Caverhill, C. An estimate of global primary production in the ocean from satellite radiometer data. *J. Plankton Res.* **17**, 1245–1271 (1995).

Table S3.Spearman correlations between the four sequential removal scenarios. The body size scenario corresponds to the removing of species by decreasing species body size. The largest range size scenario corresponds to species extinctions ordered by decreasing species range size. The smallest range size scenario corresponds to species extinctions ordered by increasing species range size. The random scenario was obtained by removing the species randomly (99 random deletion sequences initiated for each web). All correlations were significant (P < 0.001).

	Body size scenario	Largest range size scenario	Smallest range size scenario	Random scenario
Body size scenario	1	0.86	0.88	0.88
Largest range size scenario	0.86	1	0.82	0.86
Smallest range size scenario	0.88	0.82	1	0.93
Random scenario	0.88	0.86	0.93	1

Table S4 | **Wilcoxon rank tests performed between mean coastal and open water indicators.** Values for robustness referred to the sequential removal scenario of the largest-bodied size species (Rob BS), the smallest-bodied size species (Rob Range small) and the species with the largest range (Rob Range). SST referred to the Sea Surface Temperature and the SSS referred to the Sea Surface Salinity.

Indicators	Coastal Mean	Coastal sd	Open water Mean	Open water sd	p-value	
Rob BS	0.45	0.06	0.38	0.1	< 0.001	
Rob Range	0.46	0.06	0.38	0.1	< 0.001	
Rob Range small	0.46	0.06	0.38	0.11	< 0.001	
Species richness	366.95	499.35	66.10	120.11	< 0.001	
Path length	4.97	0.92	4.22	1.15	< 0.001	
Number of links	21,404.58	48,048.7	824	5910.34	< 0.001	
Connectance	0.06	0.03	0.09	0.13	< 0.001	
Modularity	0.13	0.12	0.28	0.11	< 0.001	
Omnivory index	0.17	0.08	0.16	0.08	< 0.001	
Generality	20.05	29.09	3.34	5.43	< 0.001	
Primary productivity	545.35	426.79	314.79	166.74	< 0.001	
SST	11.7	11.91	14.1	10.83	< 0.001	
SSS	32	4.36	34	1.65	< 0.001	

Table S5 | **Results of generalized linear models with a Gaussian distribution for continuous explicated variables and quasi-Poisson distribution for discretionary explicated variables.** We included as predictors the coastal or open ocean factor and the species richness. The sign of the t-statistic indicate which mean is greater (open water versus coastal) and the p-value of the factor terms indicate if the difference is significative accounting for the species richness. Finaly, we performed a Moran's I test on the residual of the glm model to test the spatial autocorrelation.

Connectance			Generality		
	Estimate	t value		Estimate	t value
Intercept	0.083	53.02***	Intercept	1.66	231.81***
Open ocean	0.018	11.41***	Open ocean	-0.62	-78.07***
Species richness	-6.07e-05	-26.03***	Species richness	0.0019	359.89***
	Expected	Observed		Expected	Observed
Moran's I	-2.32e-05	0.15***	Moran's I	-2.32e-05	0.079***
Link			Modularity		
	Estimate	t value		Estimate	t value
Intercept	7.65	696.02***	Intercept	0.19	134.10***
Open ocean	-1.23	-86.37***	Open ocean	0.10	68.73***
Species richness	0.0026	384.57***	Species richness	-0.00016	-75.01***
	Expected	Observed		Expected	Observed
Moran's I	-2.32e-05	0.066***	Moran's I	-2.32e-05	0.078***
Omnivory index			Path length		
	Estimate	t value		Estimate	t value
Intercept	-2.04	-315***	Intercept	1.45	467.65***
Open ocean	0.17	25.29***	Open ocean	-0.038	-11.75***
Species richness	0.00065	90.14***	Species richness	0.00036	92.07***
	Expected	Observed		Expected	Observed
Moran's I	-2.32e-05	0.12***	Moran's I	-2.32e-05	0.14***
Robustness body size			Robustness range		
	Estimate	t value		Estimate	t value
Intercept	0.41	330.85***	Intercept	0.42	342***
Open ocean	-0.04	-31.16***	Open ocean	-0.047	-36.76***
Species richness	0.0001	55.41***	Species richness	9.87e-05	53.27***
	Expected	Observed		Expected	Observed
Moran's I	-2.49e-05	0.11***	Moran's I	-2.49e-05	0.10***
Robustness small range					
	Estimate	t value			
Intercept	0.41	314.97***			
Open ocean	-0.045	-33.43***			
Species richness	0.00012	58.56***			
	Expected	Observed			
Moran's I	-2.49e-05	0.12***			