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ABSTRACT. We introduce a new class of combinatorially defined rational functions and apply
them to deduce explicit formulae for local ideal zeta functions associated to the members of
a large class of nilpotent Lie rings which contains the free class-2-nilpotent Lie rings and
is stable under direct products. Our results unify and generalize a substantial number of
previous computations. We show that the new rational functions, and thus also the local
zeta functions under consideration, enjoy a self-reciprocity property, expressed in terms of
a functional equation upon inversion of variables. We establish a conjecture of Grunewald,
Segal, and Smith on the uniformity of normal zeta functions of finitely generated free class-
2-nilpotent groups.

1. INTRODUCTION

The objective of this paper is twofold. The first aim is to introduce a new class of combina-
torially defined multivariate rational functions and to prove that they satisfy a self-reciprocity
property, expressed in terms of a functional equation upon inversion of variables. The second
is to apply these rational functions to obtain an explicit description of the local ideal zeta
functions associated to a class of combinatorially defined Lie rings. We start with a discussion
of the latter application before formulating and explaining the new class of rational functions.

1.1. Finite uniformity for ideal zeta functions of nilpotent Lie rings. Given an addi-
tively finitely generated ring £, i.e. a finitely generated Z-module with some bi-additive, not
necessarily associative multiplication, the ideal zeta function of £ is the Dirichlet generating
series

(L1) @) = e 1,
1<l

where I runs over the (two-sided) ideals of £ of finite additive index in £ and s is a complex
variable. Prominent examples of ideal zeta functions include the Dedekind zeta functions,
enumerating ideals of rings of integers of algebraic number fields and, in particular, Riemann’s
zeta function ((s).

It is not hard to verify that, for a general ring £, the ideal zeta function (7 (s) satisfies an
Euler product whose factors are indexed by the rational primes:

G = 1] 2z, (5):

p prime
where, for a prime p,
Gy = D, |L@p): 178
I<L(Zy)
enumerates the ideals of finite index in the completion £(Z,) := L ®z, Z,, or, equivalently, the
ideals of finite p-power index in £. Here Z, denotes the ring of p-adic integers; note that ideals

of £(Z,) are, in particular, Z,-submodules of £(Z,). It is, in contrast, a deep result that the
Euler factors CZ'(ZP)(S) are rational functions in the parameter p—*; cf. [I8, Theorem 3.5].
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Computing these rational functions explicitly for a given ring £ is, in general, a very hard
problem. Solving it is usually rewarded by additional insights into combinatorial, arithmetic,
or asymptotic aspects of ideal growth. It was shown by du Sautoy and Grunewald [14] that the
problem, in general, involves the determination of the numbers of IF,-rational points of finitely
many algebraic varieties defined over Q. Only under additional assumptions on £ may one
hope that these numbers are given by finitely many polynomial functions in p. We say that
the ideal zeta function of £ is finitely uniform if there are finitely many rational functions
W3E(X,)Y),...,WH(X,Y) € Q(X,Y) such that for any prime p there exists i € {1,..., N}
such that

Coiz,y)(8) = Wi(p,p™°).

If a single rational function suffices (i.e. N = 1), we say that the ideal zeta function of £
is uniform. While finite uniformity dominates among low-rank examples, including most of
those included in the book [I5] and those computed by Rossmann’s computer algebra package
Zeta [30] B1], it is not ubiquitous: for a non-uniform example in rank 9, see [I3] and [38]. In
general, the ideal zeta function of a direct product of rings is not given by a simple function
of the ideal zeta functions of the factors. It is not even clear whether (finite) uniformity of
the latter implies (finite) uniformity of the former.

1.1.1. Main results. We now restrict to the case of Lie rings, namely rings in which the mul-
tiplication is anti-symmetric and satisfies the Jacobi identity; note that the Jacobi identity
holds trivially for all nilpotent rings of class at most two. In this paper we give constructive
proofs of (finite) uniformity of ideal zeta functions associated to the members of a large class
of nilpotent Lie rings of nilpotency class at most two.

Definition 1.1. Let £ denote the class of nilpotent Lie rings of nilpotency class at most two
which is closed under direct products and contains the following Lie rings:

(1) the free class-2-nilpotent Lie rings fo 4 on d generators, for d > 2; cf. Section
(2) the free class-2-nilpotent products g4 s = 7%« 7% for d,d’ = 0; cf. Section
(3) the higher Heisenberg Lie rings b, for d > 1; cf. Section

Note that £ contains the free abelian Lie rings 7% = 94,0 = 90,d-

Our main “global” result produces explicit formulae for almost all Euler factors of the ideal
zeta functions associated to Lie rings obtained from the members of £ by base extension with
general rings of integers of number fields. In particular, we show that these zeta functions are
finitely uniform and, more precisely, that the variation of the Euler factors is uniform among
unramified primes with the same decomposition behaviour in the relevant number field.

Theorem 1.2. Let £ be an element of £, and let £ = (f1,..., fy) € N9 be a g-tuple for some
g € N. There exists an explicitly described rational function Wiy € Q(X,Y) such that the
following holds:

Let O be the ring of integers of a number field of degree n, and set L(O) = L® O. If a
rational prime p factorizes in O as pO = p1pa---pgy, for pairwise distinct prime ideals p; in O
of inertia degrees (f1,..., fy), then

CZ](O),p(S) = st(pupis)'
In particular, Cf(o)(s) is finitely uniform and (7 (s) = CE(Z)(S) is uniform. Moreover, the
rational function W3 satisfies the functional equation

(12) sz(X_l, Y—l) _ (_1)nrkZLX(n rl;ZL)Yn (rkZ£+rkZ(L/Z(L)))WEf(X, Y)
A special case of Theorem establishes part of a conjecture of Grunewald, Segal, and

Smith on the normal subgroup growth of free nilpotent groups under extension of scalars.
In [I§], they introduced the concept of the normal zeta function

Gls)= ), |G H[™

H<G
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of a torsion-free finitely generated nilpotent group G, enumerating the normal subgroups of
G of finite index in G. As G is nilpotent, it also satisfies an Euler product decomposition

G = 1] @p),

p prime

whose factors enumerate the normal subgroups of G of p-power index. If G has nilpotency class
two, then its normal zeta function coincides with the ideal zeta function of the associated Lie
ring L 1= G/Z(G)® Z(G); see the remark on p. 206 of [18] and the more detailed discussion
in [5, §3.1]. Thus, (F(s) = CGo (s). Moreover, every class-2-nilpotent Lie ring £ arises in this
way and gives rise to a torsion-free finitely generated nilpotent group G(L); see [44, Section 1.2]
for details. Theorem thus has a direct corollary pertaining to the normal zeta functions
of the finitely generated class-2-nilpotent groups corresponding to the Lie rings in £. Since
the groups associated to the free class-2-nilpotent Lie rings fs 4 are the finitely generated free
class-2-nilpotent groups F» 4 = G(f2,4), Theorem implies the Conjecture on p. 188 of [18]
for the case * = < and class ¢ = 2. The conjecture for normal zeta functions had previously
been established only for d = 2 ([I8, Theorem 3]; see also Section . We are not aware of
any other case for which the conjecture has been proven or refuted.

For any class-2-nilpotent Lie ring £, it is known [42] Theorem C] that the Euler factors of
(7 (s) at almost all primes p are realized by rational functions admitting functional equations

with the same symmetry factor (—1)™*z¢ X ("3%) yrkeltrka(£/2(2)) | Ty particular, the functional
equation of Theorem shows that, for the Lie rings £(0), where £ lies in our class £
and O is a number ring, the finitely many primes excluded by [42] Theorem C] must ramify
in O. We suspect that they are exactly the primes ramifying in O; see Remark below.

Theorem is a consequence of the following uniform “local” result. Throughout the
paper, o will denote a compact discrete valuation ring of arbitrary characteristic and residue
field of characteristic p and cardinality q. Thus, 0 may, for instance, be a finite extension of
the ring Z, of p-adic integers (of characteristic zero) or a ring of formal power series of the
form F [T (of positive characteristic). The o0-ideal zeta function

Fo(s) = D 1L
I<L

of an o-algebra L of finite o-rank is defined as in , with I ranging over the o-ideals of L,
viz. (ad L)-invariant o-submodules of L. Note that every element £ of £ may, after tensoring
over Z with o, be considered a free and finitely generated o-Lie algebra. Given an o-module R,
we write L(R) = L ®, R.

Theorem 1.3. Let £ = (L1,...,L,) be a family of elements of £ and f = (f1,..., fg) € N9.
There exists an explicit rational function WZ],f € Q(X,Y) such that the following holds:

Let o be a compact discrete valuation ring and (O1,...,94) be a family of finite unramified
extensions of o with inertia degrees (f1,..., fq). Consider the o-Lie algebra

L= ,51(531) X oo X ,Cg(Dg).

For every finite extension O of o, of inertia degree f over o, say, the O-ideal zeta function of
L(O) satisfies

Loy (8) =Wz s(d,q77*).
The rational function Wff satisfies the functional equation
(13) WE (LY = (C)Nox (y Moz (X, ),

where

No =r1k,L = > fitkz(£i) and Ny =rko(L/Z(L)) = > firkz(£L:/Z(L4)).
=1 =1
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Theorem is readily deduced from Theorem Indeed, let £ be a nilpotent Lie ring as
in the statement of Theorem and let O be the ring of integers of a number field. Suppose
that the rational prime p is unramified in O and decomposes as pO = p1p2 - - - pg, where the
p; are distinct prime ideals of O of inertia degrees f;. Then O ®z Z, ~ O x --- x 9,4, where
each ©;/Z, is an unramified extension of inertia degree f;. Therefore,

L(O®Zy) ~ L(D1) x - x £(D,).
Hence, by Theorem [1.3] we have

< < Z < s
CL(O)m(s) = L(o&zzp)(s) = W(L,...,L),(fl,...,fg)(pvp )

for an explicit rational function W& L) (frots) € Q(X,Y). Setting Wz, = W(f: LN (o fa)?
we obtain Theorem The functional equation of Theorem [I.2] follows from that of Theo-
rem since n = >7_, f; as p is unramified in O.

Remark 1.4. Our description of the rational function W7 7 is so explicit that one may, in
principle, read off the (local) abscissa of convergence af(%) of Cf(g)(s), viz.

af(%) := inf {a eR-p | (Z’(g)(s) converges on {s € C | R(s) > a}} € Q-g;
cf. Remark

Remark 1.5. We emphasize that Theorem[I.3|makes no restriction on the residue characteristic
of 0. In this regard it strengthens, for the class of Lie rings under consideration, the result [44]
Theorem 1.2], which establishes the functional equation for all o whose residue character-
istic avoids finitely many prime numbers; cf. [44, Corollary 1.3] and see also [22, Theorem 1.7].
In the global contexts of ideal zeta functions of rings of the form £(0O) for number rings O,
Theorem shows that the finitely many Euler factors for which the functional equation
fails must be among those indexed by primes that ramify in O.

In [33, Conjecture 1.4] it was suggested that a functional equation should hold for all
local factors C};’Q(o)’p(s), where fg o2 is the Heisenberg Lie ring and O is a number ring; if p

ramifies in O, then the symmetry factor must be modified from that of . Some cases
of the conjecture were proved in [34, Corollary 3.13]. There is computational evidence, due
to T. Bauer, that other Lie rings in the class £ also exhibit the remarkable property of the
local factors CZI(O),p(S) at ramified primes p being described by rational functions satisfying
functional equations. However, these local factors cannot be computed by the methods of this
paper; see Remark Bauer’s computations, together with the results of this paper, suggest
the following natural question: how do the local factors Cf(o)’p(s) behave at ramified primes,
and how does the structure of £ govern their behaviour?

Another natural problem is to improve upon Definition by giving a conceptual character-
ization of the class of Lie rings to which our method, or a mild generalization thereof, applies.
For instance, forthcoming work of T. Bauer extends our argument to explicitly compute the
ideal zeta functions of central products of finitely many copies of Lie rings in the class £. By
contrast, non-uniform examples such as those of [13], B8] provide a limit on the applicability
of these methods.

1.1.2. Previous and related work. Theorems|[I.2]and [I.3] generalize and unify several previously
known results.
(1) The most classical may be the formula for the o-ideal zeta function
n
1
(1.4) Con(8) 1= (" (s) = H =
i=1
of the (abelian Lie) ring 0™ = g »(0) = gn0(0); cf. [I8, Proposition 1.1].
(2) The ideal zeta functions of the so-called Grenham Lie rings gi,4 were given in [39,
Theorem 5.
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(3) Formulae for the ideal zeta functions of the free class-2-nilpotent Lie rings fa 4 on d
generators are the main result of [40].

(4) The paper [33] contains formulae for all local factors of the ideal zeta functions of
the Lie rings f22(0) = g1,1(0) = h1(0), i.e. the Heisenberg Lie ring over an arbitrary
number ring O, which are indexed by primes unramified in O. The uniform nature of
these functions had already been established in [I8, Theorem 3]. Formulae for factors
indexed by non-split primes are given in [34].

(5) The ideal zeta functions of the Lie rings hg x 0" were computed in [I8, Proposition 8.4],
whereas for the direct products hg x - -+ x hg they were computed in [I].

(6) The ideal zeta function of the Lie ring go 2 was computed in [29, Theorem 11.1].

Some of the members of the family of Lie rings £ have previously been studied in the context
of related counting problems, each leading to a different class of zeta functions. We mention
specifically four such classes: first, the subring zeta function of a (class-2-nilpotent Lie) ring £,
enumerating the finite index subrings of £; second, the proisomorphic zeta function of G(L),
the finitely generated nilpotent group associated to £ via the Mal’cev correspondence, enumer-
ating the subgroups of finite index of G(£) whose profinite completions are isomorphic to that
of G(L); third, the representation zeta function of G(£L), enumerating the twist-isoclasses of
complex irreducible representations of G(£); fourth, the class number zeta function of G(£),
enumerating the class numbers (i.e. numbers of conjugacy classes) of congruence quotients of
this group (see [25]).

The subring zeta functions of the Grenham Lie rings g; 4 were computed in [41]. Those
of the free class-2-nilpotent Lie rings fo 4 are largely unknown, apart from d = 2 ([1§]) and
d = 3 (JI5, Theorem 2.16], due to G. Taylor). The proisomorphic zeta functions of the
members of a combinatorially defined class of groups that includes the Grenham groups G(g1,4)
were computed in [6], their normal zeta functions in [45]. Moreover, all Euler factors of the
proisomorphic zeta functions of G(f2,4(0)) and G(h4(0O)), where O is an arbitrary number ring,
as well as of the base extensions to O of the groups considered in [6] and some other families of
nilpotent groups of unbounded class, were computed in [4]. The representation zeta functions
of the free class-2-nilpotent groups F5 4(0) = G(f2,4(0)) were computed in [37, Theorem B],
those of the groups G(gq«(0)) in [47, Theorem A]. In these cases, not only is there a fine
Euler decomposition, but the rational function realizing the fine Euler factors is independent
of O and of the prime. The class number zeta functions of the groups F 4(0) and G(gq,4(0)),
which may be found in [26], Corollary 1.5], satisfy the same properties.

Combinatorial structures similar to those employed in the present article were also used
in [32]. In that paper, they were used to produce explicit formulae for zeta functions enumer-
ating conjugacy classes of the cographical groups defined in [32, §3.4].

1.1.3. Methodology. Our approach to computing the explicit rational functions mentioned in
Theorems [1.3] and hinges on the following considerations. Fix a prime p and a class-2-
nilpotent Lie ring £ and consider, for simplicity, the pro-p completion L = L(Z,) of £. Given
a Zy-sublattice A < L, set A := (A+L')/L" and A’ := AnL'. Here we write L' = [L, L] for the
commutator subring of L. Clearly, A is a Z,-ideal of L if and only if [A, L] = A’. This allows
us, for fixed A, to reduce the problem of enumerating such A’ to the problem of enumerating

subgroups of the finite abelian p-group L’/[A, L]. The isomorphism type of the latter is given
by the (Z,)-elementary divisor type of [A, L] in L', viz. the partition A(A) = (A1,...,\.) with
the property that
L'J[R, L) = Zp/ (M) % -+ x Zp/(p).

For general Lie rings £, controlling this type for varying A is a hard problem that may be
dealt with by studying suitably defined p-adic integrals with sophisticated tools from algebraic
geometry, including Hironaka’s resolution of singularities in characteristic zero.

If, however, £ is an element of the class £, then the elementary divisor type of [A, L] is
determined, in a complicated but combinatorial manner, by so-called “projection data”; cf.
Definition These are the respective elementary divisor types of the projections of A onto
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various direct summands of L/L’. The technical tool we use to keep track of the resulting
infinitude of finite enumerations are the generalized Igusa functions introduced in Section
An intrinsic advantage of this combinatorial point of view over the general (and typically
immensely more powerful) algebro-geometric approach is that, structurally, Z, only enters as
a compact discrete valuation ring. The effect of passage to various other such local rings,
including those of positive characteristic, is therefore easy to control.

For an informal overview of the combinatorial aspects of our approach to counting o-ideals,
see Section K.l

1.2. Counting ideals with generalized Igusa functions. Our key to Theorem is
the systematic deployment of a new class of combinatorially defined multivariate rational
functions, which we call generalized Igusa functions. Expecting that they will be of interest
independently of questions pertaining to ideal growth in rings, we explain them here separately.

Generalized Igusa functions interpolate between two well-used classes of rational functions:

(1) A function we refer to as the Igusa zeta function of degree n plays a key role in
numerous previous computations (for instance [39] 411 [40], 29, 37, [33], B4. [10], 45]):

L(Y;Xi,.. X)) = )] (”) I1 Xi Qv Xu,..., X,

Ic{1,...,n} I)y e 1= X
Here, (?)Y denotes the Gaussian multinomial; see (2.2). For instance,

(1.5) Gon(8) = Ln(a™ Y ((@" 7))

cf. (1.4) and [43, Example 2.20].
(2) In [33], the weak order zeta function

I
WO XI'
(1.6) (X Drer@ngey) = 2, 1] ﬁ € QUXD) rer([m)\(2})
=1 D

L& hiSn

played a decisive role; cf. [33, Definition 2.9].

The main protagonist of Section (3| is the generalized Igusa function I}°(Y1,...,Yn;X), a
rational function associated to a composition n = (ng,...,n,,), with variables X indexed by
the subwords of the word a' ...alm™ in “letters” ay,...,an; cf. Definition for details. It
interpolates between the two classes of rational functions just mentioned: the Igusa function
of degree n for the trivial composition (n) and the weak order zeta function for the all-one
composition (1,...,1) of n; see Example

Remark 1.6. Igusa functions are not to be confused with, but are related to, a class of p-
adic integrals known as Igusa’s local zeta function; cf. [12]. For a detailed explanation of the
connection between I, and work of Igusa, as well as further generalizations and applications,
see [20].

1.3. Organization and notation.

1.3.1. In Section 2] we recall a number of preliminary notions and results used to enumerate
lattices and finite abelian p-groups. In Section [3] we define the generalized Igusa functions
and prove that they satisfy functional equations. In Section [4] these new functions are put to
use to compute a general formula (cf. Theorem for local ideal zeta functions of Lie rings
satisfying the general combinatorial Hypothesis [4.5] In Section [5] we verify that the members
of the class £ (cf. Definition satisfy Hypothesis complete the proof of Theorem |1.3
and attend to a number of special cases.
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1.3.2. We write N = {1,2,...} and, for a subset X € N, set Xo = X U {0}. For m,n € Ny we
denote [n] ={1,...,n}, [n,m] ={n,n+1,...,m}, and (n,m) ={n+1,...,m —1}. Given a
finite subset J < Ny, we write J = {j1,...,Jr}< to imply that j; < --- < j,.. We write J —n
for the set {j —n | j € J}. The power set of a set S is denoted P(5).

A composition of n with r parts is a sequence (A1,...,A,) € N such that >/_; Ay =n. A
partition of n with r parts is a composition of n with r parts such that Ay = --- = \.. We
occasionally obtain partitions from multisets by arranging their elements in non-ascending
order. Our notation for the dual partition of a partition A is A'. Given partitions u =
(1, -y pte) and X = (Ag,..., ) we write p < A if p; < \; for all ¢ € [¢], i.e. if the Young
diagram of p is included in the Young diagram of .

We write t = ¢—*, where s denotes a complex variable.

2. PRELIMINARIES

In this preliminary section, we collect some fundamental notions.

2.1. Gaussian binomials and classical Igusa functions. For a variable Y and integers
a,b € Ny with a > b, the associated Gaussian binomial is

a _ H;‘l=a—b+1(1 B Yl)
(5), - 0,a—vy -

A simple computation shows that

9, (),

Given n € N and a subset J = {j1,...,jr}< S [n— 1], the associated Gaussian multinomial is
defined as

5),~(),(5), (), eam

We omit the proof of the following simple lemma, which is similar to [33, Lemma 2.14].

Lemma 2.1. Letne N and P = {p1,...,pr}< S J S [n—1]. Then

(G), =) G,

Definition 2.2. ([33], Definition 2.5]) Let n € N. Given variables Y and X = (X1,...,X,), we
define the Igusa functions of degree n

1 n X; n X;
In(Y;X):l_X Z (I) Hl_XZ:I'g;L](I)YHl_XZ GQ(Y,Xl,,Xn>,

" I1g[n—1] Y jer iel

X n X;
I°(Y;X) = 2 E || ‘ Y, Xq,....X,).
n( ; ) 1—Xn <I>y 1_Xz' EQ( s <21, ) n)
Ic[n-1] el

An important feature of these functions is that they satisfy a functional equation upon
inversion of the variables; it is immediate from [39, Theorem 4] that, for all n € N,

(2.3) LY 5 XY = (-1)"X, Y~ G,y X),
(2.4) Py LX) =(0x vy G rw; x).

n



8 ANGELA CARNEVALE, MICHAEL M. SCHEIN, AND CHRISTOPHER VOLL

2.2. Subgroups of finite abelian groups, Birkhoff’s formula, and Dyck words. It
is well-known that, given a pair of partitions u < A\ and a prime p, the number a(\, u;p) of
finite abelian p-groups of isomorphism type p contained in a fixed finite abelian p-group of
isomorphism type A is given by a polynomial in p. More precisely, set

No—
(25) a(n ) = [Ty (% 7Men) - cqpy
kT M Sy

k=1

where X and p’ are the dual partitions of A and p, respectively. Then, by a result going back
to work of Birkhoff 7], a(X, u;p) = a(X, u;p) (see [8, Lemma 1.4.1]; cf. also [16, [11], [46]).

In practical applications invoking infinitely many instances of this formula, as in [33] 23],
it proved advantageous to sort pairs of partitions by their “overlap types” indexed by Dyck
words, as we now recall.

Let ¢ e N. A Dyck word of length 2¢ is a word

w = 0L1 1M10L2*L1 1M2*M1 . OLT*Lr—l 1M’V‘7M7‘—1

in letters 1 and 0, both occurring ¢ times each (hence L, = M, = ¢), and, crucially, no initial
segment of w contains more ones than zeroes (or, equivalently, M; < L; for all i € [r]). Here,
both the L; and M; are assumed to be positive. Below, we will use the notational conventions
My=Ly=0and L,y1 =L, =c¢, M,+1 = M, = c. We write Do, for the set of all Dyck words
of length 2c¢. See [33], Section 2.4] or [36, Example 6.6.6] for further details on Dyck words.

We say that two partitions A and u, both with ¢ parts and satisfying p < A, have overlap
type w € Dy, written w(\, u) = w, if

(26) M= ZAp, S == > AL L= = ALy S a1 = 2 g >
> AL 41 = = A = UM 41 = 2= e
In Definition we slightly modify this definition to suit the specific needs of this paper.

2.3. Gaussian multinomials and symmetric groups. In Section [3] the following Coxeter
group theoretic interpretation of the Gaussian multinomials will be useful. Recall that the
symmetric group W = 5, of degree n is a Coxeter group, with Coxeter generating system
S =(s1,...,8n-1), where s; = (ii+1) denotes the standard transposition. The Cozxeter length
¢(w) of an element w € S, is the length of a shortest word for w with elements from S. We
define the (right) descent set Des(w) = {i € [n — 1] | {(ws;) < £(w)}. It is well-known ([35]
Proposition 1.7.1]) that the Gaussian multinomials satisfy

L t(w)
(2.7) < J)y wesn,;es(mgy :
Let wq denote the unique ¢-longest element in S,,, of length ¢(wy) = (g) Then, for all w € S,,,
(2.8) L(wwy) = L(wy) — L(w), Des(wwp) = [n — 1]\ Des(w);
cf. [19) Section 1.8].

2.4. A note on ramification. Let 0 be a compact discrete valuation ring of arbitrary char-
acteristic. Let m denote the maximal ideal of 0 and let 7 € 0 be a uniformizer, i.e. any element
such that m = wo. Let O be a finite extension of o, with maximal ideal 9t and uniformizer IT.
Let f =[O/ : 0/m] be the inertia degree of the extension /0, and let e be its ramification
index; this means that 7O = 9. We will need the following standard fact.

Lemma 2.3. Let O be a finite extension of o with ramification index e and inertia degree f.
Let 7 € Nyg. Suppose that T = ge + h, where g € Ny and h € [e — 1]g. Then the following
isomorphism of o-modules holds:

O/M™ ~ (o/mgﬂ)hf x (o/m9)(e=M7
In particular, if O/o is unramified (i.e. e = 1), then O/MMT ~ (o/m™)! as 0-modules.
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Proof. Let B1,...,Bf € O be a collection of elements whose reductions modulo 9t constitute
an o/m-basis of the residue field O/9M. The set {3117 | i € [f],j € [e — 1]o} provides a basis
for © as an o-module; see, for instance, the proof of [27, Proposition 11.6.8]. Now it is clear
that 9" = I1I"9O is the o-linear span of the set

(9B |ie[f],je[0,h—1]} U {n9GIl | i€ [f],7€[h,e—1]}. O

Definition 2.4. For 7€ Ng and e, f € N, let {7} s = {(g + 1)), g{¢c=MF)} be the e f-element
multiset consisting of the element g+1 with multiplicity hf and the element g with multiplicity
(e —h)f, where 7 = ge + h and h € [e — 1], as in Lemma[2.3]

3. GENERALIZED IGUSA FUNCTIONS

In Section [3.1]we introduce generalized Igusa functions and prove that they satisfy functional
equations. In Section we record an identity involving weak order zeta functions, motivated
by our applications of Igusa functions in ideal growth in Section

3.1. Generalized Igusa functions and their functional equations. Let n = (ng,...,n,;)
be a composition of N = > | n; with m parts. Consider the poset C), of subwords of the word
Up 1= aytas? .. oa in “letters” aq, ag, ..., am, each occurring with respective multiplicity n;.

This poset is naturally isomorphic to the lattice
Cnl X oo X Cnm’

the product of the chains of lengths n; with the product order, which we denote by “<”. We
write 1 = v, and 0 for the empty word.

We denote by WO,, the chain (or order) complex of C,,. An element V' € WOn is a (possibly
empty) chain, or flag, of non-empty subwords of Up, of the form V = {v; < --- < v;}. On WO,,
we consider the partial order defined by refinement of flags, also denoted by “<”. Consider
the natural map

vza‘f‘l...a%mH Aty .oy Q) =t (M1(V), ..., T (V).
The degree of the word v = af' ...a%" is |v| := D70 .

Definition 3.1. We consider the induced morphism of posets

@ : WO, — [ [P([ni - 1]),
i=1
Vi=A{vr < <o ({mivy) [ 7€ [t]} 0 [ — 152, = (@i(V)iZy -
We say that V' e WO,, has full projections if

o(V)=([m —1],....[nm —1]) = K.
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1= a%agag
alaz alag aia2a3
a1a2 a1a3 as2as3

/N

a1 a2 a3

0= empty word

FIGURE 1. The poset C)p, for n = (2,1,1).

Remark 3.2. We observe that the flag V = {v; < --- < v} € WO, has full projections if, and
only if, for all j € [t]o, the word v;i1/v; is squarefree, i.e. contains at most one copy of each
letter aq, ..., am.

Definition 3.3. Let V = {v; < --- < v} € WO,,. We define

X,
X) :le - _;(vj € Q(Xy,,-- . Xu,)

(£), [0, <o

where (V) = (01(V), ..., om(V)).

Ezample 3.4. Let n = (3,2,2). The flag V = {asa3 < aja3as} € WO(3,2,2) does not have full
projections, as (V) = ({1}, {1}, {1}). We note that

Xa2113Xzz1zz as
(1 - Xa2a3)(1 - X

and

Wy (X) =

alagag)

(v),= (0,0, ), -orimmosmoon

The following is the key combinatorial tool of this paper.

and

Definition 3.5. The generalized Igusa function associated with the composition n is

IXO(Y; X) = Z (3) Wv(X) S Q(Yl, .. 7Ym7 (Xr)rgvﬂ);
VeEWO,, Y

Example 3.6.
(1) For n = (N), the trivial composition of N, we recover 1N (Y;X) = In(Y;X), the
classical Igusa zeta function recalled in Definition [2.2]
(2) For n = (1,...,1), the all-one composition of NV, we recover IE"{?H_J)(Y; X) = I} (X),
the weak order zeta function recalled in . We note that the variables Y do not
appear in this case, as all the polynomials (%)Y are equal to the constant 1.
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(3) For n = (2,1) we obtain

1 X X2
I, (Y X) = 1 a2 1
(Y3 X) 1= X, ( T Xe 1-X,
(1 T le) ( Xa1 4 Xa1a2 i Xa1 Xa1a2 i
- Xo, "1 Xy 1-XoiT— Xarm

Xal Xa% + Xa2 Xa1a2
1= Xo 1- X2 11— Xgy 1 Xoga

Remark 3.7. Generalized Igusa functions associated with the all-one compositions also co-
incide with certain instances of generating functions associated with chain partitions in [3,
Section 4.9].

The following “combinatorial reciprocity theorem” is the main result of this section.

Theorem 3.8. The generalized Igusa function associated with the composition n of N =
Dt n; satisfies the following functional equation:

oYL X = (-)VX,, (ﬁ Yf“”) (Y X).
=1

For the proof of Theorem we require a number of preliminary results. The first records
simple but crucial “inversion properties” of the rational functions Wy (X).

Lemma 3.9. For all V € WO,,,

Wy (XY = (=) Y We(X).
Q<V

Proof. This is a trivial consequence of the observation that

X! X
= —1 . O
1—X-1 <+1—X>

We fix some notation used in the rest of this section. We let WO, denote the subcomplex
of WO,, of flags of proper subwords of v,. When dealing with tuples of sets, we will abuse
notation and use set theoretical operations for componentwise operations. For instance, for
I=(L,....,In) €[]~ P([n; — 1]) we write I¢:= K\I for ([n1 — 1\I1, ..., [nm — 1|\Inn).

The following analogue of [41, Lemma 7] is critical for our analysis.

Proposition 3.10. For all I € [[%, P([n; — 1]),
(3.1) Y, WMrXTH =Nt Y (X)),

VeWox VeWOx
e(V)2I e(V)=21I°

Proof. Let I € [, P([n; — 1]). The inversion properties established in Lemma [3.9] yield
2 WX = 3 G Y WeX) = X mv(X) Y ()Rl

VeWOy VeWOy) QV VeWOy S=zV
p(V)21 p(V)2I (S)=1

We are left with proving that, for all Ve WO,

(3.2) Z (—1)IsI = {(—1)N—17 if p(V) 2 I°,

v 0, otherwise.
e(S)21
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Write V = {v; < -+ < v} and set vy := 0 and Virq = 1. Set

Iy :=TuplV)e ﬁ?([nl -
i=1

The sum in (3.2)) runs over refinements S of the flag V', subject to additional constraints on
the projection of S given by I: we say that a refinement S of V' is admissible if ©(S) 2 Iy.
As ¢ is a poset morphism, the sum in runs exactly over the admissible refinements of V.
We will construct such refinements of V' “locally”. More precisely, let j € [t]o. We say
that S is a refinement of V' between v; and vjyq if S = V and S and V' coincide outside
the interval [vj,v;41]. We further say that S > V has full projections between v; and vjq1 if
©(S N [vj,vj41]) is an m-tuple of intervals.
~ We set

1Y = (Iv o [mi(vg), mi(vse) D, € [ [2(ni —1]).

=1
()
%

Informally, I};’ dictates the constraints on a refinement S of V' between v; and v;1. More

precisely, we say that a refinement S of V' between v; and vj;1 is j-admissible if p(S) 2 I‘(/j ),
We further define

Fy(V,I) := 2 (—1)ISWVI = 2 (—1)| W) otes e}
S=V S=V
Jj-admissible j-admissible

Clearly, given j-admissible refinements V; of V for all j € [t]o, the flag S := Uz':o Vj is an
admissible refinement of V' and any (“global”) admissible refinement of V' can be constructed
in this way. The sum in (3.2) may thus be rewritten as follows:

t

(3.3) S (=Dl = S VISVt ST ()W = (<)t [ ] E(

S>V S>V S>V j=0
w(S)=21 w(S)=21 w(S)=21

We prove distinguishing the two cases
(I) Iy = p(V) (equivalently, I < ¢(V')) and
(IT) Iy # ¢(V) (equivalently, N\o(V') # &).
Case (I): Assume first that I < f(V). In this case, the condition ¢(S5) 2 I is trivially
satisfied for any flag S > V, as ¢ is a poset morphlsm and thus any refinement of V is

admissible. Moreover, in this case, (V') 2 I¢ if and only if V' has full projections. In other
words, (3.2) may be rewritten as follows:

(3.4) Z ( 1)‘5‘ B (—=1)N=1 if V has full projections,
' 0, otherwise.

S=V

Let j € [t]o. As in the case under consideration all local refinements are j-admissible, F;(V, I)
is given in terms of the M&bius function of the interval [vj, vj41] in the lattice Cy,. Indeed, by
Philip Hall’s theorem (see, for instance, [35, Proposition 3.8.5]),

(—=1)laral=loil+1 7 if [0, 0;41] is a Boolean algebra,

Fj(V, 1) = =p(vj, vj41) = {

0, otherwise;

cf. [35, Example 3.8.4]. Using (3.3) we may therefore rewrite the LHS of (3.2]) as

~D'[EWVD = (D) ] (—(vj,v541)) -
j=0 J=0
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It is nonzero if and only if all of its factors are nonzero. The interval [v;,v;41] is a Boolean
algebra if and only if the word vj;1/v; is squarefree. By Remark this happens for all
j € [t]o if and only if V' has full projections. In this case we obtain

S (-1 = (-1 X (-1 = (<1 [[ B0 -
S=V S=V =0

(=D [T (s, 0551)) = (=D)L (=) R0l =il — (_p)N=1,
j=0

proving (3.4)) and therefore (3.2) in the case I < ¢(V).
Case (II): Assume now that I\@(V) # J. Note that p(V) 2 I¢, the condition invoked

in (3:2), holds if and only if Iy = K, i.e. if and only if It/ is a tuple of intervals for all j € [t]o.
We claim that, in the case under consideration, the following holds for all j € [t]o:

(—=1)lvieal=losl+t o gf I‘(,j) is a tuple of intervals,

0, otherwise.

(3.5) EMD={

We now prove this claim by induction on the degree of the word v;,1/v;.

If vj41 covers vj, then Fj(V,I) = 1 trivially. So assume that holds for |v;41/v;| < ¢,
for some 1 < ¢ € N, and suppose that |v;j41/vj| = £+ 1. Let p; denote the number of different
letters in vj41/v;.

Assume first that I‘(/? Vis a tuple of intervals, viz.

1) = ([mi(wy), mi(vg1)] o [ = 112,

Informally, this means that a j-admissible refinement S of V needs to have full projections
between v; and v;j11. This condition forces the first element of S\V to lie on the p;-dimensional
hypercube above v;: it is obtained by multiplying v; with at most one copy of each of the p;
relevant letters. We may therefore write F;(V,I) as a sum of 2?7 — 1 summands, indexed by

the words vV ..., p(27-1) covering v; in Cl:
275 —1
F(V.D=- > ) (=nFvl
k=1 S=V j-adm.,

where, for each k € [277 — 1], the inner sum is taken over j-admissible refinements S of V
having v(*) as smallest element greater than vj. Each of these sums is known by induction
from (3.5)). Indeed, since the flags S also have full projections between v®) and vj+1, we obtain
2Pi —1
Fj(V,I) = — 2 (_1)\vj+1|—\v(k>\+1 - (_1)\111+1|—\vj|+17
k=1
establishing (3.5 in the first case.

Suppose now that IVJ is not a tuple of intervals. Informally, this means that a j-admissible
refinement S of V' is not required to have full projections between v; and v;,1. Without loss
of generality we can assume that the first “requirement gap” in I‘(/J ) is directly above v;, that
isif a = (a, ..., qy) is the m-tuple of (componentwise) minima of I‘(})\g(vj), there is at least
one i € [m] with a; > m;(vj) + 1. Given a j-admissible refinement S of V', the word min(S\V),

the smallest word in S greater than v;, clearly belongs to the interval (vj,vy] of subwords of
Vg = a7! ... aly which v; strictly divides. Consider the subset

Y :={v e (vj,vq] | [v,vq] is a Boolean algebra}.
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We rewrite the sum defining F;(V, I) according to whether or not min(S\V') € Y

(3.6) F;(V, 1) = 2 (—1)ISWVI Z (—1)I5\WVI,
S=V j-adm., S=V j-adm.,
min(S\V)¢Y min(S\V)eY

Clearly, the first summand in (3.6) is zero. Indeed, we may further subdivide it by fixing
the minimal element min(S\V). Each of the resulting summands is zero by applying
inductively to the refined flag V' U {v}, replacing v; by v.

The second summand in is zero, too. Indeed, without loss of generality we may assume
that

1 = (({mi(w;)} U s milvg41)]) o [ — 1) -

(Otherwise, an argument similar to the one for the first summand in (3.6)) proves the claim.)
Under this assumption, the induction hypothesis yields

2 (—1)ISWVI = — 2 (=)=l — (—p)lsal=lval+l 2 (-Di#l = 0.

S2V j-adm., [v,va] Boolean Z<{0,1}F3
min(S\V)eY

This proves (3.5)) in the second case.

Suppose now Iy = K. Since I‘(,] Vis a tuple of intervals for all j € [t]o, we get, by (3.5]),

t
>, (CHIVI= ()T BV D) = (~)2 (=Bl = (N
i

as desired. '
Suppose now Iy # K. This means that there exists j € [t]o such that I‘(/J ) is not a tuple of

intervals. By (3.5) we have F;(V,I) = 0, thus the product in (3.3) is also zero, proving (3.2))

in the last case. O

Proof of Theorem[3.8 The sum defining the generalized Igusa function can be rewritten as

(3.7) poYy:x)= Y <$>YWV(X)=1_1X D ($>YWV(X).

VeEWO,, Un Vewoy

Inverting the variable in the factor 17§(U on the RHS of (3.7) simply gives a factor —X,,.
Thus Theorem is equivalent to the identity

(3.8) Z <$)Y1WV(X—1) — (N1 (11 K(Eﬁ))

VewO,;

Z <$)YWV(X)'

VewO,

Writing S, = Spy X -+ X Sy, w = (w1,...,wp), Des(w) = Des(w) x --- x Des(wy,), and
using the identity (2.7), the LHS of (3.8) becomes

S (7). meeh- s |s [T e
Y-1

VeWOﬁ VEWOE yeﬁﬂ i=1
Des(w)C (V)
= Z( Y:“””) Yoowpxh
weS,, \i=1 VeWOy

©(V)2Des(w)
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For i € [m] we denote by w(()i) the longest element in S,,, of length E(w(()i)) = (%). By

2
Proposition [3.10{ and the identities (2.8) we can rewrite

> (HY W) 8w
wes, VeWOX

@(V)2Des(w)

= (-D)V ) (HY w > >, WX
wes,, VewOy
#(V)2Des(w)®

-1 (ﬁy;(?))Z (HY ww0)> Z Wv(X)
=1 wesS VeWO)
(V)2Des(ww,)

. <ﬁy<>> 5 (3)wi<x>,

VeWO,

proving (3.8]) and thus Theorem O

3.2. Weak order zeta functions and generalized Igusa functions. We record an identity
between instances of weak order zeta functions which will be useful in Section [5.3.3] and may
be of independent interest. The identity compares instances of weak order zeta functions
associated with the all-one-compositions g and 2g, with g and 2g parts, respectively, and
holds when substituting for the variables monomials satlsfymg certain relations.

In the current section, we call a subword of the word 1= Vgg 1= a1 ---agqg radical if it is
of the form w = [ [, aiait, for some J < [g]; see also Definition We observe that any
subword r < vy may be written uniquely in the form r = \/r - r'r", where \/r = [[,c5 aiitq
is a radical word, whereas 1’ = [ ;. a; and 7" = [ [,cy» @i4q, and the subsets 7,9, 3" < [g] are
disjoint. Likewise, we define the radical v/S of a flag S € WOy, to be the flag of radicals of
the words of S. B

In the following result, we omit the non-occurring variable Y from the generalized Igusa
functions I3 and I37; cf. our remark in Example (2).

Proposition 3.11. Let g € N. Suppose that the numerical data'y satisfy y, = y\/;-l_[ieyugu Ya,; -
Then

g
(3.9) I3°(y) = (H o y) 13°(z),

i=1 1= Ya,

where 21 a; = Y[,y asassy 107 @ll T < [g].

Proof. By sorting the flags in WOy, by their radicals, we may partition the domain of sum-
mation of the LHS of (3.9) as follows:

WOy = | J {9e WOy | VS =R}
REWOg

The claim is equivalent to showing that, for all R € WOy,

g g
(3.10) Z Ws(y) = (H 1 J_F yai) H (1 + 2 = ya-> Wgr(z).

SeWOsy: =1 Y i1
VS=R
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Let S = {s1 < --- < s} = {\/s51-815] <--- < /5¢5;s]} € WOy, where, as above, for k € [t],
s = [ liey @iy s = Hlejﬁ Qig and /sy = Hlejk ;i1 is radical. Denote J( ) = {UYsyr--sUs, }
and, for j € [g], set ya;J(S) := {ya,;y | y € J(S)}. As before we set so = 0and s;p1 =1 = V2g.-

We claim that, for all j € [g] and all S € WOy, with VS = R and the property that, for all
s € S if aj|s or ag4j|s then ajagyj|s, the following identity holds:

(3.11) 5wt - (12 ) ws)

SeWO2y:V/5=R,
J(S)cJ(S)vya; J(S)

Ya,
1- yaj

It is easy to see that (3.10)) follows by repeated application of (3.11]) for j € [g].
We prove (3.11)) by induction on ¢, the induction base (¢ = 0) being trivial; we observe that
our assumption on the numerical data implies that ya; = ya,, ;- The RHS may therefore be

written as
t
H Ysy ( + Ya; + Yagy; > H Ysy )
ysl 1- yaj 1-— yag+j l=i+1 1- ysl

The summand 1 in the central factor arises from the flag S = S, with Ws(y) = [[}_; IEZ .
Sl

The other two summands account for flags S with J(S) = yq,J(S5), i.e. for flags whose words
differ from those of S by at most an extra factor a; or ay4; (but not both, as they share with
S the radical R), and which do feature at least one such a “augmented” word. We will call
such flags a;-augmentations (of S). It remains to show that

Ty Yo,
(3.12) Z Wg(y) = ( 51 ) - _ag

_ 1-— ,7
SeWOs,: =1 Ys, Ya;

aj-augmentation of S

the argument for ay,; is identical.
We note that there exists a unique i € [t] such that aj|s;41 but a; { s;. For all a;-
augmentations S of S, the last t — i words coincide with s;41,...,s;. Therefore Hl it1 1y‘Z
S1
divides all relevant W(y). Without loss of generality we may thus assume that ¢ = ¢, i.e.
that no word of S is divisible by a;.

The claimed identity in (3.12)) will become clear by interpreting the trivial identity

Ys a'
(3.13) <H f%l> - ;a _
3

H Ys; < yllj Ysy Ys, yllj Ysy yaj yaj Ysy >
+ + :
ySL 1- ya]’yst 1-— yst 1- yajyst 1-— yaj 1- ya]’yst

Informally, the RHS of ( reflects the three alternatives for the first occurrence of a; in
an aj-augmentation of §_

(1) The first summand arises from the aj-augmentation S = { <spma<s1< ajst}.
(2) The second summand arises from the a;j-augmentation S = {--- < s;_1 < 8 < a;js;}.
(3) The third summand arises from all aj-augmentations of S whose last two words are
divisible by a;, the last one being a] s¢, viz. aj-augmentations of S\{s;}. All the relevant
yst

Ws(y) are therefore divisible by 1= =y . By induction hypothesis, (3.12)) yields

t—1
ySl yaj _ A
( 1_y8>1_ya- 72 Ws(y).
=1 ! J SGWOQQ:

aj-augmentatic; of S\{s¢}

This proves the claim, and hence the proposition. O
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4. COUNTING 0-IDEALS IN COMBINATORIALLY DEFINED 0-LIE ALGEBRAS

In this section we compute the o-ideal zeta functions of o-Lie algebras satisfying a certain
combinatorial condition (Hypothesis|4.5)) in terms of the generalized Igusa functions introduced
in Section [3] This prepares the proof of Theorem [1.3], given in Section

4.1. Informal overview. We start by summarizing the principal ideas behind our approach,
which greatly generalize those of [33]. Let L be an o-Lie algebra with derived subalgebra
L' =[L,L]. As noted in Section [1.1.3] if L is class-2-nilpotent, then an o-sublattice A < L is
an o-ideal if [A, L] < AnL’, where A = (A+L')/L’. For simplicity of exposition we will assume,
in this overview, that L' = Z(L), i.e. that L has no abelian direct summands. By an argument
going back to [I8, Lemma 6.1], the computation of (7'°(s) is reduced to a summation over
pairs (A, M), where A < L/L' and M < L' are o-sublattices such that [A, L] < M. Recall that
the OD-elementary divisor type of a finite-index O-sublattice A < O", where O is a compact
discrete valuation ring with maximal ideal 91, is the partition (Aq,...,\,) such that

O /A ~ /MM x -+ x O/,

Given the o-elementary divisor type A(A) of [A, L], the lattices M satisfying this condition are
enumerated by Birkhoff’s formula ([2.5)).

An essential ingredient of our method, therefore, is an effective description of the o-elemen-
tary divisor type A(A) in terms of the structure of A. For the o-Lie algebras considered in
this paper, this is accomplished as follows. The quotient L/L’ decomposes, as an o-module,
into a direct sum of m components, which are viewed as free modules over finite extensions
91,...,9,, of 0. For each component, we consider the O;-elementary divisor type v(@ of the
9;-lattice generated by the projection of A onto that component. These are the projection
data of Definition below. The crucial Hypothesis requires that the parts of the partition
A(A) be given by the minima of term-by-term comparisons among the elementary divisor types
appearing in the projection data. Assuming Hypothesis we deduce a purely combinatorial
expression for (;7%(s) in Proposition

Analogously to the argument of [33], we break up the sum in Proposition into finitely
many pieces on which the Gaussian multinomial coefficients—arising via the factors (I/(i); qi)
and a(\(v), u; q), in the notation used there—and the dual partitions occurring in the defini-
tion of a(A(v), ; q) are constant. The sum over each piece yields a product of Gaussian
multinomials and geometric progressions; these, in turn, are assembled into generalized Igusa
functions introduced in Section As in [33], Dyck words of fixed length turn out to be suitable
indexing objects for the finitely many pieces.

The technical complexity of the current paper, in comparison to [33], reflects the fact the

translation between projection data and the elementary divisor type A(A) is considerably more
involved. While the data determining A(A) in [33] were just a collection of integers, here they
are a collection of partitions (the v(Y defined above). A more sophisticated combinatorial
machinery, viz. the weak orders of Section [3.1] is required to keep track of the relative sizes
of the parts of these different partitions; this is necessary in order to specify domains of
summation over which the dual partition A(A)’ is constant.

In Section we define the concept of projection data and enumerate lattices A < L/L’
with fixed projection data. In Section .3 we introduce and explain the combinatorial structure
behind Hypothesis [£.5] and deduce Proposition [£.10} giving a general formula for o-ideal zeta
functions of o-Lie algebras satisfying Hypothesis [£.5] In Section [£.4] we state the section’s
main result, viz. Theorem [£.21] and prove it modulo an auxiliary claim, viz. Proposition [£.20]
whose rather technical proof is given in Section [4.5]

Throughout, let 0 be a complete discrete valuation ring with finite residue field of cardi-
nality ¢, and let O1,...,9 be finite extensions of 0. Let m € 0 be a uniformizer. For each
i € [h], let e; be the ramification index and f; be the inertia degree of O; over 0. Let ¢; = q7i
be the cardinality of the residue field of O;. For each i € [h], the local ring O; is a free
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o-module of rank e;f;. Let (ni,...,np) € NSL and set n = Z?zl e; fin;. Consider a family
U= (V(l), ... ,V(h)) of partitions v, each with n; parts.

4.2. Counting lattices with fixed projections. Consider the o-module
Q= O x . x O

and, for each i € [h], let m; : @ — O be the projection onto the i-th component. Choosing
an 9;-basis (egl), : ,e,(fi)) of O} and an o-basis (agl), e ’O‘g)fi) of each ;, it is clear that the

collection {aé )e,(j)}“k constitutes an o-basis of {2 that allows us to identify {2 with o™.
ij

Definition 4.1. For an o-sublattice A < 0", we write (9 = v/(m;(A)) for the elementary divisor
type of the O;-sublattice of O} generated by m;(A). Note that v is a partition with n; parts.
The family

v(A) = (V(l), ol V(h))
of partitions is called the projection data of A with respect to 2.

For any partition v = (v1,...,vy) with N parts, set J, = {d € [N — 1] | vq > vg44+1}. For a
variable Y, we define

(4.1) B(v;Y) = (i\f)y 1de S d(N—d)(va—vat1) e Q[Y].

We observe that 5(v;Y) = a(\,v;Y), the “Birkhoff polynomial” , where \ is any partition
whose parts are all at least ;. It follows that 8(v;q) enumerates the o-sublattices of oV of
elementary divisor type v. The following proposition, which is key to our method, generalizes
this formula and is analogous to [33, Lemma 2.4]. Recall the formula for the zeta function
Con(s) of an abelian (Lie) algebra of finite rank over a compact discrete valuation ring.

Proposition 4.2. Let o = (v ..., vM) be as above. Then

2, \o”:A\S:nCOnC (Hﬂ “,qz) L ()
A<o™ i=1 Dnl

V(A=

Proof. Recall that for every i € [h] there is a natural embedding of rings ¢; : O; < Mat,,y,(0)
that sends an element y € O; to the matrix representing the o-linear operator x — xy on £;

with respect to the chosen o-basis {a }jlfl. Moreover, dett;(y) = Ny, /o(y) for all y € O;.
This map extends naturally to an embeddlng of matrix rings Maty, (9;) < Mate, f,5,(0) that
we continue to denote by ;.

Consider the set H = {(Hy,...,Hy) | Vie [h]: H; < O"}. Given H € 3, denote

Sp= ), lo":Al™

A<o™
mi(A)=H;
Thus
(4.2) D" ATT = Y Ty
A<o™ HeXH
v(A)=v v(H;)=v()

For every i € [h], let B; € Mat,,(9;) be a matrix whose rows comprise an O;-basis of H;.
Let B € Maty,(0) be the block-diagonal matrix with blocks ¢;(B;). We observe that the map
Mat,, (o) — Mat,(0), B’ — B’B induces a bijection between the set of o-lattices A < o™ such
that m;(A) = O for all ¢ € [h] and the set of lattices A < 0™ such that m;(A) = H; for all
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i € [h]. Furthermore, det B = H?Zl Ny, /o(det B;); cf., for instance, [21, Theorem 1]. The
)

h —Z?il Vi
=117

norms preserve normalized valuation, hence |det B|, = [ | . We conclude that

h
(@) ¢ )
(4.3) Sy = 2" s = [ |07+ Hi| =%,
i=1
where 0 = (O7*,...,0;") € H. Thus

h h
(4.4) CGon(s) = D, =0 Y, [[197 - Hil* = %o [ [ ¢ori (s)-
=1

HeX HeHi=1
It follows immediately from (4.3) and (4.4 that

hCUn (8) tzi,j l/J(z)fZ
[T Cori (5)

and substitution of this expression into (4.2 implies our claim. O

Y=

)

4.3. Rewriting the o-ideal zeta functions of suitable o-Lie algebras. Now let L be a
class-2-nilpotent o-Lie algebra. We assume that its derived subalgebra L’ is isolated, viz. L/L’
is torsion-free. Let further L' € A < Z(L) be a central, isolated subalgebra. Suppose that

(4.5) L/A ~ O x - x O

Fixing such an isomorphism, we obtain projections m; : L/A — O and are in the setting of

Section Then ¢ and c, in the notation of Section are the ranks of the free o-modules

L’ and A, respectively, whereas n = Z?:l nie; fi = rky L/A. In particular, n + ¢ = rk, L.
Given an o-sublattice A < L/A of finite index, the commutator [A, L] is well-defined, as A is

central, and of finite index in L’. Let A(A) be the o-elementary divisor type of the o-submodule
[A,L] < L.

Definition 4.3. Let v(1) = (Ufl), cey 1/,(111)) and v = (1/9), ey 1/7(?2)) be partitions with n; and
ny parts, respectively. We define v(1) « (2) to be the partition whose niny parts are obtained

from the multiset
fmintf? i)}
ni

Given, in addition, b € [n1], we define (v(M)*® to be the partition whose (b) parts are
obtained from the multiset

ke[ni], te[na]

{min{l/i(l) | i€ I}}

We observe that = is an associative binary operation on the set of partitions and that
(V(l))*2 #* ]/(1) % V(l)_

I<[na], [1]=b

Definition 4.4. Let Z € Ny and fix, for every k € [Z], a pair Sy = (6k,04), where &) =

{Sk1,...,Skr}t < [R] is a subset of cardinality 7, and g}, = (ok1,..., 0%, ) € N,
Given a family & = (v(V, ..., (M) of partitions v, each with n; parts, define \(¥) to be
the partition obtained from the multiset
Z
U {(V(Skl))*a'kl S (V(Sk,Tk))*Uk,fk} ’
k=1

where {¥(V} denotes the multiset of parts of the partition »( and the union is a union of
multisets.

We will suppose for the rest of Section {4f that the following assumption on (L, A) holds.

Hypothesis 4.5. The pairs él,...,éz in Definition @ may be chosen so that for any
o-sublattice A < L/A, the equality of partitions A\(A) = A(v(A)) holds.



20 ANGELA CARNEVALE, MICHAEL M. SCHEIN, AND CHRISTOPHER VOLL

Comparing the lengths of the partitions A(A) and A(v(A)), we find that Hypothesis

implies that
z
d = Z <n3k1> <n5k2> <n8k,f,€>‘
e \ Okl Ok2 Ok,my,
Definition 4.6. Let & = | JZ_, & < [h]. Let m = |&|. Renumbering the components in (&.5)
if necessary, we may suppose without loss of generality that & = [m].

We briefly discuss the motivation for Hypothesis[4.5] It ensures that the elementary divisor
type A(A) depends only on the projection data v(A) and can be described combinatorially
in terms of v(A), and that all parts of A(A) also appear as parts of v(A). This assumption
is crucial to our method and enables us to express the o-ideal zeta function (7'°(s) in terms
of the generalized Igusa functions of Definition A further consequence of Hypothesis
is a dichotomy among the components of L/A in . If, on the one hand, ¢ > m, then
the commutator [A, L] is independent of the component O}"; this means that O lies in the
kernel of the projection pr: L/A — L/Z(L). If, on the other hand, i < m, then pr(O}*) and
O have the same rank as o-modules, namely n;e; f;. In particular,

m
(4.6) Yinieifi = ko(L/Z(L)).

i=1
This consequence of Hypothesis is used in a subtle but crucial way in the proof of Corol-
lary which establishes the functional equation satisfied by (7 °(s). Indeed, Theorem m
expresses (7' °(s) as a sum of finitely many summands. The above observation ensures that
each summand satisfies a functional equation with the same symmetry factor.

Remark 4.7. We note that, trivially, Hypothesis is stable under direct products.

Remark 4.8. Before proceeding, we observe that Hypothesis constrains the extensions O;
of 0 to be unramified in natural examples, such as the non-abelian examples considered in
Section |5l Suppose that L = £1(9D1) x -+ x £,.(9,), where £; is a class-2-nilpotent Lie ring
and 9; is a finite extension of o for every i € [r]. Suppose that the subalgebra L' < A < Z(L)
is of the form A = Ay x --- x A,, where each A; is an isolated subalgebra of £;(9;); this will
be true, for instance, if A = L' or A = Z(L). Then L/A ~ L£1(D1)/A1 x -+ x L.(D,)/A,.
Suppose, furthermore, that we decompose

L1(91)/A;
L2(D2)/ Az

12

n
O x o x O

n n
92N1+1 N, 532”2

0

£(0,)/4, ~ OF o
and consider the projection data with respect to the resulting decomposition
LJA ~ O x - x Q7N
Here the number of projections is h = NV,.. Assume that Hypothesis is satisfied. We claim

that ©;/0 is unramified for all i € [r] such that £; is not abelian.
Indeed, fix uniformizers II; € O;, let 7 € N, and consider the lattice

A=TITOM x - x IO x O™ x - x TIZONT
The projection data are I/](-i) =7 for all i € [N, ] and all j € [n;]. Furthermore, it is clear that

[A, L] = H7[£1(D1), £1(O1)] x - x IIT[Lr (D), £7 (D))

For every i € [r], let b; be the rank of [£;(9;),£;(9;)] as an o-module. Then it is immediate
from Lemma that the partition A(A) is the disjoint union of the sets {7}, s, (cf. Defini-
tion , with respective multiplicities b;. Suppose that £; is not abelian. Then b; > 0. If, in
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addition, e; > 2, then the elements of {7}, s, are not all equal to 7. Hence there are parts of
A(A) that do not appear as parts of the projection data v, contradicting Hypothesis

Definition 4.9. Set ¢ = ¢ — (. leen partitions A and p with ¢’ and ¢ parts, respectively, we
say that p < Aif p < /\ where \ is any partition with ¢ parts whose parts consist of the
¢’ parts of A together with any ¢ integers & > -+ = & > p1. By a(A\, ;YY) we will mean
a(x, 78 Y)N, the “Birkhoff polynomial” ; note that both definitions are independent of the

choice of ).

Our objective, which will be attained with Theorem is to compute the o-ideal zeta
function of the o-Lie algebra L. We maintain the notation from above. Recall, in particular,
that n = Z?:l e;fin; is the o-rank of L/A. Observe that if A < L/A as above, then there
exists an o-sublattice M < A of elementary divisor type p such that [A, L] < M if and only if
< A(A). Furthermore, as L’ is isolated in L, the number of sublattices M < A of elementary
divisor type p that contain [A, L] is given by a(A(A), u; q).

Recall m from Definition Given projection data & = (v, ..., v(M) the partition (&)
depends only on the m-tuple v = (v ... (™). Thus we will write A(v) for A\(¥).

Proposition 4.10. Assuming Hypothesis[{.5, the o-ideal zeta function of L is given by

f“‘s):n%nz 2, (Hﬁ ’%> O(AW). 1 ) (g ) S S S O,

M<>\(V)

Here v = (V(l), R I/(m)) runs over all m-tuples of partitions with ni,...,n,, parts, respec-
tively, whereas p runs over all partitions with ¢ parts. The condition u < A(v) is to be
understood as in Definition [{.9

Proof. The quotient L/A has o-rank n, so it follows from [I8, Lemma 6.1] that
Tos)= DL ILJATATT YT JAMT
A<L/A [A,L]<M<A
Grouping the lattices A < L/A by their projection data v(A), we obtain
=3 LA D A M,
o A(igié [A,L]<M<A

Setting 1 to be the elementary divisor type of M and recalling that A(v(A)) is the elementary
divisor type of [A, L] by Hypothesis it now follows from Proposition that

<o o GU"( . ny\Y.r ko (7 m)fi
= — , i ) 1 1) &k=1 Pk Lui=1\Luj= LY .
¢z °(s) a Corn (9 EM <Z| 1| ;i > a(A(P), 13 4)(q"t)

A()
As we observed above, a( (), u; q) depends only on the first m components of the h-tuple v.
Hence the sum in the previous dlsplayed formula may be expressed as

(4.7) Z (H’B ,qz> ( ( ),M;q)(qnt)2i21“kt2?ll( ]11 ]())fz.

H<)‘(V>

//\ N

2 ( [] s 7%)7521 1 (S5 S i
V(h))

(p(m+1) i=m+1
Observing that
DA g =S [ M) = o (9)
V() M<O;"

we see that the second sum in (4.7) is equal to ]_[Zl:m +1Goni(s). The claim follows. O
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Let w € Do, be a Dyck word. Recall, from Section that w is specified by two r-tuples
(L1, Lo, ..., Ly) and (M, Mo, ..., M,) satistying L; — M; > 0 for all i € [r] and L, = M, = c.
Recall further that € = ¢ — ¢ and define Lj = L; — ¢ for all j € [r].

Definition 4.11. Let A\ and u be partitions with ¢’ and ¢ parts, respectively, and let w € Do,
such that L; > . Fix a partition X with ¢ parts as above; without loss of generality we may
take & > max{A1, p1}. We say that A and p have overlap type w, written w(A, p) = w, if their
parts satisfy the following inequalities:

= Ay =

512"'2552)‘12'”2)‘151>N1>"'>MM1>)‘i1+1
MM1+1>"'>MM2 >)\L'r 1+1>

Lo
/\L Z UM,y 41 2= 0 = M,

\\/ \\/

In other words, w(\, p) = w if w(j\, 1) = w in the sense of (2.6). Note that Li=0 may occur,
if € > 0. Moreover, the set Do, depends on ¢ and so on the choice of A.

Observe that A > g if and only if there exists a Dyck word w € Ds., necessarily unique,
such that w(\, u) = w. Given w € Dy, we define the function

(48) =2 2 (Hﬁ Az) QW) g5 ) (gt Zmr PR S 0

v usA(v) =1
w(A,p)=w

Remark 4.12. If w is such that L; < g, then the above sum is empty and so D,(q,t) = 0.
In addition, the definition of the partition A(v) will usually impose some equalities among its
parts. Thus, it may happen that the set of projection data v whose associated partition A(v)
is compatible with a given Dyck word w is empty even if w satisfies the condition L; > ¢ of
Definition We will see examples of this phenomenon below, e.g. in Section [5.3.2

Proposition now tells us that
(19 200 =

H?i1 Cg:‘z (s)

4.4. An explicit expression for (7%(s). Our aim in this section is to give explicit formulae
for the terms D,,(g,t) in . We will achieve it with Proposition a result whose proof
will be given in Section [4.5] lleading to a fully explicit formula for the relevant o-ideal zeta
functions in Theorem [4.211

We maintain the notation of Section 4.3 and resume some of the notation introduced in
Section [3 Consider the composition n = (n1,...,ny,) and a family v = (v, ..., v(™) of
partitions (9, each with n; parts. The natural ordering of the elements of the multiset

S = U{ | je nz]}

gives rise to an element V(v) € WO,,. Indeed, the word v = [ [/~ ai"* € C,, appears in the flag
V(v) if and only if any element of the multiset

(4.10) Sy = G {v]@ |j€ [ai]}

i=1

Y1 Dulg.t).

wEDQC

is larger than any element of the complement S\S, = [J, {1/]@ | j€la; + 1,ni]}. Given

a word v € Cy, let m(v) denote a minimal element of the multiset S,. Since, by virtue of

Definition all parts of A\(v) appear in S, we see that if k € N satisfies X\, > A}, then

necessarily k = m(v) for some v € C,,. Here we denote the dual partition of A(v) by X for

brevity. Moreover, Hypothesis implies that A/ ) depends only on v and not on the flag
(4)

V(v) or on the actual values of the parts v;".

J
Definition 4.13. Let v e Cy,.
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(1) Set £(v) = )\;n( )- In particular, (V") < () if v < w.
(2) We say that v is radical if £(v") < £(v) for all proper subwords v" < v.
Note the following explicit formula for ¢(v).

Lemma 4.14. Let v = [[" aj" € Cy,. Then

i=1%

o
E(U) m(v Z H < Sk])
im1j=1 \kj
Proof. This is a straightforward consequence of Definition O

Definition 4.15. Let w € Do, be a Dyck word with exactly r letter changes from 0 to 1; cf.
Section A flag V = {v; <--- < v} of elements of C), is said to be compatible with w, or
simply w-compatible, if

e t=r,

o for all j € [r], the word v; is radical and satisfies £(v;) = L;.

Remark 4.16. It follows from Hypothesis [£.5] that all parts of v participate in the minima that
determine the parts of A(v). Therefore, the maximal word [[;~; a;" is always radical, and
vy = [[i2, @} for any w-compatible flag V.

In addition, note that if € > 0, i.e. if L’ < A, then some Dyck words w € Dy, for which

there exist w-compatible flags will satisfy L; = 0. In this case, v; = & for any such flag.

For w € Do, let F, denote the set of w-compatible flags. It will be convenient to organize
the information carried by an element of &, in matrix form. Given an element V = {v; <
- < wup} € Ty, we let vg be the empty word and define p;;, for i € [m] and j € [r], by

Vs m

J _| | Pij

' = az- .
i=1

Vj—1

In this way, the flag V' gives rise to a matrix p(V') € Mat,, »(Np). Conversely, given a matrix
p € Mat,, »(Np), we consider the cumulative sums of its rows: for i € [m] and j € [r], define

J
k=1

Definition 4.17. Let M, < Maty, »(Np) be the set of (n, w)-admissible compositions, namely
of matrices p satisfying the following two properties:

(1) oI~ aPij) = f/j for all j € [r].

i=1"

(2) The word [/, aipij is radical for all j € [r].

By Remark these properties imply that P; = n; for all i € [m]. Set w; =[]/~ al i

i=1"

for all j € [r]. It is easy to see that the map F,, — M,, ., given by V — p is a bijection, with
inverse p — {wy < --- < w,}. Denote

Pi={Py|jelrl}
for all i € [m]. For j € [r], we denote by p; the following composition with m parts:
(4.12) pj = (p1js-- - Pmj)-

Recall from Definition [2.2] the notion of Igusa function and from Definition [3.5] the notion of
generalized Igusa function I7°(Y;X) € Q(Y1, ..., Yi; (Xo)v<w;)-
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Definition 4.18. Let p € M,, ,. We define

(1 (i T (Lj— M wo —1 1)
Dw,p<q7t> - (]1 (Pz)q1> U << L] o Mj ) —11& (ql P -7Qm Y J ) ’
i= H j=1 q

o -1, —1.
HIMijj_l(q axMj,1+1)° . 'axMj)IMT7M7>_1(q YT Mp_1+1y - -

with numerical data defined as follows. For a subword v = [[;*; ai of [,

D —P. - 4 and v@) = v -wi g =TT o g
) i,j—1 Q; and v v wi Hi:l a;’ . p
50 0, if L(v\)) = O(wj_1),
" |1, otherwise,
and define
RO _ ) 2z fii(ni — ai), if 69 — 0,
IS fP i —al), i s = 1

Finally, we set

Y = q&(;j)Mj—l(n+5(v(j>)+€*Mj—1)+B1(fj>tZI-ll o fito) (M1 + 37, Pij-1fi)
v

where £(v\9)) is given explicitly by Lemma For k e [M;_1 + 1, M;], we set

T = qk(n+Lj—k)+Z§i1 [iPij(ni—Pij) k4252 fiPij

Proposition 4.19. The following functional equation holds:

tho(qil,til) = (—1)C+Z£1nlq( 2 ) ( )+Z7, 1fz( )tc+221 lnzf'LthD(q?t).

p'Lj
’L

Proof. The proof is a straightforward computation using the functional equations of

(1) Gaussian binomials ([2.1)),

(2) classical Igusa functions (2.3)), (2.4]), and
(3) generalized Igusa functions given in Theorem

as well as the definition (4.11]) of P;; and the observation that P;. = n; for all i € [m].

M, )

we set

g

Recall the functions D,,(q,t) introduced in (4.8)) and used to describe the o-ideal zeta
function of L in . The following result, which constitutes the technical heart of the
computation of the ideal zeta function (7°(s), relates D, (g,t) with the explicit functions

Dy p(q,t) of Definition We defer its proof to the next section.
Proposition 4.20. Let w € Do, be a Dyck word. Then

>, Duyla:t)

PEMn,w
Theorem 4.21. The o-ideal zeta function of L is

f%bnf; S Duylart).

wech PEMp w

Proof. The claim is immediate from (4.9) and Proposition m

Corollary 4.22. Suppose that the extension O;/o is unramified for all i € [m].

o-ideal zeta function of L satisfies the functional equation

< rko ko (L)) o rko <
70()ygr = ()P Bk (2D o ).

O

Then the
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Proof. Recall that n + ¢ = rko(L/A) + rko(A) = rky(L). Observe that the symmetry factor in

Proposition is independent of w and p. Consequently, the sum >} .y, >’ v Dy p(q,t)
itself satisfies a functional equation with the same symmetry factor. The remaining factors in

Theorem [4.21] satisfy

Gon (3)
H;'il ngl (s)

This yields the functional equation

_ (~1)"g(2)en L Gon(s)
1 Hm (—1)n¢qfi(nzi)tnifi H:Zlcgzlz(s)

=1

q—q

rko (L)

CFO8)] gt = (~1)e@gl ) oA T mifi 50 ().

Since we have assumed that all the extensions O; /o are unramified, our claim is now immediate

from ({4.6]). O

Remark 4.23. The explicit formula given in Theorem allows one to determine, in principle,
the (local) abscissa of convergence a7 ° of the o-ideal zeta function (7'°(s), viz.

a7 ® :=inf{aeR-g | (;'°(s) converges on {s € C | R(s) > a}} € Q=o.

Indeed, if one writes the rational function (7 °(s) over a common denominator of the form
[Tiap)er(1— q®t?), with a, b given by the numerical data given in Definition then

af"zmax{n,% | (a,b)e[}.

This reflects the facts that a/b is the abscissa of convergence of the geometric progression
q®% /(1—¢%) and that each of the D,,(g,t) is a non-negative linear combination of products
of such geometric progressions.

Remark 4.24. Observe that if L is replaced by the S-fold direct product L?, then ¢ is re-
placed by B¢, and the number of summands on the right-hand side of Theorem grows
super-exponentially in 8. Cancellations may occur, as in Remark below, that cause the
complexity of (7§(s) to grow less rapidly with respect to 3; however, explicit computations in
the case of the Heisenberg Lie algebra suggest that the growth can indeed be this rapid. By
contrast, if L*# is the B-fold amalgamation of L over its derived subring, then the complexity
of (7¥s(s) grows in a precisely controlled way [2, Theorem 1.1].

4.5. Proof of Proposition We start with a lemma involving the notions of Defini-
tion This observation is simple but crucial to the method of the article.

Lemma 4.25. Let v € Cy. There is a unique radical subword \/v < v such that £(1/v) = £(v).

Proof. Suppose v = [[;~; ai*. If a binomial coefficient (g) is positive, then it will decrease if

« is decreased. It follows that if the k-th term in the sum in the statement of Lemma [£.14] is
positive, then in any subword v < v satisfying £(v') = £(v) all the variables a,, ; must appear
with exponent as, ;. Hence we are led to define the set

Ky = {k € [Z] | as,, = o for allj € [r]}.

Furthermore, we put &, = (Jeq, S and finally define /v = [[;cs, ai. Tt is clear from the
preceding discussion that a subword v' < v satisfies £(v') = £(v) if and only if /v < v < v.
The claimed existence and uniqueness follow. O

Corollary 4.26. Suppose that vi < ve are two elements of Cy, such that ¢(vi) = €(ve). Then
VI = i

Proof. This is immediate from the construction of 1/v in the proof of Lemma O

Fix a Dyck word w € Dy.. We aim to evaluate the function D, (q,t) of (4.8). Let v =
(v, ..., (™) be an m-tuple of partitions, where, for each i € [m], the partition (9 has n;
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parts. Let u be a partition with ¢ parts such that u < A(v) and w(A(v), u) = w, in the sense
of Definitions and To simplify the notation, we write A for A\(v).
Now let {L;, M; }je[r] be the parameters associated with the Dyck word w. Recall that we

have set Ly = My = 0. It follows from the assumption w(A, p) = w that >‘E~ > )\L 4 for all

j € [r — 1], hence that all the positive Ej appear as parts of the dual partition \. By the
observations before Definition there exists a subflag k1 < ko -+ < Kk, of V() such that
Ukj) = E]- for every j € [r]; if L1 = 0, then we may take x; = @. This subflag need not be
unique, and its constituent words need not be radical. However, the flag \/k1 < -+ <
is well-defined by Corollary Moreover, it is clear that this flag is an element of F,, and
thus corresponds to an (n,w)-admissible composition p(v) € M, 4.

For every p € My, we define the function

(413) - Aupla,t Z 2 <Hﬁ 7%) QW) 15 @) () Bher 1 D S0

H<A(v) i=1
P(V) =P wnpu)=w

Clearly, D, (q,t) = ZpeMn Ay p(g,t). Hence, to prove Proposition it suffices to show
the following: -

Lemma 4.27. The equality Ay ,(q,t) = Duw,p(q,t) holds for all p € My, .

Proof. Fix p € M,, ,,. For each j € [r] we define a multiset

G{Vk | ke [Pij1+ 1,P,-j]}.

Recall the compositions p; defined in above, which depend only on p. For each j € [r],
the natural ordering of the elements of §; provides a weak order v; € WO,,. Again, these de-
pend only on the projection data v/, so we denote them v;(v) and set v(v) = (v1(v), ..., v.(V)).
As in the previous section, we define w; =[]/, f” € Cy.

Now fix an r-tuple (v1,...,v,) € [Tj_; WO,,. For every j € [r], suppose that v; includes

the word [ [, @/ (except when p; is the zero composition, in which case v; is empty). Write
vj = {uj1 <vjp <o < vl

for some ¢; € Ng. We define v, = w;_1 - vjp € Cp. Consider the set Sy, n and its minimal

element m(7j;) as in - Note that v;e, = [[;~; af” and that consequently m(¥;;) = Aj .
J

Let &5 € N be the minimal positive integer such that £(v;.,) > Ej_l. Then m(Uje;) = Ay -
i

Observe that 51(]% = 0 in Definition if and only if & < €;; in this case, m(v;x) is equal to
a part of v that does not appear in the partition A(v).
For every element vj, = [ [, a)* € C,,, define

m(vjx) = min{yff) |ue[Pij—1+1,Pi;—1+ v}

Note that the elements of the set {m(v;i) | j € [r],k € [¢;]} are exactly the parts of the
projection data v. Moreover, if 61(,?11 = 1, then m(vji) = m(Vjx). Otherwise, it may happen
that m(vjr) > m(vj), as the set defining m(vj;) consists entirely of parts of v that do not

appear in A(v) and may all be larger than the minimal element of the disjoint set Sy, .
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We now define a collection of differences that will provide a convenient parametrization of
the pairs (v, 1) that we are considering;:

- m(vjr) —m(vjrs1), for k <,
! m(”jk) - /’LMj71+17 for k = e]a

HE — m(vj+1,5j+1)7 for k e {Mla <o 7MT—1}7
Tk =\ Mk, for k = M.,
Lk — Mkl otherwise.

Here the indices of the ry run over the set [M,] = [c], whereas the indices of the s satisfy
j € [r] and k € [¢;]. We emphasize that the r; have no connection with the parameter r
defined earlier. Observe that the sj; and the 7 are all non-negative integers. Moreover, if we
allow all the s, to run over Ny and all the rj, to run over N if k € {My, ..., M,_1} and over Ny
otherwise, then we obtain precisely the pairs (v, u) satisfying the following three conditions:

(1) wAMv), ) = w

(2) p(v) =p

(3) v(v) = (v1,...,vp).

Let Ay pv(q,t) be the function defined by the right-hand side of , except that the
sum runs only over the data v satisfying v(v) = (vi,...,v,). Our task is now to rewrite the
ingredients of Ay, ,+(q,t), and hence the function itself, in terms of the parameters sj;, and
rg. Consider the following collection of intervals:

(414) [:uk —rg+1, Mk]v ke [C]a
[m(v) — s + 1, m(vji)], Jjel2,r], ke e, 4]

The reader will easily verify that these intervals are disjoint and that their union is the interval
[1, u1]. It follows from this observation that

c T Eb
(4.15) T
b=k b=j+1u=cp
if k e [M;_1 + 1, M;], whereas if I/g) = m(vji), then
) £ r Ly c
(4.16) =N st D Y st Y e
u=k b:j+1 U=¢ey b:M]’,1+1

We now treat the ingredients of Ay ,.(g,t), starting with the B(v: ¢;). Since p(v) = p, it
follows that {P;; | j € [r — 1]} < J,) for all i € [m]. For every j € [r] define the set

JU) = {k = Pijo1 | ke Jw o (Pij1,Py)}.
Lemma [2.1] implies that

n; n; . Pij
4.17 = : .
(41D (Juﬁ))qil (Pz‘> g [ (J%)q__l

Jj=1 v

Using (4.15) and (4.16]), the differences Véi) - (gil appearing in the exponents in S(v(9; ¢),

as defined in (4.1)), can be expressed as sums of distinct parameters s;;, and rj. In particular,
)

we observe that the elements of Jl%) are precisely the exponents of the variable a; that occur
in the weak order v;. It then follows from (4.17) that

m N me r p;
1), -G, TG,
i=1 (‘]V“)>q,-1 i1 \Pi/ g\ y
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where Y = (¢ L., ¢t and (%)Y is as in Deﬁnition This completes our analysis of the

factors B(v(); ;).
We now consider the factors a(A(v), ; ¢), using the idea behind the proofs of [33] Lemmata
2.16 and 2.17]. The range of parameters k over which the infinite product of (2.5 giving

aANv),u;q) = a(x,u;q) may have non-trivial factors is precisely [1, u1]. Recall that X;C =
X, + € for all k and observe that the dual partitions N and i’ are constant on each of the
intervals of (4.14)). Indeed, if d € [y — ri + 1, pg], where k € [M;_1 + 1, M;], then Xl =L,
and ), = k. Similarly, if d € [m(vjr) — sji + 1, m(vjx)] with k € [g5,£;], then X, = £(T};),
hence ij = {(Vjx) + €, and p; = M;_;. By manipulations with Gaussian binomials analogous
to those above we find that

105250, 10, ()
=1 N AL = g ! j=1 Lj—Mj ] 4 I/SJ) g1

where 1Y) = {k— M,y | k € J, n (M;_1,M;)} < [M; — M;_; — 1]. Combining these
observations, we obtain

a(A(W), 1 q) =
r o ' M 0.
1—[ L] - M]— M.] M]fl 1_J[ qk(Lj_k)Tk - qufl(f(ﬁjk)-i-E—Mj,l)Sjk
4 L.—M: | )
j=1 J J /gt p gt k=M;_1+1 k=e;

c m g (%)

The exponents in the remaining factor (g"t)Xk=1 rg2i=1 2551 Y 0 of the right-hand side
of (4.13)) are again readily expressed as sums of parameters 7, and s, using (4.15)) and (4.16]).
We leave the final assembly as an exercise for the reader. Summing the parameters ry and s
over the ranges indicated above, we obtain

m r Zj (J)
n; L;,—M;, 4 P Yvjk
i1 \Pi/ g j=1 Li =M ]\ /)y 51— yq()ﬁc
r—1
| T YA C T S VA TSRS V) R (VARE VAR (/3 VAR TR S Y
j=1

where ‘ghe numerical data x; and ygﬁ are as given in Definition In particular, note
that yq(,ﬁ depends only on the word ¥;, and not on the weak order v;. Summation over all

r-tuples v = (v1,...,v,) € H§:1 WO,, now completes the proof of Lemma and hence of
Proposition B O

5. APPLICATION TO THE CLASS £ — PROOF OF THEOREM [L.3]

In order to deduce Theorem from the results of the previous section, namely Theo-
rem [£.21] and Corollary [£.22] it remains to show that Hypothesis [£.5] is satisfied for o-Lie
algebras L as in the statement of Theorem We noted in Remark that the hypoth-
esis is stable under direct products. Hence it suffices to verify the hypothesis in the case
L = L(O1) x -+ x L(Dy), where £ is a Lie ring from one of the three defining subclasses
in Definition and 9; is a finite extension of o, for each i € [g]. It is enough to compute
the o-ideal zeta function of L; indeed, the ©-ideal zeta function of L(O) is obtained from
the o-ideal zeta function of L by substituting ¢/ for ¢, where f is the inertia degree of O/o.
This verification (and more) is done in Sections and We recover, en passant, the
results of previous work by several authors.
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5.1. Abelian Lie rings. It is instructive to consider the output of Theorem [£.21] for the basic
example of the abelian o-Lie algebra L = o®. Its zeta function is well-known; cf. . Let
A < L be an o-sublattice of rank ¢ with a torsion-free quotient L/A ~ o"; here n = b — c.
Now, let h € N and ny, e;, f;, for i € [h], be natural numbers such that Z,?:l n;e; fi = n, and let
91,...,9 be arbitrary finite extensions of o with ramification indices e; and inertia degrees
fi- Then we may express L/A ~ O7' x --- x O)" as in (4.5). Hypothesis is satisfied
vacuously, as ¢ = 0. Moreover, m = 0 in the sense of Definition As g = ¢, it follows from
Remark that the only Dyck word w € Dy, for which D, (q,t) # 0 is the “trivial” word
w = 0°1¢. Since the composition n is empty, the only (n,w)-admissible partition is the empty
one. We then read off from Theorem [4.21] that

fﬂ(s) = CU"(S)IC(q_l; xlv s axc)v

where the numerical data are given by z = ¢*("te=kRth = ¢k—k)¢k Tndeed, it is immediate
from (1.4 and (1.5) that
b—1

Ic(q_l;xl,...,l‘c) = CUC(S _n) — 1_[

i=n

1 _ Cob(s)
L—g't  Gon(s)

5.2. Free class-2-nilpotent Lie rings. Let f; 4 denote the free class-2-nilpotent Lie ring on
d generators. If O is a finite extension of o with ramification index e and inertia degree f,
then the derived subalgebra of 3 4(9) is isolated and has o-rank (‘21) ef and abelianization of
o-rank def. We will now implement the general framework developed in Section [4] to compute
the o-ideal zeta function of the direct product

L= f2,d1(01) X oo X fQ,dm(Dm)v
where d; € N and ©; is a finite extension of o for all ¢ € [m]. The abelianization of fs 4, (9;) is
isomorphic to Dfi as an o-module. Thus L satisfies (4.5)), with A = L’ = Z(L) and n; = d;
for every i € [m]. We set L = L/L’ and let m; : L — D;ii be the projections as in Section
Let A < L be a finite-index o-sublattice and v(m;(A)) be the elementary divisor type of the

$;-sublattice of Df" generated by m;(A). To use the method of the previous section, we must
compute the elementary divisor type of the commutator lattice [A, L].

Lemma 5.1. Let L = fo4,(D1) X -+ X faq,, (Om) and let A < L be an o-sublattice. For
every i € [m], let v = v(m(A)) = (Z/Y), e 1/6(;2,)). Then the o-elementary divisor type A(A)

of the commutator [A, L] < L' is obtained from the following multiset with ¢ = ", (‘éi)eifi

elements:
[T TI {mine v}, s

i=11<j<k<d;
Proof. Let (:zgi), e 7:1:2?) be an 9;-basis of fg 4,(O;) with respect to which m;(A) is diagonal:

oo

w0 )
m(A) = AL 27, LI g Do,

where II; € 9; is a uniformizer. Observe that the collection of commutators

{[in) ’ x’(‘:)] }1<j<k<di

provides an O;-basis of the derived subalgebra of fg 4,(0;). Clearly, the commutator sub-

o
algebra [m;(A), m;(L)] is the O;-lattice spanned by the elements {HZ-V] [mgl),x,(j)]}j#k. The
9;-elementary divisor type of this lattice is the partition with parts min{uj(-i),ulii)}, as ob-
served already just before [I8, Lemma 5.2]. The elementary divisor type of the same object,
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viewed as a lattice over o, is given by the multiset

[T (min{e!?, v}, s,
1<j<k<d;
by Lemma To complete the proof, we observe that the direct product structure of L
implies that [A, L] = @~ [mi(A), m(L)]. O

Remark 5.2. Observe that {v}; ; is simply the multiset consisting of the element v with
multiplicity f. Therefore, if the extensions O;/0 are all unramified (i.e. ¢, = 1 for all 7)
then it is immediate from Lemma that L satisfies Hypothesis Indeed, we may set
Z = ", fi and let the collection &y, .. .,éz consist of f; copies of the pair ({i},2) for
every i € [m]. Moreover, our decomposition of L/A satisfies the conditions of Remark
Therefore, Hypothesis necessarily fails if any of the extensions ©;/o0 are ramified, and the
method of Section [4 is inapplicable. We therefore assume for the remainder of Section
that all the ; are unramified over o.

As at the beginning of Section the possible orderings of the projection data v =
(v, ..., (™) are parametrized by the the chain complex WO,, of C),. Recall the function
{(v) of Definition [4.13]

Lemma 5.3. Letv=[[";a;" € Cy. Then £(v) = 31", (O;)fl

i=19;

Proof. Let i € [m]. There are exactly «; parts of the partition v(m;(A)) that are not less
than m(v), and hence there are (%) pairwise minima that are not less than m(v) Each of
these minima appears in )\(A) with multiplicity f;. Alternatively, apply Lemma and the
description of the sets él, .. 6 7z given in Remark n above. O

We now have all the ingredients necessary to apply Definition [£.18] and Theorem [.21] to
obtain an explicit expression for (7 °(s).

Example 5.4. We recover an expression for the Zy-ideal zeta function of fo 4(Z,), where d > 2
which was computed by the third author in [40]. The expressions of Theorem reduce to
a particularly simple form in this case. Here m = 1 and o = Z,, and, given a Z,-sublattice
A < L, there is only one relevant projection datum, namely the elementary divisor type
v = (vi,...,vq) of A itself. The derived subalgebra has rank ¢ = (g) In view of Lemma
the parts of the dual partition A(A)" = A\(v) are all triangular numbers. In particular, if
w € Do. = Dyig—1y is a Dyck word, then Dy (p,t) = 0 unless all the parameters Li,..., L,
associated to w are triangular numbers.

So suppose that w € Dyg_1) is such that L; = (72]) for all j € [r]. Tt is easy to see from
Definition @ that there is only one (d, w)-admissible composition, namely p1; = v; — vj—1
for all j € [r] (where we have set 79 = 0). Thus Py; = «; for all j. Noting from Example
that the generalized Igusa function associated to a composition with one part is a classical
Igusa function in the sense of Definition we read off from Definition that

T (L= M d 1L () ()
Dw(p,t) = H << LJ _ M > » (fyj)p_ll’}/j—”yj_l(p 7y1 P "7y’}’] —Yj— 1) .

Jj=1 I

-1, -1,
HIM M] 1 p a‘er71+17"'7xMj)'IMT—MT_1(p 7$Mr_1+17"'7:1:MT)7

where
y( ) — p J 1
k(d+ ("5 ) = k) +7i (d=) gh+;

: k
(d+(7]721+ )_Mj_1)+(’yj_1+k)(d—7j_1—k)t'yj_1+k+Mj_1,

LTy =P
Here, as usual, we have k € [M;_1 + 1, M;] in the definition of xj. Indeed, observe that the
only instance of two distinct subwords vy, ve < af satisfying £(v1) = £(vq) is £(@) = £(a;) = 0.



GENERALIZED IGUSA FUNCTIONS AND IDEAL GROWTH IN NILPOTENT LIE RINGS 31

Thus we always have 51()j ) =1 except in the case 5((111) = 0, but it is easy to verify that the

uniform expressions given above for the numerical data hold. Finally, by Theorem [4.21]

Gae@ = D Dulp)

wEDy(4-1)

We leave it as an exercise for the reader to unwind the definitions of [40] and verify that this
formula matches [40, Theorem 4].

5.3. Free class-2-nilpotent products of abelian Lie rings. Let L and Lo be abelian Lie
rings of ranks d and d’, respectively. We denote by gq 4 the free class-2-nilpotent product of
Ly and Lo of nilpotency class at most two. This is the Lie ring version of a group-theoretical
construction considered by Levi [24] (see also [17]), which is itself a special case of a varietal
product as in [28] Section 1.8]. Concretely, a presentation of gq 4 is given by

Od,d = <3§‘1, s Tdy Y1y -5 Yd (Zij)ie[d],je[d’] | [l"ia y]] = zij>7
where all Lie brackets not following from the relations above vanish.

Ezxample 5.5.
(1) g1, is the Heisenberg Lie ring.
(2) ga,1 is the Grenham Lie ring of degree d.
(3) ga0 = Z¢ is the abelian Lie ring of rank d.
(4) ga,a = G4 is the Lie ring featuring in [37, Definition 1.2].

We fix g € N and g-tuples d = (dy,...,dy) and d' = (dj,...,d}) of natural numbers.
Let O1,...,9, be finite extensions of o with ramification indices e; and inertia degrees f;,
respectively. Consider the o-Lie algebra

L =gg4,a,(91) X+ X ga,a, (D).
Define d = Y7 | dse; fi and d' = Y9_, dle; f;, and set ¢ = >9_; d;d}e; f;. Observe that, as an

=1 "1

o-module, L is free of rank d + d’ + ¢. Let L’ denote the derived subalgebra of L, and let
L=L/I =~ (Of x Of) x (9§ x 95°) x -+ x (9§ x D)

be its abelianization. For each i € [g], consider the usual basis {x,(:), yl@, z,(jﬁ) } wera ©f 94,47 (i)
te[d]]
as an ;-module. Consider the natural linear projections

7 L — <x§i), . ,xgi)>gi ~ D;ji

B . 4 &
i L — <?J§l)a e 7yéz)>0i ~ 9"

For each i € [g¢], fix an o-basis (agi), cee O‘S)fz) of ©;. Then {ag-i)m,(f), agi)yéi), agi)z,(je)}ke[di]yle[dg]

Jele; fil
is an o-basis of gg, 4/ (9;) and the union of these bases is an o-basis of L.

Let A < L be an o-sublattice. For each i € [g], we let v a partition with d; parts, be
the elementary divisor type of the ;-sublattice of D?" generated by m;(A). Similarly, we set
v(i19) to be the elementary divisor type of the ©;-sublattice of D?" generated by 7/(A). In
other words,

(5.1) v=v(A) = (W, 09,2 Gt ), 29))
is the projection data of A as an o-sublattice of L.

Lemma 5.6. Let L = g4, a (1) x -+ X 9, (D) and let A < L be an o-sublattice. Let v(A)
be as in (5.1)) above. Then the o-elementary divisor type \(A) of the commutator [A, L] < L’
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is obtained from the following multiset with ¢ = Y 9_, d;die; fi elements:
g
HH{ V) Yen g
i=1k=1

where the operation = is explained in Deﬁmtion and the sets {a}e, t,, for a € N, are as in
Definition [2.)
Proof. For every i € [g], let II; denote a uniformizer of ;. Let ( , e ,f ) and (vy), . ,UC(;))

be bases of Dfi and Dii, respectively, such that
NONY ON
iAo, = A& I e,

(Ao, = A oL ol
Observe that the commutators [£ ,(f) ) Uéi)] form an 9;-basis of the subspace <z,§2>gi of L'. Fixing
k € [d;], we find that

V(i) i i v
e ¢ 7] = @Hkosk,yg @Hk €9 0.

Leld]] Leld]]

Similarly, for a fixed £ € [d}] we obtain

V[giﬂ;) (i) + V£i+9) Vé +9)
i o I = @ I o o= @ o 0ifg”, v,
ke[d;] ke[d;]
From this we conclude that
- . (4) (1+¢1) . . . ()  (i+g) .
[gdhd; (Dz),A] _ @ le'mn{l//g Wy i[f](;)7U£Z)] _ @ H;nm{l/k Wy }Dzzl(;g)
keld;] te[d]] keld;] Le[d}]

as O;-modules, where gy, #(O;) is the abelianization of g4, 4 (Oi). Therefore,

. mln{u v H—q)} (4)
(T,A] = P I, R Dy
i€ [g] ke [dz] e [d;]

as o-modules. The claim follows. O

Set m = 2g. For i € [g], set D4 = O; and define n; = d; and n;4 = d;. It is clear from
Lemma that the Lie ring L fits the general framework of the beginning of Section
Moreover, we see analogously to Remark that if all the O; are unramified over o, then
Hypothesis is satisfied. In this case, we take Z = >Y_, f;; the collection él, .. .,é z
consists of f; copies of the pair ((i,7 + g),(1,1)) for every i € [g]. Thus we assume for the
remainder of this section that all the ; are unramified over o.

Consider the composition n = (n1,...,n24). Then the natural ordering among all the parts
of the projection data v = (v, ..., v(29)) corresponds to an element of WO,,.

Lemma 5.7. Let v = H?ﬁl a;t € Cp. Then 0(v) = YI_| aicivgfi.
Proof. Let v e Cy as above For any i € [g], the d;d] parts of v 5 p(i+9) are, by definition,
the minima mln{yk ,yé g)}ke 1.te[a]- Clearly, min{ylgz),uéz+g)} > m(v) if and only if both

elements of the pair (1/,(:), Vé”g)) are contained in S,, and it is clear from (4.10|) that there
are ;g such pairs. Finally, since we have assumed all O;/0 to be unramified, every part
of v % p(i+9) appears in A(v) with multiplicity f;. Alternatively, use Lemma O

The o-ideal zeta function (7'°(s) may now be read off from Theorem m
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5.3.1. Grenham Lie rings over unramified extensions. As an example, we will treat the case
L = g41(9), where gq 1 is the Grenham Lie ring of degree d and O /o is unramified of degree f.
In the case d = f = 2, this zeta function was computed previously by Bauer, using methods
analogous to those of [39] and quite different from the current paper’s approach.

Observe that L' = Z(L), so necessarily we have A = L' and thus ¢ = ¢ = df and € = 0
in the notation of Section The non-empty radical words v € C(41) are exactly those
of the form v = a{'ag with ay > 0. If w € Dy, is a Dyck word with associated parameters
Li,...,L, and My, ..., M,, then clearly there are no ((d, 1), w)-admissible compositions (recall
Definition unless all the L; are divisible by f. Otherwise, there is a unique ((d, 1), w)-
admissible composition p € Maty,; it satisfies P1; = L;/f and Py; = 1 for all j € [r].
Equivalently, p1; = (Lj — Lj—1)/f for all j € [r], while p2; = 1 and pg; = 0 for all j > 1.

Let Da.(f) be the set of Dyck words w € Do, such that f|L; for alli € [r]. Given w € Do (f),
set L,/f = {L;/f | © € [r — 1]}. The following explicit statement is now immediate from
Theorem

Proposition 5.8. Let L = g41(9), where O/o is an unramified extension of degree f. Then

<oy _ Sotarns (5) D
() Co(s)¢pa(s) weDZ%(f) w(22)

d " (L;— M, 4 L )

- (1) (%), e
( ) Lw/f q*f 1 L,] — M] q_l (Ll/fvl)( )
HI(Ljijfl)/f<q_f;y(Ljil/f)Jrl,...7ij/f).

o —1. —1.
HIMj—Mj—l(q axMj,1+17'"aﬁMj)IMTer—l(q )xMT_1+1)"'7:EMT)‘

Here the numerical data are given by
T = qk((d+1)f+Ljfk)+L]'(d*Lj/f)tk+f+Lj, k e [42\4"7_1 4 17‘2\4']]7
(1) — qfal(d_al)tf(al+042)

y @y D‘Q
a; - ag
Uk = q M1 ((d+k+k(d=k)+1) f=Mj—1) 4 f(k+1)+M; cke[(Li—1/f) +1,L;/f].

Remark 5.9. Using Proposition to compute (; ) (Zp)(s) produces a sum parametrized by

the ﬁ(Zj) elements of Dyy. Yet [39, Theorem 5], translated to the notation of the present

paper, gives the much simpler expression
-1
Coun (2p) (8) = Cuara () La(p™ 5 21, - -, 2a),

where z; = p'a+1=0¢2+1 for § € [d]. We have checked that these expressions coincide for
d < 3, but a direct proof of their equality would involve proving an identity of generalized
Igusa functions with conditions on the numerical data, in the spirit of Proposition see
also Remark below. This example shows that expressions derived from Theorem
sometimes admit dramatic cancellation.

5.3.2. The Lie ring g2.2. Paajanen [29, Theorem 11.1] computed the ideal zeta function of the
o-Lie algebra L = g2 2(0). We recover this computation as a special case of our results. By
Theorem [A.27] we have

04 1 )(1—
EO -2 Y Y Dulat - i N Y Duylat)

weDg pEM(g 2),w weDg pEM(g 2),w
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There are fourteen Dyck words of length 8, but it is easy to check that there are only ﬁve
Dyck words w € Dg for which there exist w-compatible flags of subwords of the word afa3.
For simplicity, for the rest of this example we will write a instead of a; and b instead of as.
We tabulate these Dyck words, together with the associated functions D, ,(g,t). Observe
that there are three Dyck words with two compatible flags, and that in each of these cases
both flags give rise to the same function D, ,(g,t). This is a consequence of the symmetries
of L = g22(0) and is not a general phenomenon.

For brevity, we use the notation gp(x) = %= and gpo(z) = 1

11—
Dyck word ‘ Flag ‘ Dy p(q,t)
00001111 | a?b? [(‘g?z)(qfl; V) a(q L g7, ¢t ¢1517, ¢16¢8)
2 272
a“b < a“b 2 3 B
00100111 5o (5),- [5 (075 ¥)2p(¢°t)epo(a"t) I (g "5 "1, ¢4, ¢1°%)
2 272
a’b < a®b _ ol B
00110011 ab? < a2b? (%) —1I(V§ 1)( Sy Is (a7t %t ¢71)epo(¢t0) Lo (g™t 41017, ¢1O°)
01000111 | ab < a®® | (7130 (a7, y)ep (@) I0 (a i 2)Is(a 5 410, 4217, g5
2 2;2 2\ 2
01010011 2=t = | (1) (@ ) p(q )epo(¢°t*)gp(¢°%)gpo(q'2t°)-
ab < ab? < a?b? ( 15t7’ q16t8)
Here the numerical data y and z are defined as follows:
Ya = Yp = ql Yo2 = Yp2 = t2 Yab = q2t2 Ya2b = Yab2 = qt3 Ya2p2 = t4,
2o = 2p = q6t4 Zab = q7t5.

5.3.3. The Heisenberg Lie ring. The relatively free product g1 is the Heisenberg Lie ring b.
This ring is spanned over Z by three generators z,y, z, with the relations [z,y] = z, [z, 2]
[y, z] = 0. It is among the smallest non-abelian nilpotent Lie rings. It was studied by two of
the authors in [33], in the case 0 = Z,; the zeta functions computed there can be recovered as
special cases of the analysis in this section. Indeed, consider

- X h(Dg)a
where the £; are unramified over o so that Hypothesis holds. Then ¢ = Y7 , f;, while

L =5h(O1) x

= 2c. Note that the quantity denoted n in [33] is called ¢ in the current paper. The
composition n defined just before the statement of Lemma isn=(1,1,...,1), with 2¢

parts. Thus the elements of C), correspond to subwords of the word a; - --ag,. The radical
subwords are the words of the form [ [,_; a;ja;44 for some J < [g]. Thus radical subwords are
in bijection with subsets of [g]. Moreover, if w € Dy, is a Dyck word, then a w-compatible
flag V = (vy < - - <v,) € Fy corresponds to a sequence of subsets J; < --- < J, = [g] such
that Zz‘er\Jj_l fi = Lj — Lj_y for all j € [r]. Setting A; = J;\J;—_1, we obtain precisely the
set partitions of [g] that are compatible with w, in the sense of [33, Definition 3.4]. Recall
that the set of set partitions compatible with w was denoted P,, in [33].
We see from Theorem applied to L = g1,1(91) X -+ x g1,1(9Dy), that

CQC 9
D) = °< 7 2 2 Duplat) =G [ [ =) 3, Dulat)
1 o, we@szGan i=1 wedy,
PEMn w

Now set 0 = Z,; in particular, ¢ = p. A comparison with [33] eq. (2.20)] and the displayed
equation immediately before [33, Theorem 3.6] shows that, to recover the results obtained
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there, it suffices to prove that if p € M, ,, is associated to a set partition {A; }je[r] € Pw, then

g g
(5.2) (H(l - tf")2> Dy p(p,t) = (H(l — tzfi)) DY, 4(pt),
i=1 i=1

where D&A(p, t) is defined by [33] (3.12)].
We read off from Definition that, for p € My, .,

T (L — M wo :
(53) Dw7p(p’t) - H (( Lj — Mj > 71IHkE-Aj AkQk+g (y(]))> .
p

Jj=1
r—1
o —1. —1.
HIMj—Mj_l(p 7xMj71+17--'7$Mj) Mr*Mr—l(p )xMT_1+1)"'7:EMT))
j=1

with the numerical data specified there. Since the parameters g, 1 do not actually appear
in the relevant generalized Igusa functions, we have omitted them from the notation (just
as in Proposition . Observe that the numerical data zj in match those in the
formula for D; 4(p,t) given in [33, Theorem 3.6]. Moreover, if 7y = [[;c5 arai+g is a radical
subword of [ [, A; WkOk+g, then the numerical datum y%) matches the numerical datum ygj )
of [33, Theorem 3.6]. In addition, we observe that the numerical data of Definition
satisfy the hypothesis of Proposition [3.11] Recalling from Example how to express the
weak order Igusa functions of [33] Definition 2.9] in terms of the generalized Igusa functions
of Definition above, we find that Proposition indeed implies (5.2]).

Remark 5.10. Observe that h = fo2. Thus we can view L = f32(91) x -+ X f22(O,4) and
obtain an expression for (;'°(s) by specializing the analysis of Section This expression is
not obviously equal to the one obtained above by considering L = g11(O1) x -+ x g1,1(Dy)
and using the approach of Section or to that of [33, Theorem 3.6]. To verify the equality
directly, one has to prove identities between generalized Igusa functions that depend on the
numerical data, in the style of Proposition [3.11] We leave this as an exercise for the reader.

5.4. The higher Heisenberg Lie rings. Let d € N. The higher Heisenberg Lie ring hy
consists of d copies of the Heisenberg Lie ring §, amalgamated over their centres; in particular
h1 = bh. More precisely, by is spanned over Z by 2d + 1 elements z1,...,zq,Y1,--.,Yd, 2, with
the relations [z;,y;] = z for all i € [d]; all other pairs of generators commute. Let

L =ba,(O1) x -+ x by, (D),

where (di,...,dy) € N9 and each ©; is a finite, not necessarily unramified extension of 0. In
the caseof dy = --- =djand o = Oy = --- = O, = Zj, the zeta function (;'°(s) was computed
by Bauer in his unpublished M.Sc. thesis [I] by adapting the methods of [33]. Observe that

(5.4) L~ 0" xoh ><~-><Dggngg=5f)1><---><531><-~~><Dg><--~><Dg.
—_—

—_—

2d; copies 2dg copies
Set S; = Z§‘=1 2d;. We have naturally expressed L as a pg)duct of S, submodules, giving rise
to projections my,...,mg, as in Section where 7, : L — ; when S;_1 < k < S;. Let

A < L be an o-sublattice, and let v(A) = (V(l), . .,V(Sg)) be the corresponding projection
data with respect to (b.4)); each of these S, partitions has only one part. Note that L' = Z(L)
has rank ¢ = Zle e; fi as an o-module.

Lemma 5.11. Let A < L be an o-sublattice. The o-elementary divisor type A(A) of the

commutator [A, L] < L' is obtained from the following multiset with ¢ elements:

9
H {min{zési_lﬂ), V%Si_lw), . ,Vgsi)}ei,fi} .
i=1
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Proof. Let (azgi), e ,x&i_),ygi), e yt(;_), z(i)) be the natural basis of hg, (9;) as an O;-module. Let

3

the decomposition (5.4]) be such that, for every k € [d;], the images of 7g, ,+x and Tg, | 14, +k

are Dix,(j) and Diy,(f), respectively. If II; € O; is a uniformizer, then it is clear that, for all
i€ [g] and all k € [d;],

(Sij—1+9;+k)

[A, Dlx,(;)] = 1__[2-”1 DZZ(Z)
. (Si—1+k) )
[A, 0,40 = I 0,20
The claim follows. O

It is immediate from the previous lemma that Hypothesis is satisfied if all the extensions
©;/0 are unramified. In this case, we set Z = >Y_, f; and take the collection él, cees éz to
consist of f; copies of the pair ([S;—1 + 1,5;],(1,1,...,1)) for every i € [g]. The following is
then given by Lemma

Lemma 5.12. Let v = l_[fil ap* € Cy. Then L(v) =37, (Hfi:si_lﬂ ak> fi-

An explicit expression for (7' °(s) can now be obtained from Theorem m
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