

UNIVERSIDADE DA BEIRA INTERIOR

ANALYSIS OF ORGANOPHOSPHOROUS PESTICIDES IN

POSTMORTEM BIOLOGICAL FLUIDS

RAQUEL HELENA CARVALHO SILVA RAPOSO

Covilhã, 2009

UNIVERSIDADE DA BEIRA INTERIOR

ANALYSIS OF ORGANOPHOSPHOROUS PESTICIDES IN

POSTMORTEM BIOLOGICAL FLUIDS

Dissertação apresentada à Universidade da Beira Interior para a obtenção do Grau de Mestre em Bioquímica

RAQUEL HELENA CARVALHO SILVA RAPOSO

Covilhã, 2009

Trabalho elaborado sob a supervisão e orientação científica do Mestre Mário João Dias, Director do Serviço de Toxicolgia Forense da Delegação Sul do Instituto Nacional de Medicina Legal e da Prof. Doutora María Eugenia Gallardo Alba, Faculdade de Ciências da Saúde da Universidade da Beira Interior

TABLE OF CONTENTS

Lis	st of F	Figur	es	VI
Lis	st of T	Table	S	. VIII
Ał	obrevi	iatior	าร	X
Ał	ostrac	t		1 -
Re	sumc)		3 -
Ju	stifica	ntion	and Objectives	5 -
I -	Litera	ature	Review	6 -
1.	Inti	rodu	ction	7 -
2.	Cla	ssific	cation and Categorization	8 -
3.	Org	ganoj	phosphorous Pesticides	9 -
	3.1.	Stru	acture	9 -
	3.2.	Phy	vsical-Chemical Properties	- 10 -
3.3. Mechanism of Toxic Action				13
3.4. Toxicokinetics				15
	3.4.	.1.	Absorption	15
	3.4.	.2.	Distribution, Metabolism and Excretion	16
	3.5.	Тох	ic Doses and Symptoms	17
	3.6.	Тох	ic Doses and Treatment	18
	3.7.	Etic	ology of Pesticide Intoxications	19
	3.8.	Into	oxication casuistic in the south region of Portugal	20
4.	Leg	gal Ba	ackground of Pesticide Usage and Management in Portugal	21
	4.1.	Eur	opean Legislation	22
	4.2.	Por	tuguese Legislation	23
	4.2.	.1.	Market Introduction	23
	4.2.	.2.	Maximum Residue Levels	27
	4.2.	.3.	Classification, Labeling and Packaging	28
	4.2.	.4.	Seeds treated with plant protection products	28
	4.2.	.5.	Conditions of commercialization and application of plant protection products	29

5. Me	5. Methodology for the determination of pesticides					
II– Expe	erimental	49				
1. Ins	trumentation	50				
1.1.	Extraction system	50				
1.2.	Chromatographic and Detection Systems	50				
2. Ma	terial	51				
2.1.	Reagents and Solvents	51				
2.2.	Standards	51				
2.3.	Biological Samples	51				
2.4.	Working Solutions	52				
2.5.	Buffer Solutions	52				
3. Ch	3. Chromatographic and detection conditions53					
4. Ext	raction procedure	54				
5. Res	sults and Discussion	55				
5.1.	Identification of Compounds	55				
5.2.	Optimization of the Extraction procedure	56				
6. Val	lidation	60				
6.1.	Selectivity	60				
6.2.	Linearity	65				
6.3.	Calibration Curves	74				
6.4.	Limits of detection and quantification	75				
6.5.	Intermediate Precision	77				
6.6.	Repeatability or Intraday Precision	78				
III – Co	III - Conclusions					
IV - Ref	ferences					

LIST OF FIGURES

Figure 1 – Structural formula of organophosphorous pesticides. (Casarett, et al, 2001)	10 -
Figure 2 - Location and Function of Cholinergic Receptors in the Nervous System. (Purves et al, 2	2004)13
Figure 3 - Symptoms of organophophorus pescitides toxicity. (Abou-Donia, 1992)	18
Figure 4 - INML statistics of pesticide intoxications between 2003 and 2006.	20
Figure 5 - Detailed statistics of organophosphorous casuistic	21
Figure 6 – Chromatographic conditions	54
Figure 7 - Selectivity omethoate (blank sample).	62
Figure 8 - Selectivity omethoate (spiked sample)	62
Figure 9 - Selectivity diazinon (blank sample)	62
Figure 10- Selectivity diazinon (spiked sample)	62
Figure 11 - Selectivity dimethoate (blank sample).	63
Figure 12 - Selectivity dimethoate (spiked sample).	63
Figure 13 - Selectivity chlorpyrifos (blank sample)	63
Figure 14 - Selectivity chlorpyrifos (spiked sample)	63
Figure 15 - Selectivity chlorfenvinphos (blank sample).	63
Figure 16 - Selectivity chlorfenvinphos (spiked sample).	63
Figure 17 - Selectivity parathion (blank sample)	63
Figure 18 - Selectivity parathion (spiked sample)	63
Figure 19 - Selectivity azinphos (blank sample)	64
Figure 20 - Selectivity azinphos (spiked sample).	64
Figure 21 - Selectivity quinalphos (blank sample)	64
Figure 22 - Selectivity quinalphos (spiked sample).	64
Figure 23 - Omethoate Non-Linear Curve	66
Figure 24 - Dimethoate Linear Curve	67

Figure 25 - Diazinon Linear Curve	68
Figure 26 - Chlorpyrifos Linear Curve	69
Figure 27 - Parathion Linear Curve	70
Figure 28 - Chlorfenvinphos Linear Curve	71
Figure 29 - Quinalphos Linear curve	72
Figure 30 - Azinphos Linear Curve	73

LIST OF TABLES

Table 1 - Different types of pesticide classification (chemical structure, toxicity, organism of action, mode
of action). (Marrs and Ballantyne, 2004)8 -
Table 2 - Illustrating some of the more useful physico-chemical properties of the OP. (IUPAC
FOOTPRINT Pesticide Properties Database - 2009)11
Table 3 – Pesticides' toxic doses (LD50) and WHO classification. Values of LD50 are related to oral
ingestion. (Mars and Ballantyne, 2004, IUPAC, 2009)17
Table 4 - European Legislation of plant protection products usage and management. 22
Table 5 - Portuguese Legislation of market introduction of plant protection products. (Gallard, 2005;
Diario daRepublica (DRE); V lex; Apambiente; BDJUR; dgadr;APN)23
Table 6 - Portuguese Legislation of maximum residue levels of plant protection products. (Gallardo, 2005;
Diario da Republica (DRE); V lex; Apambiente; BDJUR; dgadr;APN)27
Table 7 - Portuguese Legislation of classification, labeling and packaging of plant protection products.
(Gallardo, 2005; Diario da Republica (DRE); V lex; Apambiente; BDJUR; dgadr;APN)28
Table 8 - Portuguese Legislation of management of seeds dealt with plant protection products. (Gallardo,
2005; Diario da Republica (DRE); V lex; Apambiente; BDJUR; dgadr;APN)
Table 9 - Portuguese Legislation in relation to conditions of commercialization and application of plant
protection products. (Gallard, 2005; Diario da Republica (DRE); V lex; Apambiente; BDJUR;
dgadr;APN)29
Table 10 - Table of methods used to determine pesticides over the last 10 years
Table 11 – Individual retention times and selected ions of the studied pesticides
Table 12 - Comparison between the extractions cartridges HLB and MAX. 57
Table 13 - Buffer solutions tested
Table 14 - Elution solutions tested and respective volume
Table 15 - Tolerance margin of each relative peak area and retention times

Table 16 - Omethoate regression table	66
Table 17- Dimethoate regression table	67
Table 18 – Diazinon regression table	68
Table 19 - Chlorpyrifos regression table	69
Table 20 - Parathion regression table	70
Table 21- Chlorfenvinphos regression table	71
Table 22 - Quinalphos regression table	72
Table 23 - Azinphos regression table	73
Table 24 - Repeatability concentration data	74
Table 25 - Calibration curve concentration data	74
Table 26 - Calibration data	76
Table 27 - Quality controls average values	78
Table 28 - Repeatability data	79

ABBREVIATIONS

- 1-NAP 1-(dimethylamino) ethyl phenol
- 3-Me-PNP 3-methyl-4-nitrophenol
- 3-PBA 3-phenoxybenzoic acid
- ACh Acetylcholine
- AChE Acetylcholinesterase
- ADHP 2-amino-5,6-dimethyl-4-hydroxypyrimidine
- AM Atrazine mercapturate
- AP Acephate
- Br2CA cis-3-(2,2-dibromo-vinyl)-2,2-dimethyl-cyclopropane carboxylic acid
- BRP Naled
- BTA 1,2,3-benzotriazine-4-one
- BuChE Butyrylcholinesterase
- C.V. Coefficient of variation
- CGC Capillary Gas Chromatography
- CIT 5-chloro-1,2-dihydro-1-isopropyl-(3H)-1,2,4-triazol-3-one
- CMHC 3-chloro-4-methyl-7-hydroxycoumarin
- CNS Central Nervous System
- CVMP tetrachlorvinphos
- CW CarbowaxTM
- DAT Dialkylphosphate
- DCA Malathion dicarboxylic acids

DCM - Dichloromethane

- DDE Dichlorodiphenyldichloroethylene
- DDT Dichlorodiphenyltrichloroethane
- DDVP 2,2-dichlorovinyl dimethyl (Dichlorvos)
- DEAMPY 2-diethylamino-6-methyl pyrimidin-4-ol
- DEDTP O,O-Diethyldithiophosfate
- DEP O,O-Diethyl phosphate
- DEP O,O-Diethylphosfate
- DETP O,O-Diethylthiophosphate
- DMDTP O,O-Dimethyldithiophosfate
- DMP O,O-Dimethyl Phosphate
- DMTP O,O-Dimethyl thiophosphate
- DVB Divinylbenzene
- EBDC Ethylene-bis-dithiocarbamate
- EC European Communities
- EDDP Edifenphos
- EI-MS Electron Ionization Mass Spectrometry
- ENP 1, 1-bis-p-ethoxyphenyl)-2-nitropropane
- EPN Ethyl p-nitrophenyl thionobenzenephosphonate
- ETU Ethylenethiourea
- FAO Food and Agriculture Organization
- FDA U.S. Food and Drug Administration
- F-PBA 4-fluoro-3-phenoxy-benzoic acid
- GA Ethyl-dimethylamidocyanophosphate (Tabun)

- GABA Gamma-aminobutyric acid
- GB Isopropyl methylphosphonofluoridate (Sarin)
- GC Gas Chromatography
- GD Pinacolyl methylphosphonofluoridate (Soman)
- HCB Hexachlorobenzene
- HCH- Hexachlorocyclohexane
- HCOOH Methanoic acid
- HPLC High Performance Liquid Chromatography
- IMPY 2,3-dihydro-1H-imidazo (1,2-b)pyrazole
- IS Internal Standard
- IUPAC International Union of Pure and Applied Chemistry
- LD50 Median lethal dose
- LLE Liquid liquid extraction
- LLOQ Lower Limit of Quantification
- LOD Limit of Detection
- LOQ Limit of Quantification
- MCA Malathion monocarboxylic acids
- MCPA 2-methyl-4-chlorophenoxyacetic acid
- MDHP 2-methylamino-5,6-dimethyl-4-hydroxypyrimidine
- MeOH Methanol
- MEP Fenitrothion
- METH Methamidophos
- MIP Molecular Imprinted Polymer
- MMP Methamidophos

MPP - Fenthion

- MS Mass Spectrometry
- MS/MS Tandem Mass Spectrometry
- OCP Organochlorine pesticides

OMS - WHO

- OP Organophosphorous pesticides
- PAP phenthoate

PBB - Polybrominated biphenyl

PBDE - Polybrominated diphenyl ethers

PCB - Polychlorinated biphenyls

PCDD - Polychlorinated dibenzo-p-dioxin

PCDFs - Polychlorinated dibenzofurans

PDMS - Polydimethylsiloxane

PNP - 4-nitrophenol

SIM - Selected Ion Monitoring

SPE - Solid-Phase Extraction

SPME - Solid-phase microextraction

TCP orTCPy - 3,5,6-trichloro-2-pyridinol

TEPP - Tetraethyl pyrophosphate

ULOQ - Upper Limit of Quantification

UV - Ultra Violet

VX - O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate

WHO - World Health Organization

ABSTRACT

Following the intensification of agriculture and the promotion of agro-chemicals in low and middle income countries, acute pesticide poisoning has become a major public health problem with more than 300,000 deaths each year around the world.

The easy availability of highly toxic pesticides in the homes of farming communities has made pesticides a preferred choice for suicide with an extremely high case fatality. In fact, the World Health Organization (WHO) indicates that there may be 1 million serious unintentional poisonings each year and in addition 2 million people hospitalized for suicide attempts with pesticides.

The goal of this work was the detection and quantification of eight organophosphorous pesticides in blood samples using solid phase extraction and gas chromatography-mass spectrometry.

The studied analytes were omethoate, dimethoate, diazinon, chlorpyrifos, parathion, clorfenvinphos, quinalphos and azinphos. Ethion was used as internal standard (IS).

The analytes and IS were extracted by solid-phase extraction using Oasis[®] HLB extraction cartridges, and the extracts were analyzed by gas chromatography-electron ionisation-mass spectrometry (GC/EI-MS). Calibration curves were established using a weighed linear calibration model (except for omethoate, for which a power regression was used) between 0.05 and 25.00 µg/mL. The correlation coefficients were higher than 0.991. Precision (intraday and intermediate) and accuracy were in conformity with the criteria normally accepted in bioanalytical method validation. Limits of quantification were 50 ng/mL for all compounds, except for ometoathe, for which 100 ng/mL were obtained.

Because of its simplicity and speed, the proposed method can be applied in the determination of these compounds in post-mortem blood samples, and is suitable for application in toxicology routine analysis.

Resumo

Seguindo a intensificação da agricultura e da promoção de agro-químicos em países de baixo e médio rendimento, o envenenamento agudo por pesticidas tem vindo a tornar-se um grande problema de saúde pública com mais de 300 000 mortes por ano a nível global.

O fácil acesso a pesticidas altamente tóxicos tornou-os numa escolha de eleição para o suicídio, com uma casuística de intoxicação extremamente elevada.

De facto, a Organização Mundial de Saúde (OMS) indica que é possível que haja um milhão de envenenamentos acidentais graves todos os anos e ainda dois milhões de pessoas hospitalizadas por tentativas de suicído com pesticidas.

O objectivo deste trabalho foi a detecção e quantificação de oito pesticidas organofosforados (OP) em amostras de sangue usando extracção em fase sólida e a cromatografia gasosaespectrometria de massa.

Os analitos estudados foram o ometoato, o dimetoato, o diazinão, o clorpirifos, o paratião, o clorfenvinfos, o quinalfos e o azinfos. O Etião foi usado como padrão interno.

Os analitos e PI foram extraídos por extracção em fase sólida usando as colunas de extracção Oasis® HLB, e os extractos foram analisados através de cromatografia gasosa com ionização de electrões em espectrometria de massa (GC/EI-MS). As curvas de calibração foram estabelecidas usando um modelo de calibração linear ponderado (excepto para o ometoato, para o qual foi usada uma regressão em potência) entre 0,05 e 25.00 µg/mL. Os coeficientes de correlação foram superiores a 0,991. Os valores de precisão (intradia e intermédia) e exactidão estão de acordo com os critérios normalmente aceites em validação de métodos bioanalíticos. Os limites de quantificação foram de 50 ng/mL, excepto para o ometoato em que os limites foram de 100 ng/mL.

Devido à sua simplicidade e rapidez, o método proposto pode ser aplicado na determinação destes compostos em amostras de sangue post-mortem, e é apropriado para aplicação em análises de rotina de toxicologia.

JUSTIFICATION AND OBJECTIVES

Although pesticides have always been the preferred method for suicidal purposes in agricultural areas, they do not represent a high social impact group which requires immediate by any laboratory of toxicological service. However, it is important not to ignore the fact that such group exists, and therefore it may be necessary to determine these compounds precise and accurately. Advantages in determining these compounds reside on the fact that they are not produced endogenously. For such reason, any detected quantity derives, undoubtedly, from an exogenous toxic source, unlike it happens with other chemical groups. The objective of this was the detailed study of a representative group of the most common pesticides in intoxication cases in Portugal, and also in the development and validation of an analytical methodology according to the international and laboratory guidelines of the hosting institution, the Laboratory of Forensic Toxicology, South Branch, National Institute of Legal Medicine.

Organophosphorous pesticide intoxication occurs either by accidental exposure, usually related to the workplace environment, deliberated ingestion in suicidal cases, or even homicides (which are rare events, due to the intense flavor and scent of these compounds).

In emergency rooms, high mortality of the intoxication cases appears as a result of a delayed or even wrong diagnosis. The scarce knowledge of these compounds' metabolism increases the probability of not only delayed or wrong diagnosis, but also misinterpretation of cause of death. For these reasons, fast precise and accurate analytical methods are needed for the detection of organophosphorous insecticides in biological matrices, enabling the correct diagnosis of intoxication and application of maintenance measures.

I - LITERATURE REVIEW

1. INTRODUCTION

The word pesticide has fallen into the quotidian life with great ease brought, though, by the press in a rather infamously way. In general knowledge of population most define pesticide as a substance or mixture that can kill a pest, being the later defined as any threat posed by animals, bacteria, fungi, insects, etc, that endangers the growth or production of a certain agricultural product. The infamous reputation of pesticides comes from its widespread use in the past, when unintended targets, such as human life, were also affected.

A pesticide is by definition "any substance or mixture of substances intended for preventing, destroying or controlling pests, including vectors of human or animal disease, unwanted species of plants or animals causing harm during (or otherwise interfering) the production, processing, storage, transport or marketing of food, agricultural commodities, wood and wood products or animal feedstuffs; or substances which may be administered to animals for the control of insects, arachnids or other pests in or on their bodies. The term includes substances intended for use as a plant growth regulator, defoliant, desiccant or agent for thinning fruit or preventing the premature fall of fruit, and substances applied to crops either before or after harvest to protect the commodity from deterioration during storage and transport." (FAO, 2002). Therefore, it includes a wide variety of substances from simple minerals to more complex synthetic substances or mixtures.

The earliest evidence found was in Homer's literature, implying the use of sulfur in China 1000 B.C. as a fumigant. Subsequently, in the 19th century in Europe similar compounds were used as fungicides. But it wasn't until the 1930s that the so-called "pesticide revolution" began, giving birth to first synthetic pesticides. It is not a coincidence that the previous and, more importantly, the following years were of warfare (World Wars I and II). Whereas the unraveling of more

effective pesticide compounds brought on a shadier side pesticide's history, for some of their offspring were the infamous Tabun (GA - ethyl dimethylamidocyanophosphate), Sarin (GB - isopropyl methylphosphonofluoridate), Soman (GD - pinacolyl methylphosphonofluoridate), VX (o-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate) and TEPP (tetraethyl pyrophosphate). Further researches lead to an increased specificity in intended targets, and with so the birth of pioneer pesticides of modern ages. (Marrs and Ballantyne, 2004; Casarett, et al, 2001).

2. CLASSIFICATION AND CATEGORIZATION

The pesticides can be classified and categorized according to the following: chemical structure, target organism in which their action is most effective, mode of action, toxicity, or even a combination of these. This diversity in the classification is due to the different needs in pesticide classification e.g. for the scientific community the chemical structure gives a better insight of the compound's chemical behavior, and therefore is preferred; however, with commercial purposes, the categorization according to toxicity and targeted organisms is preferable, due to the need to adjust the pesticide to the crops. Table 1 illustrates different categorization types as well as pesticide toxicity (WHO, 2004).

Table 1 - Different types of pesticide classification (chemical structure, toxicity, organism of action, mode of action). (Marrs and Ballantyne, 2004).

CHEMICAL STRUCTURE	Toxicity (WHO)	ORGANISM OF ACTION	MODE OF ACTION	
Organophosphorous	Ia - Extremely hazardous	Herbicide	Anticholinesterase	
Örganochlorine	Ib - Highly hazardous	Fungicide	GABA blocker	
Carbamates	II - Moderately hazardous	Insecticide	Chitin synthesis inhibitor	
Pyrethoids	III - Slightly hazardous	Roedenticide	Anticoagulant	
Bipyridyls		Acaricide	Glutamine synthetase inhibitor	
Organometallics		Nematicide	RNA-polymerase inhibitor	
Phenols	1 1 1	Molluscicide	Ecdysone agonist	
Morpholines	1 1 1		Juvenile hormone analogues	
Phenoxy	1		Steroid demethylation inhibitor	
Azoles	1		Protoporphyrinogen oxidase inhibitor	
Ureas/thioureas	1		Thiol reactant	
Anilines	1		Protein synthesis inhibitor	
Chloropitrilo			Photosynthetic electron transport	
Cinoronitrile			inhibitor	
Chloroalkylthiols			Mitochondrial respiration inhibitor	

3. Organophosphorous Pesticides

3.1. STRUCTURE

Organophosphorous pesticides are, as the name implies, compounds containing an organic carbon bonded with phosphorus. This bond can be direct or indirect, and depends on the location of the phosphorus element within the molecule, which can vary greatly. The vast numbers of different organophosphorous pesticides within the family is brought by the diversity of possible groups of the radicals X/Y and Z (Figure 1), and these originate different physical-chemical properties. (INCHEM, 1999; Casarett, et al, 2001).

Figure 1 - Structural formula of organophosphorous pesticides. (Casarett, et al, 2001)

3.2. PHYSICAL-CHEMICAL PROPERTIES

Most organophosphorous, have very low solubility in water thus conferring them hydrophobic characteristics granting them higher affinity for organic solvents (e.g. parathion-ethyl nearly insoluble in water, though readily soluble in a vast variety of organic solvents such as alcohols, ethers, esters, ketones and aromatic hydrocarbons (INCHEM, 1999)). The majority of these compounds also possess low vapor pressure, which enhances highly their evaporation at room temperature. Most of organophosphorous can also be hydrolyzed, originating hydrophilic compounds (Gallardo, 2005; INCHEM, 1999; Casarett, et al, 2001). Table 2 resumes the physicochemical properties of the compounds studied.

Organophophorous Pesticide	CHEMICAL STRUCTURE	Molecular Weight (g/mol)	Solubility in water at 20°C (mg/L)	VAPOUR PRESSURE AT 25°C (MPa)	Melting Point (°C)	BOILING POINT (°C)	рКа
Omethoate		213.2	10000	3.3	-28	135	-
Dimethoate		229.26	39800	0.247	50.5	Decomposes before boiling	-
Diazinon	CH_3 CH_3 CH_2 CH_2 CH_2 CH_2 CH_3 CH_2 CH_2 CH_3 CH_2 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_2 CH_3	304.35	60	11.97	Not applicable	Decomposes before boiling	2.6
Chlorfenvinphos		359.6	145	0.53	-20	167	-
Chlorpyrifos	$CI \xrightarrow{S} O - CH_2 - CH_3$ $CI \xrightarrow{CI} O - CH_2 - CH_3$ $CI \xrightarrow{CI} O - CH_2 - CH_3$	350.89	1.05	1.43	41.5	Decomposes before boiling	-
Parathion-ethyl	H ₃ C NO ₂ NO ₂ H ₃ C	291.26	12.4	0.89	6.1	-	-

Table 2 - Illustrating some of the more useful physico-chemical properties of the OP. (IUPAC FOOTPRINT Pesticide Properties Database - 2009)

Organophophorous Pesticide	CHEMICAL STRUCTURE	Molecular Weight (g/mol)	SOLUBILITY IN WATER AT 20°C (mg/L)	VAPOUR PRESSURE AT 25°C (MPa)	Melting Point (°C)	BOILING POINT (°C)	рКа
Quinalphos		298.3	17.8	0.346	31.5	-	-
Azinphos-ethyl		345.38	4.5	0.32	50	111	-
Ethion	$CH_3 - CH_2 - O$ $S - CH_2 - S$ $O - CH_2 - CH_3$ $CH_3 - CH_2 - O$ $S - CH_2 - S$ $O - CH_2 - CH_3$ $CH_3 - CH_2 - O$ S	384.48	2	0.2	-12	165	-

3.3. MECHANISM OF TOXIC ACTION

Organophosphorous pesticides are also known as acetylcholinesterase (AChE) agents. Their main mechanism of toxic action is through the inhibition of the enzyme acetylcholinesterase, which is the enzyme responsible for terminating the biological activity of the neurotransmitter acetylcholine (ACh). This enzyme is localized in the pre and postsynaptic membranes of cholinergic neurons, but it's also found in erythrocytes. Acetylcholine is released from the presynaptic membrane to the synaptic cleft after stimulation, activating the receptors at the postsynaptic membrane; ACh is then degraded by stopping the activation of the receptors. Organophosphorous insecticides act by inhibition of the AChE, leading to a saturation of ACh in the synaptic cleft and an overstimulation of the receptors. At first, involuntary muscle contraction occurs, and this is followed by desensitization (and thus paralysis) if the inhibition persists. The effects of this inhibition through the body are related to the location of ACh receptors (Gallardo, 2005; Widmaier et al, 2006; Siegel, et al, 1998; Purves et al, 2004), which is summarized in Figure 2.

Figure 2 - Location and Function of Cholinergic Receptors in the Nervous System. (Purves et al, 2004)

Organophosphorous insecticides bind so strongly to AChE that the inhibition is considered irreversible, impairing the enzymes for long periods of time, around 20 or 30 days until new AChE is synthetized tocompensate for the excess of ACh accumulated throughout the body. Though AChE is not the only enzyme capable of degrading acetylcholine, it is truly the one with higher affinity for this neurotransmitter, and more widespread throughout the body. For instance, butyrylcholinesterase (BuChE) can partially compensate the absence of AChE though it has lower affinity for acetylcholine, and thus limited in its capacity for its degradation. Therefore, these enzymes are called pseudocholinesterases. These are also affected by the organophosphorous pesticides, however to a lesser extent; Due to its location in the body (liver and plasma) it is highly unlikely that this enzyme can replace effectively the activity of the AChE (Casarett, et al, 2001, Gallard, 2005).

There are two subtypes of ACh receptors: muscarinic (from the toxin extracted of the *Amanita muscaria*) and nicotinic (from nicotine). On one hand, nicotinic receptors are ionotropic, which produce sudden changes in membrane potentials causing a fast depolarization, resulting in a rapid response but usually of low endurance. Muscarinic receptors are, on the other hand, metabotropic, usually associated with G proteins; this requires intermediate activation, which slightly slows the process of depolarization but increases its persistence. The differences in between these receptors will influence the wide variety of symptoms observed and the treatment of the intoxication, which will be addressed later (Gallardo, 2005, Widmaier, et al, 2006, Siegel, et al, 1998, Purves, et al, 2004).

Muscarinic receptors are distributed in different regions of brain (hippocampus, cerebral cortex, cerebellum, brainstem, striatum, central nervous system), sympathetic and parasympathetic systems (effector tissues, innervating many glands and organs), visceral smooth muscle, cardiac

muscle, secretory glands and endothelium cells (Widmaier et al, 2006; Siegel, et al, 1998; Purves et al, 2004).

Nicotinic receptors are distributed in peripheral ganlia, skeletal muscle, reward pathways of the brain, sympathetic and parasympathetic ganglia, adrenal glands, central nervous system and renshaw cells (Widmaier et al, 2006; Siegel, et al, 1998; Purves et al, 2004).

3.4. TOXICOKINETICS

3.4.1. Absorption

As already stated, most of the organophosphorous pesticides are lipophillic, and therefore can be easily absorbed through the majority the entrance routes in the organism (dermal, respiratory and digestive). Since the typical form of application of pesticides is spraying, the main route of entrance will be the respiratory tract, due to the high blood irrigation of the lungs and associated regions. Dermal absorption is, perhaps, the slowest way of entrance in the body, and this depends on a variety of factors that might increase its rate. These factors are the lipophilic character, the physical state of the compound, the solvent in which it is diluted and even the region of the body it is absorbed. (Vale, 1998)

It should be noted, however, that since most OP intoxications are of suicidal nature, the OPs enter the body by ingestion. Therefore, oral and digestive absorption assume high relevance. In these cases, also due to the high irrigation of these areas and lipophilic character of OPs, these are easily absorbed to the blood stream.

3.4.2. DISTRIBUTION, METABOLISM AND EXCRETION

After absorption, organophosphorous insecticides accumulate in the body fat, liver, kidneys and saliva. The lipophilic character of the compound will determine its higher or lower storage rate in fat; furthermore, its storage depends on the whether or not biological activation is needed. Biotransformation of these insecticides occurs mainly at the cytochrome P450. Nevertheless, other systems exist that possess identical ability and outcome; those are flavincontaining mono-oxygenase enzymes, N-oxidation and S-oxidation. Not in all cases the transformation in the cytochrome P450 leads to the activation of the biologically active compounds; indeed, in some cases this transformation facilitates the excretion of the compound. Some of these previously mentioned transformations are oxidative dealkylation and dearylation, ring hydrolation, thioether oxidation, deamination, alkyl and N-hydroxylation, Noxide formation and N-dealkylation. (Vale, 1998)

In the majority of cases, the cytochrome P450 biotransformation makes the compounds water soluble for urinary excretion, though some excretion also occurs in the feces and exhaled air, but to a much lesser extent, however. The window of detection of these compounds is variable due to the storage in fat tissue. (Vale, 1998)

3.5. TOXIC DOSES AND SYMPTOMS

The toxic doses of a given pesticide is intrinsically related to its toxicity. Table 3 displays the toxicity levels of the studied pesticides, according to their LD50 levels, according to the WHO categorization.

Table 3 – Pesticides' toxic doses (LD50) and WHO classification. Values of LD50 are related to oral ingestion. (Mars and Ballantyne, 2004, IUPAC, 2009)

Pesticides	LD50* (mg Kg ⁻¹) (RAT)	WHO CLASSIFICATION	CHEMICAL GROUP
Omethoate	64.6	Ib - Highly hazardous	Organophophorous
Dimethoate	245	II - Moderately hazardous	Organophophorous
Diazinon	1139	II - Moderately hazardous	Organophophorous
Chlorpyrifos	66	II - Moderately hazardous	Organophophorous
Parathion	2	Ia - Extremely hazardous	Organophophorous
Chlorfenvinphos	12	Ib - Highly hazardous	Organophophorous
Quinalphos	71	II - Moderately hazardous Organophopho	
Azinphos	12	Ib - Highly hazardous	Organophophorous

As mentioned above, the symptoms are consequence of the localization of ACh receptors and receptor type (Figure 3), and therefore these will be detailed accordingly. Due to their chemical structure, these insecticides are easily distributed throughout the body, presenting a broad spectrum of symptoms, all associated to the overstimulation and subsequent paralysis of cholinergic receptors.

Action Site	Signs and Symptoms
Central nervous system	Giddiness (a whirling, dizzy sensation), anxiety, CNS stimulation at low to moderate doses due to sparing of ACh from hydrolysis, depression at high doses, apathy, confusion, restlessness, headache, dizziness, anoxia, insomnia, ataxia, absence of reflexes, Cheyne-Stokes respiration, depression of respiratory and circulatory centers, electroencephalographic (EEG) changes, convulsion, and coma
Muscarinic receptor	
Sweat glands	Sweating
Salivation glands	Excessive salivation
Lacrimation glands	Lacrimation (tearing)
Pupils	Constricted pupils (pinpoint, miosis)
Ciliary body	Blurred vision
Bronchi	Wheezing and increased bronchial secretion, cough, pulmonary edema
Cardiovascular system	Bradycardia (slow heart beat), fall in blood pressure
Urinary bladder	Urinary incontinence
Gastrointestine	Abdominal pain, vomiting, diarrhea, fecal incontinence
Nicotinic receptors	
Neuromuscular junction	Fasciculations, cramps, weakness, muscle twitching, respiratory difficulty, tightness in chest tremor, paralysis, cyanosis, arrest
Sympathetic ganglia	Tachycardia, elevated blood pressure (since only few cholinergic synapses are present in the vasculature, they have no control over blood pressure and the predominant action is stimulation of the sympathetic ganglia, i.e., increased blood pressure)

Figure 3 - Symptoms of organophophorus pescitides toxicity. (Abou-Donia, 1992)

3.6. TOXIC DOSES AND TREATMENT

One of the most common treatments to cholinergic toxicity is the administration of atropine, a blocker of the ACh receptors (muscarinic receptors only, it is ineffective in the CNS and nicotinic receptors) which will help to reduce the repeated stimulation given by the excess of ACh on the synaptic cleft by the inhibition of AChE. Oximes, such as pralidoxime (2-PAM) and trimedoxime (TBM-4) are also administrated, supplementing the atropine treatment; this helps the reactivation of AChE inhibited by the insecticide, hydrolyzing the phosphorylated AChE (Abou-Donia, 1992).

Respiratory failure is a common aspect of the intoxication, and therefore measures are taken to aid the respiratory system, including clearing of the airways, giving oxygen and possibly artificial ventilation.

Other procedures are taken in order to prevent further intoxication, such as skin washing with water and alkaline soap to remove the compound from the skin and promote hydrolysis of the ester. Conventional treatment includes managing of symptoms, using diazepam, or other anticonvulsants, to prevent damage to the body during the convulsive phase (Abou-Donia, 1992).

3.7. ETIOLOGY OF PESTICIDE INTOXICATIONS

Etiology is by definition the study of cause, and the main causes of organophosphorous intoxication are:

- Accidental related, in its majority, to the occupational environment, usually agricultural, with little knowledge about the dangers of the pesticide under use, sometimes complete ignorance of the compound due to bad labeling, bad storage location/conditions, etc;
- Suicidal usually happens in rural areas, where there is an easy access to these compounds. Though due to little knowledge of the compound by the individual and prolonged death times which can last from 5 min to 24 h, ending up in a second suicidal attempt by hanging.

 Homicidal – these are one of the rarest, but not completely absent, cases. The compounds' organoleptic characteristics are extremely marked and can be easily detected by the victim. (Gallardo, 2005; INCHEM, 2009)

3.8. INTOXICATION CASUISTIC IN THE SOUTH REGION OF PORTUGAL

From 2003-2006, the National Institute of Legal Medicine, South Branch, on its delegated area, detected a total of 103 positive cases for pesticide poisoning. In most of these cases (86 in 103) an organophosphorous compound was involved, as shown in Figure 4.

Figure 4 - INML statistics of pesticide intoxications between 2003 and 2006.

More than 100 different compounds are included in the organophosphorous family, representing a wide variety of chemically active substances. However, these positive cases were caused mainly by 9 insecticides, as shown in Figure 5.

Figure 5 - Detailed statistics of organophosphorous casuistic

4. LEGAL BACKGROUND OF PESTICIDE USAGE AND MANAGEMENT IN PORTUGAL

Nowadays the political policy and environmental laws of pesticide usage and management in Portugal follow the European Union legislation and its directives, supporting the withdrawal from the market of those products that might be dangerous to the handling subjects, as well as to the consumers. In addition, all market entries of new products are controlled, as occurs with the residue levels in plant products. The national policies also protect the direct user by classifying pesticides, and regulating their labeling and packaging in order to avoid possible misusages. Table 4 to Table 9 resume the different legislations that exist concerning organophosphorous pesticides.

4.1. EUROPEAN LEGISLATION

European Union directives have been the source of harmonization of local policies and environmental laws throughout the European countries, and the backbone of the vast majority of law decrees in Portugal. Table 4 illustrates the importance of such directives.

EUROPEAN DIRECTIVES' CODE AND DATE	EUROPEAN DIRECTIVES' SUMMARY
Council Directive 67/548/EEC of 27th of June 1967	The approximation of laws, regulations and administrative provisions relating to the classification, packaging and labeling of dangerous substances
Council Directive 76/769/EEC of 27th of July 1976	On the approximation of the laws, regulations and administrative provisions of the Member States relating to restrictions on the marketing and use of certain dangerous substances and preparations
Directive 1999/45/EC of the European Parliament and of the Council of 31 th of May 1999	Concerning the approximation of the laws, regulations and administrative provisions of the Member States relating to the classification, packaging and labeling of dangerous preparations
Commission Directive 2001/60/EC of 7 th August 2001 – adapting the following	 Directive 1999/45/EC of the European Parliament and of the Council of 31th of May 1999 Commission Directive 98/98/EC Council Directive 67/548/EEC Directive 2000/33/EC Directive 1999/45/EC 2001/59/EC Directive 67/548/EEC
Council Directive 91/689/EEC 12th of December of 1991	On hazardous waste
Directive 2006/12/EC of the European Parliament and Council on the 5 th of April of 2006	Related to waste
Council Regulation (EEC) No 793/93 of 23th of March 1993	Evaluation and control of the risks of existing substances
Council Directive 79/409/EEC of 2 nd of April 1979	Natura 2000 - On the conservation of wild birds. Pesticide sensitive areas
Council Directive 92/43/EEC of 21 th of May 1992 – To complement Directive 79/409/EEC	Natura 2000 - on the conservation of natural habitats and of wild fauna and flora. Pesticide sensitive areas
Council Directive 98/24/EC of 7 th of April of 1998	On the protection of the health and safety of workers from the risks related to chemical agents at work (fourteenth individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC)
Directive 2004/37/EC of the European Parliament and Council 29 th of April 2004	On the protection of workers from the risks related to exposure to carcinogens or mutagens at work (Sixth individual Directive within the meaning of Article 16(1) of Council Directive 89/391/EEC)

Table 4 - European Legislation of plant protection products usage and management.

Council Directive 89/391/EEC of 12th of June 1989	On the introduction of measures to encourage improvements in the safety and health of workers at	
	work	
Directive 2006/42/EC of the European Parliament and	On machinery, and amending Directive 95/16/EC	
Council on the 17 th of May of 2006	(recast)	
European Parliament and Council Directive 95/16/EC of	On the approximation of the laws of the Member States	
29th June 1995	relating to lifts	

4.2. PORTUGUESE LEGISLATION

4.2.1. MARKET INTRODUCTION

Market entry of new pesticide formulae, or withdrawal of a determined pesticide, are

discriminated in Table 5.

Table 5 - Portuguese Legislation of market introduction of plant protection products. (Gallard, 2005; Diario daRepublica (DRE); V | lex; Apambiente; BDJUR; dgadr;APN)

I ECISI ATION'S CODE AND DATE	STIMMADY	TYPE OF
LEGISLATION 5 CODE AND DATE	JUMMARI	LEGISLATION
Decree-Law No. 94/98, of the 15th of April. D.R. No. 88, Series I-A	Adopts the technical standards of performance for the placing of plant protection products on the market	National Legislation - Decree-Law
Decree-Law No 341/98 of the 4th of November. D.R. No. 255, Series I-A	Establishes the uniform principles related to the evaluation and authorization of plant protection products and their placement on the market.	National Legislation - Decree-Law
Decree-Law No 284/94 of the 11th of November. D.R. No. 261, Series I-A	Transposing into national law Directive No. 91/414/EEC of the Council of the 15th of July concerning the placing of plant protection products on the market	National Legislation - Decree-Law
Decree-Law No 101/2002 of the 12th of April. D.R. No. 86, Series I-A	Making the inclusion of nine active substances in the Annex I to Decree-Law n. ° 94/98, of April 15th, adopting technical implementing standards for the placement of plant protection products on the market, by transposing the Directives No 2001/21 / EC and 2001/87/EC, of the Commission, 5 March and 12 October respectively.	National Legislation - Decree-Law
Decree-Law No 121/2002 of the 3rd of May. D.R. No. 102, Series I-A	Establishes the legal regime on the marketing of biocidal products, transposing Directive No. 98/8/EC of the European Parliament and the Council of the 16th of February.	National Legislation - Decree-Law
Decree-Law No 131/97 of the 30th of May 1997	It attributes to the Direcção-Geral de Protecção das Culturas the power to grant permits for the sale of pesticides in processed wood preservatives.	National Legislation - Decree-Law
Decree-Law n.º 72-H/2003, of the 14th of April of 2003	Transposing into national law the Directive No 2001/103/EC, 2002/18/EC, 2002/37/EC, 2002/48/EC, 2002/64/EC and 2002/81/EC, all of the Commission, respectively of the 28th of November, 22nd of February, 3rd of May, 30th of May, 15th of July and 10th of October, for the inclusion of various substances in the Community Positive List. Amending the	National Legislation - Decree-Law
	Decree-Law No 94/98 of the 15th of April, that approved the	
---	--	---------------
	standard norms for the implementation, relative to of	
	applicable regimen, of plant protection products.	
Decree I and p^{0} 22/2001 of the 30th of		National
Japuary of 2001	N/A	Legislation -
January of 2001		Decree-Law
	The present diploma transposes the Directives No	
	2000/80/CE, of the Commission, of the 4th of December, and	National
Decree-Law nº 238/2001 of the 30th	2001/28/CE, of the Commission, of the 20th of April, thus	Legislation -
of August of 2001	determining the substitution of Annex I of the Decree-Law	Decree-Law
	No. 94/98, of the 15th of April, for the annex of the present	
	1 - The present diploma transposes for the internal	
	jurisprudence the Directivas No 2001/47/CE and	
	2001/49/CE of the Commission respectively of the 25th and	
	28th of June, for the inclusion of Paecilomyces fumosoroseus	
	active substances (of the strain Apopka 97, PFR 97 or CG 170,	
Decree-Law n.º 28/2002 of the 14th	ATCC20874), afterwards named Paecilomyces fumosoroseus,	National
of February de 2002	and DPX KE 459 (flupyrsulfuron-methyl), afterward named	Legislation -
	flupyrsulfuron-methyl, in the Community Positive List.	Decree-Law
	2 - In Annex I of Decree-Law No. 94/98 of April 15th, as last	
	amended by Decree-Law No 238/2001 of the 30th of August,	
	are added No. 18 and 19, in the terms of the annex to the	
	Transposes for the internal jurisprudence the Directive No.	
	2001/36/CF of the Commission of the 16th of May	National
Decree-Law n.º 160/2002, of the 9th	introducing changes to annexes II and III of the Decree-Law	Legislation -
of July of 2002	No. 94/98, of the 15th of April, for the placement of plant	Decree-Law
	protection products on the market.	
	Proceeds to the inclusion of two active substances in the	
	Annex I to the Decree-Law No 94/98, of the 15th of April,	National
Decree-Law n.º 198/2002, of the 25th	that adopts standard norms of implementation referring to	Legislation -
of September of 2002	the placement of plant protection products on the market,	Decree-Law
	transposing Directive No. 2001/99 / EC, of the Commission,	
	Transposes for the national jurisprudence the Directive No.	
	2003/23/CE, of the Commission, of the 25th of March, for the	
Decree-Law n.º 215/2003, of the 18th	inclusion of active substances imazamox, oxasulfuron,	National
of September of 2003	etoxisulfuron, foramsulfuron, oxadiargyl and ciazofamide in	Legislation -
1	the Community Positive List, modifying the Decree-Law No	Decree-Law
	94/98, of the 15th of April.	
	Transposes for the national jurisprudence the Directive No.	
	2003/82/CE, of the Commission, of the 11th of September,	
Decree Level 9 22 (2004 of the 22th	that modifies the Directive No. 91/414/CEE, of the Council,	National
Decree-Law n.º 22/2004, of the 22th	regarding the phrases type related to the special risks and to	Legislation -
of January of 2004	protection products adding the Approves V and VI of Decree	Decree-Law
	Law No 94/98 of the 15th April concerning the placement of	
	plant protection products on the market.	
	Transposes for the national jurisprudence the Directives No.	
	2003/5/CE, 2003/31/CE, 2003/68/CE, 2003/79/CE and	
Decree I and $p^{0} 30/2004$ of the 27th	2003/84/CE, of the Commission, of the 10th of January, 11th	National
of February of 2004	of April, 11th of July, 13th of August and 25th of September	Legislation -
011001uury 01200 1	respectively, concerning the inclusion of active substances	Decree-Law
	deltamethrin, 2,4-DB, beta-cyfluthrin, cyfluthrin, iprodione,	
	Inuron, maleic hydrazide, pendimethalin, trifloxystrobin,	

	carfentrazone-ethyl, mesotrione, fenamidone, isoxaflutole,	
	Coniothyrium minitans, flurtamone, flufenacet, iodosulfuron,	
	dimethenamid-P, picoxystrobin, fosthiazate and silthiofam,	
	in the Community Positive List.	
	Transposes for the internal jurisprudence the Directives No.	
	2003/39/CE, of the 15th of May, 2003/70/CE, of the 17th of	
	July, 2003/81/CE, of the 5th of September, 2003/112/CE, of	
	the 1st of December, 2003/119/CE, of the 5th of December,	
	2004/30/CE, of the 10th of March, 2004/60/CE, of the 23rd	
	of April, 2004/62/CE, of the 26th of April, and 2004/71/CE,	National
Decree-Law n.º 22/2005, of the 26th	of the 28th of April, of the Commission, including new active	Legislation -
of January of 2005	substances in the Annex I of the Decree-Law No. 94/98, of	Decree-Law
	the 15th of April, the Directive No. 2004/97/CE, of the 27th	
	of September, that modifies the Directive No. 2004/60/CE,	
	regarding deadlines, as well as the Directives No.	
	2004/64/CE, of the 26th of April, and 2004/65/CE, of the	
	26th of April, introducing changes to the Decree-Law No.	
	39/2004, of the 27th of February.	
	Transposes for the internal jurisprudence the Directives No.	
	2004/20/CE, of the 2nd of March, 2004/58/CE, of the 23rd of	NT / · · · 1
Decree-Law n.º 128/2005, of the 9th	April, $2004/99/CE$, of the 1st of October, $2005/2/CE$, of the	National
of April of 2005	19th of January, and 2005/3/CE, of the 19th of January, of the	Legislation -
1	Commission, including new active substances of plant	Decree-Law
	protection products in the Annex I of the Decree-Law No. $04/08$ of the 15th of Anneil	
	94/98, of the 15th of April.	
	Updates the plant health regime that creates and defines	Mational
Decree-Law n.º 154/2005, of the 6th	measures of plant protection to prevent the introduction and	Inational
of September of 2005	spread within national and EU territory, including protected	Legislation -
	areas, narmini organisms to plants and plant products in	Decree-Law
	The present diplome regulates the activities of	
	distribution cales provision of services of application of	
Decree-Law nº 173/2005, of the 21st	plant protection products and their application by and users	National
of October of 2005 (changed by the	2 - The plant protection products of low risk are not covered	Legislation -
Decree-Law n° 187/2006, of the 19th	by the present diploma, with the exception of the applicable	Decree-Law
of September of 2006)	norms to the residues of packages and surpluses of these	Decree Luw
	plant protection products	
	It establishes the conditions and procedures of security, in the	
Decree-Law nº 187/2006, of the 19th	scope of management systems of residues of packages and	National
of September of 2006	residues of surpluses of plant protection products and	Legislation -
	changes the Decree-Law No. 173/2005, of the 21st of October.	Decree-Law
	Transposes for the national jurisprudence the Directive No.	
	2005/25/CE, of the Council, of the 14th of March, and the	NT / · · · 1
Decree-Law n.º 19/2006, of the 31st	Directive No. 2005/34/CE, of the Commission, of the 17th of	National
of January of 2006	May, introducing changes to annexes I and IV of the Decree-	Legislation -
	Law No. 94/98, of the 15th of April, concerning the placing of	Decree-Law
	plant protection products on the market.	
	Transposes for the national jurisprudence the Directives No.	
	2005/53/CE, of the 16th of September, 2005/54/CE, of the	Mational
Decree-Law n.º 87/2006, of the 23rd	19th of September, and 2005/58/CE, of the 21st of September,	Inational
of May of 2006	of the Commission, introducing changes to the Annex I of the	Degree Leve
	Decree-Law No. 94/98, of the 15th of April, concerning the	Decree-Law
	placing of plant protection products on the market.	
	Transposes for the internal jurisprudence the Directives No.	National
Decree-Law n.º 234/2006, of the 29th	2005/57/CE, of the 21st of September, 2005/72/CE, of the	Legislation -
of November of 2006	21st of October, 2006/10/CE, of the 27th of January,	Decree-I 2347
	2006/16/CE, of the 7th of February, 2006/19/CE, of the 14th	Decree-Law

	of February, 2006/45/CE, of the 16th of May, and	
	2006/76/CE, of 22nd of September, of the Commission,	
	introducing changes to the Annex I of the Decree-Law No.	
	94/98, 15 of April, concerning the placing of plant protection	
	products on the market.	
Decree I are $0.111/2007$ of the 16th	Amending the Decree-Law No. 94/98, of April 15th,	National
Decree-Law h^{-111}_{2007} , of the 16th	adopting technical norms of implementation concerning the	Legislation -
of April of 2007	placement of plant protection products on the market.	Decree-Law
	Transposes for the internal jurisprudence the Directives No.	
	2006/5/CE, of the 17th of January, 2006/6/CE, of the 17th of	
Decree Level $0.200/2007$ of the 28th	January, 2006/41/CE, of the 7th of July, and 2006/75/CE, of	National
of Max of 2007	the 11th of September, of the Commission, introducing	Legislation -
01 Way 01 2007	changes to the Annex I of the Decree-Law No. 94/98, of the	Decree-Law
	15th of April, concerning the placing of plant protection	
	products on the market.	
	Transposes for the internal jurisprudence the Directives No.	
	2006/39/CE, of the 12nd of April, 2006/64/CE, of the 18th of	
	July, 2006/74/CE, of the 21st of August, 2006/131/CE, of the	
	11th of December, 2006/132/CE, of the 11th of December,	
Decree I aw $p^{0} 334/2007$ of the 10th	2006/133/CE, of the 11th of December, 2006/134/CE, of the	National
of October of 2007	11th of December, 2006/135/CE, of the 11th of December,	Legislation -
01 October 01 2007	2006/136/CE, of the 11th of December, 2007/6/CE, of the	Decree-Law
	14th of February, and 2007/21/CE, of the 10th of April, of the	
	Commission, introducing changes to the Annex I of the	
	Decree-Law No. 94/98, of the 15th of April, concerning the	
	placing of plant protection products on the market.	
	Making the 22nd Amendment of the Decree-Law No 94/98 of	
	15 April concerning the placing of plant protection products	NT- Const
Decree-Law n.º 61/2008, of the 28th	on the market, transposing for the internal jurisprudence the	Inational
of March of 2008	the 7th Echanger 2007/25/CE of the 22rd April 2007/21/CE	Degrad Law
	of May 21th 2007/50/CE from August 2nd and 2007 (Decree-Law
	52/CE of the 16th of August of the Commission	
	Making the 1st amendment of the Decree I aw No 82/2003 of	
	23 April approving the Regulations for the Classification	
Decree-Law n° 63/2008 of the 2nd	Packaging Labeling and Safety Data Sheets of dangerous	National
of April of 2008	preparations transposing for the internal jurisprudence	Legislation -
0171011012000	the Directives No 2004/66/EC, of the 26th April 2006/8/EC.	Decree-Law
	of the 23rd January, and 2006/96/EC, of the 20nd November	
	Making the 24th amendment of the Decree-Law No 94/98 of	
	the 15th of April, concerning the placement of plant	
	protection products on the market, transposing for the	
	internal jurisprudence the Directive No. 2008/44/CE of the	
	Commission of 4 April, amending Directive No. 91/414/EEC	National
Decree-Law n.° 244/2008, of the 18th	of the Council, to include the active substances	Legislation -
of December of 2008	benthiavalicarb, boscalid, carvone, fluoxastrobin,	Decree-Law
	Paecilomyces lilacinus and prothioconazole and Directive	
	No. 2008 / 45/CE, the Commission of April 4th, amending	
	Directive No. 91/414/EEC of the Council regarding the	
	extension of use of the active substance metconazole.	

4.2.2. MAXIMUM RESIDUE LEVELS

In order to protect the final consumer of the plant products, the residue levels of pesticides in

these are controlled. Table 6 illustrates the established maximum for these levels.

Table 6 - Portuguese Legislation of maximum residue levels of plant protection products. (Gallardo, 2005; Diario da Republica (DRE); V | lex; Apambiente; BDJUR; dgadr;APN)

LECISIATION'S CODE AND DATE	Summary	TYPE OF
LEGISLATION 5 CODE AND DATE	JOINIMAKI	LEGISLATION
Decree-Law n.º 215/2001, of the 2nd of August. D.R. n.º 178, Série I-A	Approves new maximum residue levels for plant protection products allowed within and on the surface area of cereals, fruits and vegetables.	National Legislation - Decree-Law
Decree-Law n.º 144/2003, of the 2nd of July of 2003 (only 10th and 11th article)	residues allowed for plant protection products in agricultural products of plant origin intended for human consumption, or even occasionally, animal feed, as well as agricultural products dried or transformed, or still after incorporated in compound feed, in that it may contain residues of plant protection products.	National Legislation - Decree-Law
Decree-Law n.º 27/2000, of the 3rd of March of 2000	Amending certain maximum residue levels for plant protection products on the surface and inside of fruits, vegetables and cereals, proceeding to the transposition for the internal jurisprudence of paragraphs Directives No. 97/71/EC and 98/82/EC, of the Commission, of December 15th and October 27th respectively.	National Legislation - Decree-Law
Decree-Law n.º 21/2001, of the 30th of January of 2001	Approves the list of maximum residue levels for plant protection products allowed inside and on the surface area of cereals, fruits and vegetables. Transposing Directives Nos 1999/71/EC, of July 14th and 2000/24/EC, of April 28th.	National Legislation - Decree-Law
Decree-Law n.º 256/2001, of the 22nd of September of 2001	Transposes for the domestic law the Directive No 2001/35/EC of 11 May amending the MRLs for plant protection products allowed inside of cereals, fruits and vegetables.	National Legislation - Decree-Law
Decree-Law n.º 31/2002, of the 19th of February de 2002	Amending and approving certain maximum residue levels for plant protection products allowed in agricultural products of plant origin, including fruit, vegetables and cereals.	National Legislation - Decree-Law
Decree-Law n.º 245/2002, of the 8th of November of 2002	Amending and approving certain maximum residue levels for active substances of plant protection products allowed in agricultural products of plant origin, including fruit, vegetables and cereals, and transposing for the national jurisprudence the Commission Directives 2002/5/EC paragraphs, and 2002 / 23/CE, of January 30th and February 26th, respectively.	National Legislation - Decree-Law
Decree-Law n.º 68/2003, of the 8th of April of 2003	Amending and approving certain maximum residue levels for active substances of plant protection products allowed in agricultural products of plant origin, including fruit, vegetables and cereals, and transposing for the national jurisprudence the Directives No. 2002/42/CE, 2002/66/CE, 2002/71/CE, 2002/76/CE and 2002/79/CE, of the Commission, of May 17th, of July 17th, of August 19th, of	National Legislation - Decree-Law

	September 6th and of October 2nd, respectively.		
	Amending and approving certain maximum residue levels		
	for active substances of plant protection products allowed in		
	agricultural products of plant origin, including fruit,	N	
Decree-Law n.º 156/2003, of the 18th	vegetables and cereals, transposing for the national	National	
of July of 2003	jurisprudence the Directive No 2002/97/EC of the	Legislation -	
	Commission of December 16th, in part relating to agricultural	Decree-Law	
	products of plant origin, and Directive No 2002/100/EC, of		
	the Commission of December 20th.		
	Amended and adopted maximum residue levels for active		
	substances of plant protection products allowed in		
	agricultural products of plant origin, transposing for the	National	
Decree-Law n.º 300/2003, of the 4th	national jurisprudence the Directive No 2003/60/EC, of the	Logislation	
of December of 2003	Commission of June 18th in the part concerning the	Degree Law	
	agricultural products of plant origin, paragraphs and	Decree-Law	
	Directives 2003/62/EC, of the Commission of June 20th, and		
	2003/69/EC, of the Commission of July 11th.		
	Ensures the implementation and guarantees compliance in		
	the internal jurisprudence, the obligations under Regulation	National	
Decree-Law n.º 39/2009, of the 10th	(EC) No 396/2005 of the European Parliament and Council of	Logislation	
of February of 2009	February 23rd on maximum residue levels of pesticides	Decree-Law	
	within and on the surface of food and feed of plant and	Decree-Law	
	animal origin.		

4.2.3. CLASSIFICATION, LABELING AND PACKAGING

Table 7 - Portuguese Legislation of classification, labeling and packaging of plant protection products. (Gallardo, 2005; Diario da Republica (DRE); V | lex; Apambiente; BDJUR; dgadr;APN)

LECISI ATION'S CODE AND DATE	SUMMARY	TYPE OF
LEGISLATION 5 CODE AND DATE	JUMMARI	LEGISLATION
Decree Lever ° 201/88 of the 24th of	Established standards for description labeling and	National
Decree-Law II. 294/ 88, of the 24th of	restablishes standards for classification, labeling and	Legislation -
August of 1966	packaging of pesucides and adjuvants.	Decree-Law
Decree Law $p^{0} 82/2002$ of the 22rd	Approves the Regulations for the Classification, Packaging,	National
of April of 2002	Labeling and Safety Data Sheet of Dangerous Preparations.	Legislation -
61 April 61 2005		Decree-Law

4.2.4. SEEDS TREATED WITH PLANT PROTECTION PRODUCTS.

Fairly recently this decree-law was released to control the pesticides used to coat seeds, in order

to maintain control throughout the production chain (Table 8).

Table 8 - Portuguese Legislation of management of seeds dealt with plant protection products. (Gallardo, 2005; Diario da Republica (DRE); V | lex; Apambiente; BDJUR; dgadr;APN)

LEGISLATION'S CODE AND DATE	Summary	TYPE OF LEGISLATION
Decree-Law n.º 38/2009, of the 10th of February of 2009	Making the third amendment to Decree-Law No 144/2005 of 26 August, which regulates the production, testing, certification and marketing of seeds of species of agricultural and vegetable species, and transposing for the national jurisprudence the Directive No . ° 2007/72/CE, the Commission of 13 December on the inclusion of forage species <i>Galega orientalis Lam</i>	National Legislation - Decree-Law

4.2.5.CONDITIONS OF COMMERCIALIZATION AND APPLICATION OF PLANT PROTECTION PRODUCTS.

The condition in which the pesticide products are commercialized were found to be an hazard

point in the pesticide chain of usage, therefore a point that must be under surveillance and

control, and Table 9 shows these control measures.

Table 9 - Portuguese Legislation in relation to conditions of commercialization and application of plant protection products. (Gallard, 2005; Diario da Republica (DRE); V | lex; Apambiente; BDJUR; dgadr;APN)

I ECISI ATION'S CODE AND DATE	SUMMARY	TYPE OF
LEGISLATION 5 CODE AND DATE	JUMMARI	LEGISLATION
Decree Leve n^{0} 172 (2005, of the 21st	Regulates the activities of distribution, sales, provision of	National
of October of 2005	services of application of plant protection products and their	Legislation -
of October of 2005	application by end users.	Decree-Law
	It establishes the conditions and procedures of security, in the	National
Decree-Law n.º 187/2006, of the 19th	scope of management systems of residues of packages and	Inational
of September of 2006	residues of surpluses of plant protection products and	Degisiation -
-	changes the Decree-Law No. 173/2005, of the 21st of October.	Decree-Law

5. METHODOLOGY FOR THE DETERMINATION OF PESTICIDES

It is clear that over the years the methodology for pesticide determination and quantification has evolved drastically from the simple colorimetric tests to more complex chromatographic systems coupled with sophisticated and elaborated detection devices.

Several methods used in different technologies have been developed over time to better analyze pesticides in a variety of matrices, some more complex than others in cases needing previous separation and purification in order not to overload the now more sensitive detection.

In the following table (Table 10) are shown the methods used in the last 10 years to determine and quantify organophosphorous, organochlorine and carbamate pesticides in biological matrices. This research illustrated has been the back bone of this study, giving insight of the different approaches to the detection and determination of pesticides in complex matrices.

PESTICIDE	CATEGORY	SPECIES	SAMPLE	EXTRACTION	CHROMATOGRAPH Y	DETECTION	LOD	LOQ	REFERENC E
Chlorpyrifos and Dimethoate	Organophosphorous	Human	Plasma	N/A	High Performance Liquid Chromatography (HPLC)	UV detector	N/A	0.1 and 1.0 nmol/mL for chlorpyrifos and dimethoate respectively	Eddleston et al. (2009)
dimethyl phosphate (DMP), dimethyl thiophosphate (DMTP) and diethyl phosphate (DEP)	Organophosphorous' Metabolites	Human	Hair	Decontamination step, solid- liquid extraction, followed by liquid-liquid extraction, pentafluorobenzyl bromide derivatization, clean-up on Florisil/PSA column	Gas Chromatography (GC)	Mass Spectrometry (MS)	ranged from 0.02 to 0.10 ng / mg	N/A	Margariti and Tsatsakis (2009)
Pirimicarb	Carbamates	Human	Stomach fluid, Urine and Plasma	N/A	Gas Chromatography (GC)	Mass Spectrometry (MS)	< 10 ng/mL	20 ng/mL	Hoffman et al. (2008)
PCBs, Chlordanes, Toxaphenes, HCHs, DDTs, and HCB, as well as PBDEs	Organochlorine	Polar Bears	Adipose Tissue (Subcutaneous) Blood (Femoral vein or artery)	Dichloromethane (DCM) - Gel Permeation Column (GPC) (Hexane: DCM (1:1) as elution solvent)	High Resolution Capillary Gas Chromatograph (GC)	Electron Capture Detector(ECD) and Electron Capture Negative Ion Mass Spectrometry (ECNIMS)	N/A	N/A	Bentzen, Muir, Amstrup and O'Hara (2008)
PCBs	Organochlorine	Human	Stomach Content	Soxhlet and liquid-liquid extraction	Gas Chromatography (GC) and Silica- SFE	Mass Spectrometry (MS)	N/A	N/A	Adenugba , McMartin and Beck (2008)
OCPs, nitro musks and PCBs	Organochlorine	Human	Milk	Micro Glass Column and eluted with n- hexane/acetone (2:1, v/v) and gel permeation chromatography (GPC)	High Resolution Gas Chromatography (HRGC)	Electron Capture Detector (ECD)	N/A	N/A	Raab et al (2008)
Chlorpyrifos, diazinon, malathion and parathion.	Organophosphorous	Human	Blood	Solid-Phase Extraction (SPE) (Oasis HLB™ cartridge)	Gas Chromatography (GC)	Mass Spectrometry (MS)	0.04 to 0.09 mg/L	0.13 to 0.17 mg/L	Park et al (2008)

Table 10 - Table of methods used to determine pesticides over the last 10 years.

(acephate, methidathion, dichlorvos, fenthion, EPN, diazinon, phenthoate, malathion, fenitrothion, and cyanophos	Organophosphorous	Human	Serum	Deproteinization by Acetonitrile	High Performance Liquid Chromatography (HPLC) (Xterra MS C18 stainless steel cartridge column equipped with an Xterra MS C18 guard column at 50°C susing 10mM ammonium formate-methanol as mobile phase)	Mass Spectrometry (MS) (triple quadrupole with APCI interface)	0.125μg/mL to 1 μg/mL	0.25μg/mL to 1.25μg/mL	Inoue et al. (2007)
PBDEs, PCBs, DDTs, HCB, Chlordane related pesticides, HCH and Toxaphene	Organochlorine	Ringed Seal	Blubber, Liver, Kidney and Muscle Tissue	Soxhlet extracted with n- hexane:acetone (4:1)	Gas Chromatography (GC)	Electron Capture Detector (ECD), Mass Spectrometry (MS) and Electron Capture Negative Ionization (ECNI)	N/A	N/A	Vorkamp et al (2007)
PBB and PCB	Organochlorine	Human	Serum	Ether-Ethyl or Hexane-Ether - Florisil or Florisil and silica gel column	Gas Chromatography (GC)	Electron Capture Detector (ECD)	N/A	N/A	Small et al (2007)
11 hydroxy metabolites of PCBs	Organochlorine	Rat	Plasma and Organ Tissues	Silica Column and 10 mL of n-hexane/dichloromethane (4:6, v/v) as an eluent	Gas Chromatography (GC)	Mass Spectrometry (MS)	N/A	N/A	Hong et al (2007)
Propoxur and Cypermethrin	Carbamates and Pyrethroids	Human	Meconium	Solid-Phase Extraction (SPE)	Gas Chromatography (GC)	Mass Spectrometry (MS)	N/A	N/A	LaFiura et al.(2007)
Karbutilate	Carbamates	Human	Urine	Solid-Phase Extraction (SPE) - Cartridge Bond Elut C18 - Elution: 10% acetonitrile	N/A	Photo-induced Chemiluminescence	10 μg/L	20µg/L	Amorim et al. (2007)
HCB, b -HCH, c-HCH, Heptachlor, Aldrine, Heptachlor epoxide, Dieldrine, o,p'- DDE, p,p'-DDE, o,p'-DDD, and p,p'-DDT.	Organochlorine	Human	Milk	20 mL of n-hexane, 5 mL of acetonitrile and 1 mL of ethanol	Capillary Column Gas Chromatography	Electron Capture Detector (ECD)	N/A	N/A	Ennaceur et al (2007)
PCB congeners, p; p0- DDPCB congeners, p; p0-DDE, and HCB	Organochlorine	Human	Serum	N/A	Gas Chromatography (GC)	Electron Capture Detector (ECD)	N/A	N/A	Meeker et al. (2007)

Methylsulfonyl PCB and DDE metabolites	Organochlorine	Human	Adipose Tissues	Liquid-liquid extraction (n- hexane:acetone 2:1 v/v), Gel Permeation Chromatography (GPC) fractionation and adsorption chromatographic clean-up (33% KOH/silica gel).	Gas Chromatography (GC)	Electron Capture Detector (ECD) and Mass Spectrometry (MS)	N/A	0.1 - 0.4 ng/g of lipids	Karasek et al (2006)
Carbaryl	Carbamates	Rats	Plasma	Solid-Phase Extraction (SPE) cartridges with 50 mg polymer	N/A	In-line MIP (Molecular Imprinted Polymer)	10 µg/mL	10 µg/mL	Hantash et al (2006)
p,p0-DDT and congeners/ metabolites , endosulphan and congeners/ metabolites, lindane, aldrin/dieldrin/endri n, hexachlorobenzene, methoxychlor and mirex	Organochlorine	Human	Placenta	Solid-Liquid Technique and purified by Preparative Liquid Chromatography	Gas Chromatography (GC)	Electron Capture Detector (ECD) and Mass Spectrometry (MS)	N/A	N/A	Lopez- Espinosa et al. (2006)
PCBs and PBDEs	Organochlorine	Human	Serum	solid-phase extraction (SPE) (Oasis® HLB cartridge) and the subsequent on-line fat elimination by directly dropping the eluate from the SPE cartridge onto a second cartridge containing layers of activated neutral silica gel and sulphuric acid modified silica gel	Gas Chromatography (GC)	Ion Trap Detector in the Tandem Mass Spectrometry Mode	N/A	N/A	Ramos et al (2006)
Propoxur, Cyfluthrin, Chlorpyrifos, Cypermethrin, Pretilachlor, Bioallethrin, Malathion, Diazinon, Lindane, DDT, Transfluthrinand a few metabolites	Carbamate, Organophosphate, Organochlorine, Pyrethroids and Chloroacetanilide	Human	Hair and Blood	Hair - Parent Pesticides - Solid-Liquid Extraction (2mL of Hexane) - Pesticide Metabolites - Derivatization (methanolic/hydrochloric acid methyl ester technique - 1mL of methanol and 1mL of 10N HCl added to the hair and heating the suspension at 80°C for 20min); Liquid- Liquid extraction (with 2mL of toluene) Blood - Parent Pesticides - Liquid-Liquid Extraction (with Hexane) - Pesticide Metabolites - Derivatization (same technique previously described)	Gas Chromatography (GC) (splitless mode)	Mass Spectrometry (MS)	Hair 0.18 to 5.88 μg/g Blood 3.10 to 98.00 ng/mL	Hair - Parent Pesticides - 0.25 to 62.50 µg/g - Pesticides Metabolites - 0.18 to 187µg/g Blood - Parent Pesticides - 0.10 to 25 µg/mL - Pesticides Metabolites - 0.13 to 33.33µg/mL	Ostrea et al. (2006)

Carbofuran, Carbaryl and their main metabolites	Carbamates	Human	Plasma	Mild Precipitation and Denaturation (with β- mercaptoethanol and ascorbic acid) - Solid-Phase Extraction (SPE) (Oasis HLB - Hydrophilic Lipophilic Balance) (Eluted: 2x 1mL Diethyl Ether; 2x Evaporated) - Derivatized 20μL of Trifluoroacetic Acid Anhydride and 10μL solution (0,02% Triethylamine in Tetrahydrofuran v/v)	Gas Chromatography (GC) (splitless mode)	Tandem Mass Spectrometry (MS/MS)	0.1 ng/mL	0.5 ng/mL	Petropoul ou et al.(2006)
Carbaryl and metabolites	Carbamates	Rats	Plasmas	Liquid-Liquid Extraction (Acrtonitrile 300µL)	N/A	N/A	1.00ng/mL		Hantash et al (2006)
Polychlorinated biphenyls (PCB) congeners and 11 chlorinated pesticides and metabolites	Organochlorine	Human	Plasma	Solvent - 1:1:3 mixture of ammonium sulfate:ethanol:hexane Purification and Concentrator - Two Florosil columns	High Resolution Gas Chromatography (HRGC)	Electron Capture Detector (ECD)	N/A	Based on 3 times the average standart deviantion - 0.08 μg/L for p, p'-DDE, p, p'-DDT and β- HCH, and 0.04 μg/L for all other compounds.	Côté et al. (2006)
HCB, α -, β -, γ - HCH, p,p'-DDE and p,p'- DDT (expressed here as DDTs), trans- and cis-chlordane, oxychlordane (OxC) and trans-nonachlor (TN), PCBs and PBDEs	Organochlorine	Human	Maternal Serum, Umbilical Cord Serum and Human Milk	Empore [™] SPE cartridges were washed with DCM and activated with MeOH and water (positive pressure of 2–4psi)	Gas Chromatography (GC)	Mass spectrometry (MS), detector operated in electron-capture negative ionization	N/A	ranged between 0.5 and 4 ng/g lw	Jaraczews ka et al. (2006)
15 PCBs , a-, b-, c- HCH, HCB, p,p0-DDT and p,p0-DDE	Organochlorine	Human	Serum	Off-line solid phase extraction (SPE)	Gas Chromatography (GC)	microelectron capture detector	N/A	N/A	Petrik et al. (2006)
PCDDs, PCDFs, PCBs, and organochlorine pesticides	Organochlorine	Human	Serum	Turner et al.	High Resolution Gas Chromatography (HRGC)	High Resolution Mass Spectrometry (HRMS)	N/A	N/A	Lee et al. (2006)

Propoxur, Cyfluthrin, Chlorpyrifos, Cypermethrin, Pretilachlor, Bioallethrin, Malathion, Diazinon and Transfluthrin. Also lindane and DDT and some of their metabolites	Organochlorine, Organophosphorous, Pyrethroid and Carbamates	Human	Hair and Blood	Hair - collected with aluminium foil, pulverized into a fine powder, Fifty milligrams of powdered maternal hair and 2mL hexane was added. Solid- liquid extraction of the pesticides was conducted for 6 h using an IKA Vibrax VXR orbital shaker. The hexane extracts were separated by centrifugation at 2900g for 15 min. Blood - Tubes with EDTA - Parent pesticides were extracted from whole blood by liquid- liquid extraction - Pesticide metabolites, the compounds were derivatized and extracted through an HCI/methanolic methyl ester derivatization following the method described by Corrion et al. (2005).	Gas Chromatography (GC)	Mass Spectrometry (MS)	The limits of detection (LOD) for the individual parent pesticides and metabolites were determined using the empirical approach (Corrion et al., 2005).	N/A	Ostrea Jr. Et al. (2006)
DMP, DMTP, DMDTP, DEP, DETP, and DEDTP	Organophophorous' Metabolites	Human	Urine	Solid-phase Extraction (SPE)(conditioned with acetonitrile - 4 ml followed by 0.1MHCl - 4 ml, sample, dried at ~30 psi for 5 min, washed with 0.1M HCl - 1 ml,Elution was accomplished with acetonitrile - 7 ml), Post- Extraction Derivatization (1- chloro-3-iodopropane)	Gas Chromatography (GC)	Tandem Mass Spectrometry (MS/MS)	0.05 to 0.17 ng/mL	N/A	Hemakant hi De Alwis et al. (2006)
DMP, DMTP, DMDTP, DEP, DETP, and DEDTP	Organophosphorous' Metabolites	Human	Urine	Derivatization (benzyltolytriazine reagent) and Liquid-Liquid Extraction (LLE) with cyclohexane	Gas Chromatography (GC)	Flame Photometric Detector (FPD)	N/A	N/A	Yucra et al. (2006)

MCA and DCA, DMDTP, DMTP, DMP, DEP, DETP and IMPY, acephate and methamidophos	Organophosphorous and Organophosphorous' Metabolites	Human	Urine	MCA and DCA - Acidified, Solid-phase Extraction (SPE) (C ₁₈ micro-columns) and Derivatized (diazomethane) DMDTP, DMTP, DMP, DEP, DETP and IMPY- Derivatized (pentafluorobenzyl bromide at 70 C for 2 h) and Liquid- Liquid Extraction (hexane and methylene chloride) acephate and methamidophos -	Gas Chromatography (GC) and High Performance Liquid Chromatography (HPLC)	Mass Spectrometry (MS) (electron capture negative ionization source operating in single ion monitoring mode), Mass Spectrometry (MS) (electron impact ionization source operating in single ion monitoring mode) and Tandem Mass Spectrometry (MS/MS)	0.2 μg/L	N/A	Bouchard et al. (2006)
Quinalphos	Organophosphorous	Human	Urine and Blood	Solid-phase Micro Extraction (SPME) (coated 100 m Polydimethylsiloxane (PDMS) and 65 µm CarbowaxTM/Divinylbenze ne (CW/DVB) - Direct immersion)	Gas Chromatography (GC)	Mass Spectrometry (MS) (electron impact (EI) mode, selected ion monitoring (SIM) mode)	Blood - 10ng/mL Urine - 2ng/mL	Blood - 50ng/mL Urine - 10ng/mL	Gallardo et al (2006)
malathion, parathion, methyl parathion and diazinon	Organophsphorus	Human	whole blood, blood plasma, urine, cerebrospinal fluid, liver and kidney.	Solid-phase Micro Extraction (SPME) (Polyacrylate (PA, 85 μm) and polydimethylsiloxane (PDMS, 100 μm) - Headspace)	Gas Chromatography (GC)	Nitrogen Phosphorus Detector (NPD)	2 to 55 ng/mL	0.02 to 0.5μg/mL	Tsoukali et al. (2005)
36 noncoplanar PCB congeners, 4 coplanar PCBs and 13 organochlorine pesticides or pesticide metabolites	Organochlorine	Human	Plasma	Organochlorines in plasma were measured by the Dioxin and Persistent Organic Pollutants Laboratory of the Centers for Disease Control and Prevention (CDC) in Atlanta, GA	N/A	N/A	N/A	N/A	De Roos (2005)
PCBs,HCB, α -,β -, γ - HCH, p,p' -DDT, p,p' - DDE	Organochlorine	Human	Serum	SPE column (1 g/6 Ml Alltech Extract-Clean High Capacity C ₁₈ endcapped, Alltech Associates Inc., Lokeren, Belgium)	Gas Chromatography (GC)	Micro Electron Capture Detector (µECD)	N/A	0.01-0.02 for PCBs and 0.01 - 0.16 ng/ml serum for OCPs.	Čonka et al (2005)

propoxur, diazinon, lindane, transfluthrin, malathion, chlorpyrifos, p,p' - DDT, bioallethrin, pretilachlor, cyfluthrin, cypermethrin	Organochlorine, Organophophorous, Pyrethroid and Carbamates	Human	Maternal and Cord Whole Blood	The pesticides were extracted by adding 3.1mL of hexane to all unknown samples and the negative control, while 3mL of hexane was added to the spiked positive controls	Gas Chromatography (GC)	Mass Spectrometry (MS)	LOD from <10 to 1,56 µg/mL	N/A	Corrion et al. (2005)
Propoxur, Predilachlor, p,p'- DDT, Lindane, Chlorpyrifos, Diazinon, Malathion,Bioalletrin, Cyfluthrin, Cyfluthrin, Transfluthrin and 7 metabolites	Carbamates, Chloroacetanilide, Organochlorines, Organophosphates, Pyrethroids	Human	Whole Blood	For Parent Pesticide Analysis - Liquid-Liquid Extraction (3mL of Hexane); For Metabolite Analysis - Derivatization (Methanolic/Hydrochloric Acid Methyl Ester); Liquid- Liquid Extraction (2mL of Toluene)	Gas Chromatography (GC) (splitless mode)	Mass Spectrometry (MS)	0.10 µg/mL	0.10 µg/mL	Corrion et al. (2005)
Carbaryl, 1-naphthol, 2-naphthol, and Carbofuran, 3- hydroxycarbofuran, 7- phenol, carbofuran-3- keto, 3- hydroxycarbofuranphe nol	Carbamates	Human	Urine	Enzymic Hydrolysis (50μL β-glucuronidase); Solid- Phase Extraction (Oasis HLB cartridges) (Eluted: 2x 1mL Diethyl Ether); Derivatized (20μL of Trifluoroacetic Acid Anhydride and 10μL solution (0,02% Triethylamine in Tetrahydrofuran v/v))	Gas Chromatography (GC) (splitless mode)	Tandem Mass Spectrometry (MS/MS)	0.03 ng/mL - 0.08 ng/mL	0.1 ng/mL - 0.2 ng/mL	Petropoul ou et al.(2005)
ethylene-bis- dithiocarbamate (EBDC) and Ethylenethiourea (ETU)	Carbamates	Human	Urine	Solid-Phase Extraction (SPE) (Diatomaceous earth column with dichloromethane and derivatized mixture of N- (tert-butyldimethylsilyl)-N- methyltrifluoroacetamide and tert-butyldimethyilsilyl chloride)	Gas Chromatography (GC)	Mass Spectrometry (MS)	0.5 μg/g of creatinine	0.5 µg/g of creatinine	Colosio et al. (2005)
Bromoxynil ,2,4-D, dicamba, Fenoxaprop, MCPA, Ethalfluralin, Triallate, and Trifluralin	Herbicide	Human	Blood and Plasma	N/A	Gas Chromatography (GC)	Mass Spectrometry (MS)	1 to 100 μg/L		Semchuk et al (2004)

(dimethylphosfate (DMP), dimethylthiophosfate (DMTP), dimethyldithiophosfat e (DMDTP), diethylphosfate (DEP), diethylthiophosfate (DEDP), and diethyldithiophosfate (DEDTP)); 3,5,6- trichloro-2-pyridinol (TCP), the main metabolite of chlorpyrifos; 3- phenoxybenzoic acid (3- PBA), a metabolite of pyrethroid insecticides; ethylenethiourea (ETU) a metabolite of ethylenebisdithiocarba mates; methamidophos (METH), an organophophorous insecticide.	Organophophorous' Metabolites, pyretroid's metabolite, Carbamate's metabolite and organophophorous	Human	Urine	Alkylphosphates - Derivatization (pentafluorobenzylbromide) TCP - Derivatization (bis(trimethylsylyl)- acetamide) Methamidophos - Liquid-Liquid Extraction (dichloromethane)	Gas Chromatography (GC), High Performance Liquid Chromatography (HPLC)	Flame Photometric Detector (FPD), Mass Spectrometry (MS) and Spectrophotometer detector	2.5 to 50 nmol/L	N/A	Saieva et al. (2004)
4-nitrophenol (PNP) and 3-methyl-4- nitrophenol (3-Me- PNP)	Organophosphorous' Metabolites	Human	Urine	Direct injection (Dilution three-fold with 0.5% HCOOH solution) and after Hydrolyzed overnight (β-d- glucuronidase/sulphatase)	Coupled Column Liquid Chromatography (LC-LC) (1st - mobile phase consisting of acetonitrile-0.01% HCOOH in water, 2nd mobile phase consisting of acetonitrile-water)	Tandem Mass Spectrometry (MS/MS)	0.1 to 0.2 μg/L	1µg/L	Hernánde z et al. (2004)
N/A	Organophosphorous' Metabolites, pyretroid's metabolite, herbicides or metabolites	Human	Urine	Solid-Phase Extraction (SPE)	High Performance Liquid Chromatography (HPLC)	Tandem Mass Spectrometry (MS/MS) (Two spectrometers - Atmospheric Pressure Chemical Ionization (APCI) - Turbo Ion Spray atmospheric pressure ionization (TIS)	0.1 to 1.5 ng/mL	N/A	Olsson et al. (2004)

O,O- dimethylphosphate (DMP), O,O- diethylphosphate (DEP), O,O- dimethylthiophosphat e (DMTP), O,O- diethylthiophosphate (DETP), O,O- dimethyldithiophosph ate (DMDTP), and O,O- diethyldithiophosphat e (DEDTP)	Organophosphorous' Metabolites	Human	Urine	Dried (under azeotropic conditions with isopropanol and nitrogen).Converted into their corresponding benzyl esters (benzyl bromide and diazotoluene) Solid-Phase Extraction (silica columns)	Gas Chromatography (GC)	Mass Spectrometry (MS)	3 to 6 ng/mL	N/A	Kupferma nn et al. (2004)
dialkylphosphate (DAP) metabolites	Organophosphorous' Metabolites	Human	Urine	Lyophilized. Liquid-Liquid Extraction (2ml acetonitrile and 2 ml ethyl ether)	Gas Chromatography (GC)	Tandem Mass Spectrometry (MS/MS)	0.1 to 0.6 μg/L	N/A	Bravo et al. (2004)
dimethylphosphate (DMP), DEP, dimethylthiophosphat e (DMTP), DETP, dimethyldithiophosph ate (DMDTP), and diethyldithiophosphat e (DEDTP)	Organophosphorous' Metabolites	Human	Urine	Concentrated to dryness (azeotropic codistillation with acetonitrile), Derivatized (1-chloro-3- iodopropane and potassium carbonate)	Gas Chromatography (GC)	Tandem Mass Spectrometry (MS/MS) (positive chemical ionization)	0.05 µg/L to 0.58 µg/L	N/A	Barr et al. (2004)
dimethyl-phosphate (DMP), diethyl- phosphate (DEP), dimethyl- thiophosphate (DMTP), diethyl- thiophosphate (DETP), dimethyl- dithiophosphate (DMDTP) and diethyl- dithiophosphate (DEDTP)) and cis-3- (2,2-dimethyl- cyclopropane carboxylic acid (Br2CA), cis-3-(2,2- dichloro-vinyl)-2,2- dimethyl- cyclopropane carboxylic acid (cis- Cl2-CA), trans-3-(2,2- dichloro-vinyl)-2,2- dimethyl-	Organophosphorous' Metabolites and pyretroid's metabolites	Human	Urine	DMP, DEP, DMTP,DETP, DMDTP and DEDTP - Liquid-Liquid Extraction (acetonitrile/diethylether), Derivatization. Br2CA, cis- Cl2CA, trans-Cl2-CA and F- PBA - Solid-Phase Extraction (SPE), Methylation.	Gas Chromatography (GC)	Mass Spectrometry (MS)	DMP, DEP, DMTP,DETP, DMDTP and DEDTP -1 μ g/L to 5 μ g/L Br2CA, cis- Cl2CA, trans- Cl2-CA and F- PBA - 0.1 to 0.2 μ g/L	N/A	Heudorf et al. (2004)

cyclopropane carboxylic acid (trans-Cl2-CA) and 4-fluoro-3-phenoxy-benzoic acid (F-PBA)

Acephate (AP), methamidophos (MMP), IMPY, DEAMPY, CIT, BTA, MDA, PNP, CMHC, TCPY ²⁰ ,TCPY ²⁵ ,TCPY ³⁰ and TCPY ^{ms} .	Organophosphorous' Metabolites	Human	Urine	Hyfrolysis (β- glucuronidase), Solid-Phase Extraction (SPE) (Oasis HLB 3cc cartridge) (preconditioned:1 mL of methanol + 1 mL of 5% methanol in 1% acetic acid. Sample. Washed: methanol/acid solution (0.8 mL). Elution:2 mL methanol) Fractions divided - Fraction 1 (Sample load + Wash):Liquid-Liquid Extraction cartridge (Chem Elute 3 mL, Varian) Fraction 2 (MeOH).	High Performance Liquid Chromatography (HPLC)(mobile phase: 30% acetonitrile in water with 0.15% acetic acid, flow rate: 40 μL/min, injection volume: 5 μL)	Tandem Mass Spectrometry (MS/MS) (Fraction 1 - positive ionization mode Fraction 2 - positive and negative mode)	0.1 to 8 ng/mL	N/A	Olsson et al. (2003)
PCB and p,p´-DDE	Organochlorine	Human	Serum	Procedures developed by the Centers for Disease Control (Needham 1981)	Gas Chromatography (GC)	Electron Capture Detector (ECD)	N/A	3.1 - 64.2 ng/g lipids	Hauser et al. (2003)
chlorpyrifos, diazinon, ethion, fenitrothion, malathion, methidathion, methyl parathion,phosmet, HCB, lindane, β-HCH, α- and β-endosulfan and its ether and sulfate metabolites, p,p'-DDT, p,p'-DDD and p,p'-DDE	Organophosphorous and Organochlorine	Human	Serum	Solid-Phase Extracted (SPE) (C18 cartridges)	Gas Chromatography (GC)	Tandem Mass Spectrometry (MS/MS)	0.05 to 0.5 ng/mL	0.2 to 9.0 ng/mL	Pitarch et al. (2003)

acephate, omethoate, phorate-oxon, phorate, dimethoate, propetamphos, terbufos, diazinon, paraoxon-methyl, disulfoton, parathion- methyl, malaoxon, paraoxon, ronnel, fenitrothion, pirymiphos, malathion, fenthion, chlorpyriphos, parathion-ethyl, ethion, carbophenothion, ENP, oxo-azinphos- methyl, phosalone, azinphos-methyl, azinphos-ethyl, Co-ral- o and Co-ral (Coumaphos)	Organophosphorous	Human	Tissues (liver, kidney, adipose)	Liquid-Liquid Extraction (2% ethanol in ethyl acetate)	Capillary Gas Chromatography (GC)	Mass Spectrometry (MS)	0.01 and 0.09 ng/mL	1 to 3 pg/μL	Russo et al. (2002)
2-methyl-3- phenylbenzoic acid (MPA) and 3- phenoxybenzoic acid (PBA)	Pyretroid's metabolites	Human	Urine	Liquid-Liquid Extraction (100 µl HCl (4 M) and 2 ml chloroform)	High Performance Liquid Chromatography (HPLC)	Ultraviolet (UV) Detector	2.5 ng/mL	N/A	Smith et al.(2002)
	Organochlorine and Organophosphorous	Human	Whole blood	Solid-phase MicroExtraction (headspace mode)	Gas Chromatography (GC)	Tandem Mass Spectrometry (MS/MS)	0.02-0.7 ng/mL	1 and 50 ng/mL	Hernánde z et al. (2002)
bromophos-ethyl, bromophos-methyl, chlorfenvinphos, chlorpyriphos, demethon-S- methylsulfon, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, edifenphos, fenitrothion, fenthion, malathion, methidathion, methidathion, mevinphos, omethoate, parathion- ethyl, parathion- methyl, phosphamidon, and quinalphos	Organophosphorous	Human	Blood	Solid-phase MicroExtraction (headspace mode)	Gas Chromatography (GC)	Mass Spectrometry (MS)	0.01 and 0.3 μg/g	0.025 to 5.0 μg/g	Musshoff et al. (2002)

diethyl phosphate (DEP), diethylthiophosphate (DETP), dimethyldithiophosph ate (DMDTP) and diethyldithiophosphat e (DEDTP)	Organophosphorous' Metabolites	Human	Urine	Addiction of 40 mM tetrabutylammonium acetate	Liquid Chromatography (LC)	Tandem Mass Spectrometry (MS/MS)	1 to 2 μg/L	N/A	Hernánde z et al. (2002)
Furathiocarb and its metabolites (Carbofuran, 3- hydroxycarbofuran and 3-ketocarbofuran)	Carbamates	Rats	Plasma and Urine	Liquid-Liquid Extraction (0.7mL Ethyl Acetate/Hexane 75:25 (v/v))	High Performance Liquid Chromatography (HPLC) (post- column derivatization system)	Fluorescence detector	0,05 μg/ml furathiocarb, 0,025 μg/ml carbofuran, 0,025 μg/ml 3- hydroxycarbof uran and 0,05 μg/ml 3- ketocarbofuran	0.2 μg/mL	Liu et al (2002)
Ethylenethiourea (in urine indicator of Mancozeb exposure)	Carbamates	Human	Urine	Liquid-Liquid Extraction (Chem Elut CE120 Column, Eluted with 100mL of Dichloromethane); Evaporated; Reconstituted (2mL Dichloromethane); Gravity Column Chromatography -(Silica gel column (3mL); washed: (5mL) Dichloromethane, (1mL) Dichloromethane/Methanol (5:95 v/v); Eluted: (2mL) Dichloromethane/Methanol (5:95 v/v); Evaporated	High Performance Liquid Chromatography (HPLC) (reversed phase column)	Diode Array Detector (DAD/PDA)	0.5μg/g of creatinine	0.5μg/g of creatinine	Colosio et al. (2002)

Acetochlor, Alachlor, Atrazine, Bendiocarb, Carbofuran, Carbofuranphenol, Chlorothalonil, Chlorothalonil, Chlorothal-dimethyl, Diazinon, Dichlorvos, Dicloran, Diethyltoluamide (DEET), Fonophos, 2- Isopropoxyphenol, Malathion, Metalaxyl, Methyl Parathion, Metolachlor, Parathion, cis- Permethrin, trans- Permethrin, Phorate, Phtalimide, Propoxur, Terbufos, Tetrahydrophthalimid e, Trifluralin	Organophosphates, Carbamates, Chloroacetanilides, Pyrethroids, Triazines and Others	Human	Plasma and serum	Denaturation (4mL of Saturated Ammonium Sulfate); Solid-Phase Extraction (SPE) (OASIS and C18) (Eluted: 4mL Methylene Chloride, Dehydration: 1g Anhydrous Ammonium Sulfate, Transfered: 10µL of toluene,Re-Evaporated: to 10µL at room temperature);	Gas Chromatography (GC) (splitless mode)	Mass Spectrometry (MS)	0.5 - 20pg/g	0.25pg/mL	Barr et al . (2002)
Aldicarb	Carbamates	Human	Blood and Urine	N/A	High Performance Liquid Chromatography (HPLC)	N/A	N/A	N/A	Tracqui et al. (2001)
carbamates and related compounds (1-NAP), atrazine (AM), malathion (MDA), and chlorpyrifos and related compounds (TCPy)	Carbamates, Organophosphorous	Human	Urine	N/A	Capillary Gas Chromatography (GC) and Liquid Chromatography (LC)	Tandem Mass Spectrometry (MS/MS)	1.0 - 1.4 μg/L	N/A	Adgate et al. (2001)
29 organophosphates, 12 organochlorines, one phtalimide, one uracil, two triazines, one pyrethroid, 11 carbamates and three benzimidazoles	Organophosphate, Organochlorine, Phtalimide, Uracil, Carbamates and Benzimidazoles	Human	Serum	Solid-Phase Extraction (HLB OASIS® cartridges - Elution: 3mL Ethyl Acetate - GC/MS; and MCX OASIS® cartridges - 1st Elution:1mL MethanolWashed: 1mL 0.1N HCl, 2nd Elution: 1mL methanol + 1mL 5% ammoniated methanol - LC/MS)	Gas Chromatography (GC) (splitless mode) and Liquid Chromatography (LC) (ionspray® - Flow rate of 50μL/min using a gradient from 30% to 80% of acetonitrile in 2mM,pH 3 ammonium formate)	Mass Spectrometry (MS)	2.5 to 50 ng/mL	5 to 100 ng/mL	Lacassie et al. (2001)

3,5,6-trichloro-2- pyridinol (TCPyr)	Organophosphorous' Metabolites	Human	Urine	Hydrolised in acidic media. Automatic steam distillation. Solid-Phase Extraction (SPE) (polystyrene-divinylbenzene copolymer). Derivatisation (N-methyl-N-(tert- butyldimethylsilyl)- trifluoroacetamide (MTBSTFA))	Capillary Gas Chromatography (GC)	Mass Spectrometry (MS)	0.05 μg/L	0.1 μg/L	Koch et al. (2001)
demeton-S-methyl, phosphamidone, paraoxon ethyl, dialifos, fonofos, isofenphos, heptenophos, etrimfos, monocrotophos, triazophos, sulfotep, pyrazophos, pirimiphos, parathion ethyl, parathion methyl, azinphos ethyl, azinphos methyl, bromophos ethyl, bromophos ethyl, bromophos methyl, bromophos fenthion, dichlorvos, dimethoate, terbufos and mevinphos (cis and trans)	Organophosphorous	Human	Urine, blood and serum	Liquid-Liquid Extraction (1 ml toluene)	Gas Chromatography (GC)	Phosphorus- Nitrogen sensitive Detector (PND) and Mass Spectrometry (MS)	0.01 mg/L	N/A	Tarbah et al.(2001)
3,5,6-trichloro-2- pyridinol (TCPyr)	Organophosphorous' Metabolites	Human	Urine	Hydrolised in acidic media. Automatic steam distillation. Solid-Phase Extraction (SPE) (polystyrene-divinylbenzene copolymer). Derivatisation (N-methyl-N-(tert- butyldimethylsilyl)- trifluoroacetamide (MTBSTFA))	Capillary Gas Chromatography (GC)	Mass Spectrometry (MS)	0.05 μg/L	0.1 μg/L	Koch et al. (2001)

Vamidothion, dimethoate, ethoprophos, cadusaphos, mevinphos, phorate, terbuphos, fonophos, chlorpyriphos-methyl, chlorpyriphos-methyl, fenithrothion, bromophos-methyl, isophenphos, malathion, parathion- methyl, fenthion, methidathion, parathion-ethyl, pirimiphos-methyl, pirimiphos- ethyl,quinalphos, phosalone, ethion, phosmet, pyrazophos, azinphos-methyl, azinphos-ethyl and coumaphos	Organophosphorous	Human	Blood and Serum	Blood: Deproteinization by Acetonitrile. Blood and Serum: Solid-Phase Extraction (SPE) (Oasis HLB 3cc cartridges) (Elution: Ethyl Acetate 3mL)	Gas Chromatography (GC)	Mass Spectrometry (MS)	5 to 25 ng/mL	10 to 50 ng/mL	Lacassie et al. (2001)
DMP, DEP, DMTP, DMDTP, DETP and DEDT	Organophosphorous' Metabolites	Human	Urine	Lyophilization, Derivatization (pentafluorobenzyl bromide (PFBBr))	Gas Chromatography (GC)	Tandem Mass Spectrometry (MS/MS)	0.02 to 0.5µg/L	N/A	Oglobline et al. (2001)
Glufosinate, bialaphos and glyphosate	Herbicides	Human	Urine and serum	N/A	Anion-Exchange Chromatography (AEC)	Integrated Pulsed Amperometric Detector (IPAD)	glufosinate, bialaphos and glyphosate - 20, 65 and 50 ng/mL, respectively	0.1 to 0.3 μg/mL	Sato et al. (2001)
methylphosphate (DMP), diethylphosphate (DEP), dimethylthiophosphat e (DMTP), diethylthiophosphate (DETP), dimethyldithiophosph ate (DMDTP), and diethyldithiophosphat e (DEDTP)	Organophosphorous' Metabolites	Human	Urine	Liquid-Liquid Extraction (acetonitrile/diethylether). Derivatization	Gas Chromatography (GC)	Mass Spectrometry (MS)	1 to 5 μg/L	N/A	Heudorf et al. (2001)

diethylphosphate (DEP), diethylthiophosphate (DETP), diethyldithiophosphat e (DEDTP), dimethylphosphate (DMP), dimethylthiophosphat e (DMTP), and dimethyldithiophosph ate (DMDTP)	Organophosphorous' Metabolites	Human	Meconium	Lyophilization. Solid-Liquid Extraction. Derivatization	Isotope Dilution Gas Chromatography (ID GC)	Tandem Mass Spectrometry (MS/MS)	N/A	0.5 μg/g	Whyatt and Barr (2001)
azinphos-methyl, chlorpyrifos, diazinon, dimethoate, fenitrothion, fenthion, methidathion, parathionmethyl, phosmet, aldrin, dieldrin, p,p'-DDD, ,p'-DDE, p,p'-DDT, α- and β-endosulfan (- ether, -lactone and - sulfate), endrin, α-, β-, γ- and δ-HCH, hexachlorobenzene, heptachlor, heptachlorepoxide, and methoxychlor	Organochlorine, Organophosphorous and their metabolites	Human	Urine and serum	Solid-phase extraction (SPE)(500 mg C18 cartridge) and Liquid-liquid microextraction (LLME)	Gas Chromatography (GC)	Electron-Capture (ECD) and Nitrogen- Phosphorus Detectors (NPD)	URINE: SPE - 0.5 to 2.0 ng/mL LLME - 0.6 to 6.0 ng/mL BLOOD: SPE 1 to 10ng/mL	N/A	Pitarch et al. (2001)
dimethylphosphate (DMP), diethylphosphate (DEP), O,O- dimethylthiophosphat e (DMTP), O,O- diethylthiophosphate (DETP), O,O- dimethyldithiophosph ate (DMDTP), and O,O- diethyldithiophosphat e (DEDTP)	Organophosphorous' Metabolites	Human	Urine	Liquid-Liquid Extraction (diethylether and acetonitrile). Derivatization (pentafluorobenzylbromide). Liquid-Liquid Extraction.	Gas Chromatography (GC)	Mass Spectrometry (MS)	1 to 5 μg/L	N/A	Hardt and Angerer (2000)

Acephate, chlorpyrifos, cyanox, diazinon, dichlorvos (DDVP), dimethoate, disyston, edifenphos (EDDP), EPN, estox, fenitrothion (MEP), fenthion (MPP), ormothion, isofenphos, isoxathion, malathion, methidathion (DMTP), monocrotophos, naled (BRP), phenthoate (PAP), parathion, prothiophos, pyridaphenthion, salithion, tetrachlorvinphos (CVMP), trichlorfon (DEP)and vamidothion	Organophosphorous and metabolites	Human	Urine	Liquid-Liquid Extraction (Diethyl ether)	N/A	Spectrophotometer	0.10 to 10 μg/mL	N/A	Namera et al. (2000)
chlorpyrifos and 3,5,6- trichloro-2-pyridinol (TCP)	Organophosphorous and metabolites	Human	Urine	Deproteinization by Acetonitrile	Coupled-column liquid chromatography/ electrospray (LC- LC-ES)	Tandem Mass Spectrometry (MS/MS)	1.5 ng/mL in serum, and 0.5 ng/mL in urine	N/A	Sancho et al. (2000)
N-methylcarbamates, aldicarb, aldicarb sulphoxide, aldicarb sulphone, carbofuran and 3- hydroxicarbofuran	Carbamates	Human	Urine	Solid-Phase Extraction with graphite carbon (Disposable 3-ml SPE cartridges containing 500 mg of graphite carbon obtained from Supelco - Cartridges were pre-conditioned with 10 ml of ethyl acetate, 15 ml of CH ₃ CN and 10 ml of Milli-Q water)	Reverse-Phase Liquid Chromatography - Liquid Chromatography (RPLC-LC) (A mixture of CH ₃ CN-H ₂ O (5:95, v/v) was used has first mobile phase)	UV detector	0.3 - 1 μg/l	1 - 3 μg/l	Parrilla Vázquez et al. (2000)

arbamates and others	Human	Whole Blood, Plasma, Urine and Tissues	Diazines - Liquid-liquid extraction (LLE), solid-phase extraction (SPE) and solid- phase microextraction (SPME)	Gas chromatography (GC) and High- performance liquid chromatography	Mass Spectrometry (MS)	0.11 to 0.14 µg/ml - Triazines from 6 ng/ml to 1.4 µg/ml - Carbamates from 0.5 ng/ml to 1 µg/ml - Dinitroanilines from 1.9 pmol/mol to 4.5 pmol/mol Chloroacetanili des 3ng/ml	Diazines from 0.16 to 10 µg/ml - Triazines from 6.25 ng/ml to 400 ng/ml - Carbamates from 1 ng/ml to 6 µg/ml - Chloroacetanili des 1 ng/ml to 1000 ng/ml	Kumazaw a and Suzuki (2000)
Carbamates	Human	Urine	Transformation to uncharged form - 400μL of 2M Hydrochloric Acid; Liquid-Liquid Extraction (Ethyl acetate and Hexane (75:25 v/v; 0,7ml); Evaporation of Solvent; Derivatization (300 μL of Diazoethane/Toluene solution)	Capillary Gas Chromatography (GC) (splitless mode)	Mass Spectrometry (MS)	0.7 μg/ l in urine	13 μg/L	Weiss et al. (1999)
Carbamates	Human	Urine	Liquid-Liquid Extraction (2x (5mL of Diethyl Ether/Acetonitrile 1:1 v/v); Derivatization (1.5mL Acetonitrile with 100µL of PFBBr(Pentafluorobenzyl bromide)-Acetonitrile (1:2 v/v); Liquid-Liquid Extraction (2x (1mL Heptane),	Gas Chromatography (GC) (splitless mode)	Mass Spectrometry (MS)	0.5 μg/ 1 (DDHP), 1 μg/ 1 (MDHP) and 4 μg/1 (ADHP)	2 μg/l	Hardt and Angerer (1999)
Carbamates	Human	Blood	2x Precipitation; Solid-Phase Extraction (With a column packed with 5g of Extrelut powder; Eluted: Dichloromethane:ethyl acetate:chloroform (65:25:10, 15 ml); Derivatization (10μL methomyl or 20μL of MTBSTFA for tert- butyldimethylsilyl (tBDS) derivatization)	Gas Chromatography (GC) (splitless mode)	Mass Spectrometry (MS)	0.5ng/g	1 ng/g	Ito et al. (1998)
	arbamates and others Carbamates Carbamates Carbamates	arbamates and others Human Carbamates Human Carbamates Human Carbamates Human	arbamates and others Human Plasma, Urine and Tissues Carbamates Human Urine Human Urine Carbamates Human Human Blood	arbamates and othersHumanWhole Blood, Plasma, Urine and TissuesDiazines - Liquid-liquid extraction (LLE), solid-phase extraction (SPE) and solid- phase microextraction (SPME)CarbamatesHumanUrineTransformation to uncharged form - 400µL of 2M Hydrochloric Acid; Liquid-Liquid Extraction (Ethyl acetate and Hexane (75.25 v/v, 0.7ml); Evaporation of Solvent; Derivatization (300 µL of Diazoethane/Toluene solution)CarbamatesHumanUrineLiquid-Liquid Extraction (Ethyl acetate and Hexane (75.25 v/v, 0.7ml); Evaporation of Solvent; Derivatization (300 µL of Diazoethane/Toluene solution)CarbamatesHumanUrineLiquid-Liquid Extraction (2x (5mL of Diethyl Ether/Acetonitile 1:1 v/v); Derivatization (2x (1mL Extraction (2x (1mL Heptane), 2x Precipitation; Solid-Phase Extraction (With a column packed with Sg of Extrelut powder; Eluted: Dickloromethane:ethyl acetate:chloroform (65:25:10, 15 ml; Derivatization (10µL methomyl or 20µL of MTBSTFA for tert- butyldimethylsiyl (BDS) derivatization;	arbamates and othersHumanWhole Blood, Plasma, Urine and TissuesDiazines - Liquid-liquid extraction (LEB, solid-phase extraction (SPE) and solid- phase microextraction (SPME)Gas chromatography (GC) and High- performance liquid dromatographyCarbamatesHumanUrineTransformation to uncharged form - 400µL of 2M Hydrochloric Acid, Liquid-Liquid Extraction (GPME)Capillary Gas (Capillary Gas (Coc) epilites mode)CarbamatesHumanUrineLiquid-Liquid Extraction (Ehyl acetate and Hexane solution) Evaporation of Solvent; Derivatization (30 µL) of Diazoethane/Toluene solution)Capillary Gas (Coc) (epilites mode)CarbamatesHumanUrineLiquid-Liquid Extraction (SmL of Diethyl Ether/Acetonitrile 11 v/v); Derivatization (15mL Acetonitrile with 100µL of 2V (17mL) Extraction (2X (Inn. Heptane), Coc) (epilites mode)Cas Chromatography (CC) (epilites mode)CarbamatesHumanBlood2X Precipitation; Solid-Phase Extraction (With a column packed with 52 of Extraction (With 52 of Extraction (With 52 of Extraction (With 52 of Extraction (With 55 of Extraction (With 55 of Extraction (With 55 of Extraction (With a column packed with 55 of Extraction (With 200) (GC) (epilites mode)	arbamates and othersHumanWhole Blood, Plasma, Urine and TissuesDiazines - Liquid-liquid extraction (LLE), solid-phase extraction (SPD) and solid- phase naircoextraction (SPME)Gas chromatography (GC) and High- performance liquid chromatographyMass Spectrometry (MS)CarbamatesHumanUrineTransformation to uncharged form - 400µL of Liquid Extraction (SPME)Capillary Gas (RS)Mass Spectrometry (MS)CarbamatesHumanUrineTransformation to uncharged form - 400µL of Liquid Extraction (SPME)Capillary Gas (RS)Mass Spectrometry (MS)CarbamatesHumanUrineTransformation to uncharged form - 400µL of Liquid Extraction (SPME)Capillary Gas (RS)Mass Spectrometry (MS)CarbamatesHumanUrineTransformation to uncharged form - 400µL of Liquid Extraction (2x (BM) acted and Hexane (75.25 v/v. 0.7ml); Ether / Acetonitrile 11 v/v); Derivatization (300 µL of Diazoethane/ Tolucee solution)Capillary Gas (CG) (splitles mode)Mass Spectrometry (MS)CarbamatesHumanUrinePrespinal Control (2x) (C) (splitles Direlization (2x) (1x) Ether / Acetonitrile 11 v/v); Derivatization (2x) (1x) Heptane), Extraction (WH a column packed with 5g of Extredue Direlization (65.25.0), (5.25.0), <br< td=""><td>arbamates and othersHumanWhole Blood, Plasma, Urine and Plasma, Urine and TassuesDispine - Liquid-liquid extraction (LIL), solid-phase extraction (SPME) and solid- pheromatographyGas chromatography (GA) and High- performance) heromatographyMass Spectrometry (MS)Mass Spectrometry nor of the transmitter transmitter transmitter transmitter transmitter transmitter transmitter (SPME)Carbamates transmitter tra</td><td>arbamatesHumanWhole BloodDiazines - Liquid-liquid phase Utraction (LLF), solid-phase extraction (LLF), solid-phase phase microextraction (SPM H) phase Utraction (LLF), solid-phase phase microextraction (SPM H) (CG) and Higp- phase Microextraction (MS)Mass Spectrometry microextraction (SPM H) microextraction (CG) spectraction (CG) spectraction (</td></br<>	arbamates and othersHumanWhole Blood, Plasma, Urine and Plasma, Urine and TassuesDispine - Liquid-liquid extraction (LIL), solid-phase extraction (SPME) and solid- pheromatographyGas chromatography (GA) and High- performance) heromatographyMass Spectrometry (MS)Mass Spectrometry nor of the transmitter transmitter transmitter transmitter transmitter transmitter transmitter (SPME)Carbamates transmitter tra	arbamatesHumanWhole BloodDiazines - Liquid-liquid phase Utraction (LLF), solid-phase extraction (LLF), solid-phase phase microextraction (SPM H) phase Utraction (LLF), solid-phase phase microextraction (SPM H) (CG) and Higp- phase Microextraction (MS)Mass Spectrometry microextraction (SPM H) microextraction (CG) spectraction (CG) spectraction (

II- EXPERIMENTAL

1. INSTRUMENTATION

- Refrigerator -Biomedical Division (2-8°C);
- Freezer Liebherr inferior a -15°C;
- Super Freezer Isoterme Paineis Isotermicos Glacial;
- Rollers Roller Mixer SRT2/9 Stuart Scientific ;
- Centrifuge Megafuge 1.0 Heracus Sepatech);
- Sample Concentrator Techne DRI-BLOCK® DB3;
- Ultrasonic bath Grant XB14;
- Vortex Velp Scientifica 2x3;
- Millipore Simplicity 185 SimpaKOD2;
- pH meter electrodes 827 pH Lab Ω Metrohm Swissmade;
- Calibrated Pipettes and Dispensers.

1.1. EXTRACTION SYSTEM

A vacuum manifold was used from Varian Inc. (Palo Alto, USA) for support of the solid-phase extraction Oasis[®] HLB cartridge 3cc/60mg 30µm that were obtained from Waters (Milford, MA, USA).

1.2. CHROMATOGRAPHIC AND DETECTION SYSTEMS

Chromatographic analysis was performed using an HP 6890 gas chromatograph equipped with a model 5972 mass selective detector (Hewlett-Packard, Waldbronn, Germany). A capillary column (30 m × 0.25 mm I.D., 25 μ m film thickness) packed with 5% phenylmethylsiloxane (HP5-MS), supplied by J & W Scientific (Folsom, CA, USA), was used.

2. MATERIAL

2.1. REAGENTS AND SOLVENTS

Reagents used, 2-propanol, ethyl acetate, acetic acid, methanol and formic acid, were analysis grade with the exception of the methanol in the reconstitution which was GC grade. All reagents were purchased from Merck (Darmstadt, Germany).

2.2. STANDARDS

All analytical standards omethoate, dimethoate, diazinon, chlorpyrifos, parathion-ethyl, chlorfenvinphos Z and E, quinalphos, azinphos-ethyl and ethion (IS) were purchased from Merck (Darmstadt, Germany). The purity of analytical were as follows: omethoate 98.3%, dimethoate 99.4%, diazinon 98.3%, chlorpyrifos 99.9%, parathion-ethyl 98.8, chlorfenvinphos Z and E 97.7%, quinalphos 99.3%, azinphos-ethyl 99.1% and ethion 97.9%.

2.3. BIOLOGICAL SAMPLES

Blank blood samples used in this work were obtained from the excess supplies of the Portuguese Institute of Blood (outdated transfusions), preserved with citrate phosphate dextrose (1:7). Post-mortem samples used in the method were obtained from the Laboratory of Forensic Toxicology, South Branch, National Institute of Legal Medicine. All samples were stored frozen until analysis.

2.4. WORKING SOLUTIONS

Stock standard solutions were prepared, from respective analytical standards, at a concentration of 10 mg/mL in methanol, with the exception of ethion (I.S.) which was prepared at 1 mg/mL in methanol. Subsequently four working solutions at 1 mg/mL, 100 μ g/mL, 10 μ g/ml and 1 μ g.mL for proper addition pesticide concentration without overloading the blood sample with methanol, and at 10 μ g/mL for ethion, were prepared by appropriate dilution of the stock solutions with methanol.

These solutions were stored protected from light at -15 °C.

2.5. BUFFER SOLUTIONS

Buffer solutions are remarkably resistant to pH changes caused by the addition of an acid of alkaline solution, providing more stability to the samples spiked with pesticides. The choice regarding the buffer was related to the pesticides' pKa, which is low, denoting the need of a rather acidic buffer solution. Several buffer solutions were tested, to study which of these acidic buffer solutions were best suited for the procedure. Acetic acid and ammonium acetate buffer solution provided the best results and was chosen for this work. For the preparation of the acetic acid and ammonium acetate buffer solution 0.1M, 7.7g of ammonium acetate were weighted to a 1 L volumetric flask, 3.3 mL of acetic acid were added along with milliQ water until the volume was full.

3. CHROMATOGRAPHIC AND DETECTION CONDITIONS

Chromatographic conditions were as indicated in Figure 6. Initial oven temperature was 130 °C for 2 min, followed by an increase of 5 °C/min to 190 °C, raised by 10 °C/min to 240 °C, and and a third ramp of 15 °C/min to the final temperature of 270 °C, where it was kept constant for 7 min. Using this temperature program, a good separation of all compounds was achieved. The temperatures of the injection port and detector were set to 280 and 310 °C, respectively. Split injection mode (ratio 10:1) was adopted, and the carrier gas was helium at a constant flow rate of 1 mL/min. The mass spectrometer was operated with a filament current of 300 μ A and an electron energy of 70 eV in the electron impact (EI) mode.

Figure 6 - Chromatographic conditions.

4. EXTRACTION PROCEDURE

A 500 μ L whole blood sample was diluted with 5 mL of buffer solution 0.1M (acetic acid and ammonium acetate pH 4.88), and spiked with 50 μ L of IS solution (at 10 μ g/mL). The mixture was agitated for 15 min and centrifuged at 3500 rpm for 10min at room temperature. The supernatant was added to an Oasis® HLB extraction cartridge, previously and 2 mL of MilliQ water, the column was washed sequentially with 2mL of a 5% methanolic solution in distilled water, and dried under full vacuum for 15 min. The analytes were eluted with 2 mL of mixture methanol:isopropanol (1:1; v/v), which was afterwards evaporated to dryness at room temperature (to avoid pesticide evaporation) under a gentle stream of nitrogen. The dry extract was reconstituted in 65 μ L of methanol, transferred to autosampler vials, and 2 μ L was injected onto the GC.

5. RESULTS AND DISCUSSION

5.1. IDENTIFICATION OF COMPOUNDS

The compounds were identified by their retention time and mass spectrum. These were assessed via the injection of individual solutions of each pesticide in the full scan mode. Quantification was performed in the SIM mode, and therefore three ions were chosen for each pesticide, taking into account their relative abundance and the non-existence of the same ions in pesticides with close elution times. Indeed, the pairs chlorfenvinphos and quinalphos; and parathion and chlorpyrifos have close retention times, and therefore the selected ions were unique for each pesticide. Table 11 shows the retention times and selected ions.

PESTICIDE	RETENTION TIME (MINUTES)	SELECTED IONS		
Omethoate	9,18	<u>156*</u>	110	79
Dimethoathe	11,88	<u>125</u>	93	87
Diazinon	13,34	<u>137</u>	199	304
Chlorpyrifos	16,47	<u>197</u>	199	314
Parathion	16,51	<u>291</u>	139	155
Chlorfenvinphos	17.59	<u>323</u>	295	267
Quinalphos	17,65	<u>118</u>	157	298
Ethion (IS)	19,84	<u>231</u>		
Azinphos	22,42	<u>132</u>	160	105

Table 11 - Individual retention times and selected ions of the studied pesticides.

* Quantification ions are underlined

To extend the instrument's lifetime and avoid possible misinterpretations of chromatograms, the method's run time was widened while injecting a biological sample, in order to determine cholesterol's retention time and ensure that it will leave the column within the method's run time. Since cholesterol elutes within the method's runtime, there was no need to increase it.

5.2. OPTIMIZATION OF THE EXTRACTION PROCEDURE

Solid phase extraction is designed for separation/purification of analytes before instrumental analysis (usually chromatographic). This technique consists basically of a stationary phase to which the analytes adsorb depending on their affinity. Sample borne interferences are washed with disrupting solutions (though the strength of those solutions must be low in order not to lose analyte). Finally, the analytes are eluted with a solution of high affinity for them.

The main steps that could influence pesticide extraction and detection were optimized previously, in order to decrease matrix interferences and enhance the signal-to-noise ratio. Not all the studied pesticides' pKa values are known, but the majority of these are acidic. This characteristic has lead to the possibility of using MAX (Mixed-mode Anion-eXchange and reversed-phase sorbent for acids) SPE extraction cartridges employing an anionic interaction than a rather polar. Both MAX and HLB extraction cartridges were tested following the supplier's indications. Though pesticides denote more acidic characteristics due to their low pKa, better results were obtained using the HLB cartridges, as can be seen in Table 12.

		HLB		MAX		HLB→MAX
Pesticide	Concentration µg/mL	CV	Absolute Averages	CV	Absolute Averages	Average Decrease in Absolute Values
	1,5	14,46%	57513	25,81%	2243	-95,62%
Omethoate	3	35,74%	141605	17,07%	6656	-94,65%
	6	18,22%	405827	12,99%	15829	-96,11%
	1	6,46%	87118	20,58%	48217	-42,82%
Dimethoate	2	8,84%	170187	2,22%	129492	-23,45%
	4	17,00%	336464	11,35%	228173	-32,36%
	1,3	10,89%	92095	8,91%	61831	-27,48%
Diazinon	2,6	22,75%	154626	1,41%	153808	0,01%
	5,2	25,04%	248504	12,16%	265160	6,90%
Chlorpyrifos	1	7,58%	69597	7,36%	39842	-40,50%
	2	13,29%	125557	5,08%	94442	-24,80%
	4	23,77%	213157	12,48%	152462	-28,49%
Chlorfenvinfos	1,3	3,61%	108341	7,68%	70625	-32,78%
	2,6	8,49%	220601	2,97%	179860	-18,24%
	5,2	15,86%	404115	11,36%	310265	-23,35%
	1	7,64%	48102	16,22%	22011	-51,46%
Parathion	2	8,31%	103189	4,92%	71352	-30,64%
	4	21,29%	210722	14,23%	142618	-32,52%
Quinalphos	1	3,55%	40221	2,07%	27018	-30,73%
	2	7,68%	84790	3,96%	69478	-17,73%
	4	9,50%	152021	13,34%	130107	-14,45%
	1	5,00%	139679	11,27%	71893	-46,76%
Azinphos	2	7,72%	305930	3,96%	193008	-36,18%
	4	19,44%	563489	11,08%	331699	-41,23%

Table 12 - Comparison between the extractions cartridges HLB and MAX.

Several buffer solutions of different pH values were tested for the optimization of the extraction procedure (Table 13).

BUFFER SOLUTION	ΡН
H ₂ O	≈7.0
PBS	7.4
KH ₂ PO ₄	4.5
HOAc	4.9
Na ₂ HPO ₄	5.6

Table 13 - Buffer solutions tested

The best results were obtained with KH₂PO₄ and HOAc buffers. However, since these results were statistically undifferentiated, HOAc was selected since its preparation is easier.

One of the steps in which more effort and focus were given was the elution step, as the 2 mL of methanol instructed by the suppliers were found to lack elution strength. Several elution solutions were tested, and significant differences were found amongst them. These solutions are presented in Table 14.

VOLUME	ELUTION SOLUTION			
2 mL	Methanol			
4 mL (2 mL +2 mL)	Methanol + Methanol with 2% formic acid			
4 mL (2 mL +2 mL)	Ethyl Acetate + Ethyl Acetate with 2% formic acid			
4 mL (2 mL +2 mL)	Methanol + Ethyl Acetate			
4 mL (2 mL +2 mL)	Methanol + 2-propanol			
4 mL (2 mL +2 mL)	Methanol			
2 mL	2-propanol			
2 mL	Ethyl Acetate			
2 mL	Methanol: 2-propanol (50:50 – v/v)			

Table 14 - Elution solutions tested and respective volume

Ethyl Acetate and 2-propanol had very strong elution power when compared to methanol. Both solvents yielded similar results, but the volatility of ethyl acetate appeared to have a deleterious effect on some pesticides. Indeed, omethoate and dimethoate were significantly affected by this, as the obtained peak areas were extremely small.

Therefore, 2-propanol was preferred, but due to it's viscosity a mixture with methanol (50:50) was selected as the elution solvent, since fast elutions were obtained.

Two different solutions were tested for the washing step, an aqueous solution of 5% methanol, and an aqueous solution of 5% NH₄OH. The best results were obtained with the former solution, and therefore this was chosen for this work.
6. VALIDATION

After optimization the methodology was validated according to internationally accepted criteria (FDA, 2001). The studied parameters were selectivity, linearity, calibration curves, precision and accuracy, limits of detection and quantitation.

6.1. SELECTIVITY

Selectivity (sometimes called specificity) is the ability of the bioanalytical method to measure unequivocally and to differentiate the analyte(s) in the presence of components, which may be expected to be present. (Peters, et al, 2001)

To evaluate the selectivity of the method, being blood the essential matrix, forty samples of post-mortem blood were gathered in ten different pools of blood of approximately 10 mL each. These pools were extracted according to the previously described procedure, and injected with no addiction of pesticides or even internal standard (I.S.), to verify the absence of the signal. A second extraction and injection followed this first, this time the samples were spiked with pesticides and I.S. at a 1 μ g/mL each.

The obtained chromatograms were compared (Figure 7-Figure 22). The peaks were wellseparated, and no interferences were observed.

The ratios of the selected ions were compared to ensure their identity, and so were their relative retention times. The criteria of conformity are discriminated in Table 15, the margins of tolerance are calculated based on the percentage of peak area compared to the main peak area (relative peak area).

TOLERANCE						
PEAK RELATIVE AREA GC/MS						
>50%	10%					
25 até 50%	20%					
<25%	5%					
Retention Time	0,2					
Relative Retention Time	1%					

Table 15 - Tolerance margin of each relative peak area and retention times

BLANK SAMPLES FROM POOL 6

Figure 7 - Selectivity omethoate (blank sample).

Figure 9 - Selectivity diazinon (blank sample).

Figure 10- Selectivity diazinon (spiked sample).

Figure 11 - Selectivity dimethoate (blank sample).

Figure 12 - Selectivity dimethoate (spiked sample).

Figure 13 - Selectivity chlorpyrifos (blank sample).

Figure 14 - Selectivity chlorpyrifos (spiked sample).

Figure 15 - Selectivity chlorfenvinphos (blank sample).

Figure 16 - Selectivity chlorfenvinphos (spiked sample).

Figure 17 - Selectivity parathion (blank sample).

Figure 18 - Selectivity parathion (spiked sample).

Figure 19 - Selectivity azinphos (blank sample).

Figure 20 - Selectivity azinphos (spiked sample).

Figure 21 - Selectivity quinalphos (blank sample).

Figure 22 - Selectivity quinalphos (spiked sample).

6.2. LINEARITY

Linearity of a method is its ability to maintain proportional linear responses, to increasing concentrations of the analyte(s) within a certain range. So it can be ascertained a concentration based on a given response. (Peters et al., 2001, FDA, 2001)

Linearity of the method for all pesticides was established on spiked blood samples prepared and analyzed using the described extraction procedure in the range of 0.05 to 25.00 μ g/mL, with a total of 15 calibrators.

The linearity obtained for each pesticide and the one-way ANOVA and linear regression results are presented in figures 23 to 30 and tables 16 to 23.

Figure 23 - Omethoate Non-Linear Curve

Table 16 - Omethoate regression table

Regression St	tatistics							
Multiple R	0,990009167							
R Square	0,980118151							
Adjusted R Square	0,978588778							
Standard Error	0,188885931							
Observations	15							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	22,8646331	22,8646331	640,8627302	1,90708E-12			
Residual	13	0,463812633	0,035677895					
Total	14	23,32844573						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0,1130009	0,07221515	1,564781065	0,141642874	-0,043010447	0,269012246	-0,043010447	0,269012246
X Variable 1	0,144301944	0,005700194	25,31526674	1,90708E-12	0,131987422	0,156616465	0,131987422	0,156616465

DIMETHOATE

Figure 24 - Dimethoate Linear Curve

Table 17- Dimethoate regression table

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0,998226389					
R Square	0,996455924					
Adjusted R Square	0,996183303					
Standard Error	0,18435545					
Observations	15					

ANOVA

	df	SS	MS	F	Significance F			
Regression	1	124,2253905	124,2253905	3655,0928	2,56485E-17			
Residual	13	0,441830116	0,033986932					
Total	14	124,6672206						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0,174018253	0,07048305	2,468937611	0,028191005	0,021748881	0,326287625	0,021748881	0,326287625
X Variable 1	0,336352955	0,005563474	60,45736349	2,56485E-17	0,324333801	0,34837211	0,324333801	0,34837211

DIAZINON

Figure 25 - Diazinon Linear Curve

Table 18 - Diazinon regression table

SUMMARY OUTPUT

Regression St	tatistics							
Multiple R	0,995942287							
R Square	0,991901039							
Adjusted R Square	0,991278042							
Standard Error	0,325046082							
Observations	15							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	168,2179153	168,2179153	1592,144118	5,5328E-15			
Residual	13	1,373514417	0,105654955					
Total	14	169,5914298						
	Coefficients S	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0,088992362	0,124272102	-0,716108935	0,486589422	-0,357465915	0,179481191	-0,357465915	0,179481191
X Variable 1	0,391404835	0,009809232	39,90168064	5,5328E-15	0,370213278	0,412596392	0,370213278	0,412596392

CHLORPYRIFOS

Figure 26 - Chlorpyrifos Linear Curve

Table 19 - Chlorpyrifos regression table

SUMMARY OUTPUT

Regression Statistics							
Multiple R	0,998185498						
R Square	0,996374289						
Adjusted R Square	0,996095388						
Standard Error	0,168819051						
Observations	15						

ANOVA

	df	SS	MS	F	Significance F
Regression	1	101,8159047	101,8159047	3572,50394	2,97416E-17
Residual	13	0,370498335	0,028499872		
Total	14	102,186403			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0,043045253	0,064543151	0,666922089	0,516485028	-0,096391747	0,182482253	-0,096391747	0,182482253
X Variable 1	0,304507417	0,005094617	59,77042697	2,97416E-17	0,293501166	0,315513667	0,293501166	0,315513667

PARATHION

Figure 27 - Parathion Linear Curve

Table 20 - Parathion regression table

SUMMARY OUTPUT

Regression St	tatistics							
Multiple R	0,998641523							
R Square	0,997284891							
Adjusted R Square	0,997076037							
Standard Error	0,128788241							
Observations	15							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	79,20046899	79,20046899	4775,021469	4,53684E-18			
Residual	13	0,215623344	0,016586411					
Total	14	79,41609234						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0,033017969	0,049238512	-0,670572033	0,514230488	-0,139391307	0,073355369	-0,139391307	0,073355369
X Variable 1	0,268567798	0,003886568	69,10153015	4,53684E-18	0,260171379	0,276964218	0,260171379	0,276964218

CHLORFENVINPHOS

Figure 28 - Chlorfenvinphos Linear Curve

Table 21- Chlorfenvinphos regression table

SUMMARY OUTPUT

Regression St	tatistics							
Multiple R	0,999023994							
R Square	0,99804894							
Adjusted R Square	0,997898858							
Standard Error	0,151653221							
Observations	15							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	152,9423572	152,9423572	6650,043778	5,29361E-19			
Residual	13	0,298983091	0,022998699					
Total	14	153,2413403						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0,05084546	0,057980285	0,876943947	0,396433739	-0,07441333	0,17610425	-0,07441333	0,17610425
X Variable 1	0,373210585	0,004576587	81,54780057	5,29361E-19	0,36332347	0,383097699	0,36332347	0,383097699

QUINALPHOS

Figure 29 - Quinalphos Linear curve

Table 22 - Quinalphos regression table

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0,998137319					
R Square	0,996278107					
Adjusted R Square	0,995991808					
Standard Error	0,208195674					
Observations	15					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	150,8354686	150,8354686	3479,846393	3,52607E-17
Residual	13	0,563490703	0,043345439		
Total	14	151,3989593			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	-0,069281861	0,07959768	-0,870400503	0,399868902	-0,241242193	0,102678472	-0,241242193	0,102678472
X Variable 1	0,370631051	0,006282923	58,99022286	3,52607E-17	0,35705762	0,384204481	0,35705762	0,384204481

AZINPHOS

Table 23 - Azinphos regression table

SUMMARY OUTPUT

Regression Statistics						
Multiple R 0,998285506						
R Square	0,996573952					
Adjusted R Square	0,99631041					
Standard Error	0,234378371					

15

Observations

ANOVA

	df	SS	MS	F	Significance F
Regression	1	207,7277389	207,7277389	3781,4593	2,05792E-17
Residual	13	0,714131871	0,054933221		
Total	14	208,4418708			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0,254411712	0,089607888	2,83916649	0,013943514	0,06082564	0,447997784	0,06082564	0,447997784
X Variable 1	0,434947971	0,007073064	61,49357121	2,05792E-17	0,419667545	0,450228397	0,419667545	0,450228397

6.3. CALIBRATION CURVES

After it has been established that a pesticide has linear, or non-linear but mathematical predictable, behavior within a certain range, calibration curves with wider gaps between concentrations can be conducted in order to ascertain the intraday and also intermediate precision of a method. The number of concentrations levels chosen were eight has shown in Table 24. The number of Quality Controls (QC) was two (low at 0.50 μ g/mL and high at 17.50 μ g/mL) with three replicates each. For Repeatability or Intraday Precision a total of four concentrations (two low due to limits of quantification, one medium and one high – shown in Table 25 were chosen with five replicates.

Table 24 - Repeatability concentration data

REPEATABILITY							
	Concentration (µg/mL)						
Low	0.05						
Low	0.10						
Medium	5.00						
High	25.00						

Table 25 - Calibration curve concentration data

CAI	CALIBRATION DATA							
	Concentration (µg/mL)							
1	0.05							
2	0.10							
3	1.00							
4	5.00							
5	10.00							
6	15.00							
7	20.00							
8	25.00							

6.4. LIMITS OF DETECTION AND QUANTIFICATION

The limit of quantitation (LOQ) was defined as the lowest pesticide concentration that could be measured with adequate precision (coefficient of variation of less than 20%) and accuracy (within \pm 20% of the nominal concentration). The limits of detection (LOD), defined as the lowest tested concentration yielding a signal-to-noise ratio higher than 3 (FDA,2001).

The LOQ was determined to be 0.05 μ g/mL (LLOQ – lower limit of quantification). This applies to all pesticides in this study except for omethoate, for which the LLOQ was 0.10 μ g/mL (Table 26). The calibration curves were extracted and analyzed over a period of 30 days. All quantified values were within a ±15% range of the theoretical value given by the curve. Not too much attention was given the LOD, because all values are quantified and the LOQ is quite low, taking into account the blood values normally seen in intoxications.

Calibration data is shown in Table 26.

Table 26 - Calibration data

PESTICIDE	CURVE TYPE	WEIGHING FACTOR	CALIBRATION RANGE (µg/mL)	Slope	INTERCEPT	R ²	LOQ (µg/mL)
Omethoate	Power	Power	0.10 - 25.00	0.3571 ±0.230	04 x (1.3042 ± 0.1696)	0.9942 ± 0.0059	0.1
Dimethoate	Linear	1/x	0.05 – 25.00	1.4344 ± 0.48605	-0.03109 ± 0.03880	0.9973 ± 0.0018	0.05
Diazinon	Linear	1/x2	0.05 – 25.00	0.7237 ± 0.17058	0.02064 ± 0.00676	0.9944 ± 0.0024	0.05
Chlorpyrifos	Linear	1/x2	0.05 – 25.00	1.1048 ± 0.24881	0.05191 ± 0.01617	0.9948 ± 0.0030	0.05
Parathion	Linear	1/x2	0.05 – 25.00	1.0070 ± 0.22702	-0.02510 ± 0.01711	0.9961 ± 0.0008	0.05
Chlorfenvinphos	Linear	1/x2	0.05 – 25.00	1.2080 ± 0.32883	0.00436 ± 0.01477	0.9935 ± 0.0020	0.05
Quinalphos	Linear	1/x2	0.05 – 25.00	0.7343 ± 0.19453	0.00966 ± 0.00956	0.9946 ± 0.0022	0.05
Azinphos	Linear	1/x2	0.05 – 25.00	2.1625 ± 0.56415	0.09693 ± 0.03488	0.9949 ± 0.0022	0.05

6.5. INTERMEDIATE PRECISION

The precision of an analytical method describes the closeness of individual measures of an analyte when the procedure is applied repeatedly to multiple aliquots of a single homogeneous volume of biological matrix. (FDA,2001)

Intermediate precision, in addiction to the previous definition, refers to the precision within several days, reporting the variation of individual measures over a period of 30 days.

The precision determined at each concentration level should not exceed 15% of the coefficient of variation (CV) except for the LLOQ, where it should not exceed 20%. (FDA,2001)

Concerning the acceptance criteria, at least 67% (4 out of 6) of the QC (quality control) samples should be within 15% of their respective nominal value, 33% of the QC samples (not all replicates at the same concentration) may be outside 15% of nominal value. In certain situations, wider acceptance criteria may be justified. (FDA,2001)

Table 27 shows the average values of concentration found, bias and CV.

Taking into account the acceptance criteria of the FDA – Bioanalytical Method Validation, the results of the QC were quite good, presenting low relative errors (BIAS), in most cases below 10%, except for parathion, with 17.29% below the nominal value. However, taking into account that these compounds are pesticides and their presence indicates a situation of intoxication, this value is not so big. Omethoate's mean CV is quite high, but considering that the average BIAS for this compound falls within 10% of nominal value, this CV only a poorer precision, but quantification is still possible.

Pesticide	Spiked Concentration (µg/mL)		Concentration Found (µg/mL)	Bias* (%)	C.V (%)
Omothoata	Low	0.50	0.46	-8.69%	40.42%
Omethoate	High	17.50	18.44	5.39%	12.28%
Dimothoato	Low	0.50	0.46	-7.88%	11.54%
Dimetrioate	High	17.50	19.18	9.60%	5.32%
Diazinon	Low	0.50	0.52	3.26%	7.78%
Diazinon	High	17.50	18.46	5.50%	5.32%
Chlorowrifee	Low	0.50	0.54	8.05%	6.28%
Chlorpythos	High	17.50	18.13	3.58%	5.54%
Darathian	Low	0.50	0.41	-17.29%	14.21%
1 afaulion	High	17.50	19.45	11.14%	3.67%
Chlorfonwinnhoa	Low	0.50	0.52	3.91%	7.20%
Chlorienviliphos	High	17.50	18.55	5.98%	5.66%
Quinalphas	Low	0.50	0.52	3.02%	6.52%
Quinaiprios	High	17.50	18.45	5.43%	5.84%
Azinnhas	Low	0.50	0.51	1.05%	7.27%
Azinphos	High	17.50	19.04	8.83%	6.10%

Table 27 - Quality controls average values

* Mean relative error (bias) between measured and spiked concentrations

6.6. REPEATABILITY OR INTRADAY PRECISION

The precision of an analytical method describes the closeness of individual measures of an analyte when the procedure is applied repeatedly to multiple aliquots of a single homogeneous volume of biological matrix. (FDA,2001)

Intraday precision reports the changes of individual measures within the same day.

With the exception of omethoate, all pesticides' concentrations were within a $\pm 15\%$ interval of their expected value, and the CV's were below 15% (Table 28).

Concerning intraday repeatability, the pesticides demonstrate good results and reveal ed adequate reproducibility. The intraday variation between aliquots was within the 15% range for all pesticides, except for omethoate, which presented a different behavior, having a few outliers

that shifted the average out of the margin. This deviation occurred in the medium concentrations, and not at the edges.

PESTICIDE	Spiked Concentration		Concentration Found	BIAS	C.V
Omethoate	Low	0.10	0,10	0,05%	11,65%
	Medium	5.00	3,79	-24,15%	34,27%
	High	25.00	23,83	-4,70%	11,79%
Dimethoate	Low	0.05	0,05	-0,60%	6,65%
	Low	0.10	0,10	2,17%	7,00%
	Medium	5.00	4,43	-11,36%	5,86%
	High	25.00	27,34	9,37%	4,20%
Diazinon	Low	0.05	0,05	-8,15%	1,93%
	Low	0.10	0,1	-1,98%	6,26%
	Medium	5.00	4,45	-10,99%	3,05%
	High	25.00	28,12	12,50%	1,44%
Chlorpyrifos	Low	0.05	0,05	-3,31%	1,68%
	Low	0.10	0,11	7,27%	3,26%
	Medium	5.00	4,65	-6,90%	5,95%
	High	25.00	27,23	8,91%	2,56%
Parathion	Low	0.05	0,05	8,57%	10,01%
	Low	0.10	0,09	-6,80%	5,21%
	Medium	5.00	4,38	-12,44%	2,23%
	High	25.00	28,30	13,20%	2,75%
Chlorfenvinphos	Low	0.05	0,04	-11,83%	3,07%
	Low	0.10	0,10	3,36%	6,05%
	Medium	5.00	4,65	-6,92%	6,54%
	High	25.00	26,41	5,63%	4,59%
Quinalphos	Low	0.05	0,05	-4,00%	5,29%
	Low	0.10	0,10	5,27%	5,26%
	Medium	5.00	4,57	-8,53%	5,08%
	High	25.00	28,20	12,79%	1,28%
Azinphos	Low	0.05	0,05	-4,10%	2,25%
	Low	0.10	0,10	1,20%	3,93%
	Medium	5.00	4,59	-8,16%	5,75%
	High	25.00	28,36	13,46%	4,30%

III – CONCLUSIONS

The developed method was considered validated and adequate for the qualitative and quantitative determination of organophosphorous pesticides in human blood. It also denotes significant sensitivity, allowing the detection of pesticide amounts as low as 50 ng/mL (100 ng/mL for omethoate) utilizing only 0.5 mL of sample. The use of this small amount of sample is important in forensic situations, especially where there is little sample availability and several analyses and procedures are needed.

The studied compounds presented in general good behavior throughout the whole procedure, being omethoate the most limitating compound. In fact, some of the optimized parameters were limited by this compound's instability.

In addition, several other parameters were not determined, and these would have been helpful for the method's characterization. For instance, it would have been important to calculate the method's absolute recovery, to assess whether or not there is loss of analytes during sample preparation; as well as the analytes' instability in both stored and processed samples. The method's recovery has been optimized previously, but its neat value was not determined. This parameter may be overcome, provided that precision and accuracy are adequate. However, analyte stability is perhaps the most important parameter in method validation. Indeed, if an analyte is not stable during sample storage, the whole procedure will be biased, despite of the adequate precision and accuracy. Unfortunately, this parameter is often not studied during method validation. Despite of these issues, the developed method is simple and does not consume too much time, since sample preparation can be easily done within a few hours. Four these reasons, this procedure was considered adequate for application in routine toxicological analysis.

IV – REFERENCES

- Gallardo, E. PhD thesis: Aplicación de sistemas de extracción sin disolventes para la determinación de pesticidas organofosforados e material de interés médico-legal. Facultade de Medicina e Odontoloxia, Universidade de Santiago de Compostela, Santiago de Compostela, 2005. ISBN: 84-9750-673-1.
- Marrs, T, Ballantyne, B. Pesticide toxicology and international regulation. John Wiley and Sons, Ltd, West Sussex, England, 2004. ISBN: 978-0-471-49644-1.
- Casarett, L, Klaassen, C, Doull, J. Casarett & Doull's Toxicology The Basic Science of Poison. McGraw-Hill Medical Publishing Division, 6th edition, 2001. ISBN: 0-07-134721-6.
- Widmaier, E, Raff, H, Strang, K. Vander's Human Physiology The mechanisms of body function. McGraw-Hill International Editions, 10th edition, 2006. ISBN-13: 978-0-07-111677-0.
- Purves, D, Augustine, G, Fitzpatrick, D, Hall, W, Lamantia, A, McNamara, J, Williams, M. Neuroscience. Sinauer Associates, Sunderland, MA, U.S.A.; 3rd edition, 2004. ISBN-13: 978-0878937257.
- Siegel, G, Albers, R, Brady, S, Price, D. Basic neurochemistry: molecular, cellular, and medical aspects. Elsevier Academic Press, London, UK, 7th edition, 1998. ISBN-13: 978-0397518203.
- Abou-Donia, M. Neurotoxicology. CRC Press, Boca Raton, Florida, U.S.A.; 1st edition, 1992. ISBN-13: 978-0849388958.
- FAO Food and Agriculture Organization of the United Nations. International Code of Conduct on the Distribution and Use of Pesticides 2002 (cited June 2009). ISBN: 92-5-104914-9.Available in URL: http://www.fao.org/DOCREP/005/Y4544E/y4544e00.htm.
- WHO World Health Organization. The WHO recommended classification of pesticides by hazard and guidelines to classification, 2004 (cited March 2009). ISBN: 92-4-154663-8 http://www.who.int/ipcs/publications/pesticides_hazard_rev_3.pdf.
- IPCS INCHEM International Programme on Chemical Safety, Chemical Safety Information from Intergovernmental Organizations, Organophosphorus Pesticides. Poisons Information Monograph 1999 (cited May 2009). Available in URL: http://www.inchem.org/.
- FDA U S Food and Drug Administration. Guidance for Industry Bioanalytical Method Validation, 2001 (cited January 2009). Available at URL: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Gu idances/UCM070107.pdf.
- Peters, F, Maurer, H. Review: Bioanalytical method validation How, how much and why? Society of Toxicological and Forensic Chemistry (Toxichem + Krimtech) 2001; volume 68: page 116.

- Vale, J. Toxicokinetic and toxicodynamic aspects of organophosphorus (OP) insecticide poisoning, 1998. Toxicology Letters 1998; volumes 102-103: pages 649-652.
- Park, M, In, S, Lee, S, Choi W, Park, Y, Chung, H. Postmortem blood concentrations of organophosphorus pesticides. Forensic Science International 2008; volume 184: pages 28-31.
- Margariti, M, Tsatsakis, A. Analysis of dialkyl phosphate metabolites in hair using gas chromatography-mass spectrometry: a biomarker of chronic exposure to organophosphate pesticides. Biomarkers 2009; volume 14: pages 137-147.
- Eddleston, M, Eyer, P, Worek, F, Sheriff, M, Buckley, N. Predicting Outcome using Butyrylcholinesterase Activity in Organophosphorus Pesticide Self-Poisoning. QJM 2008; volume 101: pages 467-474.
- John, H, Worek, F, Thiermann, H. LC-MS-based procedures for monitoring of toxic organophosphorus compounds and verification of pesticide and nerve agent poisoning. Analytical and Bioanalytical Chemistry 2008; volume 391: pages 97-116.
- Inoue, S, Saito,T, Mase, H, Suzuki, Y, Takazawa, K, Yamamoto, I, Inokuchi, S. Rapid simultaneous determination for organophosphorus pesticides in human serum by LC–MS. Journal of Pharmaceutical and Biomedical Analysis 2007; volume 44: 258-264.
- Yucra, A, Steenland, K, Chung, A, Choque, F, Gonzales, G. Dialkyl phosphate metabolites of organophosphorus in applicators of agricultural pesticides in Majes Arequipa (Peru). Journal of Occupational Medicine and Toxicology 2006; volume 1: page 27
- Hemakanthi De Alwis, G, Needham, L, Barr, D. Measurement of human urinary organophosphate pesticide metabolites by automated solid-phase extraction derivation and gas chromatography-tandem mass spectromy. Journal of Chromatography B 2006; volume 843; pages 34-41.
- Bouchard, M, Carrier, G, Brunet, R, Dumas, P, Noisel, N. Biological monitoring of exposure to organophosphorus insecticides in a group of horticultural greenhouse workers. The Annals of Occupational Hygiene 2006; volume 50: pages 505-515.
- Gallardo, E, Barroso, M, Margalho, C, Cruz, A, Vieira, D, López-Rivadulla, M. Determination of quinalphos in blood and urine by direct solid-phase microextraction combined with gas chromatography-mass spectrometry. Journal of Chromatography B 2006; volume 832: pages 162-168.
- Tsoukali, H, Theodoridis, G, Raikos, N, Grigoratou, I. Solid phase microextraction gas chromatographic analysis of organophosphorus pesticides in biological samples. Journal of Chromatography B 2005; volume 822: pages 194-200.
- Saieva, C, Aprea, C, Tumino, R, Masala, G, Salvini, S, Frasca, G, Giurdanella, M, Zanna, I, Decarli, A, Sciarra, G, Palli, D. Twenty-four-hour urinary excretion of ten pesticide metabolites in healthy adults in two different areas of Italy. Science of the Total Environment 2004; volume 332: pages 71-80.

- Hernández, F, Sancho, J, Pozo, O. An estimation of the exposure to organophosphorus pesticides through the simultaneous determination of their main metabolites in urine by liquid chromatography-tandem mass spectrometry. Journal of Chromatography B 2004; volume 808: pages 229-239.
- Olsson, A, Baker, S, Nguyen, J, Romanoff, L, Udunka, S, Walker, R, Flemmen, K, Barr, D. A liquid chromatography--tandem mass spectrometry multiresidue method for quantification of specific metabolites of organophosphorus pesticides, synthetic pyrethroids, selected herbicides, and deet in human urine. Analytical Chemistry 2004; volume 76: pages 2453-2461.
- Kupfermann, N, Schmoldt, A, Steinhart, H. Rapid and sensitive quantitative analysis of alkyl phosphates in urine after organophosphate poisoning. Journal of Analytical Toxicology 2004; volume 28: pages 242-248.
- Bravo, R, Caltabiano, L, Weerasekera, G, Whitehead, R, Fernandez, C, Needham, L, Bradman, A, Barr, D. Measurement of dialkyl phosphate metabolites of organophosphorus pesticides in human urine using lyophilization with gas chromatography-tandem mass spectrometry and isotope dilution quantification. Journal of Exposure Analysis and Environmental Epidemiology 2004; volume 14: pages 249-259.
- Barr, D, Bravo, R, Weerasekera, G, Caltabiano, L, Whitehead, R, Olsson, A, Caudill, S, Schober, S, Pirkle, J, Sampson, E, Jackson, R, Needham, L. Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the U.S. population. Environmental Health Perspectives 2004; volume 112: pages 186-200.
- Heudorf, U, Angerer, J, Drexler, H. Current internal exposure to pesticides in children and adolescents in Germany: urinary levels of metabolites of pyrethroid and organophosphorus insecticides. International Archives of Occupational and Environmental Health 2004; volume 77: pages 67-72.
- Olsson, A, Nguyen, J, Sadowski, M, Barr, D. A liquid chromatography/electrospray ionization-tandem mass spectrometry method for quantification of specific organophosphorus pesticide biomarkers in human urine. Analytical and Bioanalytical Chemistry 2003; volume 376: pages 808-815.
- Pitarch, E, Serrano, R, López, F, Hernández, F. Rapid multiresidue determination of organochlorine and organophosphorus compounds in human serum by solid-phase extraction and gas chromatography coupled to tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2003; volume 376: pages 189-197.
- Russo, M, Campanella, L, Avino, P. Determination of organophosphorus pesticide residues in human tissues by capillary gas chromatography-negative chemical ionization mass spectrometry analysis. Journal of Chromatography B 2002; volume 780: pages 431-441.
- Smith, P, Thompson, M, Edwards, J. Estimating occupational exposure to the pyrethroid termiticide bifenthrin by measuring metabolites in urine. Journal of Chromatography 2002; volume 778: pages 113-120.

- Hernández, F, Pitarch, E, Beltran, J, López, F. Headspace solid-phase microextraction in combination with gas chromatography and tandem mass spectrometry for the determination of organochlorine and organophosphorus pesticides in whole numan blood. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 2002; volume 769: pages 65-77.
- Musshoff, F, Junker, H, Madea, B. Simple determination of 22 organophosphorous pesticides in human blood using headspace solid-phase microextraction and gas chromatography with mass spectrometric detection. Journal of Chromatographic Science 2002; Volume 40: pages 29-34.
- Hernández, F, Sancho, J, Pozo, O. Direct determination of alkyl phosphates in human urine by liquid chromatography/electrospray tandem mass spectrometry. Rapid communications in mass spectrometry 2002; volume 16: pages 1766-1773.
- Koch, H, Hardt, J, Angerer, J. Biological monitoring of exposure of the general population to the organophosphorus pesticides chlorpyrifos and chlorpyrifos-methyl by determination of their specific metabolite 3,5,6-trichloro-2-pyridinol. International Journal of Hygiene and Environmental Health 2001; volume 204: pages 175-180.
- Tarbah, F, Mahler, H, Temme,O, Daldrup, T. An analytical method for the rapid screening of organophosphate pesticides in human biological samples and foodstuffs. Forensic Science International 2001; volume 121: pages 126-133.
- Koch, H, Angerer, J. Analysis of 3,5,6-trichloro-2-pyridinol in urine samples from the general population using gas chromatography-mass spectrometry after steam distillation and solid-phase extraction. Journal of Chromatography B 2001; volume 759: pages 43-49.
- Lacassie, E, Dreyfuss, M, Gaulier, J, Marquet, P, Daguet, J, Lachâtre, G. Multiresidue determination method for organophosphorus pesticides in serum and whole blood by gas chromatography-mass-selective detection. Journal of Chromatography B 2001; volume 759: pages 109-116.
- Oglobline, A, Elimelakh, H, Tattam, B, Geyer, R, O'Donnel, G, Holder, G. Negative ion chemical ionization GC/MS-MS analysis of dialkylphosphate metabolites of organophosphate pesticides in urine of non-occupationally exposed subjects. Analyst 2001; volume 126: pages 1037-1041.
- Sato, K, Jin, J, Takeuchi, T, Miwa, T, Suenami, K, Takekoshi Y, Kanno, S. Integrated pulsed amperometric detection of glufosinate, bialaphos and glyphosate at gold electrodes in anion-exchange chromatography. Journal of Chromatography A 2001; volume 919: pages 313-320.
- Heudorf, U, Angerer, J. Metabolites of organophosphorous insecticides in urine specimens from inhabitants of a residential area. Environmental Research 2001; volume 86: pages 80-87.
- Whyatt, R, Barr, D. Measurement of organophosphate metabolites in postpartum meconium as a potential biomarker of prenatal exposure: a validation study. Environmental Health Perspectives 2001; volume 109; pages 417-420.

- Pitarch, E, López, F, Serrano, R, Hernández, F. Multiresidue determination of organophosphorus and organochlorine pesticides in human biological fluids by capillary gas chromatography. Fresenius' Journal of Analytical Chemistry 2001; volume 369: pages 502-509.
- Hardt, J, Angerer, J. Determination of dialkyl phosphates in human urine using gas chromatography-mass spectrometry. Journal of Analytical Toxicology 2000; volume 24: pages 678-684.
- Namera, A, Utsumi, Y, Yashiki, M, Ohtani, M, Imamura, T, Kojima, T. Direct colorimetric method for determination of organophosphates in human urine. Clinica Chimica Acta 2000; volume 291: 9-18.
- Sancho, J, Pozo, O, Hernández, F. Direct determination of chlorpyrifos and its main metabolite 3,5, 6-trichloro-2-pyridinol in human serum and urine by coupled-column liquid chromatography/electrospray-tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2000; volume 14: pages 1485-1490.
- Bentzen, T, Muir, D, Amstrup, S, O'Hara, T. Organohalogen concentrations in blood and adipose tissue of Southern Beaufort Sea polar bears. The Science of the Total Environment 2008; volume 406: pages 352-367.
- Adenugba, A, McMartin, D, Beck, A .In vitro approaches to assess bioavailability and human gastrointestinal mobilization of food-borne polychlorinated biphenyls (PCBs). Journal of Environmental Science and Health, Part B 2008; volume 43: pages 410-421.
- Raab, U, Preiss, U, Albrecht, M, Shahin, N, Parlar, H, Fromme, H. Concentrations of polybrominated diphenyl ethers, organochlorine compounds and nitro musks in mother's milk from Germany (Bavaria). Chemosphere 2008; volume 72: pages 87-94.
- Vorkamp, K, Rigét, F, Glasius, M, Muir, D, Dietz, R. Levels and trends of persistent organic pollutants in ringed seals (Phoca hispida) from Central West Greenland, with particular focus on polybrominated diphenyl ethers (PBDEs). Environmental International 2008; volume 34: pages 499-508.
- Small, C, Cheslack-Postava, K, Terrell, M, Blanck, H, Tolbert, P, Rubin, C, Henderson, A, Marcus, M. Risk of spontaneous abortion among women exposed to polybrominated biphenyls. Environmental Research 2007; volume 105: pages 247-255.
- Hong, J, Pyo, H, Park, S, Lee, W. Determination of hydroxy metabolites of polychlorinated biphenyls in plasma and tissue by gas chromatography/mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 2007; volume 856: pages 1-8.
- Lopez-Espinosa, M, Granada, A, Carreno, J, Salvatierra, M, Olea-Serrano, F, Olea, N. Organochlorine pesticides in placentas from Southern Spain and some related factors. Placenta 2007; volume 28: pages 631-638.

- Ramos, J, Gomara, B, Fernandez, M, Gonzalez, M. A simple and fast method for the simultaneous determination of polychlorinated biphenyls and polybrominated diphenyl ethers in small volumes of human serum. Journal of chromatography 2007; volume 1152: page 124-129.
- •
- Meeker, J, Altshul, L, Hauser, R. Serum PCBs, p,p'-DDE and HCB predict thyroid hormone levels in men. Environmental Research 2007; volume 104: pages 296-304.
- Ennaceur, S, Gandoura, N, Driss, M. Organochlorine Pesticide Residues in Human Milk of Mothers Living in Northern Tunisia. Bulletin of Environmental Contamination and Toxicology 2007; volume 78: pages 325-329.
- Karasek, L, Hajšlová, J, Rosmus, J, Hühnerfuss, H. Methylsulfonyl PCB and DDE metabolites and their enantioselective gas chromatographic separation in human adipose tissues, seal blubber and pelican muscle. Chemosphere 2006; volume 67: pages S22-S27
- Hauser, R, Chen, Z, Pothier, L, Ryan, L, Altshul, L. The Relationship between Human Semen Parameters and Environmental. Environmental Health Perspectives 2003; volume 111: pages 1505-1511.
- Côté, S, Ayotte, P, Dodin, S, Blanchet, C, Mulvad, G, Petersen, H, Gingras, S, Dewailly, E. Plasma organochlorine concentrations and bone ultrasound measurements: a cross-sectional study in peri-and postmenopausal Inuit women from Greenland. Environmental Health 2006; volume 5: page 33.
- Jaraczewska, K, Lulek, J, Covaci, A, Voorspoels, S, Kaluba-Skotarczak, A, Drews, K, Schenpens, P. Distribution of polychlorinated biphenyls, organochlorine pesticides and polybrominated diphenyl ethers in human umbilical cord serum, maternal serum and milk from Wielkopolska region, Poland. The Science of the Total Environment 2006; volume 372: pages 20-31.
- Petrik, J, Drobna, B, Pavuk, M, Jursa, S, Wimmerova, S, Chovancova, J. Serum PCBs and organochlorine pesticides in Slovakia: age, gender, and residence as determinants of organochlorine concentrations. Chemosphere 2006; volume 65: pages 410-418.
- Lee, D, Lee, I, Song,K, Steffes, M, Toscano, W, Baker, B, Jacobs, D. A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999-2002. Diabetes Care 2006; volume 29: pages 1638-1644.
- Ostrea, E, Villanueva-Uy, E, Bielawski, D, Posecion, N, Corrion, M, Janisse, J, Ager, J. Maternal hair--an appropriate matrix for detecting maternal exposure to pesticides during pregnancy. Environmental Research 2006; volume 101: pages 312-322.
- De Roos, A, Hartge, P, Lubin, J, Colt, J, Davis, S, Cerhan, J, Severson, R, Cozen, W, Patterson, D, Needham, L, Rothman, N. Persistent organochlorine chemicals in plasma and risk of non-Hodgkin's lymphoma. Cancer Research 2005; volume 65: pages 11214-11226.

- Čonka, K, Drobna, B, Kocan, A, Petrik, J. Simple solid-phase extraction method for determination of polychlorinated biphenyls and selected organochlorine pesticides in human serum. Journal of Chromatography 2005; volume 1084: pages 33-38.
- Corrion, M, Ostrea, E, Bielawski, D, Posecion, N, Seagraves, J. Detection of prenatal exposure to several classes of environmental toxicants and their metabolites by gas chromatography-mass spectrometry in maternal and umbilical cord blood. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 2005; volume 822: pages 221-229.
- Hoffman, U, Hecker, U, Abel, P. Acute poisoning by pirimicarb: clinical and toxicological features. (Case Report). Clinical toxicology (Philadelphia, Pa) 2008; volume 46: pages 694-96.
- LaFiura, K, Bielawski, D, Posecion, N, Ostrea, E, Matherly, L, Taub, J, Ge, Y. Association between prenatal pesticide exposures and the generation of leukemia-associated T(8;21). Pedriatic Blood & Cancer 2007; volume 49: pages 624-628.
- Amorim, C, Albert-Garcia, J, Montenegro, M, Araujo, A, Calatayud, J. Photo-induced chemiluminometric determination of Karbutilate in a continuous-flow multicommutation assembly. Journal of Pharmaceutical and Biomedical Analysis 2007; volume 43: pages 421-427.
- Hantash,J, Bartlett, A, Oldfield, P, Denes, G, O'Rielly, R, David, F. Application of an in-line imprinted polymer column in a potentiometric flow-injection chemical sensor to the determination of the carbamate pesticide carbaryl in complex biological matrices. Analytical and Bioanalytical Chemistry 2007; volume 387: pages 351-357.
- Tracqui, A, Flesch, F, Sauder, P, Raul, j, Géraut, A, Ludes, B, Jaeger, A. Repeated measurements of aldicarb in blood and urine in a case of nonfatal poisoning. Human & Experimental Technology 2001; volume 20: pages 657-660.
- Ito, S, Kudo, K, Imamura, T, Suzuki, T, Ikeda, N. Sensitive determination of methomyl in blood using gas chromatography-mass spectrometry as its oxime tert.-butyldimethylsilyl derivative. Journal of Chromatography B: Biomedical Sciences and Applications 1998; volume 713: pages 323-330.
- Weiss et al. (1999) Determination of urinary 2-thiazolidinethione-4-carboxylic acid after exposure to alkylene bisdithiocarbamates using gas chromatography-mass spectrometry
- Weiss, T, Hardt, J, Angerer, J. Determination of metabolites of pirimicarb in human urine by gas chromatography-mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications 1999; volume 726: pages 85-94.
- Liu, K, Sung, H, Lee, H, Song, B, Ihm, Y, Kyun, K, Lee, H, Kim, J. Dermal pharmacokinetics of the insecticide furathiocarb in rats. Pest Management Science 2002; volume 58: pages 57-62.
- Vázquez, P, Vidal, M, Fernández, J. Reversed-phase liquid chromatographic column switching for the determination of N-methylcarbamates and some of their main metabolites

in urine. Journal of Chromatography B: Biomedical Sciences and Applications 2000; volume 7338: pages 387-394.

- Kumazawa, T, Suzuki, O. Separation methods for amino group-possessing pesticides in biological samples. Journal of Chromatography B: Biomedical Sciences and Applications 2000; volume 747: pages 241-254.
- Adgate, J, Barr, D, Clayton, C, Eberly, L, Freeman, N, Lioy, P, Needham, L, Pellizzari, E, Quackenboss, J, Roy, A, Sexton, K. Measurement of children's exposure to pesticides: analysis of urinary metabolite levels in a probability-based sample. Environmental Health Perspective 2001; volume 109: pages 583-590.
- Lacassie, E, Marquet, P, Gaulier, J, Dreyfuss, M, Lachâtre, G. Sensitive and specific multiresidue methods for the determination of pesticides of various classes in clinical and forensic toxicology. Forensic Science International 2001; volume 121: pages 116-125.
- Colosio, C, Fustinoni, S, Birindelli, S, Bonomi, I, De Paschale, G, Mammone, T, Tiramani, M, Vercelli, F, Visentin, S, Maroni, M. Ethylenethiourea in urine as an indicator of exposure to mancozeb in vineyard workers. Toxicology Letters 2002; volume 134: pages 133-140.
- Barr, D, Barr, J, Maggio, V, Whitehead, R, Sadowski, M, Whyatt, R, Needham, L. A multianalyte method for the quantification of contemporary pesticides in human serum and plasma using high-resolution mass spectrometry. Journal of Chromatography B: Biomedical Sciences and Applications 2002; volume 778: pages 99-111.
- Semchuk, K, McDuffie, H, Senthilselvan, A, Cessna, A, Irvine, D. Body mass index and bromoxynil exposure in a sample of rural residents during spring herbicide application. Journal of Toxicology and Environmental Health, Part A 2004; volume 67: pages 1321 1352.
- Corrion, M, Ostrea, E, Bielawski, D, Posecion, N, Seagraves, J. Detection of prenatal exposure to several classes of environmental toxicants and their metabolites by gas chromatography-mass spectrometry in maternal and umbilical cord blood. Journal of Chromatography B 2005; volume 822: pages 221-229.
- Petropoulou, S, Gikas, E, Tsarbopoulos, A, Siskos, P. Gas chromatographic-tandem mass spectrometric method for the quantitation of carbofuran, carbaryl and their main metabolites in applicators' urine. Journal Chromatography A 2006; volume 1108: pages 99-110.
- Colosio, C, Visentin, S, Birindelli, S, Campo, L, Fustinoni, S, Mariani, F, Tiramani, M, Tommasini, M, Brambilla, G, Maroni, M. Reference values for ethylenethiourea in urine in Northern Italy: results of a pilot study. Toxicology Letters 2006; volume 162: pages 153-157.
- Ostrea, E, Villanueva-Uy, E, Bielawski, D, Posecion, N, Corrion, M, Jin, Y, Janisse, J, Ager, J. Maternal hair--an appropriate matrix for detecting maternal exposure to pesticides during pregnancy. Environmental Research 2006; volume 101:pages 312-322.
- Petropoulou, S, Tsarbopoulos, A, Siskos, P. Determination of carbofuran, carbaryl and their main metabolites in plasma samples of agricultural populations using gas chromatography-

tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2006; volume 385: pages 1444-1456.

• Hantash, J, Bartlett, A, Oldfield, P, Dénès, G, O'Rielly, R, Roudiere, D, Menduni, S. Use of an on-line imprinted polymer pre-column, for the liquid chromatographic-UV absorbance determination of carbaryl and its metabolite in complex matrices. Journal of Chromatography A 2006; volume 1125: pages 104-111.