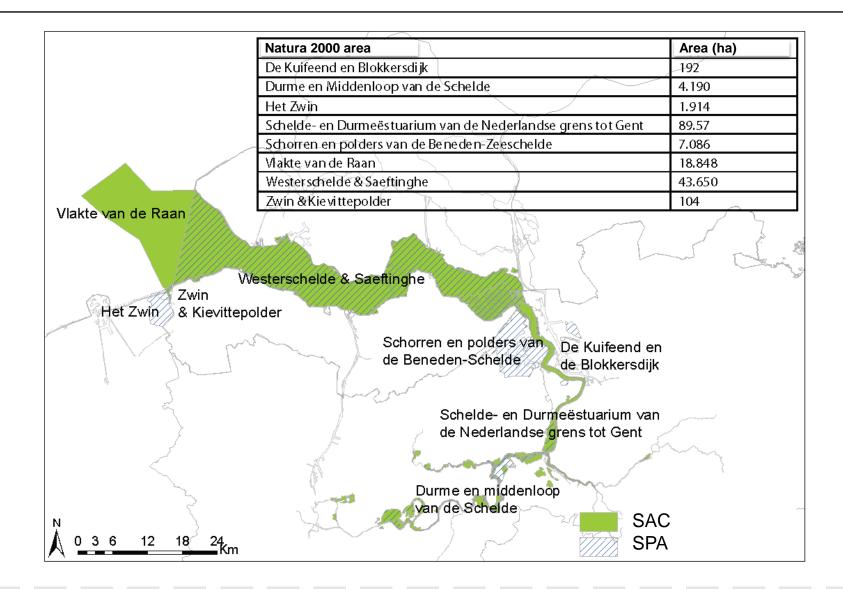
Enlargement of the navigation channel in the Scheldt estuary

Case study of a cross border EIA

Stefaan Ides – Antwerp Port Authority

27/05/2013

ESPOO seminar on biodiversity in EIA and SEA 2nd working group on EIA and SEA


The Scheldt estuary

Natura 2000 in the Scheldt estuary

The port of Antwerp

Port of Antwerp in numbers (2012):

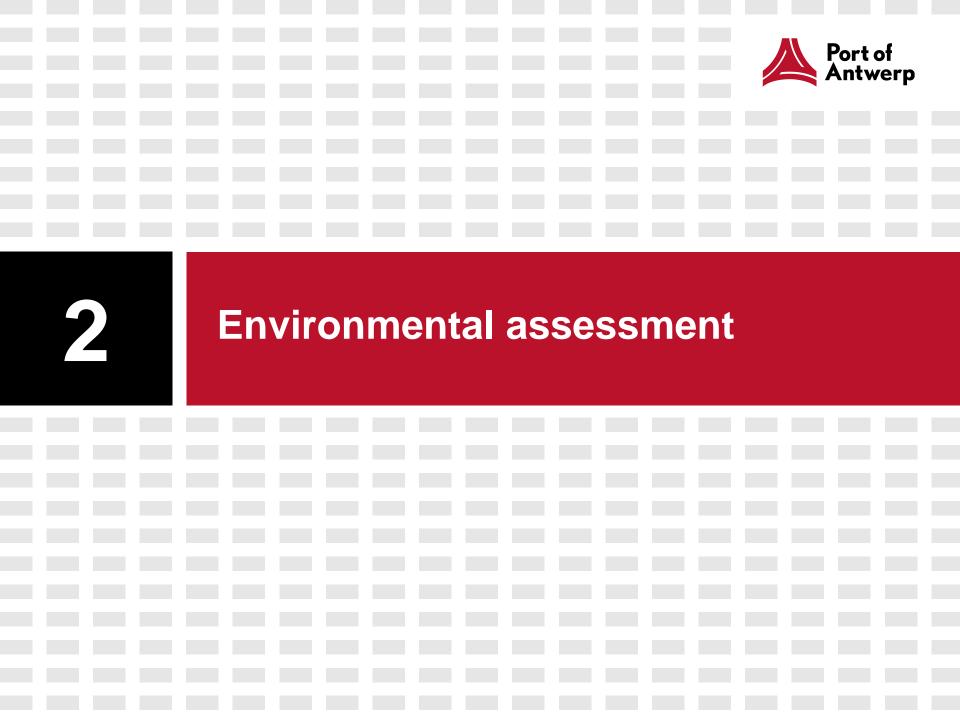
- 2nd largest European port
 - ✓ cargo: 184 134 516 tons
 - ✓ number of seagoing vessels: 14 556
 - ✓ number of inland vessels: 56 476
- 145 836 FTE jobs
- 19,2 billion € added value
 - ✓ 9,5% of Flemish GDP
 - ✓ 5,4% Belgian GDP

Cross-border management of the estuary

- 2001: Long Term Vision Scheldt estuary
 - ✓ Safety against flooding
 - ✓ Naturalness of the estuary
 - ✓ Accessibility of ports

- 2005: Development Outline 2010 Scheldt estuary, containing several projects
 - ✓ Safety against flooding: risk assessment, actualisation Sigmaplan (Flanders), ...
 - ✓ Naturalness of the estuary: controlled inundation areas, depoldering, ...
 - ✓ Accessibility of ports: enlargement of the navigation channel, ...
- Joint fact-finding Flanders-Netherlands
 - ProSes: common project office to coordinate all Scheldt projects from the LTV & DO 2010
 - ✓ Working groups: Dutch & Flemish experts, follow-up of SEA, EIA & AA
 - ✓ OAP: Flemish-Dutch stakeholder involvement

Project enlargement of navigation channel



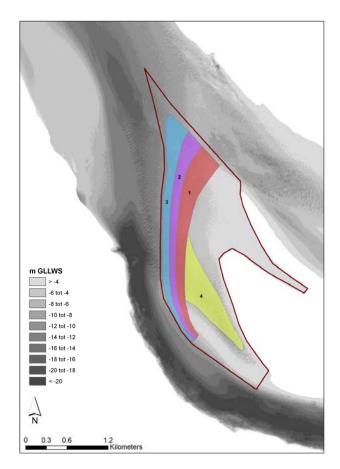
- Economies of scale in container shipping industry
 - Number of container vessels with draft > 13m increases
 - Application of strict sailing schedules by shipping companies
- Enlargement of navigation channel
 - ✓ Deepening of sills
 - ✓ Widening of navigation channel locally
 - Capital dredging works ca. 14 Mm³, both on Dutch and Flemish territory
- Procedures environmental assessment
 - ✓ 2004: SEA + AA, social cost benefit analysis (DO 2010)
 - ✓ 2007: 1 coordinated Dutch-Flemish EIA + AA

Mobility and Public Works

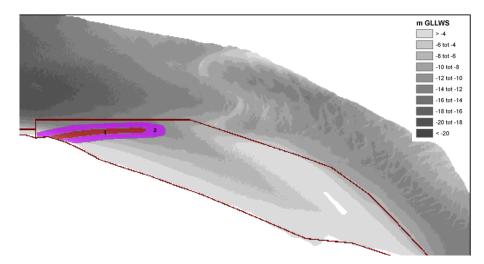
EIA: 2 project alternatives

- Middelbur Project alternative side channel AN nacrocel 4 Vlissingen macrocel 1 macrocel 0,70 Westerschelde Breskens Terneuzen legende baggervak stortvak nevengeul Aanleg baggerwerk | projectalternatief nevengeul stortvak Schaar van Ouden Doel stortvak vaargeul baggervolume (Mm³) stortvolume (Mm³)
- Project alternative sandbar

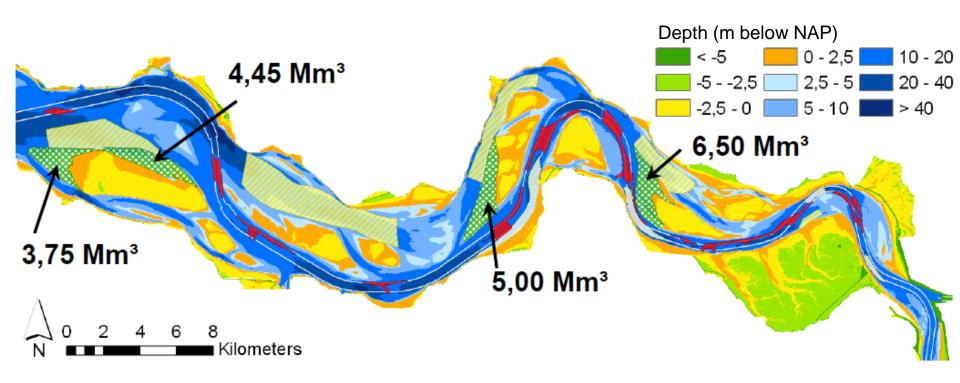
Assessment of 2 project alternatives


- Assessment of different disciplines in EIA
- No significant effect for all disciplines except "diversity species"
- Discipline "diversity species"
 - ✓ Project alternative side channel: -
 - ✓ Project alternative sandbar: +

Onderzoekdiscipline	Westerschelde	
	Projectalternatief	Projectalternatief
Bodem / morfologie	Nevengeul	Plaatrand
Stabiliteit meergeulensysteem	0	0
Overschrijding stortcriterium	0	0
Zandhuishouding	0	0
Water	U	U
Waterstanden	0	0
Stabiliteit hoogwaterkering	0	0
Zoutdynamiek	0	0
Slibdynamiek	0	0
Tijdelijke effecten baggerwerken	0	0
Natuur		
Diversiteit habitats	0	0
Diversiteit soorten	-	+
Ecologisch functioneren	0	0
Ruimtegebruik en mobiliteit		
Bodem- en ruimtegebruik	0	0
Recreatieve attractiviteit	0	0
Visserijsector	0	0
Infrastructuur en mobiliteit op de vaarweg	0	0
Lucht		
Concentraties fijn stof (PM ₁₀)	0	0
Concentraties verzurende polluenten (NO _x / SO ₂)	0	0
Concentraties overige stoffen	0	0
Geluid en trillingen		
Geluidshinder	0	0
Trillingshinder	0	0
Landschap		
Geomorfologie	0	0
Archeologie	0	0
Cultuurhistorie	0	0
Visuele impact	0	0
Externe en nautische veiligheid		
Externe veiligheid	0	0
Nautische veiligheid	0	0
Mens - gezondheid		
Gezondheidsrisico	0	0
Hinder / beleving	0	0
Risicoperceptie	0	0


The concept of project alternative sandbar

Strategy "megadune"


Strategy "sand spit"

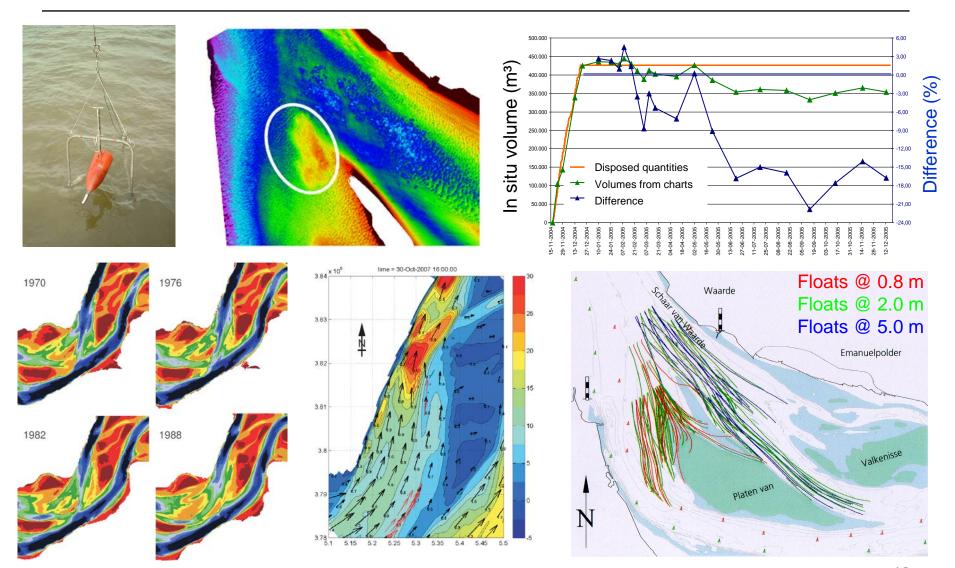
Disposal strategy as mitigating measure!

Most environmental friendly alternative

Results of assessment

- Project alternative sandbar is most environmental friendly alternative
- Little significant effects of the project
 - ✓ Dutch territory:
 - no significant negative effects
 - significant positive effect on ecology (biodiversity)
 - less maintenance dredging works on sills
 - ✓ Flemish territory:
 - significant negative effect diversity of species & ecological functioning
 - → loss of 4ha mudflat and tidal marsh area (Natura 2000)
 - no viable alternatives + project being of imperative reasons of overriding public interest (recognized by Flemish government)
 - ➔ permission if compensation
- Due to unfavourable conservation status of Scheldt estuary, every negative effect is considered as being significant negative

→ importance of a favourable conservation status, i.e. robust nature



- Use of state-of-the-art numerical models to make morphological predictions
 - ✓ Process-based model for medium term (Delft3D)
 - ✓ Empirical model for long term (Estmorf)
- Maximal use of expert judgement (accredited experts) to interpret results of models
- Maximal use of experience from the past
 - ✓ Intensive measurements following previous deepening campaign
- Worst case judgement of effects on nature values
- Additional research work on disposal strategy maximizing ecological potential
 - ✓ State of the art numerical models
 - ✓ Intensive field measurement campaigns to get insight in local processes
 - ✓ In situ tests to study the effect of disposal along sandbars

Maximizing the ecological potential

Discussions about uncertainties

Despite:

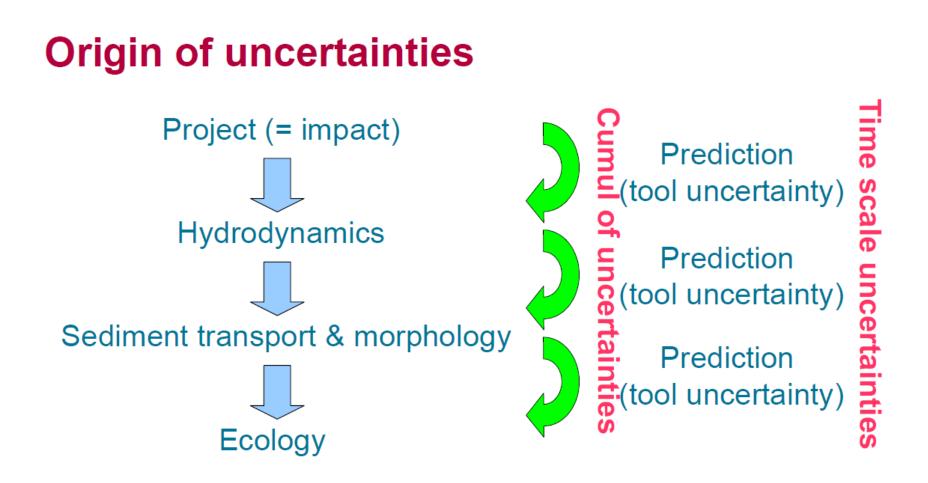
- state-of-the-art models
- maximal use of expert judgement
- maximal use of experience from the past
- Intensive field measurement campaigns
- 2 in situ disposal tests

uncertainties on eco-morphological predictions in a complex estuarine environment such as the Scheldt estuary can not be avoided!

→ How to cope with this?

The 3-stage rocket approach

- Stage 1: use of most environmental friendly alternative as determined in EIA + additional mitigation measures
 - ✓ Respect distance of at least 600m to foraging areas of birds
 - ✓ Adapt disposal areas in order not to disturb haul-out sites of seals
 - Avoid disposal with sailing TSHD to minimize area subjected to burial of benthos
 ...
- Stage 2: use of flexible disposal strategy
 - ✓ Within the permit a flexibility for the disposal strategy is foreseen
 - Based on continuous monitoring of the effects of the project, as decided by the "Flexibel disposal project group" based on predefined thresholds
 - Every 2 year, a report on the monitoring results is made. A team of cross-border experts (the so-called Western Scheldt monitoring Commission) will review this report and give recommendations to responsible government on
 - o Change of disposal strategy
 - o Change of monitoring programme
 - o Additional research
- Stage 3: possibility to stop the project if negative effects would occur
 - ✓ (temporarily) stop of disposal activities
 - ✓ remove disposed material


- Project within the Interreg IVB North Sea Region Programme
- Study on how is coped with uncertainties in recent case studies in estuaries
 - ✓ Eems: enlargement of navigation channel
 - ✓ Humber: Immingham Oil Terminal Approach channel dredging
 - ✓ Scheldt: enlargement of navigation channel
 - Stour & Orwell: Harwich Harbour Approach channel deepening, Trinity III Terminal Extension, Barthside Bay Container Terminal, Felixstow South Reconfiguration
 - ✓ Weser: construction container terminal 4

Strategy

- ✓ Literature review
- ✓ Interviews with different stakeholders involved in the project

- No universally accepted limits exist on significance of an effect
- The predictions made through modeling are often subject to significant uncertainty. Interpretation of results by experts is necessary.
- Past experience is often crucial in gaining acceptance to a project
- Mechanisms to deal with uncertainties in EIA/SEA and AA have been developed:
 - Implementation of precautionary compensation to account for potential failure (e.g. new mitigation technique)
 - A legal agreement that commits applicant to take corrective measures in case mitigation and/or compensation don't meet objectives
 - Establishing a forum for reporting results of monitoring programmes which can allow changes to be made to a programme of mitigation or compensation (flexible approach)

- In case of any remaining scientific uncertainty with regard to the effects of a project, the consenting authority could grant its consent under **special conditions** (e.g. adaptive strategy)
- Such special conditions should include a pre-defined and validated scheme to monitor the actual impacts as well as a framework to adapt the mitigation/compensation measures regarding the actual impact
- Such special conditions could be accompanied by a separate **legal agreement** committing an applicant to take corrective measures or eventually stop the project
- A long-term **forum with stakeholders for reporting** the results or any other vigorous follow-up mechanism is required
- **Financial warranties** should be put in place that can guarantee long-term implementation and protection

Stefaan Ides

Port of Antwerp Entrepotkaai 1 2000 Antwerp Belgium E: Stefaan.Ides@haven.antwerpen.be T: +32 3 205.25.64 F: +32 3 205.24.37 www.portofantwerp.com