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A B S T R A C T   

Within the Porcupine Bank Canyon (NE Atlantic), cold-water coral (CWC) mounds are mostly found clustered 
along the canyon lip, with individual disconnected mounds occurring nearby on the western Porcupine Bank. 
Remotely operated vehicle-mounted vibrocoring was utilized to acquire cores from both of these sites. This study 
is the first to employ this novel method when aiming to precisely sample two closely situated areas. Radiometric 
ages constrain the records from the early to mid-Holocene (9.1 to 5.6 ka BP). The cores were then subjected to 3D 
segmented computer tomography to capture mound formation stages. The cores were then further examined 
using stable isotopes and benthic foraminiferal assemblages, to constrain the paleoenvironmental variation that 
influenced CWC mound formation of each site. In total, mound aggradation rate in the Porcupine Bank Canyon 
and western Porcupine Bank was comparable to other Holocene CWC mounds situated off western Ireland. 
Results derived from multiproxy analysis, show that regional climatic shifts define the environmental conditions 
that allow positive coral mound formation. In addition, the aggradation rate of coral mounds is higher adjacent 
to the Porcupine Bank Canyon than on the western Porcupine Bank. Benthic foraminifera assemblages and 
planktic foraminiferal δ13C reveal that higher quality organic matter is more readily available closer to the 
canyon lip. As such, we hypothesize that coral mound formation in the region is likely controlled by an interplay 
between enhanced shelf currents and the existence of the Eastern North Atlantic Water-Mediterranean Outflow 
Water-Transition Zone. The geomorphology of the canyon promotes upwelling of these water masses that are 
enriched in particles, including food and sediment supply. The higher availability of these particles support the 
development and succession of ecological hotspots along the canyon lip and adjacent areas of the seafloor. These 
observations provide a glimpse into the role that submarine canyons play in influencing macro and micro benthic 
fauna distributions and highlights the importance of their conservation.   
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1. Introduction 

Cold-water corals (CWCs) are widespread across the NE Atlantic and 
occupy a range of geomorphological settings, including open slope 
continental margins (Roberts et al., 2009; Hebbeln and Samankassou, 
2015; Davies et al., 2017; Van Den Beld et al., 2017), seamounts (Rob
erts et al., 2008; Sakai et al., 2009; Wienberg et al., 2013; Davies et al., 
2015), fjords (Roberts et al., 2009; Titschack et al., 2015) and submarine 
canyons (Huvenne et al., 2011; Davies et al., 2014; Stewart et al., 2014; 
Van Den Beld et al., 2017; Lim et al., 2018). Through geological time, 
they can grow to form mounds several kilometres across and exceeding 
300 m in height (De Mol et al., 2002; Kenyon et al., 2003; Huvenne et al., 
2005; Mienis et al., 2006; Wheeler et al., 2007). These mounds are 
composed mainly of the framework-building scleractinian corals Des
mophyllum pertusum (formerly named Lophelia pertusa; see Addamo 
et al., 2016) and Madrepora oculata. Coral mound development relies on 
the interplay between CWC growth and sediment input. The capacity of 
coral framework to baffle suspended sediment is an essential component 
of successful mound aggradation, whereby current-suspended sediments 
become entrapped, stabilizing the biogenic construction (Huvenne et al., 
2009; Thierens et al., 2013; Titschack et al., 2015; Titschack et al., 
2016). The accumulation and preservation of CWC framework and 
associated hemipelagic sediments can provide useful paleo-archives to 
monitor environmental change, especially in areas where stratigraphic 
records are lacking due to periods of non-deposition or prolonged 
erosion (Titschack et al., 2009; Frank et al., 2011; Thierens et al., 2013; 
Hebbeln et al., 2016). In intermediate water depths settings, CWC 
mounds offer insights into water mass characteristics (Fink et al., 2012; 
López Correa et al., 2012; Thierens et al., 2013; Stalder et al., 2014; 
Hebbeln et al., 2016; Fentimen et al., 2020b). However, CWCs mound 
formation is commonly discontinuous due to the absence of CWCs 
during periods of climatically unfavourable environmental conditions 
(Dorschel et al., 2005; Kano et al., 2007; Frank et al., 2009; Thierens 
et al., 2013; Stalder et al., 2018). As such, CWC mounds provide detailed 
records across restricted periods. 

Submarine canyons are steep-sided valleys that incise continental 
margins (Shepard, 1981; Pratson et al., 2009; Amblas et al., 2018). Both 
topography and physical environment control the flow of water masses 
through these settings (Hall et al., 2014; Kämpf, 2018), which differs 
from the continental slope (Genin et al., 1986; Davies et al., 2008). High 
structural complexity and steep topographies elevate current velocities 
(Genin et al., 1986), creating stronger internal waves than along the 
surrounding slopes barren of canyons (Quaresma et al., 2007). These 
characteristics can drive turbulent mixing (Hall et al., 2014; Wilson 
et al., 2015; Aslam et al., 2018). Subsequently, this can provide a 
mechanism for shelf-slope particulate matter exchange (Quaresma et al., 
2007; Arzola et al., 2008; García et al., 2008; Allen and Madron, 2009; 
Huvenne and Davies, 2014; Puig et al., 2014; Amaro et al., 2016; Fer
nandez-Arcaya et al., 2017; Saldías and Allen, 2020). Increased partic
ulate organic matter (POM) concentrations and the formation of 
nepheloid layers are associated with this internal wave-driven turbulent 
mixing (Wilson et al., 2015; Hall et al., 2017; Aslam et al., 2018). These 
phenomena can generate environmental heterogeneity within canyons, 
and under certain circumstances, provide an ideal setting for enhanced 
biological diversity (Levin et al., 2001; De Leo et al., 2010; Levin et al., 
2010; Schlacher et al., 2010), leading to deep-sea biodiversity hotspots 
(De Leo et al., 2010). In addition, topographically driven upwelling and 
downwelling (i.e. Allen and Madron, 2009) play a key role in enhancing 
shelf-slope exchanges of water masses (Connolly and Hickey, 2014). 
These processes are driven by surface winds and cross-shelf sea surface 
height gradients that cause Ekman effects (She and Klinck, 2000, Allen 
and Madron, 2009, Allen and Hickey, 2010). As a consequence, the 
cross-isobath exchange flow in a submarine canyon is stronger than that 
over a normal shelf-break (She and Klinck, 2000). Submarine canyons 
play a key role in many of the aforementioned processes, although there 
is still a need for a well-designed investigation of these systems, with a 

focused assessment of their potential role for biodiversity. 
CWCs are found within numerous submarine canyons along the NE 

Atlantic margin, forming isolated colonies, small patch reefs several 
metres across, large reef systems and living as dense accumulations on 
vertical walls (Roberts et al., 2006; Buhl-Mortensen et al., 2010; Morris 
et al., 2013; Wheeler et al., 2007; Lim et al., 2018; Corbera et al., 2019; 
Price et al., 2019). CWCs occupying the west Porcupine Bank (wPB) and 
Porcupine Bank Canyon (PBC) have recently received attention (Lim 
et al., 2018; Appah et al., 2020; Lim et al., 2020; de Oliveira et al., 2021; 
Appah et al., 2022; O’Reilly et al., 2022). Their present-day distribution 
is strongly influenced by POM supply, oceanographic and hydrographic 
processes, seabed terrain (depth and slope) and canyon morphological 
features (Mazzini et al., 2011; Appah et al., 2020; Lim et al., 2020). 
Strong currents within the PBC are further intensified locally by CWC 
mounds, suggesting they are critical in delivering food and nutrients to 
the reefs (Lim et al., 2020). Some studies also imply the dependence of 
CWCs on chemical nutrients (e.g., Findlay et al., 2014) and their ability 
to feed directly on dissolved organic carbon (e.g. Mueller et al., 2014). 
Despite the recent research into the spatial distribution and controls on 
CWC habitats within the PBC (i.e. Appah et al., 2020; Lim et al., 2020), 
their temporal distribution is still poorly understood. Furthermore, 
recent evidence suggests that submarine canyons provide a refuge for 
CWCs during periods of environmental stress caused by low oxygen 
availability during the Holocene (Wienberg et al., 2018). This highlights 
the need to assess CWCs in the wPB and PBC, to understand how canyon 
adjacent corals respond to periods of climate instability. 

Benthic foraminifera can provide crucial insights into the lifecycle of 
CWCs (Margreth et al., 2009; Stalder et al., 2014; Spezzaferri et al., 
2015; Stalder et al., 2015; Fentimen et al., 2018; Mojtahid et al., 2021). 
They link lower and higher levels of deep-sea food webs (Lipps and 
Valentine, 1970; Gooday, 1994; Gooday, 2019). Furthermore, they ac
count for the connection between the biotic and abiotic factors that 
control CWC habitat distribution (i.e. nature of substrates, ecological 
demands, abundance of CWCs, microhabitat availability) and local 
physio-chemical processes (water mass properties, current speed vari
ability, organic carbon fluxes) that influence foraminifera distributions 
(Margreth et al., 2009; Smeulders et al., 2014; Spezzaferri et al., 2015; 
Mojtahid et al., 2021). The flux of organic matter to the seafloor pri
marily controls the composition and diversity of benthic foraminiferal 
communities (e.g. De Rijk et al., 2000; Schmiedl et al., 2000; Morigi 
et al., 2001; Fontanier et al., 2002). Regionally, assessments of recent 
(0–33 ka) benthic foraminiferal assemblages (BFAs) from CWCs in the 
Porcupine Seabight (Margreth et al., 2009; Schönfeld et al., 2011; 
Morigi et al., 2012; Smeulders et al., 2014; Fentimen et al., 2018; Fen
timen et al., 2020b), the Rockall Bank (Morigi et al., 2012), northwest of 
Scotland (Mojtahid et al., 2021), offshore Norway (Mackensen et al., 
1985; Cedhagen, 1994; Freiwald and Schönfeld, 1996; Spezzaferri et al., 
2013; Stalder et al., 2014) and the Alboran Sea (Margreth et al., 2011; 
Stalder et al., 2015, 2018; Fentimen et al., 2020a) have been carried out. 
Of the studies that also aim to investigate CWC mound aggradation, 
interpretations are based on either a single core (Spezzaferri et al., 2013; 
Stalder et al., 2015, 2018; Fentimen et al., 2020a), or a number of cores 
acquired from distances located relatively far apart across the study area 
(Stalder et al., 2014). Furthermore, these studies typically rely on cores 
acquired using vessel-deployed coring instruments with little ground 
control on seabed conditions at great water depths. Consequently, the 
large distance between cores and the uncertainty of the exact core 
deposition might lead to uncertainties in the interpretation of coral 
mound development processes. 

Therefore, the main aims of this study are to identify the environ
mental controls on CWC mound formation in the wPB and PBC using 
reliable sampling techniques. Computed tomography (CT) is becoming 
widely used in CWC mound studies, to reconstruct the three- 
dimensional architecture of coral bearing cores. This non-destructive 
method can be used to determine coral preservation patterns (CPP), 
that illustrate mound formation/cessation (see Titschack et al., 2015; 
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Wang et al., 2019). BFAs have not been used in conjunction with this 
advanced technology in any investigation of CWC mound history so far. 
Doing so can ascertain the environmental conditions that determine CPP 
type and thus mound development (Rüggeberg et al., 2007; Margreth 
et al., 2009; Margreth et al., 2011; Schönfeld et al., 2011; Fink et al., 
2012; Stalder et al., 2014; Stalder et al., 2015; Fentimen et al., 2018; 
Fentimen et al., 2020a). Consequently, this enables a precise examina
tion of local mound development variability. For this purpose, novel 
Remotely Operated Vehicle (ROV) vibrocores were collected from the 
mound summits of two sites of different proximity to the canyon to 
assess their development and environmental controls throughout the 
Early Holocene/mid-Holocene transition (i.e. 9.1 to 5.6 ka BP). ROV 
vibrocores allow to precisely identify and document coring sites, in 
contrast with the generally used vessel-deployed coring instruments that 
provide little ground control on seabed conditions at great water depths. 
Thus, ROV vibrocoring is an ideal method to retrieve cores from two 
hard to access and closely located areas, such as the wPBC and PBC. In 
addition, this study builds on the findings of O’Reilly et al. (2022), 
where the geological history of the wPB ceases at 9.1 ka BP. 

1.1. Regional setting 

The wPB occupies the westernmost limits of the Porcupine Bank 
(Fig. 1a; see also 1c). Ice-rafted debris were deposited on the bank since 
at least 32.5 ka BP to 9.0 ka BP (O’Reilly et al., 2022), potentially 
providing suitable elevated substrates for CWC larvae to settle (Roberts 
et al., 2006). A single off-mound CWC barren vibrocore acquired from 
the region shows that since 9.7 ka, the study site has endured a period of 
non-deposition and/or erosion (O’Reilly et al., 2022). The incision of the 
bank by the PBC is tectonically steered through faulting (Shannon, 
1991) and trends north-east to south-west (Shannon et al., 2007; Lim 
et al., 2020) with the addition of a smaller southern branch off the main 
canyon. The eastern canyon wall of the asymmetric canyon is dipping 
steeply (60 to 70 degrees) and is 800 m in height. At the base of this wall 
(>2800 m) exists the widest and deepest sinuous channels in the PBC 
system (Lim et al., 2020). Iceberg plough marks are visible along the 
upper canyon (Mazzini et al., 2011; O’Reilly et al., 2022). 

Fig. 1. (a) Location of the study site within the 
western Porcupine Bank (black rectangle) on the Irish 
continental margin (PB - Porcupine Bank, PS - Por
cupine Seabight, RT - Rockall Trough) adapted from 
O’Reilly et al. 2022. Grey dashed line showing the 
flow direction of Eastern North Atlantic Water. (b) 
Bathymetry map of the upper Porcupine Bank 
Canyon modified after Lim et al. (2020). (c) Over
view of coring sites used in this study. Insets on the 
bottom right from core site CE_VC1 (top) and RH_VC7 
(bottom). Maps a) and b) were created using ArcGIS 
Desktop v10.6 (www.arcgis.com). Map c) was 
created using AMIRA version 2018.36 (see Stalling 
et al., 2005; http://amira.zib.de); data sources – (a) - 
General Bathymetric Charts of the Oceans (gebco. 
net); (b and c) – additional bathymetry (10 m reso
lution) collected during CE18011 research cruise 
(Lim et al., 2018).   
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1.2. Hydrography 

Eastern North Atlantic Water (ENAW) flows northerly at 
~200–700 m water depth (White and Bowyer, 1997; Mazzini et al., 
2011). This water mass forms in the Bay of Biscay and is advected 
northwards along the Porcupine Bank by the poleward Shelf-Edge 
Current (Ellett and Martin, 1973; Dickson and Mccave, 1986; Pollard 
et al., 1996; White, 2007; Mazzini et al., 2011). The high salinity 
northward flowing Mediterranean Outflow Water (MOW) occurs at 
800–1000 m water depth and underlays the ENAW (White, 2007; Mohn 
et al., 2014). The denser southerly following Labrador Sea Water occurs 
at 1100 m water depth (Appah et al., 2020; see also Appendix A). 

Bedforms such as current-aligned scours in the lee of coral mounds 
reflect the long-term net effect of enhanced bottom currents shaping the 
seafloor (Lim et al., 2020). In situ acoustic doppler current profile 
measurements show that the wPB area is less hydrographically active 
than the area along the lip of the PBC (mean current velocity values of 
17.3 cm s− 1 and 24 cm s− 1, respectively; Lim et al., 2020). These mea
surements highlight the intensification of current speeds caused by the 
canyon geomorphology and local acceleration caused by mounds (Lim 
et al., 2020). Benthic water temperatures recorded from acoustic 
doppler current profile data vary minimally between the settings 
(±0.4 ◦C), with the wPB recording slightly warmer waters (summer 
mean – 9.6 ◦C; see Lim et al., 2020) than along the lip of the PBC 
(summer mean – 9.2 ◦C). Furthermore, the dominant current direction 
flowing over the wPB is orientated north-east (Lim et al., 2020) and 
represents the shelf-edge current (Huthnance, 1995) that transports the 
ENAW poleward (White, 2007) . In contrast, the lip of the PBC is char
acterised by westerly current directions (Lim et al., 2020), likely as a 
result of exchange between open slope and canyon waters. 

1.3. CWC distribution 

Initial reports of the distribution of CWCs in the PBC are described by 
Mazzini et al. (2011). They observed that parallel to the lip (or the ridge 
between the wPB and PBC slope), steep-sided CWC mounds exist. On the 
eastern part of this canyon, mounds on the lip range from 30 to 50 m in 
height and extend for approximately 30 km (Lim et al., 2020). On the 
wPB, slightly larger (70 m in height) disconnected corals mounds are 
visible and follow a north-east to south-west distribution. More recently, 
Lim et al. (2020) identified the environmental window of CWC growth 
in the region. They found that current speeds determine living and dead 
(i.e. rubble) distributions, whereby slower current speeds (average 25.4 
and 9.4 cm s− 1) favour living corals and higher dead coral ratios are 
concurrent with elevated average current speeds (31.3 cm s− 1) which 
are subjected to periodic intensified pulses (max 114 cm s− 1). High 
concentrations of resuspended POM (1330–3965 μg l− 1) are recorded in 
the study area (Appah et al., 2020), representing an abundant food 
source for benthic communities. Phosphate rich authigenic deposits also 
indicate high biological productivity (Mazzini et al., 2011). 

2. Methods 

2.1. Vibrocoring 

Cores (Table 1) were acquired using the Holland I ROV equipped 

with a vibrocore rig from the PBC onboard the ILV Granuaile during the 
CoCoHaCa research cruise (cruise number RH17002; see Wheeler et al., 
2017) for core RH17002_VC7 (hereby shortened to RH_VC7) and on
board the RV Celtic Explorer during the CoCoHaCa II research cruise 
(cruise number CE18011; see Lim et al., 2018) for core CE18011_VC1 
(hereby shortened to CE_VC1). The novel use of the ROV granted the 
acquisition of precise samples from summits of coral mounds in the wPB 
and PBC with direct ground-truthing by live video footage following 
ROV video surveys (Wheeler et al., 2014; Wheeler et al., 2015; Wheeler 
et al., 2016, 2017; Lim et al., 2018) (see Fig. 1 inset). Cores acquired 
were 75 mm in diameter and were stored vertically at 4 ◦C to minimize 
sediment deformation. Cores RH17002_VC7 and CE18011_VC1 were 
recovered with lengths of 81 and 130 cm, respectively (Table 1). 

2.2. Core analysis 

Non-destructive and destructive multiproxy analytical methods were 
performed on the CWC-bearing cores to assess relevant paleoenvir
onmental conditions. 

2.2.1. Computer tomography 
All computed tomography images were acquired using the 64 section 

multi-slice scanner GE Healthcare Discovery CT 750 HD at Cork Uni
versity Hospital, Cork, Ireland. A detailed overview of the methods 
applied in this study can be found in O’Reilly et al. (2022). 

Core descriptions of coral-bearing cores are based on analysis of CT 
scan data (see Appendix B for detailed processing procedures). CWC 
preservation patterns were defined by quantifying macrofossil clast size 
and orientation following classification standards introduced by Tit
schack et al. (2015) and further defined by Wang et al. (2019). Three 
CPPs (A to C) were identified. CPP A represents coral framework in a 
living position, characterised by large > − 4.7Φ (>2.6 cm) average coral 
clast and variable orientations of up to 90◦. CCP B represents a slightly 
collapsed coral framework, characterised by moderate clast sizes of − 4.7 
to − 4.4Φ (~2.6–2.1 cm) and orientations <60◦. CCP C represents coral 
rubble, characterised by small average clast sizes smaller than − 4.4Φ 
(~2.1 cm) and orientations of <45◦ or no obvious orientation. Facies 
classification and coral content cores CE_VC1 and RH_VC7 can be found 
in Fig. 2. 

Variations to the aggradation rate (AR) and preservation state of 
CWC clasts can reflect fluctuations in environmental conditions (Tit
schack et al., 2015; Titschack et al., 2016; Wang et al., 2019). High AR is 
a function of rapid CWC growth and enhanced sediment supply that 
becomes entrapped in the framework. Coral framework produces low 
energy micro-environments in areas of relatively higher hydrodynamics 
(Wang et al., 2021). This rapid burial prevents CWC clasts from 
biodegradation and physical fragmentation, thus capturing corals in the 
living position (Titschack et al., 2015). In comparison, in periods of 
reduced CWC growth, or where dead coral framework remains exposed 
for a prolonged time, degradation and fragmentation of the coral skel
eton may occur, leading to the formation of coral rubble. Using assigned 
CPP in combination with mound AR can give valuable insights into the 
temporal development of coral mounds (Titschack et al., 2015, Tit
schack et al., 2016, Wang et al., 2019). 

Table 1 
Summary of vibrocores collected from the west Porcupine Bank (wPB) and Porcupine Bank Canyon (PBC) during the CoCoHaCa I (RH17002) and CoCoHaCa II 
(CE18011) research cruises.  

Core ID Acquisition Date Geographical Setting Latitude [DD] Longitude [DD] Water Depth [m] Length [cm] 

CE_VC1 05.05.2018 wPB CWC mound summit 51.9829 − 14.9995 660 130 
RH_VC7 21.06.2017 PBC CWC mound summit 51.9892 − 15.0129 651 81  
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Fig. 2. Logs of cores CE_VC1 from the wPB (a) and RH_VC7 from the PBC (b). From left to right: True colour image of the core; orthogonal CT-image of core, with 
darkness a function of x-ray attenuation, a proxy for density; core CT 3D image of coral clasts in full-size range; coral clasts larger than >2 cm; coral clast size 
distribution where the white line indicates mean clast size (blue to red colour map denotes % volume of clasts on a scale of 0–20); coral clast orientation quantified 
coral content based on the CT data; coral content (black); 14C ages were calibrated using IntCal20 (Reimer et al., 2020) with PaleoDataView (Langner and Mulitza, 
2019) and determined with Bayesian statistics using the R-package BACON (Blaauw and Christen, 2011). Ages plotted as kilo-annum before present (ka BP) with 2σ 
calibrated age range (see Table 2) and calculated aggradation rates; cold-water coral preservation patterns CPPs; A-C; and benthic foraminifera assemblages (BFA). 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. (continued). 

Table 2 
AMS 14C ages obtained from benthic and planktic foraminifera and CWC fragments collected from cores RH17002_VC7 and CE18011_VC1. Reservoir (res.) ages and 
error, calibrated (cal.) age determined from Paleo Data View (Langner and Mulitza, 2019) with the IntCal20 curve (Reimer et al., 2020). Age model (AM) age was 
determined using BACON (Blaauw and Christen, 2011) and are visible in Appendix E. Aggradation rates (AR) are calculated through linear interpolation of acquired 
ages. ARs determined at 11 cm in core CE_VC1 and 10 cm in core RH_VC7 were also determined using BACON, whereby ages were interpolated beyond limits of each 
respective age model.  

Core Depth [cm] Lab ID Dated Material Conventional Age [ka] Cal. age [ka BP] AR [cm ka− 1] 
14C Age Error Res. Age Res. Age Error μ-2σ μ + 2σ Median 

CE_VC1 11 D-AMS 039278 Mixed benthic 5.579 0.03 0.53 0.051 5.602 5.923 5.779 30.4 
41 D-AMS 039277 Mixed benthic 6.461 0.03 0.523 0.05 6.437 6.851 6.684 394.4 
65 D-AMS 045772 M. oculata 6.529 0.03 0.534 0.05 6.838 7.295 7.101 20.4 
93 D-AMS 037306 Mixed benthic 7.900 0.03 0.512 0.051 8.025 8.35 8.198 32.7 
102 D-AMS 037307 Mixed benthic 8.160 0.03 0.475 0.05 8.33 8.586 8.455 58.7 
122 D-AMS 034764 G. bulloides 8.486 0.04 0.526 0.053 8.689 9.184 8.907 – 

RH_VC7 10 D-AMS 043458 M. oculata 5.429 0.03 0.505 0.052 5.35 5.687 5.627 64.6 
35 D-AMS 043459 M. oculata 5.786 0.03 0.518 0.051 5.911 6.203 6.050 74.4 
65 D-AMS 034770 G. bulloides 6.194 0.04 0.52 0.055 6.407 7.113 6.608 –  
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2.2.2. Grain size analysis 
The cores were frozen at − 20 ◦C and split using an electric circular 

handsaw, photographed and lithologically described. The matrix sedi
ment composition was determined every 5 cm by weight loss after the 
chemical dissolution of the organic matter and carbonate material by 
following the procedures outlined by Pirlet et al. (2011) (see Appendix 
C). The siliciclastic matrix fraction was then investigated for grain-size 
variations, using a Malvern Instruments Mastersizer 3000 (MS3000) at 
University College Cork with a refined standard operating procedure 
(see Appendix D). Grain-size distributions (GSD), median grain size 
(Dx50), mean grain sizes (MGS), kurtosis and sorting were automatically 
calculated using GRADISTAT (Blott and Pye, 2001). The mean sortable 
silt (MSS) was calculated from the differential volume % of grains within 
the 10–63 μm silt fraction, following McCave and Andrews (2019) 
approach. In this study, the MGS and MSS sizes are used to trace changes 
in near-bottom current strength (Mccave et al., 1995). Stronger bottom- 
currents yield a coarser mean grain size of a non-cohesive silt fraction 
due to selective deposition and winnowing (Mccave et al., 1995). A 
detailed overview of the methods applied in this study can be found in 
O’Reilly et al. (2022). 

2.2.3. AMS radiocarbon measurements 
A mixed sampling strategy was applied to CE_VC1 and RH_VC7 due 

to the narrowness of the vibrocores (75 mm) and varying abundances of 
dateable material. Where possible, monospecific planktic foraminifera 
(Globigerina bulloides) were used. If the sum weight of the material 
collected was inadequate (i.e. <15 mg), the epibenthic foraminiferal 
species Cibicides lobatulus, Cibicides refulgens and Discanomalina coronata 
were picked. Finally, pristine-looking coral pieces (M. oculata) were 
dated if the sum weight of benthic foraminifera was still inadequate. The 
base of pristine-looking coral pieces was chosen from CCP A (coral in the 
living position; see Titschack et al., 2015, Wang et al., 2019). 

As such, two monospecific planktic foraminifera and four mixed 
benthic foraminifera samples were taken from the cores by extracting 
1 cm3 of sediment at various depths and used for dating (see Table 2). 
Foraminifera samples were picked from a > 150 μm aliquot size and 
cleaned in an ultrasonic bath for 180 s prior to submission. Three coral 
pieces were sampled from the cores (see Table 2). Each fragment was 
cleaned following the methods described by Adkins et al. (2002). Nine 
measurements were carried out at DirectAMS Laboratories, Washington, 
USA. 

Water column stratification significantly impacts offsets between 
contemporary planktic and benthic foraminifera radiocarbon ages. The 
reliability of the acquired ages should thus be treated with caution when 
interpreting the developed chronology for the cores. To this end, age 
models were constructed using Paleo Data View (Langner and Mulitza, 
2019) to allow applicability and consistency across synthesis. AMS 14C 
ages were converted to calendar years with the IntCal20 curve (Reimer 
et al., 2020) and reported as kiloyears before present (ka BP, Pre
sent = 1950 CE). The age model was developed in a Bayesian framework 
using BACON (Blaauw and Christen, 2011) in Paleo Data View (Ap
pendix E). 

2.2.4. Stable-isotope analysis 
The planktic species G. bulloides was picked from the 150–250 μm 

size fraction. It was chosen due to its abundance in the cores, sizeable 
geographic distribution in the North Atlantic, and its high abundance 
during different climatic periods (Chapman, 2010). The epibenthic 
foraminifera C. lobatulus was picked from the 212–250 μm size fraction 
to avoid discrepancies in measurements due to ontogenic processes 
within this species (i.e. Schiebel and Hemleben, 2007). A minimum 
weight of 0.05 mg of sample was collected for each aliquot. Measure
ments were made in the Institute of Earth Surface Dynamics at the 
University of Lausanne on a ThermoFisher Scientific Delta V gas source 
mass spectrometer using a GasBench (Spötl and Vennemann, 2003). The 
normalized carbon and oxygen isotope values are expressed as per mil 

deviation (‰) with respect to the international Vienna Pee Dee Belem
nite standard (VPDB). The analytical standard deviation (1σ) for δ18O 
and δ13C was ±0.07‰, and ± 0.05‰ for eight repeated measurements 
of the in-house standard carbonate (Carrara Marble) analysed in the 
same sequence as the planktic samples and ± 0.05‰ and ± 0.02‰ for 
the benthic samples, respectively. A correction of − 1‰ for G. bulloides 
was applied to account for a potential species-specific fractionation ef
fect (vital effects) on the measured 13C isotopic compositions (Howard 
Spero, personal communication, 2021). 

2.3. Benthic foraminiferal assemblages 

BFA were first investigated at a 10 cm resolution throughout both 
cores from the >125 μm fraction. This data were then cross examined 
versus all other multiproxy data (i.e. CPP, grain size, stable isotopes) to 
assess paleoenvironmental signals. For intervals that warranted further 
investigation, a second sampling phase was conducted at a 5 cm reso
lution. As such, 31 BFA samples were investigated in this study. Fora
minifera were picked under a light stereomicroscope at the Laboratory 
of Geology, University of Lyon (France). Taxonomic identification fol
lows Margreth (2010) and Spezzaferri et al. (2015). The subsamples 
where foraminifera were very abundant were split with an Otto micro
splitter, and the whole splits were counted (see Appendix F). To help 
with the taxonomical identification Scanning Electron Microscope 
(SEM) photographs were acquired at the Department of Geosciences, 
University of Fribourg (Switzerland), using a Thermo Fischer SEM 
FEIXL30SFEG. A detailed description of the ecological preference of the 
dominant morphospecies is given in Appendix I. 

To calculate expected species richness, samples were rarefied to 
n = 200 in R, compensating for sample count differences between each 
assemblage. In addition, evenness was calculated using Hill’s ratio E1,0 
based on Shannon diversity, whereby high values (approaching 1) 
indicate more evenness between species (Hill, 1973; Alatalo, 1981). 
Abundance data were standardized to dry-weight (n g− 1) to compensate 
for variable sub-samples sizes and used to compute a Hellinger distance 
matrix. Average agglomerative clustering was performed using the un
weighted pair-group method using arithmetic averages. Tests of multi
variate group dispersions were conducted to prevent the confusion of 
location and dispersion effects (Anderson et al., 2006) and returned 
insignificant differences in variance between sites and between species 
clusters but significant differences in group dispersion between facies. 
Therefore, only sites and species clusters were considered as group 
factors along with continuous environmental data and the age model 
(see section 3.1.3). To test for significance of the selected environmental 
factors on species assemblages, distance-based redundancy analysis (db- 
RDA) was implemented using 10,000 permutations as a non-parametric 
method for multivariate analysis of variance (Legendre and Anderson, 
1999; Mcardle and Anderson, 2001). These methods were implemented 
using the packages vegan (Oksanen et al., 2020) and adespatial (Dray 
et al., 2022) in the statistical programming environment R (R Core 
Team, 2021). 

3. Results 

3.1. Core CE_VC1 

Core CE_VC1 contains well-preserved CWC fragments (mainly 
D. pertusum and M. oculata) embedded in a homogenous matrix of pre
dominately medium to fine brown silts (Fig. 2). CPP A (representing 
coral framework in a living position) occurs between 36 and 73 cm 
(Fig. 2). CCP B (representing a slightly collapsed coral framework) oc
curs between 73 and 130 cm. Coral rubble (CCP C) occurs between 0 and 
36 cm. MGS recorded in core CE_VC1 are between 7.1 and 15.5 μm (see 
Appendix G). MSS fluctuates between 17.1 and 25.3 μm. Core 
CE18011_VC1 has relatively low planktic d13C (range: − 0.48 to 0.03‰; 
see Appendix G). 
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3.2. Core RH_VC7 

Core RH_VC7 contains well-preserved CWC fragments (mainly 
D. pertusum and M. oculata) embedded in a homogenous matrix of pre
dominately medium to fine brown silts (Fig. 2). CPP A occurs between 
0 and 56 cm (Fig. 2). CCP B occurs between core depths of 56–80 cm. 
MGS recorded in core RH_VC7 are between 8.2 and 12.4 μm (see Ap
pendix G). MSS fluctuates between 17.9 and 21.4 μm. Core RH_VC7 has 
a relatively low planktic d13C (range: − 0.84 to − 0.33‰; see Appendix 
G). 

3.3. Chronology and coral mound aggradation rates 

Six AMS 14C ages ranging from 8.9 to 5.8 ka BP (see Table 2) were 
obtained from core CE_VC1, using planktic foraminifera (at 122 cmbsf), 
benthic foraminifera (at 102, 93, 41 and 11 cmbsf) and coral pieces (at 
65 cmbsf). Three ages (8.9, 8.5 and 8.2 ka BP) date back to the early 
Holocene and three ages (7.1, 6.7 and 5.8 ka BP) are from the mid- 
Holocene (see Table 2). During the early Holocene, the coral mound 
AR fluctuates between 58.7 and 32.7 cm ka− 1 (see Table 2). During the 
mid-Holocene, the AR decreases to 20.4 cm ka− 1 and increases rapidly to 

Fig. 3. Dominant benthic foraminifera species across this study. Plate 1.1 - Spiroplectammina sagitulla (Defrance, 1824) a. side view, b. apertural view; 2. Bilo
culinella globula (Bomemann, 1855) a. apertural view, b. side view; 3. Homalohedra borealis (Loeblich and Tappan, 1954) a. side view, b. apertural view; 4. Nut
tallides umbonifera (Cushman, 1933) a. spiral side; b. umbilical side; 5. Globocassidulina subglobosa (Brady, 1881) side view; 6. Trifarina angulosa (Williamson, 
1858) a. lateral view, b. apertural view; 7. Uvigerina mediterranea (Hofker, 1932) a. lateral view, b. apertural view; 8. Uvigerina pygmae (d’Orbigny, 1826) a. lateral 
view, b. apertural view; 9. Uvigerina auberiana (d’Orbigny, 1839) a. lateral view, b. apertural view; 10. Hyrrokkin sarcophaga (Cedhagen, 1994) a. spiral side, b. 
peripheral view, c. umbilical side. 
Plate 2. 1. Melonis barleeanum (Williamson, 1858) a. side view, b. apertural view; 2. Discanomalina coronata (Parker and Jones, 1865) a. spiral side, b. peripheral 
view, c. umbilical side; 3. Pullenia subcarinata (d’Orbigny, 1839) a. side view 1, b. side view 2; 4. Cibicides refulgens (Montfort, 1808) a. spiral side, b. peripheral view, 
c. umbilical side; 5. Planulina ariminensis (d’Orbigny, 1826) a. spiral side, b. peripheral view; 6. Cibicides lobatulus (Rzehak, 1886) a. spiral side, b. peripheral view, c. 
umbilical side. 
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Fig. 3. (continued). 
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Fig. 4. Multiproxy data used in this study for cores CE_VC1 (top) and RH_VC7 (bottom). From left to right: The chronology of the core is based on AMS 14C ages of the planktic foraminifera species G. bulloides, the 
benthic foraminifera genus Cibicides and the cold-water coral species M. oculata (Note: that in core CE_VC1 the boundary between the Early Holocene and mid Holocene may be tied by the near absence of coral at 68 cmbsf); 
Distribution of cold-water coral content with associated CPP (see Fig. 2); aggradation rates interpolated from AMS 14C ages; mean grain size (MGS – black) and mean sortable silt size (MSS – grey), planktic d13C; 
evenness Hill’s Ratio (black) and rarefied species richness (grey) of the entire benthic foraminifera population; relative abundance of dominant benthic foraminifera species (epifaunal – black, infaunal – grey); relative 
abundance of individual dominant benthic foraminifera species (epifaunal – black, infaunal – grey); and associated benthic foraminifera assemblages (BFA). 

L. O
’Reilly et al.                                                                                                                                                                                                                                



Marine Geology 454 (2022) 106930

11

394.4 cm ka1 (see Table 2) and then decreases to 30.4 cm ka− 1. The AR 
for the entire constrained core is 35.9 cm ka-1. Three AMS 14C ages 
ranging from 6.6 to 5.6 ka BP were obtained from core RH_VC7 (Table 2) 
using benthic foraminifera (at 65 cmbsf) and coral pieces (at 35 and 10 
cmbsf). All ages (6.6 ka BP, 6.1 ka BP and 5.6 ka BP) occur in the mid- 
Holocene. During this period, the coral mound aggradation rates (AR) 
fluctuate between 74.4 and 64.6 cm ka− 1. The AR for the entire con
strained core is 56.1 cm ka-1. 

3.4. 4.3 Benthic foraminifera 

A total of 109 benthic foraminiferal taxa were observed across the 
two cores in this study (see Appendix F). 16 taxa were noted as dominant 
(i.e. showing relative abundances ≥5% in at least one sample; see also 
Figs. 3 and 4 and Appendix F). The ecological preferences of these 
species can be found in Appendix I. 101 taxa were represented in 
CE_VC1 and 83 in RH_VC1. Twelve dominant species were observed in 
each core, of which eight were identical in both cores. 

3.4.1. Multivariate analysis and species diversity 
Multivariate analysis performed on the complete and standardized 

dataset reveals variations in the relative number of individuals (n g− 1) 
from one sample to another. Listed in Appendix I are species contrib
uting to average dissimilarity/similarity and abundance. According to 
their associated BFA, information on diversity (rarefied species richness 
and evenness Hill’s ratio) will also be discussed. 

The agglomerative cluster analysis distinguished 3 clusters (blue, red 
and green, composed of 5, 12 and 13 samples, respectively; see Fig. 5; 

see also Fig. 2a and b) and an outlier sample at 64% similarity. Each 
cluster relates to a specific BFA. The blue cluster groups all samples in 
CE_VC1 from 96 to 121 cmbsf and will be hereafter referred to as the 
“Early Holocene wPB Assemblage” (abbreviated to wPBEarly; see Fig. 5). 
The green cluster groups samples in CE_VC1 from 6 to 86 cmbsf, except 
for 66 cmbsf, representing the outlier. The green cluster will be hereafter 
referred to as the “mid-Holocene wPB Assemblage” (abbreviated to 
wPBMiddle). The red cluster groups all samples in RH_VC7 and will be 
hereafter referred to as the “Middle Holocene PBC Assemblage” 
(abbreviated to PBCMiddle). The assemblages are plotted versus depth in 
Fig. 2a and b. 

The wPBEarly Assemblage is characterised by D. coronata (20.7 rela
tive %; hereby abbreviated to %; Table 3; see also Appendix H) and 
Melonis barleeanum (15.4%) Less contributing species are Trifarina 
angulosa (6.9%), Hyrrokkin sarcophagi (6.5%), Cibicides lobatulus (4.9%), 
Biloculinella globula (4.1%) and Globocassidulina subglobosa (3.6%). An 
average of 37 expected species (max – 41, min – 34) is present 
throughout this assemblage according to rarefied species richness, with 
an average evenness Hill’s ratio E1,0 = 0.45 (max – 0.51, min – 0.41). 

The wPBMiddle assemblage is characterised by T. angulosa (12.1%; 
Table 3; see Appendix H) and Uvigerina mediterranea (9.9%). Less 
contributing species are M. barleeanum (8.9%), B. globula (8.4%), 
C. lobatulus (7.3%), Uvigerina pygmae (6.9%), D. coronata (5.5%) and 
H. sarcophaga (4.7%). An average of 35 expected species (max – 40, min 
– 30) is present throughout this assemblage according to rarefied species 
richness, with an average evenness of E1,0 = 0.49 (max – 0.60, min – 
0.41). 

The PBCMid assemblage is characterised by G. subglobosa (14.0%; 
Table 3; see Appendix H) and B. globula (8.8%). Less contributing species 
are M. barleeanum (6.5%), T. angulosa (6.1%), C. lobatulus (5.5%), 
H. sarcophaga (5.5%), D. coronata (5.5%), and U. mediterranea (5.2%). 

Fig. 5. Agglomerative dendrogram based on the Hellinger dissimilarity matrix of the benthic foraminiferal community dataset from cores CE_VC1 and RH_VC1. Cut 
at a dissimilarity of 64%, three clusters (PBCMiddle, wPBMiddle and wPBEarly) and an outlier can be recognized. 

Table 3 
Percentage relative abundance of dominant benthic foraminifera from each 
BFAs. Also shown is the mean relative abundance across the whole study.  

Species PBCMiddle (%) wPBMiddle (%) wPBEarly (%) Mean (%) 

D. coronata 5.5 5.5 20.7 10.5 
M. barleeanum 6.5 8.9 15.4 10.3 
T. angulosa 6.1 12.1 6.9 8.4 
B. globula 8.8 8.4 4.1 7.1 
G. subglobosa 14 1.9 3.6 6.5 
C.lobatulus 5.5 7.3 4.9 5.9 
H. sarcophaga 5.5 4.7 6.5 5.6 
U. mediterranea 5.2 9.9 1.6 5.6 
U. pygmae 2.6 6.9 2.5 4 
H. borealis 2.4 2.3 2.8 2.5 
S. sagitulla 1.5 4.7 1.3 2.5 
P. subcarinata 1.4 2.6 2.4 2.2 
H. boueana 2.8 1.5 1.5 1.9 
U. auberiana 4.8 0.7 0 1.8 
P. ariminensis 2 0.9 1.2 1.3 
N. umbonifer 2.8 0.1 0.2 1  

Table 4 
Results of the db-RDA test. R2 represents the proportion of variance in the 
dependent variable explained by the respective explanatory variables. Pseudo F 
represents the ratio of total dissimilarities among groups to within group 
dissimilarity, each divided by their respective degrees of freedom. The p-value 
reports the proportion of random permutations exceeding the observed pseudo-F 
statistic, determining the significance codes (*** for highly significant p-values 
<0.001 and ** for significance at an α of 0.01).  

Explanatory variable R2 pseudo-F p-value (>F) 

Site 0.29135 14.1325 0.0001*** 
Age 0.13812 6.6996 0.0001*** 
Sortable Silt 0.02515 1.2199 0.2409 
Grain size 0.01526 0.7405 0.6603 
Organic content 0.01473 0.7144 0.6921 
Site-Age Interaction 0. 05682 2.9735 0.0057**  
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An average of 37 expected species (max – 41, min – 33) is present 
throughout this assemblage according to rarefied species richness, with 
an average evenness of E1,0 = 0.52 (max – 0.55, min – 0.47). 

3.4.2. Distance-based redundancy analysis (dbRDA) 
Testing environmental variables significance in shaping foraminif

eral community composition through dbRDA showed that site was a 
highly significant parameter (p < 0.001, pseudo-F1,25 = 14.29; see 
Table 4; see also Fig. 6). In addition, site explained the greatest variation 
in the species composition data (R2 = 0.29; see Table 4). The age model 
was the second-most-important variable, explaining 14% of the varia
tion (p < 0.001, pseudo-F1,25 = 6.77; see Table 4). Other factors, such as 
mean sediment grain size, mean sortable silt (a proxy for current ve
locity) and organic content (based on planktic δ13C), were insignificant. 
A significant (p < 0.01) interaction effect between the site and age model 
was detected. This accounted for 5.7% of the variance (Table 4) and 
indicated that periodic differences in community change between the 
two sites occurred. Space-time interaction confounds ecological inter
pretation (Legendre et al., 2010) and thus, the two sites were tested for 
temporal effects independently. The age model remained highly signif
icant (p < 0.001) at both sites with F1,7 = 3.09 and R2 = 0.24 for VC7 at 
the PBC and F1,14 = 7.35 and R2 = 0.31 for VC1 at the wPB. 

4. Discussion 

4.1. The controls of mound development in the wPB 

4.1.1. Early Holocene (9.1–8.2 ka BP) 
Mean ARs determined from core CE_VC1 suggest that relatively low 

mound formation occurs on the wPB during the early Holocene (mean 
40.9 cm ka− 1; see Table 2) where rates are comparable to mound 

formation on the Rockall Bank (60 cm ka− 1; see Frank et al., 2009). In 
comparison, higher ARs are captured in the Norwegian fjords during the 
Holocene (1500 cm ka− 1, see Titschack et al., 2015), suggesting that the 
wPB provided rather unfavourable environmental conditions for posi
tive mound formation during the Early Holocene. The BFA wPBEarly 
(dominated by D. coronata and M. barleeanum) characterises the period 
and is consistent with other BFAs observed at the surface of CWC 
mounds from the Rockall (567–657 m water depth) and Porcupine 
(567–820 m water depth) Banks (Morigi et al., 2012; Smeulders et al., 
2014). These similarities are confirmed by the abundance of epifaunal 
species including B. globula, H. sarcophagi, and C. lobatulus (Fig. 4). 
These species live on elevated substrates (e.g. coral frameworks, coral 
rubble and dropstones), feeding on food particles transported by strong 
bottom currents (Hald and Vorren, 1987; Linke and Lutze, 1993; 
Schönfeld, 1997; Schönfeld, 2002a; Schönfeld, 2002b; Hawkes and 
Scott, 2005). 

During the early Holocene, the northern migration of the polar front 
possibly triggered enhanced surface ocean productivity (Rüggeberg 
et al., 2007; Frank et al., 2011). Concurrently, the return of the MOW to 
the region (e.g. Dorschel et al., 2005; Øvrebø et al., 2006; Rüggeberg 
et al., 2007), created a stratified water column with the ENAW that 
instigated the generation of internal tides (Wienberg et al., 2020). This 
resulted in a strengthening of bottom waters in the region, that 
enhanced food transport to the seafloor. Enhanced currents are evident 
along the shelf edge (see Howe et al., 1994; Howe, 1996; Armishaw 
et al., 2000; Knutz et al., 2001; Knutz et al., 2002a; Knutz et al., 2002b; 
Øvrebø et al., 2006). High MGS and MSS values were also recorded 
(13.5 μm and 21.4 μm, respectively; see Fig. 4), further supporting the 
idea that elevated bottom currents were present in the region. High 
current speeds likely resulted in mass wasting, exposing the dead coral 
framework, ultimately reducing mound formation (see also Dorschel 

Fig. 6. Scaling one triplot representation of the 
redundancy analysis (RDA) ordination on Hellinger- 
transformed data constrained by the three groups 
identified through average agglomerative clustering 
in the same colour-coding as Fig. 5. RDA1–3 are 
highly significant, RDA 1 separating the wPB assem
blages from the PBC, and RDA 2 differentiating be
tween the early and mid-Holocene assemblage at 
wPB. With an adjusted R2 value of 0.434, the model 
explains a large proportion of variation in the data. 
Grey arrows represent species scores for infaunal 
foraminifera, and black arrows are for epibenthic 
species. The purple species has a shallow infaunal to 
epifaunal lifestyle. Only the species that contribute 
most to reduced space are shown to avoid over- 
plotting. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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et al., 2009). The resulting low AR, combined with high MSS are testa
ment to persistently elevated bottom currents during the Early Holo
cene. In addition, the high relative abundances of D. coronata are 
possibly linked to the suitable substrate availability provided by the 
available coral skeletons. This supports regional findings, where higher 
abundances of D. coronata are associated with coral rubble/coral debris 
facies in the Porcupine and Rockall Banks (Schönfeld et al., 2011; 
Smeulders et al., 2014). 

Food from surface waters is in high supply throughout the early 
Holocene, as indicated by the mean trend in the planktic δ13C signal 
(Fig. 4; see also Appendix G). Furthermore, the relative abundance of 
M. barleeanum is high during this period (20.49%; see Fig. 4 and Ap
pendix F at 101 cmbsf). This infaunal species is typical of productive 
waters high in POM (Corliss, 1985, Genin et al., 1986, Caralp, 1989, 
Loubere, 1998, Murray, 2006a, Koho et al., 2008; see Fig. 4) and has 
been observed in early Holocene CWC mounds in the Porcupine Sea
bight (Schönfeld et al., 2011; Morigi et al., 2012; Smeulders et al., 2014). 
Accordingly, the re-organization of the regional water column structure, 
combined with this enrichment in water productivity, increased food 
supply to the corals during the Holocene (Frank et al., 2011). 

4.1.2. Early – mid-Holocene transition (8.2 ka BP) 
ARs decrease during the early – mid-Holocene transition 

(20.4 cm ka− 1; see Table 2 and Fig. 4), suggesting a slowing of mound 
formation. Concurrently, a steady decrease is observed in MGS and MSS 
(7.4 and 18.7 mm, respectively; Fig. 4). A decelerated hydrodynamic 
regime would cause a depleted food supply to the corals, which might 
have resulted in the reduced coral content at this time interval. This 
generates a small accommodation space, that limits the on-mound 

deposition of current-transported sediments (Wang et al., 2021), 
temporarily slowing mound formation. Climate simulations show that 
large parts of the Northern Hemisphere, including the NE Atlantic, were 
affected by periods of abrupt cooling of 1–3 ◦C at 8.2 ka (Barber et al., 
1999; Thomas et al., 2007; Morrill et al., 2013), caused by the centennial 
meltwater pulse from the collapse of the Hudson Bay ice saddle (Carlson 
et al., 2008; Carlson et al., 2009; Gregoire et al., 2012; Wagner et al., 
2013; Matero et al., 2017; Appah et al., 2020). Regionally, this short 
climactic shift has been observed in CWC mound records from the 
Porcupine Seabight and Rockall Trough, where mound formation slows 
due to decelerated bottom current speeds (O’Reilly et al., 2004; Frank 
et al., 2009). A freshwater discharge of this magnitude during the 8.2 ka 
climate reversal may have also slowed the northern flowing ENAW 
along the wPB. 

Concurrently, an increase in Hill’s Ratio (0.47 to 0.61) and a 
simultaneous decrease in rarefied species richness (41 to 20; see Fig. 4; 
see also Appendix F from 96 to 86 cmbsf, respectively) suggest that 
conditions favour fewer benthic foraminifera species across this period. 
Additionally, a decrease in the relative abundances of D. coronata is 
observed (from 18 to 10%). D. coronata has been used as an indicator 
species for living Irish CWC mounds (Margreth et al., 2009). In the case 
of the wPB however, it is more likely better suited as a proxy to deter
mine the availability of suitable substrates (i.e. dead coral/coral rubble; 
Schönfeld et al., 2011, Smeulders et al., 2014; Fentimen et al., 2021). 
The benthic and planktonic δ18O remain relatively constant throughout 
this phase (Appendix G), potentially suggesting that water mass tem
perature and/or salinity on this part of the continental margin remained 
somewhat unaffected. Therefore, changes to current speed are likely the 
primary driver for slowing mound formation. Subsequently, this 

Fig. 7. Summary of environmental factors controlling wPB and PBC mounds during the Holocene. Aggradation rates (white arrow) and coral preservation pattern 
(CPP; red) describe environmental variability. Benthic foraminifera at each core locality are listed by decreasing dominance alongside the ratio of dominant epifaunal 
(black) and infaunal (grey) species. Bottom currents strength (grey circle) are inferred from mean grain size, mean sortable silt size and benthic foraminiferal 
distribution. Surface water productivity (orange arrow) reflected by variations in δ13C from planktic foraminifera (Note: it likely remains more enriched over the lip of 
canyon from Ekman driven downwelling of surface waters (see Granata et al., 1999, Palanques et al., 2005, Ratmeyer et al., 2006, Allen and Madron, 2009), and is 
annotated with black question marks). Upwelling (black arrow) remains prominent throughout each period. (a) 9.1–8.2 ka BP; (b) 8.2–7.1 ka BP (c) 7.1–6.7 ka BP; and 
(d) 6.7–5.6 ka BP. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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alteration to the available ecological niches for benthic foraminifera 
markedly impacted community structure. 

4.1.3. Mid-Holocene (8.2–6.7 ka BP) 
Between 8.2 and 7.1 ka BP, mound AR on the wPB remains low 

(20.4 cm ka− 1). Mounds from the Rockall Bank and Porcupine Seabight 
record similar estimations (15 cm ka− 1; see Frank et al., 2009), sug
gesting a regional reduction in mound AR in the NE Atlantic. The coral 
clasts throughout this phase become progressively more aligned parallel 
to the seafloor (i.e. <60◦; see Fig. 2a between 93 and 63 cmbsf). 
Furthermore, low MGS and MSS (average 8.3 and 18.5 μm, respectively; 
see Appendix G) indicate that current speeds on the wPB were sluggish 
throughout this phase. Collectively, these pieces of evidence capture the 
control of hydrodynamic forcing on mound formation by regulating food 
and suspended sediment supply. In this case, the coral skeleton is 
exposed to degradation processes for a longer duration resulting from 
decelerated currents and thus lower framework supporting sediment 
infill (Titschack et al., 2015; Titschack et al., 2016; Wang et al., 2019). 
More exposed to bioerosion, the framework eventually breaks and be
comes deposited on the seafloor. This change in macrohabitats appears 
to have a knock-on effect on microhabitats. A distinct difference is 
visible between the early and mid-Holocene foraminiferal assemblage at 
the wPB. The shift from the wPBEarly to the wPBMiddle Assemblage may 
constitute a re-structuring of the benthic community after environ
mental conditions had become unfavourable for numerous rarer species 
occupying ecosystem niches dependent on more upright coral clasts. 

Between 7.1 and 6.7 ka BP, mound formation on the wPB becomes 
more favourable, as indicated by the shift to CPP A (defined as “coral in 
living position”). In this instance, the framework generates coral-derived 
accommodation space (Pomar, 2001, see also Wang et al., 2021), 
creating a local low energy environment for current-transported sedi
ments to settle (Flügel, 2004; Titschack et al., 2009). When combined 
with a high sediment supply, this entrapment mechanism results in high 
mound aggradation (394.4 cm ka− 1). This window of favourable mound 
development correlates with a decrease in abundances of D. coronata 
(from 16 to 3%), presuming its ecological niche is dependent on the 
availability of coral rubble (Schönfeld et al., 2011, Smeulders et al., 
2014). Instead, the wPBMiddle assemblage is abundant with infaunal 
benthic foraminifera, mostly M. barleeanum, T. angulosa and Uvigerina 
spp. (Fig. 4). Uvigerina spp. represent high fluxes of organic C and labile 
organic matter (Altenbach et al., 1999; Fontanier et al., 2002; Murray, 
2006a), whilst T. angulosa is commonly associated with shelf-edge
–upper-slope areas under strong bottom currents (Hald and Vorren, 
1984; Mackensen et al., 1985; Qvale and Weering, 1985; Austin and 
Evans, 2000; Schönfeld, 2002a; Mojtahid et al., 2021) and occurs in 
coarser sediment (Mackensen et al., 1995; Schönfeld, 2002b). The 
development of this infaunal community infers high food availability, 
delivered by strong bottom currents. Typically, enhanced hydro
dynamism causes mass wasting, slowing mound formation. In this case, 
the coral framework granted sufficient accommodation space (Wang 
et al., 2021), ensuring that mound formation outpaces the rate of 
erosion. This results in a faster burial of CWC pieces, reducing the 
likelihood of biodegradation processes. This interplay is widely docu
mented in CWC mound literature (De Mol et al., 2002; De Haas et al., 
2009; Dorschel et al., 2009; Mienis et al., 2013). 

4.2. Proximity to the canyon – an essential driver for coral growth 

The topmost 40 cm of CE_VC1 is contemporaneous with the entirety 
of RH_VC7 and is constrained between 6.7 and 5.6 ka BP (Fig. 4). As 
such, site-specific mound development across this period can be 
compared. In core CE_VC1, CPP is represented entirely by coral rubble 
(CPP C; see Fig. 4). In contrast, the bottommost 24 cm and the topmost 
56 cm of core RH_VC7 are respectively represented by slightly collapsed 
coral framework (defined as CPP B) and coral framework in living po
sition (defined as CPP A). Mean mound AR in core RH_VC7 is greater by 

a factor of two when compared to core CE_VC1 (see Table 2 and Fig. 4). 
Isotopic data show that lighter planktic δ13C occurs in core RH_VC7 
(range: − 0.84 to − 0.33‰) than in core CE_VC1 (range: − 0.46 to 
− 0.19‰; Fig. 4 and Appendix G), suggesting that proximity of mounds 
to the canyon is a crucial factor for food supply. 

The incising geomorphology of submarine canyons result in complex 
patterns of hydrography, sediment transport and accumulation (Shepard 
et al., 1974; Oliveira et al., 2007; García et al., 2008), that can increase 
suspended particulate matter concentrations and transport of organic 
matter (Genin, 2004; Canals et al., 2006; Company et al., 2008). They 
intercept the path of slope currents flowing along isobaths (Font et al., 
1988) and can entrain particles (including POM) travelling along the 
margin (Huthnance, 1995). Upwelling has been observed on the conti
nental slope of the Porcupine Bank at 51◦41′N and 14◦39′W in 464 m 
water depth (Dickson and Mccave, 1986) and has since been corrobo
rated in the PBC by Wheeler et al. (2021). Downwelling above canyons 
commonly occur, further intensifying the ability of canyons to trap 
particles transported by long-shore currents (Granata et al., 1999; Pal
anques et al., 2005; Allen and Madron, 2009). In the PBC, Ekman 
downwelling may be induced by northerly gales combined with the 
northward flow of the slope current (e.g. Ratmeyer et al., 2006). These 
processes can enrich benthic productivity within canyons resulting in 
increased biodiversity (Rowe et al., 1982; Ryan et al., 2005; Schiebel 
and Hemleben, 2007; Vetter et al., 2010). Thus, adjacent to the margins 
of the surveyed submarine canyon where large mounds occur, resides a 
diverse interplay of downwelling and upwelling currents. These water 
masses are rich in particles including organic matter. For benthic sessile 
filter feeders, such as CWCs, this enrichment mechanism on the conti
nental margin provides essential food and sediment supply. 

Several studies have captured the important role of water mass 
boundaries on CWC mound formation in the NE Atlantic (e.g. Freiwald, 
2002; Dullo et al., 2008; Flögel et al., 2014). The re-initiation of CWCs at 
the Porcupine Seabight during the Holocene is likely linked to the 
strengthening of the Eastern North Atlantic Water-Mediterranean 
Outflow Water-Transition Zone (ENAW-MOW-TZ; Wienberg et al., 
2020). Within this boundary, explorative ROV surveys have observed 
dense and diverse populations of CWCs growing upright on the slopes of 
the PBC, providing clear evidence that food is readily available (Wheeler 
et al., 2017; Lim et al., 2018; Appah et al., 2020). A limiting factor for 
mound development on the slopes of the PBC is the steep topography, 
which in parts exceeds 70◦. Instead, mounds favour the shallower 
adjacent banks of the continental margin (Fig. 1b), a few hundred metres 
above the ENAW-MOW boundary. This suggests that the PBC plays a 
pivotal role in upwelling and acts as a conduit for enhanced particulate 
organic matter resuspension and supply. Conversely, these currents may 
also have a degradative control on CWC mound formation. Where coral 
rubble is the dominant facies type, current speeds reach up to 114 cm s 
− 1 (Lim et al., 2020). In comparison, where live coral framework dom
inates, current speeds fail to exceed 66 cm s − 1. In this instance, flows 
which may originate from upwelling or downwelling merely provide 
food and nutrients to corals, rather than having an erosive impact. 

Coral framework functions as a sediment trap for lateral and vertical 
advected sediments, thus higher ARs coincide with favourable growth 
conditions that have a sufficient sediment supply (Genin et al., 1986; 
Mienis et al., 2007; Davies et al., 2009; Frank et al., 2009; Mienis et al., 
2009; Douarin et al., 2013; Wang et al., 2021). A comparison of AR the 
wPB and PBC across a comparable timescale (in this instance between 
6.7 and 5.6 ka BP; see Fig. 4) shows that advantageous conditions are 
present adjacent to the canyon (68 cm ka− 1 in the PBC versus 
31.5 cm ka− 1 in the wPB). Corals from core RH_VC7 (i.e. from the PBC; 
see Fig. 1) are mainly observed in the living position (Fig. 2), whereas 
corals from core CE_VC1 (i.e. from the wPB) are rather found as coral 
rubble. This suggests that proximity to the canyon results in faster 
mound development due to higher food and sediment availability. 

Moreover, the PBCMiddle Assemblage of RH_VC7 is characteristic of 
higher organic matter flux than both the wPBEarly and wPBMiddle 
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assemblages in core CE_VC1. Indeed, the infaunal G. subglobosa and 
N. umbonifera, which are regarded as indicator species for positive fluxes 
in organic matter in response to bloom events in the NE Atlantic (Corliss, 
1979; Gooday, 1994; Mackensen et al., 1995; Fariduddin and Loubere, 
1997; Altenbach et al., 1999; Fontanier et al., 2002; Suhr et al., 2003; 
Fontanier et al., 2005; Murray, 2006a; Alve, 2010), are more abundant 
in the PBCMiddle Assemblage of RH_VC7 and are identified as suitable 
discriminating species between assemblages (see Appendix H). The 
PBCMiddle Assemblage also reveals higher proportions of the shallow 
infaunal U. auberiana (Fig. 4), a species associated with steady to 
episodic labile organic content (higher protein and phytopigment con
tent; see Gooday and Hughes, 2002, Suhr et al., 2003, Gooday, 2019). 
The high abundance of this species is strong evidence that higher quality 
organic matter is more available within closer proximity to the canyon. 
Thus, increased food supply seems to be the most important ecological 
parameter controlling the BFAs on the mound summits. 

Multivariate analysis confirms that site and age account for 43% of 
the variance within the BFAs across both sites. These two factors are 
highly significant, with a p-value of <0.0001 (Table 4). Site is the single 
most significant contributor to the model, indicating that the distance 
from the canyon plays an important role, perhaps along with other site- 
specific abiotic factors. Interestingly, the site contribution to variance 
over a short distance of 1 km between the two coral mound summits 
outweighs the temporal contribution to variance for 2–4 thousand years. 
Respectively, the environmental differences between the canyon lip and 
1 km onto the shelf as evidenced by the foraminiferal assemblages pre
sent is much greater than the environmental change experienced at both 
sites over the last few thousand years. However, the age model still 
explains 14% of the variation in the community data of the global model 
and is highly significant (Table 4). The error introduced through the 
Bayesian age model and shorter core record captured in core VC7 may 
affect this. Nevertheless, its significance among multiple abiotic factors 
highlights the observable shift in BFAs across time, specifically at the 
8.2 ka boundary. The higher temporal contribution at the longer wPB 
core site when temporal effects are tested for each core independently 
(RVC1

2 = 0.31 compared to RVC7
2 = 0.24 at the PBC) stresses the impor

tance of the 8.2 ka event as a tipping point. Planktic d13C could only be 
tested on a smaller subset of the data because there were insufficient 
foraminifera to obtain stable isotope ratios in all core subsamples (see 
Appendix G). However, the variable was selected for at a 0.1 α-level and 
corresponds with the BFA in core RH_VC7 (Fig. 4), suggesting a more 
enriched organic signal is seen along the PBC canyon lip compared to the 
wPB. These findings, alongside higher AR, show that the canyon’s lip is a 
highly favourable location for CWC development in the wPB and PBC 
region. This indicates that areas adjacent to submarine canyons, such as 
the PBC, may act as refuges for CWCs, providing habitable conditions 
throughout periods of stress. These findings are summarised below in 
Fig. 7. 

5. Conclusion 

Strong bottom currents resulted in slow mound development in the 
wPB during the Early Holocene. Regional climate-driven processes 
reduced sediment supply to the wPB during the Early Holocene–mid- 
Holocene transition, which further slowed mound development. Be
tween 7.1 and 6.7 ka BP, a rapid formation phase in the wPB mound was 
observed and is likely linked with the major oceanographic reorgan
isation in the NE Atlantic. Finally, between 6.7 and 5.6 ka BP, the wPB 
mound formation reduces rapidly, although the contemporaneous PBC 

mound formed at least twice as fast as the wPB mound. The succession of 
CWCs in the region can be linked with enhanced shelf currents, the 
existence of the ENAW-MOW-TZ and crucially, upwelling and down
welling caused by canyon topography. These mechanisms collectively 
create an ideal setting for CWC habitats, such as along the lip of the PBC. 
Furthermore, proximity to the canyon results in higher sediment supply 
and food availability. 

Methods used in this study (i.e. ROV-vibrocoring) offer convincing 
results when aiming to compare two closely situated sites and should be 
considered in future endeavours. Furthermore, we recommend the use 
of wider vibrocores, which would alleviate any preferential alignment of 
coral pieces during coring acquisition, that may affect CPP classification. 
Open questions remain regarding a) the initial colonization of CWCs in 
the region and b) their ability to survive during glacial intervals. Both 
questions would be rectified through the acquisition of longer cores that 
extend further back in time. 

To date, no CWCs have been found living during glacial periods 
along the margin. Evidence provided in this study suggests that sub
marine canyons offer likely habitable conditions for CWCs, as they are 
an enriched source of food and sediment. Coring coral occupied canyons 
in the NE Atlantic, such as the PBC, could thus test and substantiate the 
hypothesis that they offer a refuge for CWCs during glacial periods. 
Furthermore, a detailed hydrodynamic model of the canyon would 
greatly improve our understanding of upwelling/downwelling processes 
that control nutrient supply to the mounds. 
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Appendix A. Appendices 

A.1. Water mass properties

Taken from Appah et al. (2020): T-S plot of CTD data with density contours to characterise the water mass properties through a 1200 m depth from 
the surface water in the PBC: ENAW (Eastern North Atlantic Water), MOW (Mediterranean Outflow Water, LSW (Labrador Sea Water). Space between 
broken lines reveal the predicted density envelope for NE Atlantic CWCs (Dullo et al., 2008). 

A.2. Computed tomography processing procedures 

The raw DICOM data were processed with the ZIB edition of Amira software (version 2018.36; Stalling et al., 2005; http://amira.zib.de). Within 
Amira, the CT scans of the cores liners, including approx. 2 mm of the core rims, were removed from the data set (using a combination of the seg
mentation editor and the Arithmetic tool) to remove density artefacts resulting from the coring process. Isotropic voxels were generated by reducing 
each voxel size to 0.2 mm in all dimensions, correcting for partial volume averaging errors. An isosurface was created to visualise the dataset in 3D 
space, which was then re-positioned interactively through the live module in the software to account for any offsets during scanning. The resampled 
dataset was reformatted using the Lanczos interpolation method, which tries to approximate a low-pass filter that is in accordance with the sampling 
theorem, thus sharpening images (see Amira Reference Guide, Visage Imaging). The macroscopic sediment components (>ca 1 mm) were quantified 
in each CT-slice with the segmentation editor (Threshold 1370 value: 1400) and the MaterialStatistics module (volume per slice). Further evaluation of 
these components was performed with the ContourTreeSegmentation algorithm (Threshold: 1400; Persistence Value: 1100), which is based on the 
concept of contour trees and functions similar to hieratical watershed segmentation and topological persistence (see (Titschack et al., 2015) and 
references therein). This created an automatic segmentation of the 3D macroscopic components. At this stage, the CT results were visually checked to 
assess if the 3D segmentation was correctly applied. The ShapeAnalysis module and GrainSizeDistribution module were used to characterise each 
component. Clast length [unit: ɸ = log2 [length (mm)/1 mm]] was used to analyse clast size. Therefore, every clast within a window of 51 CT-slices 
(about 1 cm) was counted and the result was added to a spreadsheet. The analysing window was moved slice by slice. Furthermore, the ShapeAnalysis 
module and GrainAngleDistribution module were used to characterise the z-orientation of the major axis of each clast in a similar manner, whereby 
horizontal = 0◦ and vertical = 90◦. Additionally, X-ray density of the matrix sediment was determined by calculating the mean value and its standard 
deviation of the matrix sediment per slice. The final results were exported to a spreadsheet. 
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A.3. Carbonate dissolution and organic matter removal procedures 

Subsamples of roughly 1 cm3 of sediment were taken from the core at 5 cm intervals. Each sample was assigned to a beaker and oven-dried at 60 ◦C 
for 24 h. When dry, the sample was left cool for 30 min. At this stage, any large bioclasts (>2 mm) which may have been extracted in the initial 
sampling stage were removed. 200 ml of distilled water and 10 ml of 10% HCl were added to each beaker and heated to 90 ◦C for 2 h to dissolve the 
carbonate fraction of the sample. If an incomplete reaction occurred, extra heat and HCl were added. The samples were given 1 h to settle. Any 
remaining solution was removed with a syringe, taking care not to disturb any sediment on the bottom of the beaker. The samples were then oven 
dried at 60 ◦C for 24 h. The aforementioned steps were then repeated, using a solution of 10 ml of 10% H2O2 to oxidise organic matter from the 
samples. When complete, the samples were dried at 60 ◦C for 24 h. Each sample was sieved through a 2 mm sieve, removing larger lithoclasts 1402 
from the sample. These clasts were weighed and stored in individual containers. The sieved samples were stored in individual test tubes with 30 ml of 
distilled water and a solution of 5.51404 g/l sodium tetraphosphate for at least 24 h. This chemical dispersant prevented grains from aggregating 
during the grain-size measurements as well as after sonication. 

A.4. Grain size analysis and operating procedures 

Prior to analysis, method building was required to ensure the best representative results were retrieved with the MS3000 by optimising the 
machine parameters. Variations on obscuration %, stirrer speed and ultrasonic duration were determined using a fine and coarse sediment fraction, 
insuring a representative control on the experiment. When a consistent relative standard deviation (RSD) value <2% was yielded, these parameters 
constructed standard operating procedures for the study (see table below). All samples showed stability using these methods. The measurement 
procedure in the MS3000 was carried out with deionized water. Prior to adding the sample to the MS3000 wet dispersion unit, the sample was shaken 
by hand for approximately 10 s to minimize flocculation of particles. The sample was then introduced into the wet dispersion unit using a 1 ml pipette, 
allowing the addition to occur in a controlled manner. Before accepting a grain size value, the data was first inspected for anomalous results which 
could be attributed to air bubbles or operational errors.   

PSA Operating Procedures 

Particle Type 
Non-spherical 
Material Properties 
Quartz 
Refractive Index: 1.543 Absorption Index: 0.01 Density (g/cm3): 1 
Dispersant Properties 
Water 
Refractive Index: 1.33 Level Sensor threshold: 75 
Measurement Duration (seconds) 
Red 
Background: 10 Sample: 10 
Blue 
Background: 10 Sample: 10 
Number of measurements 
5 
Clean Type 
Normal (3 clean cycles) 
Analysis settings 
General purpose 
Stirrer Speed (rmp) 
Fine: 2400 Coarse: up to 3400 
Obscuration% 
Fine: 10–15% Coarse: 15–20% 
Ultrasonication (seconds) 
Fine: 120 Coarse: up to 240  
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A.5. Age models parameters RH_VC7 and CE_VC1
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A.6. Multiproxy environmental data  

Core Depth [cmbsf] MGS [mm] MSS [mm] Planktic δ13C [‰] Planktic δ18O [‰] Benthic δ13C [‰] Benthic δ18O [‰] CPP 

CE_VC1 

0 10.2 18.5 − 0.46 1.03 1.17 1.45 A1 
5 10.3 19.9 − 0.29 0.79 1.36 1.53 A1 
10 7.9 17.6 − 0.17 1.19 1.44 1.81 A1 
15 7.9 18.5 − 0.19 1.24 1.5 1.68 A1 
20 9.6 18.5 − 0.26 1.24 1.52 1.6 A1 
25 15.5 19.4 − 0.18 1.15 1.48 1.56 A1 
30 8.0 19.1 − 0.29 1.31 1.51 1.54 B1 
35 8.8 20.2 − 0.48 1.2 1.39 1.75 A2 
40 8.6 17.7 − 0.14 1.63 1.49 1.6 A2 
45 11.7 20.1 − 0.21 1.12 1.51 1.64 A2 
50 9.3 19.1 − 0.09 1.14 1.57 1.66 A2 
55 7.5 19.1 − 0.16 1.09 1.47 1.64 A2 
60 7.4 18.4 − 0.27 1.34 1.65 1.63 A2 
65 7.9 18.0 − 0.1 1.33 1.55 1.67 B2 
70 8.1 18.0 − 0.32 1.05 2.08 2.11 B2 
75 9.2 18.5 − 0.03 1.24 1.7 1.65 B2 
80 8.8 18.4 0.03 1.27 1.47 1.63 A1 
85 8.4 19.5 − 0.3 1.03 1.41 1.61 A1 
90 7.4 18.7 − 0.33 1.28 1.44 1.65 A1 
95 9.5 18.6 − 0.34 1.16 1.46 1.83 A1 
100 13.5 21.4 − 0.4 0.82 – – A1 
105 8.1 19.2 − 0.05 1.06 – – C1 
110 11.5 20.0 − 0.59 1.19 – – C1 
115 8.6 20.4 − 0.55 1.43 – – C1 
120 7.2 17.1 − 0.37 1.14 – – A2 
125 7.1 18.3 − 0.43 0.96 – – A2 

(continued on next page) 
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(continued ) 

Core Depth [cmbsf] MGS [mm] MSS [mm] Planktic δ13C [‰] Planktic δ18O [‰] Benthic δ13C [‰] Benthic δ18O [‰] CPP 

RH_VC7 

0 10.5 19.4 − 0.70 0.90 1.10 1.60 A2 

5 12.1 20.5 − 0.74 0.84 1.43 1.37 A2 
10 12.3 21.4 – – – – A2 
15 9.4 18.6 – – – – A2 
20 10.7 19.1 – – – – A2 
25 8.2 18.2 − 0.84 0.87 1.47 1.75 B1 
30 10.7 19.7 − 0.60 1.11 1.53 1.79 B1 
35 10.7 20.3 – – – – B1 
40 12.4 21.2 − 0.52 1.32 1.61 1.71 B1 
45 11.8 20.9 − 0.42 1.25 1.52 1.73 B1 
50 11.5 20.2 − 0.65 1.17 1.64 1.84 C2 
55 9.9 18.7 – – – – C2 
60 10.0 18.9 − 0.58 1.16 1.51 1.73 A3 
65 12.3 20.8 − 0.60 1.33 1.62 1.93 A3 
70 8.3 17.9 − 0.56 1.17 1.48 1.80 A3 
75 11.5 20.9 − 0.33 1.11 1.53 1.77 A3  

A.7. Relative abundance of all benthic foraminifera in BFAs  

Species PBCMiddle rel. Abundance (%) wPBMiddle rel. Abundance (%) wPBEarly rel. Abundance (%) Mean rel. Abundance (%) 

Discanomalina coronata 5.49 5.48 20.65 10.54 
Melonis barleeanum 6.50 8.94 15.43 10.29 
Trifarina angulosa 6.07 12.11 6.91 8.36 
Biloculinella globula 8.82 8.41 4.06 7.10 
Globocassidulina subglobosa 14.04 1.88 3.56 6.49 
Cibicides lobatulus 5.55 7.31 4.88 5.91 
Hyrrokkin sarcophaga 5.49 4.71 6.49 5.56 
Uvigerina mediterranea 5.15 9.87 1.65 5.56 
Uvigerina pygmae 2.57 6.88 2.53 3.99 
Homalohedra williamsoni 2.43 2.35 2.80 2.53 
Spiroplectinella sagitulla 1.51 4.66 1.26 2.48 
Cassidulina teretis 2.88 1.86 1.90 2.22 
Pullenia subcarinata 1.45 2.64 2.43 2.17 
Hanzawaia boueana 2.75 1.52 1.52 1.93 
Uvigerina auberiana 4.76 0.70 0.04 1.83 
Spiroplectinella wrightii 1.54 2.64 1.23 1.80 
Eggerella humboldti 2.13 1.49 0.53 1.38 
Cassidulina reniforme 0.58 1.66 1.83 1.36 
Planulina ariminensis 2.01 0.86 1.16 1.34 
Globulina minuta 0.71 0.78 1.94 1.14 
Nuttalides umbonifer 2.85 0.08 0.19 1.04 
Glandulina ovula 0.38 0.72 1.53 0.88 
Oolina melo 0.50 1.15 0.88 0.84 
Bulimina marginata 0.66 1.00 0.67 0.78 
Gyroidina soldanii 0.75 0.65 0.91 0.77 
Lenticulina orbicularis 0.29 0.59 1.44 0.77 
Astrononion stelligerum 0.43 0.49 1.27 0.73 
Astrononion tumidum 0.82 0.43 0.72 0.66 
Gaudryna rudis 0.50 0.72 0.63 0.62 
Spirillina vivipara 1.47 0.12 0.00 0.53 
Cibicides refulgens 0.77 0.50 0.15 0.47 
Amphycorina scalaris 0.13 0.31 0.80 0.41 
Homalohedra eucostata 0.34 0.28 0.60 0.41 
Robertinoides bradyi 0.12 0.36 0.71 0.40 
Rosalina globularis 0.39 0.23 0.57 0.40 
Trifarina bradyi 1.13 0.01 0.00 0.38 
Quinqueloculina semiluna 0.41 0.30 0.40 0.37 
Oolina globosa 0.36 0.34 0.39 0.36 
Globulina rotundata 0.10 0.12 0.82 0.35 
Pyrgo sarsi 0.29 0.39 0.35 0.34 
Lenticulina gibba 0.54 0.20 0.19 0.31 
Palliolatella semimarginata 0.52 0.21 0.12 0.29 
Cassidulina carinata 0.78 0.06 0.00 0.28 
Hyalinea balthica 0.32 0.23 0.24 0.27 
Gavelinopsis praegeri 0.28 0.34 0.16 0.26 
Fissurina eburnea 0.38 0.16 0.12 0.22 
Oolina lineata 0.08 0.13 0.29 0.17 
Karreriella bradyi 0.01 0.25 0.22 0.16 
Pyrgo elongata 0.01 0.10 0.34 0.15 
Cibicides mundulus 0.13 0.15 0.16 0.15 
Quinqueloculina viennensis 0.02 0.18 0.22 0.14 
Dentalina sp identified 0.07 0.04 0.28 0.13 
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(continued ) 

Species PBCMiddle rel. Abundance (%) wPBMiddle rel. Abundance (%) wPBEarly rel. Abundance (%) Mean rel. Abundance (%) 

Gaudryna pseudotrochus 0.01 0.11 0.24 0.12 
Cycloforina laevigata 0.11 0.07 0.17 0.12 
Siphonina reticulata 0.17 0.18 0.00 0.12 
Discorbina bertheloti 0.01 0.09 0.24 0.12 
Elphidium excavatum 0.02 0.07 0.25 0.11 
Cibicides ungerianus 0.04 0.23 0.06 0.11 
Bulimina pupoides 0.00 0.06 0.26 0.11 
Fissurina annectens 0.13 0.15 0.04 0.10 
Bolivina pseudopunctata 0.18 0.04 0.09 0.10 
Lagena squamosalata 0.03 0.21 0.04 0.09 
Alabaminella weddellensis 0.17 0.00 0.09 0.09 
Pyrgo comata 0.18 0.02 0.04 0.08 
Anomalina globulosa 0.00 0.11 0.12 0.08 
Glandulonodosaria calomorpha 0.00 0.10 0.12 0.07 
Triloculina trigonula 0.04 0.14 0.00 0.06 
Sigmoilopsis schlumbergeri 0.00 0.12 0.00 0.04 
Nonionella turgida 0.05 0.07 0.00 0.04 
Spiroloculina dilatata 0.02 0.10 0.00 0.04 
Pattellina corrugata 0.11 0.00 0.00 0.04 
Dentalina cuvieri 0.10 0.01 0.00 0.04 
Cassidulina laevigata 0.01 0.04 0.04 0.03 
Quinqueloculina bosciana 0.03 0.04 0.00 0.02 
Parafissurina lateralis 0.00 0.07 0.00 0.02 
Bolivina dilatata 0.06 0.00 0.00 0.02 
Fissurina agassizi 0.06 0.00 0.00 0.02 
Homalohedra apiopleura 0.01 0.05 0.00 0.02 
Textularia agglutinans 0.03 0.02 0.00 0.02 
Chilostomella oolina 0.03 0.02 0.00 0.02 
Oolina acuticosta 0.00 0.05 0.00 0.02 
Siphonotextularia obesa 0.00 0.04 0.00 0.01 
Fissurina sp 1 0.02 0.02 0.00 0.01 
Favulina squamosa 0.00 0.04 0.00 0.01 
Spiroloculina tenuisepta 0.00 0.03 0.00 0.01 
Bulimina aculeata 0.01 0.02 0.00 0.01 
Sphaeroidina bulloides 0.01 0.02 0.00 0.01 
Globobulimina affinis 0.03 0.00 0.00 0.01 
Gyroidina lamarckiana 0.00 0.03 0.00 0.01 
Quinqueloculina laevigata 0.03 0.00 0.00 0.01 
Triloculina tricarinta 0.02 0.00 0.00 0.01 
Discanomalina japonica 0.02 0.00 0.00 0.01 
Cornuspira involvens 0.01 0.00 0.00 0.00  

A.8. Ecological preferences 

Ecological preferences (when known) of dominant benthic foraminiferal species identified in this study. In alphabetical order based on species 
dominant at both sites, then species dominant only in CE_VC1, then species dominant only in RH_VC7.   

Species Living strategy Feeding strategy Energy Other ecological preferences References 

Biloculinella 
globula 

epifaunal ? ? 
identified in the Mediterranean Sea, 
the Alboran Sea and the Porcupine 

Seabight 

(Kaminski et al., 2002, Stalder et al., 2015, 
Fentimen et al., 2018) 

Cibicides lobatulus epifaunalattached 

passive suspension 
feeder, prefers labile 

components of organic 
matter 

high 

characteristic for the mixed water 
assemblage, indicative of relatively 

cold well ventilated benthic 
environment 

(Sejrup et al., 1981, Williamson et al., 1984, 
Martins et al., 2006, Murray, 2006b, 

Margreth et al., 2009, Stalder et al., 2018) 

Discanomalina 
coronata 

epifaunal 
attached 

? 
strong bottom 
currents up to 
26–50 cm s− 1 

attached on hydroids and octocorals, 
possibly shows preference to coral 

rubble/dead coral 

(Schönfeld, 1997, Schönfeld, 2002a, 
Schönfeld, 2002b, Hawkes and Scott, 2005, 

Smeulders et al., 2014) 

Hyrrokkin 
sarcophaga 

epifaunal parasitic high 

found in aphotic environments, 
attaches to large suspension feeders 

living in deep water, even where 
metabolic rates are low 

(Cedhagen, 1994) 

Melonis 
barleeanum 

infaunal 
may feed on low and 
intermediate quality 

organic matter 
? 

found in waters <10 ◦C which are 
high in POM, lives in high 

productivity waters, lives on the 
redox front 

(Corliss, 1985, Genin et al., 1986, Caralp, 
1989, Loubere, 1991, Fontanier et al., 2005, 
Murray, 2006a, Fontanier et al., 2008, Koho 

et al., 2008, Morigi et al., 2012) 

Planulina 
ariminensis 

epifaunal 
attached 

suspension feeder high 
live on elevated substrates directly 
exposed to the water masses and 
flourish where strong currents 

(Corliss, 1985, Lutze and Thiel, 1989, 
Schönfeld, 1997, Schönfeld, 2002a, 

Schönfeld, 2002b) 
(continued on next page) 
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(continued ) 

Species Living strategy Feeding strategy Energy Other ecological preferences References 

mobilize 
suspended food particles 

Trifarina angulosa infaunal ? high 

associated with 
shelf-edge–upper-slope areas under 

the influence of strong bottom 
currents 

(Sejrup et al., 1981, Hald and Vorren, 1984, 
Mackensen et al., 1985, Qvale and Weering, 
1985, Austin and Evans, 2000, Schönfeld, 

2002a, Mojtahid et al., 2021) 

Uvigerina 
mediterranea 

shallow, infaunal ? ? 

Dominantly eutrophic. More 
abundant in the pelagic 

sediments overlying coral-fragment 
rich horizons 

(De Stigter et al., 1998, Altenbach et al., 
1999, Fontanier et al., 2002, Murray, 

2006a) 

Hanzawaia 
boueana 

epifaunal 
attached 

epiphytic high identified in the Alboran Sea and 
Porcupine Seabight 

(Spezzaferri and Coric, 2001, Murray, 
2006a, Stalder et al., 2015, Fentimen et al., 

2018) 
Pullenia 

subcarinata 
infaunal ? ? ?  

Spiroplectinella 
sagitulla 

epifaunal ? ? ?  

Uvigerina pygmae infaunal ? ? very tolerant of low oxygen levels 

(Phleger and Soutar, 1973, Boltovskoy and 
Wright, 1976, Brolsma, 1978, Streeter and 
Shackleton, 1979, Woodruff and Douglas, 

1981, Van Der Zwaan, 1982) 

Globocassidulina 
subglobosa infaunal 

phytodetritus feeder, 
preferentially ingests 

fresh diatoms 
? 

oligotrophic; organic matter rich 
sediments, indicative of organic 

matter fluxes of 0.8–60 g m− 2 yr− 1 

(Corliss, 1979, Gooday, 1993, Mackensen 
et al., 1995, Fariduddin and Loubere, 1997, 

Altenbach et al., 1999, Fontanier et al., 
2002, Suhr et al., 2003, Fontanier et al., 

2005, Murray, 2006a, Alve, 2010) 
Homalohedra 

borealis  ? ? 
trace amounts identified in the 

Porcupine Seabight (Fentimen et al., 2018) 

Nuttalides 
umbonifer 

infaunal ? ? ? (Corliss, 1979, Schnitker, 1980, Corliss, 
1985, Corliss and Chen, 1988) 

Uvigerina 
auberiana 

infaunal ? ? 
very tolerant of low oxygen levels and 

indicates high organic matter 

(Phleger and Soutar, 1973, Boltovskoy and 
Wright, 1976, Brolsma, 1978, Streeter and 
Shackleton, 1979, Woodruff and Douglas, 
1981, Van Der Zwaan, 1982, Singh et al., 

2021)  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.margeo.2022.106930. 
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Frank, N., Freiwald, A., López Correa, M., Wienberg, C., Eisele, M., Hebbeln, D., Van 
Rooij, D., Henriet, J.-P., Colin, C., Van Weering, T.C.E., De Haas, H., Buhl- 
Mortensen, P., Roberts, J.M., De Mol, B., Douville, E., Blamart, D., Hatté, C., 2011. 
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