

Title: Efficient Transformers for Direct Speech Translation

Author: Belén Alastruey Lasheras

Advisor: Marta R. Costa-Jussà, Gerard I. Gállego

Department: Computer Science

Academic year: 2020-2021

Degree in Mathematics

Efficient Transformers for Direct

Speech Translation

A Bachelor’s Degree Thesis submitted to the

Facultat de Matemàtiques i Estad́ıstica

Universitat Politècnica de Catalunya

by

Belén Alastruey Lasheras

In partial fulfilment of the requirements for the

Mathematics Bachelor’s Degree

Supervised by:

Gerard I. Gállego

Marta R. Costa-Jussà

Barcelona, June 2021

Abstract

The advent of Transformer-based language models has revolutionized text translation. Be-

cause of its quadratic complexity, the Transformer is suitable for short sentences, but not for

long text translation tasks. To overcome this problem many efficient Transformer variants

have been proposed, with linear complexity instead of quadratic. But in the last few years,

the Transformer has surpassed the barriers of text. In Speech-to-Text context, a standard

approach is working with previously extracted audio features. Therefore, input sequence

lengths of speech tasks are approximately an order of magnitude longer than usual text

sequence lengths. Hence, working with such large speech sequences with the original Trans-

former has a dramatic impact. To bypass this problem, we usually use strided convolutions,

to reduce the sequence length.

In this study, we propose a new approach for Speech-to-Text translation, where thanks to

an efficient Transformer we can work with a spectrogram without having to use convolutional

layers before the Transformer. This allows the encoder to learn directly from the spectro-

gram and no information is lost, which we believe could be profitable. We have created

an encoder-decoder model, where the encoder is an efficient Transformer -the Longformer-

and the decoder is a traditional Transformer decoder. Firstly we trained our model for an

Automatic Speech Recognition (ASR) task, and then for Speech Translation using the ASR

pre-trained encoder. Our results are close to the ones obtained with convolutional layers

and a regular Transformer, showing less than a 10% relative reduction of the performance,

meaning that this is a great starting point for a promising research path.

ii

Al Sergi, per haver-me recolzat en tot el camı́ fins aqúı.

A mi familia, por su apoyo incondicional.

iii

Acknowledgements

I would like to thank Marta R. Costa-Jussà and Gerard I. Gállego for giving me the chance to

work on this project and for guiding me, but above all for showing me how interesting research

can be, for helping me regain motivation to continue studying, for all the opportunities they

have given me, and for making me feel backed and valued during all these months.

iv

Table of contents

1. Introduction 1

2. Background 4

2.1. Audio pre-processing . 4

2.2. Automatic Speech Recognition, Machine Translation and Speech-to-Text Trans-

lation . 5

2.2.1. Automatic Speech Recognition . 5

2.2.2. Machine Translation . 7

2.2.3. Speech-to-Text Translation . 8

2.3. Sequence-to-Sequence models (Seq2Seq) . 10

2.3.1. Attention . 11

2.3.2. The Transformer . 13

2.4. Word segmentation . 16

2.5. Evaluation scores . 17

2.5.1. Word Error Rate . 17

2.5.2. Bilingual Evaluation Understudy score 17

3. State of the art 19

3.1. Speech-to-Text Transformer . 19

3.2. Efficient Transformers . 19

4. Methodology 24

4.1. Overview . 24

4.2. Efficient Transformer Selection . 24

4.3. Building the Model . 26

4.4. Training and Evaluation . 28

5. Experiments and Results 29

5.1. Settings . 29

5.1.1. Dataset . 29

v

5.1.2. Training Environment . 30

5.1.3. Speech-to-Text Longformer Implementation 30

5.1.4. Training parameters . 30

5.2. Experiments description . 31

5.2.1. Automatic Speech Recognition . 31

5.2.2. Speech Translation . 32

5.3. Results Analysis . 33

6. Conclusions and future work 35

A. The Big Bird 41

A.1. Methodology . 41

A.2. Implementation . 41

A.3. Experiments and Results . 42

A.3.1. Automatic Speech Recognition . 43

vi

List of Figures

2.2.1.Depending on the sentence, alignment can be easy or complex. 7

2.2.2.Cascade approach for speech-to-text translation, with disfluency removal, re-

punctuation and recasing layers. 9

2.3.1.First NMT model [Sutskever et al., 2014], a Seq2Seq model with an encoder

and a decoder that are made of RNNs, during training. 11

2.3.2.Attention Mechanism in a seq2seq model with an encoder and a decoder that

are RNNs. 12

2.3.3.The Transformer architecture, with one encoder and one decoder blocks. . . . 15

3.2.1.Full Attention . 21

3.2.2.Sliding Window . 21

3.2.3.Sliding Window and Global Attention . 21

3.2.4.Sliding Window and Random Attention . 22

3.2.5.Sliding Window, Global and Random Attention 22

4.3.1.We propose a model with Longformer ’s sliding window in the encoder’s self-

attention. 27

5.2.1.ASR over epochs. 32

5.2.2.BLEU over epochs. 33

A.2.1.Big Bird attention pattern with blocks (block size=3, random blocks=4) . . . 42

vii

List of Tables

2.2.1.Cascade vs End2End . 9

3.2.1.Efficient Transformers . 23

5.2.1.ASR results after the performed experiments 32

5.2.2.BLEU results after the performed experiments 33

A.3.1.ASR results after the performed experiments. 43

viii

Nomenclature

SMT Statistical Machine Translation

NMT Neural Machine Translation

Seq2Seq Sequence to Sequence

End2End End to End

ASR Automatic Speech Recognition

ST Speech Translation

MT Machine Translation

RNN Recurrent Neural Network

S2T Speech-to-Text

ix

Chapter 1

Introduction

Speech is the natural way of human communication. As humans, we learn how to write

and read on the first school years, but before that, we already know how to communicate

with others; since the early stages of life we know how to talk. However, communication is

not always simple, since the different languages around the world can be a hindrance. For

this reason, the study of both voice processing and translation have always been appealing

research fields. In Artificial Intelligence context, a relevant task concerning these concepts is

Speech Translation, and in particular, Speech-to-Text translation.

The first Speech-to-Text translation method, currently known as cascade [Ney, 1999b], con-

sists in the concatenation of two independent models. The first one, an Automatic Speech

Recognition model, writes a transcription of the spoken sentence, and the second one, a Ma-

chine Translation model, translates the transcription to another language. But in the last

few years, new models based on end-to-end architectures have emerged. These models are

capable of translating from audio to text, without the need to go through the intermediate

step of transcription. These models have rapidly evolved and, nowadays, they can reach the

same state-of-the-art results than cascade models [Ansari et al., 2020]. Nevertheless, results

provided by both cascade and end-to-end architectures are far from optimal, and therefore

these research fields are still under development.

Recently, the growing popularity of Transformer -based [Vaswani et al., 2017] models for text

translation has broken the barriers of its main application, and it is currently being used to

process all kinds of data, such as image [Parmar et al., 2018] or audio [Gangi et al., 2019]

[Cross Vila et al., 2018]. When dealing with speech, we usually work with extracted audio

features, like mel-spectrograms. But the sequence length of this kind of data is longer than

the usual Transformer ’s text input, what makes them difficult to process with the original

Transformer. To overcome this problem, a usual approach is shortening the input’s sequence

length by adding strided convolutional layers.

1

Efficient Transformers for Direct ST Belén Alastruey Lasheras

This thesis objective is contributing to Speech-to-Text translation research, proving the fea-

sibility of a new variation of the Transformer that makes it suitable for audio inputs, and

therefore for speech tasks, without the need of adding convolutional layers. To do this, we

want to use an Efficient Transformer, an adaptation of the Transformer suitable to pro-

cess long sequences, initially created for long document tasks. In particular, we will use the

Longformer [Beltagy et al., 2020], with a self-attention based on a sliding window, which

we believe could be profitable for audio processing. We want to take advantage of the lower

complexity of this model and create a Speech-to-Text Transformer for ST tasks (that will

also work for ASR), where the Longformer will deal with the audio input. We believe the

training could benefit from this approach, since it lets the model learn directly from the spec-

trogram and no information is lost in the convolutional layers. On the negative side, possible

complications derived of this system are the reported Longformer instability [Beltagy et al.,

2020], and that cross-attention between the encoder and the decoder could be hindered by a

mismatching between the input and the output sequence lengths.

By following this approach, the results of this thesis can be used in the LUNAR project1, to

expand the current objective of creating a universal language representation for text trans-

lation, also for Speech-to-Text translation.

Finally, to close the introduction, we will describe this thesis structure:

Chapter 2. We first show the fundamental concepts concerning audio processing, and we

define the basics about Automatic Speech Recognition and Machine Translation tasks for

both text and speech translation. We also explain the main algorithms that have been used

in these tasks during the last years, from statistical models to the Transformer. Additionally,

we talk about word segmentation and evaluation scores.

Chapter 3. Once we have explained what we consider a preliminary background, in this

chapter we study the state-of-the-art algorithms that concern directly our work. Specifically,

we see the Speech-to-Text Transformer [Wang et al., 2020a] and some Efficient Transformers

for text tasks.

Chapter 4. In this chapter we explain the body of our research, including our objective,

our model and the methodology followed during the development of this thesis.

Chapter 5. This chapter includes all the information about the performed experiments. We

start with an overview of the dataset and the experimental framework that we have used,

followed by a detailed description of our model’s parameters and training specifications.

Finally, we show the results of the experiments.

1Project funded by the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 947657)(lunar.cs.upc.edu)

2

lunar.cs.upc.edu

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Chapter 6. In this chapter we explain the conclusions drawn after performing the experi-

ments, and we discuss future work that could be done to improve the current results.

3

Chapter 2

Background

For a better understanding of this thesis motivation, we must first contextualize the speech

recognition and translation (specifically the speech-to-text translation) scenarios. In this

section, we describe the pre-processing needed to work with audio and the algorithms that

have led to the current state-of-the-art in Automatic Speech Recognition (ASR), Machine

Translation (MT) and Speech Translation (ST). We will as well see other concepts that are

relevant to the development of the thesis, such as word segmentation and evaluation scores.

2.1. Audio pre-processing

In order to process data, computers need it to be discrete and numerical, and this is also the

case of ASR or ST algorithms. As a consequence, we need to transform sound waves into

discrete numerical sequences.

Sound travels in time in one-dimensional waves, continuous functions in R, that have a single

amplitude value for every instant. The first step to transform an audio wave into discrete

numerical data is known as sampling, i.e. saving the amplitude of the sound wave at some

equally spaced time steps. However, we must use a sampling rate that allows us to recover

all the information, ensuring no data is lost in the sampling. To determine the appropriate

sampling rate, we use the following signal processing theorem:

Theorem 1 (Nyquist-Shannon Theorem). [Shannon, 1949] Given a function f(t), that con-

tains no frequencies higher than ΩB Hz, we can reconstruct f(t) perfectly from it is ordinates

at a series of equally spaced points with a frequency ΩS , if ΩS > 2 · ΩB.

ΩN = 2 · ΩB is called Nyquist frequency. Therefore, any sampling rate larger than ΩN is a

sufficient. Equivalently, for a given sample rate ΩS, perfect reconstruction is guaranteed for

sounds with frequency ΩB < ΩS

2
.

4

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Music or industrial machines sounds can reach high frequency levels and are usually sampled

at 44.1kHz or 48kHz. The human voice, on the other hand, has a much more limited frequency

range that hardly exceeds 8kHz, and therefore is usually sampled at 16kHz.

The numerical sequence obtained after the audio wave sampling is usually too long and

contains redundancies. Traditionally, to overcome this problem, the sequence is transformed

to an spectrogram using Fourier Transform, that transforms signal from time domain to

frequency domain. In this step, the sampled sound wave is grouped in overlapping windows,

that are usually 25-millisecond-long and are placed every 10 milliseconds. Then each window

is decomposed into the frequencies that form it using Fourier Transform. The result is

a discrete function that contains information about the relative weight of every frequency

range in that audio window, and that can be represented in a vector by fixing the top and

low bounds of frequency. This vector is usually drawn as a chart, where colors show the

intensity of every frequency. By doing this with every window in our audio and then placing

all the charts together, we get a spectrogram, a chart where x axis shows time, y axis shows

frequency and colors shows the weight of every frequency at every instant.

When working in speech tasks, the standard approach is using the mel-spectrogram, a trans-

formation of a regular spectrogram using the mel scale [Stevens et al., 1937]. This scale is

the result of a logarithmic transformation of the regular frequency scale, so that sounds of

equal distance from each other on the mel scale are also perceived by humans as they are

equal in distance. A mel-spectrogram is a spectrogram with the mel scale as its y axis (the

frequency axis).

2.2. Automatic Speech Recognition, Machine Transla-

tion and Speech-to-Text Translation

In this section we will study the first steps and important concepts of ASR, MT and ST

tasks.

2.2.1. Automatic Speech Recognition

ASR is the task of obtaining a transcription from a spoken sentence. This task can be com-

plex, since in addition to the difficulty of the task itself, there are other complications derived

of working with speech such as background noise, echo, different accents and pronunciations,

and the similarity between different sounds.

Interest in ASR arose in the 1980s, starting with simple goals such as transcribing the digits of

a number. As the years went by, the complexity of the task increased, first to the transcription

5

Efficient Transformers for Direct ST Belén Alastruey Lasheras

of names or specific commands, then to short sentences, and up to nowadays, where all types

of sentences can be handled.

The first ASR algorithms were statistical models, that were the predominant systems until

the 2010s. In these models, given a spectrogram S, the transcription of the spoken sentence

contained in S was defined as:

W ∗ = argmaxWP (S|Q) · P (Q|W) · P (W)

where W is any possible sentence, S is the spectrogram, and Q are the phonemes of the sen-

tence. Therefore, P (W) is a language model, that calculates the probability of the sentence

W to be grammatically correct, P (Q|W) is a pronunciation model, that calculates the prob-

ability that a sequence of phonemes Q is the one belonging to the sentence W , and P (S|Q)

is an acoustic model, that calculates the probability that a spectrogram S is the one where

the sequence of phonemes Q is represented.

In the 2010s, the first neural models replaced the acoustic and the pronunciation models with

a Recurrent Neural Network. RNNs have been widely used in problems where there exists

a recurrence relation between the elements of the input and output sequences: the input at

a time t is influenced by xt−1, that is influenced by xt−2 and so on. This can be useful in a

task as ASR.

In this model, known as Connectionist Temporal Classification (CTC) [Graves and Jaitly,

2014], a sequence of spectrogram slices (one every 10 milliseconds) is fed into the RNN. For

every spectrogram slice, the RNN predicts a vector of size |V | (where V is the vocabulary,

usually the alphabet and the special blank and space tokens). This vector contains in each of

its elements the probability of that character to be the one said in the spectrogram slice. It is

important to note that the sound of a character usually lasts more than one spectrogram slice

and for this reason, predictions usually contain every letter more than once. To solve this

problem, a processing that deletes repetitions of letters is applied to the predicted strings. But

this model can lead to predictions of nonexistent words or sentences that don’t make sense.

To overcome this problem and improve the performance of the model, it is usually followed

by a language model. This language model takes the top most probable predictions from the

probabilities vectors and decides which is more likely to be grammatically and syntactically

correct. The result obtained after the language model is chosen as the transcription of the

initial spoken sentence.

6

Efficient Transformers for Direct ST Belén Alastruey Lasheras

2.2.2. Machine Translation

MT is the task of using computers to translate from one language to another. Due to

the complexity of languages this task can become very complicated. This happens as a

consequence of noun declensions, verb conjugations or grammar, that work differently in every

language. Additionally, there are problems as meanings that can be expressed with different

words (this is the case of synonyms), while the same word can have different meanings

(depending on the context in which it is found). This is why translation, and in particular

MT, cannot be limited to translating words one by one, but must come to understand the

structure of the sentences and the context of the words. One of the fundamental concepts

in MT is derived from this idea: alignment (figure 2.2.1), which consists of the association

of words of the original sentence with those of the translated sentence according to their

meaning. To show this concept it is common to use matrices, where the alignment between

the words of the two sentences can be visually represented:

Figure 2.2.1: Depending on the sentence, alignment can be easy or complex.

The first MT implementations appeared in the early 1950s, when during the Cold War

between the US and Russia, the need arose for the Americans to quickly and efficiently

translate messages from Russian into English [Hutchins et al., 1955]. The systems used at

that time were very simple, in fact they were rule-based systems, which consisted of using a

bilingual dictionary and a few rules to translate each Russian word into the corresponding

English word.

Years later, in the 1990s, the first statistical MT methods appeared, which would become

the standard until the 2010s. A statistical MT model is based on the idea of representing

the language as a probabilistic distribution. Thus, we can define an optimal translation as:

given a sentence x, in language X, and a different language Y , we say that the translation

of x into language Y is:

y = argmaxy′P (y′|x)

where y′ is any sentence in language Y . Then, applying Bayes Rule, the formula can be

7

Efficient Transformers for Direct ST Belén Alastruey Lasheras

decomposed in:

y = argmaxy′P (x|y′) · P (y′)

where P (x|y′) works as a translation model, that models how to translate, and P (y′) as a

language model, that models how to write correctly in language Y .

It was finally in 2014 when the first neural MT models appeared, and by 2016 they had

outperformed SMT models [Ansari et al., 2020].

2.2.3. Speech-to-Text Translation

ST is the task in which a spoken phrase is translated into another language. Depending

on whether the output of the translation is text or a spoken sentence, we can talk about

Speech-to-Text or Speech-to-Speech translation respectively. If the task of translating text is

already hard, trying to translate audio is even more complicated, due to problems related to

audio processing, such as the ones seen in section 2.2.1.. Furthermore,in the case of ST, there

are also problems related to speech and text mismatches, such as hesitations, repetitions,

lack of punctuation or discourse makers.

In the 1990s that the first ASR model was created [Ney, 1999a]. Since then and until 2016 the

models used were those currently known as cascade models (figure 2.2.2). Cascade models

consist of a pipeline that contains two independent models with isolated objectives: the first

one is in charge of performing an ASR task, turning a spoken sentence into its transcription,

and then a second phase of text MT, which translates the transcription to another language.

These models have a main advantage: by the nature of their construction it is possible to

train separately the ASR model and the MT model, what allows using different training

datasets for each one. This is the reason why the amount of data available for the training

of these models is very large compared to the data that would be available if working on a

model that does both the ASR and the ST at the same time. But cascade models do not

perform the translation process optimally, since in addition to the inevitable errors that can

occur in each of the models that are part of the process, an error in the ASR phase would

automatically propagate to the MT phase, resulting in even more errors and a worse result of

the full ST process [Weiss et al., 2017]. To avoid this kind of errors, it is common to find some

layers, after the ASR and before the ST, in charge of converting a literal transcription of the

sentence into a sentence that would make sense in written form, for example by eliminating

repetitions or interjections, common in spoken language but not in written language.

8

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Figure 2.2.2: Cascade approach for speech-to-text translation, with disfluency removal, repunctuation and
recasing layers.

But even with these adjustments, propagation errors are difficult to avoid. This is why since

2016, research in Speech-to-Text translation models has focused on models known as End-to-

End (End2End), capable of translating directly from a spoken sentence to a written sentence

in another language, without the need to go through the intermediate step of obtaining

the initial sentence transcription. This kind of models needs to be trained End2End, and

as commented above, this can lead to possible lack of training data. In addition to this

problem, it is also important to note the difficulty of the alignment of a spoken sentence (a

spectrogram) and a written sentence, due to the fact that their lengths are very different.

Still, End2End models are currently a big research field [IWS, 2019] [Ansari et al., 2020],

because of the belief that avoiding error propagation and having access to the audio during

the translation should help to improve results.

Cascade End2End
Less complex tasks x

Lots of data available x
Access to all audio during translation x

No error propagation x
Easier managment x

Table 2.2.1: Cascade vs End2End

Nowadays, both kinds of models can reach results of the same quality [Ansari et al., 2020],

and there is still debate about which approach is better (see comparison in table 2.2.1). In

particular, ideas such as how End2End models reduce errors by avoiding error propagation, or

how does accessing the audio during translation help, still need to be thoroughly investigated.

9

Efficient Transformers for Direct ST Belén Alastruey Lasheras

2.3. Sequence-to-Sequence models (Seq2Seq)

Unlike in other tasks carried out by Machine Learning algorithms, when working with text

it is very important to understand the context of each word. This is why it is not possi-

ble to apply a word-by-word algorithm for tasks such as translation, it is better to work at

sentence-level.

MT is a Seq2Seq task, i.e. the input and the output of the model are sequences, which

are usually time-series, but in this case are sentences (sequences of characters or words).

This kind of models has an encoder-decoder based architecture. The encoder is in charge

of processing the input sequence information and storing it. Then the decoder uses the

encoder’s extracted information to generate the output sequence. The first neural translation

approaches consisted of a Seq2Seq model where the encoder and decoder were Recurrent

Neural Networks (RNN) [Sutskever et al., 2014]. This kind of networks are used when there

exists a recurrence relation between the elements of the input and output sequences. This is

the case of translation, otherwise we would be translating word-by-word. But using RNNs

would have a problem: since all the information obtained by the encoder has to be stored in

only one vector (the hidden state between the encoder and the decoder), in many occasions

the details belonging to the beginning of the sentence would be lost. Consequently they would

not used by the decoder, causing bad results because of lack of parts of the information when

doing the predictions. To try to solve this problem, the basic RNN layers were replaced

by Long Short-Term Memory (LSTM) layers, a type of RNNs capable of detecting which

information is more important and saving it as a priority. That is, instead of forgetting the

beginning of the sentence, it is possible to identify which parts are important and which are

not, and thus forget the unimportant, without being influenced by the position they occupy

in the sentence. The resultant model is a Seq2Seq model with and encoder and a decoder

that are made of RNNs (in particular LSTMs), and has the structure shown in figure 2.3.1

[Sutskever et al., 2014].

In this model, words are fed one-by-one to the encoder. Then all the extracted information

is stored in the encoder’s last hidden state and it is sent to the decoder, which uses it to

predict the output in an autoregressive way, i.e. it predicts the words one at a time using

the information from previous steps in each prediction.

In Seq2Seq models, training and testing processes are slightly different, with the objective of

avoiding error propagation while training. During testing, a token of the input sentence is

fed to the encoder in every step. Then, the decoder takes the start of sentence (SOS) token,

and predicts the next one. Every time a token is predicted, the token is fed into the decoder

until the end of sentence (EOS) token is predicted, indicating the end of the process. During

10

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Figure 2.3.1: First NMT model [Sutskever et al., 2014], a Seq2Seq model with an encoder and a decoder that
are made of RNNs, during training.

training this process is slightly different, while the encoder works in the same way during

training and testing, the decoder doesn’t. During training, each predicted token is saved but

it is not used to generate the next token, instead the correct token is fed into the decoder.

This process, known as Teacher Forcing, avoids errors concatenation thus ensuring a more

effective training. The saved predicted token is later used to calculate the loss and update

the neural network weights.

Using this algorithm results under-performed SMT, since all the information obtained by the

encoder had to be stored in only one vector (the hidden state between the encoder and the

decoder). And this was not enough to have an algorithm that worked optimally.

2.3.1. Attention

Even LSTM models, that are capable of keeping relevant information, cannot avoid the

problem of having to store all the information in a single hidden state vector. In order to

solve the bottleneck that this entailed, the attention mechanism was proposed [Bahdanau

et al., 2015] (figure 2.3.2). The idea behind this method is allowing the decoder to have

access to every hidden state in the encoder, instead of just to the last one. Using encoder’s

hidden states, a context (or attention) vector is calculated and then used to predict the next

word. The steps to do a prediction using the attention mechanism are the following:

1 Calculate an attention score between the decoder hidden state and every encoder hidden

state: Let hi be the decoder’s i−th layer hidden state. Let s1, ..., sm be encoder’s hidden

11

Efficient Transformers for Direct ST Belén Alastruey Lasheras

states. The attention scores of hi are

aij = fatt(hi, sj) j = 1, ...,m

Where fatt is usually a dot-product.

2 Apply the softmax function on the scalars obtained in the previous step to get the

weights:

wij = softmax(aij)

3 All the hidden states of the encoder are summed, each one multiplied by its correspond-

ing weight:

ci =
∑

wij · sj

The attention vector ci is obtained.

4 Concatenate the decoder hidden state (hi) with the attention vector (ci) and use it to

make the prediction. Additionally, it is also possible to concatenate the encoding of

the next token with the attention vector to calculate the next hidden state.

Figure 2.3.2: Attention Mechanism in a seq2seq model with an encoder and a decoder that are RNNs.

After the growth of Seq2Seq and attention-based models for translation tasks, some re-

searchers decided to try this strategy for ASR. Following this idea, the Listen, Attend and

Spell (LAS) [Chan et al., 2016] model appeared. This is a Seq2Seq model with attention,

12

Efficient Transformers for Direct ST Belén Alastruey Lasheras

like the ones used for text translation tasks. However, models like this were not originally

designed for audio processing. This kind of data, which has a longer sequence length than

text, can lead to problems with complexity and redundancy of information (these problems

will be further commented in chapter 3). For this reason, LAS has a pyramidal RNN in its

encoder, that collapses neighbour input tokens into one.

2.3.2. The Transformer

The Transformer [Vaswani et al., 2017] model was proposed for text translation in 2017. It

is a Seq2Seq model, like those described above. While previous models were based on RNNs

or LSTMs and used attention as a mechanism to avoid the bottleneck between the encoder

and decoder, the Transformer uses a different approach: the attention mechanism evolves

from being an enhancement of the algorithm to being its basis. If so far the models used

encoder-decoder attention, the Transformer keeps it but also replaces the RNN with a new

self-attention mechanism inside both the encoder and decoder, which allows the analysis of

the interaction between tokens of the same input sentence.

Self-Attention

Self attention is a mechanism used to determine how much is a token related to the rest of

the tokens in the same sentence. The input of a self attention layer is a matrix containing the

embeddings of every input token (numerical representations of words). Assuming there are n

input tokens and that the embedding’s space is d-dimensional, the input is X = (x1, ..., xn) ∈
Rn×d where xi ∈ Rd are the embeddings for each of the n input tokens (placed as rows of X).

Inside a self-attention layer, three linear projections are applied over X:

Q = X ·WQ K = X ·WK V = X ·WV

where Q, K and V stand for queries, keys and values, and WQ, WK ∈ Rd×dk , WV ∈ Rd×dv

are matrices learned during the training process.1 Using Q, K and V the attention matrix

is defined as the softmax of the product between Q and K (n2 dot products between every

query and key) divided by the square root of dk (scaled):

A = softmax
(Q ·KT

√
dk

)
∈ Rn×n

The resultant matrix A can be interpreted as the values between 0 and 1, where Aij is the

weight that measures how related the tokens i and j are. The larger the weight, the higher

the relation between tokens. It is also worth noting that this is the step that gives scaled dot

1Note that dv = d when using single-headed attention.

13

Efficient Transformers for Direct ST Belén Alastruey Lasheras

product self attention its name. The final step is another product:

Z = A · V

where Z is the matrix of context vectors. This means that Z = (z1, ..., zn) ∈ Rn×dv where

zi ∈ Rdv is the context vector associated with the i− th token xi (placed as rows of Z).

The paper improves this attention mechanism by adding multiple attention heads. Using h

different WQ, WK and WV matrices the embeddings are projected to 3 · h subspaces. This

allows attention to focus on different parts of the sentence. The updated process is

Qi = X ·W i
Q K = X ·W i

K V i = X ·W i
V i ∈ {0, ..., h− 1}

Ai = softmax
(Qi · (Ki)T√

dk

)

Zi = Ai · V i

To sum up the information in the different Zi all the matrices are concatenated into a single

matrix (Z0, ..., Zh−1) ∈ Rn×h·dv and then projected using WO ∈ Rh·dv×d matrix.

Z = (Z0, ..., Zh−1) ·WO

Where, again, Z = (z1, ..., zn) ∈ Rn×d is the matrix of context vectors.

Model Structure

The Transformer ’s structure (figure 2.3.3) has three main components: the positional encod-

ing, the encoder and the decoder.

14

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Figure 2.3.3: The Transformer architecture, with one encoder and one decoder blocks.

Positional Encoding

As explained before, the Transformer model has two main modules: the encoder and the

decoder. But unlike the previous models, the encoder and decoder are not based on RNNs. In

a RNN, a new token is received at each step, which allows the model to understand the order

of the tokens in the sequence. In the Transformer, by substituting RNNs with self-attention

this positional information is lost. This is why it is necessary to add a positional encoding

layer to the input embeddings, preceding both the encoder and the decoder. This layer is in

charge of adding information about the position of a token in the sequence. The positional

encoding is a vector of length d as the embeddings, so that they can be summed. To create

this positional encodings we use the sine and cosine functions of different frequencies:

PE(pos,2i) = sin(
pos

10000
2i
d

)

PE(pos,2i+1) = cos(
pos

10000
2i
d

)

15

Efficient Transformers for Direct ST Belén Alastruey Lasheras

where pos is the position and i = 1, .., d. The positional encoding obtained is a sinusoid in

each of its dimensions.

The Encoder

The Transformer ’s encoder is in fact made of stacked encoder modules. Each module has a

self-attention layer and a feed forward layer, both followed by an addition and normalization

layer. The input of the first encoder block is the sequence of embedded tokens after the

addition of the positional encodings, and the following blocks’ input is the output of the

previous encoder block.

The Decoder

The decoder, as the encoder, is made of stacked decoder blocks. Unlike the encoder, each

decoder block consists of three layers instead of two. The first and last layers are the self-

attention layer and the feed forward layer, just like in the encoder, but between them there is

a new layer, the encoder-decoder attention layer. This layer handles the interaction between

the encoder and decoder information using the same algorithm as the self-attention, but V

and K are obtained from the output of the last encoder layer and Q is obtained from the

output of the previous decoder self-attention layer. As in the encoder, each of the three

layers is followed by a normalization and addition layer. In addition, during the training of

the model, the self-attention layer uses masked attention, a system that hides those tokens

subsequent to the one to be predicted. This ensures a prediction under the same conditions

as the one that will be made during testing and avoids misleading results.

2.4. Word segmentation

In both ASR and MT tasks, predictions of tokens are done using a probabilities vector, that

gives a weight to each possible token in the vocabulary. But these output tokens are not the

same in ASR and MT tasks.

In the case of ASR, prediction is usually done character-by-character. This allows the vo-

cabulary to be small and complete, since it must only be formed by every possible letter (26

in the English alphabet) and two special tokens, the space and the blank. So a vocabulary

of size 28 is enough to predict every possible desired output.

When working with translation tasks, in both text or speech contexts, building a vocabulary

is not that easy. In the case of translation, prediction is not made character-by-character. In

this task alignment must be done between words according to their meanings, and for this

16

Efficient Transformers for Direct ST Belén Alastruey Lasheras

reason, translation models predict word-by-word. This is a problem when trying to build a

vocabulary, because in order to have one as complete as the one available for ASR we would

have to collect every single possible word in a language. This would result in a reduction

of efficiency and confusion when doing predictions, since there would be too many options

and some of them would be very similar (for example a word and its plural). On the other

hand, we could limit the number of words (for example, using only primitive words and not

its derived words) and add an < Unknown > token for every word that does not appear in

the vocabulary. But we would end up obtaining too many < Unknown > predictions.

To overcome these problems, the usual approach is using sub-words i.e. parts of words

[Sennrich et al., 2016]. For example, these could include primitve words and all possible

prefixes and suffixes. But this is not done manually, in order to find the best sub-words

possible, the BPE algorithm finds the most common ones. This method reduces the number

of < Unknown > predictions while maintaining a vocabulary of an acceptable size.

2.5. Evaluation scores

In this section we will study the evaluation scores used to measure the performance of ASR

and ST models.

2.5.1. Word Error Rate

Word Error Rate (WER) is the most common evaluation measure used in speech recognition.

It measures the differences between the expected and the obtained output. WER considers

three possible errors when doing ASR:

Deletion: when a word should have been predicted but instead nothing is predicted.

Insertion: when nothing should have been predicted but instead a word is predicted.

Substitution: when a wrong word is predicted in place of a correct word.

Word Error Rate is calculated as the proportion of errors per total number of words in the

expected output. it is usually represented as a percentage.

WER = 100 · Deletions + Insertions + Substitutions

Total of words

2.5.2. Bilingual Evaluation Understudy score

The Bilingual Evaluation Understudy (BLEU) score [Papineni et al., 2002] is the most com-

mon evaluation measure used in translation tasks. Unlike in the case of ASR, where only

17

Efficient Transformers for Direct ST Belén Alastruey Lasheras

one correct answer is possible (and therefore it is easy to evaluate the error), in the case

of translation there can be different correct outputs. In order to overcome this problem, it

is common to compare the output of the model with more than one possible human-made

translations. For each comparison the ratio of 1, 2, 3 and 4-grams is calculated and then

the results are averaged. Additionally, to avoid short sentences, which obtain better results

in the n-gram comparison, a penalty is added if the sentence length obtained is too short.

However, BLEU is useful but imperfect; there are many valid ways to translate a sentence

and it would be impossible to list them all in the corpus, therefore a prediction can get a low

BLEU score and still be correct.

18

Chapter 3

State of the art

In this chapter we will explain the state of the art of End2End Speech-to-Text algorithms and

the new Efficient Transformers for long text tasks. These models will be of great importance

for the development of the thesis and the quality evaluation of the results.

3.1. Speech-to-Text Transformer

The Transformer is currently the State of the Art for text translation tasks. After the good

results in text and the growing interest in End2End algorithms for Speech-to-Text translation,

it seems natural to consider using the Transformer also for speech tasks [Cross Vila et al.,

2018], but when trying it we must face a main problem: the Transformer ’s complexity.

The cost of calculating the attention matrix is O(n2), where n is the sequence length. This

sequence length is approximately an order of magnitude longer for a spoken input than for

an usual text input, therefore the cost in time and complexity of the model can rise to high

levels.

To overcome this problem, extensions of the Transformer for Speech-to-Text (S2T) tasks,

such as End2End ASR and ST, have been proposed. A usual approach is adding convolutional

layers before the Transformer encoder, as done by Gangi et al. [2019]. Recently, Wang et al.

[2020a] introduced a new S2T Transformer, based on the addition of 1D convolutional layers

before the Transformer. These layers reduce the sequence length of the input data by a factor

of 4, shortening the audio data, so it is suitable for a regular Transformer.

3.2. Efficient Transformers

As we have previously seen, to get the attention weights of a sentence with n tokens it is

necessary to calculate Q · KT , which has a complexity of O(n2). This cost in memory and

19

Efficient Transformers for Direct ST Belén Alastruey Lasheras

time may be acceptable when working with short sentences but becomes excessively expensive

when working with longer texts, and consequently forces to make partitions or to shorten

the long texts into smaller sequences. For this reason, research is currently being made on

modifications of this algorithm, in aim to reduce its complexity and make the model suitable

for longer inputs. These new models are called Efficient Transformers.

The Linformer

The Linformer [Wang et al., 2020b] introduces a variation of the Transformer self-attention

that reduces the complexity from quadratic to linear. To achieve this reduction, the Linformer

proves that the attention matrix is low-rank and takes advantage of this finding to propose a

new self-attention mechanism with a complexity of O(n). Let P be the attention matrix after

applying the softmax function over the weights. By applying singular value decomposition

into P it can be proven that most of the information in P is concentrated in the few largest

singular values, meaning that P is low-rank (for details of the demonstration, see [Wang

et al., 2020b]). The straightforward idea to benefit from this result would be to use SVD to

approximate P with a new matrix Plow, but this requires performing SVD in each attention

matrix, which would add complexity to the algorithm. To avoid adding complexity, another

method is proposed. The model adds two linear projection matrices (Ei, F i ∈ Rn×k) when

computing key and value. The resultant model works as follows:

Qi = X ·W i
Q K = X ·W i

K V i = X ·W i
V i ∈ {0, ..., h− 1}

Ai = softmax
(Qi · (Ei ·Ki)T√

dk

)
∈ Rn×k

Zi = Ai · F i · V i

Concerning k, as proven in the paper, k is independent of the sequence length, and therefore,

can be a constant.

The Longformer

The Longformer [Beltagy et al., 2020], introduces a variation on the original Transformer,

which achieves a reduction in the cost of the attention calculation operation from quadratic

to linear. To achieve this improvement, the Longformer algorithm defines a pattern in the

attention matrix, specifying for each token those that should be attended to and those that

should not. By eliminating some of the attentions between tokens, the number of operations

20

Efficient Transformers for Direct ST Belén Alastruey Lasheras

is reduced and an algorithm that scales linearly with the input sequence length is obtained.

Longformer ’s attention pattern consists of different components:

Sliding Window (figure 3.2.2): It is the main component of the attention pattern,

and it is based on the idea of the importance of local context. With this component,

an attention window of fixed size is placed around each token. Given a fixed window

size w each token will attend to the 1
2
w tokens on each of its sides. In addition to the

local context, adding several stacked attention layers achieves an effect similar to the

one used in CNNs, that allows the last layers to receive information from the whole

sentence and not only from the tokens inside its window. Stacking l attention layers

would provide a receptive field of size l × w at the top layer.

Dilated Sliding Window: In order to increase each token’s attention field without

increasing the complexity, a variant of the sliding window was proposed. For every

token, the dilated sliding window also attends to 1
2
w tokens on each side but leaves

gaps of size d. Consequently, the receptive field in the last layer has a size of l× d×w.

Global Attention (figure 3.2.3): For some NLP tasks there exist special tokens,

such as [CLS] in the case of BERT, that would not be attended enough just by using

the sliding window. In these cases, global attention is added to pre-selected input

tokens. This global attention is symmetric: the selected token will attend to every

other token and vice versa.

Figure 3.2.1: Full Attention Figure 3.2.2: Sliding Window
Figure 3.2.3: Sliding Window
and Global Attention

The Big Bird

The Big Bird [Zaheer et al., 2020] introduces a variation on the Longformer, that adds

more attention and improves the performance while keeping linear complexity. The Big Bird

proposes a new component in the Longformer attention pattern:

Random Blocks (figures 3.2.4 and 3.2.5): Just by using a sliding window and

global tokens we might be losing important contextual information. To try to recover

part of this information some random queries and keys are chosen to calculate their

attention weight.

21

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Figure 3.2.4: Sliding Window and Random Atten-
tion

Figure 3.2.5: Sliding Window, Global and Random
Attention

The Reformer

The Reformer [Kitaev et al., 2020] introduces a modification that reduces the complexity

from O(n) to O(n · log n) by substituting regular self-attention with one that uses locality-

sensitive hashing. To use LSH attention we impose Q = K. The Reformer notices that the

costly operation of attention is QKT , but we only use the result of this product after applying

the softmax function over it. When applying the softmax the largest elements remain but

the low ones get close to 0. This method proposes to calculate the product between a q and

a k only when they are similar and avoids doing it when they are very different, since in this

second case the result of calculation would vanish when applying the softmax. To find which

q and k are similar the Reformer proposes to use locality-sensitive hashing [Andoni et al.,

2015], a hashing method that assigns nearby vectors to the same hash with high probability.

In order to do this, vectors are projected to a sphere that is divided into buckets. The hashing

algorithm applies random rotations to the projected points and assigns them to the same

hash if after every random rotation they are positioned in the same bucket.

The Routing Transformer

The Routing Transformer [Roy et al., 2021] is a Transformer modification that reduces

complexity to O(n
3
2). This Efficient Transformer is based on the same idea as the Reformer,

this is avoiding calculating the attention weights that will tend to 0 when applying the softmax

function. The Routing Transformer uses the classical clustering method k-means to assign

every query and key to a cluster. The initial centroids for this clustering are parameters and

are learned during the training. After the clustering, attention is only calculated between

queries and keys that belong to the same cluster.

The Synthesizer

The Synthesizer [Tay et al., 2020] proposes a new approach to the Transformer, proving that

the self-attention might not be as important as it seems. In this paper, researchers find that

22

Efficient Transformers for Direct ST Belén Alastruey Lasheras

random alignment works competitively and therefore that weights calculated from queries

and keys are useful but not that important. Two different Synthesizer models are proposed:

Dense Synthesizer : This Synthesizer is conditioned on each input, but not on the

rest of the sentence. Every token predicts a vector of length equal to the sequence

length, that contains a weight for every token in the sequence. These weights are

only influenced by the current token and, depending on what this token is, a weight is

decided for every position of the sentence.

Random Synthesizer : This Synthesizer is not conditioned by input tokens, and

the attention weights are fully random. These values can be either fixed or trainable

parameters.

Comparison of Efficient Transformers

To close this section, we will consider the table 3.2.1, with other information about this

Efficient Transformers regarding other features that are not the algorithm. In this table

we compare their complexity, the architecture they are used in and the difficulty of their

implementation1.

Complexity Architecture Implementation
Linformer O(n) encoder medium

Longformer O(n) encoder easy
Big Bird O(n) encoder easy
Reformer O(n · log n) encoder-decoder medium

Routing T. O(n
3
2) encoder difficult

Synthesizer O(1) encoder-decoder medium

Table 3.2.1: Efficient Transformers

1An algorithm is classified as ’easy’ if its implementation can be found in Hugging Face, ’medium’ if its
in another git repository or ’difficult’ if there is no implementation available.

23

Chapter 4

Methodology

Once we have seen the required background, and the current state-of-the-art we will go

through the specifics of our proposal. In this thesis, we present a new method for Speech-to-

Text translation tasks, that can also work for ASR. We propose a new modified Transformer,

where the encoder is an Efficient Transformer and the decoder is a traditional Transformer

decoder. By using an Efficient Transformer in the encoder the model can handle long inputs,

and therefore we can delete the convolutional layers used in the implementation by Wang

et al. [2020a]. This way, the encoder has access to the full spectrogram and no information

is lost.

4.1. Overview

To create and test our algorithm we will follow the steps below:

Efficient Transformer Selection: Compare and choose one of the Efficient Trans-

formers that have been analyzed in chapter 3.

Building the model: Build the new model with the chosen Efficient Transformer

encoder and a regular Transformer decoder.

Training and Evaluation: Once the model is built, we plan the experiments that

will be trained. After the training we will evaluate the results.

4.2. Efficient Transformer Selection

Although the objective of this project is not to translate long texts, we believe that Efficient

Transformers could be useful to deal with spoken sentences, because they could help to

address the problem of large sequence lengths.

24

Efficient Transformers for Direct ST Belén Alastruey Lasheras

We have studied different Efficient Transformer models. Since we are interested in modifying

only the encoder, we would prefer to choose one of the models that have already been tried this

way. Therefore we will not use the Reformer or the Synthesizer. Both the Longformer and

the Big Bird share a similar attention pattern, that is based in a sliding window. We believe

this feature could be profitable for a sound task, since it could help in the sound processing,

and could also be helpful during training since these are models that allow modifications

and adjustments in their parameters. On the negative side, the sliding window could be a

constraint because it might focus on redundancies instead of on the sentence content.

Moreover, we would like to choose a model with the lowest complexity possible, since we

will be dealing with high sequence lengths, and both the Longformer and the Big Bird

have a linear complexity. To sum up, because of their attention pattern, the fact that they

are encoder-based models, and their linear complexity we believe that the best possible

choices are the Longformer and the Big Bird. Additionally, these two models allow an easy

implementation, since they are both available in Hugging Face 1.

As we have seen, the Longformer and the Big Bird provide a very similar attention model.

In the case of the Longformer, the attention pattern is based in a sliding window, that can

be dilated or not, and it is in charge of the local attention. Both models use global attention

too, that gives the appropriate importance to special tokens that can be needed depending

on the task the model is being used for. Additionally, the Big Bird adds attention weights

between some randomly chosen queries and keys. Since our task doesn’t include any special

token, we are not interested in adding global attention in neither the Longformer nor the

Big Bird. Our initial objective was to try both models with the same attention window, in

aim to see if adding random attention weights was useful or not when processing speech. We

also wanted to try different attention window sizes and a dilated window, to see how adding

or reducing local attention could affect the results.

After studying the implementations of the Longformer and the Big Bird available in Hugging

Face we faced a main problem: The Big Bird model was restrictive with its parameters, and

it was compulsory to add global attention to the tokens at the beginning of the sentence.

This could complicate the comparison between the models, and most importantly, could lead

to bad results, since the first milliseconds of an audio are usually silent, and this implemen-

tation would give them a too much importance. For this reason, we decided to choose the

Longformer for our main experiments. Additionally we performed some experiments with

the Big Bird, and they can be found in Appendix A.

1Hugging Face is an open-source library for natural language processing algorithms (huggingface.co)

25

huggingface.co

Efficient Transformers for Direct ST Belén Alastruey Lasheras

4.3. Building the Model

Once the Efficient Transformer is chosen, we can start to build our model. To do it we will

mainly use two libraries:

Fairseq, a sequence modeling toolkit by Facebook Research AI written in PyTorch that

allows researchers and developers to train models for text generation tasks such as

translation, summarization, language modeling.

Hugging Face, an open-source library for natural language processing algorithms.

Our model has three main modules, which we have to choose: the positional encoding, the

encoder and the decoder.

Positional Encoding

Fairseq has two available positional encodings:

Learned: In this positional encoding parameters are learned during the training of the

model.

Fixed: It is a sinusoidal encoding like the one used before the original Transformer,

described in chapter 2.

For our work, we decide to use the sinusoidal encoding, since we want our model to be

as similar as possible to the original Transformer, so it is considered a variation of it but

for speech tasks. Additionally, by choosing this fixed encoding we avoid an increase of the

trainable parameters of the model, making the training faster.

Encoder

We will use the encoder of the Longformer model available in Hugging Face. This encoder

has the same layers as a Transformer encoder, but the self-attention will be the Efficient

one. We will use a regular sliding window, since the dilated one is not implemented, and we

won’t use global attention, since it is not suitable for the tasks we are working on. We will

try different window sizes.

Decoder

We will use a regular Transformer decoder, available at Fairseq.

26

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Figure 4.3.1: We propose a model with Longformer ’s sliding window in the encoder’s self-attention.

However, this model could have an inconvenience. In speech-to-text translation, as in every

translation task, when calculating the encoder-decoder attention, it is important to align the

input with the output. But in this case, while the input is a spectrogram, the output is text,

and this sequence length mismatch can be a complication when doing a correct alignment.

This was not a problem in Fairseq ’s S2T Transformer, since they reduce the sequence length

before using the Transformer, and therefore there is no sequence length difference between

the input and the output.

In our proposed model the encoder is replaced with an Efficient Transformer, which is suitable

to work with high sequence lengths without causing a sharp increase in complexity. However,

this model does not solve the possible problem of alignment. This happens because, in

contrast as with the S2T Transformer, in our case the input is still a spectrogram and

the output has to be text, therefore, when calculating the encoder-decoder attention, the

alignment will have to be done between these two sequences of very different lengths.

To solve this problem we propose to add a convolutional layer after the last stacked encoder.

This will reduce the encoder output length by half, making it more similar in size to the

predicted text sentence, eventually solving the lengths discrepancy problem. This approach

is close to the one used in the S2T Transformer, but in our case there is only one convolutional

27

Efficient Transformers for Direct ST Belén Alastruey Lasheras

layer and it is placed after the encoder, instead of before. We believe this could be profitable

since we let the encoder learn directly from the spectrogram and no information is lost, but

at the same time we reduce the complexity of the model and address the alignment problem

of mismatching sequence lengths.

4.4. Training and Evaluation

We propose to train models with different attention window sizes, and with or without a

convolutional layer after the encoder. We train our models for an ASR task, and then for ST

using the ASR pre-trained encoder [Bérard et al., 2018]. This is done because in a ST task the

encoder must learn two very different jobs at the same time: how to analyze audio features

and how to understand the semantics of a sentence. The decoder must learn two tasks too,

translating and language modeling, but these are strongly related, unlike the ones carried

out by the encoder. Instead, when doing ASR, since alignment is monotonic and semantics

are not the main issue, the encoder can focus on learning audio modeling. Additionally, the

amount of data available for ASR training is higher than for ST, what can improve the results.

By doing the ASR pre-training, our model already knows how to model audio before the ST

training, and therefore the algorithm is able to focus on learning semantic and translation

tasks.

Once the models are trained, we will test them on new data. We will calculate the WER for

the ASR task and the BLEU score for the ST task.

28

Chapter 5

Experiments and Results

In this section we describe the different experiments that have been carried out, their param-

eters and results, and the settings. To evaluate the quality of our results, we will compare

them with a baseline model that will be the S2T Transformer available in Fairseq and de-

scribed in chapter 3. In particular, we will use the s2t transformer s, the one used by Wang

et al. [2020a]. To simplify the notation we will denote this model as s2t transformer. In the

case of our models, we will call them s2t longformer and s2t longformer 2x, being the first

one the base model, and the second one the variation with a convolutional layer after the

encoder.

5.1. Settings

Before discussing the conducted experiments and the results obtained with each of them, we

will describe some of the conditions that will be decisive, such as the data, the experimental

framework, the details of the model implementation and the training parameters.

5.1.1. Dataset

Regarding the data, we will apply our Speech-to-Text algorithm to the MuST-C dataset

[Cattoni et al., 2021]. This dataset was created after the popularity growth of End2End

ST, with the aim to confront the scarcity of public data that researchers were facing when

training these new models. Cascade solutions have many and varied data to train each of their

modules, but End2End ST datasets were small and of limited language coverage. MuST-C

dataset is a Multilingual ST Corpus (MuST-C) built using TED talks in English. The dataset

includes a corpus for translation from English into 14 different languages, that belong to

different families, including Dutch, French, German, Italian, Portuguese, Romanian, Russian,

or Spanish. It contains at least 237 hours of transcribed recordings (430 on average) for each

29

Efficient Transformers for Direct ST Belén Alastruey Lasheras

of the available languages. Furthermore, the data is free and of good quality, and includes a

variety of topics and speakers.

For our work we will be using the English-German section included in the MuST-C dataset,

which contains data for English ASR and for English-German ST.

5.1.2. Training Environment

For our trainings, we will use UPC’s Calcula server, powered by NVIDIA GeForce RTX 2080

Ti GPUs. We will use one GPU for each training.

5.1.3. Speech-to-Text Longformer Implementation

To get the most realistic comparison possible between our results and the ones obtained with

the s2t transformer by Wang et al. [2020a], we try to create a model as similar as possible

to theirs. We build our model with 6 encoder layers and 12 decoder layers. We apply a

normalization layer before each decoder layer. In both the encoder and the decoder, we use

4 attention heads, the embedding dimension is 256, and in the FFNN layers it is 2048. The

decoder output dimension is 256, the same as the decoder embedding dimension. We use a

dropout probability of 0.1 in both the attention weights and in the FFNN activations. We

use ReLU as the activation function for the FFNNs.

Additionally, we add some extra parameters, that are specific of our model, regarding the

size of the attention window and the convolutional layers. For the convolutional layers of

s2t longformer 2x we use a kernel of size 5. The attention window size will be defined

specifically for each experiment.

5.1.4. Training parameters

To ensure a reliable comparison, all ASR and ST experiments have been respectively per-

formed under the same conditions and parameters. Specifically, we have tried to use the

same parameters as in the implementation by Wang et al. [2020a], when possible. In ASR

trainings we use 4 CPUs and 2 workers to load the data. We fixed a maximum of 20000

tokens per batch. We used Adam optimizer and a learning rate of 1 · 10−3 with an inverse

square root scheduler. We applied a warm-up for the first 10000 updates. We clipped the

gradient to 10 to avoid exploding gradients. We used label smoothed Cross-entropy as a loss

function, with a smoothing factor of 0.1. We used an update frequency of 16, simulating the

use of 16 GPUs. We fix a maximum of 100000 updates for every training. In ST trainings

we use use the same parameters as for ASR, but for the learning rate, that will be 1 · 10−3,

as done by Wang et al. [2020a].

30

Efficient Transformers for Direct ST Belén Alastruey Lasheras

5.2. Experiments description

As discussed in chapter 4, we will train our models for an ASR task and then for a ST task,

using the ASR pre-trained encoder.

5.2.1. Automatic Speech Recognition

We will try the following experiments for an ASR task:

Attention Window = 512: s2t longformer, s2t longformer 2x

Attention Window = 76: s2t longformer, s2t longformer 2x

Attention Window = 60: s2t longformer, s2t longformer 2x

Attention Window = 48: s2t longformer, s2t longformer 2x

We begin our experiments choosing an attention window of size equal to 512 tokens, since

this is the default value given in Hugging Face implementation. After 80 epochs the model

doesn’t converge, what shows that 512 is not an appropriate size for our task. A possible

explanation for this result is that this model has been created for text (long documents),

not for speech, and therefore the optimal parameter is not necessarily the same for both

tasks. We believe that this attention window could be too big for a speech task, since we

are attending to an interval of approximately 5 seconds, which is too wide for audio features

extraction. To address this problem, we decide to reduce the attention window size to a length

of 48 tokens (approximately 0.5 seconds). This modification indeed solves the convergence

problem and reaches a result that is close to the baseline (??). Nevertheless, we believe that

this window size could be too small to work well in a ST task, since it does not allow the

model to see much context. This is not very relevant in ASR tasks, because alignment is

monotonic, but can be a problem in future ST trainings where alignment with the rest of the

words in the sentence is fundamental. For this reason, we decide to try a window of size 76.

This experiment works well with the s2t longformer 2x, but is unstable in the s2t longformer

training. Again, we believe this could be as a consequence of a too big window, and therefore

we decide to try another model, with an attention window of size 60. In contrast with the

previous experiment, this one works well with the s2t longformer, but is unstable with the

s2t longformer 2x, what shows that the window might be too wide too. Therefore we decide

to stop the ASR experiments and keep the ones that already work.

All these experiments have been trained using MuST-C dataset during 80 epochs, in a time

of approximately 4 days. In table 5.2.1 we find the best WER obtained in each experiment

and in figure 5.2.1 we can see the evolution of the WER along every training epoch.

31

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Attention Window Size WER

s2t transformer - 13.31

s2t longformer 512 does not converge
s2t longformer 2x 512 does not converge

s2t longformer 76 unstable
s2t longformer 2x 76 15.00

s2t longformer 60 14.99
s2t longformer 2x 60 unstable

s2t longformer 48 15.31
s2t longformer 2x 48 15.06

Table 5.2.1: ASR results after the performed experiments

Figure 5.2.1: ASR over epochs.

5.2.2. Speech Translation

In this section, we describe the ST experiments that have been carried out. In order to train

a model for ST we needed the pre-trained encoder obtained after the ASR training. For this

reason we will only try models that worked well for ASR. It is also worth noting that since

ST is a harder task than ASR (because of alignment), a model that has not worked well for

ASR is highly unlikely to work for ST.

For these reasons, the only models that were trained for ST are:

Attention Window = 76: s2t longformer 2x

32

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Attention Window = 60: s2t longformer

Attention Window = 48: s2t longformer, s2t longformer 2x

We perform these experiments for a ST task. We have done a training using MuST-C dataset

during 160 epochs, in a time of approximately 7 days and 19 hours for each experiment. In

table 5.2.2 we find the best result of each experiment, and in figure 5.2.2 we find the BLEU

score evolution in every epoch.

Attention Window Size BLEU

s2t transformer - 22.41

s2t longformer 2x 76 20.64
s2t longformer 60 20.34
s2t longformer 48 20.49

s2t longformer 2x 48 20.45

Table 5.2.2: BLEU results after the performed experiments

Figure 5.2.2: BLEU over epochs.

5.3. Results Analysis

During ASR trainings, we have seen that large attention windows can be harmful for audio

processing since they do not let the encoder focus properly on the audio feature extraction.

33

Efficient Transformers for Direct ST Belén Alastruey Lasheras

We have also seen that the Longformer instabilities reported by Beltagy et al. [2020] have

been an obstacle for the training process, especially aggravated with long window sizes that

make the model more complex. Even so, we have been able to train 4 different models that

work and that offer competitive results in ASR. We have used the pre-trained encoders of

these 4 models for new trainings on ST. As in the case of ASR, the models have not been

able to reach the baseline results but still offer promising results. Additionally, we have

seen that adding a convolutional layer is not especially useful, in contrast to what we had

hypothesized.

34

Chapter 6

Conclusions and future work

In this thesis, we have first studied the background and history of ASR, MT, and ST tasks,

and the current approaches.

We have seen that Direct Speech-to-Text translation is a research field in development, since

current results are poor, and therefore there is still work to be done before these algorithms

can be used in real-life applications. We have contributed to the field with our proposed

model, which shows an innovative approach.

Our model, consists of a variation of the original Transformer that makes it suitable for

ST tasks. It replaces the encoder’s self-attention with the attention pattern proposed by

the Longformer, based on a sliding window that can be useful for audio processing. This

allows the model to work directly with a spectrogram without losing any information in the

convolutional layers before the Transformer, as happens in the models proposed by Gangi

et al. [2019] and Wang et al. [2020a].

Unlike what we thought at the beginning of the thesis, alignment between speech and text

has not been a problem for the performance of the model. Instead, we had to face other

complications that we did not expect: Longformer ’s natural instability aggravated by large

attention window sizes caused a hindrance in the model’s training.

The main goal of this thesis was to assess whether this model could give competent results.

Finally, our model did not reach the baseline results but got a close performance: a WER of

14.99 (compared to 13.31 from the baseline system) and a BLEU of 20.64 (compared to 22.41

from the baseline system), which we consider a great starting point for a promising research

path.

After these results, we believe it would be appropriate to study possible modifications in

the training parameters, to get a more stable training even for wider attention windows. It

35

Efficient Transformers for Direct ST Belén Alastruey Lasheras

would also be appropriate to try a different approach when defining the attention window size:

using one of variable length that could be smaller in the first encoder layers, to help with the

audio features extraction, and wider in the last layers, to obtain more information about the

context for the ST task. Additionally, another future work could be modifying Big Bird ’s

Hugging Face implementation to deactivate global attention and to have a less restrictive

model, so we could use it to study the effect of adding random attention to the Longformer

approach. Finally, we could try other Efficient Transformers, such as the Linformer, that

has been tried in encoders and therefore could be suitable for a model like ours.

36

Bibliography

The IWSLT 2019 Evaluation Campaign, November 2019. Zenodo. doi: 10.5281/zenodo.

3525578. URL https://doi.org/10.5281/zenodo.3525578.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig Schmidt.

Practical and optimal lsh for angular distance. arXiv preprint arXiv:1509.02897, 2015.

Ebrahim Ansari, Amittai Axelrod, Nguyen Bach, Ondřej Bojar, Roldano Cattoni, Fahim

Dalvi, Nadir Durrani, Marcello Federico, Christian Federmann, Jiatao Gu, Fei Huang,

Kevin Knight, Xutai Ma, Ajay Nagesh, Matteo Negri, Jan Niehues, Juan Pino, Elizabeth

Salesky, Xing Shi, Sebastian Stüker, Marco Turchi, Alexander Waibel, and Changhan

Wang. FINDINGS OF THE IWSLT 2020 EVALUATION CAMPAIGN. In Proceedings

of the 17th International Conference on Spoken Language Translation, pages 1–34, Online,

July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.iwslt-1.1.

URL https://www.aclweb.org/anthology/2020.iwslt-1.1.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by

jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,

May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1409.

0473.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document trans-

former. arXiv preprint arXiv:2004.05150, 2020.

Alexandre Bérard, Laurent Besacier, Ali Can Kocabiyikoglu, and Olivier Pietquin. End-to-

end automatic speech translation of audiobooks. In 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 6224–6228, 2018. doi: 10.

1109/ICASSP.2018.8461690.

Roldano Cattoni, Mattia Antonino Di Gangi, Luisa Bentivogli, Matteo Negri, and Marco

Turchi. Must-c: A multilingual corpus for end-to-end speech translation. Com-

puter Speech Language, 66:101155, 2021. ISSN 0885-2308. doi: https://doi.org/10.

37

https://doi.org/10.5281/zenodo.3525578
https://www.aclweb.org/anthology/2020.iwslt-1.1
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

Efficient Transformers for Direct ST Belén Alastruey Lasheras

1016/j.csl.2020.101155. URL https://www.sciencedirect.com/science/article/pii/

S0885230820300887.

William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals. Listen, attend and spell: A neural

network for large vocabulary conversational speech recognition. In 2016 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4960–4964. IEEE,

2016.

Laura Cross Vila, Carlos Escolano, José A. R. Fonollosa, and Marta R. Costa-Jussà. End-

to-End Speech Translation with the Transformer. In Proc. IberSPEECH 2018, pages 60–

63, 2018. doi: 10.21437/IberSPEECH.2018-13. URL http://dx.doi.org/10.21437/

IberSPEECH.2018-13.

Mattia A. Di Gangi, Matteo Negri, and Marco Turchi. Adapting Transformer to End-

to-End Spoken Language Translation. In Proc. Interspeech 2019, pages 1133–1137,

2019. doi: 10.21437/Interspeech.2019-3045. URL http://dx.doi.org/10.21437/

Interspeech.2019-3045.

Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural

networks. In Proceedings of the 31st International Conference on International Conference

on Machine Learning - Volume 32, ICML’14, page II–1764–II–1772. JMLR.org, 2014.

W. John Hutchins, Leon Dostert, and Paul Garvin. The georgetown-i.b.m. experiment. In

In, pages 124–135. John Wiley Sons, 1955.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.

arXiv preprint arXiv:2001.04451, 2020.

H. Ney. Speech translation: coupling of recognition and translation. In 1999 IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99

(Cat. No.99CH36258), volume 1, pages 517–520 vol.1, 1999a. doi: 10.1109/ICASSP.1999.

758176.

H. Ney. Speech translation: coupling of recognition and translation. In 1999 IEEE Inter-

national Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99

(Cat. No.99CH36258), volume 1, pages 517–520 vol.1, 1999b. doi: 10.1109/ICASSP.1999.

758176.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for au-

tomatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of

the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania,

USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135.

URL https://www.aclweb.org/anthology/P02-1040.

38

https://www.sciencedirect.com/science/article/pii/S0885230820300887
https://www.sciencedirect.com/science/article/pii/S0885230820300887
http://dx.doi.org/10.21437/IberSPEECH.2018-13
http://dx.doi.org/10.21437/IberSPEECH.2018-13
http://dx.doi.org/10.21437/Interspeech.2019-3045
http://dx.doi.org/10.21437/Interspeech.2019-3045
https://www.aclweb.org/anthology/P02-1040

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer, Alexander

Ku, and Dustin Tran. Image transformer. In Jennifer Dy and Andreas Krause, editors,

Proceedings of the 35th International Conference on Machine Learning, volume 80 of Pro-

ceedings of Machine Learning Research, pages 4055–4064. PMLR, 10–15 Jul 2018. URL

http://proceedings.mlr.press/v80/parmar18a.html.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and David Grangier. Efficient content-

based sparse attention with routing transformers. Transactions of the Association for

Computational Linguistics, 9:53–68, 2021.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare

words with subword units. In Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany,

August 2016. Association for Computational Linguistics. doi: 10.18653/v1/P16-1162. URL

https://www.aclweb.org/anthology/P16-1162.

C.E. Shannon. Communication in the presence of noise. Proceedings of the IRE, 37(1):10–

21, jan 1949. doi: 10.1109/jrproc.1949.232969. URL https://doi.org/10.1109/jrproc.

1949.232969.

SS Stevens, J Volkmann, and EB Newman. The mel scale equates the magnitude of perceived

differences in pitch at different frequencies. Journal of the Acoustical Society of America,

8(3):185–190, 1937.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural

networks. In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Wein-

berger, editors, Advances in Neural Information Processing Systems, volume 27. Cur-

ran Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/

a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:

Rethinking self-attention in transformer models. arXiv preprint arXiv:2005.00743, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems, volume 30. Cur-

ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, and Juan Pino. fairseq

s2t: Fast speech-to-text modeling with fairseq. arXiv preprint arXiv:2010.05171, 2020a.

39

http://proceedings.mlr.press/v80/parmar18a.html
https://www.aclweb.org/anthology/P16-1162
https://doi.org/10.1109/jrproc.1949.232969
https://doi.org/10.1109/jrproc.1949.232969
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Efficient Transformers for Direct ST Belén Alastruey Lasheras

Sinong Wang, Belinda Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention

with linear complexity. arXiv preprint arXiv:2006.04768, 2020b.

Ron J. Weiss, Jan Chorowski, Navdeep Jaitly, Yonghui Wu, and Zhifeng Chen. Sequence-

to-sequence models can directly translate foreign speech. In Proc. Interspeech 2017, pages

2625–2629, 2017. doi: 10.21437/Interspeech.2017-503. URL http://dx.doi.org/10.

21437/Interspeech.2017-503.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, San-

tiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and Amr Ahmed.

Big bird: Transformers for longer sequences. In H. Larochelle, M. Ranzato, R. Hadsell,

M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, vol-

ume 33, pages 17283–17297. Curran Associates, Inc., 2020. URL https://proceedings.

neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf.

40

http://dx.doi.org/10.21437/Interspeech.2017-503
http://dx.doi.org/10.21437/Interspeech.2017-503
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c8512d142a2d849725f31a9a7a361ab9-Paper.pdf

Appendix A

The Big Bird

In this appendix we show the results obtained using The Big Bird [Zaheer et al., 2020].

A.1. Methodology

As discussed in chapter 4, the Big Bird is a model that provides the same advantages as the

Longformer : it has linear complexity, it has been used in encoders, and it has an attention

pattern that could be useful for audio processing. This attention patter, that was seen in

detail in chapter 3, is similar to the one used in the Longformer, but adds attention between

randomly chosen queries and keys. This is particularly interesting because we would like to

study the effect of adding random attention for a speech task by comparing the results of

both the Longformer and the Big Bird.

To build our model we follow the same approach we used with the Longformer. We build a

variation of the Transformer that will replace encoder’s self-attention layer with one using

Big Bird ’s attention pattern. We will use sinusoidal positional encodings and a regular

Transformer decoder.

A.2. Implementation

To build our model we will use an implementation available in Hugging Face. This imple-

mentation is based in a modification of the original Big Bird model that uses blocks in the

attention pattern, in aim to make the complexity of the model lower. This blockified struc-

ture was initially proposed in the original Big Bird paper Zaheer et al. [2020] and packs

queries and keys in blocks of size b× b. Then uses this blocks to define the attention pattern,

instead of doing it over individual queries and keys.

41

Efficient Transformers for Direct ST Belén Alastruey Lasheras

But Hugging Face adds some restrictive conditions to this attention pattern. It forces the

model to use global attention in the first 2 ·b tokens, and forces the attention window to be of

size 3 ·b (see this pattern in figure A.2.1) . This can be a hitch for our model, since we can not

create a pattern exactly as the one we created with the Longformer but with random tokens,

and also forces us to use global attention in the first milliseconds of our audio, which are

usually silent. This means that results will probably be poor because of the global attention.

But even if they are good, we will not be able to compare properly both the Longformer and

the Big Bird, because there will be many differences between the attention patterns, not only

the random tokens, as we wanted.

Figure A.2.1: Big Bird attention pattern with blocks (block size=3, random blocks=4)

A.3. Experiments and Results

For our experiments we will use the same dataset, experimental framework, model structure,

and training parameters 1 as the ones used in chapter 5 for the experiments performed with

the Longformer. In the case of the Big Bird we have to define two extra parameters, the

block size and the number of random blocks. As said above, we don’t need to define the

attention window size, because it is set to 3 · block size, and neither the global attention,

that is set to the first 2 · block size tokens.

1The training parameters are the same but for the update frequency, that is 8, and the label smoothing,
that is set to 0.

42

Efficient Transformers for Direct ST Belén Alastruey Lasheras

A.3.1. Automatic Speech Recognition

As we did with the Longformer, we will start training out model for an ASR task, and then

for ST using the pre-trained encoder.

For our first experiment we try using the default parameters (block size = 32, random blocks

= 3). As happened with the Longormer, the results with this parameters are poor, probably

because they are optimized to work well in a text translation task, not for speech. We decide

to reduce the block size, as we did to improve Longofmer ’s results too. We decide to use a

block size of 16, because this will result in a total attention window of size 16× 3 = 48, and

48 was a one of the windows that worked better with the Longformer. Again, the Big Bird

performs badly with this window, in contrast with the Longformer. This leads us to believe

that our hypothesis about global attention, and that it could be a problem because it forced

the model to give importance to silent tokens, was right. Therefore we decide to stop the

experiments.

In the following figure (A.3.1) we sum up the results of the diferent experiments done using

the Big Bird, and the results of the baseline (s2t transformer).

Block Size WER

s2t transformer - 13.31

s2t longformer 32 53.88
s2t longformer 2x 32 35.27

s2t longformer 16 54.65
s2t longformer 2x 16 34.96

Table A.3.1: ASR results after the performed experiments.

Since the Big Bird does not work well in ASR, we do not have pre-trained encoder and

therefore we can not train the model for ST.

43

Universitat Politècnica de Catalunya

Barcelona, 2021

	Introduction
	Background
	Audio pre-processing
	Automatic Speech Recognition, Machine Translation and Speech-to-Text Translation
	Automatic Speech Recognition
	Machine Translation
	Speech-to-Text Translation

	Sequence-to-Sequence models (Seq2Seq)
	Attention
	The Transformer
	Self-Attention
	Model Structure
	Positional Encoding
	The Encoder
	The Decoder

	Word segmentation
	Evaluation scores
	Word Error Rate
	Bilingual Evaluation Understudy score

	State of the art
	Speech-to-Text Transformer
	Efficient Transformers
	The Linformer
	The Longformer
	The Big Bird
	The Reformer
	The Routing Transformer
	The Synthesizer
	Comparison of Efficient Transformers

	Methodology
	Overview
	Efficient Transformer Selection
	Building the Model
	Positional Encoding
	Encoder
	Decoder

	Training and Evaluation

	Experiments and Results
	Settings
	Dataset
	Training Environment
	Speech-to-Text Longformer Implementation
	Training parameters

	Experiments description
	Automatic Speech Recognition
	Speech Translation

	Results Analysis

	Conclusions and future work
	The Big Bird
	Methodology
	Implementation
	Experiments and Results
	Automatic Speech Recognition

