

Cornell University Library

The original of this book is in the Cornell University Library.

There are no known copyright restrictions in the United States on the use of the text.

HISTOLOGY

By the same Author.
EXPERIMENTAL PHYSIOLOGY:
Practical Elementary Physiology of Muscle and Nerve and of the Vascular and Nervous Systems.

LONDON: LONGMANS, GREEN, \& CO.

TEXT-BOOK OF MICROSCOPIC ANATOMY.
Containing over rooo Illustrations and many Coloured Plates.
LONDON: LONGMANS, GREEN, \& CO.

THE ENDOCRINE ORGANS.
An Introduction to the Study of Internal Secretion.
LONDON: LONGMANS, GREEN, \& CO.

A TEXT-BOOK OF PHYSIOLOGY FOR ADVANCED STUDENTS.

BY BRITISH AUTHORS.
In two Volumes.
LONDON: HENRY FROWDE, HODDER \& Stoughton.

A COURSE OF PRACTICAL HISTOLOGY. Containing Plain Directions for Individual Work in Histology. LONDON: TOHN MURRAY

THE ESSENTIALS

OF

HISTOLOGY

DESCRIPTIVE AND PRACTICAL

FOR THE USE OF STUDENTS

BY

Sir EDWARD SHARPEY-SCHAFER, F.R.S.
 PROKEGSOR OF PGYSIOLOGY IN THE UNIVERSITY OF RDINBURGH
 FORMERLY JODRELL FROFESSOR OF PHYSIOLOQY IN UNIYERSITY COLLEOR, LONDON

ELEVENTH EDITION

LEA \& FEBIGER
PHILADELPHIA AND NEW YORK

BIBLIOGRAPHICAL NOTE
First Edition, May 1885; Second Edition, January 1887; Third Edition, May 1892 ; Fourth Edition, April 1894; Fifth Edition, June 1898; Sixth Edition, May 1902; Seventh Edition, Januavy 1907; Eighth Edition, September 1910; Ninth Edition, January 1914; Tenth Edition, June 1916; Eleventh Edition, July 1920.

PREFACE TO THE ELEVENTH EDITION.

This book is written with the object of supplying the student with directions for the microscopic examination of the tissues. At the same time it is intended to serve as an Elementary Text-book of Histology; comprising the essential facts of the science, but omitting less important details. A more complete account will be found in larger works, such as the Author's Text-book of Microscopic Anatomy, and the portions of Quain's Anatomy which deal with the nervous system and the sense organs.

For conveniently accompanying the work of a class of medical students, the book is divided into fifty lessons. Each of these may be supposed to occupy from one to three hours, according to the relative extent to which the preparations are made beforehand by the teacher, or during the lesson by the students. A few of the preparations cannot well be made in a class, but it has been thought inadvisable to injure the completeness of the work by omitting mention of them.

Only those methods are recommended upon which experience has proved that dependence can be placed, but the directions given are for the most part easily capable of modification in accordance with the experience of different teachers.

The author desires to acknowledge the assistance of Mr R. K. S. Lim, M.B.,.Ch.B., Lecturer on Histology in the University of Edinburgh, in the preparation of this edition.

CONTENTS.

INTRODUCTORY.

LESSON I.

Use of the Microscope--Examination of Common Objects 26

LESSSONS II. and IIT.
Human Blood - Corpuscles--Development of
Bone-Marrow

LESSON IV.
Action of Reaoents upon the Human Blood-Corpuscles 49

LESSON VI
Amgeboid Phenomena of the Colourless Blood-Corpuscles 58

LESSON VII.
Epithbitum and Secreting (ilands - 63

LESSON VIIT.

Columnar and Ciliated Epithelium \quad iagl.

LESSON JX.

Connective Tissues: Areolar and Adipose Tissue-Reticular Tissue: 4
LESSON X.
Connective Tissues (continued) : Elastic Tissue-Fibrous Tassue-Minor Varieties of Connective Tissue-Development of Connective Tissue 92
LESSON XI.
Connmetive Tissues (continued): Articular Cartilage-Synovial Mem- branes $10 n$
LESSON XII.
Connective Tissues (continued): Costal Cartilage - Yellow Fibro- Cartilage--White Fibro-Cartilage--Devflopment of Caitilagy: 106
LESSON XIII.
Connective Tissues (continued): Strueture and Dlivelopment of Bone 112
LESSON XIV.
Cross-Striated Muscle 12 n
LESSON N゙
Muscle (continued) : Connexion of Muscle with Tendon--Blmon-Vesselas of Muscle - Development of Muscle - Cardiac Mifclef.- Plain Muscle - 13:
LESSON XVI.
Tissues of the Nhryous Systrim: Nerve-Fibrks147
LESSONS XVII. and XVIII.
Tissues of the Nervous System (continued): Nerve-Cells-Ganglia- Degeneration and Regeneration of Nerve-Fibres and Nerve- Cells - Neuroglia - Development of Nerve-Cells and Nerve- Fibres 157
LESSON XIX.
Modes of Termination of Nerye-Fibres-Sensory Nerve-Endings- Motor Nerve-Endings 189
LESSON XX.
The Larger Blood-Vessels 207
LESSON XXI.
The Smaller Blood-Vessels-Lymph-Vessels-Microscopic Study of the Circulation-Development of Blood- and Lymph-Vessels- Serous Membranes 216
LESSON XXII.
Lymph-Glands-Spleen-Tonsil-Thymus 232
LESSON XXIII.
Suprarenal Capsules-Carotid and Coccygeal Glands-Thyroid Body -Parathyroids-Pituitary Body-Pineal Gland 250
LESSONS XXIV. and XXV.
Skin - Nails-Mairs-Glands of the Skin-Mammary Glands 264
LESSON XXVI.
Heart 288LESSON XXVII.
Larynx-Trachea-Lungs 295

LESSON XXVIII.

PAGE
Struoture and Develofment of the Teeth 306
LESSON XXIX
Tongue and Gustatory Organs-Mucous Membrane of the Mouth- Pharynx and Esophagus 320
LESSON XXX.
Salivary Glands 327
LESSON XXXI
Sтомасн 335
LESSONS XXXII. and XXXIII.
Small and Large Intestine 344
LESSONS XXXIV. and XXXV.
Liver-Pancreas :360
LESSON XXXVI.
Kidney-- Ureter and Bladder 374
LESSON XXXVII.
Male Generative Organs 387
LESSON XXXVIII.
Female Generative Organs 404
LESSONS XXXIX. and XL.
Spinal Cord 433

LESSON XLI.

pagh
Medulla Oblongata 443
LESSONS XLII. and XLIII.
Pons-Mesencephalon-Thalamencephalon 459
LESSONS XLIV. and XLV.
Cerebellum and Cerebrum 485
LESSONS XLVI., XLVII., and XLVIII.
Eye 509
LESSONS XLIX. and L.
Nose and Ear 535
APPENDIX.
Methods 551
INDEX 569

CORRIGENDA.

P. 16.-Description of fig. 2t, line 1. For to read into.
P. 30.-Line 3 from bottom. For or read for
P. 35.-Fig. 47. The letters A and B have been omitted.
P. 37,-Line 6 from bottom. For adult read adults.
P. 41.-Fig. 57. There are several mistakes in the lettering of this figure.
P. 80, Sec. 2, line 2.-Omit acid before fuchsin.
P. 159.-Description of fig. 211. For ventra read ventral.
P. 169.-Last line of small type. For affected read effected.
P. 175.-Last line. For begin read begins.
P. 194.-Line 1. For neuro fibrils read neuro-fibrits.

THE ESSENTIALS OF HISTOLOGY

INTRODUCTORY

ENUMERATION OF THE TISSUES AND GENERAL STRUCTURE OF ANIMAL CELLS

Animal Histology ${ }^{1}$ is the science which treats of the minute structure of the tissues and organs of the animal body; it is studied with the aid of the microscope, and is therefore also termed Microscopic Anatomy.

Every part or organ of the body, when separated into minute fragments, or when examined in thin sections, is found to consist of certain textures or tissues, which differ in their arrangement in different organs, but each of which exhibits characteristic structural features.

The following is a list of the principal tissues which compose the body :-

1. Epithelial.

2. Connective: Areolar, Fibrous, Elastic, Reticular, Lymphoid, Adipose, Cartilage, Bone.
3. Muscular: Voluntary or striated, Involuntary or plain, Cardiac.
4. Nervous.

Some organs are formed of several of the above tissues, others contain only one or two.

It is convenient to include such fluids as the blood and lymph amongst the tissues, because they are studied in the same manner and contain cellular elements similar to those met with in some of the other tissues.

All the tissues are, prior to differentiation, masses of cells (embryonic cells). In some tissues elements become developed which take the form of fibres. Thus the epithelial tissues are composed throughout life entirely of cells, only slightly modified in structure, and the nervous and muscular tissues are formed of cells which are greatly modified to form the char acteristic fibres of those tissues. On the other hand, in the connective tissues an amorphous material becomes formed between the cells which is termed intercellular substance or ground-substance, and in this substance fibres make their appearance, sometimes, as in the fibrous connective tissues,

[^0]in so large an amount as to occupy the whole of the intercellular substance, and greatly to preponderate over the cells. This ground-substance, by virtue of its incorporating a certain amount of inorganic chlorides, has the property of becoming stained brown or black by nitrate of silver and subsequent exposure to light, in which case the cells, which remain unstained, look like white spaces (cell-spaces) in the ground-substance. When an epithelial tissue is similarly treated, the narrow interstices between the cells are also stained, from which it is concluded that a similar substance exists in small amount between the cells of this tissue. It has here been termed cement-substance, but it is better to apply to it the general term intercellular substance.

The cells of a tissue are not always separate from one another, but are in many cases connected by bridges of the cell-substance, which pass across the intercellular spaces. This is especially the case with the cells of the

higher plants, but it has also been found to occur in many animal tissues; e.g., in some varieties of epithelium and in cardiac and plain muscular tissue. Occasionally the connexion of the cells of a tissue is even closer, and lines of separation between them are faint or entirely absent. The term syncytium is given to any such united mass of cells.

Structure of Cells.-A cell is a minute portion of living substance (cytoplasm) which is sometimes enclosed by a cell-membrane and always contains a specially differentiated part which is known as the nucleus.

The cytoplasm of a cell (fig. $1, p$) is composed of protoplasm, which consists chemically of proteins or nucleoproteins, with which are associated lecithin, a combination of fatty acid with glycerophosphoric acid, and cholesterol, a monatomic alcohol; these belong to the class of "lipoids," and have many of the physical characters of fats. The protoplasm tends during life to exhibit movements which are apparently spontaneous; when the cell is unenclosed by a distinct membrane, a change in the shape, or even in the position of the cell, may be thereby produced. This is characteristically
shown in the movements of the unicellular organism known as the amoeka (fig. -)) ; hence the name amoboid movencent, by which it is generally

Fig. 2.-Successive ohanges fixhibited by an amaba. (Verworn.)

Fig. 3.-Untouched photograph of living leucocyte of triton, showing RETICULAR APPEARANCE OF THE PROTOPLASM. Magnified 1360 diameters.
The photograph was taken in monochromatic light with Zeiss' 4 mm . apochromatic objective and a compensation eye-piece. The polymorph nuclens also exhibits a reticular structure.
designated. ${ }^{1}$ The protoplasm often, but not always, contains a fine sponge-
The amceboid phenomena of cells will be studied later (in the colourless corpuscles of blood).
work, which takes under high powers of the microscope the appearance of a network (see diagram, fig. 1, B, and figs. 3 and 4), the remainder of the

Fig. 4.-A living leucocyte (white blood-corpusole) of Salanandid maculatis, showing lace-mike reticular appearance of its protoplasm. Magnified 1200 diameters. Untouched photograph.
An erythrocyte (red blood-corpuscle) is included in the photograph. A film of the protoplasm of the leucocyte extends over its margin.

Fig. is.-Trophospondium canalisation within a g.inglion CELL. (E. Holmgren.)

Fig. 6. - Epithelif v-cells of sal.imindek hitiva, stained infra ritam whth xevTRAL RND, SHOWIN: THE CELL-GK.INULES. (Fischel.) Magnified 300 diameters.
protoplasm being a clear substance which occupies the interstices of the spongework, and covers the surface or may project beyond the rest of the cell. A granular appearance is often produced by the knots in the spongework, which, when imperfoctly observed, look like separate granules. The material
which forms the spongework is termed spongioplasm; the clearer material which occupies its meshes is hyaloplasm. In other cases cell-protoplasm resembles an emulsion rather than a spongework, being formed of a clear fluid (hyaloplasm), containing globules of a more highly refracting substance suspended in it. These conditions of protoplasm are analogous to the gel and sol conditions which are characteristic of colloid solutions (see p. 7). The protoplasm of some cells shows a differentiation into fibrils, which may be unconnected or may form a network within the cell. Certain cells exhibit a fine canalisation of their protoplasm (fig. 5); according to

Fig. 7.-Cells from the testicle of the modse in process of transformation into spermatozoa. (Benda.)
The " mitochondria" are darkly stained and are seen in the successive stages (α to g) to be arranging themselves so as to constitute the spiral filament of the spermatozoon (h).

Holmgren the canaliculi are occupied by branching processes of other (nutrient) cells, which form what he has termed a " trophospongium."

Besides globules of colloid material, which can only be seen with the ultramicrōscope, protoplasm often includes granules of a protein nature (fig. 6), reacting variously to different stains. Those contained in some cells stain only with alkaline dyes (basiphil), those in others only with acid dyes (oxyphil), whilst some cells contain granules staining with both basic and acid dyes (amphophil), and others, granules staining only with neutral dyes (neutrophil). Certain of these granules have been regarded as essential constituents of the protoplasm (Altmann), being closely associated with what is, chemically, the most active part of the cell, the part, namely, in the neighbourhood of the nucleus; indeed they appear to become formed in this part (if not actually from the nucleus) and from it to extend throughout the cell. When fibrils are formed in the protoplasm, they are
produced from the granules in question, to which the name mitochondria was given by Benda (fig. 7). The mitochondria are sometimes collected near the nucleus into a spherical mass which stains more deeply than the rest of the cytoplasm (fig. 8). To this body the term

Fig. 8.--Pancreas cells uf FROG, SHOWING PARANUCLEUS AND CHONDROMITOME FLBRLLS FORMED FROM MITOCHONDRIA. (Mathews.) paranucleus has been applied. In many cells. other materials are included in the cytoplasm which are not factors in its constitution, such as pigment granules, fat globules, and vacuoles containing watery fluid, with or without glycogen or other substances in solution. Materials which are thus included in the protoplasm of a cell are either stored up for the nutrition of the cell itself, or are converted into substances which are eventually extruded from the cell in order to serve some purpose useful to the whole organism, or to be got rid of from the body. The term paraplasm is employed to denote any such materials within a cell. Paraplasm is often present in sufficient quantity to reduce the cytoplasm to a relatively small amount, the bulk of the cell being occupied by other

Fli. 9.-Photograph of ledcocyte of triton, fixied whilst in ameboid condiTION BY JET OF STEAM MIRECTES ON TO COVER-(iLASS, IND SUBSEQUENTI.V STAINED with inamatoxylin. Magnitied 1360 diameters. Untouched photograph. The protoplasm shows an internal granular or reticular endophasm and a clear exoplasm.
material, as when starch becomes collected within vegetable cells or fat within the cells of adipose tissue. It is frequently the case that the paraplasm is confined mainly to the protoplasm in the neighbourhood of the nucleus, an external zone of the protoplasm being left clear. The two portions of protoplasm which are thus imperfectly differentiated from one another are termed respectively the endoplasm and the earolasm. They are exhibited in the amceba (fig. 2), and in the white blood-corpuscle (fig. 9).

According to the view adrocated, by Biitschli, the apparent reticulum or spongioplasm of a cell is the optical effect of a soft honcycomb or froth-like
structure; in other words, the meshes of the reticulum do not communicate with one another as in a sponge, but are closed cavities as in a honeycomb. Bütschli finds indications of the same alveolar structure in all cells, including nerve-ibres and muscle-fibres, and has devised experiments with drops of froth made up of a mixture of oil aud alkaline carbonate or sugar solution, which, when examined in water under the microscope, imitate very closely not only the structural appearance (fig. 10) but even the so-called spontaneous or amoeboid movements of actual protoplasm. It may be stated, however, that although it is a matter of difficulty to determine whether a microscopic reticulum is a spongework or a honeycomb, it is probable that neither structure is essential to living substance, for the outermost layer of the cellprotoplasm, which is nsually the most active in exhibiting movements, often shows no indication of any structure. And further, it has been shown by Hardy that a colloid solution such as that which exists in protoplasm may, under some circumstances, appear homogeneous and under others may separate out into two parts, one more solid the other more fluid, and after

Fig. 10.-Compartson of protorlasm with oil and water emillston. (Verworn, after Bütschli:)
A, protoplasm of Thalassicola.
B, froth-like appearance of a mixture of oil and cane sugar.
such separation may exhibit either a granular, a reticular, or a honeycomb structure, according to circumstances (gel and sol conditions of Grabam ${ }^{1}$). Nor is a. "froth" necessary for the imitation of amceboid movements, for similar movements, due to changes in surface tension, are exhibited by a simple oil drop or a drop of oil-clad albumen when brought in contact with solution of soap or an alkali (Berthold, Quincke). Indeed, drops of any fluid are subject to changes of surface tension when exposed to varying external influences, and these changes are invariably accompanied by alterations in form of the drop. It follows from such observations that the anceboid movement of cells which used to be regarded as especially significant of the presence of life, is capable of being explained by known physical laws, and it is, therefore, superfuous to assume the possession of a special form of energy ("vital force") to explain it.

There are grounds for believing that a very fine pellicle covers the exterior of the protoplasm of all free cells, and that this pellicle is composed of a material which, although not soluble in water, is permeable to watery fluids, and may also allow the passage of solids without rupture. Such a material might be furnished by the lipoids (Overton), which are, as we have seen, constant constituents of cell-protoplasm. It must, however, be stated that, although probable, it has not been proved that these substances are especially collected at the surface of protoplasm. It must further be borne in mind that either a sponge-like or honeycomb structure would have the eflect of producing a large number of "internal surfaces" within protoplasm, at all of which changes of suiface tension and adsorption are liable to occur:? The essentially fluid nature

[^1]of anceboid protoplasm is proved by the dancing (Brownian) movement of its granules ; this movement, which is of a physical nature, only occurs in fluids.

Properties of living matter.-Living cells exhilit (1) irritalility or the property of responding to stimuli; (2) metalolic: or chenical changes which result in assimilution or the taking in of nutrient matter and converting it into living substance (anabolism), and ,iscossimilition, the property of breaking down such sulstance (katabolism) ; (3) reproduction resulting in the multiplication of individuals. Of these properties (2) and (3) are governed by the nucleus, and (3) is usually initiated by the centrosome (see below). The irritability of the cell depends, however, mainly upon the cytoplasm. It is in consequence of this property that protoplasm reacts, sometimes; by contraction, sometimes by relaxation, to mechanical, chemical, thermal, and electrical stimuli, and in the cuse of some cells (e.g. the pigment-cells and cones of the retina) to the stimmlus of light. The amoboid movements of

Fig. 11.-A cell(white bloodcorruscles) showina its at-traction-spitere.
(M. Heidenhain.)

In this, as in most, cases, the attrac-tion-sphere, a, lies near the nucleus, 1 . cells are also a manifestation of irritability, being produced and influenced by various external conditions and stimuli. Sometimes the result of a stimulus is to canse a cell or organism to move towards the source of excitation (attraction); in other cases the movement is in the reverse direction (repulsion). The terms positive and negative chemotaxis, phototaxis, thermotaxis, thigmotaxis and the like, are used to indicate the nature of the effects produced by various forms of stimulation.

Attraction-sphere and centrosome. - In some cells, as already indicated, there are fine but distinct strix or fibrils (cytomitome) running in definite directions. These are very commonly met with in fixed cells, such as various kinds of epithelium-cells, nerve-cells, and muscle-cells. But besides these permanent differentiations, which appear to be related to special functions, there are other fibril-like structures in the cell-protoplasm, associated with what is known as the centrosome (fig. 11). This consists of a minute particle (attraction-particle, centriole), usually situated near the nucleus, and staining darkly with ironhæmatoxylin, surrounded by a clear area (attraction-sphere), and from it radiate into the surrounding protoplasm a number of fine varicose lines or threads. The attraction-sphere, with its central particle, was first noticed in the ovum and was supposed to be peculiar to the egg-cell, but it has now been recognised in very many kinds of cells, and is of nearly universal occurrence in animal cells. The centrosome is frequently double, the twin-spheres being connected by a spindle-shaped system of delicate fibrils (achromatic spindle) : this duplication invariably precedes the division of a cell into two.

In some cells the centrioles are multiple; this is frequently the case with leucocytes and always with the giant-ells found in bone-marrow and elsewhere (figs. 12, 13). The cytoplasm survoming the entviole, including the radiating firnes and the fibres of the spindle, is wonsidered by some to be distinct in nature from the general protoplasm: it has been termed urohoplessm. No centrinle has been found in the cells of the hisher plants, althongh the archoplasmic fibres are very well marked in them during cell-division.

A cell-membrane is rarely distinct in animal cells. When present, it is usually formed by transformation of the external layer of the protoplasm;

Fig. 12.-Cells with irregtlar lobed nuclei and a giant-cell with annular nucleus from bone-marrow of tabbit. (M. Heidenhain.) a, b, \boldsymbol{c}, d, zones in the protoplasm.

Fif. 13.-Multi-nucleated gitant-gell from lymph giland of rabeit.
(M. Heidenhäin.)
its chemical nature has not been sufficiently investigated. In plant-cells a membrane formed of cellulose is of common occurrence.

The nucleus of the cell is a spherical, ovoid, elongated, annular, or irregularly lobulated vesicle (figs. $1,3,5,9,11,12$), embedded in the protoplasm. Cells often have two nuclei, and occasionally several (fig. 13). The nucleus is bounded by a so-called membrane which encloses a clear substance (nuclear hyaloplasm, karyoplasm) (fig. 14); the whole of this substance is generally pervaded by an irregular network of fibres, some coarser, others finer (nuclear reticulum, karyomitome) (figs. 14, 15). The membrane

Fig. 14.-Nycleus of an erithelial cell of salamander larva. (M. Heidenhain.) Magnified 2300 diameters.

Fig. 15.-Lymphocyte of triton, showinc: the reticular strutivee of its necledis. Magnified 2000 diameters. Untouched photograph.
The cell was fixed by steam, and after. wards stained with hæmatoxylin.
is formed by the same substance as the reticulum, of which it constitutes the outermost layer. The knots of the reticulum are sometimes very distinct, and they then give an appearance of conspicuous granules within the nucleus (pseudonucleoli), not to be confounded with the highly refracting spherical particle known as the nucleolus, which is almost always present as a distinct structure and is very conspicuous in some cases such as the ovum and nerve cells. Sometimes two true nucleoli are found in a nucleus (fig. 14). Occasionally the nucleolus has a vacuole-like

Fig. 16.-Giand cillaf cime - ronomis. (Flemming.) globule in its interior. The material of the nucleolus, although basiphil, differs in its chemical and staining reactions from the nuclear reticulum. During cell-division it disappears. Whether it blends with the karyomitome fibres or becomes absorbed and removed is uncertain. The nucleoli may sometimes be seen to be bodily extruded from the nucleus into the protoplasm. The nuclear membrane and intranuclear fibres stain deeply with hematoxylin and with basic dyos generally: this property distinguishes them from the nuclear matrix, and they are accordingly spoken of as basi-thomatic-containing basichromatin, which in the nuclous appears to be chemically identical with muclein or with the ronstituent of nuclein known as nurleic acied. On the other hand the muelear hyaloplasm is usually maydiromatie. These staining properties depend upon the presence of minute basiphil or
oxyphil granules. The basiphil granules are united, by a non-staining material termed linin, into the threads or fibres which compose the network.

Fig. 17. -Spermatocyte of Proteds, showing chromosomes of nucleds formed of particles of chromatin united by achromatic filaments. (F. Hermann.)

The nuoleolus is distinot from the ohromosomes. In the cytoplasm an archoplasmic mass containing mitochondria is seen on the right.

Sometimes instead of being connected to form a network the intranuclear fibres take the form of convoluted filaments (chromosomes), having a skeinlike arrangement (fig. 16). This condition is always found when a nucleus is about to divide, but it may also occur in the resting state. The filaments may sometimes be seen with high magnification to le made up of fine juxtaposed partieles (chromomeres) arranged either in single or double rows (figs. 17, 18). The nuclear fibres are sometimes clumped together into a solid mass which comprehends the nucleolus when this is present, and has the appearance of an enlarged nucleolus.

The fibres within the nucleus have been observed to undergo spontaneous changes of form and arrangement, but these become much more evident during cell-division, the division of the protoplasm being always preceded by that of the nucleus, and the nuclear fibres undergoing a series of remarkable transformations which are known collectively by the term karyokinesis (Schleicher) or mitosis (Flemming). These changes may most easily be studied in the division of epithelium-cells, but exactly similar phenomena have been shown to occur in cells

Ftat. 18. - Cell showing Chromosomes of nucleds in the form of threads COMPOSED OF DOUbLe ROWS OF CHROMOMERES. (F. Hermann.)
$c_{\text {r }}$ centrosomes with uniting spindle. belonging to other tissues.

The simple division of a nucleus by a process of fission without karyokinetic changes is termed amitotic division (figs. 19, 20); it occurs in
comparatively rare instances, and is often not followed by the division of the cell, so that it is apt to result in the formation of bi-nucleated and multi-nucleated cells, as in the superficial layer of the epithelium of the urinary bladder (fig. 19) and in some of the giant-cells of bone-marrow (fig. 13). The occurrence of amitotic division has by some been regarded as a sign of degenerative changes in the cell.

Fig. 19.-Celil of bladder epithelitim, showing supposed amitotic division of nucleus. (Nemileff.)
a, cytoplasm; b, danghter nuclei ; \boldsymbol{c}, strand of fihrils uniting daughter nuclei.

Fig. 20.-A leucocyte of triton apparently rederiolng amitutie nivision OF 1Ts nucleus. Magnified 1360 diameters. Untonched photograph.
The nucleus is separated into two nearly cqual parts, and the protoplasm is collecting around them and is constricted in the intermediate purt of the corpuscle. The corpuscle was fixed by a jet of steam and stained with hamatoxylin.

The nucleus of the cell is not only concerned with its division and multiplication in the manner to be described, but takes an active part in the chemical (metabolic) processes which occur in the protoplasm. Hence cells deprived artificially of their nuclei do not assimilate nourishment, and lose any power of secretion they may have possessed, although the protoplasm may continue for a time to live and exhibit amoboid movements.

DIVISION OF CELLS.

The division of a cell is preceded by the division of the centrosome and this again appears to determine the division of the nucleus. The latter, in dividing, passes through a series of remarkable changes, which may be briefly summarised as they occur in typical animal cells such as the epithelium-cells of Salamandra, as follows :-

1. The network of chromoplasm filaments of the resting nucleus becomes

Fig. 21.- Epitheliun-celils of salamander larva in different phases of division by kakyokinesis of mitosis. (Flemming.)
transformed into a sort of skein, formed apparently of one long convoluted filament, but in reality consisting of a number of filaments (spirem); the nuclear membrane and the nucleoli disappear or are merged into the skein (fig. 21, a to d).
2. The filament breaks into a number of separate portions, often V-shaped, the chromosomes. The number of chromosomes varies with the species of animal or plant; in some animals the dividing nuclei may contain at this stage only four chromosomes; in man there are generally said to be twenty-four in the ordinary or somatic cells, although Winiwarter gives
double that number; other plants and animals have even more than this. As soon as the chromosomes become distinct they are arranged radially around the equator of the nucleus like a star (astor, fig. 21, e,f,g).

Fig. 22.-Didarim showing the chianges whicir ducth in the centrosondes AND NUCLEUS OF A CELL IN THE PROCESS OF METOTIC DIVISION. The nucleus is supposed to have four chromosomes.
3. Each of the chromosomes splits longitudinally into two, so that they are now twice as numerous as before (stage of cleavage, fig. 21, h, \boldsymbol{i}). This longitudinal cleavage may occur at an earlier stage.

(T. H. Bryce.)

Fig. 23. - Karyokintislis of erythrouyte of lakval lefidosifen.
1; Cell prior to division, centrosome single, uucleus a dense network; 2, cenitrosome double, nucleus a close spirem; 3, spirem breaking up into chromosomes; 4, division spindle forming, chromosomes V-shaped; $5, V$-shaped chromosomes collected at equator of spindle, and undergoing longitudinal splitting; 6 , the chromosomes which result from the splitting have become thicker and shorter, ind are passing towards the centrosomes at the poles of the spindle to form the danghter nuclei; 7,8 , daughter nuclei formed by agglomeration of rhramocnmes nratanlasm of cell dividing.
4. The fibres separate into two groups, the ends being for a time interlocked (fig. 21, j, k).
5. The two groups pass to the opposite poles of the now elongated nucleus and form a star-shaped figure at either pole (diaster, fig. 21, l). Each of the stars represents a daughter nucleus.
$6,7, x$. Each star of the diaster goes through the same changes as the original nucleus, but in the reverse order-viz, a skein, at first more open and rosette-like (fig. 21, m), then a closer skein (fig. 21, n), then a network (fig. 21, o, p, q); passing finally into the typical reticular condition of a resting nucleus (see also figs. 22, 23).

Fig. 24.-Diagram of the 'Hanges shown in hetehotilicil mitosis, eifilt ('HROMOSUMES ONLY BELAG REPRESENTED.

In A and B they are arranged in pairs; in C they are united to four loops, which are separating in D. In E a longitudinal splitting of each chromosome is occurring. F, daughter muclei each with eight chromosomes.

The splitting and separation of the chromosomes is often apoken of ars the netaphase (metakinesis); the stages leading up to this being termed the "mphase' and those which lead away from it the kataphase, the final stage being spoken of as the telophase.

The time occupied in dividing has been found in the erythrowten of the thithn larva to occmpy about one hour.

The mode uf division of the nuclear chromatin almon desorilued is known as somatir or wdincr:/ mitosis, to distinguish it from two modes of divisius which are only seen normally at certain stages of multiplication of the generative cells (gonads), and are known as heterotypionl and homotypical mitowiw (figs. 2t, 2a). In the latter the chromosomes do not undergo the usual longitudinal splitting, hut one-half of the total number passes into each daughter nurlens, so that the mumber of chromosomes in each of these is only one-half the nsual suntic number. This in termed the reduetion-dinision. Heterotypical mitosis (which immethataly precedes the homotypical) is characterised by a peculiar arrangement of thichromosomes, which, before semating to pros to the daughter muclei, tend to adhere together in the form of loups or rimgs, on the case of short staght chronosomes intor small quadrangular masses (tutrads) (see fig. 26).

It is further noteworthy that the generative cells which undergo the reductiondivision above described exhibit either immediately (male) or a long while

Fig. 25.-Diagram of the changes ocgtrring in homotypical mitosis.
In A and B the eight chromosomes are nnited into pairs : in C, D, and E they are shown separating from one another, without any longitudinal cleavage. F, daughter nuelei each with only four chròmosomes.

Fig. 26. -Three staces of heterotypical mitosis in spermatocyte of triton. (Moore.)
a, geminal condition of chromosomes; b, gemini arranged in quadrate loops or tetrads; c, separation of totrads into the duplex chromosomes of the danghter nuclei.
(female) before the final divisions a, remarkable series of changes in their nuclear chromatin; the chromosomes first becoming distinct in place of forming a
network, then entangled together at onc side of the nucleus (synaptic condition), and finally again becoming distinct, but now arranged in pairs (gemini) which later take various forms, such as double rods, loops, or rings as in beterotypical mitosis, but without necessarily forthwith proceeding to nuclear division (see fig. 27).

The protoplasm of the cell divides soon after the formation of the diaster (fig. 21, m; fig. 23, 7). During division fine lines are seen in the protoplasm radiating from the attraction-particles at the poles of the nuclens, whilst other lines form a spindle of achromatic fibres within the nucleus, diverging from the poles towards the equator (figs. 22 to 25). These are usually less easily seen than the basichromatic fibres or chromosomes, but are not less

Fig. 27.-Spermatocytes of Mixine showing sinattic condition in a and b, GEMINAL CONDITION IN C AND d, IND FORMATION OF TBTRADS AND CHROMISOME Rings in e"and f. (Schreiner.)
important, for they are connected with the chromosomes. The latter, with their centrioles, as we have seen, always initiate the division of the cell; indeed they are often found diviled in the apparently resting nucleus, the two particles being united by a small system of fibres forming a minute spindle at one side of the nucleus. When mitosis is about to take place this spindle enlarges, and as the changes in the chromatin of the nucleus which have been above described occur-which changes involve the disappearance of the nuclear membrane-the spindle gradually passes into the middle of the mitotic nucleus, with the two poles of the spindle at the poles of the nueleus, and with the fibres of the spindle therefore completely traversing the nucleus (figs. 2:, 23). The spindle fibres appear to form directing lines, along which the chfomosomes pass, after the cleavage, towards the nuelear poles to form the daughter nuclei.

In some cells, especially in plants, the line of division of the protoplasm of the cell becomes marked out by thickenings upon the fibres of the spindle

Fig. 28. -Spermatocyte of Salamandra SHOWING ACHROMATIC FIBRES OF SPINDLE AND OTHER FIBRES RADIATING FROM CENTRIOLES. (Flemming.)
Four chromosomes are represented at the equator of the spindle.

Fig. 29.-Cell-platie in dividing sporedelle of lily.
(Gurwitseh, after Zimnermann.)
which occur just in the plane of subsequent division, and have been termed collectively the cell-plate (fig. 29). But in most animal cells no cell-plate

Fiu. 30.-Dividing cell CONSTRICTED TO FORM TWO DAUGHTER CELLS HACH WITH CHNTROSOME. (Geberg.)
The particle at the junction of the daughter cells represents a rudimentary cellplate.

Fig. 31.-Tripolar mitosis in echinoderm ovem. (E. B. Wilson.)
is formed, the protoplasm simply becoming constricted into two parts midway between the two daughter nuclei. Each daughter cell so formed retains one of the two attraction-particles of the spindle as its centriole,
and, when the daughter cells are in their turn again about to divide, this centriole divides first and forms a new spindle, and the whole process goes on as before. Rarely the division of a nucleus is into three or more parts instead of two (fig. 31). In such cases the centriole becomes correspondingly multiplied and the achromatic system of fibres takes a more complex form than the simple spindle.

It has been shown by Leduc that the appearance of the division spindle and the changes which the chromosomes undergo can be roughly imitated by allowing solutions of an electrolyte of different concentration, one of which contains carbon particles in suspension, to mix gradually (fig. 32). Tndeed that electrical attraction and repulsion come into play in the process of karyokinesis is more than probable (R.S. Lillie). W. B. Hardy finds evidence in the resting cell also of the existence of opposite electric charges in the proteins of the cytoplasm (+) and those of the nuclens (-).

Division of the ovum.-Usually the two daughter cells are of equal size ;

Fif. 32.-Imitation of division spindle produced during the mixing of dropg OF A LESS CONCENTRATED SOLUTION OF SODICM CHLORIDE CONTAINING PARTICIES of china ink in suspension with a soldtion of the same silt of greater Density. (Verworn, after Leduc.)
but there is a notable exception in the case of the ovum, which, prior to fertilisation, divides twice (by hetero- and homo-typical mitosis respectively) into two very unequal parts, the larger of which retains the designation of ovum, while the two small parts which become detached from it are known as the polar bodies. In the formation of the second polar body a reduction dicision occurs, and the nucleus of the ovum, after the polar bodies are extruded, contains only one half the number of chromosomes that it had previously : $e . g$. twelve in place of the normal twenty-four in man (see p. 13), and two instead of four in Ascaris megalocephala (var. bivalens) (see fig. 33, C). Should fertilisation supervene the chromosomes which are lacking are supplied by the male element (sperm-cell), the nucleus of which has also undergone, in the final cell-division by which it was produced, the process of reduction in the number of chromosomes to one half of the normal number. The two reduced nuclei-which are formed respectively from the remainder of the nucleus of the oocyte (ovum) after extrusion of the polar lodies, and from the head of the spermatozoon, which contains the nucleus of the sperm-cell-are known
(within the ovum) as the sperm- and germ-nuclei, or the male and female pronuclei. In fertilisation these blend with one another, and the ovum then again

Fig. 33.-Formation of the polar globULES AND REDUCTION OF THE NUMBER OF LHROMOSOMES IN THE OVUM OF Ascaris MEGALOCEPHALA.
A, B, ovum showing division of nucleus to form first polar globule (Van Gehuchten). m (in A), gelatinous envelope of ovum; $n u^{\prime}$ (in B), membrane dividing the polar globule from the ovum; cs (in A), head of spermatozoon becoming transformed into the male pro-nucleus.
C, formation of second polar globule (Carnoy) ; g^{1}, first; g^{2}, second polar globule; n, nucleus of ovum (female pro-nucleus) now containing only two chromosomes; ns, nuclens formed from head of spermatozoon (male pro-nuclens).

Fle. 34.-Ovum of bat with polar bomes and germ- and spermnuclet. (Van der Stricht..)
The development of the sperm-nucleus from the head of the spermatozoon is very evident in this case, because the rest of the spermatozoon happens not to have been thrown off.
contains a nucleus with the number of chromosomes normal to the species. When it divides each daughter cell is found to contain the normal or somatic number of chromosomes, derived from the splitting of both male and female elements, half the number from the one, and half from the other (fig. 35).

FORMATION OF THE TISSUES.

It appears to be establisbed beyond doubt that new cells can only be formed from pre-existing cells. In the early embryo the whole body is

Fit: 35.-Fertilisation and first division of ovum af Asciris meqidiochpriala (slightly modified from Boveri).

A, second polar globule just formed ; the head of the spermatozoon is becoming changed into a reticular male pro-nucleus (δ), which shows indistinctly two chromosomes; just above it, its archoplasm is shown: the female pro-macleus (f) also shows two chromosomes.
B, both promuclei ne now reticular and enlarged; a double centrosome (a) is visible in the archoplasm which lies between them.
\mathcal{C}, the chromatin in each pronucleus is now converted into two filamentous chromosomes; the centrosomes are separating from one another.
D, the chromosomes are more distinct and shortened; the nuclear membranes have disappeared; the attraction-spheres are distinct.
E, mingling of the four chromosomes (c) each of which is seen to be splitting longitudinally; the achromatic spindle is fully formed.
F, separation (Lowards the poles of the spindle) of the halves of the split chromosomes, and commencing diviwion of the cytoplasm, Bach of the daughter cells now has four chromosomes: two of these have been derived from the male pro-nucleus, two from the female pro-nuoleus.
an agglomeration of cells. These have all been formed from the ovum or egg-cell (fig. 36), which, after fertilisation, divides first into two cells, these again into two, and so on until a large number of cells (embryonic cells) are produced (fig. 37). These form at first an outer clear stratum lying at the surface (fig. 37, $s z$), and a darker granular mass (i) attached to this layer at one part, but elsewhere separated from it by clear fluid. Eventually the cells of the inner mass arrange themselves in the form of a membrane (blastoderm), which is composed of three layers. These layers

Fig. 36.-Ovarian ovum of rabbit. Magnified 400 diameters.
The ovum is enclosed within a clear thick membrane (zona pellucida) ontsicle of which, and adhering to it, are epithelial cells of the Gratian follicle. The protoplasm of the ovm shows nunierous fine granules and a number of large clear yolk globules. The nuclens or germinal vesicle lies near the periphery: it contains several globules of chromatin, the largest of which is the nucleolus or germinal spot.
are known respectively as the ectoderm, mesoderm, and entoderm (fig. 38). The ectoderm gives rise to most of the epithelial tissues, and to the tissues of the nervous system ; the entoderm to the epithelium of the alimentary canal (except the mouth), and the glands in connexion with it; and the mesoderm to the connective and muscular tissues.

The tissues are formed either by changes which occur in the intercellular substance, or by changes in the cells themselves; frequently by both these processes combined. Amongst the cells which are least altered from their embryonic condition are the white corpuscles of the blood; these are regarded as typical free cells.

The histogenetical relation between the three layers of the blastoderm

Fig. 37.-Formation of blastodermic vesicle in rabbit. (Allen Thomson, partly after l. v. Beneden.)
A to E, division of ovum and formation of "mulberry mass" ; pgl, polar slobules; $x_{2} x$, cells of primary division which already show a difference of appearance. This early differentiation is not, however, accepted by most authorities. F to 1 , sections of the ovum in sulsequent stages. $z p$, membrane of ovim (zona pellucida); sz, subzonal layer, hy means of which the ovum becomes attached to the uterine mucous membrine; i, inner cell-mass, which gives rise to the blastodermic layers. The aecumulation of fluid in $G: I$, and I has swollen the ovum out to form the soctalled hlastodermic veside.

Fig. 38.-Section of blastoderm showing the commending formation of
the mesoderm. (Kölliker.)
ect, ectoderm ; ent, entoderm ; me, mesoderm ; ax, axial part of ectoderm with cells undergoing division (k). The mesoderm is growing from this part.
and the several tissues and organs of the body is exhibited in the following table:-

- Ectoderm.

The epithelium of the skiu (epidermis) and its appendages, riz, the hairs, nails, sebaceous and sweat glands, and mammary glands. The muscular fibres of the sweat glands.
The epithelium of the mouth, and the epithelium of the anus and anal canal. The salivary and other glands which open into the mouth. The enamel of the teeth. The gustatory organs.
The epithelium of the lower part of the urethra.
The epithelium of the lnwer part of the vagina.
The epithelium of the nasal passages, and of the cavities and glands which open into them.
The epithelium covering the front of the eye. The epithelium of the lacrimal canals and
lacrimal glands. The crystalline lens. The retina. The pars ciliaris retine and the pars iridica retinæ. The sphincter and dilatator pupillæ muscles.
The epithelium lining the membranous lahyrinth of the ear. The epithelium lining the external auditory meatus.
The epithelium lining the central canal of the spinal cord, the aqueduct, and the fourth, third, and lateral ventricles of the brain.
The tissues of the nervous system inclnding all nerve-cells and fibres and neuroglia-cells.
The pituitary body. The pineal gland. The medulia of the suprarenal capsules.
All the connective tissues.
The blood and lymph corpuscles.
The spleen and lymph glands.
The cortex of the suprarenal capsules.
The endothelial lining of the heart, blood-vessels, lyniphatics, and serous membranes.
Mesoderm.
The epithelium of the uriniferous tubules, and that of the ureters and renal pelves.
The epithelium of the male generative organs, including that of the testis and its ducts, and that of the prostatic vesicle, as well as the male generative cells (spermatozoa).
The epithelium of the ovary and Graafian follicles, including the female generative cells (ova); the epithelinm of the Fallopian tubes, and uterus, and the upper part of the vagina.
The muscular tissues, voluntary, involuntary and cardiac.
The epithelium of the alimentary canal (from the pharynx to the lower end of the rectum) and of all the glands which open into it (including the liver aod pancreas).
The epithelium of the Eustachian tube and cavity of the tympanum.
The epithelium of the larynx, trachea, and bronchi, and of all their ramifications.
The epithelium of the pulmonary alveoli.
Entóderm.
The thyroid body and parathyroids. The reticulum and the concentric corpuscles of the thymus gland.
The epithelium of the urinary bladder, of the female urethra, and of the uppermost part of the vagina.
The cpithelium of the proximal part of the male urethra and of its glands.
All the connective tissues, the endothelium of the lymphatic and hæmal systems, and the vascular and lymph glands are formed from a special part of the mesoderm termed mesenohyme, which, at an early stage of development, consists of a syncytium of branched cells with a homogeneous intercellular matrix. Plain muscular tissue is for the most part also formed from mesenchyme, but in certain situations, as in the sweat glands and muscular tissue of the iris, it is said to be ectodermal in origin. The generative cells (gonads) in both sexes, although developed in connexion with thie mesoderm, are produced from special cells which are early differentiated from the ordinary or somatic cells.

LESSON I.

USE OF THE MICROSCOPE. EXAMINATION OF CERTAIN COMMON OBJECTS.

The requisites for practical histology are a good compound microscope; slips of glass technically known as "slides," upon whicl the preparations are made;

Fig. 39.-Diagram of micruscople. pieces of thin glass used as covers for the preparations; a few instruments, such as microtome, scalpel, scissors, forceps, and needles mounted in wooden handles; and a set of fluid reagents for mounting and staining microscopic preparations. ${ }^{1}$ A sketchbook and pencil are also necessary, and must be constantly employed.

Microscope.-The microscope (fig. 39) consists of a tube ($t t^{\prime}$) 160 millimeters ($6 \cdot 4$ inches) long having two systems of lenses, one at the upper end terned the "eye-piece" or "ocular" (oc), the other at the lower end termed the "objective" (obj).

The focus is obtained by cautiously bringing the tube and lenses down towards the object by the coarse adjustment, which is usually a rack-and-pinion movement (adj), and focussing exactly by the fine adjustment, which is always a finely cut screw ($a d j^{\prime}$).

The stage (st) upon which the preparations are placed for examination, the mirror (m) which serves to reffect light up through the central aperture in the stage and along the tube of the instrument, and the diaphragm (d) below the stage which is used to regulate the amount of light thus thrown up, are all parts the employment of which is readily understood. A substage condenser (not shown in the diagram), which serves to concentrate the light thrown up by the mirror to the centre of the object, is valuable when high powers and stained preparations are employed.

[^2]For ordinary work there should be at least two objectives-a low power working at about 8 millimeters ($\frac{1}{3}$ inch) from the object, and a high power, having a focal distance of about 3 millimeters ($\frac{1}{8}$ inch) ; it is useful also to have a lower power (commanding a larger field of view) for finding objects readily, and two or more oculars of different magnification.

The above combinations of objectives and oculars will generally give a magnifying power of from 40 to 400 diameters, sufficient for most purposes of histology. But to bring out minute points of detail in the structure of cells and of certain tissues examination with much higher magnifying powers may be necessary. Objectives of high power are usually made as immersionlenses ; i.e. they are constructed to form a proper image of the object when the lowermost lens of the system is immersed in a layer of liquid which lies on the cover-glass of the object and has a refractive index not far removed from that of the glass itself. For this purpose an essential oil (oil of cedarwood) is used. The advantages obtained by the employment of these oilimmersion lenses are:-increased working distance from the object, increased angle of aperture with sharper definition of the object, and increased amount of light traversing the microscope.

The best lenses for histological work are made of the so-called "apochromatic" glass; specially constructed "compensation" eye-pieces are used with these.

Measuring.-A scale for measuring objects should be constructed for each microscope. To do this, put a stage-micrometer (which is a glass slide ruled in the middle with lines $\frac{1}{10}$ and $\frac{1}{100}$ millimeter apart) under the microscope in such a manner that the lines run from left to right (the microscope must not be inclined). Focus them exactly. Put a piece of white paper on the table at the right of the microscope. Look through the instrument with the left eye, keeping the right eye open. The lines of the micrometer will appear projected upon the paper. Mark their apparent distance with pencil upon the card, and afterwards make a scale of lines in ink, of the same interval apart. A magnified representation is thus obtained of the micrometer scale. Mark upon it the number of the eye-piece and of the objective, and the length of the microscope-tube. This scale will serve for the measurement of any object without the further use of the micrometer. To measure an object, place the scale upon the table to the right of the microscope and view the object with the left eye, keeping the right eye open. The object appears projected upon the scale, and its size in $\frac{1}{10}$ or $\frac{1}{100}$ of a millimeter can be read off. (It is essential that the same objective and eye-piece should be employed as were used in making the scale, and that the microscope tube should be of the same length.) The lines on English stage-micrometers are often ruled $\frac{1}{1} \frac{1}{0}$ and $\frac{1}{1} \frac{1}{0}$ inch apart.

STUDY OF COMMON OBJECTS.
Before beginning the study of histology the student should endeavour to
familiarise himself with the use of the microscope, and at the same time learn to recognise some of the chief objects which are liable to occur accidentally

Fhi. 40.-Obiects whicil may be accioentablif present in microscofe rieligations.
1, Starch-pranules; 2, a small air hobble and part of a lapre one; 3, reast torule ; f, a mould (Axperguluts glaucus); 5 , linen fibres; 6 , colton fibres; 7 , wool: s, hair, human: 9 , epithelium scales; 10, micrococci; 11, bucilli and sporcs (B. sututily). Maguificd about 250 diameters
in microscope specimens. On this aecount it has been considered desirable to introduce directions for the examination and recognition of starch-granules, moulds and torulæ, air-bubbles, linen, cotton, and woollen fibres, and the usual constituents of the dust of a room (see fig. 40).

In examining any object the student should always use the low power first: the object can be looked over with this before the cover-glass is applied. Before the high power is used a cover-glass must always be placed on the preparation.

1. Examination of starch-granules. Gentiy scrape the cut surface of a potato with the point of a knife; shake the starch-granules so obtained into a drop of water upon a clean slide and apply a cover-glass.

With the low power the starch-granules look like dark specks differing considerably in size; under the high power they are clear, flat, ovoid particles (fig. 40, 1), with a sharp outline when exactly focussed. Notice the change in appearance of the outline as the microscope is focussed up and down. On close examination fine concentric lines are seen in the starch-granules, arranged around a minute spot which is generally placed eccentrically near the smaller end of the granule. Sketch two or three starch-granules.

Notice the appearance of air-bubbles in the water (fig. 40, 2). If comparatively large they are clear in the middle, with a broad dark border due to refraction of the light; if small they nay look entirely dark.

Pass a drop of dilute iodine solution under the cover-glass, and observe the staining of the starch-granules.
2. Examine some yeast which has been grown in solution of sugar. Observe the yeast-particles or torulæ, some of them budding (fig. 40, 3). Each torula contains a clear vacuole, and has a well-defined outline, due to a membrane. Sketch two or three torulæ.
3. Examine some mould in water. Notice the long branching filaments (hyphæ), and also the torula-like particles (spores) from which hyphæ may in some instances be seen sprouting (fig. 40, 4). Sketch part of a hypha.
4. Examine fibres of linen and of cotton in water, using a high power. Compare the well-defined, rounded, relatively straight or but slightly twisted linen, with the longer, broader but thinner, and more twisted cotton fibres (fig. 40, 5,6). Sketch one of each kind.
5. Mount one or two hairs from the head in water and look at them first with the low, then with the high power (fig. 40, 8). Examine also fibres from any woollen material and compare them with the hairs. They have the same structure, although the wool is finer and is curled (fig. 40, 7) ; its structure may be obscured by the dye. Draw one of each.
6. Examine a drop of hay infusion, which has been standing a day or two, for bacteria and other putrefactive organisms (fig. 40, 10, 11). The active movements which these exhibit are due to minute cilia or flagella, which can only be made visible by special staining methods and a very high magnifying power. Notice that all very minute particles, organic or inorganic, which occur in fluids may be seen to exhibit the peculiar tremulous dancing movement which is known as the "Brownian" movement.
7. Examine some dust of the room in water with a high power. In addition to clumps of black particles of carbon (soot) there will probably be seen fibres of linen, cotton, or wool, and shed epithelium-cells (fig. 40, 9) derived from the epidermis.
8. Examine a drop of milk with the high power. Notice the particles of cream. Their fatty nature is shown by their high refracting power, and by their staining reactions with certain special reagents, such as osmic acid or Sudan III,

LESSONS II. AND III.

STUDY OF THE HUMAN BLOOD-CORPUSCLES.

1. Having cleaned a slide and cover-glass, prick the finger above the nail or on the pulp, and touch with the cover-glass the sinall drop of blood which issues from the prick : place the cover-glass on the slide, blood down, as quickly as possible, so that the blood has time neither to dry nor to coagulate. Examine it at once, first with the low, then with the high power.

Note (α) the coloured corpuscles mostly in rouleanx and clumps, but some lying apart seen flat or in profile ; (b) the colourless corpuselen, casily made out if

Fig. 41. - Higmacytometer of Gow ehe.
A, pipette for diluting fluid; B, pipette for blood; C, slide ; D, miving bowl; F, miver ; F, needle for pricking finger.
the cover-glass is tonched by a needle, on account of their tendency to stick to the glass, whilst the coloured corpuseles are driven past hy the currents set up ; (c) in the clear spaces, fibrin-filaments and blond-platelets.

Sketch a roll of colonred corpuscles and one or two colourless corpuscles. Count the number of colonless enpuseles in if field of the microseope.
2. To be made as in 881 , but the drop of blood is to lee mixed upon the slide with an equal amount of normal or isotonic saline ${ }^{1}$ so that the red corpuseles tend to be less massed together, and their peculias shape is letter displayed.
${ }^{1}$ A solution of sodium chloride containing from 7.5 to 9 granmes to the litre or mammals, 6 grammes for the frog. Ringer's solution may also be used. This is made by adding to every 100 c.c. of normal saline 0.024 gramme CaCl. : 0.042 gramme KCl and $0 \cdot 1$ gramme NaHCO_{3}.

Sketch a red corpuscle seen on the flat and another in profile (or optical section). Also a crenated corpuscle.

Measure with the scale (p. 27) ten red corpuscles, and from the result ascertain the average diameter of a corpuscle. Measure also the largest and the smallest you can find.
3. Make a preparation of blood as in $\S 1$ and put it aside to coagulate. Keep the edges from drying by placing it in a moist chamber or by occasionally breathing upon it. After a few minutes place a drop of 1 per cent. methyl violet at one edge of the cover and allow this to pass in and mix with the blood: it may be drawn through the preparation by applying a very small fragment of blotting paper to the opposite edge. The dye stains the nuclei of the white corpuscles, the blood-platelets, the network of fibrin-filaments, and the membranes of the red blood-corpuscles.
t. Place a small drop of blood on a slide, and at once invert it over the mouth of a bottle containing strong formol. After five minutes, gently wash with saline to remove blood-corpuscles, place a drop of 1 per cent. methyl violet solution on it for one minute, wash with water and cover. The blood-platelets are especially well shown in this preparation.
5. To fix and stain the coloured corpuscles :-Place upon a slide a drop of 1 per cent. osmic acid mixed with an equal amount of saturated aqueous solution of eosin. Prick the finger, and mix the blood directly with the coloured fluid, stirring them together with a needle. Cover the mixture and put aside for an hour, protected from evaporation ; then place a very small drop of glycerine and water at the edge of the coverglass. When this has passed under, i.e. in about half an hour or more, fix the cover-class with gold size.
6. To study the granules of the colourless corpuscles and their reactions to different staining reagents, a film of blood is enclosed between two cover-glasses which are at once separated and the film on each quickly dried in the air. Or a slide may be used instead of a cover-glass; the drop of blood is placed close to the ground edge of one slide and this is drawn evenly over the middle of another. The film is fixed by inimersion for a minute or two in methyl alcohol. It is then stained by (1) a 1 per cent. solution of eosin in rectified spirit (one minute), after which it is rinsed with water, and treated with (2) a 1 per cent. solution of methylene-blue in water (one minute). The film is again rinsed with water, rapidly dried, and mounted in dammar.

Combined eosin-methylene-blue stains, such as Giemsa's or Jenner's or Leishman's, may also be cmployed for films. These require only one operation

Fig. 42. -Pipette usld for the Thoma-Zeiss hemacytometer. (see Appendix).
7. Mount (in dammar) sections of marrow from a long bone (rabbit) fixed with formol and stained with alcoholic eosin and methylene-blue. Observe the fatcells, the supporting reticular tissue, the proper marrow-cells in this tissue, the myeloplaxes and the erythroblasts.
8. Tease in salt solution or serum some of the red marrow from the rib of a recently killed animal. Observe and sketch the proper marrow-cells (myelocytes) and look for myeloplaxes (giant cells) and nucleated coloured blood-corpuscles (erythroblasts).
9. Make ạ film preparation of red marrow by smearing a little upon a cover- .
glass or slide, allowing it to dry quickly, and placing it in methyl alcohol. After a few minutes in this, the preparation may be stained with alcoholic eosin and methylene-blue or by Leishman's stain in exactly the same way as a film prepratation of blood (see $\$ 6$), and mounted in dammar.
10. Enumeration of the blond-corpuscles. This is done ly some form of blood counter such as the hæmacytometer of Gowers, or the similar apparatus of Thoma.

Fifi. 43.-Hama'ytumbter sidde, ruded in squares for the mimeration or blood-corpuscless.

Fig. 44.-Diagram of a segthon through the hambictumfter slide.

Fig. 45.-Appearancte of then squares of the Thoma-Zeiss h.mmacytomethr wilfn uste for a bloon count. Magnified 20) diameters. Photograph,

In (fuwer's apparatus (fig. 41), one pipette is used for measuring the blond and another for the diluting fluid, and the mixture is made in a small glass vessel with the aid of a glass rod ; these are easier to elean than the combined measuring and mixing pipette of the Thoma apparatus (fig. 42). The latter is howerer move generally used. For pur'poses of counting, the Thoma-Zeiss instrument is provided with a glass slide (figs. 43, 44), the wentre of which is occupied by a small glass plate having its upper surface ruled into $\frac{1}{10}$ mom. squares, subdivided into smaller portions to
facilitate enumeration, and surrounded by a glass ring in $\mathrm{T}_{6} \mathrm{~mm}$. thicker than the ruled glass plate. In Gower's instrument, the ruling is usually in $\frac{!}{b} \mathrm{~mm}$. squares with a ring $\frac{1}{1}$ num. thick. The diluting solution may either be that of Hayem, viz., distilled water 200 c.c., sulphate of soda 5 gms., common salt 1 gm., corrosive sublimate $0 \% \mathrm{gm}$., or that of Marcano, viz, 97 c.c. of a solution of sulphate of soda (in distilled water) of sp. gr. 1020, to which is added chloride of sodium 1 gm ., and formol $3 \mathrm{c.c}$. The finger is pricked, and the pipette (fig. 42) filled with blood exactly up to the 1 mark. The pipette is then filled with diluting solution up to the 101 mark, the blood being thereby drawn up into the mixing vessel, where it is thoroughly mixed with the solution by slaking the included glass ball. It is thus diluted 100 times. After expelling the clean fluid in the capillary part, a drop of the mixture is placed in the centre of the cell, and the cover-glass is gently laid on so as to touch the drop, which thus forms a layer $\frac{1}{10}$ minl. thick between the ruled glass plate and cover-glass. In a few minutes the corpuscles have sunk to the bottom of the layer of fluid and rest on the squares (fig. 45). The number in ten of the $\frac{1}{10}$ m.m. squares is then counted, and this, multiplied by 100 , gives the number in a cubic millimeter of the mixture, or if again multiplied by 100 (the amount of dilution) the number in a cubic millineter of blood.

For the enumeration of the white corpuscles the blood is diluted only 10 times instead of 100 times. It is also convenient to use one-half per cent. solution of acetic acid just coloured with methyl violet as a diluent (Thoma) or a 2 per cent. formol solution to each c.c. of which one drop of Giemsa's fluid is added (Stitt). Thoma's solution destroys the coloured corpuscles and stains the nuclei of the white; Stitt's preserves both red and white corpuseles and shows the granules of the latter.

For counting the blood-platelets, Herwerden dilutes blood 20 times with a mixture of 10 per cent. urea solution (21 parts). and normal saline (9 parts). The red corpuscles are laked by this fluid. The blood-platelets remain separate.

THE BLOOD-CORPUSCLES.

The blood contains a large number of coloured (red) corpuscles, a much smaller number of colourless corpuscles, and a variable number of minute particles, known as blood-platelets. All these float in a liquid (plasma) which shortly after the blood is drawn deposits fine filaments of fibrin which interlace with one another and tend to entangle the corpuscles in their meshes. In man the total volume of the blood-corpuscles and that of the plasma are very nearly the same.

Coloured corpiscles or erythrocytes.-The coloured corpuscles are composed of a delicate colourless highly elastic (? protoplasmic) envelope and coloured fluid contents, consisting mainly of a solution of hromoglobin. The existence of an envelope is shown by the osmotic effects of water and solutions of salt upon the corpuscle. The description which was formerly current that the red corpuscles consist of a porous solid stroma, permeated with dissolved hæmoglobin, is incompatible with these phenomena. Moreover, the envelope can be distinctly seen with the microscope, especially in the amphibian corpuscle, and can be stained by reagents. The envelope contains lipoid substances (lecithin and cholesterol); these substances sem to impart a certain greasiness to the surface of the corpuscle. It is probably due to this that the corpuscles run together into rouleaux when the blood comes to rest (see p. 50).

When seen singly the coloured corpuscles are not distinctly red, but appear of a reddish-yellow tinge. In the blood of man and of all other
mammals, except the Camelidæ, they are biconcave circular disks. Their central part usually has a lightly shaded aspect under a moderately high power, but this is due to their biconcave shape, not to the presence of a nucleus. They have, as just stated, a strong tendency to hecome aggregated into rouleaux and clumps when the blood is at rest, but if it is disturbed they readily become separated.

If the density of the plasma is increased in any way, as by evaporation, many of the red corpuscles become shrunken and crenated by the passage of water out of the corpuscle. On the other hand, a diminution in the density of the plasma tends to cause the red corpuscles to become cup-shaped,

Frg. 46.-Human blood. Photograph. Magnified 6.00 diameters.
but it is erroneous to describe this as the normal form of the corpuscle, although a certain number of cup-shaped corpuscles are, it is true, to be seen even in the circulating blood when examined in transparent parts of animals. By far the largest number, however, are biconcare.

The average diameter of the human red corpuscle is $0.0075 \mathrm{~mm} .^{1}$ (about $\frac{1}{300}$ in.), but a few will always be found somewhat larger (up to 0.0085) and a few somewhat smaller (down to 0.0065 mm .). ${ }^{2}$

There are normally about five millions of coloured corpuseles in a cubic millimeter of adult human blood in the male sex, and somewhat fewer in the female.

[^3]Colourless corpuscles or leucocytes. - The colourless corpuscles of human blood are protoplasmic cells, averaging 0.01 mm . ($\frac{1}{2 \cdot 0 \pi}$ in.) in diameter when spheroidal, but they vary much in size and shape. They are far fewer than the coloured corpuscles, usually numbering not more than ten thousand in a cubic millimeter (about 1 to 500 red corpuscles). They are increased in number by any conditions which tend to increase the rate of circulation. They are specifically lighter than the red corpuscles. If examined immediately the blood is drawn, they are spherical in shape, but soon become flattened and then irregular in form (fig. 3), and their outline continually alters, owing to the amceba-like changes to which they are subject. In some kinds (phagocytes) the protoplasm tends to take in foreign particles with which the cells come in contact; in others there seems to be little or no such tendency. Some of the colourless corpuscles contain very fine granules, others coarser and more distinct granules in their

Fig. 47.-Two leucooytes of libpidostren, showing attraction-sphere.
(T. H. Bryce.)
A, a macrocyte, with kidney-shaped nucleus.
B, a polymorph, with lobed nuclens (the threads of chromatin joining the lobes are not shown).
protoplasm ; others again have a hyaline protoplasm without any apparent granules. In some corpuscles (lymphocytes) the protoplasm forms only a relatively small proportion as compared with the nucleus (fig. 15).

Leucocytes are classified according to the character and appearance of the nucleus and the nature and staining qualities of the granules in their protoplasm. Some of their granules are readily stained by basic dyes such as methylene-blue; such granules are accordingly termed basiphil. Distinct coarse basiphil granules are, however, rare in normal blood, although cells with these granules are always present in the marrow and in some connective tissues, and make their appearance in the blood in leucocythæmia. On the other hand, some granules more readily take up colour from acid dyes, such as eosin; these have been termed oxyphil or eosinophil. Each leucocyte has at least one nucleus, which is difficult to see in a fresh preparation, but is easily seen after the action of most reagents and after staining. There is also a centriole with attraction-sphere (fig. 47).

The following are the chief varieties of leucocytes, described in order according to their relative number in blood:-1. Polymorphs: Cells with lobed or multipartite nuclei and a relatively large amount of protoplasm, which is highly ameboid. These are often termed multi-(poly-) nuclear, but the nucleus is rarely if ever multiple, its several parts being joined by threads of nuclear substance. The cells in question vary in size, but when spherical are usually not quite 0.01 mm . in diameter. Their protoplasm stains with cosin, this being due to the presence of fine oxypbil granules (Kanthack and Hardy). They are highly amoeboid and phagocytic, and constitute from sixty to seventy per cent. of all the leucocytes of the blood (fig. $48, a$; sce also fig. 49 where three are visible).
2. Lymphocytes.-These are small cells, with a limited amount of clear protoplasm around the nucleus, which is simple, not lobed or divided (fig. 48, b; see also fig. 49, on right). The amoboid phenomena are less marked in

Fig. 48.-Various minds of colotrless corptscles, showing the different characters of the granules. (From a film preparation of normal human blood.) Two of each kind have been drawn.
them than in the other varieties of leucocyte. The protoplasn stains with methylene-blue. They are about 0.0065 mm . in diameter, but some are larger and appear to be transitional between this and the next rariety. They constitute from fifteen to thirty per cent. of the total number of lencocytes in the blood. They are relatively more numerous in infancy.
3. Macrocytes.-Large uni-nucleated cells similar to the last, but much larger, and containing much more protoplasm (fig. 48, c; fig. 49 , on left). Some, which are rather smaller than the rest, are regarded as transitional forms from the last variety. The nucleus is spherical, oval, or kidneyshaped. The protoplasm is hyaline; it stains slightly with methylene-blue, owing to the presence of very fine basiphil granules. These cells are amoboid and phagocytic. Including the transitional forms, they constitute about five per cent. of all the leucocytes in blood.
4. Oxyphils.-These are characterised by their coarse granules, which stain deeply with acid dyes, such as eosin. Their average diameter in the
spherical condition is 0.01 mm . The nucleus is usually bi-lobed (fig. 48, d). They are amoboid, but less actively so than the polymorph ceils. They are more variable in number than the other varieties, constituting sometimes not more than one per cent., and at other times as much as ten per cent., of the total leucocytes of blood.

Fie. 49.-Blood film statned with hematoxylin and eosin. Magnified 400 diameters. Photograph.
There are seen in the field, besides numerous red corpuscles, five lencocytes and a mass of bloodplatelets (on the right), as well as a few scattered platelets. Of the leucocytes, that on the left is a macrocyte, that on the right a lymphocyte, and the rest polymorph.

Fig. 50.-Network of fibrin filaments from a section of bloddclot. Magnified 400 diameters. Photograph.
5. Basiphils.-Cells containing coarse basiphil granules are rarely if ever found in normal blood of adult, but occur in children, and in certain pathological conditions, especially those affecting the bone-marrow.

The granules of leucocytes are usually studied in films of blood which are allowed to dry upon a slide, and are then doubly stained with basic and acid dyes. Fig. 49 is a photograph of such a preparation of human blood. Rapid variations may occur in the number of leucocytes in blood under different physiological
conditions, such as the ingestion of food and muscular exercise, the usual effect being an increase in number. This is explained by the fact that under these circumstances the flow of blood through such organs as the marrow of the bones, the spleen and the liver, in which it is naturally sluggish, becomes accelerated, and leucocytes which have tended to accumulate in these parts become washed out into the general circulation.

Blood-platelets or thrombocytes.-In the clear fluid in which the bloodcorpuscles are suspended, a network of fine intercrossing filaments of fibrin soon makes its appearance (indistinctly seen in fig. 46, on the left). This fibrin network is well seen in sections of bloodclot (fig. 50). The filaments often radiate from minute round colourless discoid or spindle-shaped particles

Fig. 51.-Blood-corpuscles and ele. MENTARY PARTICLES OR BLOOD-PLATElets,' Within a small vein. (W. Osler.)

Fig. 52.-Blood-platelets, highly MAGNIFIED, SHOWING THE IRREGULAR FORMS WHICH THEY ASSUME WHEN BROUGHT IN CONTACT WITH FOREIGN MATTER, AND THE CUROMATIC PARTICLE WHICH EACH CONTAINS, AND WHICK HAS BEEN REGARDED as a nuclevs. (After Kopsch.)
less than one-third the diameter of a red corpuscle, which either lie separatcly or are collected into groups or masses of variable, sometimes of considerable size. These are the elementary particles, blood-platelets, or thrombocytes. In the blood-vessels they are discrete (fig. 51), but they immediately clump together when blood is drawn (fig. 49). If, however, the blood is examined on agar jelly containing certain salts, the platelets can be kept separate. They usually under these conditions spread out into an irregular shape, and may then be stained and submitted to very high powers of the microscope. The result of such examination shows that each one contains a minute particle which stains rather more deeply than the rest of the blood-platelet (fig. 52). This particle has been considered to represent a nucleus, and the blood-platelets have on this ground been regarded as cells (Deetjen). This view is supported by the fact that in Amphibia, where the bloodplatelets are much larger, they unquestionably contain a nucleus. Bloodplatelets vary greatly in number: counted after dilution of blood with fluids

Fig. 53. - Mesoderm cells of rabbit embryo, united to furm a syncydiun. (Maximow.)
m, ordinary mesoderm cells ; m', a cell in karyokinesis ; l, a primitive blood-cell.

Fig. 54.-Groups of primitive erythroblasts in mesodferm of embryo Rabbit. (Maximow.)
u, normoblasts; b, b^{\prime}, erythroblasts; m, mesoderm cells; m^{\prime}, mesoderm cells containing hamoglobin ; $b^{\prime \prime}$, extrusion of nucleus from an erythroblast; n, an extruded mucleus; $b t$, an erythrocyté.
which prevent their clumping together, they are found to average from 200,000 to 300,000 per cubic millimeter of blood:

The spreading out upon glass or other foreign surface is not analogous

Fig. 55. - Development of bluod-visslels anil blood-corpesceles in the vasculate niea of tile duineh-pig. ul, blood-corpuscles becoming free in the interior of a nucleated protoplasmic mass.

Fig. 56. - Development of bloob-corpestles in ribbit. (Maximow.)
$m, m^{\prime \prime}, m^{\prime \prime}$, mesench,ime cells united into a syncytium, one showing mitosis; en, endothelial cells of vessel; v, cavity of vessel ; l, lymphoblasts; c, primitive erythroblasts; c^{\prime}, one in mitosis.
to the amceboid movements of the leucocytes, for it is irreversible. It is a pronounced example of thigmotaxis (tendency to adhere to solid substances). Cells which exhibit this property to a high degree are termed by Tait thigmocytes. After blood is drawn, and if they come in contact with foreign matter or injured tissue, the blood-platelets not only spread out in the manner
above-mentioned, but also undergo a further remarkable disintegrative change, giving off viscid threads which adhere together, and fix themselves to adjacent structures. This phenomenon will be referred to at greater length when amphibian blood is deait with.

Fatty particles, derived from the chyle, occur in the plasma during absorption of food-containing fats.

Fig. 57.-Part of. a blood-vessel fron the rolk sac of the rabbit embkyo, SHOWING THE CHANGES WHICH OCCUR IN THE pROCESS OF FORMATION OF mRythrocites. (Maximow.)
u, $\alpha^{\prime}, \alpha^{\prime \prime}$, megaloblasts ; b, normoblasts in process of transformation into erythroblasts ; c^{\prime}, erythrohlasts, the nuclei of which are becoming less chromatic and in one or two cells have almost disappeared; d, an erythroeyte fully formed but not discoid; en, cn^{\prime}, phagoeytic endothelial cells ; 7 , lymphocytes; k, a divided lymphocyte; n, erythroblasts somewhat shrunken and with atrophying nucleus; n, n, nuclei in process of extrusion.

DEYELOPMENT OF RED BLOOD-CORPUSCLES.

In the mesoderm of the embryo, at first in that of the yolk sac and subsequently in the body of the embryo, the blood-corpuscles make their appearance as amœboid nucleated cells, apparently derived by mitotic division from some of the ordinary mesoderm cells (fig. 53). These are the blood-cells or primitive hoematoblasts. They resemble lymphocytes, but after a time the protoplasm of some of them is found to contain hæmoglobin (fig. 54); they may now be termed primitive erythroblasts. Soon after their
appearance they are found to be enclosed within a syncytium of the mesoderm or mesenchyme (fig. 55), which forms a network, at first incomplete but afterwards complete, at the nodes of which are enlargements containing groups of the primitive erythroblasts. This gives to the tissue the appearance of isolated reddish spots-the blood-islands of Pander.

Fig. 58. -Formation of erythroblasts in liver of embeyo rabbit. (Maximow.)
$e n$, en', endothelial cells of vessels; $a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}$, megalohlasts; $b, b^{\prime}, b^{\prime \prime}, b^{\prime \prime \prime}$, normoblasts; e^{\prime} erythroblasts; $l, l^{\prime}, l^{\prime \prime}$, lymphoblasts ; h, hepatic cells ; n, a nucleus becoming extruded from a small erythroblast.

The network becomes hollowed out by an accumulation of fluid in the syncytial protoplasm, and thus are produced a number of capillary blood-vessels, within which the coloured nucleated cells are set free as embryonic blood-corpuscles (fig. 55). ${ }^{1}$ Within the circulation these multiply by mitotic division, and thus rapidly hecome more numerous. The primitive erythroblasts are relatively large, and resemble the megaloblasts of bonc-
${ }^{1}$ According to Jordan the hamatoblasta are budded off from the endothelium of the developing vessels.
marrow (see p. 46), but after division they give rise to smaller erythroblasts, similar to the normoblasts of bone-marrow. These form the nucleated coloured blood-corpuscles (erythroblasts) of the embryo during the first few weeks of intrauterine life. They also multiply by mitotic division, so that the number of nucleated coloured blood-corpuscles becomes considerable, a certain number of colourless cells also appearing amongst them. After a time, ordinary non-nucleated blood-disks (erythrocytes) of very variable size begin to appear amongst the nucleated cells, and these last become relatively fewer in number. Before the middle of intrauterine life the erythroblasts have nearly disappeared frcm the blood, and their place is taken, as in the

Fig. 59.-Blood-corpuscles developing within connective-tissue cells.
a, a cell containing diffused hæmoglobin ; l, a cell filled with coloured globules; c, a cell containing coloured globules in the protoplasm, within which also are numerons vacuoles; d, an elongated cell with a cavity in its protoplasm occupied by fluid and blood-corpuscles mostly globular ; e, a hollow cell, the nucleus of whioh has multiplicd. The new nuclei are arranged around the wall of the cavity, the corpuscles in which have now become discoid; f, shows the mode of onion of a "hæmapoietic" cell, which in this instance contains only one corpuscle, with the prolongation (bl) of a previously existing vessel.
adult, by erythrocytes. Erythroblasts are now confined to bone-marrow, and the various changes in them which lead to the development of erythrocytes take place in the marrow instead of in the blood-vessels as is the case in the early embryo (figs. 56, 57).

The multiplication of erythroblasts by mitosis, and the formation from them of erythrocytes, is found to go on in the blood-vessels of the embryonic liver long after it has ceased to be observed in other vessels (fig. 58). According to Maximow it is not confined to the blood-vessels, but goes on also in the tissue between the vessels. In birds it continues to occur throughout life within the blood-vessels of the bone-marrow.

- Erythrocytes are also formed at a somewhat later stage of development within certain cells of the comnective tissue (vasoformative cells), a portion of the substance of the cell becoming coloured by hemoglobin, and separated

B

Fif. 60.-Segtions of red marrow, rabbit; from photographs.
into globular particles (fig. 59, a, b, c), which are gradually moulded into disk-shaped red corpuscles. In the meantime the cells become hollowed out, and join with similar neighbouring cells to form blood-vessels (fig. 59, a, e, f). The process is therefore somewhat different from that in the early embryo since cell-nuclei are not included in the hæmoglobin-holding protoplasm from which the erythrocytes are formed.

It has been suggested by some writers that the vasoformative cells containing coloured corpuscles in various stages of formation are in reality portions of an

Fig. 61. -Red marrow of young rabbit. Magnified 450 diameters.
e erythrocytes; e^{\prime}, erythroblasts; $e^{\prime \prime}$, an erythroblast undergoing mitotic division ; p, a polymorph
Ieucocyte ; m, ordinary myelocytes ; mi', myelocytes undergoing mitotic division ; o, an
oxyphil myelocyte; $b,-$ a basiphil myelocyte ; meg, a giant-cell or megakaryocyte.
already formed vascular network which is undergoing atrophy; and that the corpuscles within such cells are not in process of formation but of disappearance. But since the appearances in question are seen in parts in which vascular tissues (such as fat) are undergoing not atrophy but formation; and since, moreover, the hæmatoidin crystals and pigment granules which are characteristic of the disintegration of erythrocytes within-cells are not present, it seems more reasonable to interpret the appearances as indicative of intracellular development of bloodcorpuscles by differentiation of part of the protoplasm of the vasoformative mesenchyme cell, rather than as a degeneration of already formed blood-vessels and blood-corpuscles.

BONE-MARROW AS A BLOOD-FORMING ORGAN.

Myelocytes.-The marrow of bone is of a yellow colour in the shafts of the long bones of most animals, and is there largely composed of adipose tissue, but in the shafts of the long bones of certain animals, and in the cancellated tissue of most, it has relatively few fat-cells, and is usually
red, the colour being mainly dne to the large amount of blood in its vessels. This red marrow (figs. 60, 61) is chiefly composed of protoplasmic cells termed myelocytes or marrow-cells-which resemble large blood-lencocytes, and, like these, are amobboid. They are believed to give rise by division to certain varieties of the blood-leucocytes (see p. 48). They exhibit the same kind of differences as to the character of the grannles they contain, but cells containing coarse basiphil granules are frequent in the marrow, although rare in the blood.

Erythroblasts.-There are also to be seen mingled with the myelocytes a number of corpuscles somewhat smaller in size, nucleated, at least some of them amoeboid, and of a reddish tint (fig. 61, e'). These cells are the erythroblasts; they resemble the nucleated colonred corpuscles of the embryo.

They vary in size, most measuring about 007 mm . (normoblasts), but some being considerably larger (megaloblasts), and others considerably smaller (microblasts). The red disks are formed from the erythroblasts by the nuclens disappearing and the coloured protoplasm becoming moulded into ef discoid shape. At what time this formation of blood-corpuscles in the bone-marrow begins has not been ascertained, but after it has commenced it continues throughout the whole of life-the red marrow, especially that of the ribs, being especially active in this respect. In mammals the multiplication of nucleated colonred corpuscles appears to take place wholly within the tissue of the marrow external to the blood-vessels. It is uncertain to what extent the capillary vessels of the marrow are limited by a complete endothelium (see next page), but in any case the formed erythroblasts seem to readily pass into the blood stream. In birds the erythroblasts are confined to the large blood-channels of the marrow, and the transformation into erythrocytes occurs within these channels.

Many of the erythroblasts in the marrow are in process of mitotic division. On the other hand, others are seen with the nucleus in a more or less atrophied condition : from this it is inferred that the transformation of an erythroblast into a discoid blood-corpuscle is accompanied by the disappearance of the nuclens. Whether this becomes extruded or simply undergoes complete atrophy is uncertain.

Myeloplaxes. The marrow also contains a number of very large cells, the giant cells or myeloplaxes of Robin (figs. 60, 61, and 62; see also fig. 12). Giant-cells are especially numerous wherever bone is becoming absorbed, but are not confined to such situations, being normal constituents of adult red marrow. Sometimes they possess scveral nuclei, but most-the so-called megakaryocytes contain but one large nuclens, which has usually an annular form, is lobnlated, and contains a number of nucleoli, They are also characterised by possessing a number of centrioles grouped together noar the centre. Giant-cells are found in all blood-forming organs, e.y. the lymph-glands (fig. 13) and spleen of young animals, as well as in bone-marrow,

Under pathological conditions they may occur in many other tissues. It has been suggested that they give origin to the blood-platelets (Wright, Ogata, and others).

Cells are sometimes found in marrow containing blood-corpuscles in varions stages of transformation into pigment, similar to those which nccur in the spleen-pulp. This is an indication of destruction.

Blood-vessels of marrow.-The marrow is very vascular, the capillaries and veins being large and thin-walled ; indeed, according to some authorities, the walls of the capillaries are imperfect, so that there is an open communication between them and the interstices of the tissue; in this way it is supposed that the coloured blood-disks which are produced from the

Fig. 62.-From a smear preparation of red marrow (rabbit) stained witif methylene-blue and alcoholic eosin. (R. K. S. Lim.)
e, erythrocytes ; e°, erythroblasts; p, a polymorph ; o, an oxyphil leucoeste $; b$, a basiphil leucocyte; m, my yelocytes; meg., a megakaryocyte.
erythroblasts of the marrow may get into the circulation. There is not, however, an interstitial circulation of blood in the marrow sueh as is found in the spleen, nor does injection material such as carmine gelatine pass into the interspaces of the tissuc ; but it remains confined to the vessels, so that the existence of an open communication is improbable.

Tait and M^{\prime} Naughton have shown that the capillaries of marrow are similar, in their behaviour to inorganic particles (e.g. Indian ink), to the blood-channels of the liver and spleen ; the endothelium cells tending to engulf such particles.

DEVELOPMENT OF WHITE CORPUSCLES.

Leucocytes occur originally as free mesenchyme cells, and are believed to find their way into the vessels from the circumjacent mesoderm. Some
authors state that they are produced by division of the primitive blood-cells, certain of these forming primitive lymphocytes, others primitive erythroblasts. They do not occur within the first-formed blood-vessels of the embryo, nor are they seen within the vasoformative cells. In later stages of feetal life and during the whole of post-embryonic life they become formed in the bone-marrow, as well as in lymph glands, in the Malpighian corpuscles of the spleen, and in other organs composed of lymphoid tissue; they pass from 'these directly into the lymphatics' and into the blood.

It is regarded as probable, but has not been ascertained with certainty, that the macrocytes are formed by enlargement of the lymphocytes. Some authors believe that the lymphocytes give origin to all the various kinds of leucocytes. Others, on the other hand, consider that the polymorphs and the granular oxyphil leucocytes are formed within the bone-marrow, which contains cells of similar character. There is also evidence of the formation of polymorphs in the spleen. Leucocytes with well-marked basiphil granules are met with in bone-marrow ; these sometimes, under abnormal conditions, pass in large numbers into the blood, which does not normaily contain any such cells in the adult human subject.

LESSON IV.

ACTION OF REAGENTS UPON THE HUMAN BLOODCORPUSCLES.

1. Make a preparation of human blood, and apply a very small drop of water at one edge of the cover-glass. Examine at a place where the two fluids are becoming mixed. Notice particularly the first effect of water upon both red and white corpuscles, as well as the ultimate action.
2. Repeat on another preparation, using very dilute alkali (0.2 per cent. caustic potash) instead of water. Notice the complete solution first of the white and then of the coloured corpuscles as the alkali reacles them.
3. Repeat on another preparation, using dilute acetic acid (1 per cent.). Observe that the effect of the acid upon the coloured corpuscles is similar to that of water, but that it has a different action upon the colourless corpuscles.
4. Make a preparation of blood mixed with salt solution, as in Lesson II. 2, and investigate the action of tannic acid.
$\dot{5}$. Study the phenomena exhibited in drops of mixed blood taken from different individuals (a) human (agglutination), (b) of two different species of animal (hæmolysis).
5. Examine blood-crystals of rat, guinea-pig, and squirrel. They can be obtained from these animals by merely mixing blood with a little water, and can be preserved for a time in glycerine or Farrant, or, after drying, in dammar.
6. Prepare hæmin by heating a dry smear of blood on a slide with anhydrous glacial acetic acid. It is not necessary to add salt, since this is present in the blood. The crystals of hemin are permanent.

ACTION OF REAGENTS ON ERYTHROCYTES.

The action of reagents upon the human red blood-corpuscles shows that, although previously appearing homogeneous, they in reality consist of an external envelope of colourless matter which forms a thin membrane enclosing the dissolved coloured material or hemoglobin. Thus, when water or any solution which is hypotonic to the corpuscles reaches them, it passes through the membrane and swells the corpuscles, causing them to become globular; eventually the membrane is either
 burst, or is sufficiently distended to allow the solution of hæmoglobin to escape through its pores, the colourless envelope being left (fig. 63, a to e). The addition of a hypertonic solution of salt, on the other hand, by increasing the density of the fluid in which the corpuscles float, causes diffusion of water out of the corpuscle, and consequent shrinking and corrugation of the surface, a crenated or thornapple form (fig. 63, f) being
produced. The same change is brought about by evaporation of water, if the blood is exposed to air. The separation of hæmoglobin from the corpuscle can be effected not only by water, but also by dilute acids, by the action of heat ($60^{\circ} \mathrm{C}$.), the freezing and thawing of blood, the action of ether or chloroform, and the passage of electric shocks. Bile and dilute alkalies rapidly cause the red corpuscles to become spherical and then almost instantly effect their complete solution.

Some of the reactions above described occur by a process of osmosis as in the case of water, but in others a solution of the envelope of the corpuscle is produced by the reagent, or the envelope is altered and rendered more porous so that the hæmoglobin is able to escape. The film or envelope is probably composed of protoplasm, containing, as is always the case-besides nucleo-proteids-lipoids, such as lecithin and cholesterol ; substances which possess many of the physical properties of fats. If we assume that the lipoids are accumulated so as to form an external film to the corpuscle, the running of the red disks into rouleaux can readily be explained, since it has been shown by Norris that disks of any material, e.g. cork, suspended in a fluid, tend in the same way to adhere in rouleaux, provided their surfaces are covered with a layer which is not wetted by the fluid. The fact that no rent is ever seen in the envelopes of the red corpuscles even when they appear to have burst may also be explained on the same hypothesis, for, if there is an external film of a fatty nature, any rent in it would tend immediately to close up again when the opposed edges come into contact. It was further shown by Norris that droplets of fluid encompassed by a lipoid film have a tendency to assume a flattened shape ; this suggests an explanation of the flattened form of the erythrocyte.

The envelope of the erythrocyte was termed the stroma by Rollett, a name which rests upon a false conception of the structure of the corpuscle. In adopting the name, he supposed that the corpuscle is formed of a homogeneous solid or semi-solid protein material, in the pores of which the hæmoglobin is contained. But there is no reasonable foundation for this belief, which has nothing in its favour and wholly fails to explain the well-known osmotic phenomena of the corpuscle; whereas the supposition that the corpuscle consists of an envelope enclosing coloured fluid is in accordance with all the known facts regarding the action of hypo. and hyper-tonic solutions upon the corpuscles. It is true that in the fresh mammalian corpuscle the envelope is too delicate to be actually observed in the optical section of the corpuscle, but in the blood-corpuscles of Amphibia it can be distinctly seen; with any slight increase in density of the plasma it tends to become wrinkled, and creases are then plainly visible in it. In these corpuscles also the nucleus becomes readily displaced, in freshly drawn blood, from its position in the centre of the corpuscle and may lie quite at the side (fig. 76); this is a clear indication of the fluid nature of the contents of the corpuscle, and by analogy we may fairly assume a similar constitution for the mammalian corpuscle. Moreover, it is possible to show the envelope of the red corpuscles of mammalia by staining with methyl violet and other dyes.

The mixing of blood from one species of animal with the blood or serum of animals of other species has a marked hrmolytic effect. In this case the hæmolytic action is exerted by a constituent (hæmolysin) of the foreign blood, which is special for each species and against which the "host" can render itself immune if, prior to any large quantity of the foreign blood or serum being injected, successive small injections be made; an "antihæmolysin" being gradually produced. This fact is not only of interest as bearing upon the general doctrine of immunity, but can also serve to detect the source of a given sample of blood.

Another phenomenon which occurs when the blood of two different
individuals even of the same species is mixed (or the serum of one with the suspended bload-corpuscles of another), is a clumping or agglutination of the corpuscles, which in some cases is very pronounced, although in

Fig. 64.-Blood-urystals, maginlfied.
1, from human blood; 2, from the guinea-pig; 3, squirrel ; 4, hamster.
others it may be slight or entirely absent. In cases in which the operation of blood perfusion needs to be performed, it is important to select a "giver"

Fig. 65.-Hamin crystals, magnifind. :(Preyer.)

Fig. 66.-Hematoidin crystals. (Frey.)
whose blood does not produce agglutination of the blood-corpuscles of the receiver, since the clumps which would otherwise be liable to be formed might cause obstruction in the capillaries of the receiver. The clumping is cansed by a special constituent of the plasma, to which the name "agglutinin" has been given.

Tannic acid produces a peculiar effect upon the red corpuscle (fig. 63, g); the hemoglobin is discharged from the corpuscle, but is immediately altered and precipitated, remaining adherent to the envelope in the form of a round or irregular globule of a brownish tinge (hæmatin?).

BLOOD-CRYSTALS.

Hæmoglobin.-In the blood of many animals (fig. 64), crystals of hæmoglobin readily form after this substance is extracted from the red corpuscles; although it never crystallises within them, being kept in solution by some means which is not fully understood. The crystals are rhombic prisms in man and most arimals, but tetrahedra in the guinea-pig, and hexagonal plates in the squirrel. In many animals they at once appear on slaking up the blood with chloroform or ether, or even on the mere addition of water, with or without subsequent evaporation, but in other animals and in man they are more difficult to nbtain.

Hzmin.-This name was applied by Teichmann to the minute dark-brown rhombic crystals of hydrochlorate of hematin (fig. 65), which are formed when dried blood from any source whatever is heated with anhydrous glacial acetic acid.

Hæmatoidin.-This occurs in the form of brownish-yellow crystals (fig. 66). It is found in old blood extravasations and in other places where blood-corpuscles are undergoing disintegration within the tissues.

ACTION OF REAGENTS ON LEUCOCYTES.

The structure of the colourless corpuscles is brought ont by the action

of some of the reagents above used. Thus, as water reaches them their ammboid movements cease; they become swollen out into a globular form by imbibition of fluid (fig. 67, 1) -this indicates that they also must have a superficial film which can act as an osmotic membrane-and the granules within the protoplasm then take on a very active Brownian motion. The nucleus also soon becomes clearer and more globular, and is more conspicuous. With the further action of water, the corpuscle becomes disintegrated, and the granules are set free.

Under the action of acids, the nuclei of the white corpuscles become shrunken and distinct (fig. 67, 2 and 3), and a granular precipitate is formed in the protoplasm around the nucleus. Along with these changes, a part of the protoplasm generally swells' out so as to form a clear bleb-like expansion; an appearance which often accompanies the death of the corpuscle from other causes. Caustic alkalies, even as dilute as 2 parts per 1000 of saline, rapidly cause complete destruction and solution of the white corpuscles.

LESSON V.

THE BLOOD-CORPUSCLES OF AMPHIBIA.

1. Obtain a drop of frog's, toad's or newt's blood, and mount it either undiluted, or mixed with a very small quantity of frog-Ringer. Examine with the high power. Notice the shape of the coloured corpuscles hoth when seen flat and edgeways, and the nucleus within each.

Measure with the scale (p. 28) ten corpuscles (long and short diameters), and from the results obtain the average dimensions of a corpuscle.

Notice the colourless corpuscles, smaller than the red, but larger than the pale corpuscles of human blood, although otherwise generally resembling these. Blood-platelets may also be seen; in the frog they are spindle-shaped.

Sketch two or three red corpuscles and as many white.
Be careful not to mistake the rounded liberated nuclei of crushed red corpuscles for pale corpuscles.

Enormous cells and nuclei belonging to the cutaneous glands as well as the granular secretion of those glands may be present in this preparation if it is obtained from the newt's tail.
2. Apply a minute drop of water to the edge of the cover-glass of the above preparation and notice its action upon the corpuscles.

Sketch two or three corpuscles altered by the action of the water.
3. Mount another drop of blood, and apply dilute acetic acid (1 per cent.) instead of water at the edge of the cover-glass. Make sketches showing the effect of the acid upon both red and white corpuscles.
4. Examine the corpuscles of newt's blood which has been allowed to flow into boric acid solution (2 per cent.). Notice the effect produced upon the coloured corpuscles. Sketch one or two.
5. Mount drops of glycerine-jelly containing (a) frog's or newt's blond and (b) bird's blood, previously fixed by Flenming's solution and stained with picrocarmine.
6. Make film preparations of amphibian and bird's blood as described on p. 31, $\$ 6$, for human blood.

THE BLOOD-CORPUSCLE IN OVIPARA.

Erythrocytes.—The coloured blood-corpuscles of Amphibia (figs. 68, 69), as well as of nearly all vertebrates below mammals, are biconvex elliptical disks, considerably larger than the biconcave circular disks of mammals. ${ }^{1}$ In addition to the coloured body of the corpuscle, which consists, as in mammals, of hæmoglobin enclosed within an envelope, there is a colourless nucleus, also of an elliptical shape, but easily becoming globular, especially

[^4]if liberated by any means from the corpuscle. The nucleus resembles that of other cells in structure, being bounded by a membrane and having a network of chromatin. It is not very distinct in the unaltered corpuscle,

Fig. 68.-Blood-corpuscles of frog. (Ranvier.)
a, seen on the flat; b, in optical section; c, in profile; v, a corpuscle with apparent vacuoles (probably parasitic organisms which are common in frog's blood-corpuscles); m, an ameboid leucocyte, n, nucleus of an erythrocyte, set free and contracted to the spherical form ; k, a lymphocyte; p, a blood-platelet.

Fig. 69. -Amphibian erythrocytes. Photographs. Magnified 450 diameters.
A, from the frog. B, from the toad.
but is brought clearly into view by the action of reagents, especially those of an acid nature. The action of reagents upon the red corpuscle of Amphibia is otherwise similar to that upon the mammalian corpuscle, water and hypotonic solutions causing it to swell into a globular form and then to become decolonised ; hypertonic solutions causing wrinkling of the envelope,
and so on. As a first effect, water and certain other fluids may cause the hæmoglobin to retire from the envelope at the points where the fluid is passing through the membrane: a stellate appearance is thereby often produced. Boric acid causes the hæmoglobin of the newt's corpuscle to

Fig. 70.-Erythrocytes of lepidosiren larva, fixed with Flemming's soldution and stained with iron-hamatoxylin. (T. H. Bryce.)
' A, as seeu on the flat; B, in section. In A the fibrils around the edge are visible as fine lines parallel to the margin of the corpuscle. In B their sections are seen as fine points just within the thinnest part of the edge.
become partially or wholly collected around the nucleus, which may then be extruded along with it from the corpuscle.

Immediately within the envelope, at the periphery of the amphibian erythrocyte, is a band of fine fibrils which are stained by gentian violet (Meves). As Bryce has shown, they can also be seen cut across in sections of the corpuscles, and may be stained with iron-hæmatoxylin (fig. 70).

Fig. 71.-A elood-platelet of Salamandra, and the changes which it UNDERWENT tMmediately after withdrawal of the blood from the vessels. (F. Meves.)

Leucocytes.-The colourless corpuscles of Amphibia, although larger, are very similar to those of mammals. Like them, they are either wholly pale and finely granular, or enclose a number of very distinct granules of similar nature to those met with in mammals. These corpuscles vary much in size and in the activity of their amoeboid movements: those which have a multilobular nucleus (polymorphs) are usually the most active. Reagents have the same effect upon the amphibian leucocytes as on those of mammals.

Fil: 72. - A blood-flatelet of Salaminder, showing its irkegulak projections and fibrinuls fllamenti radiating from it and attacheid to adjacent blood-cohetscles. (F. Meves.)

Two erythrocytes, one free nucleus, and one polymorph leucocyte are included in the figure.

Fits. 73. - Microscopic prefaration of frog's blood showing the manner in WhICH THE ERYTHROCTTES BECOMW ARRANGED IN ROSETTED LINES OWING TO THEIR FLAATION BY THE CONTRACIING THREADS FROM THE BLOOD-PLATELETS which are aghlutinated at chrtain points, Magnified 90 diameters, (J. Taitn)

The presence of glycogen may be demonstrated in them by its reaction with iodine solution (port-wine colour).

Blood-platelets.-The blood-platelets or thrombocytes are much fewer in number than in mammals. They are of a spindle shape (fig. $68, p$). They contain a nucleus-like body, and like the blood-platelets of mammals they show rapid changes as soon as the blood is drawn. Some of these changes are represented in figs. 71 and 79 . The elongated corpuscle first contracts and becomes more globular, its nucleus changing similarly in shape. Irregular processes then begin, to be protruded from the corpuscle, and very soon fine threads are shot out radially in all directions. These become attached to those of other platelets,' or to any solid object which may be in the vicinity of the platelet. The filaments, which appear to be of a fibrinous nature, and may possibly be threads of fibrin, then begin to retract and drag upon the objects which are entangled by them. In this manner a number of erythrocytes may be drawn together towards a common centre and assume a radial or rosetted arrangement (fig. 73). Similar changes probably occur in the blood-platelets of mammalian blood after it is drawn. It is suggested by Tait that the attachment of the blood-platelets to a foreign or injured surface, as well as their entanglement and agglutination, may serve to plug small apertures in blood-vessels caused by injury, and thus aid in arresting hæmorrhage.

LESSON VI.

THE AMGEBOID PHENOMENA OF THE COLOURLESS BLOOD-CORPUSCLES.

1. Make a preparation of blood from the finger in the usual way. Draw a brush just moistened with pure liquid paraffin around the edge of the cover-glass to prevent evaporation. Avoid an excess of paraffin. Place the preparation upon a "warm stage," and heat this to about the temperature of the body ($38^{\circ} \mathrm{C}$.). Bring a white corpuscle under observation with the bigh power, and watch the changes of

Fig. 74.-Simple warming apparatus, complete, shown in opkration.
shape which it undergoes. To become convinced of these alterations in form, make a series of outline sketches of the same corpuscle at intervals of a minute.

The simplest form of warm stage is a copper plate of about the size of an ordinary slide, perforated in the centre and with a long tongue of the same metal projecting from the middle of one edge (fig. 74). The copper plate rests upou the stage of the microscope, with a piece of asbestos or other non-conducting material between. The preparation is niade upon an ordinary slide or on a long cover-glass, which is placed upon the warm stage and pressed into contact with it by the brass clips of the microscope. Heat is applied to the copper tongue by a small spiritlamp flame; a greater or less amount is conducted to the warm stage and the superjacent preparation according to the point to which the flame is applied. To ascertain that the right temperature is got and maintained, put two pieces of solid paraffin, one melting at $35^{\circ} \mathrm{C}$. $\left(95^{\circ} \mathrm{F}\right.$.) and another at $38^{\circ} \mathrm{C}$. ($100^{\circ} \mathrm{F}$.), one on either
side of the preparation. The temperature must be such that the first piece is melted and remains so whilst the second remains unmelted. ${ }^{1}$
2. Mount a drop of frog's or newt's blood diluted with an equal amount of salt solution, and examine it in the same manner upon the copper stage, at first cold, afterwards warm ; the temperature must, however, be kept below $30^{\circ} \mathrm{C}$. Observe the effect of warmth in accelerating the amœboid movements of the pale corpuscles. Sketch one at intervals of a minute (a) in the cold, (b) whilst warmed.
3. Take some yeast which has been mixed with salt solution, and mix a very little of the yeast and salt solution with a fresh drop of newt's blood, slightly paraffining the edge of the cover-glass as before. Endeavour to observe the taking-in

Fig. 75.-A polymorph ledcocyte of thiton fixed by'steam in ameboid Gondition and stained with hematoxylin. Untouched photograph. Magnified 1360 diameters.
Notice the homogeneous appearance of the protoplasm of the pseudopodia as compared with that of the body of the corprscle. The nucleus is multilobed, the lobes being joined by threads of chromatin. . Its reticular structure is well shown.
of the yeast-torulæ by the white corpuscles. Sketch one or two corpuscles whiçh have ingested torulæ.

Particles of carbon (Indian ink) or of vermilion may be used instead of yeast for this experiment.
4. To obtain a specimen with the white corpuscles tixed in amœeboid condition, a preparation of newt's blood mixed with salt solution is made, and set aside for ten minutes. By this time the corpuscles will be freely amoeboid, and may show well-marked psendopodia. To fix them in this condition let a jet of steam from a tube attached to a boiling flask or kettle of water play for a second upon the cover-glass. The heat instantly kills the corpuscles, and they arc fixed in the form they presented at the moment the steam was applied. They may now be stained by passing dilute hæmatoxylin ${ }^{2}$ under the cover-glass, the stain being followed by dilute glycerine. When this has diffused through the preparation (it must not be drawn under by filter paper), the cover may be cemented and the preparation kept.

[^5]The amoeboid phenomena which are exhibited by the protoplasm of the colourless blood-corpuscles consist of spontaneous changes of form, produced by the throwing out of processes or pseudopodia in various directions. When first thrown out the pseudopodia are quite clear; when a distinction into spongioplasm and hyaloplasm is apparent, the pseudopodia are at first composed only of the hyaloplasm, which flows out in any direction in which the surface tension is for the moment diminished (see p. 7). If the corpuscle is stimulated, either mechanically, as by tapping the cover-glass, or electrically, all pseudopodia are retracted, the corpuscles becoming spherical. A change of form caused by the protrusion of the pseudopodia may, when active, be

Fif. 76. - An mosinophil leucoiyte of Salamandra beginning to adhere to an erythrocyte. Perfectly fresh preparation without addition of fluid. Uutouched photograph. Magnified 600 diameters.
Two other erythrocy tes are included in the field. Notice that the nuclei in these have undergone a change of position within the corpuscle, showing that its contents must he completely fluid.
followed by changes in place or actual locomotion (migration) of the corpuscle. When a pseudopodium, or the external surface of the protoplasm, comes in contact with any foreign body, the protoplasm tends to flow round and enwrap it; if it is small, it is drawn into the corpuscle; particles thus ingested may be conveyed by the corpuscle in its movements from one place to another (fig. 78). This property plays an important part in many physiological and pathological processes. Thus cells in the spleen resembling large leucocytes-the so-called splenic cells-take in blood-corpuscles, which become broken down within them; and pathogenic bacteria become taken finto the protoplasm of certain lcucocytes (on this account termed phagocytic), there to be destroyed (Metchnikoff). The phagocytic properties of the leucocytes become especially developed as the result of the action upon the bacteria of certain substances which are present to a variable extent in blood and are termed opsonins (Wright). They are also affected by agents capable of acting upon lipoids; which form, it is believed, a delicate surface film over
the protoplasm of amœboid cells. Hamburger, who makes this observation, points out that the beneficial action of certain medicinal remedies may be

blea.
Fig. 77.-A highly amgboid phagocytic polymorph ledcocyte of SalaMANDRA, ENVELOPING AN ERYTHROCYTE (a portion only of this is included in the field). Untouched instantaneous photograph. Magnified 600 diameters.

Four other erythrocytes are seen.
due to the fact that they influence the leucocytes of the blood in some such manner and thus tend to increase their phagocytic activity.

It is possible that particles of organic matter which are taken up by
1.

7.

Fig. 78.-Changes of form of a white blood-corpuscle sketched at inTHRVALS OF A FEW MNUTES, SHOWINC THE INCEPTION OF TWO SMALL GRANOLES AND tIIE CHANGES OF POSITION THESE UNDERWENT WITHIN THT CORPUSCLE.
the pale corpuscles may undergo some slow process of intracellular digestion within the protoplasm, but it is difficult to substantiate this.

The migration of colourless corpuscles from the blood-vessels into the surrounding tissues (which especially occurs in inflamed parts) is due to their amoboid activity.

Conditions which are favourable to their amoboid activity are (1) the natural medium in which the leucocytes live, such as plasma, serum, or lymph : or a solution containing similar salts, e.g. Ringer's fluid; (2) a certain temperature. In warm-blooded animals the phenomena cease below about $10^{\circ} \mathrm{C}$. When gradually warmed the white corpuscles become more and more active up to a certain point, the maximum being a few degrees above the natural temperature of the blood. Above this point they become spheroidal and at a somewhat higher temperature their protoplasm is coagulated and killed. Acids at once kill the corpuscles and stop their movements. Narcotic gases and vapours, such as carbonic acid gas or chloroform vapour, also arrest the movements, but they recommence after a time if the action of the reagent is not too prolonged.

Any increase of density of the medium produces a diminution of amœboid activity, whilst, on the other hand, a slight decrease in its density has the opposite effect.

Jolly found that if blood-plasma is preserved in sealed aseptic tubes, the white corpuscles may retain their amoboid activity for as long a period as four and a half months. Sherrington had previously found that it is retained in oxalated plasma for three weeks.

LESSON VII.

EPITHELIUM AND SECRETING GLANDS.

1. Mount a drop of saliva and examine first with a low, afterwards with a high power. Observe the nucleated epithelium-cells, some single, and others still adhering together by overlapping edges. Measure three or four, and also their nuclei. Sketch one or two on the flat and edgeways. Notice the salivary corpuscles, which are migrated white blood-corpuscles swollen out by imbibition of water. Numerous bacteria are also always to be seen. A stained preparation may be made by allowing some saliva to dry on a slide, and staining the film with 1 per cent. methylene-blue (3 minutes). It is then washed with water, dried and mounted in dammar.
2. Put a small shred of human epidermis into a drop of strong caustic potash solution (35 per cent.) for five minutes. Then break it up in water with needles, cover, and examine. Observe the now isolated swollen scales (cells).
3. Study the arrangement of the cells in a section through some stratified epithelium, such as that of the mouth, skin, or cornea. Notice the changes in shape of the cells as they are traced towards the free surface. Measure the thickness of the epithelium. Count the number of layers of cells.
4. Make a preparation of the epithelium of the urinary bladder. The bladder is slightly distended with chromic acid solution (1 part chromic acid to 2000 of normal saline) ; after an hour it is cut open and placed in more of the same solution for a few days; it is then transferred to water. Take a small scraping of the lining epithelium on the point of a scalpel, and break it up by tapping it in a drop of distilled water coloured with hæmatoxylin. Put a small hair in the drop and cover. Add a small drop of dilute glycerine at one edge: allow this to diffuse under. Cement next day. Observe the large flat superficial cells, and the pear-shaped cells of the second layer. Sketch one of each kind. The cells will vary greatly in appearance according to the amount of distension of the organ by the fixative.
5. The minute structure of epithelium-cells and their nuclei, both at rest and dividing, is studied in sections of the skin of the newt's tail, in shreds of peritoneum of salaruander-tadpole, or amnion of rat, or in sections of the salamander- or frogtadpole. If frog-tadpoles are fed with thyroid gland for two or three weeks, the mitoses are very numerous (Lim). The preparations may be stained either with hæmatoxylin or iron-hæmatoxylin, or with saffranin (see Appendix).

Sketch a cell with resting nucleus, and others with nuclei in difterent phases of karyokinesis.

The simple saccular skin-glands of Amphibia may also be studied in sections of the newt's skin.

An epithelium is a tissue composed entirely of cells separated by a very small amount of intercellular substance (cement-substance). The cells are generally arranged as an expansion covering a free surface, but may be arranged to form solid masses, as in some glands.

The structure of epithelium-cells, and the changes which they undergo in cell-division, are well seen in the epidermis of the newt or of the salamander-
tadpole (fig. 79); the cells and nuclei being much larger in these animals than in mammals.

An epithelium-cell consists, like other cells, of protoplasm and nucleus. The protoplasm may either look granular, or it may have a reticulated appearance,

Fig. 79.-Efidermis cells of a laryal salamander. Magnified 400 diameters. Photograph.
Some of the cells are undergoing division. Intercellular channels are seen in parts. At one place the branches of a pigment-cell extend between the epithelium-cells.

Fig. 80.-Section of stratified epithelifim from faices of rabbit. Magnified 240 diameters. Photograph.
or may exhibit fibrils. The nucleus is spherical or ovoid. Usually there is only one, but there may be two. The cell-substance is often modified in its chemical nature ; its external layer may become hardened to form a sort of membrane, or tho whole cell may become horny (keratinised) : or there may be a formation of special material within the cell which is ultimately discharged and used by the organism, as occurs in secreting glands.

Epithelia are somewhat illogically classified partly according to the shape and arrangement of the cells, partly according to their function. Thus we speak of scaly or pavement, cubical, cthumar, glandular, and cilinted epithelium. Most of these are simple epithelia, with the cells only one layer deep. If forming several superposed layers, the epithelium is said to be stratified, and then the shape of the cells differs in the different layers. Where there are only three or four layers in a stratified epithelium, it is termed transitional. A classification according to the function of the epi-

Fig. 81.-Section of epldermis of cat's foot, sfowing tntercelintar cbannels, with bridging fierils. (Kolossow.)
thelium may also conveniently be adopted. We should then include under the term protective epithelia, the pavement, stratified and transitional varieties; under the term secreting cpithelia, the cubical, columnar ${ }^{1}$ and glandular epithelia (some of the pavement epithelia would come also under this head); while the ciliated epithelia would form a separate division, as in the classification above given.

Stratified epithelium (fig. 80) covers the anterior surface of the cornea, lines the mouth, pharynx (lower part), gullet, anal canal and part of the urethra, and forms the epidermis which covers the skin. The vocal cords

[^6]are covered by stratified epithelium. In the female it also lines the vagina and covers the os uteri. The cells nearest the surface are always flattened and scale-like, whereas the deeper cells are polyhedral, and those of the deepest layer somewhat columnar in shape. Moreover, the deep cells are soft

FIG. 82. - SECTION THROUGH THE DEEPER LAYERS OF A STRATIFIED EPITHELIUM, SHOWING FIBRILS, \dot{f}^{\prime}, PASSING FROM CELL TO CELL ACROSS THE INTERCELLULAR spaces. (Ranvier.)
and protoplasmic, and are separated from one another by a system of intercellular channels, which are bridged across by numerous fibrils passing from cell to cell (figs. 81, 82), giving

Fig. 83.-Eplthellum-scales from the inside of the mouth. (Sharpey.) Magnified 260 diameters. the cells, when separated, the appearance of being beset with short spines (pricklecellss). These "bridging fibrils" are not peculiar to stratified epithelium, but oceur in many tissues.

The deeper cells multiply by karyokinesis. The newly formed cells tend as they enlarge to push those superficial to them nearer to the surface, from which they are eventually thrown off. As they approach the surface they become keratinised, and in the case of the epidermis entirely lose their cellular appearance, which can, however, be in a measure restored by the action of alkalies (\$ 2). The castoff superficial cells of the stratified epithelium of the mouth, which are seen in abundance in the saliva (l), are less altered than those of the epidermis, and the remains of a nucleus is still visible in them (fig. 83).

The stratified epithelium of the human skin (epidermis) shows many peculiarities; these will be considered when the skin is treated of.

The name transitional epithelium is given to a stratified epithelium con-

Fig. 84.-Eptthelial cells from the bladder of the rabbit. (Klein.) Magnified 500 diameters.
a, large flattened cell from the superticial layer, with two nuclei and with strongly marked ridges and intervening depressions on its under sulface; b, pear-shaped cell of the second layer adapted to a depression on one of the superficial cells.

Fig. 85.-Pavement epithelium or endothelidm of a serous membrane. Nitrate of silver preparation. Carmine staining of nuclei.
sisting of only three or four layers of cells. It occurs in the urinary bladder, the ureter, and the pelvis of the kidney. The superficial cells (fig. 84, a) are large and flattened; they often have two nuclei. Their free surface is covered with a cuticular stratum, and on their under surface they exhibit depressions, into which fit the larger ends of pyriform cells, which form the
next layer (fig. 84, b). Between the tapered ends of the pyriform cells one or two layers of smaller polyhedral'cells are found. The epithelium seems to be renewed by mitotic division of these deeper cells. It is possible that the superficial cells also multiply; it is stated that the division of their nuclei is amitotic (see fig. 19, p. 12).

Simple scaly or pavement epithelium is found in the saccules of the lungs, in the ducts of the mammary glands, in the kidney (in the tubes of Henle, lining the capsules of the Malpighian body, and covering the glomeruli), and also lining the cavities of serous memhranes (fig. 85), and the interior of the heart, blood-vessels, and lymphatics. When occurring on internal surfaces, such as those of the serous membranes, blood-vessels, and lymplatics, it is spoken of as endothelium or (sometimes) ' mesothelium. Kolossow showed that the cells of a serous epithelium are provided with a striated border consisting of what appears to be a fine pile of closely set hairs on their free surface, somewhat like that which is found on columnar cells. These hairlets rest on a thin homogeneous border. The latter appears to be a common feature of endothelium for it also occurs in the endothelium of the blood-vessels, but the pile of hairs is only found in the endothelia of

> Fig. 86.-Endothelium-cedls of serous membrane seen in proftle men, SHOWING Protoplasmie bridges stretcirinf across the intercellelar spaces. (M. Heidenhain.)
serous membranes, at least in mammals. Kolossow's statements have been confirmed by several other observers.

In some amphibians cilia occur on parts of the peritoneal epithelium (Klein).

GLANDULAR EPITHELIUM AND SECRETING GLANDS.

Glandular epithelium is the essential tissue of all the organs which are known as secreting glands. These are of two chief kinds. Those which are best known and which are termed externally secreting glands are furnished with a duct which ramifies in all parts of the gland and by means of which the products of the secretory activity of the gland-cells are brought to a free surface. Such glands bave been developed as involutions of the surface upon which they open, and their cpithelium is continuous with that of this surface, and is in some cases, cspecially where the surface upon which the gland opens is covered with columnar epithelium, of a similar character to that epithelium. In other cases it is different in character from the epithelium of the surface, becoming altered as we trace the duct back into the recesses or alveoli of the gland, and it is in these that the characteristic glandular cells, which are generally polyhedral in shape, are found. Every such involution or ingrow th of epithelium to form a gland is, when first formed,

Fig. 87.-Various kinds of glands.
I. Simple saccular gland from amphibian skin (Flemming). II. Simple tuhular gland from intestine (Flemming). III, A small racemose gland with a simple duct, d, into which a nomber of irregularly tubular acini, a, open (Klein). IV. Part of a tubulo-racemose gland with the acini unravelled (Flemming). V, Wax model of a small tubulo-racemose gland fron the epiglottis (Maziarski).
of a simple character, shaped either like a flask or test-tube and filled with a solid mass of cells, but it presently becomes hollowed out, some of the cells being left as a lining to the connective-tissue membrane whicb bounds the involution. The gland may remain simple and unbranched (simple saccutar and simple tubular glands, fig. 87, I. and II.), or it may branch again and again until a complicated structure, in some cases small, in others of considerable size, is produced (compound tubular and compound saccular (or racemose) glands) (fig. 87, IIT., TV., V.), instances of which are furnished by the kidneys and salivary glands respectively. The cells which furnish the

Fig. 88. -Two cells from a cutaneous gland of salamander-tarya, showing the secretion granulfes. (Gurwitsch.)
The left-hand cell, which has two nuclei, is filled with granules. In the right-hand cell the granules are becoming swollen and dissolved.
secretion of the gland and which line the secreting parts of the tubules of a tubular gland, or the alveolar enlargements (acini) at the ends of the ducts of a racemose gland, are often partly or wholly filled with granules in the intervals of secretory activity ; these granules become discharged or dissolved and pass into the secretion during activity. Secreting glands are always abundantly supplied with blood-vessels and generally also with nerves. The blood-vessels are brought to the alveoli in the connective tissue which holds together the acini and groups of acini (lobules) of the gland; the nerves are supplied partly to the blood-vessels and partly to the secreting epithelium cells.

The liver differs from all other secreting glands in being composed of solid masses of cells (hepatic lobules) instead of tubular acini lined by
epithelium. It exhibits also other important differences in the nature of its blood supply and the relation between the blood and the liver-cells.

The other kind of secreting glands, known as the internally secreting or endocrine glands, are not furnished with ducts and were formerly classed with the spleen and lymphoid structures as ductless glands. But the true endocrine glands are, like the externally secreting organs, composed of epithelial cells, sometimes grouped in solid masses (as in the suprarenal), in other cases disposed around hollow vesicles (thyroid) which become filled with the material of the secretion. Since there is no duct in these glands the secretion is carried into the blood either directly by the blood-vessels of the gland or indirectly through the lymphatics.

The detailed study of the glands and of other epithelial structures may be reserved until the organs in which they occur are described, but columnar and ciliated epithelia will be dealt with in the next lesson.

The hairs and nails and the enamel of the teeth are modified epithelial tissues. They will be described with the skin and mouth respectively.

LESSON VIII.

COLUMNAR AND CILIATED EPITHELIUM: ACTION OF CILIA.

1. Befak up in dilute glycerine a shred of epithelium from a minute piece of the mucous membrane of intestine (frog) that has been treated with 1 per cent. oswic acid for some hours, and has subsequently macerated in water for a few days. The cells easily separate on tapping the cover-glass. Measure and sketch one or two cells.

The cover-glass may be at once fixed by gold size.
2. Prepare ciliated epithelium either from the cesophagus of the frog or from the trachea of a mammal. The tissue may either be treated with osmic acid like the last preparation, or macerated in chromic acid solution (1 to 2000 Ringer) for a few days. Measure in one or two of the cells (11) the length of the cell, (b) the length of the cilia, (c) the size of the nucleus. Sketch two or three cells,
3. Mount in sea-water one or two bars of the gill of the marine mussel (fig. 89). Study the action of the larse cilia. Now place the preparation upon the copper warm stage (see Lexsm V I.) and ofserve the effect of gently raising the temperature.

Fig. 89.-M!'ssel (Mytildis lidilis), from which one sitrll-vadite (the right) and the correspondint mantle-lobe have befn remoyed.
br, br, the expanded gills or branchia, which, owing to the little hars of which they are composed, present a striated aspeet; mb, mantle; m, cut adductor muscle; i, mass of viscera; the dark projection just below is the foot.

Put this preparation aside, until the cond of the lessem, by which time many of the cilia will have become languid. When this is the ease pass il dup of dilute potash solution (1 part KHO to 1000 of sea-watei) under the cover-glass and observe the effect.
4. Cement with sealing-wax a piece of small glass tubing to a slide so that one end of the tube comes memly the thentre of the slide. To do this effectually the slide must be heated and smme saling-win melted an to it and allowed to cool. 'The glass tuln' is then mide hot and applial to the slide, embedding itself as it does so in the sealing-wix. Apply a ring of mochelling wax w plasticine (half an inch in diameter and rising well almo the glass tube) so as to include the end of the tube. Make a dee μ notch or a hole in the ring oplosite the tube for the exit uf gas. Place in drop of water within the ring (fig. $9(0)$.

Put a bar from the gill upon a cover-glass in the least possible quantity of sea-water ; invert the cover-glass over the ring, and (with anotlrer slide) press it gently aud evenly down. The preparation now hangs in a moist chamber within which it can be studied through the cover-glass, and into which gases or vapours can be passed and their effects obserived. 'The slide must be sceurely elamped to the stage of the mieroscope.

Pasis Cf x_{2} throngh the chamber, and after observing the effect replace it by air (fig. 91). Repeat with ether vapour and with chloroform vapour.

Fit. 90.-Molst chamber adapted for passing a gas or vafuur to a preparation under the microscope.

Fig. 91. - Method of subjecting a preparation to a stream of carbon DIOXIDE.
b, bottle containing marlile and hydrochloric acid; l, wash-bottle, connected by indiarubber tube, t, with the moist chamber, s.
-
Columnar epithelium and ciliated epithelium are for the most part found covering the inner surface of mucous membranes. (These are membranes moistened by mucus and lining passages in communication with the exterior, such as the alimentary canal and the respiratory and generative passages). The cells of a columnar epithelium form a single layer, varying in thickness according to the length of the constituent cells. When the cells are short, the epithelium is spoken of as cubical, an example being that lining the vesicles of the thyroid gland (fig. 92). The cells of columnar
epithelium (fig. 98) are prismatic columns, which are set closely side by side, so that when seen from the surface a mosaic appearance is produced. They

Fig. 92.-Section of thyroid of cat. Magnified 200 diameters. Photograph.

Fig. 93.

F14. 94.

Fig. 93.-A row of columnar celle from the intestine of the rabbit. Smaller cells are seen between the epithelium.cells; these are leucoc! tes.

Fig. 94.-Columnar epithelium.cells of the rabbit's intestine. More highly magnified.

[^7]often taper somewhat towards their attached end, which is generally truncated, and set upon a connective tissue surface. In those lining the intestine, the free surface is covered by a thick striated border. (figs. 93 to 97) which may sometimes hecome detached in teased preparations. It has very much the appearance of a dense mass of eilia (see p. 78), The proto
plasm of the cell is usually vacuolated or granular ; between the striated border and the protoplasm is a highly refracting disk exhibiting fine dumb-bell shaped particles set vertically. The striated border is connected through this disk with fibrils or strix which run through the cell-protoplasm (figs. 95, 96). It has been suggested that the dumb-bell shaped particles are formed by multiplication of the centrosome, but the fact cannot be regarded as established. The nucleus is ovoid and reticular. The lateral borders of the cells are often somewhat irregular or jagged, the result of the presence of amœboid leucocytes, which are generally found between the columnar cells, at least in the intestine. After a meal containing fat the epithelium-cells of the small intestine contain fat globules, staining black in osmic preparations.

Columnar epithelium-cells are found lining the whole of the interior of the stomach and intestines: they are also present in the ducts of most

Fig. 95.

Fig. 95.-A columnar epithelium-cell, Showing mass of fibrils (cytoMITOME) WITHIN THE CYTOPLASM. (M. Heidenhain.)

Fig. 96.-A goblet or mucus-secreting cell in columnar Ripthflifum. (M. Heidenhain.)

The centrosome is in the mucigen-mass. Part of an ordinary columnar cell is also shown.
glands, and sometimes also in their secreting tubes and saccules. The epithelium which covers the ovary is also of a modified columnar shape, but cells possessing the striated border and other structural peculiarities above described occur only in the alimentary canal and in some of its diverticula.

Goblet-cells.-Some of the cells of most columnar epithelia (fig. 97), and occasionally cells in glandular, ciliated, and transitional epithelia, secrete mucin, which is laid down within the cell in the form of granules or globules of mucigen. The granules eventually swell up to form globular masses which clump together and greatly distend the part of the cell nearest the free border. When the mucigen is extruded as mucus the free part of the cell becomes emptied and the cell then takes the form of a goblet or chalice, hence the above name. The nucleus always lies near the attached end of the cell, in the stem of the goblet.

These goblet-cells, or, as they may be appropriately termed, mucus-secreting cells, are not mere temporary modifications of the ordinary columnar and ciliated cells amongst which they are found, but permanently differentiated cells. After having got rid of their mucus by extrusion, they again form
a fresh supply in the same way as before. In the gastric mucous membrane all the surface epithelium is composed of mucus-secreting cells, and they extend also into the mouths of the glands. In the large intestine also most of the cells both of the surface and in the glands are goblet-cells. According to Carlier those of the gastric mucous membrane are connected together laterally by protoplasmic fibres.

Ciliated epithelium.-Ciliated epithelium is found in man throughout the whole extent of the air-passages and their prolongations, but not in the uppermost part of the nostrils, which is supplied by the olfactory nerves, nor in the lower part of the pharynx, nor in the terminal bronchioles and

Fif. 97. Columnar epitifllium coverina the side of a villes of the intestine (Cat). Magaified 200 diameters. (From a preparation by Professor Martin Heidenhain.)

One or two gohlet-cells are seen amnngst the nrdinary cells.
pulmonary alveoli. Ciliated epithelium also occurs in the Fallopian tubes (oviducts) and the greater part of the uterus; in the efferent tubes of the testiele; and in the ventricles of the brain, and the central canal of the spinal cord. The cells of a ciliated epithelium are usually (not always) columnar in shape (figs. 98, 99), but in place of the striated border generally met with in the columnar eell the free surface is surmounted by a bunch of fine tapering filaments (vibratile cilia), which, during life, move spontaneously to and fro, and serve to produce a current in the fluid which eovers them. The border upon which the eilia are set is bright in the living condition: after fixation it appears formed of little juxtaposed basal particles to each of which a cilium is attached.

In the large ciliated cells which line the alimentary camal of some molluses (figs. 98, 99), and with less distinetness in the ciliated cells of vertebrates, the basal particles may be olserved to be prolonged into the protoplasm of the cell as line varicose lilaments terned the rootlots of the cilia. Since the axial fibril in the tail of the spermatozoon (whicl is undoubtedly to be regarded as a cilium) is
developed in connexion with the centriole, it has been supposed that the cilia of an ordinary ciliated cell may also be outgrowths from the (multiplied) centriole.

Fig. 98.-Fuur ciliated cells. (v. Lenhossék.)

Fif: 99.-Chlatel celle, fiom the intestine of a moldusc. (Engelmann.)

Fig. 100. - Cillated and non-ciliated celle frum efididymis of rabbit, (v. Lenhossék.)

In the epididymis of the rabbit where there are both ciliated and non-ciliated cells, the latter have a single centriole whilst the ciliated cells have no centriole, but a series of basal particles, which, it is supposed, may have been formed by multiplication of the original centriole (fig. 100). In the renal epithelium of the sulamander
tadpole, there is a single divided centriole in each cell, with a single cilium attached to it (fig. 101). But it would appear that the cilia are not always developed from the basal particles, for they sometimes appear before the basal particles. In plant spores, which have no centrioles, the cilia are developed from amoboid processes of the ectoplasm of the cell (Strassburger). Similar basal particles and longitudinal fibrils are found in columnar cells (p. 75) ; these are probably homologous with those of the ciliated cell, while the bunch of cilia of the latter is perhaps represented by the striated border of the columnar cell which sometimes looks very like a bunch of cilia although it shows no ciliary novements.

According to H. E. Jordan, amitusis is the ordinary form of cell division in ciliated epithelium; he connects this with the transformation of the centrioles above mentioned.

THE ACTION OF ClliA.

When in motion a cilium is bent quickly over in one direction with a

Tig. IOL.-A Renal epitheliumcell of salamander tadpole, WITH CENTRIOLE AND CILICM. (Meves.)

F1s. 102. - Model
TO ILLISTRATE THE ACTION OF A cilium.
lashing whip-like movement, immediately recovering itself. When vigorous the action is so rapid, and the rhythm so frequent (ten or more times in a second), that it is impossible to follow the motion with the eye. All the cilia upon a ciliated surface are not in action at the same instant, but the movement travels in waves over the surface. If a cell is detached from the general surface, its cilia continue to act for a while, but their movement at once ceases if they are detached from the cell. If, however, a portion of the cell-protoplasm is detached with them, they will continue to move for a time.

The rhythm is slowed by cold and quickened by warmith; but heat a few degrees above body temperature kills the cells. The movement will continue for some time in water deprived of oxygen. Both CO_{2} gas and ether and chloroform vapour arrest the movement, but it recominences on restoring air, if the action of those agents, especially of chloroform, is not too prolonged. Dilute alkaline solutions quicken the activity of cilia, or may even restore it shortly after it has ceased.

Theories of ciliary action.-Various attempts have been made to explain the manner in which cilia act. One hypothesis supposes that one side only of each cilium is contractile, the other side being elastic, or that there is a more rigid but elastic axis and a contractile covering. It is, however, impossible that a soft structure like a cilium could be bent over in a miform curve by contraction along one side; such contraction could only produce shortening and wrinkling of the cilium, effects which are never observed. Another hypothesis assunies that the projecting cilia are set in action by rhythmic lateral contractions within the cellprotoplasm ; which, by moving the rootlets, cause the cilia to bend over as a whip is bent by movements of the wrist applied to its handle. But this again implies an amount of rigidity which neither the cilia nor the rootlets possess, and it must be bonne in mind that cilia have to overcome the resistance of fluid, and of fluid which is in many cases highly viscous.

The most reasonable hypothesis to explain the mode of action of cilia appears to be that they are hollow filaments, with a fluid interior communicating with the cell-protoplasm. ${ }^{1}$ If this is so, alternations of pressure in the cell, cansed by changes in surface tension, would force fluid into and out of the cilia, and if we assume them to be naturally curved this movement must cause the curve to open out with increase, and bend again with diminution of pressure. The action can be imitated with a curved flexible tube, preferably flattened, attached to a pressure bag (fig. 102). Increase of pressure causes the tube to straighten out; on decreasing the pressure the tube bends over exactly in the nianner of a cilium. This hypothesis has the advantage over others which have been offered that it explains the movements of cilia on a theory which is similar to that which gives the most probable explanation of amoboid movements of protoplasm, viz., that they are due to variations in surface tension, and thus brings these two forms of protoplasmic activity into line with one another. It will presently be seen that the changes which occur in muscle in contraction are susceptible of a similar explanation.
${ }^{1}$ Every cilium or cilium-like structure (flagellum) which is sufficiently large to show any structural differentiation, exhibits an external membranous covering and clear homogeneous (probably liquid) contents.

LESSON IX.

THE CONNECTIVE TISSUES

1. Take a litule of the subcutaneous tissue or of the intermuscular comective tissue of a rabbit or' ininea-pig and spread it out with needles on a dry slide into a large thin film. Keep the centre moist by occasionally breathing on it, but allow the cdges to dry to the slide. Before commencing put a drop of salt solution on a cover-glass, and now invert this over the film, which should be a good deal larger than the cover-glass, so that the thinned out edges remain dried on to the slide. Examine with a high power. Sketch one or two bundles of white fibres and also one or two elastic fibres, distinguishable from the former by their sharp outline, isolated course, and by their branching. Sketch also one or more connective-tissue corpuscles, if any such are visible in the clear interspaces. Look also for migratory cells (leucocytes). Next carefully remove the cover-glass and replace the salt solution by dilute acetic acid (1 per cent.). Watch its effect in swelling the white fibres and bringing more clearly into view the elastio fibres and corpuscles. Look for constricted bundles of white fibres.
2. Make another very thin film in the same way, but allow it to dry more completely. Pour over the hilm a 1 per cent. solution of magenta (acid fuchsin) in equal parts of water and alcohol, to which 1 drop per cubic centimeter of a 1 per cent. solution of gentian violet in alcohol has just been added. After one minute drain off, and remove the remainder of the staining solution by pressing a piece of clean filter paper on it ; allow the film to dry completely and mount in dammar. The elastic fibres are deeply stained; the cells are also shown.

Van Gieson's and Mallory's stains (see Appendix), which contain acid fuchsin, are useful for staining connective-tissue fibres in sections of organs.
3. Prepare another film of the subcutaneous tissue, including a little adipose tissue. Fix by pouring over it formol (10 per cent.) and leave this in contact with the film for 20 minutes. Wash with water and stain with saturated solution of Sudan III. or Scharlach R. in 75 per cent. alcohol ; wash with 75 per cent. alcohol to remove stain from everything except fat, then wash with water and counter stain with dilute hæmatoxylin. Mount in dilute glycerine. Examine first with a low and afterwards with a high power. The fat is well brought out by the Sudan III. or Scharlach R. stain ; if the preparation is from a young animal, fat-cells will be found in process of formation. Measure and sketch two or three of the fat-cells.

The fat may also be stained, with or without prior fixation by formol, by treatment with I per cent. osmic acid solution, which colours it intensely black.
4. Spread out another film of connective tissue, letting its edges dry to the slide, but keeping the centre moist by the breath. Place on its centre a large drop of nitrate of silver solution (1 per cent.). After five minutes wash this away with distilled water, and expose to direct sunlight until slightly brown. Now allow the film to dry completely, and cover it in dammar. Sketel the outlines of some of the cell-spaces which are displayed.
5. For reticular tissue the following method is recommended (Spalteholz). Place a piece of the organ (e.g. lymphatic gland) for twenty-four hours or more in alcohol, then overnight at $38^{\circ} \mathrm{C}$. in a 1 per cent. solution of carbonate of soda to which a few drops of a solution containing taypsin have been added. Cautiously transfer the semi-digested structure to alcolol again, and leave it for a few hours. Embed in paraffin in the usual way and stain the sections with iron hrematoxylin (see Appendix). The fibrils of connective and retiform tissue are the only structures which have remained undigested and they are deeply coloured liy the hrematoxylin.

Reticular tissue is also well shown in seetions of lymph gilands stained with Mallory's or Van Gieson's stains.

The connective tissues include areolar tissuc, adipose tissue, elastic tissue, fibrous tissue, reticular tissue, cartilage and bone. All these agree in certain microscopic and chemical characters. They, for the most part, have a large amount of intercellular substance in which fibres are developed, and these fibres are of two kinds-white and yellow or elastic; there are many points of similarity between their cells; they are all developed from the same embryonic formation; and where they come in contact in the body they tend to pass imperceptibly the one into the other. Besides this, the

Fig. 103. - White and elastic fibrfis of areolar tissue. A, bundles of white fibres partly unravelled. \bar{B}, elastic fibres.
use made of these several tissues in the body is similar; for they mostly serve to connect and support the other tissues, thus performing a purely passive or mechanical function. They are for these reasons grouped together, although they differ considerably in external and even in microscopic characters. Of all these connective tissues there are however three which are so intimately allied that they must be described together, for they are composed of exactly the same elements, and differ only in the relative development of those elements: these three are the areolar, elastic, and fibrous tissues. Adipose tissue and reticular tissue are to be looked upon as special modifications of areolar tissue, and may be considered with it.

Areolar tissue being the commonest and, in a sense, the most typical, its structure will be described first.

AREOLAR TISSUE.

Areolar tissue presents to the naked eye an appearance of fine transparent threads and lamine which intercross in every direction with one
another, leaving intercommunicating meshes, or areolæ between them. When examined with the microscope, these threads and fibres are seen to be principally made up of wavy bundles of exquisitely fine transparent fibres (white fibres, fig. 103, A). The bundles run in different directions, and may branch and intercommunicate with one another (fig. 106); but the individual fibres, although they pass from one bundle to another, never branch or join other fibres. The fibres are cemented together into the bundles by a clear substance containing mucin, and the same material in a semi-fluid

Fig. 104.-Areolar tissue prepared by Recklinchacsen's silver metiod. Magnified 200 diameters. Photograph.
The cells are seen as clear spaces in the (brown) stained ground-suhstance, through which the fibres, seen very indistinctly, are coursing.
condition forms also the basis or ground-substance of the tissuc, in which the bundles themselves course, and in which also the corpuscles of the tissue lie embedded. This ground-substance between the bundles can with difticulty be seen in the fresh tissue on account of its extreme transparency; but it can be brought to view by treatment with nitrate of silver (\$4). The whole of the tissue is thereby stained of a yellowish-brown colour, with the exception of the spaces which are occupied by the corpuscles (cell-spaces, fig. 104). As Macallum has shown, this reaction is due to the presence of chlorides in the intercellular substance.

Besides the white fibres of connective tissue here described, fibres of a different kind (fig. 103, B) may be made out in the preparations; these are the elastic fibres. They are especially well seen after treatment with acetic acid, and by staining with magenta, or with orcein; but they can
be detected also in fresh preparations. They are characterised by their distinct outline, their straight course, the fact that they never run in bundles, but singly, and that they branch or join neighbouring fibres. If broken by

Fig. 105. - A white bundle swulden by acetic acid. From the subarachnoid tissue at the base of the brain. (Toldt.)

Fif. 106.-Fiekes and cells of areolaf tissue of a guinha-pit flom a film priparation. (Maximow.)
a, buildles of white fibres; b, elastic fibres; c, lamellar cells; d, clasmatocytes; e, plasma cells; f, oxyphil leucocytes.
the needles in making the preparation, the elastic recoil causes them to curl up, especially near the broken ends. Besides these histological differences, the two kinds of fibre differ also in their chemical characters. Thus the white fibres are formed of a material (collagen) which is dissolved by boiling in water, forming a solution of gelatine ; they are also dissolved by peptic
digestion, but not by tryptic; whereas the substance of which the elastic fibres are composed (elastin) resists for a long time the action of boiling water and peptic digestion, and is dissolved by tryptic digestion. Moreover, the white fibres swell and become indistinct under the action of dilute acetic acid; the elastic fibres are unaltered by this reagent. Elastic fibres appear to have a sheath which is more resistant to reagents than the rest of the fibre.

Bundles of white fibres which have been swollen out by acid sometimes

Fig. 107.-Connective-tissoe cells of cornea stained with gold chloride. Magnified 300 diameters.
The nuclei are unstained. The cells are connected by their branches.
exhibit constrictions at irregular intervals (fig. 105). These constrictions are thought to be due to elastic fibres coiling round the white bundles.

The cells of areolar tissue.-Several varieties of connective-tissue cells are distinguished, viz. : (1) Lamellar cells, which are flattened and often branched (fig. 106, c, c^{\prime}), and may be united one to the other by their branches, as in the cornea (fig. 107). Sometimes these cells are unbranched; they may lie along the fibril-bundles and even themselves show a fibrillar appearance. ${ }^{1}$ In certain situations the lamellar connective-tissue cells are greatly flattened out, especially when they lie upon the surface of aponeuroses where they are joined edge to edge like the cells of an endothelium (fig. 109).

[^8]

Fig. 108.-Areolar tissue, stained witẹ silver nitrate. Magnified 300 diameters.
The cells are unstained, and appear as white spaces on a yellowish-brown ground. Compare with fig. 107, in which the cells are stained.

Fig. 109.-Endothelium-Like cells of connective tissue from the SURFACE OF AN APONEUROSIS. NITRATE OF SILVER PREPARATION.

The apparent cell-spaces in silver preparations have of course in all cases a similar arrangement to that of the cells. (2) Clasmatocytes, which are composed of a soft, much-vacuolated, often granular protoplasm, rarely flattened, but otherwise varying greatly in shape and size (fig. 106, d).

Fig. 110.--A smala lobite of ampose tisste. Magnified 20 diameters. " ${ }^{\prime}$, small artery and vein entering the lobule.

Fig. 111.-Four fat-celle in connective tissle. Magnified 400 diameters.
Each cell is distended by the fat-globule, the cell-protoplasm forming a thin envelope to the globule. The nucleus lies at one side in a somewhat larger amount of protoplasm. The fat is stained with Sudan 1II., and nppears dark in the photograph.
(3) Mast-cells (Ehrlich), usually spheroidal or ovoidal in shape, filled with granules, which are deeply stained by gentian violet and by other basic aniline dyes. They are not everywhere common, but are numerous in parts where fat is being laid down (fig. 113). (4) Plasma-cells. These are characterised by their granular protoplasm, which is less basiphil than that
of the mast-cells and their relatively small nucleus; in shape, they are either rounded, angular, or elongated.

Migratory leucocytes may also be seen here and there in areolar tissue (wander-cells).

Fig. 112.-The fat-cells, which have been staingd with Sudan III., are DISTRIBITTED AIONG THE COLRSE OF A SMALT. ARTERY AND VEIN,

Fig. 113.-Deposition of fat in connective-tissue celles.
f, a cell with a few isolated fat-droplets in its protoplasm ; f^{\prime}, a cell with a single large and several minute drops ; $f^{\prime \prime}$, fusion of two large drops ; g, granular mast-cell ; c.t., lamellar connectivetissue corpuscle; c., network of capillaries.

Pigment-cells, - In the middle coat of the eye in mammals, and in some parts of the skin, some of the connective-tissue cells are occupied by granules of pigment (pigment-cells).

These are much more extensively present in lower vertebrates, especially in Amphibia and fishes, where they exhibit changes which result in the pigment being at one time diffused over a considerable area and at another time restricted to the immediate neighbourhood of the nucleus. The changes thus produced cause alteration in the general colour and shade of the integument, when such pigment-
cells are numerous, and serve the purpose of protective adaptation of the animals to their environment. The alterations are brought about through the nervous system.

The connective-tissue cells occupy spaces of corresponding shape in the semi-fluid ground-substance, lying between the bundles of white fibres, In some parts the white bundles arc developed to such an extent as to pervade almost the whole of the ground-substance, and tben the connectivetissue corpuscles become squeezed into the interstices, flattened lamellar expansions of the cells extending between the bundles, as in tendon (see next Lesson).

The cells of areolar tissue come into intimate relation with the cells lining the lymphatic vessels and small blood-vessels. This connexion can best be seen in silvered preparations, where both the cells and the lymphatics are left white on the brown ground of stained intercellular substance; this fact will be again referred to in speaking of the origin of the lymphatics.

ADIPOSE TISSUE.

Adipose tissue consists of vesicles filled with fat (figs. 110, 111) and collected into lobules, or into tracts which accompany the small blood-vessels. The vesicles are round or oval in shape, except where closely packed, when they become polyhedral from mutual compression. The fat-drop is contained within a delicate protoplasmic envelope (fig. 111), which is thickened at one part, and here includes an oval flattened nucleus. The fat is stained black by osmic acid (fig. 114); a deep orangered by Sudan III. ; and an intense red by Scharlach R. The vesicles are supported partly by filaments of areolar tissue, partly by a fine network of capillary blood-vessels.

The fat when first formed in the embryo is deposited within large granular cells (fig. 115) of a spheroidal or polyhedral shape ; some authorities regard these cells as of a specific nature, for they are in certain situations collected into gland like masses abundantly supplied with blood-vessels. They gradually become transformed into fat-cells by the deposition of fat in the cell-protoplasm. Fat is, however, also laid down elsewhere in ordinary cells of connective tissue. In all cases the fat appears to be produced by a transformation into droplets of fat of albuminous granules which the cells contain. As the droplets increase in size they run together into a larger drop, which gradually fills the cell; swelling it out more and more
so that eventually the cell-protoplasm appears merely as the envelope of the fat-vesicle. Fat-cells often contain lipoid globules as well as true fat, and it is possible that in its development the fat in the cell is always preceded by lipoid matter.

Fat is found most abundantly in subcutaneous areolar tissue, and in some deeper parts, e.g. at the back of the peritoneum, around the kidneys, under the

Fig. 115. Two stages of pormation of adipose tissue. (H. Batty Shaw.)
In A the tissue is formed of a gland-like mass of cells, in some of which the cytoplasm is oceupied by fat-globules (looking white in the sections). In B the fat fills many of the cells.

Fig. 116.-Reticular tisste from a lymph-gland. Moderately magnified. $t r$, a trabecula of connective tissue; r, r, reticular tissue, with more open meshes at r and denser at r^{r}.
epicardium, and in the mesentery and omentum. The yellow marrow of the bones is also principally composed of fat. There is no adipose tissue within the cavity of the cranium.

RETICULAR TISSUE.

In reticular tissue (figs. 116, 117, 118) the intercellnar substance is largely replaced by lymph, and is traversed by a network of white fibres, the meshes of which vary in size, being very small and close in some parts; more open and like areolar tissue in other parts. There are few or no elastic fibres. The fibres are often enwrapped by flattened branched connective-
tissue cells, which may have to be removed to bring the fibres clearly into view. Chemical differences between the fibres of reticular tissue and those of ordinary areolar tissue have been described by Mall and others, but, according to Halliburton, it is doubtful if they are really different.

Fig. 117.-Reticular tissue, more highly magnified.
Showing the contimuity of the retiform tissue, r, r, with the connective tissue of a trabeculum, tr.

Microscopically the fibres of the two are indistinguishable: they are stained by the same reagents and occur in complete continuity with one another

Fig. 118.-Reticulum of bone-marrow. (Enderlen.)
(see figs. 116, 117, 119). Reticular tissue forms a fine framework in many organs; supporting the proper elements and extending into the interstices between the coarser connective-tissue bundles. It can be well shown by dissolving the cells of the tissue by tryptic digestion and subsequently staining the fibres forming the reticulum (p. 79, §5). It occurs in lymph-
glands, in the spleen, liver, bone-marrow (fig. 118), mucous membranes, and many other parts. Wherever it occurs it supports the cells of the organ, which are contained within its meshes.

Fig. 119.--Lymphoid tissue of a lymph-gland.
The fibres of the tissue have been stained. Their continuity with the connective-tissue trabecula is in this way well shown.

Lymphoid or adenoid tissue is reticular tissue in which the meshes of the network are largely occupied by lymph-corpuscles (fig. 119). This is met with in the lymph-glands and in allied structures, such as the tonsils, lymphoid follicles, and Malpighian corpuscles of spleen. It will be described with those structures.

LESSON X.

THE CONNECTIVE TISSUES (continued).

1. Tease out as fincly as possible a small shred of elastic tissue (ligamentum nuche of the ox or ligamentum subfiavum of man) in glycerine and water, slightly tinged by magenta. Cover and cement the preparation. Note the large welldefined fihres constantly branching and uniting with one another. Sketch a small part of the network. Note the existence of bundles of white fibres amongst the elastic fibres.
2. Examine a thin transverse section of ligamentum nuchæ which has been hardened in 2 per cent. solution of bichromate of potassinm. The section is to be stained with hæmatoxylin and eosin and mounted in dammar by the usual process, or left unstained and simply mounted in glycerine and water. Observe the grouping of the fibres and their angular shape. Frequently the angles are rounded.
3. Pinch off the end of the tail of a dead mouse or rat, draw out the long silklike tendons and put them into salt solution. Take one of the threads, which should be nearly three inches long, and stretch it along a slide, letting the ends dry firmly to the glass but keeping the middle part wet. Put a short piece of fine hair on one side of this and cover in salt solution. Observe with a high power the fine wavy fibrillation of the tendon. Draw. Now run dilute acetic acid (0.75 per cent.) under the cover-glass; watch the tendon where it is becoming swollen by the acid. Notice the oblong nucleated cells coming into view between the tendonhundles. Sketch three or four cells in a row. Lastly, lift the cover-glass, wash away the acid with distilled water, place a drop of dilute hæmatoxylin solution on the tendon, and leave the preparation until it is deeply stained; then wash away the stain and mount the preparation in faintly acidulated dilute glycerine.
4. Take another long piece of rat or mouse tail tendon, and after washing it in distilled water, stretch it upon a slide as before, fixing the ends by allowing them to dry on to the slide but keeping the middle wet. Put a drop of nitrate of silver solution (1 per cent.) on the middle, and leave it for five minutes. Then rinse off the silver nitrate with distilled water, drain this off and expose the slide to direct sunlight. In a very few minutes the silvered part of the tendon will be brown. Drain off the water, allow the preparation to dry completely and then mount in dammar.
5. Stain with magenta solution a thin section of ox tendon which has been hardened in 70 per cent. alcohol. The section may be cut by hand with a razor. Or the tissue may be hardened in 10 per cent. formol, soaked in gum and cut frozen. Mount in dilute glycerine and cement at once.
6. For studying the development of connective tissue, sections of the umbilical cord at different periods may be used. Fix with formol. Stain with Van Gieson and hæmatoxylin.

ELASTIO TISSUE.

Elastic tissue is a variety of connective tissue in which the elastic fibres preponderate. It is found most characteristically in the ligamentum nuchæ of quadrupeds and the ligamenta subflava of the vertebre, but the connective tissue of other parts may also have a considerable development of elastic fibres. It occurs in an almost pure form in the walls of the air-tubes, and
uniting the cartilages of the larynx. It also enters largely into the formation of the lungs and of the walls of the arteries.

In the ligamentum nuchre most of the fibres are large (fig. 120). They often exhibit cross markings or even transverse clefts. When dragged

Fig. 120.-Elastic fibrle from the ligamentum nuchat of the ox, showing transverse markings on the fibres.

Fig. 121.-Cross section of elastic fibres from the ligamentum nuchet of the ox. Photograph. 200 diameters.

The angles of the fibres are mostly rounded.
asunder, they break sharply across. They constantly branch and unite, so as to form a close network. In transverse section they appear angular, but usually the angles are rounded (fig. 121). They are separated into small groups or bundles by intervening areolar tissue.

Elastic tissue does not always take the form of fibres, but may occur as membranes (e.g. in the blood-vessels). In areolar tissue the elastic fibres may be very fine, but their microscopic and chemical characters are always well marked (p. 82).

FIBROUS TISSUE.

Fibrous tissue is almost wholly made up of bundles of white fibres running in a determinate direction. These again are collected into larger bundles, which give the fibrous appearance to the tissue. The bundles are

constantly uniting with one another in tbeir course, although their component fibres remain perfectly distinct.

The interspaces between the larger bundles are occupied by areolar tissue (fig. 122, s; fig. $123, c, d, e$) in which the blood-vessels and lymphatics of the fibrous tissue are conveyed. The interstices between the smallest bundles are occupied by rows of lamellar connective-tissue corpuscles (tendon-cells),
which, from being squeezed up between three or more bundles, become flattened out in two or three directions. In transverse section the cells look

Fig. 123.-Part of a lakgr tendun in transverse section. More highly magnified.
a, areolar sheath of the tendon, with the fibres for the most part running transversely; but with two or three longitudinal hundles, b; l, lymphatic cleft in the sheath; immediately over it a blood-vessel is seen cut across, and on the other side of the figure a small urtery is shown cut longitudinally; c, large septum of areolar tissue; d, smaller septum; e, still smaller septom. The irregularly stellate bodies are the tendon-cells in section.
irregularly stellate (figs. 123, 124), but when séen on the flat they appear lamellar (fig. 125, A; fig. 126), and from this aspect their general shape is square or oblong. They lie, as before said, in rows between the tendon-bundles; the nuclei of adjacent cells are placed opposite one another in pairs (fig. 126). The cell-spaces correspond in general figure and arrangement to the cells which occupy them (fig. 125, B).

Fibrous tissue forms the tendons and ligaments, and also certain membranes, such as the dura mater, the fibrous pericardium, the fasciæ of the limbs, the fibrous coverings of organs, etc. It is found wherever great strength, combined with

Fig. 124.-Skotion of tendon from tall of mouse. Magnified 150 diameters.

The dark branched bodies are sections of the tendon-cells. flexibility, is concerned. It receives a few bloodvessels, disposed longitudinally for the most part, and contains many lymphatics. Both blood-vessels and lymphatics run in the areolar tissue which separates and surrounds the tendon-bundles. Tendons and ligaments
also receive nerve-fibres, many of which end in localised ramifications within fusiform cnlargements of the tendon-bundles (organs of Golgi), while others terminate in end-bulbs or in simple Pacinian corpuscles. These will be described with the modes of ending of nerve-fibres.

MINOR VARIETIES OF CONNECTIVE TISSUE.

Basementit-membranes (membrance proprice) are homogeneous-looking

Fig. 125.-Tendons of mouse tail; showing chains of cells between the tendon-bundles. 175 diameters.
A, stained with hematoxylin ; B, stained with silver nitrate, showing the cell-spaces.
membranes, which are found forming the surface layer of the connective-tissue expansions in certain parts, especially where there is a covering of epithelium,

Fie. 126.-Eight cells from the same tendon as represented in fig. 125, A. Magnified 425 diameters.
The dark lines on the surface of the cells are the optical sections of lamellar extensions directed towards or away from the observer.
as on mucous membranes, in secreting glands, and elsewhere. They are sometimes formed of flattened connective-tissue cells joined together to form a membrane; but in most cases (e.g. front of cornea, trachea) they are evidently formed not of cells, but of condensed ground-substance, and in yet other cases of elastic substance (back of cornea) ; the name basementmembrane is therefore used to denote structures of an entirely different nature.

Jelly-like connective tissue, although occurring largely in the embryo,
is found only in one situation in the adult-viz., forming the vitreous humour of the eye. It is composed mainly of soft, fluid or semi-fluid ground-substance, with cells scattered here and there through it, and with fibres which interlace throughout the tissue and confine the fluid of the ground-substance within their meshes ; thus conferring upon the tissue

m
Fig. 127.-1)eveloping connective tissue in heart of chick-embryo of 48 нotrs. (Szily.)
$m y$, cells forming myocardium ; j, jelly formed of reticulum with enclosed fluid; e, endothelium (mesothelium) of heart ; m, mesenchyme cells in jelly ; bl, blood-corpuscles.
its jelly-like character. All embryonic connective tissue is at one period-of this jelly-like nature (see below).

DEVELOPMENT OF CONNECTIVE TISSUE.

Connective tissue is developed in and from certain cells of the mesoderm (mesenchyme) of the embryo. In those parts which are to form connective tissue, there may frequently be seen a clear space separating the cell-layers which are already formed, this clear space being sometimes permeated with fibres which appear to be produced from the cells bounding the space. Branching mesenchyme cells, which separate off from the bounding cells, are presently found forming a reticular syncytium within the clear space (fig. 127, m; fig. 128). In the meshes of this syncytium is a semi-fluid intercellular substance (ground-substance). The connec-tive-tissue fibres, both white and elastic, are deposited in this ground substance. The elastic substance takes in the first instance the form of granules (fig. 129, y), which subsequently become connected together into
elastic fibres or laminx, as the case may be. The white fibres appear at first as single threads, which are ultimately collected into fine bundles. The bundles become gradually larger; so that in some tissues the whole

Fig. 128. - Cells of hevelohing ranneitive tissue (mesenchime) cnited to form 1 syneytiom. (From Prenant, Bouin, and Maillard.)

No fibres are as yet developed in the intercellular substance.
ground substance is eventually pervaded by them, and the cells of the tissue become squeezed up into the intervals. Before any considerable development of fibres has taken place, the embryonic connective tissue

Fig. 129.-Detelopment of elastil thisief by hepisation of fine forintles. (Ranvier.)
g, fibres being formed of rows of "elastin" granules ; p, flat plate-like expansion of elastic substance formed by the fusion of "elastin" granules.
has a jelly-like appearance; in this form it occurs in the umbilical cord, where it is known as the jelly of Wharton.

There has been always a difference of opinion as to the origin of the fibres of connective tissue, some histologists holding that they are formed within the protoplasm of the cells, which gradually lose thicir cell-characters as fibres become developed within them; others taking the view that the fibres, both white and elastic, are extracellular formations. While it is
certain that they are produced under the influence of the cells, there is distinct evidence that both kinds of fibres are deposited in ground-substance and not in cell-protoplasm, so that they are rather to be looked upon, like the ground-substance itself, as formed by a process of secretion than by one of

Fig. 130.-Jelly of Wharton from umbilictal cord of new-born child. (Sobotta.) $\times 280$.
f, connective tissue fibres; a, cells.
direct cell-transformation. That this is the true account of the mode of their formation is shown by the manner in which they become developed in the ground-substance or matrix of hyaline cartilage, without any change in the form or structure of its cells being evident.

Mall took the view that the intercellular or ground-substance is itself living matter, and regarded the whole structure, cells and ground-substance together, as constituting a contiuuum, the fibres being laid down by chemical transformation in the ground-substance, which he termed exoplasm.

LESSON XI.

THE CONNECTIVE TISSUES (continued).

1. Cut two or three thin tangential slices of the fresh cartilage of a joint, mount them in salt solution, and examine with the high power. Observe the form and grouping of the cells. Look at the thin edge of the section for spaces from which the cells have dropped out. Measure two or three cells and their nuclei, and sketch one or two groups. Now replace the salt solution by water and set the preparation aside for a little while. On again examining it, many of the cartilage-cells will be fonnd to have shrunk within their containing capsules.
2. Make other sections of the cartilage (1) from near the uiddle, (2) from near the edge at the attachment of the synovial membrane. Place the sections for two ur three minutes in acetic acid (1 per cent.), wash them with water, and stain with dilute hæmatoxylin solution. When stained mount in dilute glycerine and cement the cover-glass. In (2) look for branched cartilage-cells.
3. Study vertical sections of articular cartilage from an end of bone which has been fixed and decalcified, and mount the sections in glycerine and water, or, after staining with hæmatoxylin, in dammar. Sketch the arrangement of the cells in the different layers.
4. Rinse a fresh joint (from a sheep's foot) with distilled water ; drop 1 per rent. nitrate of silver solution over it ; after five minutes wash away the nitrate of silver and expose in water to dirert sunlight. When browned, place in rectified spinit for half an hour or more, and then with a razor wetted with the same spirit put thin sections from the surface and mount in dammar after passing through clove wil. The cells and cell-spaces show white in the brown ground-substance.
5. To study the structure of synovial membrane mount other slices from the same silvered preparation of the joint ($\$ 4$) taken just beyond the limits of the articular cartilage. Also look for small fringed projections of the membrane. Snip them off with scissors and mount as before.
6. The superficial Hexor tendons of the foot (ox or sheep) run in groves formed by the deep flexors, and these grooves are lined, and the tendons which pass through them are covered by vaginal synovial membranes. To show the structure of these treat one of the superficial flexor tendons with silver nitrate in the manner recommended for the joint, \& 4 , and after hardening in 70 per cent. alcohol cut sections from the surface, pass through clove oil, and mount in dammar as hefore.

CARTILAGE.

Cartilage (gristle) is a translucent bluish-white tissue, firm, and at the same time elastic, and for the most part found in connexion with bones of the skeleton, most of which are in the embryo at first represented entirely by cartilage. Three chief varieties of cartilage are distinguished. In one, which is termed hyaline, the matrix or ground-substance is almost clear, and free from obvious fibres; in the other two, which are termed fibrocartilaye, the matrix is pervaded by connective-tissue fibres. When these are of the white variety, the tissue is white fibro-cartilage; when they are elastic fibres, it is yellone or clastic fibro-cartitage.

The matrix immediately around the cartilage-cells is often marked off from the rest by a concentric line or lines, this part of the matrix, which is the latest formed, being known as the capsule of the cell. The cells, which lie in groups of two, four, eight, etc., in the matrix, are bluntly angular in form, the sides opposite to one another in the groups being generally flattened. The protoplasm is clear; it may have droplets of fat; and with a high power fine interlacing filaments and granules can be observed in it. Cartilage cells also contain, as a rule, glycogen : this can be shown by staining with iodine. During life the protoplasm entirely fills the cavity or cell-space which it occupies in the matrix ; but after death, and in consequence of the action of water and some other agents, it tends to shrink away from the capsule. The nucleus is generally spherical and reticular (fig. 132).

The disposition of the cells of cartilage in groups of two, four, eight,

Fig. 131.-Plan of the moltiplication of the celle of cartilage. (Sharpey.)
A, cell in its capsule ; B, divided into two, each with a capsule ; C, primary capsule disappeared, secondary capsules coherent with matrix ; D, tertiary division ; E, secondary capsules disappeared, tertiary coherent with matrix.
etc., is due to the fact that these groups have originated from the division of a single cell first into two, and these again into two, and so on. The division of the cartilage-cell, like that of most other cells, is effected by karyokinesis.

It would seem that the matrix is formed of successive portions, which are deposited around each cartilage-cell as the so-called "capsules" (fig. 131), each newly formed portion blending in its turn with the previously formed matrix, whilst a new capsule is formed within it. The more newly formed portions of matrix stain with hæmatoxylin more deeply than the rest; in some cartilages this gives the appearance of rounded clumps of darkly stained matter surrounding each cell or cell-group (chondrin balls) (fig. 138).

HYALINE CARTILAGE.

Hyaline cartilage occurs principally in two situations-namely (1) covering the ends of the bones in the joints, where it is known as articular cartilage; and (2) forming the rib-cartilages, where it is known as costal
cartilage. It also forms the cartilages of the nose, of the external auditory meatus (but not the pinna), most of those of the larynx, and the cartilages

Fig. 132. - Section of hyatine cartilage nf satamandrr. Photograph. Magnified 200 diameters.

Fig. 133, - Border of articular cartilage hilining transition of cartilage.
 head of metatarsal bonf, humin. About 340 diameters.
a, ordinary rat ilage. 4 ells: b, h, with hran hinur processes.
of the windpipe ; in these places it serves to maintain the shape and patency of the orifices and tubes.

By long maceration in brine, evidence of a fibrous structure may be obtained, even in the matrix of true hyaline cartilage. Some histologists have described fine communications in the matrix uniting the cartilage-cells

 bnd uf the tifid, heman, Magnified about 30 diameters.
\boldsymbol{a}, cells and cell-groups fat tencid conformably with the surface; b, cell-proups irmepularly arauged;

with one another, hut these are of doubtful occurrence in vertebrate cartilage, although they unquestionably exist in the cartilage of cephalopods.

Fig. 135.-Nectiox he junt af somis r.heht, Maghified iodiameters. in which there are folds projecting slightly into the edge of the joint.

ARTICULAR CARTILAGE.

The cells of articular cartilage are generally scattered in elongated groups throughout the matrix (fig. 134). The latter is free from obvious fibres, except at the extreme edge of the cartilage, where the connective-tissue fibres from the synovial membrane extend into it; and here also the cartilage-cells are often branched, and offer transitions to the branched connective-tissue corpuscles of that membrane (transitional cartilage, fig. 133).

In vertical section (fig. 134) the deeper cell groups (c) are seen to be arranged vertically to the surface, the more super-

Fif. 136.-Villus of synovial membrane. (Hammar.) ficial ones (a) parallel with the surface; whilst in an intermediate zone the groups are irregularly disposed (b). In the deepest part of the cartilage, next to the bone, there is often a deposit of calcareous salts in the matrix (calcified cartilage, \bar{d}).

SYNOVIAL MEMBRANES.

Synovial membranes are connective-tissue structures occurring in connection with articular cartilage (fig. 135) and in certain other movable parts, e.g. where a tendon glides within a fibrous sheath, and at the so-called bursæ, such as that which lies between the skin and the patella. Their cells are for the most part branched like connective-tissue cells, but in some places they resemble cartilage-cells, and where a synovial membrane is continuous with cartilage, transitions occur between them (transitional).

The synovial membranes are often compared with serous membranes. Like the latter they bound closed cavities moistened with fluid, but they are not connected with the lymphatic system, nor is the glairy fluid (synovia) which moistens them of the nature of lymph. Moreover, there is either no endothelial lining, or it occurs only in patches, in place of the continuous lining which we find in serous membranes. Long villus-like projections, simple (fig. 136) or compoundthe so-called Haversian fringes-occur in some situations; they contain a few cells, having the character of cartilage-cells, surrounded by cartilagematrix. The fringes probably serve to extend the surface for the secretion of synovia. The blood-vessels of synovial membranes are numerous; they approach close to the inner surface. They are well seen in preparations from an injected limb.

Besides the Haversian fringes and villi there are often larger folds of the membrane containing fat.

The synovial membrane of a joint is never prolonged over the opposed surfaces of the articular cartilages, but ceases near the edge of these in the transitional zone already alluded to. The blood-vessels of the membrane terminate here in capillary loops. The nerves of synovial membranes end partly in peculiar end-bulbs in the substance of the membrane, partly in a fine terminal plexus close to the inner surface. Pacinian corpuscles are also found in some places.

LESSON XII. :

THE CONNECTIVE TISSUES (continued).

1. Make transverse and tangential sections of a rib-cartilage (young animal) which may either be fresh or may have been preserved (formol and spinit). Stain the sections with hæmatoxylin (if fresh, after treatment with acetic acid as in Lesson XI. \$2; or they may be placed for an hour in 5 per cent. osmic acid), and mount in glycerine. Sketch a part of a transverse section under a low power and a cell-group from one of the tangential sections under a high power. Notice especially the arrangement of the cells, somewhat concentric near the surface but radial near the centre. The costal cartilages tend as age advances to become ossified; this occurs near the middle of their thickness in some animals, but in man when ossification occurs it is the superficial layer which is first invaded.
2. Make sections of the cartilage of the external ear (pinna), either fresh or after hardening in alcohol. Mount in dilute glycerine faintly coloured with magenta or stain with orcein and mount in danimar. The upper end of the arytenoid cartilage of the ox or calf may also be used to display the structure of clastic cartilage. Notice the large reticulating elasti• fibres in the matrix. Notice also the isolated granules of elastin, and around each cartilage-cell an area of clear gronnd-sulistance. If the preparation is from the ear of the mouse or rat there is very little matrix and no elastic fibres, and the cells are almost in contact (parenchymatous cartilage).
3. Mount a section of the epiglottis in the same way. Notiee the closer network of much finer elastic fibres in its cartilage.
4. Cut sections of white fibro-cartilage (intervertebral disk or semilunar cartilage of knee), which has been hardened in picric acid followed by spirit, '口 in spirit only. Stain the sections with dilute hematoxylin or picrocarnine. Mount in dilute glycerine. Observe the wayy fibres in the matrix, and the cartilage-cells, sometimes branched, lying in clear areas often concentrically striated. Sketch three or four cells and the adjoining finous matrix.

COSTAL CARTILAGE.

In the rib-cartilages (fig. 137) the matrix is not always as clear as in the cartilages of the joints, and it more often happens that fibres become developed in it. The cells are generally larger than those of articular cartilage, and collected into larger groups (fig. 138). The matrix surrounding these stains more deeply than the rest with hæmatoxylin (fig. 138) : often this more deeply stained part is itself separated from the rest of the matrix by a less stained area. Near the circumference, and under the perichondrium or fibrous covering of the cartilage, the cell-groups are flattened and parallel to the surface, but in the deeper parts they have a more irregular or a radial arrangement. The cells frequently coutain fat globules. The cartilages of the larynx and windpipe and of the nose resemble the costal cartilages; they will be further noticed when the organs where they occur are dealt with.

YELLOW FIBRO-CARTILACE.

Elastic or yellow fibrocartilage occurs in only a few situations, viz: the cartilage of the external ear, that of the Eustachian tube, and in the

Fig. 137.-Shetion of rib-cartilagui of calf. High power. The matrix is indistinctly fibrous. Two or three empty cell-spaces are seen in the section, the cells having dropped out in the course of preparation.

Fic. 138.-Section of costal cartilage. Photograph. Magnified 240 diameters.
The section shows several gronps of cartilage cells. Capsole outhues are seen around the groups and also around the individual cells. The part around the cells and cell-groups is stained more than the rest of the matrix.
eartilages of the epiglottis and of Santorini in the larynx. The matrix is everywhere pervaded, except immediately around the cells and cell-groups, with well-defined branching fibres, which unite with one another to form a
close network (fig. 139). These fibres resist the action of acetic acid, and are stained deeply by magenta and orcein ; they are evidently elastic fibres. In

Fig. 139.-Section of elastic cartilage of ear, human. (Sobotta.) $\times \mathbf{2 8 0}$. \therefore, cartilage-cells ; cap, their capsulex; m, clear matrix around cells gnd cell-gronps; f, elastie fibres,

Fig. 140.-Srotion of arytenoid cartilage of calf tu hunitiox ue hyaline with rlastic portions. Magnified 50 diameters.
the ox they are very large, but smaller in man, especially in the cartilage of the epiglottis. They appear to be developed, as with elastic tissue else-
where (see p. 97), by the deposition of granules of elastin in the matrix (fig. 141); the granules at first lie scattered, but afterwards become joined to form fibres.

White fibro-cartilage.

White fibro-cartilage is found wherever great strength combined with a certain amount of rigidity is required : thus we frequently find this form of fibro-cartilage joining bones together, as in the intervertebral disks and other symphyses. But in thesè cases the part in contact with the bone is always hyaline cartilage, which passes gradually into the fibro-cartilage forming the

Fle. 141. -Section of elastic carthlage (upper part of arytenold of calf) stained with magenta. Photograph. Magnified 200 diameters.
The elastin is seen partly in the form of a granular deposit, partly as finer and coarser intercomnunicating fibres. These are nowhere in contact with the cartilage-cells, which are surrounded by clear cartilage-matrix. At most parts of the section the cells have dropped out, but two or three are seen still in situ.
bulk of the symphysis. White fibro-cartilage is also found lining grooves in which tendons run, and it may be found in the tendons themselves. It is employed to deepen cup-shaped articular surfaces; and in the case of the interarticular cartilages, such as those of the knee and lower jaw, to allow greater freedom of movement whilst diminishing the liability to dislocation. Under the microscope white fibro-cartilage looks very like fibrous tissue, but its cells are cartilage-cells, not tendon-cells (figs. 142, 143). They are rounded or bluntly angular and surrounded by a concentrically striated area of nonfibrous cartilage-matrix. In some parts of the intervertebral disk some of the cells are branched; these may perhaps be looked upon as transitional forms to connective-tissue corpuscles.

DEVELOPMENT OF CARTILAGE.

Cartilage is formed in the embryo from mesenchyme similar to that which gives origin to other forms of connective tissue. Each cell forms a capsule around itself, and the blended capsules compose the first matrix.

Fig. 142.-Section of white fibro-cartilage. Photograph. Magnified 200 diameters.
The ground-substance is pervaded by wary connective-tissue flbres.

Fig. l43. - White fibro.cabtilaie frum an interyertebr.h, bisk, human. Highly magnified.
The concentric lines around the cells indicate the limits of deposit of successive capsules. One of the cells has a forked process which extends beyond the hyaline area surrounding the cell amongst the fibres of the general matrix.

Cartilage sometimes remains in this condition throughout life ; it is then termed parenchymatous cartilage. This can be seen in the mouse's ear; where also the cartilage-cells become filled with fat. Cartilage at first grows partly by interstitial expansion (accompanied by cell multiplication and by formation, around and between the cells, of intercellular substance), partly by apposition at tho perichondrium, the connective tissue beooming here transformed into cartilage. At a later poriod of growth the increase
in size and change in shape of cartilages are due almost entirely to the agency of the perichondrium.

Embryonic cartilage is usually characterised by the cells being more sharply angular and irregular ; in some cases they are branched, like those which occur at the junction of cartilage and synovial membrane in the adult. The cells are also more closely packed, the matrix being in relatively less amount than in later life.

Fibro-cartilage is developed at first in exactly the same manner as hyaline cartilage, but at a certain stage connective-tissue fibres, either elatstic or white, become formed in the ground substance or matrix, and as they accumulate they impart their distinctive character to the tissue. The development of the elastic fibres is preceded by the deposition of granules of elastin in the matrix: these run together to form fibres as in the development of elastic tissue elsewhere (see p. 97).

In some parts where white fibro-cartilage is found the tissue is at first entirely fibrous, like tendon or ligament, and the cartilage is a secondary formation. In such cases the cartilage-cells are probably formed by direct transformation from the tendon-cells.

LESSON XIII.

THE CONNECTIVE TISSUES (continued).

1. In thin sections of hard boue made by grinding, ${ }^{1}$ observe the Haversian canals, lamellæ, lacunæ, canaliculi, etc. Make sketches under low and high powers.
2. With fine forceps strip off a thin shred from the superficial layers of a macerated bone which has been decalcified in 5 per cent. commercial sulphurous acid and afterwards washed with water for 24 hours. The decalcified bone may be kept in dilute alcohol. Mount the shred in water. Observe the fibrous structure of the lamclle. Look for perforating fibres or the holes from which they have been dragged out. Sketch a small piece of the thin edge of a lamella.
3. Stain successively with dilute magenta and hæmatoxylin solution, "r with methyl-blue and eosin, very thin sections of compact bone which has been fixed with 10 per cent. formol (1 to 3 days) and then decalcified in sulphurous acid as above. Mount in dilute glycerine, cementing at once. Look for fibres of Sharpey piercing the circumferential lamellæ. The elastic perforating fibres are darkly stained witl magenta: Notice the stained nuclei of the bone-corpuscles in the lacunr. In thin sections the blood-vessels and other structures in the Haversian canals may be made out.
4. Mount in dammar a section of a futal lower jaw which has been stained in bulk and cmbedded in paraftin. ${ }^{2}$ Find the part where the lower jaw-boue is becoming ossified, and carefully study the appearance which it presents. The bone is prolonged in the form of osteogenic fiher which are covered with osteoblasts.
5. Intramembunous ossification may also be studied in the parietal bone of rmbryos preserved in Minller's fluid. A piece of the growing edge is scraped or brushed free from its investing membranes and from most of the cells which cover and conceal it, and is nounted in glycerine with or without previous staining with carmalum or hematoxylin.
fi. Mount in dammar sections, longitudinal and transverse, of a fretal limb which has been stained in bulk. ${ }^{2}$ The bones will be found in different stages of ossification, those of the wrist or ankle and digits being least developed. Make sketches illustrating the three chief stages of endochondral ossification. Notice the peculiar terminal ossification of the third phalans.

STRUCTURE OF BONE.

Bone is a connective tissue in which the ground-substance is impregnated with salts of lime, chiefly phosphate, these salts constituting about twothirds of the weight of the bone. When boncs are macerated this earthy matter prevents the putrefaction of the animal matter. When bones are calcined they lose one-third of their weight, owing to the destruction of the animal matter; when steeped in acid the earthy salts are dissolved and

[^9]only the animal matter is left. This, like areolar and filrous tissue, is converted into gelatine by boiling.

Bony tissue is either compach or cancellated. Compact bone is dense,

Fig. 144.-Sbetion of a decalctfied homan radius. (Sobotta.) $\times 48$.
p, periosteum ; $p l$, periosteal bony lamellæ; $p^{\prime} l^{\prime}$, deeply seated lamellæ between the Haversian systems; H, Haversian systenis ; $t r, t h$, tralsecule of spongy substance; $m l$, lamelle bounding medullary spaces.
almost like ivory ; cancellated is spongy with obvious interstices. The outer layers of all bones are compact, and the inuer part is generally cancellated, but the shaft of a long bone is almost entirely made up of compact substance, except in and near the middle, which is hollow and filled with marrow. The
interstices of cancellated bone are also occupied by marrow. Externally bones are covered except at the joints by a vascular fibrous membrane, the periosteum.

True bone is always made up of lamelloc, and these again are composed of fine fibres lying in a calcified ground-substance. Between the lamellæ are branched cells, the bone-corpuscles, which lie in cell-spaces or lacuna. The ramified passages containing the cell-processes and uniting the lacunæ are termed canaliculi.

In cancellated bone the blood-vessels run in the interstices of the bone,

Fig. 145.-Photograph of transverse section of compact bone, made by grinding, showing three Haverslin canals with their concentric lamellae, and also inter-Hayersian bony substance. Magnified 200 diameters.
α, Haversian canal, filled with air and debris; a^{\prime}, a very small canal ; b, b, junctions of Haversian systens: b^{\prime}, margin of Haversian system abontting on non-Haversian lamelle ; $\boldsymbol{c}, \boldsymbol{c}, \boldsymbol{c}$, lamelle parallel to periosteum; d, inter-Haversian bone with irregular lacunæ.
surrounded and supported by the marrow. In compact bone they are contained in little canals-the Haversian canals-which everywhere pervade the bone. These canals average 0.05 mm . ($\frac{1}{5} 00 \mathrm{inch}$) in diameter, but some are much smaller, others much larger than this. Their general direction is longitudinal, i.e. parallel with the long axis of the bone, but they are constantly united by transversely and obliquely running passages. In a section across the shaft of a long bone they are seen as small rounded or elongated holes (fig. 144). When the section has been made by grinding, the holes get filled up with air and débris; the air causes them to look black by transmitted light (p. 29) ; this is also the case with the lacuna and canaliculi (fig 145). Most
of the lamellæ in compact bone are disposed concentrically around the Haversian canals; they are known as Haversian lamello, and with the included canal, form what is known as a Haversian system. The lacunæ of a Haversian system communicate both with one another and with the Haversian canal which they encircle, but not as a rule with the lacuna of adjacent Haversian systems. The angular interstices between the Haversian systems are generally occupied by bony substance which is not regularly lamellar (figs. 145, 146, d). Besides the concentric lamellæ of the Haversian systems there are other lamellæ both at the surface, immediately under-

Fic. 146.--Lonctuddinal section of compact bone, showing Haversian systemsof lamellef, and inter-Haversian bone. Magnified 200 diameters.
a. Haversian canal cut longitudinally ; b, junction of two Haversian systems of lamella; c, margin of Haversian system abutting upon inter-Haversian bone with irregular lacunæ, d.
neath the periosteum (fig. 144, pl), and throughout the thickness of compact bone, between the Haversian systems (fig. 145, c, c, c) which are arranged parallel with the surface; these are known as periosteal lamelloc. They are pierced here and there by simple canals for blood-vessels, the socalled Volkmann's canals, which are proceeding from the periosteum to join the system of Harersian canals, and also by calcified bundles of white fibres and by elastic fibres prolonged from the periosteum. These are the perforating fibres of Sharpey (fig. 147).

The lamellæ of bone are fibrous in structure. This may be seen in shreds torn off from the superficial layers of a decalcified bone. The fibres (decussating fibres of Sharpey, lamella-fibres) often cross one another in adjacent lamelle, and in the Haversian systems they run in some lamelle

Fil: 147.-Transverse section of decalcified iftmin tibia, from near THE SURFACE OF THE SIIAFT.

H, H, Haversian canals, with their systems of concentric lametla; in all the rest of the figure the lamella are periosteal ; s, s, ordinary perforating fibres of Sharpey ; e, e, elastic perforating fibres. Drawn under a power of about tha fiameters.

 AT SOMIS DEPTIL FROM TIIF SI'REACE,
a, lamella, showing decussating fibres; b, b, thicker part, where several lamelle are superposed: c, c, perforating fibres ; the fibrils which compose themare not shown in the figure. Apertures through which perforating fibres had passed are seen, especially in the lower part, a, of the figure. Magnitude as seen under a power of 200 diameters, lut not flrawn to scale. (Sketched by Allen Thomson from a preparation by W, Shaypey,
concentrically, in others parallel with the Haversian canal. In shreds of lamelle which have been peeled from the surface the perforating fibres may sometimes be seen projecting from the surface of the shred, having been torn out of the deeper lamellæ (fig. 148, c, c). When tendons or ligaments are inserted into bone, their bundles of white fibres are prolonged into the bone as perforating fibres.

The lacunæ are occupied by nucleated corpuscles, which send branches along the canaliculi (fig. 149). They lave a special lining layer different in chemical composition from the rest of the bone, being much more resistant to the action of strong chemical solvents such as hydrochloric acid (Neumann). The dentinal tubules of the teeth have a similar lining.

Each Haversian canal contains one or two blood-capillaries and nervous

Fig. I49. - A bone-cell isolathid and highly magnified.
(Joseph:)
a. proper wall of the lacuna (Neumann's layer), where the corpuscle has shrunken away from it.

F1g. Iñ. -Swution of a Haversian CANAL, SHOWING ITS CONTENTS. Highly magnified.
u, small arterial capillary vessel; v, large venous capillary; n, pale nerve-fibres cut across l, cleft-like lymphatic vessel; one of the cells forming its wall communicates by fine branches with the branches of a bone-corpuscle. The substance in which the vessels rup is connective tissue with ramified cells; its finely granular appearance is probably due to the cross-section of fibrils. The canal is surrounded by ooncentric lamelle.
filaments, besides a little connective tissue; the larger ones may include a few marrow-cells. There are also cleft-like lymphatics running with the blood-vessels, their cells being connected through canaliculi with branches from corpuscles within the neighbouring lacunæ of the osseous substance (fig. 150).

The periosteum may be studied either in torn-off shreds, or in preparations treated in situ with silver nitrate, or in stained sections from an unmacerated bone which has been decalcified. It is a fibrous membrane composed of two layers, the inner of which contains many elastic fibres. In the outer layer numerous blood-vessels ramify and send branches to the Haversian canals of the bone. The periosteum ministers to the nutrition of the bone, partly on account of the blood-vessels and lymphatics it contains, partly, especially
in young animals, on account of the existence between it and the bone of a layer of osteoblasts or bone-forming cells, a remainder of those whicb originally produced the bone. It also serves to give attachment to muscular fibres.

The marrow of bone has been already studied (pp. 45 to 47).

Fig. 151.-SEction of phalangeal bone of human fetu's at the time of commencing ossification. (From a preparation by F. A. Dixey.) The preparation was stained in bulk with magenta. The drawing is made from a photograph, and is magnified about 75 diameters.
The cartilage-cells in the centre are enlarged and are separated from one another by stained calcifled matrix; im, layer of bone deposited underneath the periosteum ; o, layer of asteoblasts by which the layer has been formed. Some of the osteoblasts are already embedded in the new bone as bone-cells within lacun⿻. The cartilage-cells are flattened and arranged in rows above and below the calcified centre. At the ends of the cartilage the cells are small and the groups are irregularly arranged; the fibrous periosteum is not sharply marked off from the cartilage.

DEVELOPMENT OF BONE.

True bone is formed in all cases by ossification of connective tissue. Sometimes the bone is preceded by cartilage, which first becomes calcified, and is then invaded, and for the most part removed, by an embryonic connective tissue which re-deposits bony matter in the interior of the
cartilage. This is cartilaginous or endochondral ossification. At the same time layers of bone are being formed outside the cartilage by the periosteum (periosteal ossification). The whole bone thus formed is termed a cartilagebone. Sometimes bone is not preceded by cartilage, and then the only process which occurs is one corresponding to the periosteal ossification of the

Fig. 152.-Section of part of ONE OF THE LIMB-BONES OF A FGEAL CAT, AT A MORE ADVANGED STAGE OF OSSIFTCATION THAN THE BONE REPRUSENTED IN FIG. 15l, AND MORE HIGHLY MAGNIFIED. Drawn from a photograph.
The calcification of the cartilagematrix has advanced from the centre, and is extending between the groups of cartilage-cells, which are arranged in characteristic rows. The, subperiosteal bony deposit (im) has extended pari passu with the oalcification of the cartilage-matrix. The cartilagecells in the calcified part are mostly shrunken and stellate; in some cases they have dropped out of the spaces. At ir and in two other places an irruption of the subperiosteal tissue, composed of ramified. cells with osteoblasts and growing blood-vessels, has penetrated the subperiosteal bony crust, and has begun to excavate marrow spaces; p, fibrous layer of the periosteum ; 0 , layer of osteoblasts: some of tbem are embedded in the osseous layer as bone-corpuscles in lacunw. The blood-veseels are occupied by bloodcorpuscles. Beyond the line of ossific advance the periosteum may be noticed to be incurved. Tbis incurvation is gradually moved on, the cartilage expanding beyond it until the head of the bone is reached, when it forms the periosteal notch or groove represented in fige. 155 and 158.

cartilage-bone; the ossification is then known as membranous, and the bone formed is a membrane-bone.

Ossification in cartilage.-This may be described as occurring in three stages.

In the first stage the cells in the middle of the cartilage become enlarged and arranged in rows radiating from the centre (fig. 151), and fine granules of calcareous matter are deposited here in the matrix. Simultaneously with this the osteoblasts underneath the periosteum deposit layers of fibrous material upon the surface of the cartilage, and this material also becomes
calcified (fig. 151, im). As the layers are formed, some of the osteoblasts (o) are included between them and become bone-corpuscles.

In the second stage the vascular subperiosteal tissue eats its way through the newly formed layer of bone and into the centre of the calcified cartilage (fig. 152, ir). This is freely absorbed before it (figs. 153, 154), so that large spaces are produced which are occupied by embryonic connective tissue of a jelly-like character (fig. 158) including numerous osteoblasts and many

Fig. I53.-YART OF a longl-
tudinal SECTION oF THE
DEVELOPING FEMUR OF THE
RABBIT. (Klein.) Drawn
under a magnifying power
of 350 diameters.
a, rows of flattened cartilage-cells; b, greatly enlarged cartilage cells close to the advancing bone, the matrix between is partly calcified; c, d already formed bone, the osseous trabeculæ being covered with osteoblasts (e) exeept here and there, where an osteoclast (f) is seen eroding parts of the trabecula ; $g, . h$, partilage-cells which have become shrunken and irregular in shape. Fron the middle of the figure downwards the trahecule, which are formed of calcified cartilage-matrix, are becoming covered with secondary osseous substance deposited by the osteohlasts. The vascular loons at the extreme limit of the lone are well shown, as well as the atrophy and abrupt disappearance of the cartilage-cells.
sinus-like blood-vessels which have grown in from those of the periosteum. The spaces are termed marrow spaces, and this second stage is known as the stage of irruption.

In the third stage of endochondral ossification there is a gradual advance of the ossification towards the extremities of the cartilage, and at the same time a deposition of fresh bony layers on the walls or septa of the marrow spaces, and on the surface of the new bone under the periosteum (figs. 153, 157, 158). The advance into the cartilage always takes place by a repetition of the same changes, the cartilage-cells first enlarging and
becoming arranged in rows, the matrix between the rows bccoming calcified, and then the calcificd cartilage being excavated from behind by the osteoblastic tissue so as to form new marrow spaces (fig. 153). The septa between these are at first formed only by remains of the calcified cartilage-matrix (fig. 153, c), but they soon become thickened by layers of fibrous bone which is deposited by the osteoblasts (fig. 158), and between

Fig. 154.-Longitudinal section through part of a phaland of a six months' iuman embryo. (Kölliker.)

The calcified cartilage is completely absorbed almost to the limit, of advancing calcihcation. The osseous substance on either side is periosteal bone. The embryonic marrow has shrunk somewhat away from it in the process of fixation.
the layers bone-corpuscles become included, as in the case of the subperiosteal bone. The latter advances pari passu with the endochondral calcification, growing both in length and thickness: its growth is preceded by the formation of osteogenic fibres like those met with in developing membranebone (see p. 127). Beyond the line of advance of ossification the uncalcified cartilage grows by expansion both in length and breadth, so that the ossification is always advancing into a larger mass of cartilage; hence the endochondral bone as it forms assumes the shape of an hour-glass, the shaft being maintained of a cylindrical shape by addition of periosteal bone to the
outside, this addition being of course always thickest in the middle of the shaft (sce fig. 155). The absorption of the calcified cartilage matrix appears to

Fig. 155.-Longitudinal secTION THROUGH THE UPPER half of the decalcified HUMERUS OF A FETAL SHEEP, as seen under a magnift. ing power of about 30 DIAMETERS.
c, the part of the shaft which was primarily ossified in cartilage; wbat remains of the primary booe is represented dark, enveloped hy the clear secondary deposit. The spaces in the bone are occupied hy embryonic marrow with osteohlasts, and blood-veseels variously cut. One long straight vessel (bv) passes in advance of the line of ossiffcation far into the cartilaginous head, most of the others loop round close to the cartitage. At one or two places in the older parts of the bone elongated groups of cartilage-cells (cc) may still be seen, which have hitherto escaper absorpition. m, the part of the hone that bas been ossified in membrane, that is to say, in the osteoblastic tissue under the perios. teum. It is well marked oft from the contral portion (c), and is bounded, peripherally, by a jagged edge, the projections of which are indistinctly seen to he prolonged by bunches of osteogenio fibres. A row of osteoblasts covers the superficial layer of the bone. The subperiosteal layer is prolonged above into the thickening (p) which eneroaches upon the cartilage of the head of the bone, and in which are seen amongst numerous nsteoblasts and a few blood-vessels, the straight longitudinal osteogenic fibres (of), and some other fibres ($p f$) crossiug tbeon, and perhaps representing

- fibres of Sbarpey. The calcareons salts having been removed by an acid, the granular nature of the ossific deposit between the rows of cartilage-cells is not seen in this specimen ; it would have extended as far as a lioe joining the marks $x \times$. Observe the general tendency of the osseons trabecula and the vascular channels betweea them to radiate from the original centre of ossification. This is found to prevail more or less in all bones when they are first formed, althougb the direction of the trabeculm may afterwards become modified in relation with varying physiological conditions, and especially as the result of pressure in different directions.
be effected, as is the case with absorption of bony matter wherever it occurs, by cells (fig. 153, f, f^{\prime}) termed osteoclasts. These are multi-nucleated giant cells like those occurring in adult marrow and certain other parts (fig. 13). They are always found on surfaces where absorption of bone is taking
place, whereas on surfaces where bony deposit is proceeding osteoblasts occur (fig. 156).

The bonc which is first formed is more reticular and less regularly lamellar than that of the adult, and contains no Haversian systems. The
Fir. 15H, -BuNY TRABECULA, FROM THE
DEVELOPINT LOWER JAW OF A VALF,
SHOVINA OSTEOCLASTS AT THE EX -
TRENITIES WHERE AESOKPTION IS PRO-
CEEDING, ANO OSTEOLLASTS COVERENG
THE SIDES WHERE DEPOSITION OF
EUNE IS GOING ON, (Kolliker.)

Fig. 157.-Transverse section of a developing bone, showing the periosteal layer becoming yormed from osteogenic flbres. Low power.
$c b$, cartilage bone; $p b$, periosteal bone; $s p$, bone spicules prolonged by osteogenic fibres; p, periosteum; bl, blood-vessels; c, remains of the calcified cartilage; o, osteoblasts forming bone upon this.
regular lamellæ are not deposited until some little time after birth; their deposition is generally preceded by a considerable amount of absorption. It is about this time also that the large marrow cavity of the long bones is formed by the absorption of the bony tissue which occupies the centre of the shaft.

After a time the cartilage in one or both ends of the long bones begins to ossify independently, and the epiphyses are formed (fig. 160). These are not joined to the shaft until the growth of the bone is completed. Growth takes place in length by an expansion of the cartilage which intervenes between the shaft and the epiphyses (intermediate cartilage), the ossification

Fic. 158.-Part of a transverse section of a developing long bone from a homan fetus. Photograph. Magnified 200 diameters.
p, fuelal periosteum ; p^{\prime}, bone laid down in periostenul ; endochondral bone composed of calcified cartilage in the centre of the septa and layers of true bone eovering this; m, marrow spaces flled with jelly-like embryonic conneotive tissue and large sinus-like hlood-capillaries. Notioe the osteoblasts on the surfaces of the newly formed bone-both periosteal and endochondral, Two or three osteoclasts can also be seen.
gradually extending into it; in width entirely by the deposition of fresh bony layers under the periosteum. In the terminal phalanges of the digits the ossification starts, not from the middle of the cartilage, but from its distal extremity.

For the regeneration of portions of bone which have been removed by disease or operation it is important that the periosteum be left, because a considerable amount of the blood supply comes through the vessels of the periosteum, and there are also osteoblasts on its under surface, But

Fie. 1:99.-Shetion of the OSSIFTOATHON URUOVE IN THE HEAll UF A LUNG HUNE.
c, rartilage: p, perionteal tisulue with asteogenic filires and ostechasts. This tissue vecupies tho "yrome."

$-m$

Fig. 160.-Section thruugh upper end of thisa of a halfegeuwn mabit. (A. Bidder.) Drawn under a magnifying power of 30 diameters.
a; apophysis; e, epiphygis; d, diaphysis; l, ligamentum patelle; c, cartilage of articular surface ; c^{\prime}, intermediate cartilage ; p, periosteum, with periosteal bone ; m, pad of synovial membrane.

Fig. 161.-Part of tee growine mdge of the developing parietal bone of a fietal cat, $1 \frac{1}{2}$ inch long.
$s p$, bone spicules, with some of the osteoblasts embedded in them, producing the lacuna; of, osteogenic tibres prolonging the spicules, with osteoblasts (ost) between them and applied to them; a, granular calcific deposit occurring in the ground-sulstance lietween the fibres; c, calcareous deposit joining two adjacent spicules.

Fig. 1fiz - sleqtiua of ussifise madillati bundi uf nen-born rat.

(v, Korff.)

$o_{1} o_{\text {G }}$ osteoblasts; b, bony substance with osteoblasts and ostcogenic fibres; b, growing border of bone; c, embryonic connective tissue, showing its fibres continuous with the ostengenic flbres of the growing boider.
fragments of bone may undergo regeneration even after removal of the periosteum, by the agency of osteoblasts in the marrow.

Membranous ossification.-In this variety of ossification (figs. 161, 162) the bone is not preceded by cartilage at all, and therefore no endochondral bone is formed, but the calcification occurs in an embryonic connective tissue which contains numerous osteoblasts and blood-vessels. The fibres of this tissue (osteogenic fibres) are collected into fine bundles, and become enclosed in a calcareous matrix, produced by the deposition of lime salts in the ground-substance of the connective tissue; as the fibres grow, the calcification extends further and further, so that bony spicules are formed, which become thickened and run together to form reticulated layers, leaving spaces filled with jelly-like connective tissue containing osteoblasts surrounding the blood-vessels. The osteogenic fibres are covered with osteoblasts, and as the bone forms,- some of these become left as bone-corpuscles within lacunæ. Thus in every particular the development of these bones resembles that of the subperiosteal layer of endochondral bone; which is, therefore, also to be considered as an instance of membranous ossification, taking place on the surface of cartilage. Moreover, it is the same subperiosteal tissue which, in endochondral ossification, invades the calcified cartilage and after causing the absorption of marrow spaces within this, deposits true or secondary bone upon those parts of the calcified cartilage-matrix which have escaped absorption; this must also, therefore, be reckoned as developed according to the same type. In fact, even in cartilaginous ossification, very little of the calcified cartilagematrix eventually remains, for this is almost wholly absorbed; being either replaced by true fibrous bone which has been formed by asteoblasts, or swept away to form the marrow cavity and other spaces in the bone.

LESSON XIV.

STRUCTURE OF MUSCLE.

1. Take a shred of muscle from a recently killed mammal, and on a dry slide carefully separate long pieces of muscle (single fibres if possible) and stretch them out, keeping them moist during the process by breathing on the slide. A drop of serum or mammalian Ringer's solution must be ready on the cover-glass, which is then quickly inverted over the preparation. Study first with a low, then with a high power. Sketch all the appearances seen in a small piece of a fibre, focussing carefully the most superficial layers. Notice the oval nuclei immediately under the sacolenma. Then allow a little dilute acetic acid to run under the coverglass and watch its effect. The acid may be followed by weak solution of magenta or by dilnte hematoxylin, and the preparation mounted in glycerine by adding a small drop of this at one edge of the cover-glass.
2. Prepare frog's muscle in the same way, mounting in frog-Ringer. Notice the muscular substance shrinking away here and there from the sarcolemma, which then becomes distinctly visible. Sketch a piece of sarcolemma bridging arross an interval this produced. The preparation can be stained with magenta and mounted in glycerine like the last.
3. Study stained longitudinal and transverse sections of muscle which has been hardened in alcohol or formol, mounting in dammar. Examine the sertions first with : low and then with a high power. Sketch the appearances which are seen.

Measure the diameter of some of the fibres.
Sections of muscle-spindles may be searched for in the sections of muscle.
4. Place in I per cent. osmic acid a small shred of muscular tissue (mammal on crab) which has been stretched upon a cork. After 24 hums, when it will he deeply stained, wash it in water and with needles break the fihres up in ghcerine as finely as possible. Cover and examine with a high power.
5. Cut off the head of a garden beetle or wasp or water beetle, ind bisect the trunk with scissors so as to expose the interior. Notice two kinds of muscular tissue, the one belonging to the legs greyish in colour, the other attached to the wings yellowish. Preparations of both kinds of muscle are to be made in the same way as living mammalian muscle (\$ 1). Mount them in a drop of white of egg. In both preparations the dark-looking air-tubes or tracheæ form prominent objects ramifying amongst the fibres. Observe the structure of the two kinds of muscle so far as it can be made out in the fresh preparation. If the preparation is made quickly, waves of contraction may be observed passing along the fibres.
6. Make another preparation of the leg-muscles, mounting in dilute acetic acid. Alcohol-hardened muscle of insect or crab may be used for this purpose. Notice that the muscular substance swells and becomes clearer, whilst the sarcoplasmnetwork, with its appearance of lines and dots, comes more distinctly into view. In a well-teased preparation made in acid, the fibres are frequently foind breaking across into disks. Make careful drawings from this preparation.
7. Rollett's method. Cut off the head of an insect (wasp, small hectle), hisect the trunk and place in 90 per cent. alcohol for 24 hours in longer. Then take a wimall piece of each kind of muscle, and place in strong glyerine wernight. Wawh thomoughy with water and transfer to 1 pre cent. chloride of gold sulution: leave the piecen of muscle in this from 15 to 30 minutes according to size. Fiom the gold solution they are transferred to formio acid (l part of the strong acid to 3 of water), and kept in the dark for $\because 4$ houns; but they may he kept longer withont disimvantage. The musde is then teased in glyerrine. Sime
of the fibres will be found after this process to have their sarcoplasm darkly stained, and to show the appearance of a network both in longitudinal and transverse view : others, on the other hand, have the sarcous elements of the fibrils or sarcostyles staincd, whilst the sarcoplasm has remained colourless. This preparation shows the structure of the fibrils of the wing-muscles far better than any other.
8. The structure of the fibrils can also be studied in sections of wing-muscles

Fig. 163. -Sarcolemma of mammalian muscle. highly magnieied.
The fibre is represented at a place where the muscular substance has become ruptured and has shrunk away, leaving the sarcolemma (with a nucleus adhering to it) clear. The fibre has been treated with serum acidulated with acetic acid.
Fig. 164.-Muscular fibre of a mammal lixamined fresh in serum, highly magnified, the surface of the fibre being accurately focussed.
The nuclei are seen on the flat at the surface of the fibre, and in profile towards the edge.
Flg. 165. - Portion of a medium-sized human muscular fibre, showing the intermediate line (Dobie's line) mentioned in the text. (Sharpey.)
fixed with alcohol and stained by the iron-hæmatoxylin method (see Appendix). This is more certain but does not give as good results as a successful Rollett preparation.

CROSS-STRIATED OR VOLUNTARY MUSCLE.

Voluntary muscle is composed of long cylindrical fibres, measuring on an average 0.05 mm . in diameter ($\frac{1}{5} 0$ inch) in mammalian muscles, and often having a length of an inch or more. Many fibres are, however, much larger or smaller than the average. Each fibre has an extensible sheath, the sarcolemma, which encloses the contractile substance. The sarcolemma is seldom visible, unless the contained substance becomes broken (fig. 163). A fibrillar structure has been described in the sarcolemma, but under ordinary circumstances it looks completely homogeneous.

The eontractile substance is characterised by the alternate dark and light stripes which run aeross the length of the fibre; hence the name cross-striated muscle. On focussing, it can be seen that the stripes pass through the whole thickness of the fibre; they may therefore be looked upon as representing alternate disks of dark and light substance. If the fibre is very earefully foeussed, rows of apparent granules are seen lying in or at the boundaries of the light streaks, and very fine longitudinal lines may, with a good microscope, be detected uniting the apparent granules. These fine lines, with their enlargements, the granules, are more eonspieuous in the muscles of arthropods (fig. 169). They indieate divisions between the

Fig. 166. - Small portion of a human muscolar fibre telsed into small longitudinal fragments. (Sharpey.) Magnified about 800 diameters. a, b, c, larger and smaller groups of fibrils; d, ultimate fibrils.
Fig. 167.-Small yontion of a muscle-fibhe of chat splittina dy into fibrils. From a photograph. Magnified ti00 diameters.
Fig. 168.-Sifetion df a muscular fibke, showing areas of Cohinheim. Three nuclei are seen lying close to the sarcolemma.
longitudinal clements (fibrils or sarcostyles) which compose the fibre, and in preparations treated with dilute acid the lines appear to form part of a fine network, which pervades the muscle-substance, and serves to unite the granules both transversely and longitudinally (fig. 170). This network, which is sometimes very distinct in preparations of muscle treated with chloride of gold, is, however, a network in appearance only : in reality it is the optical expression of the interstitial substance which lies between the fibrils. This substance is termed sarcoplasm.

The transverse section of a muscle shows the fibres to be nearly cylindrical in figure. Between the fibres is a certain amount of areolar tissue, which serves to support the blood-vessels and to unite the fibres into fasciculi; the fasciculi are again united together by a larger amount of this intra-muscular connective tissue (endomysium).

On examining the transrerse section of a fibre with a high power, it is seen to be subdivided everywhere into small angular fields, Cohnheim's areas (fig. 168), which are themselves finely dotted. The dots represent sections of the fibrils of which the fibres are composed, and into which they may be split after death (figs. 166, 167), especially after being hardened in certain reagents, e.g. chromic acid or osmic acid. The areas represent groups of fibrils, and are usually polyhedral, but they may be elongated; sometimes they are disposed radially, and occasionally concentrically with the circumference of the section. The interstitial substance or sarcoplasm lies between the fibrils and can be made visible by treatment with dilute acid or by staining with chloride of gold (figs. 170, 171, 172). It is sometimes in relatively large amount, but in most muscular fibres is reduced to a very fine interstitium.

Au ill-defined clear line is sometimes seen running transversely across the fibre in the middle of each dark band. This is termed Hensen's line.

If instead of focussing the surface of the fibre it is observed in its depth, an appearance different from that shown in fig. 164 is frequently visible, namely, a fine dotted line (Dobie's line), bisecting each clear stripe (fig. 165). This appearance is often considered to represent a membrane (Krause's membrane), which subdivides the fibrils at regular intervals (see p. 133). But the membranes of the individual fibrils or sarcostyles are rarely, if ever, visible in an intact mammalian fibre, and it is certain that the appearance known as Dobie's line in the middle of the clear stripe of the intact fibre is due to interference, caused by the light being transmitted between disks of different refrangibility.

Abstract

Haycraft has suggested that the cross-striation of voluntary muscle is due to refractive effects produced by a varicosity of the component fibrils; he bases his view upon the fact that in impressions of the fibres made on soft collodion all the cross-striations which are observed in the fibre itself are reproduced. There is no doubt that a well-marked cross-striated appearance can be produced in homogeneous fibrils by regularly-occurring varicosities, and some of the appearances observed in muscle may, as Haycraft contends, be referred to this cause. But even when a fibre or fibril is stretched so that it exhibits no varicosities, the cross-striations are still perfectly distinct. Moreover, in view of the entirely different manner in which the substances of the dark and clear stripes behave to many staining reagents, and especially to chloride of gold when applied as directed in $\S 7$, the fact being that very definite structural appearances can under these circumstances be made out, the homogeneity of the muscle-fibril cannot be admitted. This inference is strongly confirmed by the microchemical work of A. B. Macallum, who has shown that the potassium salts of the wing-musele fibrils are accumulated in a portion only (the sarcous elements) of the fibril (fig. 177).

Nuclei.-Besides sarcolemma and striated substance, a muscular fibre possesses a number of oval nuclei which have the usual structure of cellnuclei ; their chromatin often has a spiral arrangement. Sometimes there is a little granular substance (protoplasm) at each pole of the nucleus; each nucleus with the adjacent protoplasm has then been spoken of as a muscle. corpuscle. But the protoplasm which is adjacent to the nuclei is continuous with the sarcoplasm between the fibrils; both being the remains of the original undifferentiated protoplasm of the cells from which the muscular
fibres are developed. In mammalian muscle the nuclei usually lie immediately under the sarcolemma (figs. 163, 164, 168), in frog's muscle they are

Fig. 169.-Living muscle of wateir-beetle (Dytiscus márginalis). Highly magnified.
a, dim stripe; b, bright stripe; c, fine lines, with dotlike enlargements upou them which represent the interfibrillar sarcoplasm.

Fig. 170.-Portion of leg-muscle OF INSECT TREATED WITH DILUTE ACID.
S, sarcolemon; D, dot-like enlargement of sarcoplasm ; \boldsymbol{K}, Krause's membrane. The sarcous elements are dissolved or at least rendered invisible hy the acid.

Fig. 172.
Fig, 171.-Transverse sectlon of heg-muscle fibre of an insect, STAINED WITH GOLD CHLOKIDE.
The sarcoplasm is here stained, and appears in the form of a network, in the meshes of which lie the section 6 of the fibrils. Notice the mottled appearance of the sections of the sarcostyles or fibrils, indicating a porous structure, as in the wing fibrils (see ligg. 175). The central protoplasm (with a nucleus) is also evident. (From a photograph.)
Ftg. 172. -Leg-musule fibre of inslect treated with dilute acid, showing A TENDHNGY TO BRHAK ACROSS INTO DISKS.
The sarcoplamm is in the form of fine lines. The ordinary dark stripes of the fibre have disappeared in the acid. A, a disk, seen partly in seetion no exhibiting the retieular arrangement of the sarcoplasm ; B, longitudinal view of fibre.
scattered throughout the thickness of the fibre, in the leg-muscles of insects they lie in the middle of the fibre (fig. 171).

Some animals, e.f. the rabbit, have, besides museles of the ordinary trpe of structure, which in this amimal are pale in colour, other: of a deep red colour.

These red muscles were found by Ranvier to exhibit certain differences both in structure and function. One difference of structnre is that the nuclei, which are numerous, are not, as in the ordinary type of manmalian fibre, confined to the surface, but are scattered throughout the thickness of the fibre. The fibres in question also contain more sarcoplasm than the ordinary fibres, and their blondvessels have a pec̈uliarity of structure which will be afterwards noticed. It has further been shown that in many other mammals, amongst the ordinary fibres, are some in which the nuclei are distributed through the thickness of the fibres: this is also the case, as we have seen, with all the muscular filsess of the frog. In muscles which are in constant activity, sucb as the diaphragm, and the dorsal fin-muscles of Hippocampus, the protoplasm (sarcoplasm) of the fibre is present in relatively large proportion ; this is also found to some extent in the wing numscles of insects (see below).

Muscles of insects.- In the muscles of insects the stripes are relatively broad, and the structure can be more readily made out than in mammals. In the living fibres from the muscles which move the legs, the sarcoplasm presents a striking appearance of fine longitudinal lines traversing the muscle, and enlarging within the light stripes into rows of dots (figs. 169, 179). This is still better seen in fibres and portions of fibres which have been treated with dilute acid (figs. 170, 172). In separated disks, produced by the breaking across of muscle-fibres, the surfaces of the disks show a network: with polyhedral meshes in some insects (fig. 172, A); formed of lines radiating from the centre of the fibre in others.

The mascular fibres of the wings are considerably larger than those of the legs and contain a far greater amount

Fig. 173.-Lef-mitsclaf firre of inslect, statned with goln chloride by Rollftt'smethod.
K, line formed by membranes of Krause; S.E., dark stripe formed by sarcous elements. The sarcoplasm has the appearance of longitudinal lines with dots. of sarcoplasm, in which the fibrils are embedded. When the fibre is broken up the fibrils are easily isolated, even in the fresh tissue, and they can then be readily stadied. It can be seen even in the fresh fibril, but much more distinctly after staining, that each fibril-or sarcostyle, as it is often termed-is composed of alternate dark and light portions, which by juxtaposition in adjacent fibrils produce the cross striated appearance of the fibre. Further, in the middle of each of the clear strix is a transverse septum, known as the membrane of hrause; the fibril is subdivided at regular intervals by these membranes into serial portions, termed sarcomeres. Each sarcomere is occupied by a sarcous element; the sarcous elements by their juxtaposition in adjacent fibrils form the dark striæ of the whole fibre. The sarcous element is really double, and in the stretched fibril separates into two at the line of Hensen (fig. 174, B). At each end of the sarcous element is clear substance (probably
fluid) separating it from the membrane of Krause : this clear substance is more evident the more the fibril is extended, but diminishes, even to complete disappearance, in the retracted (contracted) fibril (fig. 174, A). The cause of this change is explained if we study more minutely the structure of the sarcous element. For we find that each sarcous element is pervaded by longitudinal canals or pores, which are open in the direction of Kranse's

Fig. 174.-Fibrils of the wing-muscles of a wasp, prepared by Rollett's method. Highly magnified.
A, a contracted fibril. B, a contracted fibril, which has beell forcibly stretched, causlng each sareous element to be separated into two parts at the line of Hensen. C, an uncontracted fibril, showing the porous atructure of the sarcons "lements. D, an uncontracted filuril, magnified 2000 diameters.
A, B, and C were drawn lis Mr R. Muir from the prearation with the aid of photographs; D is an untouehed photograph.
membranes, but closed at the middle of the sarcons element (figs. 174, C, D; 175,176). In the contracted muscle it can be seen that the clear part of the muscle-substance has nearly disappeared, the sarcous element is swollen and the sarcomere is shortened ; in the uncontracted muscle, on the other hand, the clear part occupies a considerable interval between the sarcons element and the membrane of Krause, the sarcomere being lengthened and narrowed. This difference is well seen with certain methods of staining (fig. 174). The sarcous clement does not lie free in the middle of the sarcomere, but is attached at cither end to Krause's membrane by what look
like very fine lines, which may represent septa, running through the clear substance (fig. 176); on the other hand, Krause's membrane appears to be attached laterally to a fine membrane which limits the fibril externally.

As already stated, the sarcous elements are set side by side in planes forming the dark stripes (sometimes called principal disks) of the striatedsubstance of ordinary muscle-tibres. In the wing-museles of insects, the fibrils are surrounded by a considerable amount of granular sarcoplasm, and the whole fibre is only very indistinctly cross striated, although each

Fig. 175. -Tsolated sarcous hlements of a wing-muscle, SHOWING THE TUBULAR OR POROUS STRTCTURE. Untouched photograph. Magnified 870 diameters.
At a some are seen in profile; at b on the flat. The two eircular bodies are fat-drops.

Fig. 176. - Diagram of a sarcompre in a MODERATELY EXtended condition, A, AND IN A CONTRACTGD CONDITION, B.
K, K, membranes of Krause ; II, line or plane of Hensen; S.E., poriferous sarcous element.

Tig. 177.-Localisation OF potassium in sarcous eleMENTS OF HING-MUSCLE OF beetle. (A. B. Macallum.) a, resting ; b, contracted.
individual fibril is markedly so. As already mentioned, the sarcous elements contain a large proportion of potassium salts (fig. 177).

Sometimes in the ordinary (leg) muscles of arthropods what look like detached dot-like portions of the sarcous element are seen within the clear stripes, lying usually near Krause's membrane. The rows of such dots have been termed accessory disks. Most muscles show no accessory disks, but the sarcoplasm-enlargements between the fibrils (fig. 170, D) are often mistaken for them.

Muscles in polarised light.-When muscle-fibres are examined with polarised light between crossed nicols, the sarcous elements (which form the dark stripe) are seen to be doubly refracting (anisotropous), while the clear substance (forming the light stripe) is singly refracting (isotropous). In contracted parts of the muscle the (anisotropous) sarcous elements are seen to have increased in bulk, while the isotropous sulustance of the clear stripe has correspondingly diminished (fig. 178).

Merkel imagined that there is a reversal of the stpipes during contraction, i.e. a transference of the anisotropous substance of the dark stripe from Hensen's line to Krause's membrane, the place of the dark stripes thus becoming occupied by clear
material, that of the light stripes by dark. He further described this condition as being preceded by an intermediate stage in which the fibril shows homogeneity of shading. No doubt in the ordinary muscle-fibres of arthropods, when we observe the so-called "fixed" waves of contraction (fig. 178), there is often an apparent blurring of the cross-striation of the tibre just where the muscle is passing from extension to contraction, but this is explicable by the unequal pull of the contracted parts of the fibrils upon those which are not yet contracted. The contraction in each fibre starts from the nerve-ending, which is at one side of the fibre, and spreads first across the fibre and then tends to pass as a wave towards either end. The one side always has a start in the progress of this wave, and the fibrils must thus receive an unequal pull, so that they are shifted along one another and

Fig. 178.-Leg-muscle fibre of Chrysomela rerulea with (fixed) contraction wave photographvi tener polarising microscope. ${ }^{1}$ A, with unorossed nicols; B, with crossed nicols.
the line of cross-striping is broken up. That no transference of anisotropous substance really occurs is at once clear from the appearance of the contracting fibre under polarised light (fig. 178, B), and the study of the isolated fibrils of wing-niuscle gives no support to the theory of reversal, although it is widely held by German authors. That the apparent reversal is not real is also illnstrated by fig. 179, which represents a leg muscle tibre of an insect in process of contraction. The dark bands of the contraction-wave are seen to be really due to accumulations of sarcoplasm. Owing to this having a higher index of refiaction than the rest of the musole-substance these accumulations appear as dark lines which not only obscure the continuity of the filmils, but by contrast cause the whole of the sarcomeres between them to appear light.

Mechanism of contraction.-Comparing the structure of the sarcomere with certain kinds of protoplasm we lind both differentiated to form a framework

[^10](spongioplasm, substance of sarcous elenient) which encloses in its meshes or pores a clear fluid material (hyaloplasm, clear substance of sarcomere). In both the clear material or hyaloplasm, when the tissue is subjected to stimulation, passes into the pores of the porous matter or spongioplasm (contraction), whilst in the absence of such stimulation it tends to pass out from the spongioplasm (formation of pseudopodia, lesting condition of muscle). The effect of stimulation appears in

Fig. 179.-Wave of contraction passing over a legmuscle fibre of dytiscus. Highly magnified.
both structures to be the production of a change in surface tension (perhaps between the hyaloplasm and spongioplasm) which produces a movement of fluid. This change is demonstrably accompanied in muscle by a difference in electric potential : probably such an electric change occurs in all protoplasm. The movements of cell-protoplasm and those of muscle are therefore in all likelihood brought about by similar means, although at first sight the structure of muscle is very dissimilar from that of protoplasm. As we have already noticed, the movements of cilia are also capable of being explained by assuming variations of surface tension in the protoplasm of the cells to which they are attached.

LESSON XV.

STRUCTURE OF MUSCLE (continued).

1. To study the connexion of muscle with tendon, a frog is killed by destruction of the brain and spinal cord, and placed in about a litre of water raised to a temperature of $55^{\circ} \mathrm{C}$. Jt is left in this for 15 minutes, the water gradually cooling. It is then easy to dissociate the muscular fibres in large numbers. To observe their attachment to the tendon-bundles a fine longitudinal shred must be snipped off with scissors at the tendinous attachment, and dissociated upon a slide in a drop of Ringer. It will usually be found that the muscular substance is retracted from the end of the sarcolemma tube, which is firmly cemented to the tendonbundle. The structure may be brought more distinctly into view by adding to the dissociated fibres a drop of a weak solution of iodine in salt solution or in serum (iodised serum). ${ }^{1}$
2. The blood-vessels of muscle. These are studied in longitudinal and transverse sections or in flattened-out pieces of injected nuscle. It will be noticed that the capillaries are very numerous, and form a network with oblong meshes. In the red muscles of the rabbit, small dilatations are seen on the transverse vessels of the network.
3. The muscular tissue of the heart is studied in sections of that organ (see Lesson XXVII.) and also in teased preparations. To prepare the latter, place a small piece of heart-muscle in 33 per cent. alcohol for a few days; stain in picrocarmine or borax-carmine solution for some days; tease in dilute glycerine.
4. Tear off a small shred of the circular muscular coat of a piece of dog's or cat's intestine which has been for 48 hours or more in 1 in 2000 chromic acid or in 33 per cent. alcohol. Hold the shred with forceps in a drop of water on the slide and fray it out with a needle. In this process many cells will be set free and can be seen with a low power. Remove the rest of the shred. The preparation may then be covered and examined with a high power. Sketch one of the cells. Then allow a small drop of dilute hæmatoxylin solution to diffuse under the coverglass.; to be followed by a small drop of dilute glycerine. Sketch a cell after staining. Measure two or three cells and their nuclei.

Sections of involuntary muscle will be seen and studied along with the viscera which possess muscular coats.

CONNEXION WITH TENDON: BLOOD-YESSELS: DE\ELOPMENT OF CROSS-STRIATED MUSCLIE.

Ending of muscle in tendon.-A small tendon-bundle passes to each muscular fibre and becomes firmly united with the sarcolemma which extends over the end of the fibre (fig. 180). Besides this attachment, a further connexion is established by the fact that the areolar tissue between the tendon-bundles is continuous with that which lies between the musclefibres. There is no actual continuity between contractile substance and tendon.

[^11]Blood-vessels of muscle.-The capillaries of muscular tissue are very numerous. They run, for the most part, longitudinally, with transverse branches, so as to form long oblong meshes (fig. 181). No bloodd-vessels ever penetrate the sarcolemma. In the red muscles of the rabbit, the transverse capillaries have small dilatations upon them (fig. 182). Associated with this and other peculiarities of structure (see p. 133), it is found that the red

Fig. 180.-Termination of a muscular fibre in tendon. (Ranvier.)
m, sarcolemma; s, the same membrane passing over the end of the fibre; p, extremity of muscular substance, c, retracted from the lower end of the sarcolemma-tube; t, a tendon-bundle passing to be fixed to the sarcolemma.

Fig. 181.-Captllary vessele OF MUSCLE : HUMAN.
muscles have a much slower rate of contraction, and a much longer period of latency than the ordinary muscles.

Lymph-vessels, although present in the connective-tissue sheath (perimysium) of a muscle, do not penetrate between the component fibres.

The motor nerves of voluntary muscles pierce the sarcolemma and terminate in ramified expansions known as end-plates or molor end-organs; the sensory nerves end in groups of specially modified muscle-fibres known as muscle-spindles (see Lesson XIX.).

Development.- Voluntary muscular fibres are developed from embryonic cells of the mesoderm (muscle-plate cells), which become elongated, and their nuclei multiplied, so as to produce long slender, multi-nucleated
fusiform or cylindrical embryonic fibres. It is not quite certain whether, as has usually been supposed, the whole fibre is formed of a single enlarged cell, or whether it may be produced by the joining together, end to end, of a number of cells of the muscle plate (or of more than one muscle-plate), so as to produce a syncytium, within which the striated fibrils make their appearance. The cross-striations appear at first along one side of the embryonic fibre, the change gradually extending around the circumference and also penetrating towards the centre; but the protoplasm both at the middle of the fibre, to which the nuclei are at first confined, and at the side opposite to that at which the differentiation began, remains for some time unaltered

Fig. 182.-Vasctlar network of a rhi muscle (semi-tendinosis) of the rabbit. (Ranvier.)
n, arteriole; n, v, vemules ; n, dilatation on transverse branch of capillaries.
in character (fig. 183). Eventually the change in structure extends to these parts also, and the nuclei pass gradually to occupy their ordinary position under the sarcolemma, which has by this time become formed. The sarcolemma is believed to be produced, not by the muscle-fibre itself, but by the mesenchyme or connective-tissue cells between the fibres, but the question of its origin is not definitely settled.

CARDIAC: MUSCLE.

The muscular substance of the heart is composed of transversely striated muscular fibres, which differ from those of voluntary muscle in the following particulars, viz.:--their striations are less distinct; they have no sareolemma, although there is a thin superficial layer of non-fibrillated substance; they branch and unite by their branches and also at the side with neighbouring
fibres, and their nuclei lie in the substance and often near the centre of the fibres. In man and many mammals the fibres are marked off by transverse septa into a series of short cylindrical cell-like portions (figs. 184, 185, 186) joined together end to end and side to side, each corresponding to one of the nuclei. The junctions of these portions may be seen in longitudinal sections of

Fig. 183.-Developing muscular fibres.
A, elongated cell with two nuclei from foetal sheep. Striation is beginning in the protoplasm along. one side of the cell. (Wilgon Fox.)
B, from human fortus of two months. (Ranvier.) p, central protoplasm with several nuclei, n, scattered in it; s, commencing sarcolemma, with striated muscular substance developing immediately heneath it.
C, from human fretus of three months. (Ranvier.) The contractile substance, f, now almost encloses the unaltered protoplasm, g; only one nucleus, n, is represented.
appropriately stained fixed tissue; they also come distinctly into view in sections of fresh tissue stained with nitrate of silver. The septa appear to be bridged across by fibrils, continued into the portions above and below the lines of junction (fig. 18.7). These apparent septa have usually been regarded as intercellular spaces separating the constituent cells of the tissue from one another. Some authorities, however, are inclined to regard the cardiac muscular tissue as originally forming a syncytium, the cells being all

Fig. 184.-Muscular fibres from TIIE HEART, MAGNIFIED, SHOWIN: THEIR CROSS-STRIN, DIVISIONS, AND junctions. (Schweigger-Seidel.)
The nuclei and cross-lines are only repre. sented on the right-hand side of the firrore.

Fic. 185.--Six muscular fibre-cells from the heart. Magnified 425 diameters.
a, line of junction tetween two cells ; b, c, branehing of cells. (From a drawing by J. E. Neale.)

Fig. 186.-Portions of muscle-pibres from the adult human heart. (v. Pilczewska.)

In A one of the so-ealled septa" traverses the protoplasm which extende hetween the nuclei as well is the striated substance. A seeond incomplete septum is also shown.
In B a nuelens is seen at the surface, and serves to render the investing membrane appruent. Notice the zigzagging of the septa, an appenrance which is not infrequent.
continuous both laterally and longitudinally, and the apparent intercellular lines being special differentiations appearing later. H. E. Jordan regards the septal lines as due to fixed localised contractions; Martin Heidenhain considors that they represent portions of the fibres at which growth in length occurs (analogous to the suture-lines between the flat bones of the cranium). As against these two views of the transverse septa, and in favour of that of Schweigger-Seidel, must be set the silver-staining of the supposed celljunctions, and the fact that it is easily possible in some animals to separate the fibres after maceration into short uninucleated fragments (as in fig. 185). Schweigger-Seidel's view has been recently upheld by the observations of

Fig. 187. - Portion of cardiad muscle EXHIBITING CONTINUITY OF FIBRILS across junctional line. (Przewosky.) Highly magnified.

Fig. 188. -Shection from heart of five monthis embryo: human. (G. Mann.)
v. Palczewska and Werner (working with Zimmermann), who have studied the subject in the heart of man and of various mammals. These observers point out, as had been previously done, that the short non-nucleated segments often seen, which Heidenhain regards as fatal to the cell-theory of cardiac muscle, may be parts of cells lying in other planes of the myocardium, which are inserted between those belonging to the plane included in the longitudinal section. On the other hand, the continuity of the muscular fibrils within the masses of Purkinje's fibres under the endocardium in the sheep, the fibrils belonging to one cell being freely continued into those of the neighbouring cells (see fig. 399, p. 288), is in favour of the syncytial theory. Further, in many vertebrates, including some mammals, no cellterritories can be made out in the myocardium.

The explanation of these differences appears to lie in the fact that in all animals the heart-muscle at a certain period of development (fig. 188) is formed of a syncytium of coalesced cells within which the contractile fibres

Fig. 189.-Muscular fibre-cell from the muscular coat of the smale intestine. Highly magnified.
A complete cell, showing the nucleus with intranuclear network, and the longitudinal fibrillation of the eell-substance.

F14: 190.--Portion of a plain musclej-cell, showing mibrils within its cytoplasm. Photograph. Magnified 450 diameters.

Fig. 191.-Plain muscle-fibre, showing nucleus, cen. TRIOLE, AND CYTOPLASM WITII FIBRILS. (Lenhossék.)
Fig. 189.
are developed, and only in some is a differentiation of the syncytium into cells later produced ; even here the lines of junction are bridged across by the muscle fibrils.

It is usually stated that there is no sarcolemma in cardiac muscle-fibres, but v. Palczewska and Werner describe and figure a membrane covering the cardiac cells which they regard as equivalent to the sarcolemma of voluntary muscle.

NON-STRIATED, PLAIN OR INVOLUNTARY MUSCLE.

Involuntary or plain muscular tissue is composed of elongated fusiform cells (figs. 189, 190), which vary much in length. In cross section they are usually angular, an appearance due to mutual compression (fig. 192). Each cell has an oval or rod-shaped nucleus, which shows the usual intranuclear network and commonly one or two nucleoli. There is a centriole-sometimes double-close to the nucleus (fig. 191). The cell-substance is finely fibrillated, but does not exhibit cross-stria like voluntary muscle. There

Fig. 192.--Transverse section of plain mosclet-ftbres of intestine. Photograph. Magnified 400 diameters.

Fig. 193.-Muscle-cillls of intestine. (Szymonowicz.) Magnified 530 diameters.
The fibres are represented in longitudinal section; the interstices between them are seen to be bridged across by fine fibrils. i, interstice ; n, nucleus.
appears, as in cardiac muscle, to be a delicate external layer, probably a stratum of undifferentiated protoplasm, not a true sarcolemma. Next to this, in some smooth muscle, is a layer containing coarser fibrils (boundary fibrils of M. Heidenhain) (fig. 190). Frequently there are seen on involuntary fibres a series of somewhat irregularly placed transverse markings which appear as knot-like condensations of the cell-substance (fig. 190) staining somewhat differently from the rest of the cell. The nature of these is not well understood, but they are perhaps fixed contraction waves (C. M'Gill) ; the fibrils are enlarged as they run through the knots. The
intercellular substance is bridged across by filaments passing from cell to cell (fig. 193).

Plain muscular tissue is found chiefly in the walls of hollow viscera; thus it forms the muscular coat of the stomach and intestines, and occurs abundantly in the muscular coat of the gullet, although it is here intermixed with cross-striated muscle; it is found also in the mocous membrane of the whole alimentary canal from the œesophagus downwards; in the trachea and its ramifications; in the urinary bladder and ureters; in the uterus and Fallopian tubes; in the prostate; the spleen and lymphatic glands; the muscle of Müller in the orbit, and the ciliary muscle and iris. The walls of gland-ducts also contain it ; and the middle coat of the arteries, veins, and lymphatics is largely composed of this tissue. It occnrs in the skin, hoth in the secreting parts of the sweat glands, and in small bundles attached to the hair-follicles; in the scrotum it is found abundantly in the subcutaneous tissue (dartos), and it also occurs in the areola of the nipple.

Development.-According to the observations of C. M'Gill, the smooth muscle of the alimentary canal (pig) is developed from a syncytium of mesenchyme cells which surrounds the entoderm. Some of these cells become elongated and spindleshaped while retaining their inter-connexion. Myofibrils are developed in their protoplasm. These need not be confined to the limits of a single cell, but may extend over two or even a number of cells. The myofibrils are of two kinds, coarse and tine, varying in relative number in different parts. As stated above, an inter-connexion of the cells probably obtains even in the fully formed muscle, which thus retains something of its syncytial character.

In certain situations smooth muscle is formed from ectoderm ; this is the case with the muscular tissue of the sweat glands (Ranvier) and that of the iris (Nussbaum, Szili).

LESSON XVI.

THE TISSUES OF THE NERVOUS SYSTEM.

1. Tease a piece of fresh nerve (vagus of mammal by preference) xapidly ; cither in Ringer or by the method of semidesiccation, keeping the preparation moist by the loreath, afterwards mounting in Ringer. Touch the tibres as little and oblain them as long and straight as possible. Study the myelinated fibres, carefully noticing all the structures that are visible-viz., nodes of Ranvier, nuclei of

Fig. 194.-Ordinary white or myelinated nerve-fibres, showing a sindous outline and double contours. (Sharpey.)

Fitf. 195.-Fine myelinated nervefibres, parts of which mave acqutred a varicose aprearance - l'robably the result of manifulation.
neurolemma, double contour of myelin sheath, segments, etc. Besides the ordinary fibres, some very fine myelinated fibres, and some non-myelinated, will be seen in this preparation. Measure the diameter of four fibres. Draw a short length of one or more very exactly. The preparation may then be stained by dilute magenta and gentian violet solution and preserved with dilute glycerine.
2. Separate (in dilute glycerine coloured by magenta and gentian violet) into its fibres a small piece of nerve (or of a nerve-root: this is much more easy to separate into its fibres) that has been an hour in 1 per cent. osmic acid and then transferred to water. The nerve should have been moderately stretched on a card before being placed in osmic acid. Keep the fibres as straight as possible and only touch them near their ends with the needles. Sketch two portions of, a fibre under a high power, one showing a node of Ranvier and the

Fig. 196. -Portions of two nerveFIBRES STAINED WITU OSMIC ACID, from a yound animil. Diagrammatic. (From a sketch by J. E. Neale.)
R, R, nodes or constrietions of Ranvier, with axis-cylinder passing through. a, neurolenma of the nerve; c, opposite the middle of the segment, indicates the nucleus and proteplasin lying between the nurolemma and the myelin sheath. In A the nodes are wider, and the intersegmental substance more apparent than in B.
other' a nucleus of the neurolemma. Look for pale fibres. Measure the length of a nerve segment between two nodes of Raıvier.
3. Mount in dammar sections of nerve fixed (a) with picric acid or formol followed by alcohol, (b) with osmic acid followed by ${ }^{-}$ alcohol. The sections from picric and formol may be stained with hæmatoxylin. The nerve should be laid out straight upon a piece of card before being placed in the fixing solution. Examine the sections first with a low and afterwards with a high power. Notice the lamellar structure of the perineurium, the varying size of the nervefibres, the axis-cylinder in the centre of each fibre, etc. Measure the diameter of four fibres. Sketch a small portion of a section.
4. Teased preparations and longitudinal sections from the peripheral portious of nerves cut 10 to 30 days before death. The nerves may be prepared with osmic acid as in § 2. Notice the breaking up of the myelin of the sheath, varying in degree according to the length of time the lesion was made previous to death. In longitudinal sections of the central cut end of the nerve, prepared by Cajal's reduced silver method, ${ }^{1}$ new fibres may be seen budding from the extremities of the fibres of the stump.

STRUCTURE OF NERVE-FIBRES.

Nerve-fibres are of two kinds, myelinated and non-myelinated. The cerebrospinal nerves and the white matter of the nerve-centres are composed of myelinated fibres; the sympathetic nerves near their peripheral distribution are largely made up of non-myelinated fibres. The latter are also found in considerable numbers in the vagus.

The myelinated, termed also medullated or white, fibres are characterised, as their name implies, by the presence of the so-called myelin sheath or white substance. This is a layer of soft substance, of a lipoid nature, which encircles the

[^12]essential part of a nerve-fibre, viz., the axis-cylinder. Outside the myelin sheath is a delicate but tough homogeneous membrane, the neurolemma or

n.

Fig. 197.-A small part of a myelinated fibre. Photograph. Very highly magnified.
The fibre looks in optical section like a tulbe-hence the terni tubular formerly applied to these fibres. Three partial breaches of continuity or clefts are seen in the myelin sheath, which at these places exhibits a tendency to split into laminm. Disewhere the myelin sheath shows coagulation-appearances. At n is a nucleus helonging to the neurolemma, embedded in protoplasm; the outline of the nuclens itself is not focussed.

Fig. 198.-Myelinated nerve-fibre, fresh, showing a node of Ranvier. Photograph. Very highly magnified.
The coagulation of the substance of the myelin sheath is advanced, and the axis-eylinder is slightly shrunken away from it, and is thus rendered distinctly visible. On the right the axis-cylinder shows a fibrillar appearance.

Fig. 199.-NERVE-FIBRES FROM SCIATIC NERVE INCLUDING, BESIDES SEVERAL ORDINARY lakge myelinated fibres, a non-myelinated fibkie and a fine myelinated fibre. Osmic preparation. Photograph. Magnified 300 diameters.
nucleated sheath of Schwann, but this is not present in all fibres, being absent in those within the nerve-centres.

The myelin sheath is composed of a highly refracting lipoid material (myelin), which gives a characteristic double contour and tubular appearance
to the nerve-fibre (fig., 194). It affords a continuous investment to the axis-cylinder, except that, as was shown by Ranvier, in the peripheral nervefibres it is interrupted at regular intervals. At these places the neurolemma appears to produce a constriction in the nerve-fibre (figs. 196, 198, 199, 200, 202), and the interruptions of the myelin sheath are accordingly known as the constrictions (Ranvicr) or nodes, the latter term being applied from the

resemblance which they bear to the nodes of a bamboo. It is, however, uncertain whether the constriction is entirely occupied by neurolemma or partly by a special band (constricting band of Ranvier); if the latter, it is composed of a material which resembles intercellular substance in being stained with nitrate of silver (fig. 210). The segment of nerve between two successive nodes is termed an internode; in the middle of each internode is

Fig. 201.-Rettculifm of nedrokeratin in myelin shfath of nerte-firre. Photograph. Magnified 600 diameters.
one of the nuclei of the neurolemma. Besides these interruptions of Ranvier the myelin sheath shows a variable number of oblique clefts (figs. 197, 200, 202), subdividing it into conico-cylindrical portions of variable length (myclin segments) ; there is reason to believe that the clefts are artificially produced. At the clefts there is an appearance of spiral fibres in the myelin sheath, especially after treatment of the nerve with certain reagents ; it is, however, probable that this appearance also does not represent a pre-existing structure.

A reticular appearance has been noticed in the myelin sheath (neurokeratin network of Kühne, fig. 201), and can be readily seen in nerve-fibres fixed in alcohol and treated with ether, but it varies greatly in aspect, and is perhaps produced by the action of the reagents employed to show it. By other

Fig. 202. - Longitedinal and transverse segtion of myelinated neevéfibre of frog (osmic acid and acid fuchsin). (After Biedermann.) The longitudinal section shows one node of Ranvier and two myelin clefts. The flbrillar structure of the axis-cylinder is shown in both longitudinal and transverse section.
modes of fixation (e.g. picric acid) the myelin sheath seems to have a rod-like structure (fig. 203) ; this again may be due to the manner in which certain of its constituents are coagulated by the reagent. Osmic acid stains the myelin sheath black (figs. 199, 200, 202, 204).

The axiscylinder, which runs along the middle of the nerve-fibre, is a soft transparent thread which is continuous from end to end of the fibre. On account of the peculiar refractive nature of the myelin sheath it is difficult to see the axis cylinder in the fresh nerve except at the nodes, where it may be observed stretching across the interruptions in the myelin sheath; it may also sometimes be seen projecting from a broken end of a nerve fibre. It is longitudinally striated, being made up ofextremely fine fibrils (neuro fibrits, fig. 202). They are seen isolated at the terminations of nerves as in the cornea and are also visible in the section of a nerve-fibre as fine dots (fig. 202), which sometimes appear to have a clear centre

Fig. 203.-Section across five nerve-fibres. Magnified 1000 diameters.
The nerve was hardened in pioric agid and stained with picro-carmine. The radial striation of the myelin sheath is very apparent. In one filore the rays are broken by shrinkage of the axis-cylinder. The fibrils of the axis-cylinder appeat tubular. (From a photograph.) (fig. 203), as if the fibrils were tubular. Staining with nitrate of silver produces a curious transversely striated appearance in the axis-cylinder (Frommann) (fig. 210, C); this is due to successive precipitations of chlorides, and does not indicate a pre-existing structure (A. B. Macallum).

Myelinated nerve-fibres vary greatly in size (fig. 204), but may be classified as large, intermediate, and very small. The largest are those which are passing to the skin and to the voluntary muscles; the smallest are those destined for viscera and blood-vessels constituting the pre-ganglionic

Fig. 204.-Shetion of tile sclatic nerve of a cat, showing the fariations in size of its constituent fibres. Photograph. Magnified 390 diameters. The nerve was fixed with osmic acid,

Fig, 205.-Non-myelinated fibres from a teashd preparation of vacus of cat fixed with osmic acid. Photograph. Magnified 300 diameters.

Abont u dozen non-myelinated fibres are included in the photograph. Besides these one ordinary myelinated fibre and three fine myelinated fores are seen.
autonomic nerves. As shown by Gaskell, the ventral roots of the last one or two cervical nerves, of all the thoracie, of the first and second lumbar, and of the seeond and third sacral nerves contain, besides the ordinary large myelinated fibres, bundles of these very small fibres. Some of the eranial nerves (spinal accessory; vagus, glosso-pharyngeal, facial) contain similar very fine myelinated fibres, intermixed with the larger fibres.

The term "autonomic" was introduced by Langley to include both the fibres of the sympathetic system and the analogous fibres (parasympathetic) proceeding from the cranial and sacral regions. All autonomic nerves consist (1) of fine myelinated "preganglionic fibres" arising in the central nervous system and ending in ganglia, and (2) of non-myelinated "post-ganglionic fibres" arising in the ganglia and passing thence

Fig. 206.-SEGTION ACROSS NON-MYELINATED FlBRES (FROM THE SPEIENICNERVE OF THE OX). (Tuckett.) to their peripheral distribution.

Non-myelinated fibres.-Intermingled with the myelinated fibres there

Fig. 207.--Section of part of selatic narve of man. Photographed from a preparation by H. Pringle. Magnified 60 diameters.
A dozen or more funiculi of various sizes are included in the photograph. The fat cells in the epineurium appear as clear spaces.
may always, in peripheral nerves, be found a certain number of pale fibres devoid of the distinct double contour which is characteristic of the presence of a myelin sheath (fig. 205). These are the grey or non-myelinated fibres, also called, after their discoverer, fibres of Remals. They frequently branch, which the myelinated fibres rarely do except near their termination,
and they are beset with numerous nuclei which have usually been regarded as belonging to a delicate sheath, although, as a matter of observation, both in longitudinal view and in cross section the nuclei appear to lie in the substance of the fibres rather than at their surface. As just stated, all the autonomic nerves, when they approach their peripheral distribution, are chiefly made up of fibres of this nature (post-ganglionic fibres); but the preganglionic fibres, both of sympathetic and of other autonomic nerves, always possess a thin myelin sheath, and have the usual structure of myelinated fibres.

Fif. 208. -Section of the cervical sympathetic of the cat. Photographed from an osmic preparation made by R. Tsukaguchi. On the left a small portion of the vagus is seen.
The vagus and sympathetic in the neek of the cat run in separate perineural sheaths, hut are united by epinetrium. The vagus has both moderately large and fine myelinated fibres and also a considerable number of non-myelinated fibres. The cervical sympathetic nerve is wholly composed of fine myelinated fibres derived from the thoracic anterior roots. But in this case the sympathetic includes a bundle of moderately large myelinated fibres derived from the vagus higher up.

Structure of the nerve.trunks.-In their course through the body the nerve-fibres are gathered up into round bundlos or funiculi, and the funiculi are again united together to form the nerves met with in dissection (fig. 207). The connective tissue which connects the funiculi and invests the whole nerve, uniting it to neigbbouring parts and conveying to it blood-vessels, lymphatics, and even nerve-fibres destined for its coats, is termed the epineurium; it frequently contains fat-cells. That which ensheathes the funiculi is known as the perineurium. It has a distinctly lamellar structure, the lamellæ being composed of connective tissue covered by flattened

Vagus.
Sympathetic.
Fig. 209.-Section of vago-sympathetie nerve of dog including a portion of each nerve. Photographed from an osmic-stained preparation made by R. Tsukaguchi.

In the dog the vagus and sympathetie in the neck are included in one perineural sheath; their fibres are only separated by a septum of endoneurium. The vagus contains a considerable number of fine myelinated and of non-myelinated fibres, besides the ordinary myelinated fibres which are of intermediate size. The cervical sympathetic is wholly formed of fine myelinated fibres.
endothelial cells (fig. $910, \Lambda$). Between the lamellæ are clefts for the eonveyanee of lymph from the interior of the funieulus to the lymphatics

Fig. 210.-Nerves stained with silver nitrate. (Ranvier.)
In A, the epithelial-like layer of flattened cells belonging to the sheath of Henle is stained. In A and D, the cross-like markings at the nodes are exhibited. In C, a single fibre is shown more highly magnified, with Frommann's transverse markings of the axis-cylinder. a, constricting band; m, myelin sheath; cy, axis-cylinder.
of the epineurium. The delicate connective tissuc which lies between the nerve-fibres of the funiculus is the endoneurium. Within it is conveyed the longitudinally arranged meshwork of blood-capillaries; its interstices communicate with the lymph-clefts of the perineurium.

All the branches of a nerve, and even single nerve-fibres which are passing to their distribution, are invested with a prolongation of the perineural sheath, known as the sheath of Honle.

The nerve trunks themselves receive sensory nerve-fibres (nervi nervorum) which ramify chiefly in the epineurium and terminate within this in endbulbs (Horsley).

The degenerative processes which occur in cut nerve fibres as well as the subsequent reparativo processes are dependent on the nerve-cells from which the fibres take origin and will be dealt with after the structure of nerve-cells has been studied (see p. 174).

- LEssons XVII. AND XVIII.

THE TISSUES OF THE NERVOUS SYSTEM (continued).

1. Pur a small fragment of spinal ganglion of frog or mammal into 1 per cent. osmic acid for a few hours. Place in water containing a morsel of thymol for a few days. Tease in dilute glycerine. Notice the spleroidal ganglioncells ; their large nuclei and distinct nucleoli. Many of the cells may still be seen within their nucleated membranous sheath. Look for cells which still retain the axis-cylinder process and for T -shaped junctions of nerve-fibres with this. Fatcells may be present in the periganglionic connective tissue. These will appear intensely black in osmic preparations.
2. Prepare in the same way a spinal ganglion or Gasserian ganglion of the ray. Notice the bipolar character of many of the cells.
3. Prepare a piece of sympathetic ganglion as in $\$ \$ 1$ and 2. If from the rabbit observe that many of the cells are bi-nucleated.

Measure two or three cells in each of the above preparatious.
4. Mount stained sections of ganglia, both spinal and sympathetic. These will serve to show the arrangement of the cells and fibres in the ganglion and the nucleated sheaths around the nerve-cells.

The ganglia may be fixed and hardened in saturated solution of corrosive sublimate or of picric acid or in 10 per cent. formol. They may either be stained in bulk or sections cut from paraffin and stained on the slide.
5. Ehrlich's methylene-blue method, Golgi's silver chromate method, or Cajal's silver reduction method, especially the last named, are all useful for showing the connexions of ganglion-cells with nerve-tibres. See Appendix.
6. Take a swall fragment of the grey matter from a piece of spinal cord of ox, or calf, or man, either fresh or after a few days' maceration in $\frac{1}{8}$ per cent. bichromate of potassium. Choose by prefercnce a picce from the lumbar enlargement (ventral horn). Spread the fragment out with needles into an even film on a slide, and allow it to dry. Immerse in alcohol for a few minutes. Stain with methyleneblue. Rinse with water, dry completely and mount in dammar. Notice the large branching cells, some with a mass of pigment near the nucleus. Observe the fibrillation of the cell-processes. Many axis-cylinders of nerves will be seen in this preparation deprived wholly or partially of myelin sheath; their fibrillar structure can then be well seen. Carefully sketch these appearances. Similar preparations may be made from the grey matter of the cerebral cortex and cerebellar cortex.
7. Examine sections of spinal cord, medulla oblongata, and brain stained by methylene-blue by Nissl's method (see Appendix), to exhibit the angular particles within the nerve-cells.
8. Examine sections of parts of brain, spinal cord, and ganglia prepared by Cajal's method, to exhibit the neuro-fibrils in the cells and cell-processes. These preparations are best made from young animals.
9. Examine the nerve-cells and neuroglia-cells in sections from the spinal cord, cerebrum, or cerebellum of a small animal, e.g. young rat or kitten, prepared by Golgi's method. The sections must be mounted in thick xylol balsam or dammar, on a cover-glass, dried rapidly on a warm plate, and tixed inverted over a glass (or card) ring on a slide.
10. Fixamine sections of spinal cord (lumbar enlargement) and corresponding spinal ganglia taken from an animal in which the sciatic nerve was cut about three weeks before it was killed. The sections are stained by Nissl's method. Most of the ventral horn nerve-cells and the ganglion-cells on the side of the lesion will exhibit chromatolysis (breaking down of the Nissl granules) which is claracteristic of culls the axons of which have been severed. The altered cells may be compared with the normal cells on the intact side.
$7,8,9$, and 10 may be deferred until the central nervous system is studied.

structure of nerve-cells.

A nerve-cell or neurocyte consists of a cell-body and cell-processes. One of the processes is always a nerve-fibre or the axis-cylinder of a nerve-fihre. The cell-bodies always lie either in the grey matter of the nerve-centres, or in little groups on the course of certain of the peripheral nerves; these groups often cause nodular enlargements of the nerves, known as ganglia. The most conspicuous ganglia are those found upon the dorsal or posterior roots of the spinal nerves, upon the roots of some of the cranial nerves, and upon the trunk and principal branches of the sympathetic. Minute ganglia are also found very numerously in connexion with the nerves which are supplied to glands and involuntary muscular tissue, as in the salivary chlands, heart, alimentary canal, bladder, uterus, etc.

Nerve-cells vary much in size and shape'; many are large, some being among the largest cells met with in the body, but others are quite sunall. The cell-body or cytom (Sanger Brown) is usually crroneously termed the nerve-cell; it is the part of the cell containing the nucleus. The latter is large and usually spherical and contains a very distinct nucleolus. All nervecells possess at least one process; this is known as the aron or neuron (neretibre process) ; it becomes either a non-myelinated nerve-fibre or the axiscylinder of a myelinated fibre. If ather processes are present they are always branched almost from their commencement at the cell-body, and are therefore termed deudrons or deudrites. The cytoplasm is fibrillated; the fibrils pass into all the processes, and are known as mewo-fibrits; they are believed to be the actual contuctors of nerve-impulses. Their existence in the axis cylinder of the nerve-fibre las alrealy been noted (p. 151). The cell-bodies contain numerous mitochondria, which can be shown by intra ritam stains (Cowdry). The cytoplasm contains also peculiar angular
 blue; the size, number, and arrangement of these granules vary greatly in different cells (fig. 211). The Nissl granules change in number and size with the physiological condition of the cell; thus it is found that nerve-cells which have been fatigued by prolonged activity (fig. 212), and also those the axis-cylinder process of which has been cut (fig. 211 C , and

Fig. 2l1.-Nerve-cells, stained by Nissl's method. $\times 750$.
A, from ventra horn of spinal cord, monkey; a, commencing axon. B and C, from facial nucleus, dog. C, shows Nissl degeneration consequent on section of the facial nerve 16 days previous to death.

Fig. 212.-Two motok nerve-cells from the dog. a, normal ; b, after a period of prolonged activity. (Photographed from preparations by G. Mann.)
fig. 213), show the Nissl granules becoming disintegrated; they may even disappear for a time from the cell. A similar result is found to occur after

Fig. 213.-Chronatolysis of two nerverchids of spinal cord of rabbit, produced by sleverance of motor nerve 15 days previoushy. (Cajal.) in A, the chromatolysis is pather lecs advanced than in B. In both, the nucleus is displaced to the periphery. a, axon; b, c, ohromatolysed eell-substrnce.
the action of poisons which especially affect the nervous system. The Nissl granules of the nerve-cell appear to consist chemically mainly of nucleoprotein. They contain organically combined iron (Macallum). Many nervecells have a clump of pigment-granules (fig. 214), containing lecithin, at one side of the nucleus. This is especially markerl in certain localities (locus caruleus, locus niger), and is more frequent in man than in the lower animals. The pigment tends to increase in amount as age advances.

As already stated, the cyton or body of every nerve-cell is traversed

Fig. 2lf.-A nehve-cell from the human spinal cond. (From Prenant, Bonin, and Maillard.)
r, aron; d, deudrons; " mucleus with nucleolus; p, pigment-granules.
by fine fibrils (neurofibrils) continuous with those in the axis-cylinder of the issuing nerve-fibre process and with similar fibrils in the dendritic processes. They were noticed by Max Schultze in vertebrates and were later described by Apáthy in certain annelids. They can be seen without difficulty in all nerve-cells (fig. ${ }^{215}$) by the employment of certain special methods of staining. The neuro-fibrils are said to present variations in thickness according to the condition of activity of the cell at the time of death.

Most, if not all, nerve-cells show a delicate superficial reticulum (fig. 21.6), described by Golgi, which, according to J. Turner, is an investment derived from neuroglia-cells. Golgi has also described another network
of fibrils with somewhat larger meshes (deep reticulum of Golgi) (fig. 217) in the deeper parts of the cell. The meaniny of this network is not known. Although most distinct, in nerve-cells it is not confined to them, a similar network having been noticed in epithelial and other cells.

Eutirely distinct from the nerve fibrils is a system of fine canaliculi, which has been described by E. Holmgren, permeating the cytoplasm of the

cell-body in some nerve-cells fur the purpose of subserving its nutrition by conveying plasma into its substance (tig. 218). These channcls are stated by Holmgren to be quite distinct from the deep reticulum of Golgi. He describes them as occupied by branching processes of neuroglia cells (trophospongium) (see p. 5, and fig. 218). In the very large nerve-cells from which the nerves to the electric organs of the electric fish of the Nile (Malapterurus) arise, even blood-vessels penetrate into the cytoplasm.

Processes of nerve-cells.- As already intinated, the processes are of two kinds. The first kind is the axis.alinder process (Deiters) or werve-fibre process, so called because in myelinated nerve-fibres it becomes the axis-

 - Erebral cortex fif the cat ; Ehrifch's methylene-blue methon. (Cajal.)
A, larger ; B, smaller cell, a, , folds in the netwrok; b, a ring-like condensation of the network at the poles of the larger cell ; r, spinons projections from the surface.

Fig. 217. - Nefve-tell from spinal GANGLION, SHOWING DEEP NETWORK IN THE ©YTOPLASM. (Golgi.)

$\mathrm{F}_{\text {hif }}$:218.-Trophosiongith within 1 aimiliux cell. (E. Holmgren.)
cylinder (fig. 219, a, a^{\prime}); in non-myelinated fibres, it becomes the nerve-fibre itself. It is also known as the axon or neurason, but the term neuron ${ }^{1}$ better expresses the fact that it is the actual nerve-fibre.
${ }^{1}$ From the Greek word $\nu \in \hat{p} \rho o \nu$, a nerve.

No fully developed nerve-cell is without this process. The place

 PHOCESS UF A XERYE. (HEL. FROM THLE SPlNAI, comb. (Nl. Schultze.)
$\times x$, portion of the cell-body, out of which the fibrils of the axje-cylinder process, a, are seen to emerge. At a^{\prime}, this process acquires a myelin sheath. Highly magnified. where it arises from the body of the nervecell (cone of origin) is marked off from the rest of the cell-substance by absence of Nissl granules (see fig. 211). The other processes of the nerve-cell are those which were termed by Deiters the "protoplasmic processes"; they are now usually termed the dendrilic processes, dendrons, or derulrites, and are generally multiple, whereas the axon is generally single. The dendrons are characterised by the fact that as som as they leave the cell they begin to ramify like the roots of a tree, whereas the axis-cylinder process does not branch until near its termination, with the exception of a few fine lateral offshoots which may be given off in its course. Dendrons may be altogether absent; the cell is then adendritic. Some nerve-cells have only one process (unipolar cells), but most have two or more (bipolar, multipolar). The dendrons contain Nissl granules, but the axons never.

The shape of the cell-body depends largely on the number of processes and the manner in which they come off. If there is but one chief process the cell-body is generally nearly spherical. This is the case with most of the cells of the spinal ganglia; in these the single process, after a short course, divides into two fibres, which pass the one centrally the other peripherally (fig. 230). When there are two main processes from a nerve-cell they often so off in opposite directions from the cell-body, which is thus rendered somewhat spindleshaped (figs. $2 \pm 0,221$), but occasionally they emerge at the same part. When there are three or more processes, the cell-body becomes irregularly angular (figs. 211, 214, 215).

In some cases where there appear to be two fibres connected with a cell, one of them is derived from another nerve-cell elsewhere, and is passing to end in a ramification which envelopes the cell-body. In certain situations the ramification is coarse and forms a calyx-like invest-
ment to the cell-body; in other places the pericellular fibrils are very fine
and form a fine arborisation over the cell loody. Where the filurils come in contact with the surface of the cell they may end in small button-like enlargements or varicosities (fig. 222).

 In A, the melin sheath stops short of the cell-body; in B. it is rontinuerl as a thin layer over the cell-borly.

Fle. 20l. - Spinal ganglion-celds and fibrlg of Ray showing the bipolaf (HARACTER OF THE (EELLS. Osmic preparation. (Fanvier.)
$t . l$., large muelinated filmes; t.mn., medinm sized myelinated fibres; E, ronstriction of Ranvier: \quad, sheath of ganglion-cell; u, u, mullei of sberith ; g ', surface of fell; n, its nuclens; c.a; axis-cylinder process entering the cell; a similar process is sen emerging at the opmosite pole. The myelin sheath of the nerve-fibes is stained blark by the osmic acirl.

In preparations made by Golgi's chromate of silver method the nervecells with all their processes are coloured black by a deposit of reduced silver, so that the processes can be traced for a considerable distance from the body of the cell, in fact in many instances as far as their remotest ramifications. It has been found by the employment of this method that the axis-cylinder
process is not always an unbranched process, as was formerly supposed, but that it usuatly gives off fine lateral lnanches (collaterats), which themselves tend to ramify in the adjacent nerve-substance (fig. 223, r). And although the main part of the process usually passes on and becomes the axiscylinder of a long myelinated nerve fibre (long-aronert cell, fig. 223), this is not always the case, for in another type of nerve-cell within the nervecentres (short-axoned rell, fig. 224), the axis.cylinder process breaks up almost immediately into an arborescence. The long process of the first type

 ('EAS, GE THE H1MAN
I am indelited to lor I. 'Furne for the drawing here reprodnced.
(which becomes the axis-cylinder of a long nerve-filse), although it may remain unbranched throughout its conrse, ultimately ends in almost every instance in a terminal ramification or arborescence ; and this whether the ending is at the periphery or within the central nervous system itself.

Synapses.-Each nerve-cell including all its processes is regarded as an automatically independent element or nereennit, the neurone of Waldeyer, ${ }^{1}$ and the connexion of one nerve-cell with another is believed to be effected through the medium of the terminal arborisation of their cell processes. Such arborisations may interlace with one another, as in the olfactory glomeruli, in the retina, and in the sympathetic ganglia (fig. 225) : or a terminal arborisation from one cell may embrace the body or the cell-
${ }^{1}$ Ofteu erroneously spelt wroron. A neurone is exactly the same as the nerve cell (cell-body with all its processes) : the neuron is the nerve-tibre process (see p. 163).
processes of another cell; as with the cells of the spinal cord (fig. 296), the cells of the central acoustic nucleus in the pons and in many

Fig. 223.-A pyramidat qeit of the cobtex (ferbri of the rabbit. Cell ff type i. of Golnt (with lone axom). (Cajal.)
a, basal dendrons; p, apical dendron ramifying near surface; e, axon or nerve-fibre process; c, its collaterals; b, fibres of white matter of brain.
other places. The term synapse (nomrosynapse) is applied to these modes of junction. By them nervecells are linked tagether into long chains

4, avon; (7, d, dembrons,

Fig. 225.-Synaptic connexions of sympathetic cellis from the superior cervical ganglion of man. (Cajal.)

The cells A, B show well-marked intracapsular dendrons; C, D, synapses between dendrons out. side the cell-capsules; E, a fibre, which is itself surrounded by a fine spirally wound fibril, passing to a cell and forming a synapse with the cell dendrons within the capsule; a, a, axons; b, c, a, f, f, extra-capsular dendrons.
(neurone-chains) ; the anatomical path, as above indicated, being interrupted at the synapses, although physiological changes (nerve impulses) are pro-pagated-stepping over, as it were, from one cell to the other at each synapse. Probably what really happens is a generation of new nervous impulses in the successive cells forming the chain.

The doctrine of the anatonical independence of the nerve-cell is known as the "neurone-theory." It is supponted loy the uppearances of chromate of silver preparations of nerve-cells. In these the reduction of the silver is strictly confined to single cells, which beeme stained with all their processes; and these processes, when demonstrated by this method, are never found in continuity either with the processes or with the bodies of other nerve-cells. Moreover, many of the facts relating to nerve-degeneration can be more readily interpreted hy this theory than loy one which assumes the existence of direct continuity leetween the nerve-units. But it has leen shown liy A páthy that in annelids (the nervous system of which was formerly supposed to offer a typical example of isolated, linked "neurones"), filmils are in fact continuous from cell to cell and are not interrupted at the synapses; it is possille that the same may prove true for vertebrates also, in which case the doctrine of independent units would require modification. But there undoubtedly exists a physiological independence so far as the maintenance of nutrition of the cell and its processes is concerned ; and there is alsn evidence that in the transmission of nerve impulses from one neurone to another a block always oecurs at the synapses, cansing a slight arrest on delay in the transmission. It is also noteworthy that nerve inpulses, so far as is known, pass a synapse in one direction only, never in the reverse direction. In motor or efferent nervecells this direction is always towards the cellloody hy the dendrons and away from it by the axon, liut in the sensory fibres the conduction both towards and away from the cell-widy is atfected liy the nerve-filine processex.

NERYE-GANGLIA.

In ganglia (figs. 227, 228) each cell-body has a nucleated sheath which is continuous with the neurolemma of the nerve-fibre which belongs to the cell. In spinal ganglia, and in many of the corresponding ganglia on the roots of the cranial nerves of mammals and of most other vertebrates, the cells have only one issuing process, the axon, neuron, or nerve-fibre process. This soon acquires a myelin sheath and then passes with a somewhat convoluted course to some little distance from the cell-body, where, still within the ganglion, it divides into two ; one fibre passing to the nervecentre, and the other towards the periphery. The branching is T-shaped or

Y-shaped, and always ocours at a node of Ranvier (figs. 229, 230). The neuro-fibris of the central and peripheral branches retain their individuality

 TVPB of remas. Photagraph. Aagatied $2+0$ diameters.

 and mown darkly staning wile, contrasting with the layger and chearer eells.
in the common trunk; they are traceable into a neuro-fibril network within the cell-body (fig. 25.4). The spinal ganglion cells have, as a rule, no dendrons, but some show, besides the axons, short processes terminating in bulbous enlargements (fig. $2^{2} 2.2$) either within the cell-capsule or immediately

Fic: 299. - Two spinala gavghon-celles, showing pifurcation of theit yerve-frbre processes. (Ranvier.) Osmic preparation.
n, nuclens of one of the rells ; n^{\prime}, nuclei of capsules ; $n^{\prime \prime}$, mulei of nemrolemma; $c, c, c^{\prime} e^{\prime}$, constrictions of Ranvier.

Fig. 230.-Types of cerebro-spinal ganglion-oblla, from vagus fanglion of cat. (Cajal.)
A, B, large cells with much convoluted commencement of axon ; C, D, smaller cells ; E, F, smallest cells, staining darkly and without axonal convolution.
outside it (Huber, Cajal). These either represent flendrons, or, as Nageotte has suggested, aborted axons. Short intracapsular processes also occur in sympathetic ganglia (figs. 225, 236).

The origin of the axon is not always simple, but may be multiple, the

Fig. 231.-Pertemimiar arborisitions in spinil, gancilion-cfilis. (Cajal.)
In A the armorisation extemis over the cell-bods; in B, it is limited to the ason. f, h, c, , l, afferent fibres.

several parts forming at first a plexus close to the cell, eventually joining to produce a single axon. According to Cajal this multiple condition tends to become accentuated with age (fig. 233).

Two chief varieties of cell occur in the spinal ganglia, one large and clear, the other small and staining almost uniformly dark (figs. 228, 230). According to Rawson, the latter give origin to non-myelinated sensory nerve-fibres. The cell-body of the spinal ganglion-cell is sometimes invested by yamifications of a fine nerve-
tibre (fig. 231), deriver either form one of the wther cells of the same gangline or froni a cell in a neighbouting sympathetir ganglion. Similar libres, foming pericellular plexuses, also ocen in sympathetic ganglia (fig. 237).

u, issting axon; b, part of pericellilar plexus ; c, multiple origin of axon.

Sections of sympathetic ganglia (fig. 234) do not show the regular arrangement of large bundles of myelinated fibres traversing the ganglion

Fig. 234.-Segtion of sxmpathetio vanhligi of doh. Pholograph. Magnified 240 diameters.
which forms a conspicuous feature in spinal ganglia. The cell bodies are smaller ; they usually have several dendrons and one axon ; this generally becomes a non-myelinated nerve-fibre, but is occasionally finely myelinated. In certain animals (rabbit, hare, guinea-pig) the sympathetic cells have each two nuclei (fig. 235). In the frog the sympathetic cells are unipolar, but

Fhi. 23.7-A shmeqthetic inehereld. (Ramier,)

Fig. 236.-Twe sxmpathetic ganglion-uelles, man. (Cajal.)
u_{4}, \ldots, ason ; b, \therefore, intracapsular processes ; d, knob-like ending of an intracapsular process.
sometimes show a second spiral fibre winding roind the issuing axon. Such spiral fibres occur also in man; here, as already stated, they appear to lee afferent fibres which are forming synapses around the axons and cell-borlies of the ganglion eells (fig. :37).

The cell-bodies in both spinal and sympathetic ganglia are disposed in aggregations of different size, separated by bundles of nerve-fibres (figs. 297, 234). The ganglion if large is enclosed by an investing capsule of connective tissue which is continuous with the epineurium and perineurium of the entering and issuing nerve trunks.

 termination of afferent fibres within the cell-capsole. (Cajal.)
A, large; B, smaller cell. a, b, afferent filres surpounding a dendron and passing into the capsule.

WEGENERATION INU REGENELATION UF NERVE-FTBRES AND

 NERYE-CEJLS.Degeneration.-Sinec each nerve-fibre is the process of a nerve-cell, when a nerve is eut or crushed so as to sever the continuity of its fibres the distal separated part degenerates. Its axis-eylinder beeomes broken up and disappears, the nuclei of the neurolemma multiply, and the myelin sheath undergoes a process of disintegration into droplets of fatty substance which stain intensely black, like olein, when treated by the method of Marchi (see Appendix), a proeedure whieh does not blaeken the myelin sheath of normal fibres. The network of neuro-fibrils in the nerve-endings-both motor and sensory-begin to show ehanges within a few hours; the fibrils swell and
become blended with one another, and the mass thus formed then breaks up into portions and disappears. The change which results in the myelin sheath of the fibres was described by A. Waller in 1850, and is known as Wallerian degeneration (fig. 238, A to C). In man and mammals the change is apparent 24 to 28 hours after section of the nerve, and proceeds rapidly;

Fig. 238.-Dleeneration and regeneration of nerte-fibres in the rabbit. (Ranvier.)
A, part of a nerve-fibre in which degeneration has conmenced in consequence of the section, fift, hours previously, of the trunk of the nerve higher up; my, nyelin of sheatb becoming broken up into drops ; p, granular protoplasnic snbstance which is replacing the myelin ; n, nucleus ; g, nenrolemma. B, another fibre in which degeneration is proceeding, the nerve having been cut four days previously; p, as before; cy, axis-cylinder partly broken up, and the pieces enclosed in portions of myclin, my. C, more advanced stage of degeneration, the myelin sheath having almonst disappeared, and being repiaced hy protnplasm, p, in which, hesides drops of fatty substance, $1 \prime$, are numerous nuclei, $n^{\prime \prime}$, which have resulted from the division of the single nueleus of the internode. D, commencing regeneration of a nerve-fibre. Several small fibres, t^{\prime}, t^{\prime}, have sprouted from the somewhat hulbous cut end, b, of the origimal fibre, $t ; a$ an axis-cylinder which has not yet acqnired its myelin sheath ; x, s^{\prime}, neurolemma of the original tibre. A, C, and D are from osnic preparations; B, from an alcohol and carmine preparation.
by the third day the nerve-fibres cease to conduct impulses. When a peripheral nerve is cut, all the nerve-fibres distal to the point of section must degenerate, because all have grown from and are processes of nervecells in or near the nerve-centre-the afferent fibres from the cells of the spinal ganglion on the dorsal root, the efferent fibres from the cells of the ventral horn of the spinal cord or from similar cells in the brain.

Waller supposed that no changes are produced extrally to the injury when a nerve is cut, nor inleen is there any obvious immediate alteration in the nerve fibre itself between the place of injury and the cell-body. Hut it was found by Nissl that degenerative changes oceur in the cell-body of every cell (whether motor or sensory) the axis-oylinder of which has been severed. ${ }^{1}$ These changess become apparent a few days after section of the nerve-fibre and consist in a disintegration of the Nissl granules, assoeiaterl at first with a general swelling of the cell-body and nuclens, which last passes to the periphery of the cell-body. After a time the disintegrated chromatic substance lecomes in great measure renoved and the cell-body and nueleus become shrunken in volume. This process of disintegration and disappearance of chromatin is termed Nissl degeneration or chrometolysis. Tt is hrought ahout not only hy section of the axon (figs. 211, C; 213), but also as the result of excessive fatigue of the intact cell (fig. 212), and of the action of a large number of drugs and poisons.

The chromatolysis may be persistent or may he recovered from. Sometimes it is followed by almost complete atroply of the cell-body, and when this is marked there may ultimately ensue a secondary Wallerian degeneration of the part of the nerve-fibre still attached to the cell. The chromatolysis is said to be accompanied by degenerative changes in the neuro-fibrils (Marinesco).

Very little is known ahout the microscopic changes which ensue on the section of ' non-myelinated nerve-filmes, althongh it may be conjectured that their neuro-fibrils will show changes similar to those which have been described in the axis-cylinders of the myelinated fibres. That they resist degeneration longer than myclinated fibres seems clear from the fact that they will continue to conduct nerve-impulses, when artificially stimulated, for a considerally longer time after section, than will the myelinated filmes; which generally lose their power of conducting such impulses after two or there days in mammals.

Regeneration.-After a certain lapse of time, especially if the cut ends of the nerve are brought into apposition, functional continuity between them may become re-established. But when such re-establishment of function takes place in a cut nerve, it is effected not by re-establishment of anatomical connexion between the cut-off degenerated fibres and the non-degenerated fibres of the central stump, but by an outgrowth of new fibres from that stump (figs. $238, \mathrm{D} ; 239 ; 240$). If the nerve has been cut right across several buds may grow out from the end of each axon in the stump, but if the severance has been merely by crushing, so that the neurolemma remains intact-as by tying and releasing a ligature-the proximal end of the axon may simply grow down into the distal part of the sheath as a single fibre (Langley). When the nerve is completely cut across scar tissue forms between the cut ends, and the newly sprouting fibres endeavour to find their way through

[^13]this scar tissue, and, after traversing it, pass towards the periphery along the course of the degenerated filmes, the sheaths of which serve as guides

 HEATME. (Ciakl.)
A, clown-growth of non-mpulinated fibres from the olal axons: $z_{\text {, intad part still }}$ oryelinaterl. 'The axomare are sed (o) lie
 sex
 If, a fibre, the axis-cylinder of which has not grown down with the rest, but which shows peculiar degenerative appearances, such as buds from the axis-eylinder, and at d it sepuration of the nemro-fibrils.

 A NERVE "TTT TS DOMS IEFORE beath. (Cajal.)
A sises linder <pronts whidh have grown down from the entral ant and of a nerve into the ohi sheathes the merve libres: myelin -ryps are st ill sisibe within the old sheathe. Two of the new tileres arp inferstitial (mot in ond sheathsh, they are growing in a newls fimed melnatel protopiamiestrand, h, h. Two of the down-growing fibres (a, a) show enlarged ends; c, a neuro fibril with bulbous enlargement ; e, two neurofibrils growing down within an olil sleath; to the left of it, an old sheath withont new fibres.
for the down-growing axons. If the new fibres succeed in entering these sheaths of the old fibres they grow down in them to their destination, and the
continuity and conducting power of the nerve become ultimately restored. This may not happen for three months or morr, wcording to the length of nerve cut out and the nature of the severance, although the process of downgrowth begins within a few hours of the injury. Some investigators have attempted to show that regeneration may take plare imlependently in the peripheral part of the cut nerve. There is, however, no regeneration of

Fie. ©41.-Longitumina sermen of the peripheral part of a mprefe (cervtal sympathetio of edt) which was (itt di days before mitath. (Tsukaguchi.) Magnified 210 diameters.
Notice the numerous Longitudinally arranged muclei which are emberlderl in protoplasmice strands. Into some of these strands neurofibrils from the central stump have already made their was.
axons in the peripheral cut end, although certain changes take place there, e.g. the multiplication of nuclei and their regular arrangement in long protoplasmic strands (occupying the old sheaths) into which the new fibres grow (fig. 241). But there is no actual union of the down-growing fibres of the central stump with others formed independently in the peripheral severed trunk, and of course no union with the old axis-cylinders, which have wholly disappeared.

The protuplasmie stands just mentioned were first described by Buingner, and are known ly his mame. Booke las shown that even when the regrerating fibres grow mot into lont hotwcen the strands of Binioner they are invarially enclosed within the protoplasm of cells and maintain an intucellular position even to their remotest end. The ecdls which thus direet and probably minister to the nutrition of the growing norve-fibes are tomed by Boeke "conducting celis." Sucht cells, prombly mesemelymic or comective-tissue cells, are even fomel enclosing the growing axis-cylinders in the scar-tissine which separates the emds of the cut nerve. The adrancing axis-cylinders are manaly tominated hy a bulkomswelling similar to that which characterises the growing tilnes of the embromic nerves (\mathbf{p}. 183), and they may also exhihit latrral ramifieations. Even when the cut cental stmon is tumed backwads and fixed amongst the muscles or under the akin, a certain mmber of newly-budded filmes may find their way from it into the elegenmated paipheral part of the merve.

When the mion is effected hetween the ent ends of an ordinaly mixed nerve, sensony fibres ultimately find their way to the sensmy structures in which the original fibres teminated and mond fibms to the cond-plates on the musclefilnes; these having for the most part remained as small collections of sarcoplasm with mumerns muscle muclei, although having lost the terminal ramifications of the axisecylinder and the ma-lei which belomged to it- the endings of the nervethbes, with their motwonk of nemo-fibrils, lxeing eventmally re-established. It is possille, however, to effect a comexion butwen dixsmilar nerves as for example hetween the motor (hypoghossus) and sensory (lingual) morese of the temgue. bineke has shown that in this case (hypughsins and lingualis) the hypoglossus finces will grow down into the pripheral degenemated part of the lingualis and will form semsory endings in the moms membrane, and the lingualis fihere will grow down into the peripheral degenerated part of the hypoglossis and frim motur endinge in the muscular filmes. It is also possible, as Langley and Anderson showed, to canse the ent eental end of the rervieal vagus to mite with the cut peripheral end of the cervical sympathetic: in this case the regenemating filues of the ragus pass into and emd within the superion cervical ganglion.

If from any cause regeneration fail to establish itself, the central end of the cut fibre and the cell-body from which it, takes origin undergo slow atrophic changes resulting from disuse. These atrophic changes may ultimately extend to other links in the cell-chain, especially in goung animals; so that even remote cells in the same physiological path may eventually become atrophied (v. Gudden's atrophy, recurrent atrophy).

No effective regeneration of cut nerve-fibres is ever seen in the brain or spinal cord, although the process of degeneration of all the fibres which are cut off from their cell-bodies occurs in the same manner as at the periphery and Nissl degeneration also takes place in the cell-bodies. Both in the nervecentres and the peripheral nerves (if regeneration fail to occur in the latter), the place of the degenerated nerve-fibres becomes eventually occupied by strands of fine fibres, not unlike the fibres of cicatricial tissue. These strands stain tleeply with carmine and remain unstained by osmic acid and by the Weigert-Pal method, and are thas ifferentiated from the surrounding normal myelinated nerves.

NEUROGLIA,

Besides the nerve-cells and nerve-fibres there occurs in the brain and spinal cord a peculiar tissue which has been termed the neurogia. It is composed of cells and fibres, the latter being prolonged from and through
the cells. Of the neuroglia elcments some are radially disposed. These start from the lining layer of the central canal of the spinal cord and the ventricles of the brain, being derivatives of the ciliated cpithelium-cells lining those cavities. They course in a radial direction, slightly diverging and constantly branching as they proceed towards the surface of the organ, where they end in enlargements attached to the pia mater. Radial neurogliacells and fibres are seen in the embryo before the nervous elements are fully developed (fig. 242); the neuroglia-cells when first distinct form a kind of spongework (fig. 247).

Fif. 24:. - Section of spinal colid of mabryo chick, showing neurombiaflbres frolonged from the eprtheliodi of the chntral danal. (Cajal.)
d, dorsal : r, ventral surface : c, nentral canal from which the neuroglia-tells and fibres are secn to radiate to the periphery of the cord. Some detached neuroglia-cells are also represented.

Neuroglia-fibres are contained within prolongations or cell-processes of branching ncuroglia-cells (glia-cells). These cells are usually stellate in shape (fig. 244), and their processes pass as neuroglia-fibres between the nervecells and nerve-fibrcs, which they aid in supporting (fig. 243). There appear to be two kinds of these neuroglia-cells differing from one another in the character of their processes (Andriezen). In the one kind the processes branch repeatedly (arborescent cells); in the other kind they remain unbranched from their origin in the cell-body to their termination (spider-cells) (fig. $\supseteq 45, \mathrm{~A}$ and B).

DEVELOPMENT OF NERVE-CELLS AND NERVE-FIBRES.

All nerve-cells in the body are developed from the cells of the neural groove and neural crest of the early embryo ; the neural groove closing to form the neural canal (fig. 246), the cells of which form the spinal cord and brain, and the neural crest giving off at intervals sprouts which become the

F16. 244.-Neurggla-clel, Fhima spivil cord. (Ramvier.) Isolated after maccration in $3: 3$ per cent, alcohol.
germs of the spinal ganglia. The cells which line the neural canal are at first all long columuar cells, but amongst these, and probahly produced ly cell-division from some of them (fig. 247, g; fig. $\because 50, \mathrm{~A}$), rounded cells, neuroblasts, make their appearance, the remaining elongaterl cells forming the spongioblasts. Soon from each neuroblast a process begins to grow out

A, Arborescent ocll, showing two of its processes attached to the wall of a ressel. B , spider cell with long interlacing but unbranched processes.
(fig. $247, n$; fig. 248 ; fig. 250). This is the axon, and it is usually characterised by an enlarged extremity (incremental cone) (fig. 249, b, f, d, h, i; figs. 250, 251). Some of these growing axons emerge from the ventro-lateral region of the canal and become the axis-cylinders of motor nerves. The dendrons of the cells appear somewhat later than the axons. The axiscylinder processes of some of the neuroblasts remain within the nerve-centre;
from these are developed the commissural, association, and intercentral fibres.

 mpinal. eaviolih, (v, Lemhossék.)

A, canal still open; l', manal closert.

Highly magnified bew of part of a seetion, at he time of the firm differentiation of the nemen-

 mevbormant. (Gurwitsch, after Soott.) Highly magnitied.

Harrison has directly observed the outgrowth of the axon proeesses of the neuroblasts of the amphibian larva in isolated neuroblasts examined in serum under the microscope. The growth of nerve-fibres can also be observed at the ends of the developing nerve-fibres in the tail of the tadpole (fig. 252). In this case, as in all others within the body, the growing fibres are not free but are

Fig. 249.

Fif: 250.

Fif: 249.-Seetion of spinai gord of cifiek of third d.iy of inembation, (Cajal.)
A, ventral root-fibres formed by out,rowths of motor nemroblasts, c, e; B, dorsal root-fibres forned hy ingrowths of bipolar sensory neuroblasts, O, in ganglion rudiment; a, early neurol, lasls; b, neuroblast giving rise to a commissural nerve-fibre, $d ; h, i$, enlarged ends of growing axons; e, e, neuroblasts of which the dendrons are beginning to appear.

Fie. 250. -Section of part of neural canal of chick of two and a half days. (Cajal.)
A, germinal layer containing spherical neuroblasts, a, h, e (a neuro-fibril has already begun to grow out from a) ; 3 , neuroblasts in a bipolar stage; d, enlarged end of growing axon; e, another growing tangentially.

Fig. 25l.-Neuroblasts from the spinal cord of a tilird-day chick embeyo. (Cajal.)
A, three neuroblasts, stained by Cajal's reduced silver method, showing a network of neuro-fibrils in the cell-body; a, a bipolar cell. B, a neuroblast stained by the method of Golgi, showing the incremental cone, c.

The nerse-fibes, which are non-mblinated, are prowing into cjongaterl nocleated cells, which probalds repreacut the "coluducting cellis" of lioeke.

Fig, 253.-Spinal and sympathetic ganglia aǹd lart of spleil cord of cilick of seventeenth day of incubation. (Cajal.)
A, ventro-lateral part of spinal cord with d, a motor nerve-cell; the fibres of the ventral root are seen emerging and passing to \mathbf{B} (the connexion appears interrupted in the section); \mathbf{C}, posterior root formed of fibres whioh have grown from the ganglion-oells in D, spinal ganglion; E , mixed spinal nerve; \mathbf{j}^{r}, sympathetle ganglion; \mathfrak{a}, \mathfrak{a}, axons of sympathetic cells, passing to Join tho spinal nerve; 1 , dendrons of these oells; c, axons passing to the sympathetic cord; h, cells of spinal ganglion still bipolar ; j, i, bipolar cells lrecoming transformed into unipolar ;
j, unipolar cell with T-junction ; f, section of arter: ; is, body of vertebra.
enclosed in elongated nucleated cells, which probably represent the "conducting cells" of Boeke (see p. 180).

The sprouts from the neural crest contain the neuroblasts from which the dorsal root-fibres are developed, Axons grow out from these neuroblasts in two directions, so that the cells become bipolar (figs. 249, 253). One set of processes, forming the dorsal root-fibres, grows into the dorsal partion of the neural canal : these fibres ramify in the developing grey matter; the other set, containing the afferent fibres of the spinal nerves, remains

Fig. 254.-Spinal ganglion-cells of embryo at period of transtition from bipolar to unipolar cells. (Cajal.)
The preparation has been stained to show the neuro-fibrils. A, B, nnipolar cells; $\mathrm{C}, \mathrm{D}, \mathrm{F}, \mathrm{G}$, transitional forms ; E, E, bipolar cells ; 1I, small cell with neuro-fibrils incompletely developed.
outside the canal and grows towards the developing ventral roots, eventually mingling with them to form the mixed nerves. As development proceeds, the bipolar ganglion cells become gradually transformed in most vertebrates, by a shifting of the two axons, into unipolar cells (fig. 253, h, i, j; fig. 254); but in some fishes the cells remain permanently bipolar (fig. 220). This is also the case with the ganglion-cells of the eighth cranial nerve (ganglion of Scarpa and ganglion of the cochlea) in all vertebrates.

The ganglia on the sympathetic and on other peripheral nerves are developed from small masses of neuroblast cells which have wandered along
the course of the out-growirg nerve-fibres; they give origin to axons and lendrons much in the same way as do the neuroblasts within the central nervous system.

The mamer in which the myelin sheath and neurolemma of the nervefibres are formed is not fully understood. It is probable that the myelin at any rate is formed by the axis-cylinder itself, whilst the neurolemma with its nuclei is derived from cells (lemmal cells) which have wandered out from the neural ectoderm along with the outgrowths from the neuroblasts and accompany them in their progress to the tissues. It is however possible that the lemmal cells are of mesodermic origin.

Development of neuroglia.-The neuroglia is developed from the spongioblasts of the neural canal. These, in place of giving off an axon and dendrons like the neuroblasts, send out a number of fine processes in all directions from the cell-body; in these the fibres of the neuroglia are formed. It is held by some authorities that the neuroglia has a double origin, some of the cells-those with unbranched processes--being developed from ectoderm and the others from mesoderm.

LESSON XIX.

MODES OF TERMINATION OF NERVE-FIBRES.

1. Shell out a Pacinian corpuscle from a- piece of cat's mesentery, which may either be fresh or may have been kept for two or three days in $\frac{1}{2 \pi}$ per cent, chromic acid or in 5 per cent. formol. Clear it as much as possible of adhering fat, but be careful not to prick or otherwise injure the corpuscle itself. Mount in water or saline with a thick hair to prevent crushing with the cover-glass. Sketch the corpuscle under a low power, and afterwards draw under a high power the part of the core where the nerve enters and the part where it terminates. Notice the fibrous structure of the lamellar tunics of the corpuscle and the oval nuclei belonging to flattened enduthelial cells which cover the tunics. The distinct lines, which when seen in the fresh corpuscles are generally taken for the tunics, are really the optical sections of these flattened cells.
2. Pacinian corpuscles may also be observed in sections of the skin (in the subcutaneous tissue). Tactile corpuscles may be seen in the papille of the palmar surface of the hand and fingers. Their study may be reserved until the skin is dealt with.
3. Dissect off a small portion of conjunctiva from the fresh eye of a calf or other animal. Spread it out on a slide with the under surface uppermost, and place upon it a drop of 1 per 1000 methylene-blue solution. Watch the preparation with a low power until the nerve-fibres come into view, then cover the preparation and trace them with the high power. They will be seen to terminate in end-bulbs.

Somewhat similar endings can be shown in the same manner in a piece of parietal peritoneum stripped off, laid out flat upon a slide and mounted in methylene-blue solution.
4. Study the corpuscles of Grandry and of Herbst in sections of the skin covering the duck's bill.
5. Mount in glycerine sections of a rabbit's cornea which has been stained with chloride of gold by Klein's method (see Appendix). The sections should be çut by the freezing method. Notice the arrangement in plexuses of the darklystained nerve-fibres and fibrils, (1) in the connective-tissue substance, (2) under the epithelium, and (3) between the epithelial cells. Make one or two sketches showing the arrangement of the fibrils.
6. Spread out a small piece of muscle which has been stained with chloride of gold by Löwit's method, and examine it with a low power to find the nerve-fibres crossing the muscular fibres and distributed to them. Occasionally nerve-fibres which end in muscle-spindles may be observed.

The pieces of muscle are advantageously thinned out for observation by pressure upon the cover-glass: they should not be too much separated. Search thoroughly for the close terminal ramifications (end-plates) of the axis-cylinders immediately within the sarcolemma. The motor endings are most readily shown in the muscles of reptiles such as snakes and lizards.

These nerve-endings as well as others elsewhere can also be displayed in preparations made by other methods (see Appendix).

SENSORY NERVE-ENDINGS.

Nerve-fibres which are distributed to sensory parts end either in special organs or in free terminal ramifications. Within the special organs the actual nerve-ending is also generally ramified,

Nerve-endings in special connective-tissue organs. - Three chicf kinds of these special organs are usually describerl, representerl in man by l'recinian corpuscles, factile rorpuscles, and wubtualls. The type is the same in all: a lamellater connectivetissue capsule enclosing a core of a soft material which appears to be mainly compnsed of nucleated protuplasmic cells. The capsule is an expansion of the porineurium of the nerve, and the core an expansion of the entoneurium of the nerve. Within the corr the axis-

Fic. 2.5 .5

F11: 256.
 S'SINED WITH 'HLARIDE UF b:OLD. (lianvicr.)

cylinder terminates either simply or ly an arborescence. The variations which occur are chielly due to the complexity of this arborescence and that of the capsule, which is sinplest in the combulbs and most complex in the Pacinian corpuseles. In the tactile corpuscles and end bulbs the perinearal connective-tissue sheath of the myelinated fibre expands to form a bulbous enlargement, which is cylindrical or spheroidal in end-bulbs and ellipsoidal in tactile corpuscles. In both kinds of end-organ as the nervefibre enters (in the tactile corpuscle this only happens when it has reached the distal extremity after having wound spirally once or twice round the corpuscle) it loses its sheaths and is prolonged as an axis-cylinder only.

This generally soon ramifies and its branches terminate after either a straight or a convoluted course within the organ; but it sometimes remains almost unbranched (see figs. 255 to 260).

Flg. 257.-End-bulbs at the terminations of nerves in the human conjunctiva, as seen with a dens. (Longworth.)

Fig. 258.-A myelinated fibre terminating in several end-bulbs in the homan peritoneum. (A. S. Dogiel.) Methylene-blue preparation. Low power.

Tactile corpuscles occur in some of the papilla of the skin of the hand and foot, in sections of which they will be studied (see fig. 367). End-bulbs are found in the conjunctiva of the eye, where in most animals they have a cylindrical or oblong shape, but in man they are spheroidal (ig. 257). They have also been found in papillæ of the lips and tongue, in serous membranes, in tendons and aponeuroses, and in the epineurium of the nerve-trunks; and somewhat similar

Fif: 259.-Esd-bulas fhom the hman pheronemm, (Dugicl.) More highly magnified. Methylene-blue preparation.

Fle, 260.-End-billi from the fifntril tendon of the disphrigim of the moi. (Dugicl.) Showing besides the main myelinated fibre terminating by an artorescence within the core, a second very fine myelinated fibre, forming a
more delicate arborescence around the ending of the main fibse in the miter part of the core, Methylene-hlue preparation.

Fio. 201.-End-bulb from tilf glans pinis, showing termination of axis. cylinder. Methylene-blue preparation. (Dogiel.)
u, myelinated neive-filse ; b, shenth of end-bulb.

Fig. 262.-Grandry corpusclirs from the duci's tongue. (Izquierdo.)
A, oomposed of three cells, with two interposed disks, into which the axis cylinder of the nerve, n, is ohserved to pass: in B there is but one trintile disk enclosed between two tactile eells.
sensory end-organs (genital corpuscles) also occur in the integument of the penis and clitoris (fig. 261). Similar bodies of larger size are also met with in the neighbourhood of the joints (articular coripnesles). In the skin covering the duck's

Fig. 263.-Machnified view of a pacinian body from the cat's mesentery. (Ranvier.)
n, stalk of corpuscle with nerve-fibre, enclosed in sheath of Henle, passing to the corpuscle; n, its continuation through the core, m, as axis-cylinder only; a, its terminal arborisation; c, d, sections of endothelial cells of tunics, often mistaken for the tunics themselves; f, channel through the tunics which expands into the core of the corpuscle.
bill, a simple form of end-organ (corpuscle of (randry, fig. 262) occurs, consisting of two or more cells arranged in rows within a capsule, with the axis-cylinder terminating in flattened expansions (tactile disks.) between the cells. These so-called tactile disks are composed like the terminations of axis-cylinders
every where of neuro fibrils which in the disk are arranged in a close network. Heringa, working with Borke, has shown that this network is prolonged into the protoplasm of the cells which hound the disks, so that the actual ending of the axis-cylinder is intracellular. It is mot imporable that this will pore true for many other instances of sensory newe-termination ; it has long been known to l, e thie case with motor nerve-endings.

The Pacinian corpuscles (figs. 263, 264) are larger and have a more complex structure than the tactile corpuscles and end-bullss. They are composed of a number of concentric coats arranged like the layers of an

c. one of the layers of endothelial cells; n, muslens of endothelial cell. It is seen that the thies

onion, and enclosing the prolonged end of a nerve-fibre. A single myelinated nerve-fibre goes to each Pacinian corpuscle, encircled by a prolongation of the perineurium (sheath of If rule), and within this by endoneurium; when it reaches the corpuscle, of which it appears to form the stalk, the lamelle of the perineurium expand into the timics of the capsule. The nerve passes on, piercing the tunics, surrounded by endonemium, and still provided with myelin sheath, to reach the central part of the corpuscle. Here the endoneurium is prolonged to form a core of cylindrical shape, along the middle of which the nerve-fibre, now deprived of its myelin sheath and neurolemma, passes in a straight course as a simple axis-cylinder (figs. $963, n^{\prime}$; 265) to terminate at the farther end of the core, either in an arborisation or in a bulbous enlargement. In its course through the core it may give
off lateral ramifications, which penetrate to all parts of the core, and themselves end in fine branches.

Occasionally the axis-cylinder passes completely through one Pacinian carpuscle, reacquires its sheaths, and eventually ends in another corpuscle.

Besides the myelinated fibre, which is always very conspicuous, it has been shown that both the Pacinian and Herlst corpuscles (see below) receive a fine non-myelinated nerve-fibre which arborises over the outer surface of the core. A similar arrangement also obtains in Grandry's corpuscles, where the tactile cells are surrounded with such an arhorisation (Dogiel and nthers).

Fig. 266. -Pacinian corpuscle from the cat, stained with silver nitrate. (Drawn by G. C. Henderson.)

The tunics of the capsules are composed of connective tissue, the fibres of which for the most part run circularly. They are covered on both surfaces with a layer of flattened endothelial cells (fig. 266), and here and there cleft-like lymph-spaces can be seen between them like those between the layers of the perineurium (see p. 155).

A simple form of Pacinian corpuscle with fewer tunics and a core formed of regularly arranged cells is found in birds (corpuscles of Herbst, fig. 267).

Pacinian corpuscles occur in many situations, especially in the deeper layers of the skin of the hands and feet and penis, in the periosteum of bones, especially in
the neighbmomal of tendons and ligaments, in the comective tissme at the back of the ablomen and (in the cat) very ummemoly in the mesentery, where they are most easily got for ohservation.

Although most of the nerve-endings in connective-tissue structures are

n, melinated herve-tibre; a, its anis-slinder, terminating in an enlargement at end of rore; c, nuclei of cells of core: t, nuclei of cells of outer tunit's: t, inner tunis.

 (D)ugiel.)
enclosed within lamellated capsules, nerves are found to end in some situations in arborisations between bundles of connective-tissue fibres. This has been shown by Dogiel to occur in intermuscular connective-tissue septa (fig. 268) ; and in serous membranes (fig. 269); in the latter such arborisations may be quite superficial and placed just below the endothelium.

Organs of Ruffini -These, which resemble long cylindrical end-bulbs, are
connective-tissue bundles, within which the axis-cylinders of the nerves ramify, ending in flattened expansions (fig. 270). They occur fairly numer-

Fig. 269.-Terminal arborisation from the suphrficial layer of the peritongem of the rabbit. Methythen-blite' preparation. (Dogiel.)
u, myelinated fibre; b, fibre connecting the arborisation with another one

Fig. 270. -An organ of Rufini from the subcutaneous tissuk. (Ruffini.) n, entering nerve-fibres; a, a, ending of their axons; c, c, capsule of organ; v^{\prime}, core.
*

lig. 271.-Orgán of Goleí-Mazzoni from subcutaneous tissue. (Ruffini.) : The organ resembles an end-bulb in general structure.
ously in the subcutaneous tissues of the finger. Other bulb-like organs, spheroidal, oval, or cylindrical in form, have been described by Ruffini
under the name of Golgi-Mazzoni curpuscles (fig. 271); they appear to be varieties of the end-bulb. They also occur in the subcutaneous tissue of the pulp of the finger and in tendons.

Organs of Golgi.-A special morle of nerve-ending is met with in many

17
 (IF (:OLD PREFARATIMN. (Ciaccior.)
m, muscular fibres; I, tendom-hundles; G, Golgi's organ; n, two metse-fitres passing to it.

tendons, near the points of attachment of the muscular fibres. The tendonbundles become somewhat enlarged and split into smaller fasciculi, and the nerve-fibres-one, two, or even more in number-pass to the enlarged parts and penetrating between the fasciculi lose their myelin sheaths, while the axis-cylinders end in a terminal arborisation, beset with irregular varicosities. The structure (figs. 272, 273) is enclosed within a fibrous capsule continuous with the areolar tissue covering the bundles of the tendon; and between the
capsule and the organ proper is a lymph-space, similar to that which is found in the muscle-spindle (see p. 201).

Free nerve-endings. - When sensory nerve-fibres terminate in epithelium, they generally branch once or twice in the subepithelial connective tissue on

Fig. 274.-Verticial section of cornea stained with chloride of gold. (Ranvier.)
n, r, primary plexus in connective tissue of cornea; a, branch passing to subepithelial plexus, $s ; p$, intra-epithelial plexus; b, terminations of fibrils.
nearing their termination. The sheaths of the fibres then successively become lost, first the connective tissue or perineural sheath, then the myelin sheath, and lastly the neurolemma, the axis-cylinder being alone continued as a bundle of neuro-fibrils. This branches, and interlacing with the ramifications of the axis-cylinders of neighbouring nerve-fibres

Fig. 275.--Intra-efithlilal nerve-terminations in the larynx. Golgi method. (G. Retzius.)
On the left the epithelium is stratified and on the right ciliated columnar. n, nerve-fibres in corium.
forms a primary plexus. From the primary plexus smaller branches come off, and form a secondary plexus nearer the surface, generally immediately under the epithelium if the ending is in a membrane covered by that tissue. Finally, from the secondary plexus nerve-fibrils proceed and terminate by ramifying amongst the tissue cells (figs. 274, 275), the actual ending being generally in free varicose .fibrils. This mode of
ending is characteristically seen in the cornea of the eye, but can also be rendered evident in other epithelia.

F11: 27t.

Fui. 277.
 (Banvier.)
 epidermis; a, somewhat modified eell to whieh a tautile dink is applied.
 $\cdots h$, sheath of mindle ; m, intrafusid musche-fibes; n, nerwe-hbres; M, ordinars musele-fibres.

Fig. 278. -Einding of nervil-firris in musclel-spinille. (Rufíni.)

In some situations the nerve-fibrils within a stratified epithelium terminate in flattened or crescentic expansions which lie in the interstices of the deeper epithelium cells, to some of which they are applied. These expansions are known as tactile disks; they are characteristically developed in the skin of the pig's snout (fig. 276), and are also found in the outer root sheath of hairs and in the deeper part of the epidermis in various situations. With appropriate treatment it may be shown that they consist of a fine network of neuro-fibrils.

Sensory nerves of muscles.-The sensory nerves of muscles end in peculiar organs which were termed by Kühne muscle-spindles. Their structure has been specially investigated by Ruffini, Huber, and Dogiel, and also by Sherrington. Sherrington has shown that the large myelinated nerves which they receive (about three or four such fibres entering each spindle not far from its equator) are derived from the dorsal root-ganglia.

The muscle-spindle is a fusiform body, from 0.75 to 4 mm . long, and from 0.08 to 0.2 mm . in diameter ; it lies parallel with the general direction of the fibres of a muscle (figs. 277, 280): It consists of a lamellated connectivetissue sheath externally, within which is a bundle (intrafusal bundle) of from two to twelve peculiar muscle-fibres. These with sone connective tissue and the nerve-fibres form an axial mass; between the axial bundle and the sheath is a lymphatic periaxial spáce, bridged across by connective-tissue cells and fibres. The intrafusal musclefibres are somewhat like embryonic fibres in appearance, being smaller

Fig. 279.-Nekve-endinge upun the INTRAFUSAL MUSCLli-FIBRES OF A MUSCLE-SPINDLE OF THE RABBIT; moderately magnified. Metuyleneblde preparation. (Dogiel.)
ω, large myelinated fibrecoming of from "spindle" nerve and passing to end in an anmulo-spiral lermination on and between the intrafusal flbres: b, a fine myelinated fibre coming off from the same stem and dividing. Its branches, c, pass words the ends of the muscle-fibres and termisin a number of small localised arborisations.
than the ordinary fibres of the musele and having a relatively large number of nurlei with surrounding protoplasm, as in the red variety of muscle. It the proximal end of the spindle they are usually only two

 (Modified from Bocke.) Drawn by R. K. S. Lim.
m, m, ordinary filmes of the musele $; m$, bunde of intrafnsal theres; mensory nerve entering spindle and passing to terminate in ammo-spiral endings aroum its monele-hbres.
or three in number, but they often become cleft as they pass through it; at the distal end they may terminate in tendon bundles. The nervefibres which pass to the spindle are mostly of large size; they divide after reaching the intrafusal bundle, but retain their myelin sheath for a time, although eventually terminating as axis-cylinders, which wind in a spiral
manner between and around the intrafusal muscle-fibres (figs. 278, 279, 280), which they clasp by flattened encircling branches (annulo-spiral

Fig. 281.-Sensury nekte telemative in abborisations aboind the HNDS UF MUSOLH-FLBRES, (Ceccherelli.)

Fhe. 282.--Nerve-midine in frese musculati flbres uf lizard (Lacerta viridis). (Kühne.)
A, end-plate seen edgeways; \mathbf{B}, from the surface; $n, 8$, sarcolemman; p, p, expansion of axis. cylinder. $\ln \mathbf{B}$ the expansion of the axis-cylinder appears as a clear network branching from divisions of the myelinated fibre.
endings). Other, much finer, myelinated fibres pass to the spindle and terminate in neighbouring parts of the intrafusal bundles in flower-like or plate-like expansions (fig. 279). According to some observers these fine fibres are prolonged from the annulo-spiral endings of the coarser fibres;
but Dogiel states that they run independently to the intrafusal bundle. No motor nerve-fibres appear to pass into the spinilles, unless the fine fibres above mentioned are to be so regarded, nor do the muscle-fibres of the spindle undergo atrophy on section of the moter nerve-roots, as is the case eventually with the ordinary muscle filses. It is not uncommon to find two or three spindles near one another or even enclosed in a common sheath.

Another kind of ending of semsory fiberes in mascle has been descibed in the form of an arburixation of nerve-fibrifs aromal the ends of the muscle-fibres which are inserted into teman (tig. 281).

 Gulb frefakathas. Magnified lodiameters. (Szymunowiez.)

ENDIN: OF MOTOR-NELIVES.
The motor-nerves to muscles terminate in fine ranifications of the axiscylinder. In cross-striated (voluntary) museles the ramification is localised in special organs termer motor end-organs, or, less correctly, end-plates.

In cross-striated muscles, the nerves, which are large and myelinated, terminate, as is just stated, in special end-organs (figs. 282 to 285). A myelinated fibre will branch two ot three times before emding, and then each branch passes straight to about the middle of a muscular fibre. Having reached this, the neurolemma of the nerve-fibre is continued into the sarcolemma of the muscle, the myelin sheatlı stops short, and the axis-cylinder ends in a close terminal ramification with varicose expansions upon its branches. This ramification is embedded in a layer of granular sarcoplasm (sole) (fig. 284, b), which is collected into a small mass at the place of nerveending. Embedded in this mass of sarcoplasm are two kinds of nuclei; one oval in shape resembling the muscle-nuclei generally; the other circular
and more closely connected with the expanded and branched ending of the axis-cylinder. When a motor-nerve is cut and undergoes degeneration these last become atrophied and disappear, but the sole and the nuelei which more properly belong to it remain; and if the norve undergoes regenoration a new axis-cylinder eventually finds its way to it and develops again a ramification with the usual fibrillar network. In some cases the ramification of the axiscylinder is restricted to a small portion of the musoular fibre, and forms with the granular bed a slight prominence (eminence of Doyère). This is the case in insects and mammals. In lizards the ramification is rather more extended than in mammals, whilst in the frog it is spread over a considerable length of the fibre. The ramification always shows a fibrillar structure, when appropriately fixed and stained (fig. 285). In mammals there appears to be only one end-plate to each fibre; in reptiles there may be several. The end-plate is covered, externally to the sarcolemma, by an expansion of the sheath of Henle of the nerve-fibre. This expansion has been termed telolemma.

Besides the myelinated nerve-fibre with its end-plates many if not all muscle-fibres receive an accessory non - myelinated nerve - filament which also ends in a fibrillar expansion at the surface of the fibre (fig. 285). These filaments do not degenerate if the motor-nerve is cut before it receives fibres from the sympathetic ; from which, therefore, it may be assumed that they are derived (Boeke).

In involuntary muscle, both plain and cardiac (figs. 286, 287), the nerve-fibres, which near their termination are entirely non-myelinated, end in plexuses. The prim-

Fig. 284. - Motor end-organ of a lizard. Gold preparation. (Kühne.)
u, nerve-fibre dividing as it approaches the end-organ; r, ranification of axis-cylinder upon b, granular bed or sole of the endorgan; m, clear substance surrounding the ramification of the axis-cylinder. ary plexuses are generally furnished with ganglion-cells in abundance. Such gangliated plexuses are best developed in the wall of the intestine. From the cells of these plexuses other nerve-fibres pass to form secondary plexuses and ultimately end in ramifications amongst the contractile fibre-cells, to the surface of which the endings of the branches, often slightly enlarged, are applied (Huber and de Witt). Boeke, however, finds (in the ciliary muscle) that the terminal fibrils pass into the muscle-cells, ending within them in loop-like expansions.

 m, mselimuled filme; a, arceswory fibre.

Fig. 286. - Ending of nerve-fibrilis in platin motscite.
(Huber and de Wittis)
a, fibrils passing to their temmation; b, a termal fibrit; c, a dand passime to another bmsile.

FIG. 287,--INDINQ of NERVE-FIBRES IN CARDIAC MISCTA. (Sminnow.)

LESSON XX.

STRUCTURE OF THE LARGER BLOODVESSELS.

1. Sections of a medium-sized peripheral artery and vein, e.g. popliteal or radial. In this preparation the limits of the vascular coats can be well seen and also the differences which they present in the arteries and veins respectively. The sections may be stained with hæmatoxylin and van Gieson or with orcein, and mounted in dammar.
2. Mount a thin tangential slice cut from the inner surface of a large artery which, after having been cut open longitudinally and washed with distilled water, has been rinsed tirst with nitrate of silver solution and subsequently with distilled water and exposed for a minute or two to sunlight. It may then be hardened

Fig. 288. -Section of renal abtery of nog. (G. Mann.) Low power photograph.
The elastic layer of the thin inner coat is thrown into corrugations by the post-mortem contractinn of the middle coat. The distinction between middle coati and adventitia is well shown. Some branches of the renal nerves are' seen, cut across, in the tissue around the artery.
in alcohol. This preparation will show the outlines of the endothelium-cells which line the vessel. A similar preparation may be made from a large vein.
3. A piece of an artery which has been macerated in 33 per cent. alcohol is to be teased so as to isolate some of the muscular cells of the middle coat and portions of the elastic layers (networks and fenestrated membranes) of the inner and middle coats. The tissue may be stained cautiously with diluted hæmatoxylin, and glycerine afterwards added. The muscular cells are recognisable by their long rod-shaped nuclei ; the cells often have an irregular outline. Sketch one or two and also a prece of the elastic network or fenestrated membrane. The fenestrated membrane is best obtained from one of the arteries of the base of the brain; it is also well seen in the arteries within the kidney.
4. Transverse sections of aorta and carotid. Notice the preponderance of elastic tissue in these as compared with ordinary peripheral arteries.
5. Transwerse section of rena rava inferine. Notice the romparatively thin layel of circolar muside, and nutside this the thiok layer of lomgitnothal musentar bimelles in the adventitia.
 римッт

 Hetwe. 75 diamoters.
 mber conat, apmering as a brioht lime in mection; e, momalar laver (midne mat); d, suter enat, combisting of comontivestismbe hmolles. In the interatires of the mombes are some
 artos.

Fio. 290. - Section of renal artery stainet with oreleis tu show tie distribution of the elastic tissue. Magnified 200 diametrrs, Photograph,

An artery is usually described as heing composed of three coats, an inner or elastic, a middle or muscular, and an external or areolar (figs. 288, 289,290). It is, however, more correct to describe the wall of an artery as being mainly composed of muscular and elastic tissue, lined internally by a pavement epithelium (endothelium), and strengthened externally by a layer of connective tissue (adventitia).

The inner coat (tunica intima) is lined by a thin layer of pavement

Fig. 291.-Epithelial layer lining the fostiorior tibial aktery, 250 diameters.

Fig. 292.-Elastic network of artery. (Toldt.)

Fig. 293.-Portion of fenestrated membrane of Henle from an artery. (Toldt.)
epithelium (endothelium) the cells of which are somewhat elongated in the direction of the axis of the vessel (fig. 291), and form a smooth lining to the tube. After death they become easily detached.

The endothelium is the essential layer in all blood-vessels. , It is always the first part to be developed, and in some it remains as the only layer of the vessel, This is the case with all true capillaries and with certain veins, and also with the lacunar spaces or sinusoids, which, as Minot has pointed out, take the place of capillaries in certain parts (e.g. in the liver, the medulla of the suprareual capsules and the Wolffian body of the embryo) ; it is also true of the sinuses of erectile tissue, as well as the sinus-like blood-vessels which are met with in invertebrates. In some structures the endothelial layer of the blood-vessels is imperfect, viz.: in the capillaries and blood-sinuses of the spleen, the placental mucous membrane of the pregnant uterus, the sinusoids (capillaries) of the liver and probably the
sinus－like capilanies of home－naryow；in certain of these places the blood finds its way into the interstices of the uman and into direct contact witl the tissme－cells．

The endothelimm－cells of the above parts gencrally possess remarkable phago－ （ytic properties；taking up particles（e．y．of Indian ink）which have been injected into the homd－strean（Tait and Mrs Medartney）．

Next to the endothelium comes an elastic layer in the form either of elasti，neluorks（fig．292）or of a fenestrated mombrane（figs 299，294）．In

some arteries there is a layer of fine connective tissue intervening letween the endothelium and the fenestrated membrane（subendothelial layer）（fig．295）．

The middle cout（tunica media）consists mainly of circularly disposed plain muscular fibres，but it is also pervaded in most arteries by a network of elastic fibres connected with the fenestrated membrane of the inner coat and sometimes almost as much developed as the muscular tissue itself． This is especially the case with the largest arteries，such as the aorta and carotid and its immediate branches，whereas in the smaller arteries

Fig. 296.-Muscle-celles of Articry. (Kölliker.)
w_{2} nuclens.

Fic. 298.-Section of the lingual arthry. (Grünstein.)
u, endothelium and subendothelial layer of inner coat ; b, its elastic layer ; c, \boldsymbol{c}, d, innermost and outermost layers of midclle coat, with elastic fibres passing obliquely to join the elastic layers which bound that coat; e, innermost part of onter coat or adventitia, showing many elastic fibres cut across; f, outer part of udventitia.
of the limbs the middle coat is composed almost purely of muscular tissue. The muscular fibres are comparatively short, with long rod-shaped nuclei (fig. 296); they are often irregular in shape (as in fig. 297), especially if the middle coat contains much elastic tissue.

The outer coat is formed of connective tissue with a good many elastic fibres, especially next to the middle coat (figs. 290, 298). The strength of an artery depends largely upon this coat; it is far less easily cut or torn than the other coats, and it serves to resist undue expansion of the vessel. Its outer limit is not sharply marked, for it tends to blend with the surrounding connective tissue; hence it has been termed tunica adventitia.

Fig. 299. -Section of thoracic aorta as seen under a low power. (Toldt.) a, the inner cont, consisting of three layers, viz. : 1. Endothelium seen as a fine line. 2. Subendothelial layer. 3. EJastic layer. In the outer part of the inner coant, at its junction with the middle, a layer of longitudinal muscular fibres is represented as cut across. b, middle coat with alternating layers of muscle and elastic tissue ; c, outer coat with two vasa vasorum.

Variations in different arteries.-The aorta (figs. 299, 300) differs in some respects in structure from an ordinary artery. Its inner coat contains a considerable thickness of subendothelial connective tissue, and its elastic tissue is chiefly composed of tine fibres, not especially marked off from those of the middle coat, so that the inner and middle coats appear blended with one another. On the other hand, there is a very great development of elastic tissue in the middle conat, forming membranous layers whioh alternate with layers of the muscular tissue. A good deal of connective tissue also takes part in the formation of the middle coat, making it unusually strong. The middle coat constitutes almost the entire thickness of the wall, the inner and outer coats being thin.

Apart from the relative amount of elastic tissue which has been already referred to, the variations which occur in the arterial system have reference chiefly to the development and arrangement of the muscular tissue. Thus in manr of the larger arteries there are a few longitudinal muscular fibres at the inner boundary of the middle coat, and in some arteries amongst the circular fibres of the middle coat. This is the case in the aorta. In the part of the umbilical arteries within the umbilieal cord there is a complete layer of longitudinal fibres internal to the circular fibres and another external to them, whilst the amount of elastic tissue is vely small. Longitudinal fibres are also present in some other
arteries (iliac, superior mesenteric, splenic, renal, etc.), external to the circular fibres, and therefore in the outer coat of the artery.

Fig. 300.-Section of aorta more magnified. (Grünstein.) u, endothelial and subendothelial layers of inner coat ; b, c, outer layer of inner coat containing many fine elastic fibres; d, e, parts of outer coat.

The veins on the whole resemble the arteries in structure, but they exhibit certain differences. In the internal coat (fig. $301 a, b$) the same layers may be present, but the elastic tissue is less developed, and may be
guite inconspicurus; it seldom takes the form of a complete membrane. The endothelium colls are less elongated than those of the arteries. The middle coat (c) contains less elastic tissue and also much less muscular tissue, being partly occupicd by bundles of white connective-tissue fibres. These are continuous with those of the external coat (d), which is relatively better developed in the veins than in the arteries, so that, although thinner, their walls are often stronger.

Many of the veins are proviled with colves, which are crescentic folds of the internal coat strengthened by a little fibrous tissue: a few muscular fibres may be found in the valve near its attachment. The layer of the

 into the outer comectise-tissue coat, d.
inner coat is rather thicker and the endothelium-cells are more elongated on the side which is subject to friction from the eurrent of blowl than on that which is turned towards the wall of the ressel.

Variations in different veins.- The veins of difiement parts vay emsiderahy

 to the outer coat. This is the case with the abdominal, and especially the hepatic, portions of the inferior yena catra (fig. 302), and to a less extent with the bepatic veins and the portal vein and its tributaries. In the superior vena cava, in the upper part of the inferion vena cava, and in the jugular, subclavian, and innomivate veins muscuhn fibres are almost entirely absent in the middle coat, and there are but few in the advertitia. The veins of the pia mater, brain and spinal cord, retina, and bones, and the venous sinuses of the dura mater and placenta have no muscular tissue.

It is only the larger veins, especially those of the limbs, that possess valves. They are wanting in many of the veins of the viscera (although occurring abundantly

Fig. 302.-Transverse section of the infriior vena caya of the Dog. (Szymonowicz.) Magnified 150 diameters.
a, intima ; b, thin layer of circular muscle ; c, thick adventitia with longitudinal muscular bundles; d, a vas vasis.
in some of the tributaries of the portal vein), in those within the cranium and vertebral canal, in the veins of the bones, and in the umbilical vein.

LESSON XXI.

SMALLER BLOODVESSELS AND LYMPH-VESSELS. SEROUS MEMBRANES. MICROSCOPIC STUDY OF THE CIRCULATION. DEVELOPMENT OF BLOODVESSELS.

1. Take a phece of pia mater which has heen fixel with z per cent. bichromath of putassimen and stainerl with homatosylin and separate from it some of the small howel-vessels of which it is chictly compnsed. Dhnot the sheres in dilute glyerrine; or after dehydratins with aloohel and paswing through clave oil they can be momoted in dammar. The structure of the small at teries can le stndied in this peraration, the nuelei of the endothelime and of the musular coat leeing monght listinctly into view hy the stain. The veins of the pia mater praspsis in musenlar tissue. Capillary wessels which have been dragged ont from the lam in removing the pia nater may also be seen. Sketch two small arturies of ditierent sizes, giving also their me:smements.
2. Dlomit in dammar a pifee of the omentum of the rabhit, staned with silver nitrate. The membrane should bestretchodoveracork or a ring of wondormbanite. Or it may convenimatly befacd ly apreading it over a glass plate (lantem slide) and having lomght its margins romil the edges of the plate, placing another plate of the same size at the hack, and linding the plates together ly a conple of rubber bands; the exposed surface can then he treated in the following way: Rinse with distillel water, cover for lise minutes with 1 per cont. nitrate of silver solutime again wash with distilled water and expose to sumbight in wates. When sightly browned, the prepanation is removed from the light. Picces may now be cut of from the membane, Hoated that on a slide, allowed to dry completely and momed in dammar; they should inclute one or mone blood-vessels. Or the glass plate with the onentnom stretched orer it may be dehydrated with alcohn and cleared with clove oil hefore cutting off pieces to bemounted in dammar: It is easicr to cut up the membanc after treatment with cheve oil.

The preparation is intended to show the embthelime of the smaller bhadvessels and ancompuying lymphatios, and also the cutothelime of the serous membane. Dike skethes showing these structares.

In this and all other silvered preprations great care must be taken not tormb or pall upon wemple the membane, a to injure it in aty way.
3. Monnt in dammar a pice of the rentrad tendim of the rablit's diaphamm which has been prepared with silver nitate, the plemal surface having been tirst
 mome readily to penetrate to the network of mandying lymplevesols. Ohnere the lymphatic plexis under a low power' ; sketels a purtion of the network. If the peritoneal surface is fonensed, the endothelimm wheh cowers that surfue will le seen, and "phosite the clefts hetween the madially disposed temdom-homdes stomata may loe lonked for in this endothelime.
4. Examine sections of the thomace thet. 'These are made in the same way ass sections of the blood-vessels.
5. Stomata.-Open the abdomen of a freshly killed frog, preferably a male, and remove the abdominal viscera, taking care not to injure the membrane at the back of the abdomen, which lies between and at the sides of the kidneys and soparates the peritoneal oavity from the risterne lympheticer morma, a large lymph-space in which the aorta and vena cava are contained. Cut out one kidneyi along with as much as possible of the membrane which lies between the kidney and abdominal wall ; rinse with distilled water; and place in a watch-glass
of 1 per cent. silver nitrate for one minute. Rinse again in distilled water and expose in tap water to the light. When slightly browned snip off a portion of the thin membranous septum, float it flat on a slide, drain off the superfluous water and allow it to dry; then add a drop of dammar and cover the preparation.

Before the preparation is dried upon the slide it may be stained with magenta and gentian-violet solution, washed with distilled water and then allowed to dry. If this is done the nuclei of the cells are shown.
6. Kill a frog by destroying the brain and study the circulation of the blood in the mesentery. It can also be studied in the web of the frog's foot, in the lung and tongue of the frog or toad and in the tail of the tadpole or of any small fish. For observing the phenomena attending commencing inflammation and the emigration of leucocytes from the vessels, the mesentery is the most convenient

Fig. 303.-Method of studying the citculation in the frog's misenterx. (Ranvier.)
L, corik or glass plate; B, perforated oork, the aperture in which is closed by a circular glass cover (not too thin); M, mesentery laid over the glass cover; I, intestine. The brain is destroyed and the animal then immobilised with curari.
object. The deccrebrate frog can be immobilised with curari or by placing it in water in which chloroform or ether has been shaken up: a lateral incision is then made in the abdominal wall, a loop of intestine drawn out, and laid over a ring of cork which is fixed to a glass or cork plate (fig. 303). The membrane must be kept wet with Ringer's solution. ${ }^{1}$
7. The arrangement of the blood-vessels in the various tissues and organs is studied in injected preparations (see Appendix for methods of injection).

THE SMALLER BLOOD-VESSELS.

The coats of the small arteries and veins are much simpler in structure than those of the larger vessels, but they contain at first all the same elements. Thus there is a lining endothelium and an elastic layer, the two
${ }^{1}$ For details of the methods used in studying the circulation in different parts, see the author's Course of Practical Histology.
together forming an inner coat; a middle coat of circularly disposed plain muscular tissue; and an adremtitio. The same differences are found between the smaller arteries and veins as with the larger, the walls of the veins being thinner and containing far less muscular tissue (fig. 304), and the lining epithelium-cells, much elongated in both vessels, being far longer and narrower in the small arteries than in the corresponding veins (fig. 305).

In the smallest vessels it will be found that the elastic layer has entirely disappeared in the veins, and that the muscular tissue is considerably reduced in thickness in both kinds of vessel. Indeed, it is soon represented by but a single layer of cells, and these eventually no longer form a complete layer. By this time, also, the outer coat as well as the elastic layer of the inner coat have disappeared both from arteries and veins. The vessels are

- Magnified :350 diancters.
reduced, therefore, to the condition of a tube formed of endothelium-cells, with a partial covering of circularly disposed muscle-cells.

Even in the smallest vessels which are not capillaries the differences between arteries and reins are still manifested. These diflerences may be recapitulated as follows: The veins are larger than the comesponding arterics: they branch at less acute angles; their musclecells are fewer, and their emetheliun-cells less elongated; the elastic layer of the imer coat is always less marked, and disaplears souner as the ressels lecone smaller.

Capillary vessels. When tracerl to their smallest branches the arteries and veins are eventually seen to be continued into a network of the smallest blood-vessels or capillaries. The walls of these are composed only of Hattened epithelium-cells (fig. 306) continuous with those that line the arteries and veins; these cells can be exhibited by staining a tissue with nitrate of silver. The cell-outlines are not shown in developing capillaries; in these, silver nitrate shows no elective staining. This is the case also in the adult with
the capillaries of the villi, those of the choroid coat of the eye (Eberth), and those of the kidney-glomeruli (Ranvier): in all these places the walls are formed of a syncytium.

The capillaries vary somewhat in size and in the closeness of their

Fig. 305.-A small artery, A, and vein, V, from till subcutandous connective tissue of the rat, treated with nitrate of silver. 175 diameters.
a, u, endothelial-cells with b, b, their nuclei ; m, m, transverse markings due to staining of intersellular substance between the muscular fibre-cells; c, c, nuclei of connective-tissue oorpuscles attached to exterior of vessel.
meshes; their arrangement in different parts, which is mainly determined by the disposition of the tissue-elements, may best be studied in injected preparations, and will be described when the structure of the several organs is considered.

Usually the arterioles pass gradually into the capillary network and the capillaries unite to form swall veius which, on receiving others, gradually increase
in siz: Tut in certain situations the arrangement is different. Thus in the spleen the arterial capilharies have inperfect walls and the blood passes into the interstices of the spongy tissue of the organ, from which

Fig. 3016.-Cimplaky vessbles FROM THE RLADHER HF THE CAT, madinified.
(After Chrzonszczewsky.)
The outlines of the cells are stained by nitrate of silver. it is collected ly sinus-like veins whicla also have incomplete walls. In erectile tissue the arterioles open, without the medium of capillaries, into large cavernous spaces bounded by tibrous and plain muscular tissues and lined by endotheliun: the veins lead out of these spaces, so that there are no true capillaries, except such as are distributed to the tissues which form the walls of the spaces, In the sympathetic ganglia, as shown by Ranvier (fig. 307), the capillaries open abruptly into large sinus-like venules. And in the liver and a few other organs, as will presently he explained, the connexion between afferent and efferent vessels is effected, not by true capillaries, but by sinuslike spaces between the tissuc-elements, the "sinusoids" of Minot. (See pp. 209, 233.)

In the transparent parts of animals, the blood may be seen flowing through the capillary network from the arteries into the veins (fig. 308). The current is very rapid in the small arteries, somewhat less rapid in the veins, slowest in the capillaries. The flow in any vessel is

Fig. 307.-Vessels in a sympathetic ganglion of the rabbit injeoten.
(Ranvier.)
ω, arterioles ; b, c, capillaries; \boldsymbol{V}, sinus-like veins.
fastest in the centre, slowest nearest the wall (inert layer). In this layer the leucocytes are carried along and they may be observed-especially where
there is commencing inflammation of the part, as in the mesentery in consequence of exposure-to adhere to the inner surface of the blood-vessel, and here and there to pass through the coats of the small vessels. and appear as migratory cells in the surrounding connective tissue (fig. 309). The

Fig. 308.-Blood-vessiels in THE WEB OF THE FROG'S FOOT SHOWING AN ARTFRIOLE COMMUNICATING THROUGK TIIE CAPILLARY NETWORK WITII A VENULE. (Allen Thomson.)

Fig. 309.-Blood flowing through a small vein of the frog's mesentery.
The mesentery had been exposed for a short time, so that there was commencing inflammation and many of the white corpuscles are observed sticking to the side of the vessel and even passing through the vascular wall. a, central rapid layer containing the coleured corpuscles; b, onter slower layer (inert layer) containing the white corpuscles.
blood-platelets are also to be seen in the inert layer, and if the vessel is injured or the part is inflamed, tend to adhere to the wall and to one another.

Fig. 310.-A living capillary vessel. (Steinach.)
A, as seen previeus to excitation.
B, centracted condition resulting from strong excitation.
Contractility of capillaries.--As was first shown by Stricker, the cells which form the walls of the capillaries appear to possess contractility, for it is found that when these vessels are directly stimulated-even after isolation-they diminish in calibre even to complete extinction of the lumen (fig. 310).

Vessels and nerves of blood-vessels.-The larger arteries and veins possess blood-vessels (vasa vasorun) and lymphatics, both of which ramify chiefly in the external coat. Nerves are distributed to the muscular tissue of the middle coat, after forming a plexus in the outer coat. Most of the nerves are non-myelinated.

But there are a certain number of myelinated fibres intermingled with the nonmyelinated and passing to rad in locilised arhomesences partly in the ardventitia, partly in the intima. These myelinated tilnes are dombless afferent; the majority of the non-myclinated are pohally efferent and derived from the sympathetic (vaso-motors). In the aorta of man and in some of the lager animals Pacinian corpuscles are hero and there met with in the arlventitia. The capillary vessels also receive nom-myelinated nerve-filnes which have nuclei upen then (fig. 311), and from a tine plexns of fibrils in close contact with the endotheliun-cells of which the waths of these vessels are composed.

DEVELOHMENT OI LALOOH- ${ }^{+} E S S E L S$.

The heart and blood-ressels show themselves very early. They are always developed in connective tissue or in the mesenchyme which precerdes

Fu. 312.-Isolated caphlary network formed me the dunction of a holionedOUT SYNCYTIUM, CONTAINING COTOUREN BLOOD-COIRPUSCIGS IN A CIMAR FIUID. c, a hollow cell the cavity of which does not yet communicate with the network: p, p, pointed processes, extending in different directions for union with neighbouring capiliaries,
it, the first vessels being found in the vascular area which surrounds the carly embryo. Their development may be studied in the embryo chick or mammal, in the omentum of the new-born rabbit, and in the serous memhranes and subcutaneous connective tissue of foetal animals. The cells which are to form the vessels (vasoformative cells) branch and unite with one another to form a syncytium, and cavities form in this and extend into the branches. In the meantime the nuclei multiply and become distributed along the branches, cell-areas being at a later stage marked out around the nuclei. In this way intercommunicating vessels-capillaries in which blood-corpuscles may have become also developed (see p. 42)-are produced (fig. 312). These presently become connected with previously formed vessels, which extend themselves by sending out sprouts, at first solid, and afterwards hollowed out. Even the larger blood-vessels appear to be developed in the same way as the capillaries, in so far that the epithelium is first formed, and the muscular" and other tissues are subsequently added; but whether they are produced as clefts in the mesoblastic tissue, which become bounded by flattened cells, or whether as a hollowed-out syncytium, has not been definitely ascertained.

Some authors consider that new blood-vessels are exclusively formed by sprouts from pre-existing vessels, and regard the appearances above described as being due to retrogressive development of an already formed' vascular network (see p. 45).

SINUSOID VESSELS.

These are sinus-like blood-spaces between the cells of certain tissues (Minot). They may when fully developed bear a superficial resemblance

Fig. 313.-Diagram to illustrate the dhelelopment of blood-capillaries (right stde), and sindsoids ' (leet side) respectively. (F. T. Lewis.)

[^14]to blood-capillaries, but differ essentially from these in their mode of development, as well as in their relationship to the connective tissue, and to the tissue elements of the organs in which they occur. For, whereas capillary blood-vessels are developed amongst and between the tissue-elements and are connected with or grow from neighbouring capillaries which are them-
selves surrounded by areolar tissue, sinusoids make their first appearance in the form of comparatively large bloorl-spaces connected with the venous,

Fig. 314.- Developing liver of chick, to show how the hepatic trabecule

 h. c_{1}, hepatic trabecular ; $S i$, sinusoids.

hic, hepatic trabeema, ; $S i$, sinusoids.
or it may be with the arterial, system. Into these spaces, the walls of which are formed only of a single layer of endothelial cells, the tissue-elements of the developing organ (Wolffian body, liver, suprarenals, etc.) grow, invaginating the thin wall and forming cell-trabeculæ within the sinus (fig. 313), so that the cells of the organ are brought directly into contact with the invaginated endothelium, and are only separated by this from the blood
contained within the sinus. But the connexion may be yet closer than this, for, as happens in the liver, the invaginated endothelium may become defective, so that the blood within the sinus is in actual contact with the cells of the organ, flowing in the irregular interstices between them. As development proceeds these interstices come to resemble blood-capillaries in

Ffe. 316.-Section of moderate-shzed lymphatic. (Evans.)
c, c, capillary vessels distributed to the museular coat (timica media).
size and general arrangement; but the resemblance is superficial, and the intimate relationship between the blood and the tissue-elements, which are both enclosed within the original sinus, is usually maintained.

.LYMPHATICS OR LYMPH-VESSELS.

To the lymphatic system belong not only the lymph-vessels and lymiphglands, but also the cavities of the serous membranes, which are moistened
with lymph and are in ouen rommunication with lymph-vessels which run in their pariptes.

The lasser lymph vessels somewhit resemble the veins in structure

Fig. 3l

l_{1} ly mophatics with charateristic enduhthinm; ce cell-spaces of the connective tissme here and there abutting against the lymphatie.
(fig. 316), except that their coats are much thinner and valves much more numerous. In lymphatics of smaller size, which in the fresh condition have a clear, pcrfectly transparent appearance and a very thin wall, the latter is formed, first, by a lining of pavement-epithelium cells (lymphatic
endothelium), which are elongated in the direction of the axis of the vessel; and, secondly, by a layer of circularly and obliquely disposed muscular fibres (fig. 317). In the smallest vessels (so-called lymph-capillaries, which are generally considerably larger than the blood-capillaries), there is nothing but the endothelium remaining, and the cells of this are frequently not more elongated in one direction than in another, but have a characteristic wavy outline (fig. 318).

The lymphaties receive numerous nerve-fibres, which are non-myelinated,

Fic. 319. - Nerves of a lymphatic vessel, shown by methylene-blde.
(Dogiel.)
α, u, non-myelinated fibres passing to the vessel ; u, part of their terminal ramification,
and end in a ramification of the finest fibrils, distributed to the coats of the vesselis (fig. 319).

Lymphatics begin either in the form of plexuses, as in membranes (fig. 320), or of lacunar interstices, as in some of the viscera: transitions occur between the two.

In order to show their structure, it is usual to stain a tissue with nitrate of silver ; for exhibiting their distribution they may be injected by sticking the nozzle of a very fine injecting cannula into any organ which contains them, and forcing coloured fluid under gentle pressure into the interstices of the connective tissue.

In silver preparations it may be olsserved that the lymphatics always appear in the form of clear channels in the stained ground-substance of the connective tissue, and that their walls are in close connexion with the cells and cell-spaces of that tissue (fig. 320). But except in the case of the serous membranes, no open communication is observable between the lymph-vessels and the interstices of the connective tissue, although from

 ditrate of sinver method. (r. Recklinghausem.)
u, efferent lymphatic essel; d, plexus of origin; b, roothets of the plexus, commected wath cells of the

the readiness with which they can be injected from the latter there must be a ready means of passage of the interstitial lymph into the commencing lymphatics.

Development.-The lymphatic vessels were described by Klein, and later by Retterer, as being developed from hollowed-out cells in the same manner as the blood-vessels; by Gulland as becoming formed at the periphery as clefts in the connective tissue, subsequently establishing connexion with the venous system. But the investigations of Ranvier, recently continued by Miss Sabin, Lewis, and others, have shown that the lymphatic trunks grow out at certain places from the venous system, and gradually spread from these spots to all parts of the embryo.

SEROUS MEMPRANES.

The serous membranes, which may be conveniently studied in connexion with the lynphatic system, are delicate membranes of conncetive tissue

Fig. 321.-Lymphatic plexus of central tendon of diaphragm of RABBIT, PLEURAL SIDE. (Klein.)
a, larger vessels with lanceolate cells and numerous valves; b, c lymph-capillaries with wavy-bordered cells. The cell-spaces of the connective tissue are not represented in this figure.
which surround and line the internal cavities of the body, and are reflected over many of the thoracio and abdominal viscera; in passing to these they form folds (such as the mesentery), within which blood-vessels, lymphaties, and nerves are conducted to the viscera.

The innor surface is limed by a rentimous layer of precoutentepulhefium (emfothefinm) (fis. 枵昜), which is very distinct in nitrate of silvel preparations. This molothelimn has is sperial structure in the fum of a vertically striaterl free border (see p. lis). The cells ar" connected ly intercellular loridgen (fig. :8D). In some places there are apertures in the epithelium

 Nathate af shate prejohboms. (Klein.)

which lead lirectly into subjacent lymphatic veswels. These apertures are ("allod stomoth, and are sometimes surrounded by sperial cells (fis. ?izt). They are momerous upon the peritoneal surface of the diajhragm, hat are

 sbanes. (M. Heidenhain.)
prosent in must semus membrames. They ate mowhere better studied or more oasily seen than in the peritoneal membrane at the back of the abdominal cavity in the frog. This membrane lies between and at the sides of the kidneys, and serves to separate the peritoneal cavity from the large lymph-space just behind it. If the membrane is prepared by the nitrate of silver method, both the stomata and the cells which bound them are shown.

The endothelium of the serous membrane rests upon a homogeneous basement-membrane, which is especially well marked in the serous membranes of man. The rest of the thickness of the membrane is composed of eonnective tissue, with a network of fine elastic fibres ncar the inner surface (fig. 325).

Fig, 324.-Endothelivm from the posthrior part of the frog's perdtoneum, SHOWING TIIREE STOMATA LEADIN\& INTO THF GISTERNA LYMPHATLCA MAGNA. (After Ladwig and Sohweigger-Seidel.)

Fic. 325.-Section of pleura: on. (Favaro.) Magnified 270 diameters.
e, endothelium ; m, substance of membrane with numerous elastic fibres; h, sub-plenral layer; l, lymph-vessel.

Development. -The serous cavities are originally formed in the embryo as a cleft in the mesoderm (pleuro-peritoncal split, coelom) which becomes lined with endothelium, and, later, becomes separated into peritoneum, pleura, and pericardium. Outside the endotheliunt the celomic wall eventually becomes differentiated into the tissues of the serons membrane.

LESSON XXIT.

LYMPH-GLANDS, SPLEEN, TONSILS, THYMUS.

1. Sessuoss of a dympherland which has lam hamened in fomol or wher fixative, stamed in lolk, imul fombeded in parattin. Or the sections may he stained with hematexylin amb ensin. Notien (1) the filmons and musonlar capsule, with tathernlir extending inwads from it though the cortex aud anastomoning with whe amother in the nerlullit, (2) the dense lymphoid tiswn (andenoid tissue of sume anthors) foming targe masses in the cortex (cortical nowlows) and rombled

Make a gencral sketeh mider a how pown of "portion of the cortes together
 portions of contex and medulta.

2. Seetions of a hemal lymph-gland. These may low malily found in the neck of

3. Sertions of the spleen hadened in Millersthid in formol and staned with
 mending into the substane of the organ from the eapsole. Notice also that the ghtandular substance is of two kinds, (1) lymphoid tisisue acemmulated anmmel the small arterise and how and there mased to fom lymphon notules- the Matpighan ropaselos-and (:2) a tissme-the red pulp-consisting of a retientum of librils amd banching cells: this tissue comtamon hond in its intersties.

Bketch part of a section muler a low perwer and a small portion of the pulp mater a high j"wが:
4. In sections of tomsil prepared similarly to those of the lymph-gland, motice the large anomot of lymphoid tissue, partly molle ted into nodutes. Ohserve alsw that the stratified epithelim, which corem the mucoms membrane here as elsewhere in the month, is intiltated with lymphempmscles. The tonkil is leset with pit like recesses, with munas-sereting irlands opening into the pits.
a. Lymphoin nothles of muras membranes. la wher macous membranes besides that of the bark of the month and pharrox, colloctions of ! monoid tissue ocen whion mesemble those of the tomsils : such nodules form the solitary grand of the stomaclo and intestines and the agminated onlands of the suall intestine,

- and are ake fomm in the trachea and bromelial thbers and in the ersophagns.

 the nasses of lymphoid (!) tissue which form the lobules of the gland are separated by septa of connective tissue, and that the lobules show a distinction into two parts, cortęx and medulla. There are 110 lymph-paths within the lobules. Observe the differences of structure of the cortex and medulla, and especially notice the concentric comples in the medulla.

Make a sketch of one of the lobules under a low power and of a small part of the medulla under a high power, including oue or two concentric corpuscles. Measure the latter.

LYMPII-GLANLS.

Structure of a lymph-gland.-A lymph-gland (lymphatic gland) is composed of a framework of fibrous and plain muscular tissue, which encloses and supports the proper glandular substance, but is everywhere separater from it by a sinus-like channel, bridged across by cells and fibres, which is known as the lymph-channel. The framework consists of an envelope or capsule of fibrous tissue (fig. 326, c), and of trabeculae (tr), composed of the same tissue, which pass at intervals inwards from the capsule, and after traversing the cortex of the gland, divide and reunite with one another to form a network of fibrous bands. At one part of the gland there is usually

Fig. 326.-Diagram of a section of lymph-gland. (Sharpey.)
a.l., afferent, e.l., efferent lymphatics; C, nodules of cortical substance; M, reticulating cords of medullary substance; l.h., lymphoid tissue; l.s., lymph-sinus; c, capsule sending trabecule, $t r$, into the substance of the gland.
a depression (hilus), and at the bottom of this the medulla comes to the surface and its fibrous bands are continuous with the capsule. Both capsule and trabecule contain plain muscular tissue.

The proper glandular substance (l.h.) is composed of a fine reticulum with the meshes thickly occupied by lymph-corpuscles (lymphoid or adenoid tissue). It occupies all the interstices of the gland, forming comparatively large rounded masses in the cortex (lymphoid nodules, C), which may be two or three deep, and smaller reticulating cord-like masses (lymphoid cords, M) in the medulla.

The lymph-channel is bridged across by fibres derived from the capsule and trabeculx, which pass to the lymphoid tissue and merge into its
reticnlum (figs. 327,328). The fibres are often largely concealed by branching chlls, which wore indeed at one time thought to constitute the reticulum. Th sonne ammals (rof. ox) these cells contain pigment, giving the modulla a dark colour. They are phagocytic and may contain disintegrating erythrocytes or redtish granules derived from the disintegration: they are also apt to take in foreign particles which have become absorbed into the lymph and thens convered to the gland. Thas it is common for the lymph

 Magnifiad 300 diameter. (Recklinghausen.)

glands at the root of the lung to contain carbon particles which have been inhaled in the form of soot.

The branclied cells which corer the reticuhm are continued orer the trabecule, and at the entrance and exit of the lymphatics are continuous with the endotheliun cells of these ressels. They represent therefore a lymphatic endothelim bounding the lymph-spaces, but like the corresponding endothelinm of the small veins of the spleen they have become branched and form part of the supporting reticulum of the organ.

The phagocytic function of the branched cells of the medulla is shared br certain large cells which are sometimes found lyiug loose in the lymph channel and are probably derived from the branched cells. These cells resemble the large phagocytes found in the pulp of the spleen.

Giant-cells with lobed or multiple nuclei are also occasionally seen.

Afferent lymph-vessels (fig, 326, a.l.) enter the lymph-sinuses of the cortex after ramifying in the capsule, and the lymph is conveyed slowly along the channels of the cortical and medullary part towards the hilus, taking up lymph-corpuscles in its passage. At the hilus it is gathered up by an efferent vessel or vessels (e.l.) taking origin in the lymph-sinuses of the medulla.

The out-going lymphatics always contain many more lymph-corpuscles than those which enter the gland, for lymph-corpuscles are constantly being

Fig. 328.-Section of medulla of timpph-gland of dog showing reticulat tissue in the lymph-channel extending between the hymphoid cords and trabeculas. Magnified 200 diameters. (From a preparation by M. Heidenhain.)
formed by karyokinetic division of the pre-existing cells in the glandula substance, especially in the centre of each cortical nodule (yerm-centre of Flemming) ; they gradually find their way through the close reticulum of the lymphoid tissue into the lymph-channels.

The leucocytes of the germ-centres frequently show, in sections, peculiar darkly coloured bodies-the struinable bodies of Flemming-the nature of which has not been determined.

An artery passes into each gland at the hilus; its branches are conveyed at first along the fibrous cords, but soon become surrounded by the lymphoid tissue, in which they break up into capillaries (fig. 327, ă). The blood is returned by small veins, which are conducted along the fibrous trabeculæ, joining to form large vessels which eventually emerge at the hilus.

In some lymph-glants the filmous trabecule are very slightly developerd so that the gland seems in section to lee a mass of alnost uniform lymphoid tissue, pervaded lyy lymph-channels and with clearer rounded notules (germcentres) seattered about, especially in the cortex (fig. 329). This condition obtains witl most of the lymph-glands of man and in some other animals. In certain others, such as the cat, dog, and ox, the trabeculio are well developed, and contain much muscular tissue, and the lymph-channels are currespondingly well marked off.

Fige, 329.-Semton uf a lymph-gland flom the neek uf an bight reak "LJ ('llin. (r. Ehmer.) $\times 13$.

Nerve-fibres pass to lymph-glands: they appear to be distributed chiefly as non-myelinated fibres to the plain muscular tissue of the blood-ressels and trabeculie.

Hæmal lymph glands.--In many animals a certain number of lymphglands are ubservable which have a red colour. Some of these on section show that what corresponds to the peripheral lymph-chamel in ordinary lymph-glands is in them occupied by blood. Others have the greater part of the interior occupied by large sinuses filled with blood; while other parts show the ordinary structure of a lymph-gland. The names hernal glands and hemal lymph-glands (Robertson) have been given respectively to these structures. The blood passes into the sinuses from arterial capillaries, which

B

Fig. 330.-Swdion of a ilmmal lymph-gland. A, magnified 50 diameters ; B, magnified 350 diameters.
c, eapsule with plain muscle-fibres; tr, fine trabecule passing ius frout capsule; u, bloorl-sinuses full of blood-eorpuseles; other red corpuscles are seen in the interstives of the lymphoid tissue, $l t ; l y$, lymph-sinuses ; co, eosinophil-cells amongst the lymphocytes of the lymphoid tissue.
appear, as in the spleen, to open into the tissue interstices, from which at other parts small veins arise in like mamer. Like the spleen these hæmal shands show numerous large phagocytes which contain red bloon-corpuscles in vatrious stages of trinsformation inte pigment.

Sume hemal slands are said to have no lymphechannels, lut to be purely blood-glands: in that case they may lee considered to reppesent accessory spleens.
 hane formd haimal lymph-glathds in lirds.

The section was stamed, and the Maphohian corpuselen therefore appar darher that the polp, whereas, in the fresh spleen, they are greyish white in a reipplp. The venom- momes show in rear spaces. The hareer sein are contained in the trabernlas.

THE SHLEEN.

The spleen is tho largest of the so-called ductless glands. It appears to lje functionally conneeted with the blood, white blood-corpuscles being formed and coloured blood-corpuscles being submitted to destruction within it.

Like the lymph-glands, the spleen is invested with a fibrous and muscular capsule (fig. 332), which is, however, stronger and has far more plain muscular tissue than that of the lymph-glands ; outside the capsule is a covering derived from the peritoneum. The capsule sends bands or trabeculæ into the organ; these join with a network of similar trabeculæ which pass into the gland at the hilus along with the blood-vessels. In the interstices of the framework thus constituted lies a soft pulpy substance
containing a large amount of blood, and therefore of a deep red colour, dotted within which are here and there to be seen small round bodies, whiter than the pulp in the fresh organ but darker in stained sections, the Malpighian corpuscles. These are composed of lymphoid tissue gathered up into globular or cylindrical masses enveloping the smaller arteries, whilst the red pulp surrounding them, which forms the .bulk of the organ, is composed (Carlier) of a close network of connective-tissue fibrils (fig. 333), partly covered by flattened and branched cells (figs. 334, 335).

Fig. 332.-Vretical section of a portion of the monkey's spleen, As SEEN WITH A LOW POWER.
Part of the capsulc, two trabeculæ and two Malpighian corpuscles are represented.
Passing into the pulp and communicating with its interstices are capillary blood-vessels which are connected with the terminations of the arteries; whilst in other parts venous channels-characterised in the human spleen by an encirclement of reticulum-fibres (fig. 335), and by the presence of a layer of bighly characteristic, comparatively thick and prominent endo-thelinm-cells-course through the pulp and bring the blood which has passed into its interstices from the arterial capillaries towards the larger veins of the organ, which run in the trabeculæ and are by them conducted to the hilus. The arteries, which are also at first conducted from the hilus along the trabeculæ into the interior of the organ, presently leave the

 open tismue meat to this: e, wall of arteriste: f, f capmaries of Mafmeman corusele: f, reticulum of arteriole expumbing 1 moto that of the Malpighian corpusile.

 High power. (Hoyer.)
 (יommaniente with the interstices of the prulp.
trabeculæ, and their external coat becomes gradually converted into a thick sheath of lymphoid tissue which invests them in the remainder of their course, and in places becomes swollen into the Malpighian corpuscles already mentioned. The small arteries distribute a few capillaries to the Malpighian

Fic. 335.-Venous sinuses of splebn-pulp (moniey), showing the enctrcling FLERES IN THEIR WALLS WHICH ARE DERIVED FROM CELIS OF THE RETICULUM AND ARE ATTACHED TO LONGITUDINAL FIBRES WHICH BELONG TO THE RNDOthelium of the sinuses. (S. Mollior.) High power.
corpuscles, and then break up into pencils of capillary vessels which open into the interstices of the pulp.

The Malpighian corpuscles frequently but not always show a clearer central nodule or germ-centre, characterised by the presence of numerous karyokinetic figures; and the "stainable bodies" of Flemming, which have been noticed under lympl-glands, are also seen in their cells.

The special cellular clements of the spleen-pulp are of three kinds, viz.,
(1) large, ammboid phagncytic splemic cells (fig. 33f, d), (2) givent cell. (fis. 837), (i) branclier retichlum colls which assist in forming the spongework (fis. $3: 36,4$). Tn adrlition to these the pulp, contains all the corpuscular elements of bloorl. The phagocytic cells are frequently found to contain coloured blood-corpuscles in their interior in various stages of transformation into pigment. These cells occur both in the interstices of the pulp and in the venous sinnse's and reins, where they are often full of erythrocytes

Mignificel 400 diametars.
d, phagorytio spremin arell.
(fig. 326), The giant-vells are most frequent in goung animals. The branched cells of the spongework are probably of the same mature as the endotloelimm-eells of the teminal capillaries and veins of the pmp. They are connected by branches with one another and with the endothelium-cells of the vessels. The phagocytic spleen-cells are perhaps budded off from them.

Nucleated coloured corpuscles are found in the embryo, and occasionally after birth, in the spleen-pulp. The blood of the splenic vein is at all times relatively rich in leucocytes.

The lymphatics of the spleen run partly in the trabeculæ and capsule, and partly in the lymphoid tissue ensheathing the arteries. They join to form larger vessels which emerge together at the hilus. There are no lymphatics in the spleen-pulp itself.

The nerves, which are numerous and mostly non-myelinated, are distributed to the muscular tissue of the arteries and to that in the capsule and trabeculæ.

Mall finds the distribution of the trabecule and of the blood-vessels within the spleen to indicate a differentiation of the pulp into divisions (spleen-lobules) each of which has its own arteriole and venule, and in which the pulp is arranged in columns or cords surrounded by venous spaces. It must, however, be understood that there is nothing of the nature of partitious separating such lobules; to all appearance the pulp is in continuity throughout the organ.

Fig. 337.-A moltinocleated giant-Cell from the spleen of a ktteren. Magnified 400 diameters.

THE TONSILS AND OTHER LYMPHOID STRUCTURES.

The tonsils are two masses of lymphoid tissue placed one on each side of the pharynx, into which they project. They are covered on the free surface with the stratified epithelium of the mucous membrane, and this surface is pitted with apertures which lead into recesses or crypts in the substance of the organ (fig. 338). These recesses are all lined by a prolongation of the stratified epithelium of the surface and into them the ducts of numerous small mucous glands open. The tonsils are composed of lymphoid tissue, which, besides being diffused over the whole organ, is at intervals aggregated into nodules, in which the lymph-cells are more closely arranged than elsewhere. In the clear centre (germ-centre) of these nodules active multiplication of the lymph-cells occurs and is, in fact, the cause of the formation of such nodules; as in the other organs (spleen, lymph-glands) in which lymphoid tissue occurs. The epithelium which covers the tonsils is
infiltrated with lympheremoncles (figes, 湔, 3.39), many of which wander out on to the free surface, and become mingled with the saliva as salivary compuscles.

The lymphoid tissue of the tonsils has numerous liond-vessels; it also contains lymphatic vessels.

The mucous membrane of the neighbouring part of the pharynx, that of the back of the tongue, and that of the upper part of the pharynx, near the orifices of the Eustachian tules and behind the posterior nares, shows crypts

a
 from a yreparation by leot. D. Wailenhain.)

and masses of lymphoid or adenoid tissue similar in structure to thowe of tien tonsils.

Lymphoid tissue ocem: in various other parts of the boly in addition to the lympl-glands and tomsils, althongh it may mot, as in these structures, constitute the bulk of the organ. Thus it is fomd in many mucous membranes, such as those of the alimentary and the respiratory tracts, both in a diffuse form and also collected into nodular masses which are like the cortical nodules of a lymph-gland, and may, like these, be partially surrounded by a lymph-sinus. In the intestine such nodules constitute the so-called solitary glands and I'eyer's patches. Th the vermiform appendix
the nucous membrane is thickly beset with similar nodules. The lymphatics of the mucous membrane form plexuses of sinus-like vessels which partly enclose the nodules (fig. 340). In the spleen, as we have seen, a large amount of lymphoid tissue is found ensheathing the smaller arteries,

Fig. 339.-Part of a section of rabbif's tonsll showing infiltration of the ffithelium by lefcocytes. Photugraph. Moderately magnified.

Fif. 340. -Lymphatics of a Peyer's patch, injected with sllver nitrate. (Kölliker.) Magnified 85 diameters.
f, a lymphoid nodule or follicle; f^{\prime}, its base, resting upof the muscular coat, m; sm, submucosa; l, lymph-vessels; s, sinus-like enlargement of lymph-vessel surrounding folliele.
expanded here and there into the nodular masses known as Malpighian corpuscles. Lymphoid tissue also occurs in considerable amount in the serous membranes, especially in young animals; in the adult it is here largely replaced by adipose tissue.

Development of lymphoid tissue.-Lympl-glands are developed in comexion with plexuses of lymplevessels, an accumulation of retiform tissue and lymph-cells
taking plare, according to Klein, either external to and around the lymphatios (purilymphatir formotion) ; or sme of the lymphaties alre dilated into a sinus or simuses and the formation of the lymphoid tiswue orcurs within it (ondolymphote formetim) (fig. 341, A and B). When there is a development of lymphoid tissue ontside the lymplatic vessels this may form a considerable accumulation before the formation of lymph-paths aprears within the tissue, flood-ressels are early derelnped anongst the lymplatic plexuses, and by thexe, according to Gulland, the first lymph-corpuscles of the lymphoid tissne are brought to the gland.

Thic maruinal sinns is produced by the fusion of a number of lymph-vessels which nurmund the commoncing accumulation of Jymphoid tisone, while in the situation of the future hilus other lymph-vessels grow into the glandular substance and fom channels which subdivide it up into cordsiand nodutes (Kling). The branched cells of the lymph-path are derived from the lymphatic endothelium.

 onentum. (Klein.)
 of lymphoid tissue on one side of it: d, bloor-capillaries withing this,
D, condolmphatie nodule consisting of an enlarged lymphatic sessel, d, within which is a capillar: network, c, c, an arter, b, and a sein, $a ; c$, lymphoid tisule within the lamphatic, it, hranched cells heing joined to and derived from the tymbatic endothelium, t.

The axillary glands were fonnd lystiles to increase in number and size during lactation, dimimishing again after lactation has ceased. In the developing tonsils Gulland oceasionally found nests of epithelial cells, detached from the surface $\mathrm{e}^{\text {nithelium, }}$ somewhat like those fomd permanently in the thymus.

THYMUS.

The thymus gland is an urgan which normally in man is found in a fully developed condition only in the fuetus and young child. It is composed of a number of lobules (fig. 342) varying in size, separated from one another by septa of connective tissue, along which the blood-vessels pass to and from the lobules. Each lobule shows plainly, when examined with a low power, a distinction into an outer cortical and an inner medullary portion. The cortical part of the lobule is imperfectly divided into nodules by trabecule of connective tissue. It is superficially similar in structure to the lymphoid tissue of the lymph-glands and tonsils, with which it also
agrees in exhibiting numerous indications of mitotic cell-division, but without definite germ-centres. Besides lymph-corpuscles it contains a number of peculiar granular cells. The medulla is more open in its texture;

Fig. 34.--Sgetion of part of lobule of thymus of chitld. Photograph. Magnified 60 diameters.
c, cortex ; m, medulla; b, b, blood-vessels in connective-tissue trabecule.

Fig. 343. - Medulla of thymus of a child. Photograph. Magnified 300 diameters. The small darkly stained cells are lymphocytes. The section indudes two concentric corpuscles and some blood-ressely full of corpuscles. -
its reticulum is formed by large, transparent, branched cells (fig. 344), massed together in places and then resembling an epithelium. 'The medulla contains fewer lymph-conpuscles than the contex; hence it has a clearer aspect. Connective-tissue fibres are not wholly, absent from it. Within the medulla, but never in the cortex, are found peculiar concentrivally laminated bodies (concentrit rompuseles of Massal, figs. 343, 345). These are "nests" of flattened epithelial-cells arrangerl concentrically around one or more central cells; these last having often undergone a degenerative process. Sometimes the corpuscles are compound, two or three being grouped

 (Hammar.)
together and similarly enclosed by tlattened cells: They represent part of the remains of an epithelial tulse, which forms the thymus rudiment of the early embryo and is derived from one of the branchial elefts. Accordins to the ohservations of Hammar the reticulum of the gland is also derived from this epithelium. Stwhr heheved the lymphoid cells of the gland to have a similar origin, but there are good reasons for thinking that this is not the case.

Nucleated red bhod-corpuseles (erythroblasts), similar to those seen in red marrow, have been described in the thymus (J, Nehaffer). Occasionally eysts lined by ciliated epithelium are found (fig, $345, \mathrm{c}$). In some animals isolated eross-striated muscle-eells are seen in the medulla. Multinucleated giant-eells have also been described in it (H. Watney).

The lobules, their eortex especially, are abundantly supplied with capillary
blood-vessels. In man the arteries penetrate to the junction of cortex and medulla, and then give off most of their capillaries radiating outwardly into the cortical nodules; some vessels pass inwards to supply the medulla. Veins pass away both from the surface of the lobules and to a less extent directly from the medulla. The mode of distribution of the lymphatics has not been definitely ascertained; none are seen within the lobules. Nevertheless, large lymphatic vessels, containing many lymphocytes, issue from

Fit. 345.-A conoentric corpuscle of thymus whtir pakt of the ADJoining reticulum. (Hammar.)
c, a small ciliated ust,
the interstitial connective tissue of the organ, but in what way they are related to the lobules has not been ascertained.

The medullary substance is continuous throughout the gland, adjacent lobules being interconnected by their medulla.

In the human subject the thymus gland undergoes after childhood a process of retrogression, its lobules ceasing to grow and becoming surrounded and concealed by a quantity of adipose tissue which develops in the interstitial connective tissue of the gland. Eventually the lobules atrophy, so that in advanced age very little of the gland remains. In exceptional cases this retrogressive or involution process does not occur. In these subjects there is usually also a more pronounced development of the lymphoid tissue of the body generally; the condition is denoted by the expression status lymphaticus.

LESSON XXIIJ.
 SUPRARENAL CAPSULES, THYROID, PARATHYROIDS, PITUITARY, AND PINEAL.

1. Sempons achoss a suphrenal capsule hardemed in, ors per cent. chmonic acid whtion. In sectims of sull a gland, not otherwise stained, wtice the deep brown coloration of the mealula (artion of chomic acid on adrenalin). Other sections may be stained with eosin and hematnxylin or by the iron-hematuxylin methork. Notice the general arrangement and extent of the

Fri. 34i.-A venticulseltios of tie selfareinal bom of a hetis, wwhe the vatukal nize, showin: the distinction betlleen the medulatry and cortical stbetance, (Alleil Thomson.)
n, issuing vein : \boldsymbol{r}, summit of killucy. cortical and medulary parto of the organ, and make a general sketch undre a low power. Afterwards sketch carefully umder a high power a group of cells from each part of the organ.
2. Cumer's methom. Suspend at thin Nice atross a fleen suprarenal in, a wet ganze hag in a closed rexsel containing 2 per cent. "simic acid solution, and keep for $1 \frac{1}{2}$ hours at $37^{\circ} \mathrm{C}$. Then transfer to. 00 per cent. alcolan, and after a few hours pass through absolute alci,hol and sylol into paraffin. Mount the sections directly in dammon withent firther staining.

This method is valnable for showing the adsenalin gramules in the mednlla. The lipoids of the cortex are afso stained, but these can, it desired, be removed from thr sections by immersion for half an hom in tmpentine. A mixtme of bichromate of potassium with usmic adid also stains the adrenalin granules, but the results obtained are but as goud as ly the osmic vapour method.
3. Sertions of the thyoid body stained with ensin and hamatorvlin. Notice the vexicles lined with cubjeal epithelium and filled with a "colloid" substance which leccomes stained with hamatoxylin. Sketch one or two vesicles. Measure sereral resicles. The sections should include a parathyroid.
4. Sections (anteroposterior) through the pituitary boty (cat, liy preference). Notice the (epithelial) anterion lohe separated ly a cleft from the (nervons) posterior lobe. The anterior part of the posterior lube is also civered hy ath epithelial layer, amongst the cells of which colloid matter may be setin. This material can aliso be traced in the tissue of the prasterime Iolre as far as the infumbibuhm of the third ventricle.
5. Nections (antero-ponterion) through the pineal glatad of a new-lann claid or youmg amimal. The gland should he obtained from a brain hardened with 10 per "ent. furmanl. The sections are tu he stamed with alcoholic eosin and methylenehue.

TILE SUPRARENAL CA1'SULES.

The suprarenal capsules (adrenals) and the other organs enumerated above belong to the class of bodies known as internally secreting or endocrine glands. A section through the fresh suprarenal (fig. 346) shows a
cortex which is striated vertically to the surface, of a yellowish colour, and a medulla which is soft and highly vascular, of a dark red colour. The whole organ is invested by a fibrous capsule which sends septa inwards through the cortical substance (fig. 347, a), subdividing this for the most part into columnar groups of cells (zona fasciculata, c). Immediately underneath the capsule, however, the groups are more rounded, and the cells tend

Fig. 347.-Vertical section of cortex of suprarenal of dog. (Bönm and v. Davidoff.) Magnified about 150 diameters.
μ, fibrous capsule ; b, zona glomerulosa ; c, zona fasciculata ; d, zona reticularis.
to assume a columnar form (zona glomerulasa, b), whilst next to the medulla they have a reticular arrangement (zona reticularis, d).

The cells which form the cortical substance are, for the most part, polyhedral in form; each contains a clear round nucleus, and numerous yellowish lipoid globules in the protoplasm. No arteries and veins penetrate between the cells; but the blood-vessels of the cortex run in the fibrous septa between the cell-columns, which they surround with a capillary
network. In the zoma reticulanis the capillaries widen out and occupy sinuslike spaces loctween the cell-columns (fig. 347, d). Lymphatics also run in

The cells of the medulla are datk, edoumed,

 INGIHONG PORTIONS OE THE ZONA KLTHC'IJARIS IMU MEDULLA. Magnified 150 diameters.
the septa above mentioned and communicate with fine canaliculi between the cells of the cortex. Deposits of yellow granules may sometimes he seen in the connective tissue of the cortex : their significance is unknown.

The cells of the medulla (figs. 348, 349) are more irregularly disposed than those of the cortex. They are supported by a network of elastic fibres. They lie in very-close relation to the large capillary blood-spaces (sinusoids) which pervade the medulla, and they probably pour a secretion directly into the blood. Their protoplasm is granular ; in some animals it contains a brownish pigment, but in man the dark red colour of the medulla in the fresh gland is due to the blood contained in the large sinusoid spaces by

Fig. 350. -Smetion of paragangition from a new-born child. (Zuckerkandl.)
which it is pervaded, which receive the blood after it has traversed the capillaries of the cortex. A few arterioles pass straight to the medulla through the cortex. One large vein usually passes out at the hilus in the anterior surfade of the gland. Investing the larger veins are longitudinal bundles of plain muscular fibres; but many of the veins have only an endothelium. Numerous nerves, after traversing the cortical substance, are distributed throughout the medulla, where they form a close plexus provided here and there with ganglion-cells. The cells of the medulla are characterised by staining brown by chromic acid and its salts, provided the organ is fresh (chromaphil or chromaffin reaction). A similar staining is found to occur in some of the cells of small glandular bodies (chromaphtil bodies, paraganglia) (fig. 350) which occur irregularly at the back of the abdomen, being especially frequent near the lower end of the aorta. A certain number of such cells
are also fond in sympaldetic ganglia (Khnn). This chromaphil reaction depends on the presence of adrenalin in the cells where it securs.

Development. The methlia of thr supratenal is developed from cells whis:h berome detacherl from the modiments of the sympathetic ganglia, and are therefore of nemo-ectodermal frigin. The cortex is developed from mesoderm.

"AROTII ANI "OCGYGEAL GLANDS.

These are minute glandular organs without ducts, lying respectively at the bifurcation of the carotid artery and in front of the apex of the coceyx.

 (hehaper.)

They are composed of polyhedral cells (figs. 351 and 352), with numerous blood-apillaries between them. In the carotid gland the cells are collecterl into spheroidal clumps, in the coceygeal gland into irregular nodules. The blood-vessels have a sinus-like character. Amongst the cells, at least in the carotid gland, are some which stain dark brown with chromic acid like those of the merlulla of the suprarenal capsulcs.

THE THYROID BODY.

The thyroid body consists of a framework of connective tissue enclosing numerous spherical or oval vesicles (figs 353,355) which are lined with cubical epithelium-cells: these cells often contain granules of a fatty
character. The cavities of the vesicles are usually occupied by a peculiar viscid liquid (colloid). This is coagulated by alcohol and then becomes, stained with dyes. The colloid of the thyroid is unique in the fact that it contains organically combined iodine. Colloid has been found in the lymphatics of the gland, and may sometimes be detected also in the interstices of the connective tissue. The amount of colloid accumulated in the vesicles at any one time varies considerably in different individuals; the circumstances which influence its variations are not understood.

There is frequently to he found in connexion with the thyroid and generally embedded in its substance a small mass of tissue which resembles the

Fig. 352. -SECTION OF CAROTID gland, human. Highly magnified. (Schaper.) thymus in structure, and, like it, contains concentric corpuscles.

The blood-vessels of the thyroid are large and numerous in proportion to

Fig. 353.-Section of thyroid of cat. Magnified 400 diameters.
The vesicles are occupied by colloid, which has partly shrunk away from the epithelium, Some of the vesicles are çt tangentially and show only small sectors.
the size of the organ. The capillaries form close plexuses round the vesicles (fig. 354), and even extend between the lining epithelium-cells.

In endemic gritre colloid accumulates in large quantity in the vesicles, which
 there is reason to helieve that the man is in an inactive commition. In exmphath mice gitre on the other han, wher there is alsw enlargement of the urgan, this is not accompanied by acommbation of colloid in the vesicles, which are not moch enlarget but becone irvegular in sliape. In this form of goitre the gland shows pridence of increase of activity, necmpaniod ly arterial dilatation.

Development. -The thyroid is fomed, like an ordinary uland, hy a solid outgrowth from the buccal upithelinm which may become hollowed; later, the comexion with the month is severed, and the now hanched ontgruwth beomes broken up into isolated resicles.

PAliA'IIISROIDS.

In close proximity to or embedded in the substance of the thyroid are always to be found four very small glandular organs of different structure from the thyroid proper (fig. 355). These bodies are formed of masses or columns of epithelium cells (fig. 356), some of which are much larger than the rest and are filled with oxyphil granules (Welsh). Numerous sinus-like blood-channely run between the columns

Fif. 3it. Vegsels of the roin of hon: iniecter. and come into close relationship with the cells. Here and there a vesicle filled with a material resembling colloid may be seen amongst the cells, and after removal of the thyroil it has been stated that the parathyroids undergo hypertrophy, and develop a vesicular structure like that of the thyroid, but this statement is doubtful. At any rate, in cases of myxodema in the human subject, an affection characterised by atrophy of the thyroid, no such hypertrophy of the parathyroids takes place. The colloid in the parathyroid, when it occurs, is not of the same chemical nature as that in the resicles of the thyroid for it contains no iodine.

Development. -The parathyrods are developed, hike the thymus, as epithelial ontgrowthe from certain banchal clefts of the embro : lant they mever become comverted intu lymphoid tissue and are solid from the first. Ther lose all monexion with the refts from which they arise, hut metain their epithelial sthouthe, althongh beroming vasembinsed.

THE PITLITALI BOMT.
The pituitary body (hypophysis cerebri) (fig. 357) is a small solid mass, in man about the size of the kernel of a nut, lying in the sella turcica, and connected with the third ventricle by the infundibulum. It consists partly of epithelium forming the pars anterior and pars intermedia, partly of nervous tissue, the pars nervosa. The epithelium is originally developed as a hollow protrusion

Fif. 35\%. - Section of thythoid and pafathyroid of rat.
Magnified 50 diameters.
The vesicles of the thy roil are filled with colloid. The parathyroid is part, embedded in the thyroid.

Fig. 356.-Section of human parathyroid. Magnified 400 diameters. (Photographed from a preparation by M. Kojima.)
of the buccal epithelium. The nervous part is developed in connexion with another hollow outgrowth from the neural ectoderm. The epithelial part consists at an early stàge of a number of tubules, lined by epithelium and
united by connective tissue, but the lumen of the tubules has become obliterated in the adult, and their place is taken by solid cell-masses. Between the pars anterior and pars intermedia there is usually a cleft-like space containing glairy fluid. It is easy to separate the gland into two portions at this cleft: the posterior portion is then composed of pars intermedia and pars nervosa. An extension of the epithelinm portion of the gland over the, tuber cinereum, which is developed later than the rest, has been termed by Tilney pars tuberalis.

The pars anterior is the largest and most vascular part of the organ. Its capillaries have a sinus-like character and occur in large numbers amongst the cells (fig. 359), many of which are set closely round the blood channels.

Fig. 357.-Sagittal seltion throvoh base of brain and pituitary body of cat. Photograph. (P. T. Herring.) Magnified.
In photographs of injected preparations it appears almost black on account of the number of these vessels (fig. 358). The pars tuberalis is also very vascular.

The cells of the pars anterior are of two kinds, clear and granular, varying in relative amount in different glands; the variations being perhaps related to the functional condition of the organ. The granules are generally oxyphil, and stain with eosin, but there are many cells containing basipbil granules : the oxyphil cells become much larger and more numerous during pregnancy. Occasionally the cells of the pars anterior are set round closed vesicles containing colloid, but such vesicles are far more common in the pars intermedia. They are very conspicuous after thyroidectomy, and also in myxœedema (Hale-White).

The pars intermedia is less vascular than the pars anterior, but more so than the pars nervosa, around which it extends in some animals (e.g. cat). Its cells which are clear, without obvious granules, are here and there set round colloid-containing vesicles (fig. 360). At the margins of
the cleft which separates them in the middle of the gland the junction between pars intermedia and pars anterior is not sharply defined. On the other hand the pars intermedia is well marked off from the pars nervosa, except in certain places. At those places its cells are continued into the pars nervosa; either singly or in groups, and there undergo a peculiar degeneration resulting in the formation of hyaline or granular "colloid" substance, which when formed passes through the tissue of the pars nervosa (fig. 361), and is eventually set free in the extension of the third ventricle

Fif. 358.-Base of brain and pituttary of cat : injtected.
Photograph. (P. T. Herring.) Magnified.
u, chiasma; b, pars tuberalis ; c, ventricle; d, anterior lobe; e, an extension of pars intermedia; f, posterior lobe (pars intermedia and pars nervosa) separated from anterior lobe by cleft ; g, artery entering posterior lobe; h, vein leaving it.
which projects downwards into the neck of the organ (Herring). This colloid is increased after thyroidectomy, but is not identical with that of the thyroid for it contains no iodine (Simpsom and Hunter). It apparently becomes dissolved in the cerebro-spinal fluid, and under favourable circumstances may be detected in that fluid by physiological tests.

The pars nervosa of the pituitary body, in spite of its designation, contains in the adult no cells of distinctly nervous character, but is mainly formed of neuroglia elements and of ependyma fibres (fig. 361). It has far fewer blood-vessels than the epithelial parts. It receives a certain number of nerve-fibres which arise from large cells in the grey matter just behind
the optic chiasma. Some of these fibres penetrate into the glandular substance of the pars intermedia and pars anterior. Between its elements

Fig. 3i9.-Sertion of pars anturior of pitultary, human. Photograph. Magnified 300 riameters.
The hood-vessels are seen as lighter-looking channels between the darkly-stained cell groups.

Fig, 360.--Sectlun of pitutary of cat phasine thenimit the intri. ulandular cheft. Magnified 200 diameters. (Photographed from a preparation by M, Kojima.)
a, pars ruterior with numerous large sinus-like capillaries (secm as clear spaces) ; b, cleft ; c, pars interniedia showing several vesicles (these are not always present); d, pars nervosia
the hyaline and granular masses of colloid are seen on their way towards the infundibulum as just noted.

Fig. 361.-Section of pars nervosa of pitutary of cat near the neck of the gland. (P. T. Herring.)
as. ependyma cells lining an extension of the infundibulum into the gland; b, hy aline masses of colloid within this extension ; c, ependyma fibres of pars nepvosa d, e, hyaline and granular colloid passing hetween these fibres towards the infundibulum.

Fig. 362, -Sagittal section of pineal of cat. Magnified 50 diameters. (Photographed from a preparation by M. Kojima.)

PINEAL GLAND.

The pineal gland (epiphysis cerebri) (fig. 362) is developed as an invagination from the roof of the third ventricle. In the adult it appears as a small reddish body, rounded or conical, attached by a short stalk just above the

Fig. 363.-Section of pineal of new-born child showing loosely arranged clll-trabeculai with larcje blood-vessels retween them. The vessels are full of blood-corpuscles which have come out dark in the photograph. Magnified 400 diameters.

Fig. 364.-Section of ox pinkala shoming the celis mdeh diminished in nomber witif mueh intercellulak tissue resembling nefroglia. Magnified 300 diameters. (Photograpled from a preparation by E. Beard.)
entrance of the aqueduct of Sylvius into the third ventricle and lying in the groove between the anterior pair of corpora quadrigemina. It is about half the size of the pituitary body.

The structure of the pineal is best studied in the young subjoct, for as age advances its distinctive cells become less numerous. A number of calcareous nodules are then found within it, known as corpora amylacea (brain sand): these are, however, not special to the pineal but occur in the pia mater and its extensions in various parts of the nervous system.

The gland shows in section masses or trabeculæ of cells with large sinuslike blood-vessels between them (fig. 363) : whilst neuroglia cells and fibres are present in abundance in the intertrabecular tissue and also between the gland-cells.

The cells are of two kinds. The majority have oval nuclei and fine oxyphil granules ; in the remainder the auclei are spherical and the granules basiphil. Cells with large oxyphil granules such as frequently occur in the pituitary are not seen in the pineal, nor are vesicles containing colloid observed.

After puberty the gland undergoes retrogressive changes. These consist chiefly in diminution in number of the epithelial colls and increase in amount of the supporting connective tissue and neuroglia (fig. 364).

LESSONS XXIV. AND XXV.

THE SKIN.

1. Shemions of skin from the palmar surface of a finger. The skin is hardened in picric acid or formol, followed by alcohol. The sections are made vertically to the surface, and should extend down as far as the subcutaneous tissue. Notice the layers of the epidermis and their different behaviour to staining fluids. Notice also the papille projecting from the corium into the epidermis and look for tactile corpuscles within them. In very thin parts of the sections the fine intercellular channels in the deeper parts of the epithelium (see Lesson VII.) may be seen with a high power. The convoluted tubes of the sweat glands are visible here and there in the deeper parts of the corium, and in thick sections the corkscrew-like channels by which the sweat is conducted through the epidermis may also be observed. Make a sketch showing the general structure under a low power, and

Fig. 365. -Stection of skin of hefi. (Blàschlso.)
ep, epidermis, showing ridges cut across; c, cutis sera; d, d, ducts of sweat glands; d^{\prime}, d^{\prime}, their openings at the surface of the papillary ridge; M, Malpighinn laser of epidermis thichened opposite the ridges, where it dips down into the cutis vera (at $M^{\prime}, M^{\prime \prime}$), leaving papilary prominences of the cutis between.
other sketches to exhihit the most important details under a high power. Measure the thickness of the epidermis and the length of the papille.
2. Sections of the skin of the scalp (e) vertical to the surface and parallel to the slope of the hair-follicles, and (b) parallel to the surface, and across the hair-follicles. Stain and mount in the same way as the last preparation.
3. Examine the structure of hairs from different parts of the body, from different individuals, and, if possible, from different races. Compare with hairs of various domestic or other animals. The hairs may be mounted dry.
4. Vertical seotions of the nail and nail-bed. To cut such hard structures as the nail it is best, after fixing with picric acid or formol followed by 75 per rent. alcohol, to soak the tissue in strong gum arabic for a few days, then place it in an appropriate position upon a cork or upon the object carrier of a microtome, and plunge the whole into 70 per cent. alcohol. This renders the grum hard, and emalles sections to be cut of sufficient fineness. A plane iron shoull be used with the mierotome (Cabluret's), wince the hardness of the nail will turn the edge of a razor. To remove the gum the soctions are placed in water for a few hours; ther may then be stained and mounted. Notice the ridges (not papillic) of the corium,
projecting into the epidermis. Observe the distinetion of the epidermis into Malpighian layer and nail proper:
5. Mount a section from a portion of skin in which the blood-vessels have been

Hig. 3b6.-Vertical section through the skin of the sole of the foot. Magnified «bout 25 diameters.
injected, and notice the distribution of the capillaries to the sweat glands, to the hair-follicles, and to the papillary surface of the corium.
6. The cells composing the nails and hairs can be isolated by warming a small piece of nail or hair in strong sulphuric acid; after this treatment the cells are readily separated from one another by pressure upon the cover-glass.
7. Sections of mammary gland during lactation. The gland may be fixed in formol and the sections stained with hæmatoxylin and eosin. To show the fat globules within the cells, the gland should be fixed in bichromate of potassium for ten days and a thin piece then transferred to Marchi's fluid (see Appendix) for a few days, after which sections are cut and mounted in dammar, with or without further staining with bematoxylin.

Fig. 367.-Vertical section through the skin of tile palmir side of the finger, showini: two or three papillat and the deeper layers of the epidermis. Magnified about 200 diameters.

One of the papille contains a tactile corpuscle ; the others blood-vessels.

The skin is composed of two parts, epidermis and cutis vera (figs. 365, 366).

The epidermis, or scarf skin, is a stratified epithelium (fig. 367). It is composed of a number of layers of cells, the deeper of which are soft and protoplasmic, and form the rete mucosum of Malpighi, whilst the superficial layers are hard and horny, this horny portion sometimes constituting the greater part of the thickness of the epidermis. The deepest cells of the rete mucosum, which are set on the surface of the cutis vera, are columnar in shape. In the coloured races of mankind these cells contain pigment granules. In the layers immediately above them the cells are polyhedral.

Between all these cells of the rete mucosum there are fine intercellular elefts separating the cells from one another, but bridged acress by fibres which pass frem cell to cell (fig. 368), and also through the substance of the cells (fig. 369) (Ranvier, Delépine). The intercellular channels serve for the passage of lymph; within them lymph-corpuscles may eccasionally be found, having an irregularly stellate figure from becoming shaped to the interstices.

The superficial layer of the rete mucosum is formed of semewhat flattened cells filled with granules or droplets of a material (elë̈din) staining deeply

Fig. 368. - Sectima of epidermis uf cat's fuot sifowing intercellular CHANNELS, WITH BRIDGINE: FIBRILS. (Kolossow.)
with carmine and hæmatoxylin. These cells form an irregular layer termed stratum granulosum (figs. 366, 367, 370, c). This is not sharply marked off from the rete mucosum next to it, for many of the cells of this show similar granules, although they less completely fill the cells. Superficial to the stratum granulosum is a layer in which the cell-outlines are indistinct and the cells contain flakes or larger droplets of a hyaline naterial (keratohyatin), staining less intensely than the granules in the last layer, and tending to run tegether (fig. 370, b). This layer has a clear appearance in section, and is knewn as the stratum lucidum. Tmmediately superficial to the stratum lucidum is the horny part (stratum corneum) of the epidermis. It is composed of a number of layers of epithelium-cells, the nuclei of which are ne lenger visible. These cells, near the surface, take the form of thin horny scales which eventually become detached (fig. $371 ; s$). In certain
parts which have a thick epidermis and are not covered with hair (e.g. the palms and soles), the superficial part of the epidermis is a layer mainly formed

Fig. 369.-Section through the deeper liyers of a stratified epitielicm, showing fibrils, f, passing from cell to cell across the intercellular spaces. (Ranvier.)

Fig. 370.-Portion of epidermis fhom i shithen of the skin of the finghr, coloured with ilcrocarmine. (Ranvior.)
a_{3} stratum corneum ; b, stratum lngidum with Hakes of keratn-hyalin; c, stratum gramulosum, the cells filled with drops of elcidin ; d, prickle-cells; e, dentate projections by which the deepest cells of the epidermis are fixed to the cutis vera.
by a number of greatly swollen cells ($s w$), forming collectively what has been termed the epitrichial layer. In the embryo in the second and third month of intrauterine life it covers the whole body, but is thrown off where hairs are developed.

The growth of the epidermis takes place by a multiplication of the cells of the deeper layers. The newly formed cells, as they grow, push towards the surface those previously formed, and in their progress the latter undergo a chemical transformation, their fibrillated protoplasm being converted into horny material: this change seems to occur just at and above the stratum granulosum (see fig. 370). The granules of elëidin occupying the cells of the stratum granulosum are, according to Ranvier, transformed into the keratin of the more superficial strata.

Fif. 371.-Section of fpidermis. (Rahvier.)
s, superficial horny scales ; sur, swollen horny cells; s.l., stratum lucidum ; p, prickle-cells, several rows deep; $c_{\text {, }}$ elongated cells forming a single stratum near the corium; s.gr, stratum granulosum of Langerhans just belowthe stratum lucidum, Part of a plexins of nerve-fibres is seen in the superficial layer of the cutis vera. From this plexus fine varicose nerve-fibrils may be traced passing up between the epithelium-cells of the Malpighian layer.

No blood-vessels pass into the epidermis, but it receives nerves which ramify between the cells of the rete mucosum in the form of fine varicose fibrils (fig. 371). In some parts these are enlarged at their extremity and along their course, into menisci lying between the deeper epidermis cells. Such terminations are seen in the skin over the pig's snout (fig. 276, p. 200) and in the root-sheaths of hairs (fig. 384). They also occur in the neighbourhood of the entrance of sweat-ducts into the epidermis (Ranvier) (fig. 372).

The cutis vera or corium is composed of dense connective tissue, which becomes more open and reticular in texture in its deeper part, where it merges into the subcutaneous tissue. It is thickest over the posterior aspect
of the trunk, where as the epidermis is thickest on the palms of the hands and soles of the feet. The superficial or vascular layer of the corium bears microscopic papilloe; these project into the epidermis, which is moulded over them. The papillæ for the most part contain looped capillary vessels, but some, especially those of the palmar surface of the hand and fingers, and the corresponding parts in the foot, contain tactile corpuscles, to which myelinated nerve-fibres pass (fig. 367).

In some parts of the body (scrotum, penis, nipple and its areola), involuntary muscular tissue occurs in the deeper portion of the cutis vera; and,

Fio. 372.-Section of the skin of the pulp of the finger of a child, stained WITH GOLD CHLORIDE, SHOWING NERVES TERMINATING IN AN ITY-LIKE ARBORESCENCE AT THE SURFACE OF THE CUTIS VRRA AND IN THE DEEPFST PART OF THE EPIDERMIS. (Ranvier.)
p, p, outlines of papillæ; n, n^{\prime}, nerve-fibres in cutis vera; m, terminal menisci ; s, duct of a sweat gland.
in addition, wherever hairs occur, small bundles of this tissue are attached to the hair-follicles.

The blood-vessels of the skin are distributed almost entirely to the surface, where they form a close capillary network, sending up loops into the papillæ (fig. 373). Special branches are also sent to the various appendages of the skin, viz, the sweat glands and hair-follicles, with their sebaceous glands and little muscles. Numerous vessels pass to the adipose tissue usually found in the deeper parts of the cutis.

The lymphatics originate near the surface in a network of vessels, placed a little deeper than the blood-capillary network. They receive branches from the papillæ, and pass into larger vessels, which are valved, and run in the deeper or reticular part of the corium. From these the lymph is carried away by still larger vessels, coursing in the subcutaneous tissue.

The appendages of the skin are the uiils, the hairs, with their sebaceous

Fig. 373.-Duct of a sweat gland Passing throvgh the epidermis. Magnified 200 diaineters. (Heitzmann.)
p, papillæ with blood-vessels injected; r.m., rete mucosum betwecn the papillæ; c, c, stratum corneum ; s.g., stratum granulosum; $d_{1} d$, sweat-duct passing through epidermis.

Fig. 374.-Longitudinal section through the root of the nail and iTs matrix. Magnified about 10 diameters.
a, root of nail ; b, Malpighian layer of matrix; c, ridges in cutis of nail-bed; a, epitrichial layer of epideminis; e, eppoychium ; f, bone (terminal phalanx) of finger
glands, and the sweat glands. They are all developed as thickenings and downgrowths of the Malpighian layer of the epidermis.

THE NAILS.

The nails are thickenings of the deeper part of the stratum corneum developed over a specially modified portion of the skin (fig. 374), which is known as the bed of the nail, the depression at the posterior part of the nailbed from which the root of the nail grows being known as the nail groove. The part of the bed occupying the proximal portion of the groove is termed

Fig. 375.-Transverse section across nall taken near one fide. Magnified 50 diameters.
The apparent papille are really sections of ridges or lamine of the cutis vera projecting into the Malpighian layer of the nail.
the nail-matrix, since it is from this part that the growth of the nail proceeds. The distal part of the nail forms the free border, and is the thickest part of the body of the nail. The substance of the nail is composed of clear horny cells, somewhat like the cells of the stratnm lucidum of the rest of the epidermis. Each contains the remains of a nucleus. The nail proper rests immediately upon a Malpighian layer similar to that found in the epidermis generally, but destitute of a defined stratum granulosum. Nevertheless, the more superficial cells of the rete mucosum contain a large number of special granules; these appear to represent those of the stratum granulosum of the epidermis. These granules are, however, not composed of elëidin, but of a material (onychogenic substance, Ranvier) which stains brown instead of red with carmine; a similar material occurs in the cells
which form the fibrous substanee and cuticula of the hairs. The cutis of the nail-bed is beset with longitudinal ridges instead of the papillæ which aro present over the rest of the skin; these ridges, like the rest of the superficial part of the cutis, are extremely vascular.

Fig. 376. -Section througil end of finger of hulian embryo at the time of the commencement of formation of the nall, (Kölliker.)
Notice the ossification of the terninul phalanx beginning at the tip of the cartilage. In the thickened epidernis over this the commencing nail is seen as a dark line.

The nail-bed also receives many nerve-fibres. The deeper of these end in Pacinian corpuscles, whilst others ramify in the ridges of the cutis, and some penetrate amongst the epithelium cells of the Malpighian layer.

'2.
Fig. 377. - Flrst appearance of nall substance in the form of granules of ONYCHOGENIC MATERIAL IN SOME OF THE CELLS COVERING THE NAIL-BED. (Kölliker.)

Development.-The nails show in the foetus at about the third month (fig. 376), a groove being formed at this time in the corium, and the nail rudiment appearing in it as a development of onychogenic substance in some of the cells of the epithelium which lies over the hed (fig. 377). It becomes free, in the sixth month, its free end being at first thin, hut as it grows forward over the bed it receives additions on its under surface-at least in the posterior part of the bed-so that after a time the distal end becomes thicker. The epitrichial laycr of the cuticle which originally covered the developing nail becomes detached after the fifthemonth, and, after
birth, only remains as the narrow horder free cuticle (eponychium) which uverlies the root.

HAIRS.

The hairs are growths of the epidermis, developed in deep pits-the hair-follicles-which extend downwards into the thickness of the corium, or even into the subcutaneous tissue. The hair grows from the bottom of the follicle, the part which lies within the follicle being known as the root.

The substance of a hair is mainly composed of a pigmented, horny, fibrous material (fig. $378, f$), which can be separated by the action of sulphuric acid into long tapering fibrillated cells, the nuclei of which are still visible. The fibrous substance of the hair is covered by a layer of delicate

Fig. 378. - Piece of heman hatr. Magnified.
A, seen from the surface ; B, in optical sectiou; c, cuticle; f, fibrous sub. stance; m, medulla, the air having been expelled by Canada lalsam. imbricated scales, termed the hair cuticle (c). In many hairs, but not in all, the centre is occupied by an axial substance (medulla, m), formed of angular cells which contain granules of elëidin, and frequently have a dark appearance from the presence of minute air-bubbles. The latter may also occur in interstices in the fibrous substance. When air is present, the hair looks dark by transmitted, white by reflected light. The root has the same structure as the body of the hair, except at its deep extremity, which is enlarged to form the hair-bulb; this enlargement is composed mainly of soft, growing cells, and fits over a vascular papilla, which projects up into the bottom of the follicle (fig. 381).

Structure of hair-follicle (figs. 379 to 382). -The follicle, like the skin itself, of which it is a recess, is composed of two parts : one epithelial, the other connective tissue. The epithelial or epidermic part of the follicle closely invests the hair-root, and is often in great part dragged out with it; hence it is known as the root-sheath. It consists of an outer layer of soft columnar and polyhedral cells, like the Malpighian layer of the epidermis, but without stratum granulosum-the outer root-sheath; and of an inner, thinner, horny stratum next to the hair-the inner root-sheath. The inner root-sheath itself consists of three layers, the outermost being composed of horny, fibrous, oblong cells the nuclei of which arc obscure and difficult to make out (Henle's layer), the next of polyhedral nucleated cells containing elëidin (Hu;iley's layer), and the third-the cuticle of the root-sheath-a layer of downwardly imbricated scales, which fit over the upwardly imbricated scales of the hair itself. In the nore superficial part of the hair-follicle the layers of Huxley and Henle are indistinguishable, the cells of both being clear and keratinised;
even lower down where distinguishable they show a tendency to dovetail into one another. At the bottom of the follicle no differentiation into layers

can be made out in the root-sheath, which is here formed by a uniform mass of soft cells surrounding the papilla.

In the greater extent of he follicle the outer root-sheath is several layers
deep, but as the bottom of the follicle is approached it becomes thinner, and is finally reduced to a single stratum of cells which, in the papillary part, becomes flattened out into a very thin layer (fig. 380, I.).

The connective tissue or dermic part of the hair-follicle is composed

Fif. 380.-Sbctions ackoss haik-follicles from the scalp of in infaxt.
I. Through papilla. II, Just above papilla. IIl. About middle of follicle. IV. Near oritice of follicle. In $]_{\text {. }}-p$, papilla; e, epithelium surrounding papilla, with pigment in cells: $h /=$ hyaline layer of dermie coat with thin outer root-sheath just withiu it. In II.. IfI., IV,: 0 , outer root-sheath; i^{\prime}, jayer of Henle, and $i^{\prime \prime}$, layer of Huxley of the iuner root-sheath; c, cuticle of root-sheath; h, hair.
internally of a vascular layer, which is separated from the root-sheath by a basement-membrane termed the hyaline layer of the follicle. The vascular layer corresponds to the superficial layer of the cutis vera. Its fibres and cells have a regular circular arrangement around the follicle, the cells being flattened against the hyaline layer. Externally the dermic coat of the follicle has a more open texture, corresponding to the deeper part of the cutis, and contains the larger branches of the arteries and veins. In the
large tactile hairs of animals the veins near the bottom of the follicle are dilated into sinuses, forming a kind of erectile structure.

The hair-follicle receives nerve-fibres which pass into the papilla, and

Fig. 381.-Longtitudinal section of a hatr-folliclet. Magnified 200 diameters. 0 , outer ; i, inner root-sheath ; h, hair ; x, part shown magnified in fig. 382.
others which enter the root-sheath. These last are derived from the superficial nerves of the corium and form ring-like arborisations in the upper part of the hair-follicle. They are especially well developed in the large tactile haiis (whiskers) of animals.

The hair grows from the bottom of the follicle by multiplication of the
soft cells which cover the papilla, these cells becoming elongated and pig-

Fig. 382.-A small portion of the secifion shown la fig. 381 eñarged TO EXHIBIT THE STRUCTUAE OF THE SEVERAL LAYERS.
h, hair ; $e^{\prime \prime}$, its cuticle; ε^{\prime}, euticle of root-sheath; $i^{\prime \prime}$, Huxley's layer; i^{\prime}, Henle's layer ; o, outer root-sheath ; hy, hyaline layer ; d, dermic coat ; f, fat-cells.
mented to form the fibres of the fibrous substance, and otherwise modified to produce the medulla and cuticle of the

Fig. 383. - From a section of SKIN PREPARED BY THE CHRO" MATE OF SILVER METHOD, SHOWING THE UPPER PART OF TWO HAIRS AND THE TERMINAL ARBORISATIONS OF NERVE-FIBRES in their root-sheatis. (Van Gehuchten.) hair and the several layers of the rootsheath. The cells which form the medulla of the hair and the inner root-sheath are filled with granules of elëidin, but those which form the fibrous substance and cuticula of the hair have granules which stain brown with carmine, and appear similar to the granules in the corresponding cells of the nail-matrix (Ranvier) (see p. 272).

On the side to which the hair slopes a small patch of richly innervated thickened epidermis is usually to be found, developed over an enlarged papilla of the cutis vera: while on the opposite side of the hair is a flat area of skin with thickened scale-like epidermis, which may represent a vestige of the reptilian scale (Pinkus).

The hair-germs when they first appear (as at a, fig. 387) are singularly like certain tactile patches which are found in the skin of amphibia and some reptiles, and it is possible that hairs have become developed phylogenetically from these patches. It is well known that the tactile sensibility of many parts of the skin is intimately associated with the hairs, although parts devoid of hairs may also have a highly developed sense of touch.

Besides the hairs which have been described, and which are provided with a vascular papilla from the cells on the surface of which the hair and its inner reot-sheath grow (growing or bulb-hairs, papillated hairs), there are
many which are unprovided with a papilla and the follicle of which ceases at the level of attachment of the arrector pili muscle (non-growing or club hairs, non-papillated hairs). These are hairs which have become detached from their papilla and have ceased to grow; they are more easily pulled out than the growing hairs, and after a time tend to fall out spontaneously. In their follicles the whole of the lower part of the hair, including the original papilla and the soft growing cells which cover it, may entirely disappear, the hair being now attached at its sides and below to the root-sheath (fig. 379, h^{\prime}). A hair which has thus ceased to grow eventually becomes lost, but its place is presently supplied by a new hair, which becomes developed in

Fig. 384.-Nfrve finding in outer root-sheath of tactile hair of RABbit. (Ranvier.)
at, nerve-fibre ; m, tactile meniscus ; o, outer root-sheath ; i, inner root-sheath ; h, hair ; $h y$, hyaline membrane.
a down-growth from the old follicle, a new papilla becoming formed at the extremity of the down-growth (figs. 385, 386). If not previously detached, the old hair drops out from the follicle as the new one grows up to replace it.

The detachment of the non-papillated hairs is preceded by an absorption of the root of the hair and of the investing inner root-sheath. This absorption appears to be effected by the cells of the outer sheath, which multiply at the expense of the keratinised parts of the hair-root and undermine its attachment to the follicle (fig. 385). The root of such a hair when pulled out is of less diameter than the shaft.

Development. -The hairs are originally developed in the embryo as small solid down-growths from the Malpighian layer of the epidermis (fig. 387). The hair-germ, as it is called (although it gives rise not only to the hair proper but also to the epithelium-cells of the hair-follicle), is at first composed
entirely of soft growing cells, the outermost and deepest having a columnar shape; but presently those in the centre become differentiated, so as to produce a minute hair invested by inner root-sheath, its base resting upon a papilla which has become enclosed by the extremity of the hair-germ and which is continuous with the connective tissue of the cutis (fig. 388). As

Fig. 385. -Longitudinal section througil the follicle of i hair which has CEASED to OROW AND THE ROOT OF WHICI $1 S$ UNDERGOING AbSORPTION. Magnified 200 diameters.
the minute hair grows, it pushes its way through the layers of the epidermis, which it finally perforates, the epitrichial layer being thrown off (p. 268). During the whole process the follicle is growing more deeply into the cutis vera, oarrying the papilla down with it.

The hair-rudiments begin to appear at the third or fourth month of fuetal life; their growth is completed about the fifth or sixth month, and the fine hairs which they form constitute a complete hairy covering termed the lanugo. This is entirely
shed within a few months of birth, the new hairs being formed in down-growths from the old hair-follicles in the manner already mentioned.

Hairs grow at the rate of about half an inch a month. They are frund all

Fig. 386. - Formation of a nthw hair in a down-growth from a follicle in which the old hatr is becoming shed. (Ranvier.)
p, papilla of new hair ; i, e, its inner and outer root-sheaths; p^{\prime}, root, of old hair; r, epithelial projection at attachment of arrector pili, m.

Fig. 387.--Hatr-germs in a section of the scalp of a human feetus. (Szymonowicz.) Magnified 230 diameters.

[^15]over the surface of the body except on the palms of the hands and the soles of the feet (including the fingers and toes), the dorsal surface of the distal phalanges of the fingers and toes, and certain parts of the external generative organs. They usually slant, and in the negroid races the hair-follicles are even considerably curved and the hairs are oval or flattened in section. In other races differences also occur especially in size; the straight-haired races

Fig. 388.-DEYELOPING HAIR FROM HUMAN EMBRYO OF FOUR AND A HALF MONTHS. (Ranvier.)
p, papilla; f, hair-rudiment; i, cells from which the inner root-sheath is becoming formed; h, keratinised part of inner root-sheath, uncoloured by carmine; o, outer root-sheath; b, epithelial projection for insertiou of arrector pili; s, sebaceous gland; t, sebaceous degenera. tion of cells in the part which will become the neok of the follicle. This forms a channel for the passage of the hair-point through the Malpighian layer. having the largest, i.e. thickest hairs. On the scalp the hairs are set in groups, as is well seen in a horizontal section; they are most numerous here (200 to 300 per square centimeter).

When a growing hair is pulled out, the new hair does not immediately begin to replace it-at least externally-nor is it apparent at the surface for some weeks after epilation. During this period active karyokinesis nccurs amongst the cells at the bottom of the follicle, some of which gradually arrange themselves to produce the new hair.

Muscles of the hairs.-A small muscle composed of bundles of plain muscular tissue is attached to each hair-follicle (arrector pili, fig: 379, ar) ; it passes from the superficial part of the corium, on the side to which the hair slopes, obliquely downwards, to be attached near the bottom of the follicle to a projection formed by a localised hypertrophy of the outer rootsheath. When the muscle contracts, the hair becomes more erect, and the follicle is dragged upwards so as to cause a prominence on the general surface of the skin, whilst the part of the corium from which the little muscle arises is correspondingly depressed; the roughened condition known as "goose skin" being in this way produced. There is always a sebaceous gland in the triangle formed between the arrector pili, the mouth of the hair-follicle, and the epidermis, so that the contraction of the arrector generally causes the secretion of the gland to be extruded. These small muscles are supplied by nerve-fibres derived from the sympathetic.

GLANDS OF THE SKIN.

Sebaceous glands (fig. 379 , seb) are small saccular glands, the ducts of which open into the mouths of the hair-follieles. They are also found
in a few situations which are devoid of hairs (margin of lips, parts of the external generative organs). The Meibomian glands of the eyelid are modified sebaceous glands. Both the duct and the saccules are lined by epithelium-cells, some of which become charged with fatty matter. This sebaceous matter is discharged into the cavity of the saccule, probably owing to the disintegration of the cells within which it is formed. There may be more than one sebaceous gland attached to each hair-follicle.

The sebaceous glands are developed as outgrowths from the outer rootsheaths of the hairs (fig. 388, s).

Sweat glands are abundant over the whole skin, but are most numerous

Fig. 389.-Section of skin of palm, showing position of sweat glandos. (Kölliker.)
u, b, epidermis; c, cutis vera; c^{\prime}, papillæ of cutis; d, subcutaneous adipose tissue; e, channel passing through epidermis; e^{\prime}, its orifice; f, duct of gland passing through cutis vera; g, coiled tubes of sweat gland.
on the palm of the hand and on the sole of the foot. They are composed of coiled tubes, whioh lie in the deeper part of the integument and send their ducts up through the cutis to open on the surface by corkscrew-like channels in the epidermis (fig. 389).

The secreting part of the gland is formed of a convoluted tube composed of a basement-membrane lined by a single layer of cubical or columnar epithelium-cells, and with a layer of longitudinally, or obliquely disposed fibres between the epithelium and basement-membrane (fig. 390). These fibres are usually regarded as muscular, although the evidence on this point is not conclusive. The secreting tube is considerably larger than the duct;

Fig. 390.-SECtion of a sweat gland in the skin of man.
a, a, secreting tube in section; b, a coil seen from above; c, c, efferent tube; d, intertubular connective tissue with blood-vessels, 1 , basement-membrane; 2, muscular fibres cut across; 3 , seereting epithelium of tubule.

FIG: 391.-SECLION OF ChRUMINOUS GLAND OF TIIE FXTERNAI, FAR. Photograph.
$d_{\text {, }}$ thet of pland; it has a spiral course and is therefore rul several times; it is partly filled with cerumen ; gl, secreting tubules of gland; Ω, extremity of a tubule of a sebaccous gland which extended as far as the base of the ceruminous gland.
which begins within the gland and usually makes several convolutions before leaving the gland to traverse the cutis vera. The duct has an epithelium consisting of two or three layers of cells, within which is a well-marked cuticular lining, but there is no muscular layer. The passage through the epidermis has no proper wall, but is merely a channel excavated between the epithelium-cells. Very large sweat glands occur in the axilla.

The sweat glands receive nerve-fibres, and each gland bas a special cluster of capillary blood-vessels.

The ceruminous glands of the ear (fig. 391) are modified sweat glands. The secretion is of a sebaceous nafure, instead of being watery like that of the ordinary sweat glands. The ceruminous glands are closely associated with large sebaceous glands (fig. 392).

Fid. 392.-SEGTion showing the duct of a deruminous gland adoomianied by the slereting tubules of large sebaceous glands. Photograph.

Development. -The sweat glands are developed, like the hairs, as downgrowths of the Malpighian layer of the epidermis into the coriun. They are distinguishable from the hair-germs by the fact that the cells of the outermost layer are not columnar in shape, but spheroidal or polyhedral. The sweat-gland germs which are thus formed become eventually coiled up at their extremities and converted into hollow tubes. The muscular fibres of the tubes as well as the secreting epithelium-cells are ectodermic structures.

THE MAMMARY GLANDS.

The mammary glands are compound racemose glands which open by numerous ducts upon the apex of the nipple. The ducts are dilated into small reservoirs just before reaching the nipple (fig. 393). If traced backwards, they are found to commence in groups of saccular alveoli (fig. 394).

Fif:. 393.-A nammaky (:land dissected to show the duets dilated into reservoirs before opening ujon the nipple.

Fiti. 394.-Section of two adjacent mammary glands of lamtating cat, one of whicil is rull of milk whilst the other has been emptiad of its sembetion. Magnified 50 diameters.

The walls of the alveoli are lined by a single layer of epithelium which is columnar when the milk is being produced, but becomes flattened out as the secretion fills the alveoli. In fig. 395 milk globules may be seen forming within the columnar cells and also lying free within the alveoli. The contrast between alveoli distended with milk and those which have been emptied of the secretion is very striking (fig. 394). The emptying seems to be brought about by contraction of plain musole-cells in the alveolus, lying

Fil. 395. - Alveoli of mammary gland of lactating cat. Photograph. Magnified 400 diameters.
just inside the basement-membrane (as in the sweat glands) : such contraction is readily brought about by intravenous injection of certain animal extracts (pituitary, corpus luteum). At the commencement of lactation large eells containing fat particles appear in the secretion (colostrum corpuscles). These are either detached portions of the secreting epithelium cells or, as some believe, emigrated leucocytes similar to the salivary corpuscles of saliva.

Development.-The mammary glands are developed in the same manner as the sweat glands, excepting that the secreting part does not become convoluted and tubular. In the virgin manma they show very few and small groups of alveoli, but as pregnancy advantes the gland-ducts bud out extensively, and many more alveoli are formed and undergo enlargement, until the greater part of the connective tissue in the manmary region is permeated by them. In sections of the lactating gland they may be seen in various stages of development. After lactation is over they undergo a process of retrogression.

L.ESSON XXVI.

STRUCTURE OF THE HEART.

1. In formol-fixed sections through the wall of the auricle note the relative thickness of the epicardium, myocardium, and endocardium. Observe the blood-vessels and nerve-fibres under the epicardium, often embedded in fat; here and there a ganglion nay be seen under this membrane. Notice also the elastic networks under both the pericardium and endocardium. Make a general sketch of such a section.
2. In sections through the wall of the ventricle the same points are to be noticed. The muscular fibres are variously cut. In those cut longitudinally, the branching of the fibres and their union both laterally and by their branches may be seen. Notice also that although the fibres are cross-striated this is less distinct than in voluntary muscle, and that the nuclei lie near the cente of each fibre Transverse markings may also be seen passing across the fibres between the nuclei ; this is usually taken as indicating a division into cells. The endocardium is thin, cspecially over the columnæ carnce.
3. Section through one of the valves of the heart. ${ }^{1}$
4. If a portion of endocardium of the sheep's heart is spread out on a slide aud examined in salt solution, a network of large beaded fibres may be seen with a low power or even with a lens; they are also seen in sections. These are the tibres of Purkinje; they are formed of large, square-looking cells usually containing two nuclei, and having cross-striated muscular substance at their periphery.
5. The lymphatics of the heart may be injected with Berlin blue by sticking the nozzle of a hypodermic syringe anywhere into the muscular substance, and forcing the fluid into the interstices. The commencing lymphatics thus injected lead to efferent vessels which pass under the epicardium towards the base of the heart.
6. The epithelium which covers the cpicardium, and that which lines the endocardium, may be studied in preparations of the fresh organ rinsed with distilled water, then treated with nitrate of silver, again rinsed, and subsequently exposed to the light and hardened in alcohol. Surface sections are made and mounted in dammar after passing through clove-oil.

Myocardium.-The muscular tissue of the heart (fig. 396) forms the main thickness of the ventricles and also of parts of the auricles. It is composed of a network of fibres formed of transversely striated cells, the structure of which has already been studied (Lesson XVII.).

In the interstices of the muscular bundles there is a considerable amount of areolar tissue in which run numerous blood-capillaries and lacunar lymphatics.

Epicardium.-The myocardiun is covered externally by a layer of serous membrane-the epicardium or cardiac pcricardium (fig. 397, A)-composed,

[^16]like other serous membranes, of connective tissue and elastic fibres, the latter being most numerous in its deeper parts. Underneath the epicardium run the blood-vessels, nerves, and lymphatic vessels of the heart embedded in areolar and adipose tissue, this tissue being continuous with that which lies between the muscular bundles; the free surface of the membrane is covered by serous endothelium.

Endocardium.-The lining membrane of the cavities of the heart, known as the endocardium (fig. 397, B), has a structure not 'very unlike the pericardium. It is lined by a pavement-epithelium (endothelium), like

Fig. 396.-Section of myocardium. Magnified 200 diameters. Photograph.

> Most of the fibres are cut across. Notice the irregular outlines of the fibres and the manner in which they blend laterally with, one another; the nuclei in the middle of the fibres; the interstitial connective tissue subdividing the nuscular tissue into larger and smaller bundles.
that of a serous membrane, and consists of connective tissue with elastic fibres in its deeper part, between which there may, in some parts, be found a few plain muscular fibres. Fat is sometimes met with under the endocardium.

In some animals, e.g. the sheep and ox, a network of large beaded trabecule occurs under the ondocardium. They are formed of clear cells joined both end to end and laterally, and generally containing in their centre two nuclei, whilst the peripheral part of the cell is formed of cross-striated muscular tissue ; the trabeculæ are known as the fibres of Purkinje (fig. 399). They are formed of cardiac cells which have undergone differentiation into striated muscle substance only at their periphery, the non-differentiated part of
the cell having continued to grow until it has attained a considerable size. In man distinct fibres of Purkinje are not seen, but the innermost muscular fibres of the ventricles are larger than those which lie more externally: they also undergo development somewhat later (J. B. MacCallum).

The auriculo-ventricular bundle. - Muscular fibres, showing less differentiation than the rest of the cardiac musele, were first described by Stanley Kent as affording a bridging connexion between the muscle of the aurieles and that of the ventricles. Such fibres are usually collected in man and mammals into a circumscribed fasciculus known as the muricinto-rentriombur bundle (W. His, junr.), which extends from a plexiform nuass known as the node of Thamory on the septal wall of the right auricle t ; the septum between the rentricles, where it bifurcates; a buauch passing to each ventricle, over the inner surface of which it is continuous with a network of fibres represented in the sheep loy Purkinje's fibres. The bundle and all its branches are invested by a special connective-tissue sheath which can; be injected with coloured fluid: this affords the best means of demonstrating the whole system (Aaggard). 'Besides the extension over the ventricles there is another prolongation of the same tissue in the right auricle, ending or beginning in another plexiform mass (node of Keith and Flack) which lies elose to the entrance of the superior vena cara. The auri-culo-ventricular bundle serves the purpose of propagating the contractions of the auricles to the ventricles and thus maintaining the regularity of rhythm of the ventrieles; when the bundle is severed experimentally or by disease this propagation is no longer possible, and the ventricles then beat with a much slower rhythm than the auricles.

Fig. 3y7.-Sections of the right AURICLE.
A, epicardiup and adjacent part of the myocardium. a, serous endothelium in section; b, connective tissue layer; ' c, elastic network;' d, subserous arcolar tissue; e, fat; f, section of a blood-vessel ; g, a small ganglion; h, musenlar fibres of the myocardium ; i, intermuscular areolar tissue.
B, endocardium and adjacent layer of the myocardium. a, lining eodothelium; b, connective tissue with fine elastic fibres; c, layer with coarser elastic fibres; a, sub-endocardial connective tissue continnous with the intermuscular tissue of the myocardium; h, museular fibres of the myocardium; m, plain muscular tissue in the endocardium.

Fig. 898.-Endocarniem conkring one of the colemne carne.e of the rigit ventricle. (Mana.)

[^17]

Fig. 399.-Fragment of the networis of Purkinde's fibres frum the ventricular endocardium uf the sheief. (Ranvier.) i, clear cell body; n, nuclci ; f, striated fibrils.

Fig. 400.-Section throdgh one of the flars of the aortic valve, and part OF THE CORREXPONDING SINUS OF VALSALVA, WITH THE ADJOINING PART OF the ventricular wall. (From a drawing by Victor Horsley.)
t, endocardium, prolonged over the valve; b, subendocardial tissue; e, fibrous tissue of the valve, thickened at c^{\prime} near the free edge; d, section of the lunula; e, section of the fibrous ring; f, muscolar libres of the ventricle attacbed to it; g, loose areolar tissue at the base of the yentricle; s. V., sinus of Valsalvia ; $1,2,3$, inner, middle, and outer conts of the aorta.

Fig. 401.-ŚSETION (LONGITUDINAL) OF AORTIC valve, human. (Mann.)
I, PART continuous witil ENDOCARDIUM.
2, PART CONTINUOUS WITH AORTIC WALL.
u, endothelinm ; b, elastic layel' ; c, fibrous layer with many elastic fibres; d, line of junction of ventricular and aortic portions: e, compact fibrous tissue with fine elastic fibres; f, endothelium and elastic lamina.

The valves of the heart are formed of folds of endocardium strengthened by fibrous tissue (figs. 400,401). This tissue forms a thickening near the free edge of the valve (c^{\prime}). At the base of the auriculo-ventricular valves the muscular tissue of the auricle may be found passing a short distance into the valves. In the fcetus these valves are at first almost entirely muscular.

The nerves of the heart are seen underneath the epicardium of both

F1G. 402. - Ending of myelinated nerve-fibres, probably derived from the vagus, in a small cardiac ganglion. (Dogiel.)

The ganglion-cells are not represented.
auricles and ventricles; in the former situation they are connected at intervals with small ganglia (fig. 397, A, g; figs. 402, 403, 404). The axons of the ganglion-cells pass to the muscular substance, and after dividing into fine fibrils, end in enlarged extremities, applied directly to the muscular fibres (fig. 287, p. 206). Other myelinated nerve-fibres, probably afferent, terminate in complex ramifications in the endocardium (fig. 405) (Smirnow, A. S. Dogiel).

The blood-vessels of the beart are very numerous. The veins are thinwalled, retaining the capillary structure (endothelium only) in vessels of as much as 0.25 mm . in diameter. The blood-vessels are accompanied by

Fig. 403.
Fig. 404.
Fig. 403. - Ending of non-myelinated nerve-mibres in a small ganglion of the heart. (Dogiel.)
The ganglion -cells are not represented.
Fig. 404.-A small ganglion from the heart, showing the ganglion, cells and their processes. (Dogiel.)

numerous lymph-vessels, which form plexuses under the cardiac pericardium and endocardium. The lymphatics of the myocardium occupy lacunar spaces in the interstitial connective tissue between the muscle-fibres and can be readily demonstrated by injecting coloured fluid into the substance of the myocardium; the fluid passes from these spaces into lymph-vessels of the epi- and endo-cardium.

LESSON XXVII.

THE LARYNX, TRACHEA AND LUNGS.

1. In sections of the trachea and larynx, notice the columnar ciliated epithelium, the basement-membrane (of some thickness in the human trachea and larynx), the lymphoid tissue of the mucous membrane, the elastic tissue external to this, and lastly, the fibrous membrane containing the cartilages. In the mucous membrane and submucous areolar tissue look for sections of small mucous glands, ducts of which may be seen opening on the surface. At the back of the trachea notice the plain muscular fibres transversely arranged; there may be larger mucous glands external to these.
2. In sections of lung notice the alveoli collected into groups (infundibula or air-sacs). Find sections of bronchial tubes, some cut longitudinally and passing at their extremities into the alveolar passages, others cut across. In each tube notice the ciliated epithelium internally ; next to this the mucous membrane containing numerous elastic fibres and often thrown into folds; then the layer of circular muscular fibres, and, outside this, loose fibrous tissue in which in larger bronchial tubes pieces of cartilage may be seen embedded. Small mucous glands may also be observed in the fibrous tissue sending their ducts through the other layers to open on the inner surface. Notice that a branch of the pulmonary artery always accompanies a bronchial tube.

In the sections of the alveoli observe the capillary vessels passing from one side to the other of the intervening septa; and in places where the thin wall of an alveolus is seen flat in the section, the network of blood-capillaries upon it. In sections stained with orcein the elastic fibres are displayed. Within the alveoli nucleated corpuscles may here and there be seen with dark particles in their protoplasm. They are phagocytes which have migrated from the blood-vessels and lymphatics, and have taken in inhaled particles of carbon. They may pass back into the lung tissue, for similar cells are seen in this. Make a sketch of part of the wall of one or more bronchial tubes and of one or two of the alveoli.
3. The shape and arrangement of the alveoli is best seen in casts, which can be scraped or squeezed out of slices of a lung moderately distended with coloured gelatine and kept in 50 per cent. alcohol.
4. In sections of a fresh lung the air-cells of which have been filled with a mixture of gelatine and nitrate of silver solution the epitheliun of the alveoli can be stúdied. The sections are made with the freezing microtome, and mounted in glycerine; the preparation is warmed after the cover-glass is applied in order to melt the gelatine. On exposure to sunlight the silver becomes reduced.
5. Mount a section of lung in which the pulmonary vessels have been injected. Study the general arrangement of the vessels with a low power, and the network of capillaries of the alveoli with a high power. Observe that the veins run apart from the arteries. Sketch the capillary network of oue or two adjoining alveoli.

The trachea or wind-pipe is a fibrous and muscular tube, the wall of which is rendered somewhat rigid by C-shaped hoops of cartilage embedded in the fibrous tissue. The muscular tissue, which is of the
plain variety, forms a flat band, the fibres of which run transversely at the back of the tube. Both larynx and trachea are lined by a mucous membrane (figs. 406, 407), with ciliated epithelium upon its inner surface. The epithelium-cells, already described (Lesson VIII.), bave goblet-cells amongst them; they rest upon a thick basement-membrane. The corium of the mucous membrane consists of areolar and lymphoid tissue, and contains numerous blood-vessels and lymphatics. In its deepest part is a well-marked

Fig. 406. - Longitudinal section of the human trachea, including portions of two cartilaginous rings. (Klein.) Moderately magnified.
u, ciliated epithelium ; b, hasement-membrane; \mathfrak{c}, superficial part of the mucous membrane, containing the sections of numerous capillary blood-vessels and moch lymphoid tissue; d, deeper part of the mucous inembrane, consisting mainly of elastic fibres; e, suhmucous areolar tissue, containing the larger blood-vessels, small mmeous glands (their ducts and alveoli are seen in section, fat, etc, f, fibrous tissue investing and uniting the cartilages; g, a small mass of adipose tissue in the fibrous layer ; h, cartilage.
layer of longitudinal elastic fibres. Many small glands-mucous and mixed mucous and serous-are found in the wall of the trachea. They may lie either within the mucous membrane or in the submucous areolar tissue, or, lastly, at the back of the trachea, outside the transverse muscular fibres.

The two main divisions of the trachea, the right and left bronchi, are precisely similar in structure to the main tube.

The larynx resembles the trachea so far as the structure of the mucons membrane is concerned. It also is lined by ciliated epithelium, but over the true vocal cords and upon the epiglottis, as well as here and there in the par't above the glottis, stratified epithelium is found ; taste-buds may
occur in this epithelium, except over the vocal cords. Numerous nerves end in the epithelium (see fig. 275, p. 199).

Fig. 407. - Mocous membrane of Larynx. (Merkel.) g, a grollet-cell amongst the ciliated enithelium-cells; b, lasement-membrane ; l. Iymphoil tiasue : ρ, elastic fibres, cut across.

Fig. 408.-Longitudinal segtion throdof the ventricle of the larynx OF A CHild, (Klein.)
u, true vocal cord ; 7 , false vocal cord ; c, nodule of cartilage; d, ventricle of Morgagni ;
l, lymphoid tissue; m, thyro-arytenoid muscle.

The true vocal cords are composed of fine elastic fibres, and are covered by stratified epithelium.

Fif. 409 - - Portion of a trangyerse section of a bronchinl tobe, hemas, 6 ma. in mameter. (F. E. Schultze.) Magnified 30 diameters.
a, bartilage aurl fibom laser with momous rlambs, amb, in the onter part, a little fat ; in the middle, the duct of a ghand opens on the innes surtace of the tule ; b, ammatar layer af in-
 atrows; il, columar cilinted epithelima.
 u, ciliated epithelium ; b, basement-membrane; c, superficial part of mutous membrane, with fine clastic fibres; d, deeper part with numerous conrser fibres; e, plain muscle of bronchus : f, duct of gland passing through mucous membrane. The section is slightly oblique.

Lymphoid tissue is especially abundant in the mucous membrane of the ventricle of Morgagni (fig. 408, d). A large number of mucous glands open into this cavity and into that of the sacculus which communicates with it.

The cartilages of the trachea, as well as the thyroid, cricoid, and arytenoid cartilages of the larynx, are hyaline; all these are liable to ossify as age advances. The epiglottis and the cartilages of Santorini and of Wrisberg are composed of elastic fibro-cartilage. This is also the case with the uppermost part of the arytenoid and the tip of the vocal process of the same cartilage.

THE LUNGS.

The lungs are formed by the ramifications of the bronchial tubes and their terminal expansions; these form groups or lobules of sacculated

Fig. 411.-Section of lung, dog, showing a moderate sized bronchial tubf with the branch of the pulmonary artery accompanying it. Photograph. Magnified 50 diameters.

Some of the adjacent pulmonary tissue is included in the section, and presents a characteristic appearance.
dilatations (air-sacs, infundibula), beset everywhere with small irregularly hemispherical bulgings, known as the pulmonary alveoli or air-cells.

The bronchial tubes (figs. 409 to 413) are lined (except the terminal bronchi) by ciliated epithelium resting on a basement-membrane. Exterual to this is the corium of the mucous membrane, containing a large number of longitudinal elastic fibres and some lymphoid tissue. Outside this again is a complete layer of plain muscular fibres encircling the tube. Next comes a loose fibrous layer in which, in the large and medium sized tubes (figs. 409, 412), small plates of cartilage are embedded. Mucous glands are also present in this tissue.

The extremities of the small bronchial tubes expand into passages, respiratory bronchioles; these give off as branches the alveolar passages. The walls of both are beset with alveoli (fig. 414). The alveolar passages lead into irregularly spherical alveolated dilatations (atria) with which à number of blind and often funnel shaped diverticula completely covered with alveoli communicate ; these are the infundibula or air-sacs (Waters). The arrange-

Fig. 412.-Part of the section shown in the prieceding figure magnified 200 DIAMFTERS.

In the bronchial tube, the epithelium, the circular muscular fibres, parts of mucous glands and
two small pieces of cartilage can be seen. The corrugations of the mucous nembrane are
caused by post-mortem contraction of the oircular muscle.
ment of the parts, according to the investigations of W. S. Miller, is as follows (fig. 415): Two or more air-sacs, or groups of alveoli, open from a common chamber (atrium), and three to six atria are connected with the ending of an alveolar passage. The latter lead out of the respiratory bronohioles, which are expanded continuations of the smallest bronchial tubes.

The epithelium changes in character as we trace the small bronchi into the respiratory bronchioles; from columnar and ciliated it becomes cubical and non-ciliated, and there are patches of the respiratory epithelium (see
below) not only in the alveoli which occur scattered over the respiratory bronchioles hut also elsewhere in the wall of the latter. The plain muscular tissue of the small bronchi is continued as a distinct layer on the walls of the respiratory bronchioles, hut not on those of the alveolar passages and atria, although some muscle-cells occur round the mouths of the atria and even of the alveoli.

The alveoli are lined by large, irregular, flattened cells (fig. 416), which form an extremely delicate layer (respiratory epithelium), separating the blood-capillaries from the air within the alveoli. Amongst the flattened cells are here and there groups of smaller and thicker (cubical) epithelium-cells.

Fig. 413.-Section of a small bronchial tube and adjoining alveoli, Rabbit. $\times 300$. Photograph.
The tissue on the left is infiltrated with lymph (edematous).
The capillary network of the alveoli is very close (fig. 417), and the capillary vessels of adjoining alveoli are in complete continuity, the vessels passing first to one side and then to the other of the septa which separate the adjacent alveoli. Outside the epithelium a thin layer of connective tissue (basement-membrane?) forms the wall of each alveolus. Elastic fibres are numerous around the mouths of the alveoli; a certain number course over the wall of each alveolus (fig. 418).

Blood-vessels.-Branches of the pulmonary artery accompany the bronchial tubes to be distributed to the capillary networks upon the alveoli; from these networks the blood is returned by the pulmonary veins. An arteriole runs with each terminal bronchiole, and, dividing into as many branches as there are atria (fig. 415), is distributed to the capillary networks

Fig. 414.-Gelatine casts from lung of young cat. Photographed by reflected light. Magnified 75 diameters.
The figure shows (from left to right) : (a) a respiratory bronchiole, its wall partly beset witb alveoli; (b) part of a terminal group of alveoli ; (c) two or three terininal groups of alveoli (infundibula or air-sacs), still connected with their common atrium.

Fig. 415.-Diagram of tife lnimeg of a brunchial tube. (W. S. Miller.) B, terminal bronchiole; V, vestibule; A, atritum; S, air-sac of infundibulum; C, air-cell or alveolus; \mathcal{P}, ending of pulmonary arteriole; T, commencenent of pulmonary venule.
of all the air-cells with which the bronchiole is connected (Miller). From these networks one or two venules collect the blood, usually coursing (independently of the arteriole) on the outer border of the group of infundibula, and

Fig. 4l6.-Section of part of cat's lung, stained with nitrate of silver. (Klein.) 'Highly magnifieḍ.
Both the cubical and the large flattened cells of the alveoli are shown. In the middle is a section of a small bronchial tube, with a patch of cubical epitholium-cells at one side.

Fig. 417.-Section of injected lung, hbman, including sevfiral contiguous alveoli. Magnified 300 diameters. Photograph.
unite with other venules to form efferent veins. The venules of the superficial lobules are connected with a vascular network at the surface of the lung underneath the pleura. This network is also supplied from the
bronchial arteries. The veins, pursuing a separate course through the tissue of the lung, join with others to form larger vessels which pass to the root of the lung. Branches from the bronchial arteries are distributed to the walls of the bronchial tubes, and to the connective tissue of the lung, including that of the pleura. Bronchial veins accompany the bronchial arteries to the larger tubes, but most of the blood brought to the lungs by the bronchial arteries is returned by the pulmonary veins. Connective tissue intervenes everywhere in small quantity between the infundibula (interstitial tissue), and forms a distinct layer, containing much elastic tissue, covering the surface of the lung underneath the serous membrane (subserous tissue). In

Fig. 418. - Elastic fibres of lung, stained with orcein. Magnified 200 diameters. Photograph.
some animals (e.g. guinea-pig) the subserous layer contains plain muscular tissue, which is especially developed near the lung-apex ; it has not been detected in man.

The lymphatics of the lung accompany the bronchial tubes, the branches of the pulmonary artery, and the branches of the pulmonary veiu; they also form a network in the pleura. The atria and air-sacs have no lymphatics in their walls (Miller). The bronchial lymphatics are less superficial than the corresponding blood-vessels. The larger tubes have two plexuses; one within, the other outside the cartilages. The smaller have only one set. The lymphatics of the bronchi are connected with those of the arteries and veins by lateral branches curving off at the divarications of the tubes; at these points there is usually an accumulation of lymphoid tissue. The larger arteries and veins have two accompanying lymphatics,
the smaller only one. All the lymphatics tend towards the hilus, and enter lymphatic glands at the root of the lung. Thoso in the pleura have been said to communicate, by means of stomata between the epithelial-cells of the serous membrane, with the cavity of the pleura; this connexion is denied by Miller. The.lymphatics of the pleura are furnished with numerous valves.

The pleura which covers the surface of the lung has the usual structure

Fig. 419.-Section of developing lung (pig) showing the gland-lime character of the growing bronchial tubes and alveol. (J. M. Fiint.) Magnified 70 diameters.
α, interstitial embryouic connective tissue ; b, bronchial tube $; c$, alveoli ; l, lyuph-clefts ; p, pleura.
of a serous membrane (fig. 325, p. 231). As already mentioned, it is provided with a special network of blood-vessels, supplied partly from the pulmonary vessels of the superficial lobules, partly from the bronchial arteries.

The lung is developed in the same manner as a secreting gland (fig. 419), to which, up to a certain period of formation, it bears a close resemblance. Its alvenli correspond with the secreting alveoli of a racemose gland, and the cells lining them are, prior to the introduction of air, of some thickness and of protoplasmic nature. It is only after the organ has come into use for respiration that they acquire the thin, flattened appearance which most of then present in the adult lung.

LESSON XXVIII.

STRUCTURE AND DEVELOPMENT OF THE TEETH.

1. Stuny first with the low power and afterwards with the high power a longitudinal section of a human tooth which has been prepared by grinding. It is better to purchase this specimen, for the process of preparation is difficult and

Fig. 420.-Vertical section of a tooth in situ. (Waldeyer.)
tedious without the aid of special apparatus. Examine carefully the enamel, the dentine, and the cenuent. The dark appearance of the dentinal tubules is due to

their containing air in the dried specimen. Measure the diameter of the euamel prisms and of some of the dentinal tubules. Make sketches from each of the tissues.
2. Section of a tooth in situ, which has been decaloified after fixation, and stained. In this section the mode of implantation of a tooth, as well as the structure of the pulp, can be made out. Make a general sketch under a low

Fig. 422.-Cross-section of root of canine tootli, human. (Subotta.) $\times 25$. D, dentine ; (f, its granular layer ; C , cement; P , pulp-cavity.
power, and under a high power duaw a small piece of the pulp showing the processes of the odontoblasts extending into the dentinal tubules.

Preparations with the soft parts in sitt can also be made withont decalcification. After fixation of the soft parts and staining of tissues in bulk the specimen is dehydrated with absolute alcohol and impregnated with xylol followed by Canada balsam. This is allowed to become hard, after which sections can be cut from it with a fine saw, and subsequently ground until transparent, when they are mounted in Canada balsam. This method needs special apparatus and skill.
3. The development of the teeth and the formation of their tissues are studied in sections made across the snout and lower jaw of fectal and young animals. Either the preparations are stained in bulk or the individual sections may be stained.

STRUC'SURE OF THE TEETH. ${ }^{1}$

A tooth consists in man of three calcified tissues; enamel, which is of epithelial origin, dentine, and cement or crusta petrosa. The dentine forms the main substance of a tooth, the enamel covers the crown, and the cement is a layer of bone which invests the root (figs. 420 to 422).

Enamel is formed of elongated hexagonal prisms (figs. 423, 424) often with rounded angles: they are set vertically, or with a slight curvature, upon the surface of the dentine. The prisms are separated by an inter-prismatic substance which is also calcified, and are connected with one another laterally by numerous bridges which pass across this substance (Leon Williams). They are marked at tolerably regular intervals with slight transverse shadings producing an indistinct cross-striated appearance (fig. 425). The cross-striation appears to be due to the manner in which the calcific matter has been deposited in successive layers and is often accentuated by slight varicosities upon the prisms. Sometimes coloured lines run through the enamel across the direction of its prisms.' The enamel prisms have when first laid down a fibrous structure, but this becomes obscured after their calcification is complete, although it can occasionally be made out (fig. 425). The enamel of the fully formed tooth contains only an extremely minute proportion of animal matter (C. Tomes, Lovatt Evans) ; practically it is wholly composed of earthy matter, chiefly phosphate of lime, with some carbonate.

The enamel of unworn teeth is covered by a very thin membrane of a horny nature. This membrane is perhaps the remains of the layer of cells which produced the enamel. It is known as Nasmyth's membrane or the cuticle of the enamel.

Dentine is constituted of a hard dense substance like bone, but containing no Haversian canals or lacunæ. It is pierced everywhere by fine wavy or spirally coursing canaliculi (dentine tubules, fig. 426), radiating outwards from a central cavity which, during life, contains the pulp. The tubules branch at acute angles as they pass outwards; the resulting tubules become gradually finer towards the periphery of the'dentine. The main tubules give off along their whole course very numerous lateral branches which extend for

[^18]a considerable distance in the dentine, and as they proceed become of almost immeasurable fineness (Mummery). To exbibit the finest ramuscles special methods of staining are required.

B

Fig. 424. - Enamel Prisms. Magnified 350 diameters. (Kölliker.) A, Fragments and single fibres of enamel, isolated by the action of hydrochloric acid. B, Suriace of a small fragment of enamel, showing the hexagonal ends of the fibres.

F1g. 425.- Stcction of enimel taken along the direction of the prisms. Magnified about 900 diameters. (Photographed from a preparation by Leon Williams.)

The prisms show both a cross-striated appearance and longitudinal fibrillation.
The tubules have a proper wall of their own, which can be isolated by steeping a section of tooth in strong hydrochloric acid. In the living tooth they are occupied by protoplasmic fibres (Tomes' dentinal processes), prolonged from the superficial cells (odontoblasts) of the pulp.

The intertubular substance appears for the most part homogeneous, but it can be shown to have a fibrous structure (see p. 313). Indications of the fact that its calcareous matter was deposited in the form of globules can be seen in various parts. This is particularly the case in places where the globular deposit was imperfect ; the spaces (interylobular spaees) left botween

Fig. 426.

Fig. 427.

Fig. 426. -Section of fang of tooth, parallul with dentine tubtles. Magnified 300 diameters. (Waldeyer.)
1, cement, with large bone lacume and indications of lamellm ; granular layer of Purkinje (interglobular spaces); 3, dentine tubules.
Fig. 427.-Section across dentine tubules. Magnified 300 diameters.
(Fraenckel.)
a, eut across ; l, cut obliquely.
the globules then produce the appearance of irregular cavities in sections of macerated tooth prepared by grinding and mounted dry. Under these conditions the cavities are occupied by air only, for the uncalcified animal matter has been destroyed in the process of maceration. Such interglobular spaces are most common near the surface of the dentine immediately within the crusta petrosa, where they give a granular effect to the soction (granular layer, fig. 426,2 , and fig. 422, G). But they are also well seen in the course of certain lines or clefts seen traversing the dentine across the direction of the

Fig. 428.-A small portion of dentine with interglobular sfaces. Magnified 350 diameters. (Kölliker.)
u, portion of incremental line formed hy the interglobular spaces, which are here filled up by the transparent mounting material.

Fig. 429.-Plegparation hrom a decalcified sprcimen of tooth stained by silver nitrate and pyridin. (J. Howard Mummery.) Magnified 600 diameters.
p, pulp in which are seen many fine neuro-fibrils. Most of these are directed towards the dentize. At r is the plexus of Raschkow whence fibrils are passing between the odentoblasts to the marginal plexus, m; some are traceable with the processes of the odontoblasts into the odontogenio zone, R; d, caloified dentine ; b, b, blood-vessels.
tubules (incre:nental lines, fig. 420, one such shown magnified in fig. 428), and such interglobular spaces, which are larger than those at the periphery of the dentine, may in the unmacerated tooth be seen to have the dentinal tubules passing through them. After decalcification the dentine can be separated into lamellæ along these incremental lines.

Other lines, more numerous than the incremental lines, are sometimes seen running across the dentine concentrically with its surface. These appear to have been produced by a physical cause, viz., the intermittent diffusion and deposition of calcareous substance in the animal matter formed by the odontoblasts.

The animal matter of dentine resembles bone and the connective tissues generally in having its ground-substance pervaded by fibres which yield gelatine on boiling. These fibres, which have been especially investigated by v. Ebner and Howard Mummery, are difficult of demonstration in the

Fig. 430.-Preparation by J. H. Mummery, showing nerve-ibrils passing into dentine.
fully calcified dentine; but in developing dentine and in dentine which is attacked by caries, they are more easily shown. They run for the most part parallel with the surface.

The pulp (fig. 429) consists of a soft, somewhat jelly-like, connective tissue containing branched cells, a network of blood-vessels most numerous near the dentinc, lymph-vessels, and many nerve-fibres, for the most part myelinated but some non-myelinated, which pass into the pulp-cavity along with the blood-vessels by a minute canal at the apex of the fang. The superficial cells of the pulp form an almost continuous layer, like an epithelium (fig. 429). They are known as odontoblasts, from having been concerned in the formation of the dentine, but, until calcification commences,

Fig. 431.
A. Section across the upper jaw of a fetal sheep, 3 cm. long. (Waldeyer.)
1, common dental lamina dipping down into the mucous membrane where it is half surrounded by a horseshoe-shaped more dense-looking tissue, the germ of the dentine and dental sac; ; ., palatine process of the maxilla.
B. Section from feetal calf simlak to that shown in A, but pasing through one of the special dental germs, here becoming rlaskshaped. (Röse.)
a, epithelium of mouth, thickened at b, above special dental germ ; c, papilia; d, special dental germ ; e, enumel epithelium ; f, dental sac.
C and D. Sections at later stages than A and B, the papilla having brCome formed and having become rartly sorrounded by the epithelial germ. (Kölliker.)
c, epithelium of gum, sketched in outline; f, neek of dental germ ;,f, enamel organ ; e, its deeper columar cells; ' e^{\prime}, projections into the corium ; p, papilla ; s, dental sac forming. In D , the dental germ ($f p$) of the corresponding permanent tooth is seen.
they are not very different in appearance from the other cells of the pulp, with which they appear to be connected by branched processes from their bases. At the side next the dentine they become, as it were, spun out into
the dentinal processes of Tomes. The nerve-fibres lose their myelin sheaths a short distauce from the odontoblasts and the axis-cylinders form an interlacement known as the plexus of Raschkow, near the bases of the odontoblasts; from this plexus numerous fibrils pass between the odontoblasts and join another very fine plexus which lies between them and the dentine, the marginal plexus of Mummery. From the nerves of the pulp fibrils pass to the dentine and, as Mummery has shown, enter the dentine tubules along with the processes of the odontoblasts (fig. 430); they pass along the tubules as excessively fine beaded fibrils, to end in arborisations at the surface of the dentine beneath the enamel and cement. Here and there a fibril may even pass a certain distance between the enamel prisms.

Mummery has further described, in connexion with the plexus of Raschkow, a layer close to the odontoblasts consisting of stellate cells, which he regards as sensory peripheral nerve-cells, and which, on the one hand, form synapses with branches of the nerve-fibres passing to the plexus in question, and on the other hand send fibres (axons) into the dentine tubules. It is, however, difficult to regard these as sensory cells and sensory nerves; their mode of distribution, if they are really of a nervous nature, would seem to connect them rather with the autonomic nervous system.

As age advances nodules of dentine may be formed in the interior of the pulp. Such nodules sometimes enclose blood-vessels, and thus give to this secondary dentine an appearance resembling bone. It has been on that account termed osteodentine.

The crusta petrosa or cement (figs. 422, 426) is a layer of lamellated bone which covers the dentine below the enamel. Except in situations where it is very thin it exhibits lacunæ and canaliculi, but there are no Haversian canals in normal human teeth. It is covered with periosteum (dental periosteum), which also lines the socket. The fibrous bundles of this periosteum extend on the one side into the crusta petrosa, on the other into the bony wall of the socket for the tooth, and thus serve to fix the tooth very securely.

DEVELOPMENT OF THE TEETH.

The development of the teeth has a general similarity to that of the hairs. The first change which foreshadows their development takes the form of a continuous thickening of the epithelium along the line of the gum; this thickening grows into the corium of the mucous membrane to form the common dental germ or lamina (fig. 431, A). At regular intervals there is a further thickening and growth from the common germ into the tissue of the mucous membrane, each of these special rudiments, which are ten in number, swelling out below into a flask-shaped mass of cells, the special dental germ (fig. 431, B) of a milk-tooth. The intermediate parts of the dental lamina long remain, forming a common epithelial strand uniting the several special dental germs to one another, and to the epithelium covering the gum (fig. 431, C, D, f). A vascular papilla is continued from the corium into the bottom of each special germ (fig. 431, C, D, p) ; this papilla has the shape of the crown of the future tooth. Each special dental germ, with its
included papilla, presently becomes almost entirely cut off from the epithelium of the mouth, and surrounded by a vascular membrane-the dental sac. The papilla becomes transformed into the dentine and pulp of the future tooth, and the enamel is deposited upon its surface by the epithelial-cells of the dental germ. The root of the tooth, with its covering of cement, is formed at a later period, when the tooth is beginning to grow up through the gum, by a gradual elongation of the base of the papilla. As shown first by 0 . Hertwig, and later by v. Brunn, there is a down-growth of epithelium either from the lower part of the enamel germ, or, rather, according to Mummery's observations, from other epithelial cells, which lie outside the enamel organ and are probably of similar origin. This down-growth, which is termed the

Fi4. 432.- SECTION of a developing inctigne tooth of a homan enbeyo. (Rüge.) Tie section also inchudes the germ of the adincent tooth.
$J K$, dental papilla; od, odontoblasts; b, bone of jaw; ρ, e^{\prime}, outer and inner layers of enamel organ ; $S P$, enamel pulp; d f., dental furrow; s, remains of common dental germ or lamina; n, neek or bridge of celis connceting this with the enamel organ; m.e., mouth-epithelium ; $e^{\prime \prime}$. enamel organ of adjacent tooth-germ; r, reserve germ of permanent tooth.
epithelial sheath, determines the form of the root and the formation of dentine in it, for it is always present where dentine is to be laid down. After completion of the dentine it becomes attenuated and broken up, and is eventually for the most part absorbed.

Formation of the enamel.-Before the enamel appears, the dental germ undergoes a peculiar transformation of its previously polyhedral epitheliumcells into four layers of modified cells (fig. 432). The innermost is a layer of columnar cells (ameloblasts or adamantoblasts (fig. 433, a), internal epithelium), immediately covering the surface of the dentine. The ameloblasts form the enamel prisms: the latter are preceded by a fibrous formation (fig. 434, f) followed by a deposition of calcareous salts in the form of small globules. Such globules are always formed when lime salts are deposited
in colloidal solutions (Rainy, Harting). These changes take place altogether external to the formative cells or ameloblasts; indeed according to some there is a fine homogeneous membrane between the ameloblasts and the forming enamel. This, if present, is probably of the nature of an "osmotic membrane" : it is termed by L. Williams the inner ameloblastic membrane (membrana preformativa of Huxley). But processes from the ameloblasts

Fig. 433.

Fig. 434.

Fig. 433.-Section showing the structure of the part of the enamel ORGAN WHICH LIES NEXT TO THE DENTINe. (Röse.)
d, dentine; e, newly formed enamel stained black by osmic acid; T, Tomes' processes from the ameloblasts, $a ; 8 t r$. int., stratum intermedium of enamel organ; p, branched cells of enamel pulp.
Flg. 434.-Developing enamel showing ameloblastis and the fibrous substance PRODUCED BY THESE CELLS, WHICH FORMS THE BASIS OF THE ENAMEL PRISMS. (Leon Williams.)
a, portions of the ameloblasts; f, fibrous basis of enamel prisms ; p, calcified part of enamel.
appear to penetrate this membrane and to be attached to the forming enamelprisms (Tomes' enamel processes, fig. 433, T). These processes are fibrillated.

The outermost cells form a single layer of cubical or polyhedral epithelium (external epithelium) (fig. 432,e). All the other cells of the dental germ become transformed into branching corpuscles (fig. 432, SP; fig. $433, p$) inter-communicating by their processes, and thus forming a network. But between the ameloblasts and the reticulum of branched cells of the so-called enamel pulp is a stratum of polyhedral cells (stratum intermedium). Both these and the cells of the external epithelium merge into the reticulum, which seems to be formed by a modification of them; or rather of a mass of cells representing a second or outer, stratum of the enamel germ as distinguished from the stratum which develops into ameloblasts. When calcification is about to begin the ameloblasts become separated from the stratum intermedium by another fine homogeneous membrane, the outer ameloblastic membrane of L. Willians. The whole dental epithelial germ,
thus modified, is known as the enamel organ. The reticulum disappears in the later stages of enamel formation.

The enamel organ contains no blood-vessels, although they are richly distributed in the developing connective tissue covering it.

Fif. 435.--Part of a section of developing tooti of pie. (v. Korff.)
a, ameloblasts ; d, fibres of the first fornied layer of dentine ; od, odontoblasts; p, $]$ ulp. The fibres of the pulp are seen to be in continuity with those which enter into the formation of the dentine.

Fig. 436. -Part of section of developing tooth of young rat, showing the mode of diposition of the dentine. Highly magnified.
c, outer layer of fully calcified dentine; b, uncaloified matrix, with a few nodules of calcareous matter; c, odontohlasts with processes extending into the dentine; d, pulp. The section is stained, the nealcified matrix being coloured, but not the caleified part.

Formation of the dentine.-This is formed by calcification at the surface of the papilla. There is here found a well-marked layer of odontoblasts (fig. 435, od ; fig. 436, c). These produce a layer of fibrillated dentinal matrix which forms a sort of cap to the papilla, and soon becomes calcified by the deposition of globules of calcareous matter, Processes of the odonto-
blasts remain in the dentine as it is forming ; in this way the dentine tubules originate. Most of their finer branches are formed later, as in the case of the canaliculi of bone, no doubt by an extension of their protoplasmic contents. Such extension may even penetrate between the enamelprisms. In marsupials this occurs to an unusual extent, giving it the appearance of being pervaded by tubules (Mummery). Subsequently a second layer of dentine is formed within the first by a repetition of the same process (fig. 436), and others succeed this so that the papilla gradually becomes calcified. A part, however, remains unaltered in the centre of the tooth, and with its covering of odontoblasts forms the pulp.

The ten milk-teeth are produced in each jaw in the manner described. These, however, become lost within a few years after birth, and are replaced by permanent teeth in much the same way that a new succession of hairs occurs. A small outgrowth takes place at an early period from the dental germ close to each of the milk-teeth (fig. 431, D, fp); this eventually becomes the germ of the corresponding permanent tooth. It gradually enlarges, acquires a papilla, forms an enamel organ : in short, passes through the same phases of development as the germ of the milk-tooth; and when the milk tooth drops out of the jaw in consequence of the absorption of its roots (by osteoclasts) the permanent tooth grows up into its place.

There are six permanent teeth in each jaw which do not succeed milkteeth; these are the permanent molars. They are developed from an extension backwards on each side of the jaw of the original epithelial thickening or common dental germ and by the down-growth from this into the corium of three successive special germs at comparatively long intervals of time. From these special germs the tissues of the permanent molars become formed in a manner exactly similar to that in which the milk-teeth are developed.

LESSON XXIX.

THE TONGUE AND THE GUSTATORY ORGANS. THE MUCOUS MEMBRANE OF THE MOUTH. THE PHARYNX AND EESOPHAGUS.

1. Sections of the tongue (man, monkey) vertical to the surface, stained with hematoxylin and eosin. The sections should be taken from different parts and include all three kinds of papillæ.
2. Sections of injected tongue.
3. Sections of the papilla foliata of the rabbit, stained with hematoxylin and eosin: these show taste-buds in sitn.

The cells composing the taste-buds are studied by teasing osmic preparations of the papilla foliata. The nerve endings are seen in sections of papillæ foliate which have been treated by (tolgi's osmic-bichromate-silver method (see Appendix).
4. Sections of the pharynx and of the resophagus stained with hematoxylin and eosin.

THE TONGUE.

The tongue is mainly composed of cross-striated muscular fibres, running some longitudinally, others transversely. It is covered by a mucous membrane ; the epithelium, like that of the rest of the mouth, is stratified, and conceals microscopic papillæ (fig. 437) like those of the skin. Besides these microscopic projections, the upper surface of the organ is covered with large papillæ, which give it a rough appearance. They are termed the lingual papille, and are of three kinds : (1) About twelve or thirteen comparatively large circular projections, each of which is surrounded by a narrow groove (fossa), external to which the mucous membrane is raised above the general level (vallum). These papille lie in a V-shaped line with the apex of the V towards the back of the tongue; they receive filaments of the glossopharyngeal nerve, and have taste-buds in the epithelium which covers their sides, and (in man but not in most mammals) in that of the side of the vallum. They are known as the circumvallate papille (figs. 438, 441). (2) All the rest of the papillary surface of the tongue is covered by conical papillo, so named from the conical pointed cap of epithelium, which is borne by each; sometimes this cap is fringed with fine epithelial filaments, when they are termed filiform (fig. 439). In the cat tribe the conical papillæ are clawshaped or recurved: they are hard and horny, and in the process of licking they produce the effect of scruping, (3) Scattered here and there amongst the conical papille are larger papille, the fungiform (fig. 440). These are very vascular, and have a redder appearance than the rest: they lie partly

Fig. 437.-SintTIUN aH MECUUS MEMEIRANE OF MOTTII, SIIOWJNG THEEE MCLOSGUIJC 1 MPILLAL AND STH: TEFITS EPITITELICM.
 HAVE ItJEN INTEUTED. (Joldt.)

 THE IAIILLA AND THE ADFOINING PART UF THE V.hLLUM, Magnified 150 diameters. (Heitamann.)
 blood-vessels; M, gland with duct.

F1g. 439.-Smulon of twu filifokia fapilles, homan. (Heitzmiann.)
E, epithelium ; C, corium ; L, lymphoid tissue; M, muscular fibres of tongue.

Fig. 440. -Segtion of fungiform papilla, human. (Heitzmann.) Letters as in previons figure.
embedded in little depressions of the mucous membrane. They have a certain number of taste-buds in their epithelium and receive branches from one or other of the taste-nerves.

Small tubular glands may be seen between the superficial muscular fibres sending their ducts to the surface. Most of these glands secrete mucus, but those which open into the trenches of the circumvallate papillæ, and a few others elsewhere, yield an albuminous secretion (serous glands of tongue, glands of Ebner).

The mucous membrane at the back of the tongue contains a large amount

Fifi. 441.-Section of circumvallate papilla of monkey. Photograph. Magnified 50 diameters.
Notice the irregularly papillated, flat surface of the papilla: the deep trench surrounding it: the taste-buds in the epithelium at the sides of the papilla, but none on the opposite side of the trench: the serous glands below it (the duct of one of these is seen opening into the bottom of the trench).
of lymphoid tissue, continuous with that of the tonsils (p. 243) and having a similar arrangement and structure.

TASTE-BUDS.

The minute gustatory organs, known as taste buds or taste-bulbs, may be seen in sections which pass through the papillæ vallatæ or the papille fungiformes; they are also present here and there in the epithelium of the general mucous membrane of the tongue, especially at the back and sides, and some are found upon the under surface of the soft palate, and on the posterior surface of the epiglottis. But they are most easily studied in the papille foliatee of the rabbit (fig. 442), two small oval areas lying on each side of the back of the tongue, and marked transversely with a number of ridges or laminæ with intervening trenches. Sections across the laminæ
show numerous taste-buds embedded in the thick epithelium which clothes their sides (fig. 443).

Fig. 442.-Tongute of rabbit, showing the situation of tile paphidifi foliatat, p.

Fig. 443.-Vlettcal seltion of papilita follata of the rabbit, passingi across the laminat. (Ranvier.)
p, central lamina formed of corium ; v, section of a vein, which traverses the lamina; p^{\prime}, lateral lamina in which the nerve-fibres run; g, taste-bud; n, sections of nerve-bundles; a, serous gland.

Fif. 444.-A taste-bud within the stratified epithelidum of the tungue (Sobotta.) Magnified 500 diameters.
g, gustatory cells; x, sustentacular cells; ep, epithelium ; \dot{p}, gustatory pore; h, bairiets.

The taste-buds are ovoid clusters of epithelium-cells which lie in cavities in the stratified epithelium (fig. 444). The base of the taste-bud rests upon

Fig. 445.-Various cheles from taftr-bet of rabbit. (Engelmana.) 600 diameters.
u, four gustatory vells from central part; b, one sustentacular cell, and two gustatory cells, in connexion ; c, three sustentacular cells.
the corium of the mucous membrane, and receives a branch of the glossopharyngeal nerve; the apex is narrow and communicates with the cavity of the mouth by a small pore in the superficial

Fig. 446.-Nerve-endintis is taste-buds. (6i. Retzius.)
n, nerve-fibres; b, tante-buds in outline; i, ending of fibrils with. in taste-bud; p, endiny in eprthelium between taste-buds; s, sulcus of papilla foliata into which the gustatory pores opeli. epithelium (gustatory pore, fig. 444, p).

The cells which compose the taste-bud are of two kinds, viz, . l. The dustatory cells (fig. $445, a)$. These are delicate fusiform or bipolar cells composed of cell-body or nucleated enlargement and of two procosses, one distal, the other proximal. Of these the distal is nearly straight, and passes towards the apex of the taste-bud, where it terminates in a small, highly refracting cilium like appendage (taste-hairlet), which projects into the gustatory pore above mentioned; the cell body does not itself quite reach the pore. The proximal process is more delicate than the other, and is often branched and varicose. The nerve-fibres to the taste-bud (fig. 446) terminate in ramifications amongst these cells (G. Retzius). 2. The sustentacular cells (fig. 445, c). These are elungated cells, mostly flattened, and pointed at their ends: they lie between the gustatory cells, which they thus appear to support, and in addition they form a sort of envelope or covering to the taste-bud. Between the cells of the taste-bud lymph-corpuscles are often seen, having probably wandered hither from the subjacent mucous membrane. Connective-tissue
fibrils penetrate between the taste-bud and the stratificd epithelinm in which it is embedded (Drasch).

According to M. Heidenhain no sharp distinction. can be drawn between gustatory and sustentacular cells, but all grades of transition are found.

MOUTH, PHARYNX AND TESOPHAGUS.

The mucous membrane of the mouth is lined by a stratified epithelium (fig. 447) into which vascular, and, in some parts, nerve-containing papillæ of the corium project. The corium is formed of connective tissue and contains within and beneath it a large number of small secretory glands (buccal glands). Most of these secrete mucus, but some are of the mixed type (see under Salivary Glands, in next Lesson) : this is the case, for example, with the

Fig. 447. -Section of the stratified epithelium of the faduces of the rabbit. Photograph. Magnified 240 diameters.
glands of the lips. The ducts of the buccal glands open everywhere upon the surface of the membrane; the large ducts belonging to the salivary glands also open into the mouth.

The phargnx is composed of a fibrous membrane which is encircled by striated muscles (the constrictors), and lined by mucous membrane with which the fibrous membrane is connected by areolar tissue. The mucous membrane is covered on its inner surface over the upper part of the pharynx with ciliated epithelium; this is continuous above and in front with that of the nostrils, and through the Eustachian tube with that of the tympanum. Below the level of the soft palate the epithelium is stratified like that of the mouth and gullet, into which it passes. In certain parts the mucous membrane contains a large amount of lymphoid tissue, and everywhere numerous mucous glands open on its surface.

The œesophagus or gullet, which passes from the pharynx to the stomach. consists of an outer fibrous or areolar covering, a muscular coat, a lining mucous membrane, and intervening connective tissue forming the submucous or areolar coat (fig. 448). The muscular coat is composed of striated muscle in about its upper third only, the rest being of the plain variety. There are two layers of the muscular coat-an outer layer, in which the bundles of fibres run longitudinally, and an

Fig. 448.-Seetion of the human esophages. (V. Horsley.)
The section is transverse, and from near the middle of the gullet. a, fibrous covering ; b, divided fibres of the longitudinal muscular coat; c, transverse muscular fibres ; d, submucous or areolar layer ; e, muscularis mucost ; f, mucous membrane with papilles; g, laminated epithelial lining; h, mucous gland; i, gland duct m^{\prime}, striated muscular fibres in section. inner, in which they have a circular arrangement. The mucous membrane is lined by a stratified epithelium, into which papille from the corium project. The corium is formed of areolar tissue; its limits are marked externally by a narrow layer of longitudinally disposed plain muscular fibres, the muscularis mucosa. This is separated from the proper muscular coat by the areolar coat, which contains the larger hranches of the blood-vessels and lymphatics, and also the mucous glands of the membrane. The ducts of these glands are large and usually pass through a nodule of lymphoid tissue, lymph-cells from which infiltrate the epithelium of the duct and may pass out into its lumen.

Besides these mucous glands, there are met with both at the upper or laryngeal part of the resophagus and at the lower or gastric end a certain number of small tubulo-racemose glands of a different character. They are confined to the mucous membrane, not penetrating the muscularis mucosæ, and their ducts open upon and not between the papillæ of the mucous membrane. They closely resemble the tubulo-racemose cardiac glands of the stomach (see fig. 466, p. 337), and it is usually found that the epithelium of the surface in the immediate neighbourhood of their ducts is similar to that lining the stomach.

There are two ganglionated nerve-plexuses in the asophagus, one in the muscular coat and one in the submucous coat ; they resemble in position and structure those of the intestine.

LESSON XXX.

THE SALIVARY GLANDS.

1. SEction of submaxillary gland (dog). The gland may be hardened in alcohol or formol followed by alcohol and stained with hæmatoxylin-eosin, with ironhæmatoxylin or with alcoholic eosin and methylene-hlue. Notice the acini filled with clear (mucus-secreting) cclls, the nuclei of which usually lie near the basementmembrane. Notice here and there, outside the clear cells, demilunes or crescents of small darkly stained granular-looking (serous) cells. Observe also the sections of the ducts with their striated columnar epithelium. If possible find a place where one of the ducts is passing into the alveoli. Sketch under a high power.
2. Study sections of parotid and sublingual glands prepared in a similar way, and notice the differences between the three glands.
3. Examine small pieces of both submaxillary and parotid gland of the dog or cat fresh in 2 per cent. salt solution. In the submaxillary gland notice that the alveolar cells are swollen out with large granules or droplets of mucigen, which swell up in water to form large clear vacuoles. Dilute acids and alkalies produce a similar change, but more rapidly. The cells of the parotid gland are also filled with granules, but they are smaller. Their granules are swollen up and dissolved by dilute acids and alkalies. Make a sketch from each preparation under a high power.

The granules are not seen in preparations that have been in alcobol, but osmic acid preserves them moderately well ; they are well seen in sections from picric acid hardened glands.
4. To study the changes which the alveolar cells undergo during secretion, pilocarpine is administered to an animal in sufficient amount to produce copious salivation; after half an hour the animal is killed and its salivary glands are examined as in § 3.

The salivary glands may be looked upon as typical of secreting glands in general. They are composed of a number of lobules bound together loosely by connective tissue. Each small lobule is formed of a group of irregularly saccular or tubular alveoli or acini from which a small duct passes, and this unites with others to form larger ducts. A main duct eventually leaves the gland to open upon the inside of the mouth.

The alveoli are enclosed by a basement-membrane, which has flattened branched cells on its inner surface, next to the epithelium (fig. 449). The membrane may be shown by teasing the fresh gland substance in water (Langley). This basement-membrane is continued along the ducts. 'Within it is the epithelium, which in the alveoli is composed of polyhedral cells, looking wedge-shaped in section (fig. 450, a), but in the ducts is regularly columnar, except in that part of the duct which immediately opens into the alveoli (junctional part) ; in this it is flattened (d^{\prime}). The columnar epithelium of the ducts is peculiar, in that the cells, which are granular, are not sharply marked off from one another and show a distinction into two unequal zones, an outer, larger zone, with the granules arranged in a striated manner
perpendicular to the basement-membrane, and an inner, smaller one (fig. $450, d$, and fig. 459). The larger ducts are lined by non-granular cubical or short columnar epithelium, which may show more than one layer of cells.

 Magnitied 600 diameters.
The pregarion wa-from a mand fand of the rablit.
The cells of the alveoli differ according to the substance they secrete In alveoli which secrete mucus, such as those of most of the smaller glandwhich open on the mucous membrane of the mouth, arl contribute to the

Fig. 450. -Section of the submaxillary gland of the dog, showing the commencembint of a dict in the alveoli. Magnified 425 diameters.
\boldsymbol{a}, one of the alveoli, several of which are in the section shown grouped around the commencement of the duct, d^{\prime}; u^{\prime}, an olveolus, not opened by the section; b, basement-membrane in section; c, interstitial connective tissue of the gland; d, section of : duct which has mased away from the alvcoli, and is now lincd with characteristically striated columnar cells: s, crescentic group of darkly stained cells at the periphery of an alveolus.
production of saliva (fig. 451), and some of the alveoli of the submaxillary and sublingual glands, the cells, if examined in normal saline solution or after hardening with alcohol, are clear and swollen. But if examined rapidly in serum, or in solutions of salt of from 2 to 5 per cent., they are often seen
to be occupied by large and distinct granules (fig. 452, a) (Langley) which become swollen up under the influence of dilute acid (b). These granules can

Fig. 451. -Section of a mucous salivary gland (one of the small olands of the buccal mocous membranes). Photograph. Magnified 200 diameters. In the middle of the figure is seen the section of a duct.
also be rendered visible by certain methods of staining. Granules are not present as such in all mucus-secreting cells, but in many have become

Fig. 452.-Mucous cells from fresh submaxillary glands of the doc. (Langley:)
a, from a resting or loaded gland; b, from a gland which has been secreting for some time; a^{\prime}, b^{\prime}, similar cells which have been treated with dilute acid.
blended together and transformed into a substance which is known as mucigen which distends the cell. The mucigen is dissolved out and discharged as mucus into the lumen of the alveolus and into the ducts, when the gland
is stimulated to activity. After such discharge, the cells, instead of having a clear appearance, look finely granular, and are much smaller ; they also stain more déeply with hæmatoxylin (compare figs. 453 and 454). These cells are known as mucous rells. Putt in most mucous alveoli certain of the cells do

 (F REST. (Puanviec.)
, lumen of als eolus; g, murus-secreting cells; c, wesent, formed of allmminous cells.
not contain mucigen, but swall albuminous granules; these cells often form groups which lie next to the basement-membrane (figs. $45: 3, c$, and 4 in). These groups are the socalled crescents of (ricmusai; their constituentcells are known as marginert or seroues cells. Special diverticula pass from the

Ftg. 454.--Submayillary of dot, after a perion of activity. (Ranvier.)
The mucus-secreting cells, g, have discharged their secretion, and are smaller and stain better; the albuminons cells of the crescents, c, are enlarged.
lumen of the alveoli between the mucous cells to penetrate to the crescents and to branch amongst and within their constituent-cells; these diverticula are best shown by the Golgi method of staining (fig. 456; and also fig. 463).

The serous cells are characteristic of purely serons alveoli (fig. 455), in which none of the cells secrete mucus, but watery or albuminous saliva. In these when the gland has been long at rest the cells are filled with granules, which
do not swell with water nor form mucin ; they appear to be of protein nature, and probably yield to the secretion of the gland its ferment (ptyalin) and its

Fig. 455.-Section of human sublingoal. Magnified 200 diameters.
(Photographed from a preparation by Prof. M. Heidenhain.)
Most of the alveoli shown in the figure are serous, but some are mixed, containing chiefly mucous cells but also crescentic groups of serous cells.

Fig. 456. -Alveoli of human sublingual gland prepared by Golgi method. (E. Müller.)
l, lumen stained, with lateral diverticula passing between and into mucussecreting cells; h, longer diverticula penetrating into the "crescent" cells.
albumin. The granular substance within the cell is not the ferment, but the ferment is formed from it when the secretion is poured out. Hence it has been termed zymogen (mother of ferment). As Langley showed, the outer part of each cell becomes clear and free from granules after secretion
(fig. 457). Sometimes the change is found to occur in some cells and not in others (fig. 458).

Fig. 457 . Alverhi of a seroug miand. A, at rest. B, afteri a shoiet fekion

In A and D the madei are ohsined by the grambey of atmoren.

Fha. 458. -Stemadilatify mand of Ratert. (E. Miuller.)
The rells, which are all kerous, are in tiffepent fimetiomal states, as indicated bo the condition and staining of the granules, a, "ell filled with darkly staned grantlew; \dot{b}, clear eqll; c, verratore canaliculi penetrating into the cells.

Fic. 459.-Cellis from duct of rikotid. A, prior to secrution ; B, after secretion (Mishawski and Smirnow).

The cells lining the ducts of the ordinary glands are also occupied by granules which are found to alter in number and size with varying states of secretion (fig. 459).
 in man and most animals the sulmaxillary and sublingual glands have not only

(R. Heideuhaiu.)

To the right of the figure is a gloug, of mumous and mixerl ulveoli ; to the left a croup of seroun alieali.
coutaining looth serons and mucous cells. The detached anterion part of the sublingual glind, which in man is comparatively small, has purely mucous alveoli.

Fig. 4bl. - Alveoll from merols POKTION OF THE HIMAN SUBMAXILLARy fland, rartly mNFiltelled. (Peiser.)

Fias, 46 - - Alveoli from sekole PORTION UF THE HUMAN SUTBMAXILLafy cland, partly unjavelled. (I'eiser:).

When the glands are unravelled and examined with the microscope it is found that the mucous and serous alveoli are somewhat different in shape, the mucous alveoli being larger, more uniform in shape, and linked on to the ducts by shorter and wider intermediate or junctional portions (compare fig. 461 , which is from a mucous part of the human submaxillary, with fig. 462 from a serous part).

The largest ducts have a wall of connective tissue outside the basementmembrane, and also a few plain muscle-cells. The blood-vessels of the gland form a capillary network around each

Fic. 463.-Alveoli of the submaxllafiry gland of the dog. (G. Retzius.) Golgi method.

The extensions of the lumen into the crescents of Gianuzzi are shown, and also the endings of nerve fibrils amongst the cells of the alveoli. alveolus. The lymphatics commence in the form of lacunar vessels in the areolar tissue between the alveoli. Lymph-zodules are occasionally found in the interstitial connective tissue. The nerve-fibres of the gland, derived in the case of the larger salivary glands both from cerebro-spinal nerves and sympathetic, pass through ganglia before proceeding to their distribution. They ramify as fine varicose fibrils amongst the alveolar cells (fig. 463); many are distributed to the blood-vessels.

Development.-The salivary glands are developed as buds from the epithelium of the buccal cavity, at first solid but gradually becoming hollowed out. To begin with they are simple, but undergo ramification as they extend into the mucous membrane and submucous tissue.

LESSON XXXI.

THE STOMACH.

1. Vertical longitudinal sections through the cardia, including the lower end of the cesophagus and the adjacent cardiac portion of the stomach. These are intended to show the abrupt transition of the stratified epithelium of the œesophagus into the columnar epithelinm of the stomach, and also the character of the gastric and cesophageal glands in the immediate neighbourhood of the cardia. The scctions may be stained with hæmatoxylin and eosin or alcoholic eosin and methylene-blue.
2. Sections of the fundus of the stomach cut perpendicularly to the surface of the mucous membrane.

In these sections the general arrangement of the coats of the stomach is studied. Sketches are to be made under a low power illustrating this arrangement, and under a high power showing the structure of the glands.

Measure the whole thickness of the mucous membrane, the thickness of the muscular coat, the size of the columnar epithelium-cells of the surface, and that of the cells in the deeper parts of the glands.
3. Sections of the mucous membrane of the fundus, cut parallel to the surface.

These sections will show better than the others the arrangement of the cells in the glands.
4. Vertical sections of the mucous membrane from the pyloric region of the stomach. 'In a section taken longitudinally through the pylorus, the transition of the gastric glands into the glands of Brünner of the duodenum will be made manifest. Make a sketch under a low power of one of the pyloric glands in its whole length, filling up some of the details with the high power.
5. Study the arrangement of the blood-vessels in vertical sections of the wall of a stomach the vessels of which have been injected.

The wall of the stomach consists of four coats, which, enumerated from without in, are as follows, viz. : serous, muscular, arcolar or submucous, and mucous membrane (fig. 464).

The serous coat is a layer derived from the peritoneum. It is deficient along the lines of the lesser and greater curvatures.

The muscular coat consists of three layers of plain muscular fibres. Of these the bundles of the outer layer run longitudinally, those of the middle layer circularly, and those of the inner layer obliquely. The longitudinal and circular bundles become thicker and stronger towards the pylorus; at the pylorus itself the circular layer is greatly thickened to form a sphincter muscle. The oblique fibres are only present over the fundus.

The areolar or submucous coat is a layer of areolar tissue, serving to unite the mucous membrane loosely to the muscular coat; in it ramify the larger branches of the blood-vessels and lymphatics.

The mucous membrane is in man a soft thick layer, generally corrugated in the empty condition of the organ. Its inner surface is covered by columnar cells, all of which secrete mucus. They are prolonged into the ducts of the glands, but when these divide to form the tubules the cells become shorter, and lose their mucus-secreting

Fig. 464.-Dhagram of section through the coats of the stomach. (Mall.)
m, mucous membrane ; e, epithelitum ; d, orifice of gland duct ; m.m., muscularis mucosæ; smb, submucosa; c.m., oircular muscular layer; l.m., ing gitudinal muscular layer; s, serous coat. character, although an occasional cell of the same character may be seen lower down. On the other hand, both oxyntic and central cells are sometimes seen between the columnar epithelium cells of the ducts. Where the cesoplaagus passes into the stomach the stratified epithelium lining the gullet gives place abruptly to the columnar epithelium of the stomach (fig. 465).

In some animals (e.g. rat) the stratified epithelium of the resophagus is continued over a more or less extensive triact of the gastric mucous membrane, but it always ends by a similar sharply defined line.

The thickness of the gastric mucous membrane is due to the fact that it is largely made up of long tubular glands opening upon the inner surface; but, as in all hollow viscera, the thickness depends to a large extent upon the state of distension. Between the glands the mucous membrane is formed of reticular tissue with some lymph-cells and many basiphil connective-tissue cells in the meshes. Externally the mucous membrane is bounded by the muscularis mucose, consisting of an outer longitudinal and an inner circular layer of plain muscular fibres. The inner layer sends strands of muscle towards the surface between the glands.

Gastric glands.-These are formed of a basement-membrane lined with epithelium. Each gland consists of secreting tubules, from one to four in number, opening at the surface into a larger tube, the duct of the gland. The duct is in all cases lined by mucus-secreting epithelium of the same character as that which covers the inner surface of the mucous membrane, but the epithelium of the secreting tubules is different from this, and also differs somewhat in the glands of different regions of the organ. The following varieties of gastric glands are met with :-

Glands of the cardia.-These are comparatively few in number. They
 WIIERE TIIE STRATITIED EPITHELIUM OF TFE OF THE GASTRIO MUCOUS MEMBRANE. PhOUOgraph. Magnified 20 diameters.

Fig. 466, -SEction of hUman stomach Near tee cardiac. (v. Ebner, after
J. Schaffer.) Magnified 45 diameters.
c, cardiae glands; d, their ducts; cr, glands similar to orypts of Lieberkühn, with goblet-cells $m m$, mucous membrane ; m, muscularis mucosie ; m^{\prime}, muscular tissue within mucous membrane.
are usually found only close to the cesophageal opening (cardia) and are of two kinds: (α) simple tubules, similar in their general structure to the crypts of Lieberkühn of the intestine, and (b) small tubulo-racemose glands

Fig. 467.--Sections of the mucous membrane of the fundus of the dog"s stomach PASSING WITH A SLIGHT OBLIQUITY ACROSS THE LONG AXIS OF THE GLANDS.
A, Section olose to but not quite parallel with the surface, including on the left the gland ducts and on the right the commencing gland tubules. Notice the rounded oxyntic or acid-forming cells of the glands. They already hegin to appear between the columnar cells of the ducts.
B_{1} Deeper part of the same section, showing the lumina of the gland tubules surrounded by principal or pepsin-yielding cells, with the oxyntic cells altogether outside them.
(fig. 466). The latter are commonest in man; the former occur in considerable number in certain animals. The secreting tubules of the racemose glands are lined by cells which are granular in appearance and of a short columnar form, and of the same nature throughout the length of the tubule, except near the orifice (duct), where they give place to columnar mucussecreting cells.

Glands of the fundus (figs. 464, 467, 468, 469).-In these glands the tubules are usually relatively long and the duct short. The epithelium of the tubules is composed of two sets of cells, termed from their relative position in the tubules the central and the parietal cells.

Central cells.-These are of two types. 1. Those of the first type, which are the best known, are not stained .with hæmatoxylin, although in aniline-stained sections their cytoplasm is strongly basiphil. The nucleus is spherical and is generally near the middle of the cell. In the fresh resting gland and with certain methods of fixation, the cytoplasm is seen to contain distinct granules (zymogen) most numerous near the inner zone (fig. 468). After a period of secretory activity the granules diminish in number, and the clear outer zone encroaches upon the granular inner zone (Langley), as in the analogous cases of the pancreas and parotid glands. It is believed that the granules in question contain pepsinogen, which is converted into pepsin when discharged. These cells (of the first type) may therefore be appropriately termed the peptic cells of the fundic glands.
2. The central cells of the second type

Fig. 468.-A FUNDUS GLAND OF SIMPLE FORM FROM THE BAT's STOMACH. Osmic acid preparation. (Langley.)
c, columnar epithelium of the surface : n, neek of the gland with central and parietal cells; f, base ocenpied only by principal or central cells, which exhibit the granules accumulated towards the lmmen of the gland. (fig. $469, \mathrm{~B}, m$) are quite different in appearance and staining reactions from those just described. They are larger and clearer and are stained blue by Mallory, like mucin-containing cells; whereas the cytoplasm of the peptic cell is coloured yellowish brown by that reagent. They occur either in a scattered form wedged in between the other cells, or there may be a number together, occupying a considerable length of 'a tubule (as in fig. 469, B, m). The cytoplasm has no obvious granules : the nucleus is either flattened against or wedged into the attached end of the cell. For this second type of central cell the name mucoid cell is suggested. ${ }^{1}$

[^19]Parietal cells.-Scattered along the tubule, lying between the central cells and the basement-membrane, are a number of large spheroidal or ovoidal cells. These are the parietal cells; also known as oxyntic, having been so named by Langley because they are believed to produce the acid of the gastric secretion. Each of these cells is penetrated by a network of minute passages, communicating with the lumen of the gland by a fine canal, which passes between the

Fig. 469.-Photographs of a vertical section of the mucous membrane of the fundus of the cat's stomach, showing the glands itt bungtudinalla, (From preparations by R. K. S. Lim.)
A, magnified 75 diameters; min., musoularis mucossb. B, a portion of 1 magniffed 400 diameters. p, a gland containing "peptic" cells; m, a gland containing "mucoid" cells; both show oxyntic cells on the outside.
central cells (fig. 470). They are sometimes present in the neck of the gland or even at the surface of the stomach; in these places they are wedged in between the ordinary epithelium-cells (fig. 467, A).
(3) Glands of the pyloric canal (fig. 471). -In the glands of the pyloric canal the ducts are much longer than those of the fundus glands, and the secreting tubules possess cells of only one kind. ${ }^{1}$ These appear to correspond
${ }^{1}$ In man it is, however, only quite near the pylorus that parietal cells are altogether absent. They have been occasionally seen in Brinner's glands of the duodenum.
with the "mucoid" cells of the fundus glands which have been above described as possessing flattened basal nuclei (p. 339). They have an indistinctly granular appearance and are said to yield pepsin to the gastric juice ; but are quite different from the "peptic" cells of the fundus glands. They are also quite unlike the epithelium of the surface and ducts, which is formed, as

Fig. 470.

Fig. 471.

Fig. 470.-Part of tubule of a fundus gland, with thef lumen and secretory canaliculi stained black ; the gland-celle are also shown. (Zimmermann.)
c, central cells; p, parietal or oxyntic cells ; l, lumen of tubule prolonged into arborescent canaliculi which penetrate into the parietal cells.
Fig. 471. -Pyloric glands, from a section of the human stomach. (Photographed from a preparation by Prof. Martin Heidenhain.) Magnified 60 diameters.
elsewhere, of long tapering cells, the outer part of which is filled with mucigen, and the nuclei of which are ovoid and centrally situated.

At the pylorus itself the gastric glands, which are of the same type as those of the pylorus canal, become considerably lengthened and enlarged, and are continued into the submucous tissue, the muscularis mucose being here deficient ; they thus present transitions to the glands of Brünner, which lie in the submucous tissue of the duodenum (fig. 472).

Scattered amongst the ordinary secreting cells of the pyloric glands, cells are seeu here and there which stain with hæmatoxylin more deeply than the rest, and perhaps have a different function (Stöhr).

Fig. 472.-Segtion through the pylorus, incleding the commencement of the juodenum. (Klein.)
u, villi of duodenum ; b, apex of a lymphoid nodule; c, erypts of Lieberkühn; s, seereting tubules of Briinner's glands; d, ducts of pyloric glands of the stomach; f, tubes of these glands in mucous membrane; t deeper lying tubes in submveosi, corresponding to secreting tuhnles of Brünner's glands nf duodenum; $7 \boldsymbol{m}$, muscularis mueosio.

Fhi 473.-Plan of the bloodVLSEELS OF THE STOMACH, (Modified from Brinton.)
a, small arteries passing to break up inta the fine capillary network, d, hetween the glands; b, coarser capillary network around the mouths of the glands ; c, c, veins passing vertically downwards from the superficial network; c, larger vessels in the submucosa.

 MUCOUS MEMJRANF, IN, DETED. (C. Lovín.)
The tubules are only fainth, indicated: a, museularis murnse; b, plexus of tine vessels at base of glands e, plexus of larger valved lymphaties in submucosan

The blood-vessels of the stomach are very numerous; they pass to the organ along its curvatures. The arteries traverse the muscular coat, giving off branches to the capillary network of the muscular tissue; they then ramify in the submucous coat. From the arterial branches here, small tortuous arterioles pierce the muscularis mucose, and break up into capillaries near the bases of the glands (fig. 473). The capillary network extends between the glands to the surface, close to which it terminates in a plexus of relatively large venous capillaries which encircle the mouths of the glands. From this plexus straight venous radicles pass through the mucous membrane, pierce the muscularis mucosæ, and join a plexus of veins in the submacous coat. From these veins blood is carried away from the stomach by efferent veins, which accompany the entering arteries.

The lymphaties (fig. 474) arise in the mucous membrane by a plexus of large vessels dilated at intervals, and looking in sections like clefts in the interglandular tissue. From this plexus the lymph is carried into large valved vessels in the submucous coat, and, from these, efferent vessels run through the muscular coat to reach the serous membrane, underneath which they pass away from the organ. The muscular coat has its own network of lymphatic vessels. These lie between the two principal layers; their lymph is poured into the efferent lymphatics of the organ.

The nerves have the same general arrangement and mode of distribution as those of the intestine (see next Lesson). They are mostly derived from the vagus, but branches of the sympathetic also pass to the organ.

LESSONS XXXII. AND XXXIII.

THE SMALL AND LARGE INTESTINE.

1. Sections of the duodenum, jejunum, and ileum, vertical to the surface. The three parts of the intestine may be embedded in the same paraffin block, and the sections stained and mounted together. Choose a part of the duodenum not far from the pylorus and a part of the ileum which includes a Peyer's patch. Observe the nodules of lymphoid tissue which constitute the patch and which extend into the submucous tissue. Notice the lymphoid cells in the superjacent epithelium. Notice also the sinus-like lymphatic or lacteal vessel which encircles the base of each nodule. In the duodenum study the glands of Brïnner in the submucous tissue. Make a general sketch of each section under a low power and draw a villus under the high power. The general arrangement and structure of the intestinal wall is to be studied in these sections.

The portions of intestine should be tixed in 10 to 20 per cent. neutral formol. It is best to distend them slightly with this fluid, and when fixed to cut them open and to place them in a large amount of the fixative. (This applies not only to the small intestine but to all the hollow viscera.)
2. Sections parallel to the surface of the intestine, and therefore across the long axis of the villi and glands of the nucous membrane. In order to keep the sections of the villi together so that they are not lost in the mounting, it is necessary either to embed in celloidin or, if paraffin is used, to employ an adhesive method of mounting. Sketch a villus and some of the crypts of Lieberkühn.
3. To study the process of fat-absorption, kill a frog two or three days after feeding with bacon fat. Slightly distend a short length of intestine with a mixture of 2 parts Miiller's tluid and 1 part osmic acid solution (l per cent.), and put the piece into a fairly large quantity of the same mixture. Also place a very small shred of the fresh mucous membrane into 0.5 per cent. osmic acid solution. After forty-eight hours teased preparations may be made from this preparation, in the same manner as directed in Lesson VIII., § 1. The piece in Müller and osmic acid is left for ten days or more in the fluid. Sections are then made by the freezing method and mounted in glycerine (or from paraffin and mounted in dam ary.
4. Sections of small intestine the blood-vessels of which have been injected. Sketch the arrangement of the vessels of a villus.
5. Stain a piece of intestine of a rabbit or guinea pig with chloride of gold. It should be distended with a 1 per cent. solution, and then placed in a larger quantity; after half an hour it may be cut open, washed with water and placed in a large amount of water faintly acidulated with acetic acid and exposed to sunlight. When stained tear off broad strips of the longitudinal muscular coat, and mount them in glycerine. It will generally be found that portions of the nervous plexus of Auerbach remain adherent to the strips; the plexus can in this way be studied.

Fron the remainder of the piece of intestine tear off with forceps the fibres of the circular muscular layer on the one side, and the mucous membrane on the other side, so as to leave only the submucous tissue and the muscularis mucose, which is to be mounted flat in glycerine; it contains the plexus of Meissner. Sketch a small portion of each plexus under a high power. The plexuses can also be shown by the methylene-blue method and by the reduced silver method of Cajal (see Appendix).
6. Sections of the large intestine, perpendicular to the surface. Sketch under a low power.

Fig. 475.-Diagram of section of alimentary tobe. (Sobotta.)
L, lumen; $g l m$, glands of mucous membrane ; ep, epithelium ; gls, glands in submucosa; $m m$, muscularis mucosa; $s m$, submucous coat; $r m$, circular muscular layer; $l m$, longitudinal muscular layer; s, serous coat; ss, mesentery; $g m y$, ganglion of plexus myentericus; $g s m$, ganglion of plexus submucosus.

Fig. 476.-Auerrach's plèxus, from the muscular coat of the intestine. (Cadiat.)

Fif. 477. - Meissner's plexus from the submucous coat. (Cadiat). a, ganglion ; b, b, nervous cords ; c, a blood-vessel ; d, an entering sympathetic nerve.

Fig. 478. - Narves of the mucous membrane of the small intestine.
(Cajal.)
M, part of Meisener's plexus; a-f, small mells and uerve. fihres in the tiscun of the
7. Sections of the mucous membrane of the large intestine parallel to the surface, and therefore across the glands. Sketch some of the glands and the interglandular tissue under a high power.
8. The arrangement of the blood-vessels of the large intestine is studied in sections of the injected organ.

Fig. 479.-Typical nerve-cells from enteric ganglia. (Dogiel.) A, cell with numerous minute ramified dendrons; B, cell with numerous almost unbranched axon-like dendrons; $a x$, axons ; $p z$, dendrons.

THE SMALL INTESTINE.

The wall of the small intestine consists of four coats (fig. 475).
The serous coat is complete except over part of the duodenum. It leaves

Pig. 480,--Sbction of the small intestine (jejunum) of cat. Magnified about 40 diameters.
the intestine at the line of attachment of the mesentery, between the folds of which the blood- and lymph-vessels and nerves pass to and from the organ.

The muscular coat is composed of two layers of muscular tissue, an outer longitudinal and an inner circular. Between them lies a network of lymphatic vessels, and also the close ganglionated plexus of non-myelinated nerve-fibres known as the plexus myentericus of Auerbach. The ganglia of this plexus may sometimes be seen in vertical sections of the intestinal wall
(figs. 480, 483), but the plexus, like the one in the submucous coat immediately to be described, can only be properly displayed in preparations made by special methods (fig. 476).

The submucous coat is, like that of the stomach, composed of loose areolar tissue. In it the blood-vessels and lacteals ramify before entering or after leaving the mucous membrane. It contains a ganglionated plexus of nerve-fibres-the plexus of Meissner-which is finer than that of Auerbach and has fewer ganglion cells (fig. 477). Its branches are chiefly supplied to the

Fig. 481.

Fig. 48:2.

Fig. 481.-A crypt of Lieberkùbn from the muman intestine, (Flemming.)
Fig. 482.-Section of the ileum through a lymphoid nodule. (Cadiat.)
u, middle of the nodule with the lymphoid tissue partly fallen away from the section; b, epithelium of the intestine; c, villi: the epithelium is broken away; d, crypts of lieberkühn; e, f, muscularis mucoses.
muscular fibres of the mucous membrane, but also to the glands and villi (fig. 478).

These "enteric" ganglionated plexuses contain two kinds of nerve-cell (fig. 479). One kind has a number of much branched dendrons and an unbranched process recognisable as the axon; the other kind is characterised by the presence of a number of processes very little branched and hardly distinguishable from one another. This last type of cell is the only one found in Meissner's plexus.

The mucous membrane is bounded next to the submucous coat by a double layer of plain muscular fibres (muscularis mucossa). Bundles from this pass inwards through the membrane towards the inner surface and penetrate also into the villi. The-mucous membrane proper is pervaded
with simple tubular glands-the crypts of Lieberkühn (figs. 480, 481, 483)which are lined throughout by a columnar epithelium, with scattered goblet-

Fig. 483.-Section of duodenum of cat, showte Brünner's glands. Magnified about 60 diameters.
cells, like that which covers the general surface and the villi. At the fundus of each crypt are a few cells containing well-marked granules (Paneth). The cells of the glands may show evidences of karyokinesis. It has bcen stated that the epithelium of the general surface becomes regenerated

Fig. 484. -Longitudinal section of a vilius : cat. Magnified 200 diameters. (Photographed from a preparation by Prof. Martin Heidenhain.)
At one part the lacteal is cut longitudinally. Some leucocyteg are seen within it: others are observable letween the colmmar epithelinn-cells of the surfice amd man, ocoupy the inter-tiees of the retienlar tissue.

Fig. 485.--Part of the wall of the villud shown in fig. 484. Magnified 400 diameters.
c, columnar epithelium-cells; leucocytes are seen between them; str, theirstriated border; l, lymphoid tissue of villus. One or two goblet-cells are seen between the columnar cells.
from them (Bizzozero). The mucous membrane between the glands is mainly composed of reticular tissue, with numerous lymph-cells; the latter are aggregated here and there into nodules of lymphoid tissue. These nodules

Fig. 486. Optical section of a vimltg from a rat killed tiree hours AFTER FEEDING WITH BREAD AND WATER,

The columnar epithelium shows numerous lymph-corpuscles lietween the cells; l, lacteal, containing lymph-corpuscles; c, some partly disintegrated.

Fia. 487.-Transyerse section of a villus of Pitr. (Trautmann.) x, epithelium ; a^{\prime}, striated border ; $a^{\prime \prime}$, goblet-cell ; b, lymphoid tissue; c, small central lacteal ; e, plain muscle-fibres cut transversely ; f, seotion of arteriole.
constitute when they occur singly the so-called solitary glands of the intestine (fig. 482), and when agglomerated form the agminated glands or patches of Peyer (fig. 491). The latter occur chiefly in the ileum.

The glands of Brünner, which have been already noticed (p. 341), occur in the duodenum. They are small tubulo-racemose glands, situated in the submucosa (fig. 483); they send their ducts to the inner surface

Fig. 488, -Lacteal witiin villus-like fold of the mucous membrane of small intestine of frog. Maguified 200 diameters.
The lacteal is distended with chyle in which several leucocytes in various stages of disintegration are seen.
of the mucous membrane either between the crypts of Lieberkühn or into them.

The villi with which the whole of the inner surface of the small intestine is closely beset are clavate or finger-shaped projections of the mucous membrane, and are composed, like that, of reticular tissue covered with columnar epitheliam (figs. 484 to 488). The characters of this epithelium have already been described (Lesson VIII.). Between and at the base of the epithelium-cells many lymph-corpuscles occur, as well as in the meshes of the reticular tissue. The epithelium rests upon a basement-membrane.

In the middle of the villus is a lymphatic or lacteal vessel which may be somewhat enlarged near its commencement; the enlargement is replaced in some animals by a network of vesscls. Surrounding the lacteal are small bundles of plain muscular tissue prolonged from the muscularis mucosx.

Fig. 489.-Small intestine (vertical transverse section), with tef bloood-vessels injected. (Heitzmann.)
V^{r}, a villus ; G, ylands of Lieberkîhn ; M, muscularis mucosw ; A, arcolar coat; R, circular nuscular coat; L, longitudinal nusenlar coat; P, peritoneal coat.

The network of blood capillaries (figs. 489, 490) lies for the most part quite near the surface under the basenent-membrane; it is supplied with blood by a small artery which joins the capillary network at the base of the villus; the corresponding vein generally arises near the free end of the villus.

The lymphatics (lacteals) of the mucous membrane (fig. 491), after receiving the central lacteals of the villi, pour their contents into a plexus of large valved lymphatics which lic in the submucous tissue and form
sinuses around the bases of the lymphoid nodules (fig. 340, p. 245). From the submucous tissue efferent vessels pass through the muscular coat, receiving the lymph from an intramuscular plexus of lymphaties, and are conveyed away between the layers of the mesentery.

Absorption of fat.-In order to study the process of fat transference in the intestine, it is convenient to stain the fat with osmic acid, which colours it black. It can then be observed that in animals which have been fed with food containing fat, particles of fat are present (1) in comparatively large globules in the outer part of the columnar epithelium-cells, but in the form

Fig. 490.-Villes of rat with bloon-vessel. indected. Photograph. Magnified 210 diameters.
of much smaller globules in their deeper part (in the free border of the cell fat is entirely absent) ; (2) in fine granules in the interstitial tissue of the villus, but here often confined to the amoeboid leucocytes, which abound in this tissue ; (3) in fine granules within the eentral lacteal of the villus. The leucocytes are present not only in the reticular tissue of the villus, but also in considerable numbers between and at the base of the epithelium-cells (figs. 485, 486) ; and they can also be scen in thin sections from bichromateosmic preparations within the commencing lacteal ; in the last situation they are undergoing disintegration (figs. 486, 488, 492).

Since the leucocytes are am@boid, it is probable from these facts that the mechanism of fat-absorption consists of the following processes-viz.
(1) formation of fat in the columnar epithelium-cells of the surface; (2) ejection of fat-granules from the epithelium into the intercellular

Fig. 491,-Vertical section of a portion of a Peypr's patch with the lacteal vessels injected. Magnified 32 diameters. (Frey.)
The specimen is from the lower part of the ileum ; a, villi, with their lacteals left white; b, some of the tubular glands; c, the muscular layer of the mucous membrane; d, cupola or projecting part of nodule; e, central part; f, reticulated lacteal vessels occupying the lymphoid tissue between the nodules, joined above by the lacteals from the villi and mucous surface, and passing below into g, the sinus-like lacteals under the nodules, which again pass into the large efferent lacteals, $g^{\prime} ; i$, part of the muscular coat.

Fig. 492.-Segtion of the villus of a rat killed during fat-absorftion. $e p$, epithelium ; str, striated border ; c, leucocytes; a^{\prime}, lencocytes in the epithelium ; l, central lacteal containing chylc and disintegrating leucocytes.
spaces; (3) ingestion of fat by leucocytes, these taking it up after it has passed out of the epithelium-cells; (4) migration of leucocytes carrying fat-particles through the tissue of the villus and into the central lacteal; (5) disintegration and solution of the immigrated leucocytes, with setting free of their contents. Fat-particles are never seen in the striated border of the columnar cell. The fat of the food first becomes saponified by the action of the digestive juices, and reaches the epithelium-cell in the form of dissolved soap ; the fat which is seen and stained by osmic acid within the cells has become re-formed by a process of synthesis.

In young sucking animals (puppy,

Fig. 493.-Mulous milmbiane of frog's intestine during tatABSORPTION.
$e p$, epithelium ; str, striated bordcr ; c, leucocytes; l, lacteal. The fat-particles have been stained black by osmic acid. kitten) the fat which is undergoing absorption is sometimes seen not only in epithelium-cells and leucocytes, but also in the form of streaks, stained black by osmic acid, in the interstices of the reticular tissue of the villi.

The migration of leucocytes into the lacteals of the villi is not a special

Fig. 404.-Two stages in the deposition of fat in the intestinal betithallum of the frog. (Krehl.)
In A the fat is in very fine particles; in B most of it is aggregated into distinct globules. The black staining is due to the action of osmic acid.
feature of absorption of fat, but occurs also when absorption of other matters is proceeding (fig. 486); the transference of fat-particles is therefore tmerely an incident in the general phenomenon of migration which accompanies the process of absorption.

Fig. 495.-Glands of the large intestine of child. 300 diameters. A , in longitudinal section ; B , in transverse seotion.

IARGE INTESTINE.

The large intestine has the usual four coats, except near its termination, where the serous coat is absent. In man the muscular coat is peculiar in the fact that along the cæcum and colon the longitudinal muscular fibres are gathered up into three thickened bands which produce puckerings in the wall of the gut.

The mucous membrane of the large intestine is beset with simple tubular glands somewhat resembling the crypts of Lieberkuihn of the small intestine, and lined by columnar epithelium similar to that of the inner surface of the small gut: but containing many more mucus-secreting cells (fig. 495). The blind extremity of each gland is usually slightly dilated. These

Fig. 496.-Transverse section of vermiform appendix. (G. Mann.)
glands of the large intestine are not strictly homologous with the crypts of the small intestine, for whereas the latter are developed as depressions in the general surface between the villi, the glands of the large intestine are formed by the growing together of villus-like projections of the surface. The interglandular tissue is a reticular tissue and is beset here and there with solitary glands, especially in the crecum.

The mucous membrane of the vermiform appendix (fig. 496) is in great part of its extent packed full of lymphoid nodules.

The arrangement of the blood-vessels and lymphatics in the large intestine is like that in the stomach. The nerves of the large intestine also resemble those of the stomach and small intestine in their mode of distribution.

At the lower end of the rectum the circular muscular fibres of the gut become thickened a little above the anus to form the internal sphincter muscle.

In the anal region there are a number of compound racemose mucous glands opening on the surface of the mucous membrane (anal glands). The anal orifice has a lining of stratified epithelium continuous with that of the skin.

LESSONS XXXIV. AND XXXV.

THE LIVER AND PANCREAS.

1. Sections of liver are to be studied carefully. They may be stained with eosin and hæmatoxylin, or by iron-hæmatoxylin. Sketch the general arrangement of the cells in a lobule under the low power; and under the high power make detailed drawings of some of the hepatic cells and also of a portal canal. If from the pig, the outlines of the lobules are observed to be well marked off by connective tissue.

Notice that the hepatic cells are in intimate contact with the blood-capillaries or sinuses. Some cells are occasionally found to contain red blood-corpuscles; many contain eosinophil granules. Notice in the sinus-like capillaries the partly detached endothelial cells (stellate cells of Kupffer). These, which are phagocytic, frequently contain erythrocytes, which appear to he in process of destruction.
2. To observe glycogen within the liver-cells, kill a rabbit or rat (preferably about six hours after a meal of carrot), and at once throw a thin piece of the liver into 96 per cent. alcohol. When well hardened the piece may be embedded in paraffin in the usual way, or sections may be cut with the free hand without embedding. Some of the sections so obtained are to be treated with a 1 per cent. solution of iodine in potassium iodide for five minutes; they may then be mounted in a nearly saturated solution of potassium acetate, the cover-glass being cemented with gold size ; they can thus be kept for a time, but the stain will eventually fade.
3. Presence of iron. In sections of alcohol-hardened liver treated first with potassium ferrocyanide solution and then with hydrochloric acid and alcohol (1 to 10), then passed through absolute alcohol into xylol, and finally mounted in dammar, many of the pigment granules will be stained blue (Prussian blue). Another method is to place the sections in an aqueous solution of hæmatoxylin (1 to 300), with or without previous treatment with alcohol containing 10 parts per cent. hydrochloric acid (to set free organically combined iron), after which they are mounted in the ordinary way (Macallum).
4. Injected preparations. Study with the low power a thick section to show the general arrangement of the blood-vessels, and with a high power a very thin section, which may be lightly stained with hematoxylin. In this the injection will everywhere be seen to have penetrated into canaliculi within the liver-cells themselves. Make a general sketeh of a lobule under the low power and draw a small part of the network of blood-vessels and intracellular canaliculi under the high power.
5. Take a small piece of liver which has been several weeks in 2 per cent. bichromate of potassium solution and plunge it in 1 per cent. nitrate of sikver solution, changing the fluid after half an hour. Leave the piece of liver in the silver solution overnight. It may then be transferred to alcohol, and after complete dehydration embedded and cut in paraffin in the usual way and the sections mounted in dammar. In many parts of such sections the bile-canaliculi are stained.

They can also be brought to view (at the periphery of the lobules) by injection with solution of Berlin blue from the hepatic duct ; or, thronghout the wbole of the lobule, by injecting about 60 c.c. of saturated sulphindigotate of soda solution, in three successive portions at intervals of half an hour, into the blood-vessels of an anæsthetised cat or rabbit: Two hours after the last injection the animal is killed, and the blood-vessels washed out with saturated solution of potassium chloridc. The organ is then fixed with absolute alcobol. The chromate of silver method is easier and surer than the injection methods.
6. Tease a piece of fresh liver in serum or Ringer's solution for the study of the appearance of the hepatic cells in the recent or living condition.
7. Stained sections of pancreas from a gland which has been hardened in alcohol, or in formol followed by alcohol. The sections may be stained with alcoholic eosin and hæmatoxylin or with Mallory's solution (acid fuchsin, orange g. and aniline blue). This is by far the best method for exhibiting the zymogen granules within the cells. Muir's method may also be used (see Appendix). Notice the islets of Langerhans between the alveoli; they are generally most numerous near the splenic end of the pancreas.

Make sketches under both low and high power.
If the pancreas is taken from a rat which has been fed with the addition of 1 gramme dried ox thyroid per diem to its ordinary food during seven days the cells of the alveoli exhibit numerous mitoses (Kojima). These are entirely absent in the pancreas of the normal animal.
8. Tease a small piece of fresh pancreas in serum or salt solution or in dilute glycerine after treatment with osmic acid. Notice the zymogen granules in the alveolar cells, chiefly accumulated in the half of the cell which is nearest the lumen of the alveolus, leaving the onter zone of the cell clear.

Sketch a small portion of an alveolus under a high power.
9. The endings of the ducts in the alveoli, and the termination of nerve-fibres amongst the gland-cells are shown in preparations made by the method of Golgi.

THE LIVER.

The liver is a solid glandular organ, made up of the hepatic lobules. These are polyhedral cell-masses (fig. 497) about 1 mm . ($\frac{1}{25}$ inch) in diameter, and separated from one another by connective tissue. In some animals, e.g. the pig, this separation is complete, and each lobule is isolated, but in man and most animals it is incomplete. There is also a layer of connective tissue underneath the serous covering of the liver, forming an external capsule to the organ. Each lobule is penetrated by a fine network of reticular tissue which helps to support the columns of cells within the lobule (fig. 498).

The afferent blood-vessels of the liver (portal vein and hepatic artery) enter on its under surface, where also the bile-duct passes away from the gland. The branches of these three vessels accompany one another in their course through the organ, and are enclosed by loose connective tissue (capsule of Glisson), in which are lymph vessels, the whole being termed a portal canal (fig. 499). The smaller branches of the vessels penetrate to the intervals between the hepatic lobules, and are known as the interlobular branches. The blood leaves the liver at the back of the organ by the hepatic veins; the branches of these run through the gland unaccompanied by other vessels (except lymphatics) and can also be traced to the lobules, from each of which they receive a minute branch (central or interlobular vein) which passes from the centre of the lobule, and opens directly into the (sublobular) branch of the hepatic vein.

Lobules.-Each lobule is a mass of cells pierced everywhere with a netwórk of sinus-like blood-vessels, the so-called hepatic capillaries (figs. 497, 500).

At the periphery of the lobule these receive blood from the interlobular branches of the portal vein (p), and converging to the centre of the lobule unite to form the intralobular branch of the hepatic vein (central vein of lobule). The interlobular branches of the hepatic arteries join the network a short

Fle. 497.-1hagrammatic rephesentation of two hepatic lobules.
The left-hand lobule is represented with the intralobular vein cut across; in the rigbt-hand one the section takes the course of the intralobular vein. p, interlobular branches of the portal vein ; h, intralobular branches of the hepatic veins; s, sublobular vein; c, capillaries of the lohules. The arrows indicate the direction of the course of the blood. The liver-cells are only represented in a part of each lobule.

Fle. 498.-Rificulum uf a bivek-lobule, (Oppel.)
distance from the periphery of the lobule. The blood-capillaries are in direct contact with the liver-cells; their endothelium is deficient, for artificial injections come in actual contact with the cells and under favourable cir-

Fig. 499.-Section of a portal canal: dog. Photograph. Magnified about 50 diameters.
The large vessel is a branch of the portal vein; the irregular tubes are sections of branches of the bepatio duct; near them are sections of branches of the hepatic artery. All the vessels are enclosed by the connective tissue of the capsule of Glisson ; in this tissue several lymph-vessels are seen as clear spaces. The whole is surrounded by liver-lobules.

Fig. 500. -SECtion of dog's liver, Stained with hematoxylin, showing the hepatic cells and the sinus-like nature of the blood-channels between тнem. Hhotograph. Magnified 200 diameters.
lt will be observed that in most places the blood-sinuses are directly bounded hy the liver-cells, the endothelium being deficient.
cumstances pass into canaliculi within their protoplasm. What remains of the endothelium of the blood-sinuses is represented by conspicuous cells which

Fig. 50]. -From a section of rabbit's liver injected from the portal vein, SHOWING INTRACELLULAR CANALICULI COMMUNICATING WITH THE INTERCELLULAR BLOOD-SINUSOIDS.
occur at intervals on the walls of the sinuses, where they lie in contact with the liver-cells. These are the stellate cells described by Kupffer. They are

Fig. 502. -SECTION of RABBIT'S LIVER WITH THE INTERCELLULAR NETWORJ OF bile-canaliculi injected. Highly magnified. (Hering.)

Two or three layers of cells are represented; b, blood-capillaries.
highly phagocytic, like the endothelial cells of the blood-sinuses of the spleen, and ingest erythrocytes, which can be seen within them. They also tend to take in any fine solid particles, such as those of Indian ink, which may be injected into the blood.

The hepatic cells (fig. 500), which everywhere lie between and surround the blood-sinuses, are polyhedral, somewhat granular-looking cells, each

Fig. 503.-Skftohes illustrating the manner in which bile passes from the hepatic celis into the intercellular bile-channels. (R. Heidenhain after Kupffer.)
A, from liver of rabbit the bile-ducts of which had been injected backwards from the hepatic duct.
D, from liver of frog naturally injected with sulphindigotate of soda, which when injected into the blood is excreted by the liver.
containing a spherical nucleus. The protoplasm of each cell is pervaded by an irregular network of canaliculi (fig. 501); these in preparations of

Fig. 504.-Liver-cells containing alycogme. (Barfurth.)
injected liver become filled with the injection material, which has passed into them from the blood-vessels. They thus form a system of intracellular canals which receive blond-plasma directly from the vessels instead of through the lymph-spaces as is usual in most organs. Such canals were
conjectured to exist by Browicz, who showed that under certain circumstances not only hæmoglobin but whole red blood-corpuscles, and even groups of blood-corpuscles, in process of breaking down, are to be found in the interior of the hepatic cells. In the dog's liver both hæmoglobin and bilirubin may be found in the form of crystals within the nuclei of the liver-

Fic: 505.-Lobitle of rabbit's liver; vesseis and bile-dects injected. (Cadiat.)
a, central vein; b, b, peripheral or interlobular veins; c, interlobular bile-duct. The liver-cells are not represented.
cells. Browicz' observations were confirmed by Herring and Simpson, who also showed that it is possible in all animals to inject these minute canals from the blood-vessels even when a low pressure is used for injection. They are seen to contain the injection material which has been used to fill the bloodvessels in fig. 501 ; this is from a preparation of the rabbit's liver.

Besides these plasma-canaliculi the liver cells may show fine, short canals which communicate with the intercellular bile-ducts (see next page); these
generally commence within the cell by dilatations (secretion vacuoles) (fig. 503) ; probably they are not permanent structures.

After a mixed meal many of the liver-cells contain fat, and masses of glycogen can also be seen within them (fig. 504) if the liver is hardened in alcohol and treated in the manner described in section 2, p. 360. The cells also contain pigment-granules, many of which are stained by potassium ferrocyanide and lhydrochloric acid, or by pure hæmatoxylin (presence of

Fig. 506.-Section across hepatic dect : man. (v. Ebner.) Magnified 16 diameters. L, lumen of duct with orifices of numerous small glands; a, their alveoli; b, areolar tissue with vessels and a few fat-cells ; m, plain muscle-fibres.
iron). The iron which is in organic combination can be set free by treatment for a short time with alcohol to which 10 parts hydrochloric acid per cent. has been added (Macallum).

The smallest ducts commence between the hepatic cells in the form of intercellular bile-channels, which lie between the adjacent sides of the cells, and receive the contents of the secretion-vacuoles above mentioned. They form a network, the meshes of which correspond in size to the cells (fig. 502); in some cases the network is incomplete, some of the channels ending blindly. At the periphery of the lobule the intercellular channels pass into the smallest interlobular bile-ducts (fig. 505). The bile-channels are always bounded by hepatic cells, never placed between a cell and a blood-sinus.

The bile-ducts, except the smallest, are lined by columnar epithelium which resembles that of the small intestine, the cells having, like that, a striated border. Outside this is a basement-membrane, and in the larger ducts sone fibrous and plain muscular tissue. Many of the large ducts are beset with small blind diverticula ; the main duct has small acinous glands in its wall (fig. 506). The smallest ducts which lie between and at the periphery of the lobules and receive the bile canaliculi are lined by cubical or flattened cells; they have no striated border.

Both these and the cells of the largor ducts and also those of the gall-bladder are liable to contain fat droplets during absorption of a meal containing fat; no doubt the fat in the cells has been formed by re-synthesis of absorbed fatty acids and glycerol, as in the case of the intestinal epithelium.

Fig. 507.-Sections of the wall of the gali-bladder. (Sommer.)
A, Under a low magnifying power. a, muscular coat ; b, a fold of mucous membrane; c, columnar epithelium; d, portion represented in B more highly magnified.
B, Magnified portion of epithelium and subjacent corium. $\quad \ell$, striated border; f, mucigen granules in cells; g, blood-capillaries.

The gall-bladder is in its general structure similar to the larger bile-ducts. It is lined by columnar epithelium similar to that of the small intestine; outside this its wall is formed of fibrous and muscular tissue. The mucous membrane is thrown into permanent reticulating folds (fig. 507), which become larger and more numerous near the neck of the gall-bladder.

The lymphatics of the liver were described (by MacGillivray) as commencing as perivascular lymphatic spaces enclosing the capillaries of the lobules. But this cannot be the case, since there is no space between the liver cells and the blood in the sinusoid capillaries. There are, however, numerous lymph-vessels accompanying the interlobular branches of the portal vein, and others, less numerous, accompanying the tributaries of the hepatic veins, but so far as can be aseertained no direct communication exists between the two sets of lymphatics within the lobules, although they communicate freely both at the periphery of the lobules and near their exit from the liver (Herring and Simpson). Most of the liver lymph passes away by the portal lymphatics. ${ }^{1}$!

For more detailed information on the plasmatic canaliculi and the lymph-vessels of the liver consult Herring and Simpson in Proc. Roy. Soc., B., Vol. 78, 1906.

The nerves of the liver are chiefly non-myelinated. They reach the organ through the sympathetic. They are distributed both to the bloodvessels and to the liver-cells.

The mode of development of the liver has already been mentioned in connexion with the formation of its sinusoid vessels (pp. 223 to 225).

THE PANCREAS.

The pancreas is a tubulo-racemose gland, resembling the serous salivary glands so far as its general structure is concerned, but differing from them in the fact that the alveoli are longer and more tubular in character. Moreover,

Fig. 508.-Section of human pancreas. (Bühm and v. Davidoff.) ' Magnified 450 diameters.
a, group of cells in interstitial tissue (? part of an islet of Langerhans); b, connective tissue ; c, larger duct ; d, d, alveoli with centronacinar cells ; e, small duct passing into alveoli; f, inner granular zone of alveolus.
the connective tissue of the gland is somewhat looser, and there occur scattered throughout the glandular substance small irregular masses of clear epithelium-cells unfurnished with ducts (islets of Langerhans) (fig. 508, a; fig. 509). The presence of these islets is very characteristic of the pancreas. There are good grounds for the belief that they are concerned with the influence exerted by the pancreas on the metabolism of carbohydrates.

The islets are" said to contain two kinds of cell, distinguishable from one another by the characters of their granules. The islets are well brought out in the fresh gland by Bensley's method of staining them, in wivo, with neutral red which coluurs them selectively. In the human pancreas there are as many as from ten to twenty islets in each milligramme of the organ, which would give about a million in the whole pancreas (Clerk).

The cells which line the alveoli are columnar or polyhedial in slape. When examined in the fresh condition, or in sections fixed and stained by appropriate methods, their protoplasm is seen to be filled in the inner twothirds with granules, the outer third being clear ; it may appear striated (figs.

Fig. 509.-An ishet uf Latierbans him pandeag of dot. Magmified 300 diameters.

B.
[Fig. 510.-Part of an alveolus of the kidbbit's pancreas. A, at rest; B, After active secretion. (From Foster, after Kühne and Lea.)
u, the inner granular zone, which in A is larger and more elosely studded with granules than in E, in which the granules are fewer; b, the outer transparent zone, small in A, larger in B, and in the latter marked with faint strim; c, the lumen, very obvious in B, but indistinct in A; d, indentation at the junction of two cells, only distinct in B.
$508,509,510, A, 511)$. After a period of activity the clear part of the cell becomes larger, and the granular part smaller (fig. 510, B; fig. 512). In hematoxylin-stained sections the outer part is coloured more deeply than the inner (fig. 509). In sections stained by Mallory (see Appendix) the granules of the inner zone are coloured intensely red, and stand out black in photo-
graphs. The granules are always most abundant in the alveoli immediately surrounding the islets (Kojima).

Pancreas-cells frequently exhibit a rounded mass of mitochondria near the nucleus, which is known as the paranucleus (see fig. 8): it is probably

Fig. 511.-Alveli of dog's pancreas, cells loaded: osmic preparation. (Babkin, Rubasckin, and Ssawitsch.)
related to the secretory activity of the cells. A paranucleus is not peculiar to the pancreas, although often better marked in that organ than elsewhere.

Under normal circumstances the pancreas-cells never exhibit karyokinesis or show any evidence of multiplication. But in rats fed with thyroid gland in

Fig. 512.-Alveoll of dog's pancreas after a period of activity prodited by application of acid to mucous membrane of duodenum. (Babkin, Rubasckin, and Ssawitsch.)
addition to their ordinary food numerous mitoses can be seen throughout the gland, indicating rapid cell-division (Kojima).

In the centre of each acinus there may generally be seen a few spindleshaped cells (centro-acinar cells of Langerhans-fig. 508, a). The nature of these has not been definitely determined; they appear to be continued from
the cells which line the smallest ducts (fig. 508, e). Sometimes they are more conspicuous, and fill the parts of the alveoli which are nearest to the duct; in these cases the mass of cells which they form is liable to be mistaken for a Langerhans' islet. Diverticula from the lumen of the alveolus penetrate between the alveolar cells (fig. 513) as in serous glands generally. The islets

Fig. 513.-A duct of the pancreas with lateral diverticula into the alveoli: Golgi method. (E. Müller.)

> In A the dinct is shown cut longitudinally and giving off ductules, m, to the alveoli, where they extend between the cells, I. In B the details of their termination are shown more highly magnified.
are wholly unconnected with the ducts, although originally developed from them.

Blood-vessels.-Like all secreting glands the pancreas is very vascular. Each alveolus has a network of capillaries closely surrounding it, but always outside its basement-membrane. The capillaries of the islets are large and irregular and resemble sinusoids (fig. 514).

Nerves.-The pancreas has many nerves, with numerous small nerve-cells distributed upon their course; the nerve-fibrils end by ramifying amongst the cells of the alveoli, as in the salivary glands. In the rat. which has

Pacinian bodies in its mesentery, these terminal organs are also found numerously in the substance of the pancreas, but this is a mere accident, resulting from the fact that the pancreas in the cat-as in many other animals-has a thin extension between the layers of the mesentery, and the last-named membrane always in the cat contains Pacinian corpuscles.

Fig. 514.-Injection of blood-vessels of an "islet" of the pancreas. (Kühne and Lea.)

Development.-The pancreas is formed from an outgrowth (at first solid, afterwards becoming hollowed) of the entoderm of the small intestine much in the same way that the salivary glands are developed from the ectoderm of the nouth. The islets of Langerhans make their appearance as buds from the developing ducts, but they remain solid and do not acquire a lumen like alveoli; their connexion with the ducts becomes lost and they become isolated in the midst of the glandular substance of the organ.

LESSON XXXVI.

THE KIDNEY, URETER, AND BLADDER.

1. SECTIONs passing through the whole kidney of a small mammal, such as a mouse or rat. These sections show the general arrangement of the organ and the disposition of the tubules and Malpighian corpuscles.
2. Thin formol-fixed sections of the human kidney, if it can be obtained perfectly normal ; or failing this, of the kidney of the dog or cat, may next be studied. Some of the sections should be cut parallel with the rays of the medulla; others across their direction. The characters of the epithelium of the several parts of the uriniferous tubules and the structure of the glomeruli are to be made out in these sections.
3. Separate portions of the uriniferous tubules may be studied in teased preparations from a kidney which has been macerated in strong hydrochloric acid for a few hours. This renders it possible to unravel the tubules for some distance.
4. Thick sections of a kidney in which the blood-vessels have been injected. Examine these with a low power of the microscope. Follow the course of the arteries of the cortex sending their branches to the glomeruli, and observe the pencils of capillaries which run from the deeper glomeruli between the straight uriniferous tubules of the houndary zone. Notice the efferent vessels from the rest of the glomeruli breaking up into the network of capillaries distributed to the convoluted tubules.
5. Section across the lower part of the ureter and another across the upper part near the pelvis of the kidney.
6. Section of the urinary bladder vertical to the surface. The organ should be moderately distended by the fixative.

In the sections of the ureter and of the urinary bladder, notice the transitional epithelium resting on a mucous membrane composed of areolar tissue, without glands in most animals; also the muscular coat outside the mucous membrane. In the ureter there is aldayer of connective tissue outside the muscular coat, and at the upper part of the bladder a layer of serous membrane covering the muscular tissue.

The kidney is a compound tubular gland. To the naked eye it appears formed of two portions-a cortical and a medullary (fig. 515). The latter is subdivided in man into about twelve conical portions (pyramids of Malpiyhi), the base (boundary zone) of each being surrounded by cortical substance, while the apex projects in the form of a papilla into the dilated commencement of the ureter (pelvis of the kidney). ${ }^{1}$ Both cortex and medulla are composed entirely of tubules - the uriniferous tubules-which have a straight direction in the medulla and a contorted arrangement in the cortex; but groups of straight tubules also pass from the medulla through the thickness of the cortex as the so-called medullary rays (figs. 515, 516).

[^20]

Fig. 515.-Diagram of the course of the tubtiles in a unipyramidal kidney, soch as that of the rabbit. (Toldt.)
u, Malpighian bodies ; b, first convoInted tubule ; f, d, looped tuhe of Henle ; e, second convoluted tubule; f, collecting tube ; g, ducts of Bellini.

The uriniferous tubules begin in the cortical part of the organ in dilatations, each enclosing a tuft or glomerulus of convoluted capillary blood-vessels (corpuscles of Malpighi), the dilated commencement of the tubule being known as the capsule (fig. 519, M). The glomerulus is lobulated (figs. 517, 518); the lobules being united by the branches of the afferent and efferent vessels; it is covered by a flattened epithelium reflected from that lining the capsule; this epithelium dips in between the lobules. The glomeruli near the medulla are larger than the rest and have more lobules. The capillary-wall in all the glomeruli is a syncytium, showing no cell-outlines in silver proparations (Drasch).

The tubule leaves the capsule by a neok (fig. 519, n), which is,

Fig. 5l6.-Section through part of a dog's kidney. (Ludwig.)
p, papillary; and g, boundary zones of the medulla; r, cortical layer; h, bundles of tubules in the boundary layer, separated by spaces, b, oontpining bunches of vessels (not here represented), and prolonged into the oortex as the medullary rays, $m ; c$, intervals of cortex, composed chiefly of convoluted tubules, with irregular rows of glomernif, between the medullary rays. however, rarely narrower than the rest of the tubule in mammals. In some

Fig. 517.-A Malpighian corpescle from the kidney of tile monkey. (Szymonowicz.) Magnified 350 diameters.
a, a, sections of convoluted tubules; a^{\prime}, commencement of convoluted tube from capsule ; b, capsule ; c, afferent and efferent vessels of glomerulus.
animals (e.g. frog) the neck is long, and has ciliated epithelium. The tubule is at first convoluted (first or distal

Fig. 518.-Model of a glomerdlus. (Johnston.)
a, afferent ; e, efferent blood-vessel. convoluted tubule). It then becomes nearly straight or slightly spiral only (spiral tubule) and rapidly narrowing passes down into the medulla towards the dilated commencement of the ureter as the descending limb of the Yooped tubule of Henle. It does not at once, however, open directly into the pelvis of the kidney, but before reaching the end of the papilla it turns round in the form of a loop (loop of Henle), and passes upwards again towards the cortex, parallel with its former course, and larger than before (ascending limb of looped tubule; of Henle). Arrived at the
cortex it approaches close to the capsule from which the tubule took origin, but at a point opposite to the origin, viz., near the afferent and

Fig. 519. -Plan of the arrangeMENT OF THE URINIFEROUS tubules. (Huber.)
M, Malpighian corpuseles; v, point of entrance of vessels of giomerulus; n, neok; d.c., distal convoluted tubule, which arises from the Malpighian corpuscle ; ε, spiral tubule into which it is continued; d, narrow descending limb of loop of Henle; H, loop of Henle (this is sometimes formed by the narrow part of the looped tubule, but is here represented as formed by the wider part); a, wider ascending limb of loop of Henle; this passes back to the neigbbourhood of the'same Malpighian corpusole, often becoming irregular and zigzag at its upper end. Here it becomes continuous with the proximal convoluted tubule, p.c., which eventually passes into the junctional tubule, j, by which it is connected with a collecting tubule, c. B, duct of Bellini, receiving a number of conjoined collecting tubules and opening at a papilla.

efferent vessels of the glomerulus (Golgi). It then becomes larger and irregularly zigzag (zigzag or irregular tubule), and again somewhat convoluted (second or proximal convoluted tubule). Eventually it straightens out again and narrowing into a small vessel (junctional tubule), joins a straight or collecting tubule. The last-named unites with others to form larger collecting
tubes which pass through the medullary substance of the kidney to open at the papilla as the ducts of Bellini (fig. 520).

The tubules are throughout bounded by a basement-membrane, which is lined by epithelium; the characters of the epithelium-cells vary in the

Fig. 520.-Longitudinal section throvgh a papilla of the kidney, showine: its projection at one of the calices of the kidney-pelfis. (Disse.)
The ducts of Bellini are seen cut obliquely; the smaller tubules are looped tubules of Henle ; α, epithelium covering papilla; b, epithelium lining calix $; c$, cavity of calix $; d$, connective tissue.
different parts of a tubule. In the capsule (fig. 517), the epithelium is flattened and is reflected over the glomerulus. In some animals (e.g. mouse) the granular epithelium of the convoluted tube is prolonged a little way into the capsule. In the distal convoluted and spiral tubules the epitheliun is thick, and the cells are markedly granular, with a tendency for the basiphil granules (mitochondria) to be arranged in longitudinal rows as in the
cells of the salivary ducts (rodded or fibrillar appearance, fig. 522). The granules near the lumen are not so arranged and are eosinophil. The cells often exhibit a brush of cilium-like processes projecting into the lumen (fig. 522), but these are not vibratile. In the narrow descending limb of the looped tubules, and sometimes in the loop itself, the cells are clear and

Fig. 521. -Part of a section through the cortex of a human kidney, the ELOOD-VESSELS OF WHICH HAVE BEEN INJECTED. (Disse.) gl., a glomerulus; m.r., section of a myelin ray.
flattened (fig. 523), and leave a relatively large lumen; but usually in the loop and always in the ascending limb they again acquire a granular or fibrillar structure and may nearly fill the lumen. The arrangement of the cell-granules in lines perpendicular to the basement-membrane is still more marked in the zigzag tubules, and a similar structure is present also in the proximal convoluted tubules, into which these pass. On the other hand, the junctional tubule has a larger lumen and in it the granular striated epithelium
gives place to clear flattened cells. The collecting tubes have also a very distinct lumen and are lined by clear cubical or columnar epithelium-cells (fig. 527, a).

The following gives a tabular view of the parts which compose a uriniferous tubule, and the nature of the epithelium in each part:-

Portion of Tubule.	Naturif of Epithehiom.	Position of tubdle.
Capsule -	Flattened, reflected over glomerulus, where its cells are said to forno a syncytium	Labyrinth of cortex. ${ }^{1}$
Distal convoluted tnbule	Cubical, grannlar, with appearance of fibrillation ("rodded"), the cells interlocking	Labyrinth of cortex.
Spiral tubule	Like the last -	Medullary ray of cortex.
Descending limb of looped tubule	Clear flattened cells	Boundary zone and partly papillary zone of medulla.
Loop of Henle	Like the last (or may be like the ascending limb)	Papillary zone of medulla.
Ascending limb of looped tubule	Cubical, granular; the cells sometimes imbricated	Medulla, and medullary ray of cortex.
Zigzag tubule	Cells strongly "rodded"; varying height, lnmen small	Labyrinth of cortex.
$\underset{\substack{\text { Proximal } \\ \text { tubule }}}{ }$ convoluted	Similar to distal convolnted tube, but cells are longer, with larger nuclei, and they have a more refractive aspect	Labyrinth of cortex.
Junctional tubule -	Clear flattened and cubical cells	Labyrinth, passing to medullary ray.
Straight tubnle or collecting	Clear cubical and columnar cells	Medullary ray and medula.
Duct of Bellini	Clear columnar cells becoming eubical near the month.	Opens at apex of papilla.

Fits. 522. - Shetion of a convoluted tubile of the rabbit's midney, SHOWING The StRUCTURE of THE epithelium. (Szymonowicz.) Mag. nificd 1100 diameters.

Blood-vessels.-The renal artery divides into branches on entering the organ, and these branches pass towards the cortex, forming arched vessels between the cortex and the medulla (fig. 524, a). The branches of the renal vein which are similarly placed are more distinctly arched (g). From the arterial arches vessels pass through the cortex (cortical or interlobular arteries, b), and give off at intervals (in some animals from one side only) small arterioles (afferent vessels of the glomcruli), each of which enters the dilated commencement of a uriniferous tubule, within which its capillarics form a glomerulus. From the

The part of the cortex between and surrounding the medullary rays is so named.
glomerulus a somewhat smaller efferent vessel passes out, and this at once again breaks up into capillaries, which are distributed amongst the tubules of the cortex (e). Their blood is collected by veins which run parallel with the cortical arteries but not in juxtaposition with them. These veins join the venous arches between the cortex and the medulla. They receive blood from certain other veins which arise by radicles having a somewhat stellate arrangement near the capsule (vence stellulex, j).

The medulla derives its blood-supply both from special offsets of the arterial arches, which immediately break up into pencils of fine straight arterioles running in groups between the straight tubules of the medulla, and from the efferent vessels of the glomeruli which are near the medulla.

Fig. 523.-Passage of the spiral contindation of a distal convoluted tubule into the descending limb of looped tubule of Henle. (Disse.) The bend is accidental.
s, end of spiral tubule; d, narrow descending limb of looped tubule of Henle.
These vessels supply a capillary network with elongated meshes which pervades the medulla (fig. $524, f$), and which terminates in a plexus of somewhat larger venous capillaries in the papilla. From these capillaries the venules of the medulla collect the blood, and pass, accompanying the straight arterioles, into the venous arches between the cortex and medulla. The groups of small arteries and veins (vasa recta) in the part of the medulla nearest to the cortex alternate with groups of the uriniferous tubules; this arrangement confers a striated aspect upon that part of the medulla (boundary zone, fig. 516, g).

In some animals most of the blood-supply of the medulla comes from the efferent vessels of the deep glomeruli.

Between the uriniferous tubules, and supporting the blood-vessels, is a
variable amount of connective tissue, greatest in quantity in the papillo (fig. 527) ; it contains cleft-like lymphatics.

Nerve-fibrils ramify amongst the epithelium-cells of the tubules (fig. 528), but most of the nerves to the kidney are distributed to its blood-vessels.

Fig. 524.-Vascular sopply of kidneyy. (Cadiat.)
", part of arterial arch; b, interlobular artery ; c, glomerulus; d, efferent vessel passing to medulla ; e, capillaries of cortex ; f, capillaries of medulla; g, venous arch; h, straigbt veins of medulla ; h, vena stellula ; i, interlobular vein.

Development of the uriniferous tubules.-The ducts of Bellini and the collecting tubules are derived as hollow sprouts from the enlarged upper end of the ureter, which in its turn is formed as a bud from the Wolffian duct of the embryo. The rest of the uriniferous tubule, including the Malpighian corpuscle, is formed from a hollow S-shaped island of cells which become differentiated in the mesoderm near the blind end of a collecting tubule. The lower part of the S forms a spoon-shaped structure, within the bowl of which the vessels of the glomeruli are developed; the sides of the bowl then grow round and completely

Fig. 525.-From an inJected kidney. (Prenant and Bouin.)
Cortical arteriole oo the left giviag off an afferent vessel to the glomerulus. From this a (smaller) efferent vessel comes off and joins the capillaries surrounding the tubules.

Fig. 526. -A glomerulus from the part of the cortex of the horsis kidney, nearest the medulla injected. (Bowman.) Magnified 70 diameters. u, cortical artery; af. afferent vessel of glomerulus; mm, glomerulus; eff, efferent vessel breaking up inlo a pencil of capillaries, b, which pass down between the tubules of the medulla.
enclose them. The upper part of the S forms a convoluted tubule which before long makes connexion with the previously blind end of the forked collecting

Fig. 527.-Seetion across a papilla of the kidney. (Cadiat.)
a, large collecting tubes (ducts of Bellini); b, c, d, tubules of Henle ; e, arterial capillaries; f, venous capillaries packed with blood-corpuscles.
tubule. At first there is no sign of the looped tubule, but this presently grows down from the convoluted tubule, very much as if a part of this tube had been

 the efithelium-cells of a convoluted tube of the frog's kidney. (Smirnow.)
drawn out towards the papilla. The several stages of formation of the urimiferous tubule are shown in the diagrams marked 1 to 5 in fig. 5.9 . These diagrams exhibit nine stages of development of the tubules, since in every one, except diagram 3, an earlier stage is represented upon the left-hand side, and a later upon the right-hand side.

Fig. 529.-Five diagrams to illutstrate the mode of nevelopment of the uriniftrods tobdles and the glomerdli.. (Huber.)

THE URETER AND BLADDER.

The ureter (fig. 530) is a muscular tube lined by mucous membrane. The muscular coat consists of two layers of plain muscular tissue, an outer circular, and an inner longitudinal. In the lower part there are some longitudinal bundles external to the circular. Outside the muscular coat is a layer of connective tissue in which the blood-vessels and nerves ramify before entering the muscular layer.

The mucous membrane is composed of areolar tissue, and is lined by transitional epithelium, like that of the bladder.

The urinary bladder has a muscular wall lined by a strong mucous membrane and covered in part by a serous coat.

The muscular coat consists of three layers, but the inncrmost is incomplete. The principal fibres run longitudinally and circularly ; the circular fibres are collected into a layer of some thickness which immediately surrounds the commencement of the urethra.' The mucous membrane is
lined by a transitional stratified epithelium (fig. 531). The shape and structure of the cells liave already'been studied (p. 66). Many of the

Fig. 530.-Seltion across lheter: bog. Magnified 90 diameters.
superficial cells have two nuclei. Gland-like invaginations of the epithelium are occasionally found near the base of the bladder in man (fig. 531); in the bladder of some animals well-marked glands constantly occur.

Fig 531.-Seftion of pabt of wale ur fase of fladder: human. (Lendorf.) Magnified 230 diameters.
The gection passes through a glandular invagimation of the epithelium. ep, epithelium: c. corium.

The nerves to the bladder form gangliated plexuses, and are distributed to the muscular tissue and blood-vessels: some are said to enter the epithelium.

LESSON XXXVII.

THE MALE GENERATIVE ORGANS.

1. Sections across the penis (child or monkey). The blood-vessels of the organ should be injected with the hardening fluid so as the better to exhibit the arrangement of the venous spaccs which constitute the erectile tissue. Notice the large venous sinuses of the corpora cavernosa and the smaller spaces of the corpus spongiosum ; in the middle of the latter is seen the (flattened) tube of the urethra.
2. Section of prostate gland (child or monkey). Notice the glandular tubes and the plain muscular tissue of the prostate. The character of the urethral epithelium may also be observed.
3. Section of testicle and epididymis. The sections may be made from testicles (rat, cat) hardened in formol ; they can be stained with hæmatoxylin and eosin orwith iron-hrematoxylin. In these sections notice the strong capsule surrounding the gland, the substance of which consists of tubules which are variously cut; and the epithelium of the tubules, which is in different phases of development in different tubules. Observe the strands of polyhedral interstitial cells, much more abundant in the cat than in the rat, lying in the loose tissue between the tubules; also the lymphatic clefts in that tissue. Notice in sections through the epididymis the lining epithelium and spermatozoa within the lumen of the tube.

Sketch carefully under a high power the contents of some of the seminiferous tubules to illustrate the mode of formation of spermatozoa.
4. Section of vesicula seminalis, fixed and hardened in formol and stained with hæmatoxylin and eosin or with iron-bæmatoxylin. Natice the two-layered epithelium, the more superficial cells long and columnar but not ciliated; the deeper cells short and swollen out by clear fluid.
5. Examination of spermatozoa. Spermatozoa may be obtained fresh from the testicle or epididymis of a recently killed mammal and examined in saline solution. Their movenents may be studied on the warm stage; to display their structure a very high power of the microscope is necessary. They may be preserved and stained as "film" preparations, as with marrow (p.32).

THE PENIS, URETHRA AND PROSTATE.

- The penis is for the most part composed of cavernous tissue which is collected into three principal masses-the two corpora cavernosa, one on each side but conjoined in the middle line, and the corpus spongiosum inferiorly. The corpus spongiosum is expanded at the extremity of the penis to form the glans. It is traversed throughout by the urethra, which extends from the bladder to the apex of the glans. Each of these masses is bounded by a strong capsule of fibrous and plain muscular tissuc, containing many elastic fibres and sending in strong septa or trabeculæ of the same tissues, which
form the houndaries of the cavernous spaces of the erectile tissue (fig. 533). The arteries of the tissue run in the trabecule, and their capillaries open into the cavernous spaces. On the other hand, the spaces are connected with efferent veins. The arteries of the cavernous tissue can sometimes in injected specimens be observed to form looped or twisted projections into the cavernous spaces (helicine arteries), into which they may open directly. The arteries of the cavernous tissue often show localised thicknesses of the

Fig. 532.-Transterse section of glans fenis of child. (Rothteld.)
e.c., corpora cavernosa ; sp, corpus spongiosum ; sp', corpus spongiosum urethra, with the lumen of the urethra in the centre appearing as an irregular slit with folded walls.
inner coat, and many of the veins have longitudinal muscle-fibres in the inner coat which form pad-like projections into the lumen.

The integument, especially that of the glans, contains numerous special nerve-end organs of the nature of end-bulbs. Pacinian bodies are found apon the deeper nerves of the penis. Lymph vessels are numerous in the integument of the organ and in the submucous tissue of the urethra.

Urethra.-The lumen of the urethra appears in sections across the penis in the form of an irregular cleft in the middle of the corpus spongiosum (fig. 532). It is lined in the prostatic part by transitional, but elsewhere by columnar epithelium, except near its orifice, where the epithelium is stratified. The urethral epithelium rests upon a very
vascular mucous membrane. Outside this is a coat of submucous tissue, with two layers of plain muscular fibre-an inner longitudinal and an outer circular. Some of the fibres are cross-striated. Outside the muscular coat is a close plexus of small veins which is connected with, and forms part of, the corpus spongiosum.

The mucous membrane of the urethra is beset with small mucous glands, simple and compound (glands of Littré). There are also a number of oblique recesses termed lacunce. Besides these small glands and glandular recesses, two compound racemose glands open into the bulbous portion of

Fig. 533.-Section gf erectilie tissue. (Cadiat.)
a, trabeculæ of connective tissue, with elastic fibrcs, and bundles of plain muscular tissue, some cut across (c); b, blood-sinuses.
the urethra in the male (Cowper's glands). Their acini are lined by clear columnar cells like those of the.glands of Littré (fig. 534), yielding a múcus-like secretion.

The prostate, which surrounds the commencement of the urethra in the male, is a muscular and glandular mass, the glands of which are composed of tubular alveoli, lined by columnar epithelium, with smaller cells lying between them and the basement-membrane (fig. 535). Their ducts open upon the floor of the urethra. In older subjects the tubules often contain colloid or calcareous concretions. The muscular tissue is of the plain variety.

The prostate is pierced by the two common ejaculatory ducts which open one on each side of a median elevation of the mucous membrane of the floor of the urethra. Between these orifices is an aperture leading into the prostatic utricle (uterus masculinus). The blood-vessels and
nerves of the prostate are numerous. The nerves are provided with small ganglia and are distributed partly to the muscular tissue, partly to the

Fig. 534.-Sfetion throuoil tie opening of the duct of a gland into
the matie trethra. (Liehtenberg.)
g, gland; m, its mouth ; u, epithelium of urethra. The gland is similar in structure to Cowper's glands, but simpler in rouformation. Its rells are mutus secreting.
glands; others which are sensory pass to the capsule, and to the wall of the urethra. The sensory nerves end in plexuses and in peculiar terminal corpuscles like simple Pacinian bodies.

Fig. 535,-Segtion of prostate of monkey. (Marshall.) a, alveolus; b, a concretion within an alvcolus; e, stroma; d, a blood-vessel.

Fig. 536.-Section of inman testis and efididymis, (Bühm and v. Davidoff.) a, glandular substance divided into lobules by septa of connective tissue; b, tunica albuginea; c, head of epididymis; d, rete testis; e, middle part or body of epididymis ; f, mediastinum giving head

FIG. $539 .-1$ 'INS,ME OF GNVOLUTED SFMTNIFEROUS TUHULES INTO STRAIGHT

[^21] c, rete testis,

THE TESTICLE AND ITS DUCTS.

The testicle is enclosed by a strong fibrous capsule, the tuniea albuginea (figs. 536, 537, 538). This is covered externally with a layer of serous epithelium reflected from the tunica vaginalis. From its inner surface there proceed fibrous processes or trabeculce, which imperfectly subdivide the organ into lobules. Posteriorly the capsule is prolonged into the interior of the gland in the form of a mass of fibrous tissue, which is known as the mediastinum testis. Attached to the posterior margin of the body of the gland is a mass (epididymis) which when investigated is found to consist of a single convoluted tube, receiving at its upper end the efferent ducts of the testicle and prolonged at its lower end into a thick-walled muscular tube, the vas deferens, which conducts the secretion to the uretbra.

The glandular substance of the testicle is wholly made up of convoluted tubules (tubuli contorti), which when unravelled are of very considerable length. Each commences near the tunica albuginea, and after many windings terminates, usually after joining one or two others, in a straight tubule. The straight tubules (tubuli reeti) pass into the mediastinum, and there form by their union a network of intercommunicating vessels of varying size, which is known as the rete testis (fig. 539). From the rete a limited number of efferent ducts or tubules (vasa efferentia) arise, and after a few convolutions pass into the tube of the epididymis.

The straight tubules which lead from the convoluted seminiferous tubes into the rete testis are lined by only a single layer of clear flattened or cubical epithelium cells. The tubulcs of the rete also have a simple epithelial lining; both in these and in the straight tubules a basement-membrane is absent, the epithelium being supported directly by the connective tissue of the mediastinum.

The efferent tubules which pass from the rete to the epididymis are lined by columnar ciliated epithelium. In man their lumen is irregular in section, and the inner surface is pitted witli glandular depressions lined by short clear non-ciliated colls.

Epididymis.-This is composed of a single convoluted tube 6 to 8 metres long which receives the vasa efferentia above, and below is continued into the vas deferens. The tube is lined by long columnar cells with oval nuclei, having at their bases smaller polyhedral cells with spherical nuclei (figs. 540, 541). The columuar cells are provided with bunches of cilia projecting into the lumen of the tube, but it is alleged that these cilia are not always vibratile. The cells exhibit canaliculi in their cytoplasm, which, according to Holmgren, communicate with the exterior at the attached border of the cell (fig. 542).

The vas deferens (fig. 543) is a thick-walled tube, having an outer layer formed of longitudinal bundles of plain muscular tissue, and an inner equally thick layer of circular bundles of the same tissue; within this again
is a thinner layer of longitudinal muscle. There is a good deal of connective and elastic tissue between the muscular bundles. The tube is lined by a

Fig. 540.-From a section of the epididymis: human. Magnified 60 diameters. Photograph. From a preparation by Prof. M1. Heidenhain.

Fifi, 541.-Part of ther same section. Magnified 200 diameters. The tubules contain spermatoona,
mucous membrane, the inner surface of which is covered by columnar nonciliated epithelium.

The vesicula seminales are glandular structures, consisting on each side of a main part, with several accessory parts, each part being composed of a

Fta. 542.-Cells of heididymis, showing canalisation of the cytoplasm.
(E. Holmgren.)
n, nucleus. In_{n} two cells the canals extend to the basement-membrane.
convoluted tubule of considerable length when unravelled. The duct joins the corresponding vas deferens. The tubules are lined by long columnar epithelium. Their convqlutions are held together by connective tissue, containing many bloodvessels and cleft-like lymphatics (fig. 544). Between the bases of the epithelium-cells is a row of bladder-like cells occupied by clear fluid and having a very characteristic appearance in stained sections. The columnar cells yield a secretion which is poured out from them in the form of droplets which accumulate to form a clear or opalescent fluid filling the tubes. This fluid, in some animals (e.g. guinea-pig), has the property of coagulating when it is ejected into the vagina.

MICROSCOPIC STRUCTURE OT THE TESTICLE.

The intertubular tissue.-The

Fig. 543.-Section across the commencement of the vas deferbns. (Klein.)
ω, epithelium ; b, mucous membrane; c, d, e, inner, middle, and outer layers of the muscular coat; f, bundles of the internal cremaster muscle; ; $\%$ section of a blood-vessel. connective tissue between the tubules of the testicle is generally of very loose texture, and contains numerous lymphatic clefts, which form an intercommunicating systém of commencing lymphatic vessels. Lying in this intertubular tissue are strands of poly-

Fig. 544.-Vesicula seminalis of ox. Photograph. Magnified 200 diameters. Drops of secretion are seen at the free ends of some of the cells.

Fig. 545. -Human testicle. Magnified 50 diameters. Fhotograph.
From an iron-hematoxylin preparation by Prof. M. Heidenhain.
The masses of interstitial cells are stained dark in this section.
hedral epithelium-like cells (interstitial cells, figs. 545, 546, 547) of a yellowish colour ; they are more abundant in some species of animals (cat, boar) than in others. They accompany the blood-vessels before these break
up to form the capillary networks which cover the walls of the seminiferous tubules.

The interstitial cells contain in many animals yellowish-brown lipoid

Fig. 546. -From a section of testicle of cat, Photograph. Magnified 200 diameters. t, section of a tubule; i_{1} interstitial cells, lying between three tubules.

Fig. 547.-Section of teesticle of a boy of nine years old. Highly magnified. (Spangaro.)
or fatty globules (staining with osmic acid), and sometimes needle-shaped crystals (protein). Similar fatty globules may occur in the Sertoli cells of the seminiferous tubules; they are believed to pass into those cells from the interstitial tissue.

The seminiferous tubules.-The seminiferous tubules are formed of a connective tissue membrane, which has a lamellar structure. The lamellæ are covered by flattened cells; fibres, chiefly elastic, occupy the substance of

Fig. 548.-Section from the testicle of a man 42 years old. Magnified about 350 diameters. (Spangaro.)
u, interstitial cells; $b_{\mathbf{r}}$ some containing pigment ; c, nuclei of ordinary connective-tissue cells; d, mast-cell. In the section of the tubule may be seen in succession from without in, spermatogonia, spermatocytes, spermatids, and spermatozoa. A few spermatids and spermatozoa are detached and oecnpy the middle of the tubule.
each lamella. In the adult the tubules contain several layers of epitheliumcells, but in the child there is no clear distinction into layers, the cells being all more or less similar (fig. 547). Of the layers seen in the tubules of the adult testicle, the one next to the basement-membrane is a stratum of clear cubical cells (spermiatogonia or spermatogons, fig. 548), the nuclei of which for the most part exhibit the irregular network which is characteristic of the resting condition, but in some tubules show indications of division. Here and there between the spermatogonia some of the lining epitheliumcells are enlarged, and project between the more internal layers, being
connceted with groups of developing spermatozoa. These onlarged cells are the cells of Sertoli (fig. 552, $a^{\prime}, a^{\prime \prime}$; fig. 555).

Next to this lining epithelium is a zoue of larger cells (spormatocytes, fig. $552, b$), the nuclci of which are usually in some stage of hetero or homo-typical mitotic division (see p. 16); these cells may be two or three deep (as in fig. 548, and in a, fig. 549). Next to them, and most internal, are to be seen in some tubules (fig. 548, and fig. 549, b and c) a large number of small protoplasinic cells with simple spherical nuclei (spermatids, fig. 552, c). In other tubules the spermatids are elongated, and the nucleus is at one cnd, and in others again these elongated cells are

Fig. 549.-Section of parts of three seminiferous tubuled of the rat, AS SEEN UNDER A LOW POWER.
a, with the spermatozoa least advanced in development ; b, more advanced; c, containing fully developed spermatozoa. Between the tubules are seen strands of interstitial celle with bloodvessels and lymph-spaces.
Fig. 550.-Human itermatozoa. Magnified 1000 diameters. (G. Retzias.) 1 , in profile ; 2 , viewed on the flat; b, head ; c, middle-piece; a, tail; c, end-piece of the tail, which is deacribed as a distinct part by Retzius.
completely converted into spermatozoa, which lie in groups: their heads projecting between the deeper cells and connected with one of the Sertoli cells of the lining epithelium, and their tails emerging into the lumen of the tubule (fig. $549, b$). As the spermatozoa become matured they gradually shift altogether towards the lumen, where they eventually become free (c), from the Sertoli cells. During the time that one set of spermatozoa has been forming, another set of spermatocytes is produced by the division of the spermatogonia, and after the discharge of the first set of spermatozoa the process of division of spermatocytes to form spermatids and development of spermatozoa from these is repeated as before (see diagram, fig. 552).

The spermatids were termed young spermatozoc by H. H. Brown, from whose investigation of the subject the above account is mainly derived.

The spermatozoa.-Each spermatozoon (sperm-cell) consists of three parts, a head, a middle part or body, and a long tapering tail (fig. 550). In man the head is of a pointed oval shape, somewhat flattened especially towards its apex; in some animals it bears a small barb-like projection at this extremity. The apical part is covered by a cap of a somewhat different appearance from the rest the head-cap. The middle-piece is in man short and cylindrical, and has a spiral fibre passing round it. An axial fibre, itself fibrillated, passes from a knob close to the head right through the body and tail. The tail is the longest part of the spermatozoon, and when examined with the microscope in the fresh condition is seen to be in continual

Fig. 55l.-Different furhis yf spermatozoa.
(Frona Verworn,)
$c i$, of bat ; b, c, of fror ; l, of finch; \boldsymbol{e}, of ram ; f, y, of boar; h, of jelly-fish; \boldsymbol{i}, of monkey ; k, of round-worm ; 1 , of crab.
vibratile motion, the action resembling that of a cilium. The extremity of the tail (end-piece) forms a distinct part of the spermatozoon, and in come animals may split into two or three fibrils; these can also sometimes be traced along the whole length of the tail. Human spermatozoa are about 0.05 mm . ($\frac{1}{\bar{\circ} 00}$ inch) long, the head and middle-piece each measuring about $\frac{1}{10}$ th of this amount.

In different animals the shape of the head and the extent of middlepiece and tail vary greatly (fig. 551). In the rat (fig. 554, 7) the head is long, and is recurved anteriorly ; it is set obliguely on the middle-piece. This is also of considerable extent, and has a closely wound spiral filament encircling it (H. H. Brown). In the newt the head is long and tapering, and the tail has a membranous expansion, attached in a spiral manner along its whole length. Such an expansion has also been described in the human spermatozoon, but its existence here is doubtful. In decapods, which possess no cilia, the spermatozoa are stellate and motionless (fig. 551, l); in nematoid worms they are ameboid (fig. 651, k). Sometimes two distinct kinds of spermatozon are met with in the same species of animal,
one kind being far the larger in size (giant spermatozoa) but much less numerous. Such giant spermatozoa have been observed in man.

Although the tail of the spermatozoon is usually considered to be a cilium, it exhibits, as we have seen, greater complexity of structure than ordinary cilia. Spermatozoa also differ from cilia in being more highly resistant to the effects of putrefaction and of most 'chemical reagents, including even strong acids and alkalies.

Spermatogenesis.-The spermatozoa are developed from the small cells (spermatids) which form the innermost stratum of the seminal epithelium, and these are themselves produced by the division of the large spermatncytes of the second layer.

Fig. 552.-Diagram exhiblting the cycle of piases of spermatogendesig in the rat.
u, lining epithelium-cells or spermatognnia, seen dividing in $6 ; a^{\prime}, a^{\prime \prime}$, Sertoli nells; b, spermatocytes, with skein-like nuclear filaments. These cells are seen actively dividing in 5 . c, spermatids, forming an irregular column or clump in $6,7,8$, and 1 , and connected with an enlarged Sertoli cell, a^{\prime}, of the lining epithelium in $2,3,4$, and 5 . 1u 6,7 , and 8 advanced spermatozoa of one crop are seen between columns of spermatids of the next crop. \boldsymbol{g}^{\prime}, parts of the spermatids which disappear when the spermatozoa are fully formed; s, seminal granules.

It is probable that fresh spermatocytes are formed by division of some of the lining epithelium-cells or spermatogons. The cycle of changes therefore which takes place is as follows: 1. Division of a lining epithelium-cell or spermatogon into two, one of which grows larger (" growing cells" of H. Н. Brown), becomes a spermatocyte, and passes into the second layer, while the other remains in the first layer. 2. Division of the spermatocyte. 3. Further division of the daughter-spermatocytes thus produced. The four cells (spermatids) which result from this double division possess only onehalf the somatic number of chromosomes in their nuclei, "reduction" having been effected in the final cell-divisions by which the spermatids are produced (p.16). 4. Elongation of the spermatids and their gradual conversion into spermatozoa. As they undergo this conversion their grouping becomes more evident, and each
group is found to be connected with a cell of Sertoli (fig. 552, a^{\prime}; fig. 555) ; this probably ministers to their nutrition. The Sertoli cell undergoes a gradual process

Fio. 553.-Chanols in the spermatids in the course of formation of the seermatozoa. (Niessing.)
The tail-filament is seen (in a and e) to extend from the centrosome, which lies close to the nuclens. The head-cap (shown in e) is produced by a transformation of a special part of the archoplasm which becomes racuolated (b, c, d).

Fig. 5.it.-Spermatozoa from tile rat in different stages of dmyelofment. (H. H. Brown.)
1.6, developing spermatozon from the testicle; 7 , a mature spermatozoon from the vas deferens. The remains of the protoplasm of the cell, which is seen in 6 still adhering to the middlepiece of the spermatozoon and contrining a number of chromatin gramules, appenrs to be thrown off as the spermatozoon matures.
of elongation, so that the spermatozon ly the time they are fully developed are brought to the lumen of the tube, in which they then become free. In the meantime other alternate groups of spermatids from which the next crop of spermatozoa will be derived are being formed in the vamo mannor nowinn thmomh tha onne
cycle of changes. So that different phases of developruent may be observed even in the same tubule, and in different tubules of the same testicle every phase may be traced. The accompanying diagram (fig. 552), which is constructed from H. H. Brown's drawings, illustrates the cycle of changes above described; it is divided into eight parts, each of which shows the condition of the epithelium of a seminiferous tubule at a particular stage.

Each spermatid becomes converted into a spernatozoon in the following manner (figs. 553,554). The nucleus forms the chief part of the head, while the tail develops as an outgrowth of the centrosome and cytoplasm. The tail-filanent appears within the protoplasm, growing out from the centriole of the cell, which lies close to the nucleus (fig. 553). The centriole is double; one of its two particles forms an annular expansion or ring, which as development proceeds, moves down the tail-filament until it reaches the place where this leaves the cytoplasm ; here it ultimately forms the limit of the body or middlepiece of the spermatozoon. The archoplasm (see p. 9) assists in forming the head of the spermatozoon ; a portion (the idio:ome of Meves) at an early stage separates from the rest, lying apically to the nucleus. Within this portion vacmoles form (fig. 553, b, c, d) which presently run together into a clear non-stainable globule which flattens out over the nucleus and forms (fig. 553, e) the head-cap of the spermatozoon; as development proceeds this may become indistinguishable from the rest of the head. The spiral fibre of the middle-piece is developed from mitochondria in the spermatid (see fig. 7, p. 5). A portion of the protoplasm of each spermatid containing a number of chromatin-particles (seminal granules) becomes detached and disintegrated before the spermatozoon is fully matured (fig.

Fig. 555.-A cinll of Sertoli with which the sperma. Tids (THREE OF WHich are shown) are begnning to be connected: human. (Bramman.)
The cell contains glohules staining with osmic acid; similar but smaller globules are also seen in the spermatids. The "ring" formed around the tailfilament hy one of the particles of the centrosome (see text) is shown in each of these spermatids close to the "head." $\left.552, s, s^{\prime}\right)$.

A few spermatocytes undergo incomplete division; the resulting spermatids are large (giant spermatids) and contain either one large nucleus or two or more nuclei which ultimately blend to form the head of the spermatozoon. In these cases a corresponding number of centrosomes is seen; from each of these centrosomes a tail-filament may become developed.

LESSON XXXVIII.

GENERATIVE ORGANS IN THE FEMALE.

1. Sections of ovary of (a) non-pregnant and (b) pregnant rabbit or cat. If from a pregnant animal the organ will be largely occupied by corpora lutea. Study the sections with a low power, observing the small and large Graafian follicles, each enclosing an ovim, scattered through the stroma; also the corpora litea. Measure Graafian follicles of different sizes. Make a general sketch of a section under the low power. Then sketch carefnlly one or two of the follicles with their contents ander a high power.
2. Take the fresh ovary of a sheep and with a needle or fine scalpel-point prick one of the largest and most prominent of the Graafian follicles. The organ must be held just over a slide so that on pricking the follicle the fluid contents may spurt out on to the glass. Examine the drop of liquor folliculi with a low power for the escaped ovum, which will be surrounded by follicular cells. When found place a piece of thick hair in the drop, cover with cover-glass and examine with high power.
3. Section across Fallopian tube. Sketch a section under the low power.
4. Section across a cornu of a bicorned uterns of a cat or rabbit. Observe the thickness of the muscular and mucous coats respectively. Notice the (ciliated) columnar epithelinm lining the organ and extending into the glands of the mucous membrane. Draw a part of a section under the low power.
5. Sections of human uterus (a) of body, (b) of cervix.
6. Section of placenta stained with alcoholic-eosin and methylene-blue. Notice the yenous spaces occupied by maternal hlood, and within the spaces sections of the fretal villi.
7. Section of vagina. Notice the stratified epithelinm which lines it and which is continued over the projecting part of the os uteri. If the section is taken through the anterior wall, the urethra will be included in it.

THE OYARY.

The ovary is a small solid organ, mainly composed of a stroma of fibrous tissue, with many spindle-shaped cells, particularly abundant in the human ovary (fig. 559). It also contains, near its attachment to the broad ligament, a number of plain muscular fibres, and receives here numerous and large blood-vessels. It. is covered by a layer of small columnar epithelium-cells (germinal epithelirm), between which may here and there be seen a few larger spheroidal cells, with large round nuclei. In the young subject the epithelium occasionally dips down into the subjacent stroma (fig. 562).

Scattered throughout the stroma are vesicles of different sizes, the smallest being near the surface of the organ, the larger ones placed more deeply in the stroma, although, as they increase in size, they extend towards the surface (fig. 556).

These vesicles are the Graafian follicles. Each Graafian follicle has a proper wall (theca folliculi) formed of a layer derived from the stroma, with a special inner layer containing large cells: both strata are highly vascular. Each follicle contains an ovum and epithelium. In the smallest follicles the ovum is small, and the epithelium of the follicle is formed of a single layer of cells which may be flattened against the ovur (figs. 559, 562). In somewhat larger follicles the epithelium-cells are in two layers, and are columnar in shape (fig. 561, E). In still larger ones, each of the two layers is formed of

Fig. 506.-Section of the uyaky uf the cat. Magnified 9 diameters. (Schron.)
1 , outer covering and free border of the ovary; $1^{\text {r }}$ attached border ; 9 , the central ovarian stroma showing a fibrous and vascular structure; 3, peripheral stroma; 4, blood-vessels; 5, Graafian follicles in their earliest stages lying near the surface; $6,7,8$, more advanced follicles which are embedded more deeply in the stroma; g, an almost mature follicle containing the ovum in Its deepast part; y^{\prime}, a follicle from which the ovum has fallen out in preparing the section; 10 , corpus luteum. several strata of cells, and fluid has begun to collect between the layers at

Fig. 557.-Section of ovary of rabbit. Photograph. Magnified 60 diameters,
One large Graafian follicle and a number of smaller follicles are seen, the smallest forming a layer near the surface. Notice the tunica albuginea covering the surface; itself covered by columnar epithelium.

Fig. 558. - Photograph of a section through a mature human ovum, surrounded by the cells of the discus proligerus. Magnified 600 diameters.
A. Thomson, Journal of Anatomy, vol. liii.)

Fig. 559.-Sigction of fart of human ovary shomine: smile Graifine follicles embedded in a fibro-ctllular stroma. (Sellheim.)
one part. Of the two layers, the one which lines the cavity of the follicle is termed the membrana granulosa, while the mass of cells which more immediately surrounds the ovum is known as the cumulus or discus proligerus (fig. 557).

In the largest follicles the fluid has much increased in amount, so that the follicle has become gradually larger and more tense. Finally it reaches and projects from the surface of the ovary; here it eventually bursts, and the liquor folliculi, with its contained ovum, is set free. This event is believed to occur usually at some time during menstruation.

Some of the Graafian follicles

 do not burst, but, after attaining a certain stage of maturity, undergo a process of retrograde metamorphosis and eventually disappear.The fluid of the Graafian follicles at first accumulates at one or more places between part of the membrana granulosa and the cells of the discus proligerus immediately surrounding the ovum and gradually spreads so as to separate these two parts of the epithélial contents of the follicle, but leaving them connected at one side. This fluid -the primary liquor folliculi of Robinson-is at first enclosed within a sort of protoplasmic network derived from the cells. Robinson has shown (in the ferret) that after insemination a second formation of liquid of a somewhat different and more fluid character makes its appearance between the cells of the discus proligerus, and this in its turn gradually increases in amount and spreads round the follicle, but without mixing with the first

Fig. 560.-- Ovary of 28-day rabbit, suowing thickeneo germinal epitheilium growing into stroma. (Felix and Bühler.)
a, germinal epithelinm; b, a thickened downgrowth from this epithelium; c, stroma of ovary. accumulation, although they may be in close contact with one another. There is in point of fact a thin membraue surrounding the primary liquor folliculi and separating them from one another. The secondary liquor folliculi as it accumulates pushes this membrane before it dnd penetrates between the primary liquor and the follicular epithelium until it reaches the superficial part of the follicle, where rupture ultimately occurs. The primary and secondary liquor folliculi together with the ovum and discus proligerus are then all extruded, and the empty cavity of the follicle becomes filled with a more tenacious fluid-the tertiary liquor folliculi of Robinson-which helps to plug the narrowing aperture. The follicular epithelium, which is left behind, then (in the ferret) undergoes development to form the corpus luteum: but in some animals the whole contents of the follicle are extruded on rupture, and the corpus luteum is formed entirely from cells derived from the theca (sec p. 411).

The ovarian ova (oocytes) are large spherical cells, about $0.2 \mathrm{~mm} .\left(\frac{1}{2} \frac{1}{5}\right.$ inch $)$ in diameter. When fully formed (fig. 558), as in the largest Graafian follicles,
each ovum is surrounded by a thick transparent membrane (zona pellucida, z. radiata). Within this is the protoplasm of the oocyte (vitellus, yolk),

- Fig. 56l.-Figures showing viriogs stages in the development of the Graafian follictles uf the rabbit.
A, from ovary of young rabbit, showing "egg-tulses" of Pflüger growing in from germinal epithelimm; some of the tubes contain primitive ova; B, primitive Graaflan follicles forped from the breaking up of an egg tulse; C, a yomng Granfian follicle, with a single layer of folliele-epithelium; D, a somewhat older folliele, with the seeond layer forming within the first; b, a more advaneed follicle, showing two complete layers of columnar epithelium surrounding the ovum within the follicle.
filled with fatty and protein granulcs. Lying in the vitellus, generally eccentrically, is the large clear round nucleus (germinal vesicle), which invariably has a well-marked nucleolus (germinal spot), sometimes more than one.

Oogenesis.-Both the ova and the epithelium of the Graatian follicles originate from the germinal epithelium of the embryo. This forms at first a simple layer covering the stroma, but later becomes thickened and multiple. After a time rounded cords of epithelium-cells (egg-tubes of Pfüger, fig. 560; fig. $561, \mathrm{~A}$) grow inwards into the stroma, whilst this at the same time grows outwards into the thickened epithelium. The cords presently become broken up by ingrowths of stroma into isolated nests of epithelium-cells (fig. 561, B), each of which may be taken to represent a Graafian follicle. Some of the cells become enlarged to form primitive ova; usually there is one such enlarged cell in each nest, the remaining cells forming the epithelium of the

Fig. 562. -Section of ovary of human fetus, showing numerous primittye Graffian follicles embedded in the stroma. Photograph. Magnified 200 diameters.
Each primitive Graafian follicle consists of a primitive ovium surrounded by a single layer of flattened follicular epithelinm-cells.
follicle (fig. 561, C). It would appear that the protoplasm of the ovum remains connected with the cells of the discus proligerus by fine processes which pass through pores in the zona pellucida, while on the other hand the epithelium-cells of the follicle are themselves interconnected by protoplasmic bridges, so that the whole forms a kind of syncytium.

New formation of follicles from the germinal epithelium may, according to Kingery, occur in the mouse up to the time of sexual maturity: in the ferret, according to Robinson, new follicles are formed throughout the whole of the functional life of the ovary.

The stroma of the ovary contains, besides the spindle-shaped connectivetissue cells and plain muscular fibres already mentioned, a number of epithelium-like interstitial cells. Some of these are derived from the
germinal epithelium (Lane-Claypon); others have originated from cells of corpora lutea.

Vessels and nerves.-The blood-vessels of the ovary are large and numerous. The smaller vessels are abundantly distributed in the walls of the Graatian follicles, over which they form it close network. The ovary also receives many nerve-fibres, but their ultimate destination is not known.

Corpora lutea.-These are yellowish nodules, which are doveloped out of the Graafian follicles after the ova have been extruded. They consist of columns of large cells (luteal cells) containing lipoid globules, with intervening trabecula of vascular fibrous tissue. In most animals the trabecule con-

Fig. 563A. - Sletion of a Graffian follicle of the rabbit which has hecently ruptured. Photograph. Magnified 50 diameters.
The ovum and follicular epithelium have beeome entirely extruded and tbe follicle is occupied by a blood-clot.
verge to a central strand of connective tissuc occupying the axis of the nodule (fig. 564B). The columns of cells are not unlike those of the cortex of the suprarenal capsule. In the human subject the cells of the corpus luteum are massed into plaits or folds, arranged perpendicularly to the wall of the follicle, with vascular connective tissue in the interspaces. Numerous capillary blood-vessels, of a sinus-like character, ramify amongst the luteal cells; the latter probably yield an internal secretion to the blood.

Development of the corpus luteum.--There is reason to believe that corpora lutea may be developed in either of two ways, viz.: (1) from cells in the wall or theca of the follicle which multiply and pass into the cavity of the empty follicle after all its contents have been extruded. (2) From the membrana granulosa of the folliclo after the ovum and discus proligerus alone have
been extruded. In certain species both membrana granulosa cells and theca cells may take part in the formation of the corpus luteum.

1. In some animals-including, it is believed, man-the corpus luteum is derived from the wall or theca of the Graafian follicle. This becomes thickened by multiplication and hypertrophy of its cells (figs. 563 A and 563B). These grow into the cavity of the follicle which has become emptied of its contents at the time of the rupture of its wall, and form intercommunicating trabeculæ (figs. 564 A and B). Between these cell-trabeculæ connoctive tissue and blood-vessels pass in from the vascular wall of the follicle; converging along with the trabeculx towards the centre of the

Fig. 563B.-Paric of the above section. Photograph. Magnified 200 diameters.
The figure shows the fibrous wall (theca) of the follicle containing enlarged cells in its thickness. The complete disappearance of the follicular epithelium is obvious. The cavity of the follicle is occupied by a coagulum of blood, the network of fibrin-filaments being well displayed.s
follicle, where the remains of a blood-clot, derived from the blood-vessels of the follicle at the point of rupture, may long continue to be visible. Ultimately the centre becomes occupied by a kind of scar tissue, which may be continued to the surface of the ovary at the point where the rupture of the follicle originally occurred. Sometimes there is no clot in the follicle, its cavity being at first occupied by lymph, and the luteal cells grow into this.
2. In other animals, of which the mouse (Sobotta) and the ferret (Robinson) furnish characteristic examples, the corpus luteum is developed by proliferation and enlargement of the cells of the membrana granulosa which have remained attached to the wall of the follicle after its rupture (figs. 565, 566). Into this thickened epithelium processes of the wall or theca grow, carrying in blood-vessels and probably theca-cells, so as partially to

Fig. 564A.-Corius ldTEUM OF RABEIT FORMED OF TRABECDL 平 OF LARGE luteal cells which HAVE DEVELOPED FROM THE CELLS OF THE THECA. Photograph. Magnified 60 diameters.
The remainder of the original blood-clot (bl) is still seen near the middle of the corpus luteum. Just below this is a kind of cicatricial fibrous tissue formed by organisation of part of tbe clot.

Fig. 564B.-A partof the section shown in the above figure. Photograph. Magnified 200 diameters.
The columns of luteal cells and the cicatricial tissue to which they converge are well seen in this figure.
separate the epithelium into what in sections look like trabecule converging towards a central cavity. The further development is the same as in the other case, the cells filling the folliclo becoming transforried into luteal cells. The difference between these two modes of development is striking; luat from the marphological point of view need not be uncxpected since it is

Fie. 565. -Three stages in the formation of the corpus luteum in the modse. (Sobwotta.)
A. Follicular epithelium hypertrophied (fe), and vascular processes (a) of the internal theca (th) growing into it.
B. The vascular processes are arranged radially and subdivide the epithelium-now converted into a mass of luteal cells-into lobule-like masses ($($) ; e, epithelium of surface of ovary.
C. The lobule-like masses are more columnar, and the Inteal mass almost fills the follicle, leaviag, however. a central space ocoupied by coagulated fluid.

probable that the epithelium of the Graafian follicle and the theca-cells are both derived from the original germinal epithelium of the foetal ovary.

After persisting for a time the corpus luteum gradually disappears, its cells becoming merged into the surrounding stroma. In the human subject it usually becomes aborted and shrunk, and, losing its colour, is known as a corpus albicans. Corpora lutea grow larger and persist longer in the event of pregnancy supervening.

THE FALLOPIAN TUBES AND UTERUS.

The Fallopian tubes or oviducts are lined by a very vascular mucous membrane which is covercd with ciliated epithelium, and has numerous
longitudinal folds or rugæ with depressions between (fig. 567). Externally the tube is covered by a serous coat, within which is a thin longitudinal stratum of plain muscular fibres overlying circular fibres of the same tissue; these layers are not distinctly marked off from one another.

The Fallopian tubes commence near the ovary with an open end, the margins of which are spread out into a number of processes termed fimbrice. One or two of these fimbriæ are directly attached to the surface of the ovary in the manner shown in fig. 568. Each Fallopian tube terminates distally in the uterus; opening, in the human subject, at the upper angle of the

Fig. 5ff.-More advanced stage in the development of the corpus lutrim of the modse. (Sobotta,)
The luteal tissue is now highly vascular, and the central cavity is obliterated.
body of the uterus. In animals which possess a bicorned uterus, the Fallopian tube is directly continued into the corresponding cornu.

The human uterus is composed of two parts, the body and cervix. The body is formed of the following layers (fig. 569) :-

1. A serous layer, derived from the peritoneum, which covers the greater part of the fundus.
2. A muscular layer, which is of great thickness and is formed of plain muscular fibres disposed in three, more or less blended, strata. Of these the outer is thin and has its fibres arranged partly longitudinally, partly circularly. The middle, on the other hand, is thick; its fibres run in different directions, and it contains the ramifications of the larger blood-vessels. The inner layer, again, is thinner and has both longitudinal and circular fibres, many
of the latter being prolonged internally into the deeper part of the mucous membrane; the extremities of the uterine glands extend between and amongst the muscle-fibres.
3. A mucous membrane (fig. 569, mm), composed of soft connective tissue containing a large number of spindle-shaped cells. It is lined by ciliated epithelium and contains long, simple, tubular glands, which take a curved or convoluted course in passing through the membrane (fig. 570, gl, and fig. 571). Their epitheliun is continuous with that which covers the inner surface of the mucous membrane and is also ciliated for some distance within the glands. In the cervix the mucous membrane is marked by longitudinal and oblique ridges ; the glands are shorter but more complex than those of the

Fig. 567.-Shction across the Falloptan tube. (Somewhat diagrammatised.)
body of the utcrus, and are lined by columnar mucus-secreting cells. Near the os uteri the epithelium becomes non-ciliated columnar; at the margin of the os uteri this passes into a stratified epithelium which overlies vascular papillæ of the corium. The mucous membrane is very vascular ; it also contains a large number of lymph-vessels.

In those animals the uterus of which is composed of two cornua, the arrangement of the muscular tissue is simpler than in the human uterus (which was originally double in the embryo and has been formed by the fusion of two such tubes). Fig. 571 exhibits the structure of a cornu of the uterus of the rabbit showing the convoluted glands extending through the mucous membrane; the thick innérmost muscular layer which occupies the deepest part of the mucosa; the large blood-vessels in the submucous layer, and the two strata of the true muscular coat outside the main vessels.

Changes accompanying menstruation.-At the commencement of each
menstrual period the mucous membrane of the uterus becomes thickened and extremely congested with blood. Eventually the blood-vessels near the surface become ruptured and the superficial part of the membrane becomes

Fig. 568.-Section of ovary of guinea-pig at the place of attachment of the fimbriated end of the Fallopian ture. Photograph. Magnified 200 diameters.
Notice the ciliated epithelium covering the fimbrix, continued into the much smaller non-ciliated cells of the ovarian surface. Observe also the numerous and large blood-vessels of the fimbrix.

Fig. 569:-Section of human uterus. (Sobotta.) Twice the natural size. s, serous layer ; im, Iongitudinal muscular filres; m, circular niuscle ; $m m$, mucons membraue; l, cavity of uterns; $l l$, liganentum latum ; $b l$, blood-vessels.

Fig. 570. -Section of the dterine mocous membrane. (Sobotta.) Magnified 150 diameters.
$e p$, epithelium of cavity ; $g l$, glands ; m, part of muscular watl.

Fig. 571.-Segtion of a dornd of tee rabeit's uterus.
s, serous layer ; l.m., longitudinal musetular fibres; c. m., cireular muscular fibres of the muscular coat; a, areolar tissuè with large bloodvessels; m.m., muscularis mucosw ; m, mucous membrane.

Fig. 572.-SECTION OF MUCOUS MEMBRANE OF IUMAN UTERUS DURING: MENSTRUATION, SHOWING MASSLS OF BLOOD ESCAPED FROM RUPTURED CAPILLARIES INTO TIIE INTERGLANDULAR TISSUE; AT ONE PLACE (承) THE BLOOD HAS BROKEN THROUOF THE SURFACE EPITHELIUM. (Sellheim.)

Fig. 573.-Diagram to hllifstrate the embeding of the ovom in the decidua AND THE FIRST FORMATION OF TIIE FGETAL VILLI IN TIE FORM OF A SYNCYTLAL TROPHOBLAST (DERIVED FROM TIIE OUTHR 」AYER (IF THE WUM) WHICH IS INVADIN: SINUS-LIEE BLOOD-SPACES IN THE DECIDUA. (T, H. Bryce.)
disintegrated and thrown off (fig. 572). These changes are accompanied by a considerable escape of blood into the cavitr of the uterus and thence into
the vagina. The return to the normal conditions then begins and the renewal of the disintegrated membrane proceeds rapidly. Should pregnancy supervene, the process of renewal results at certain parts in the formation of a greatly thickened mucous membrane, with long convoluted glands: this is known as the decidua. The muscular layer also becomes enormously hypertrophied during pregnancy; the hypertrophy is produced by the enlargement of the individual muscle-cells.

The phenomenon of heat in animals is attended by changes in the uterus which are analogous to those occurring during menstruation in the human subject. The

Fig. 574.-Diagram of a further stage in the formation of the placenta, showing the fetal villi within the bloon-spaces of the placenta and partly áttached to the decidtal wall. (T. H. Bryce.)
The villi are now ocepupied by a core of vascular mesoderm. They are covered by a syncytium (continued over the decidua), within which is a layer of epithelium-cells; f.v., foetal vessels; $m . v$, maternal vessels; m, mesoderm of chorion; a, a villus cut across; b, attachment of a villus; sy, syncytial covering to villi continued at $s y^{\prime}$ on to decidua; ep, epithelial layer under syncytium.
whole series of alterations which accompany this condition-including the changes preparatory, accompanying, and succeeding the periodical blood-flow from the uterus-is known as the ostrous cycle.

Structure of the placenta.-When the developing ovum reaches the uterus it becomes embedded in the thickened mucous membrane (decidua) to which it attaches itself firmly by means of its outer layer or chorion, processes of which penetrate into the decidua. The chorion and its processes are covered by a thick syncytium terned the trophoblast ; this burrows its way into the uterine mucous membrane and gives off villus.like branching processes-chorionic villi-which enter large vascular sinuses in the decidua, where they become bathed with arterial maternal blood (fig. 573). In the meantime tissue conveying blood-vessels has grown into the chorionic villi from the mesoderm of the feetus bringing to them foetal blood by way of the unibilical arterics. Latcr the original epithelial covering of the villi becomes attenuated and only a thin syncytial layer of cells separates the tissue of the villus containing feetal capillaries from the maternal hood in the sinuses. Some of the villi remain hanging freely into the sinuses, others are attached to
their wall or to fibrous septa and trabeculæ which extend across the sinuses or serve partially to separate these into loculi (fig. 574). The maternal blood is conveyed to the sinuses of the decidua by small spiral arteries and is taken away by corresponding veins.

A section across the discharged placenta or afterbirth shows it to be bounded on the fuetal side by the chorion, covered by the smooth ammion, and on the maternal side by the thin and somewhat uneven detached part of the decidua-a separation

Fig. 575.-Shetion of a placenta at full time. (T. H. Bryce.) From a preparation by J. H. Teacher.
Whe or two of the villi show a fibrinous change, For the sake of distinction the fotal blood-eorpuscles are represented is solid dots, the maternal as eireles.
having occurred in the substanee of the decidua when the placenta becomes detacbed from the uterus. Between these two boundaries is a spongy mass which in sections examined under the microscope (fig. 575) appears to be formed of a continuous blood-space in which an enormous number of fotal villi and fibrous trabecule of varying thickness are seen, eut in various directions. Each villus (fig. 576) is composed of jelly-like connective tissue covered by a synoytial layer of epithelium. Within the larger villi arterioles and venules are seen and in some, capillaries as well; within the smaller only capillaries. Some villi are observed which appear to be undergoing a fibrinous change

Fie. 576.-Siection of a villus from a placknta at the seventh monte. Highly magnified. (T. H. Bryce.)

Fig. 577. -Section of vagina of monkey. (Marshall.)
u, stratified epithelium ; b, corium of nucous membrane ; c, muscular layer: the fibres cut across ; d, a small ganglion; d^{\prime}, nerve-bundles; e_{1}, a small artery ; f, fat-cells.

THE CLITORIS, VAGINA, AND URETHRA.

The clitoris is similar in structure to the penis, being mainly composed of erectile or cavernous tissue arranged in structures corresponding generally with the corpora cavernosa and corpus spongiosum but much less developed. There are also two oval masses of erectile tissue, one on each side of the vaginal orifice ; as well as an intermediate collection of plexiform veins which join these masses with the corpus spongiosum. The clitoris is not traversed by the urethra as in the male organ.

The vagina is lined by a mucous membrane furnished with a low stratified epithelium (fig. 577, a) with broad papillary elevations. Outside the epithelium is the corium (b) composed of a very vascular, dense, connective tissue. There are no glands in the mucous membrane. Outside the corium is a well-marked muscular coat (c) formed of plain muscle, the fibres having mainly a longitudinal direction. They are continued from the fibres of the uterus. Outside the muscular coat is a fibrous layer.

Bartolin's glands, which correspond with Cowper's glands in the male, lie on each side of the vagina near its upper end. Their ducts open immediately at the side of the orifice of the vagina. Bartolin's glands are of the compound racemose type, with mucous alveoli, lined with clear columnar cells.

The urethra in the female runs from the bladder parallel with the anterior wall of the vagina, with the fibrous layer of which it partly blends. As in the male sex, the wall of the urethra is formed of three coats, mucous, submucous, and muscular. The mucous membrane is lined throughout by stratified epithelium, except quite near the bladder where the epithelium is transitional. The submucous coat contains cavernous tissue, or at least a close plexus of veins. The muscular coat has two layers of plain muscle, an inner longitudinal and an outer circular; there are also a few longitudinal striped fibres, chiefly confined to the anterior aspect of the tube.

Numerous small acinous glands, similar to those of the prostate in the male, open on to the mucous membrane.

LESSON XXXIX.

CENTRAL NERVOUS SYSTEM.

The Spinal Cord.

1. Sections of the spinal cord from the cervical, dorsal, and lumbar regions. If the human spinal cord cannot be obtained sufficiently fresh, that of a dog, cat, rabbit, or monkey may be used. It is to be hardened by suspending it immediately after removal from the body in a tall jar of formol (10 per cent. solution). After a day or avo it may be transferred to alcohol. Sections are to be made either by the paraffin or celloidin method: the former is preferable for small cords. The sections may be stained by Nissl's method (toluidin-blue), which brings to view the nervecells and also stains the axis-cylinders of the nerve-fibres. If it is desired to stain by the Weigert-Pal method, which colours the myelin-sheaths of the nerve-fibres, the pieces of cord should be placed in a large quantity of 2 per cent. bichromate of potassium solution in which they may be left for about a month, after which they are cut by a freezing microtome. (For the details of staining by these methods see Appendix.) Carminate of ammonia or thionin may also be employed to stain the nerve-cells and axis-cylinders.

Notice the relative extent of the grey as compared with the white matter in the different regions of the cord.

Sketch a section from each region under a low power. Sketch also a small portion of the white substance, two or three nerve-cells, and the central canal with its lining epithelium and surrounding neuroglia under the high power.

Measure the diameter of some of the nerve-fibres in the ventral columns, in the lateral columns, and in the dorsal columns.
2. The early development of the spinal cord may be studied in sections of chick embryos at various stages.

GENERAL STRUCTURE OF THE SPINAL CORD.

The spinal cord is composed of grey matter in the centre and of white matter externally. It is invested by three membranes, termed respectively pia mater, arachnoid, and dura mater (fig. 578). The pia mater is everywhere in close contact with the surface of the cord; by its means the blood-vessels are distributed to the organ. Next to the pia mater and separated from it by a considerable space, termed the subarachnoid space, is the arachnoid, a non-vascular membrane. In some parts the arachnoid lies close to the dura mater; in others it is separated from it by a space containing fluid and known as the subdural space. The fluid in these spaces and in the corresponding spaces around the brain is known as cerebro-spinal fluid.

The arachnoid is a non-vascular areolar structure, having a general resemblance to a serous membrane, but more delicate in texture. The dura mater, which immediately lines the vertebral canal, is a strong fibrous membrane. These membranes are continuous with the connective-tissue sheatlis of the issuing spinal nerves.

At the middle of the ventral (anterior) and dorsal (posterior) surfaces
the pia mater dips into the substance of the cord in the ventral and dorsal median fissures, so as to divide it almost completely into two lateral halves. These are, however, united by an isthmus or bridge, composed ventrally of transversely crossing white fibres (white commissure), dorsally of grey matter (grey commissure) ; in the middle of the grey commissure is a minute canal lined by ciliated epithelium (central canal).

Each lateral half of the spinal cord contains a crescent of grey matter, joined to the corresponding crescent of the opposite side by the grey commissure. Of the two horns of the crescent the dorsal is the narrower and comes near the surface of the cord : close to it the bundles of the dorsal

Fig. 578.- SE "TION OF TLLE SPINAL CORD WITILIN ITS membranes. (Key and Retzius.)
x, dura mater; b, arachnoid; c, septum of arachnoid; d, e.
x, dura mater ; b, arachnoid; trabecula of arachnoid; g, ligamentum arachnoid; denticulatun; f, buudles of dorsal root; h, bundles of ventral root; k, j, subarachnoid space.
 nerve-roots enter the cord. The bundles of the ventral nerve-roots emerge from the corresponding horn.

According to Ingbert about $1,300,000$ nerve-fibres enter the cord by the dorsal roots, and about one-third that number leave it by the ventral roots.

The dorsal root-fibres are derived from the cells of the spinal ganglia, which lie outside the cord; the ventral root-fibres from cells within the grey matter, chiefly from cells in the ventral horn, but also from cells in the middle and dorsal parts of the gres matter and (especially in the thoracic region) from cells in the intermedio-lateral cellcolumn (lateral horn). The latter probably furnish the autonomic (sympathetic) fibres of the ventral roots, while the cells of the ventral horn furnish the fibres which are distributed to the voluntary muscles.

The white matter of each half of the cord is subdivided by the approach of the dorsal horn to the surface into two unequal columns-ventrolateral and dorsal. A distinction is sometimes drawn between ventral and lateral portions of the ventro-lateral column, although there is no line of demarcation between them. In the upper part of the cord the dorsal column is subdivided by a septum of connective tissue into two-the dorsomesial column (funiculus gracilis), and the dorso-lateral column (funiculus cuneatus).

The white matter is composed of longitudinally coursing, myelinated nerve-fibres, which in sections stained with toluidin-blue appear as clear circular areas with a stained dot, the axis-cylinder, near the middle (fig: 580); while in sections stained by the Weigert-Pal method they appear as dark
circles with a clear centre. The nerve-fibres vary in size in different parts; on the whole those nearest to the surface of the cord are larger than those

F1u. 579. -SELTION OF HUMAN SHINAL UOKD FROM UPYER UERVIUAL REGION. Photograph. Magnified about 8 diameters.

Fig. 580.-A SMALL PORTION OF A TRANSVERSE SECTION OF THE HUMAN SPINAL CORD IN THE REGION OF THE LATERAL COLUMN, TO SHOW THE SUPERFICIAL neurofita. Highly magnified.
u, u, superficial neuroglia; b, b, transverse section of part of the lateral column of the cord, in which the dark points are the axis-cylinders, and the clear areas the myelin substance of the nerve-fibres. The superficial neuroglia is seen to exhibit the appearance of a fine network in which numerous nuclei and one or two corpora amylacea, c.a., are embedded, and to extend inwards (c, c) among the nerve-fibres.
nearest to the grey matter, but there is a bundle of very small fibres opposite the tip of the posterior horn.

The myelinated fibres are supported by neuroglia, composed of neuroglia

Fig. 581.-SEection of the CENTRAL CANAL OF THE SPINAL CORD OF A CHILD, SHOWING ITS CILAATED EPITHELIUM AND THE SURROUNDING CENTHAI, NEUROglia. Moderately magni-
cells and fibres (figs. 243 to 245). The neuroglia is accumulated in greater amount at the surface of the cord, underneath the pia mater (particularly, in the human cord, near the entrance of the dorsal roots (fig. 580)), and it extends into the grey matter, in which it is especially abundant in the substantia gelatinosa at the apex of the dorsal horn and around the central canal.

The grey matter, besides neuroglia, contains an interlacement of nerve-fibres and the arborisations of the dendrons of the nerve-cells which are embedded in it.

The central canal of the spinal cord is lined by columnar ciliated epithelium-cells (ependyma) surrounded by a quantity of neuroglia (figs. 581, 582,583). The cells are best seen in the spinal cord of animals and in the

Fig. 582.-Epledyma ani neuroglia-cells around central canil of CORD. (Lenhossék.) Golgi method.
child; in the human adult they have frequently become proliferated, and cilia are no longer present. In the early embryo their fixed extremities extend through the whole thickness of the cord to reach the pia mater. This condition is permanent in the cord of many of the lower vertebrata.

[^22] tions of the cord.

CHARACTERS OF THE SPINAL CORD IN ITS SEVERAL REGIONS.

In the cervical region (fig. 584, A), the white matter, especially that of the lateral columns, occurs in largest proportion. The grey matter in the cervical enlargement is also in considerable amount, and it encroaches, especially" in the upper part of the region, in the form of a network (formatio reticularis) upon the adjacent part of the lateral white column (fig. 579). The ventral horns are thick and the dorsal slender. The dorsomesial column is distinctly marked off.

In the thoracic region (B) the grey matter is small in amount, and both horns are slender. The whole cord is smaller in diameter than either in the cervical or lumbar region. The columns of nerve-cells known as Clarke's column and the intermedio-lateral column are well marked.

Tig. 5S4. -SFetions OF HCMAN SPINAL CORD FROM THE LOWER CERVICAL (A), MID-THORACIC (B), IND MID-LUMBAR (C) REGIONS, SHOWING THE PRINCIPAL GROTPS OF NERVE-CELLS, AND ON THE RIGITT SIDE OF EACH SELTION THE CONDUCTING TRACTS AS THEY OCCUR IN THE several regions.
a, b, c, groups of cells of the ventral or anterior horn: d, cells of the lateral horn ; e, middle group of cells; f, cells of Clarke's column; g, cells of dorsal or posterior horn ; c.c., central canal : a.c., rentral commissure; M, marginal hundle of Lissauer; P.M'., septomarginal tract.

In the lumbar region (C) the crescents of grey matter are very thick, and the white substance, especially the lateral columns, relatively small in amount. The isthmus lies nearly in the centre of the cord, whereas in the cervical and dorsal regions it is nearer the ventral surface.

In the part of the spinal cord from which the sacral and coccygeal nerveroots take origin grey matter largely preponderates, the crescents form thick irregular masses, and the grey isthmus is also of considerable thickness.

LESSON XL.

CENTRAL NERVOUS SYSTEM.

The Spinal Cord (continued).

1. Tracts in the spinal cord. The conducting tracts of the spinal cord may be studied in two ways, viz. : (1) by preparing sections of embryonic cords (from the 5 th to the 9 th month), the sections being stained by the Weigert-Pal process ; (2) by preparing sections from the cord of an animal in which semi-section has been performed about 15 days before the animal is killed. After removal the cord is first partly hardened by placing it for a few days in Müller's fluid or $2 \frac{1}{2}$ per cent. bichromate of potassium solution. Thin pieces taken fron below and from above the level of the section are then placed in a solution consisting of two parts of Miiller's Huid and 1 part of 1 per cent. osmic acid (Marchi's method).
2. Grouping of cells in the cord. These are studied in sections stained by Nissl's method.

TRACTS OF NERVE-FIBRES IN THE WHITE COLUMNS.

The course of the nerve-tracts in the spinal cord, and in other parts of the central nervous system, can be made out by the method of Flechsig, which involves the study of sections of the developing cord ; for it is found that the formation of myelin occurs sooner in some tracts than in others, so that it is easy to make out the distinction between them. Thus, the peripheral nerves and nerve-roots become myelinated in the first half of the fifth month of foetal life. Of the tracts of the spinal cord, those of Burdach and Goll (see below) are the first to be myelinated, then the tracts of Flechsig and Gowers, all of these being afferent or centripetally conducting, while the pyramid tracts, which are efferent or centrifugally conducting, do not receive their myelin sheath until after birth. ${ }^{1}$

Another method (that of A. Waller, p. 176) consists in investigating the course pursued by degeneration of the nerve-fibres in consequence of lesions produced accidentally or purposely. Those tracts in which degeneration of fibres occurs below the lesion are termed "descending" tracts; those in which it occurs above the lesion are termed "ascending." This method, when combined with the staining process devised by Marchi, is of great value, since it enables even single fibres to be traced far from their source.

Further, the cells whence the fibres of any tract arise can be identified, after a lesion of the tract, by the chromatolysis or degeneration of Nissl, which nerve-cells undergo after section of their axons (see p. 177).

[^23]Tracts of the dorsal column.-1 Tract of Goll.—Most of the fibres of the dorso-mesial column belong to a tract known as the tract of Goll (fig. 588, 6). This consists of fibres derived from the dorsal nerve-roots of the sacral, lumbar, and lower thoracic nerves, which, after having entered the dorso-lateral columns, shift, as they ascend, towards the dorsal median fissure and form a distinct tract, marked off from the rest of the dorsal column in the cervical region by a slight furrow and a septum of pia mater

Fig. 585.-Diagram showlng the site of degeneration in the dorsal column WHICH RESULTS FROM UNILATERAL SECTION OF THE DORSAL ROOTS OF THE SECOND SACRAL TO THE SIXTH LUMBAR NERVES OF THE DOG. (Singer.)
a, sixth lumbar segment; b, fourth lumbar ; c, from the mid-thoracic region.

Fig, 586.-DछGenerations following unilateral section of the dorfal roots OF THE ELEVENTH AND TWELFTH THORACIC NERVES OF THE DOG. (Singer.)
a, at level of twelfth thoracic ; b, of third thoracic ; c, from mid-cervical region.

Flg. 587. - Degenerations following bilateral sections of the dorsal roots OF THE SECOND THORACIC TO FIFTII CERTICAL NERVES OF THE DOG. (Kahler.) a, at level of first thoracic ; b, at sixth cervical ; c, at first cervical.
(fig. 579). This tract ends amongst the cells of the nucleus gracilis of the medulla oblongata.
2. Tract of Burdach.-The dorso-lateral column is also mainly composed of fibres of the dorsal nerve-roots, which run for a certain distance in it before entering the grey matter of the cord or of the medulla oblongata. As each mass of dorsal root-bundles enters the column close to the apex of the horn it, so to speak, pushes the root-fibres which have already entered nearer to the median fissure; hence those derived from the lowest nerve roots are nearest that fissure (tract of Goll), while those derived from the highest remain near the horn (tract of Burdach) (figs. 585 to 587). Many of the fibres of both tracts pass into the grey matter either immediately on entering the cord or in their course upwards; the rest are
continued into the medulla oblongata, and those of the tract of Burdach end by arborising amongst the cells of the nucleus cuneatus.
3. Comma tract.-Besides the tracts of Burdach and Goll, which are wholly composed of long "ascending" fibres having their cells of origin in the ganglia on the dorsal roots, there are a few fibres which have a shorter "descending" course in the dorsal columns. These are thought by some authors to arise from descending branches of the dorsal root-fibres, by others from cells in the grey matter of the cord. They form the so-called comma tract (fig. 588, 5).

Proprio-spinal or endogenous fibres of the dorsal column.-These comprise a few fibres (septo-marginal), chiefly accumulated near the median fissure (oval bundle) and near the dorsal surface (median triangle bundle), as well as others scattered in the column; they are derived from cells in the grey matter

> Fig. 588.-Dlagram showing the ascending (right side) and descendine (Left side) tracts in the spinal cord.
> 1, Crossed pyranid tract ; 2, direct pyramid tract; 3, ventro-latcral descending; 3a, bundle of Helweg; 4, prepyramidal; 5 , comma ; 6, dorso-mesial ; 7 , dorsolateral ; 8, tract of Cissaner; 9 , dorsal cerebellar; 10 , ventro-lateral ascending or ventral cerebellar; s.m, septo-marginal; s.p.l., superficial dorso-lateral filures (dorsal root-zone of Flechsig); a to a^{5}, groups of cells in the ventral horn; $i_{\text {, }}$ intermedio-lateral group or cell-column in the lateral part of the grey matter ; p, cells of dorsal horn ; d, dorsal nucleus of Stilling or cell-colunn of Clarke. The scattered dots indicate the situation of "endogenous" fihres (arising in grey matter of cord) having for the most part a short course. There are many more of these flloses near the grey matter (not indicated in the diagram).

of the cord itself, and all take a "descending" course in the dorsal column. There are, however, others which arise in the grey matter and have an "ascending" course : these are especially numerous in the ventral part of the column.

Tracts of the ventro-lateral column : descending tracts.-1. Pyramid tract or cortico-spinal tract.-At the dorsal part of the lateral column there is a tract of moderately large "descending" fibres running in the lateral column of the spinal cord from the opposite side of the brain, after haring for the most part crossed at the decussation of the pyramids of the medulla oblongata (fibres of crossed lateral pyramid tract, fig. 588, 1 ; fig. 589, la). Intermingled with the fibres of the crossed pyramid tract in the lateral column are a few fibres of the pyramid which have not crossed in the medulla oblongata, and are therefore derived from the cerebral cortex of the same side (uncrossed lateral pyramid fibres, fig. 589, lb). Certain large fibres which lie in the ventral column next to the median fissure in the human subject, also belong to a portion of the same tract which has not undergone decussation (fibres of direct pyramid tract, figs. 588, 589, 2). The direct

Fig. 589.-Diagram showing the course, origin, and termination of the FIBRES OF THE PRINCIPAL TRACTS OF THE WHITE MATTER OF THE SPINAL CoRD. (The numbers in this diagram refer to fibres of the tracts shown with corresponding numbers in 588 .)
"Descending" tracts:-1a, a crossing fibre of the lateral pyramid tract; 1b, a non-crossing fibre of the pyramid tract passing to the lateral colnmn of the same side; $\%$, a fibrs of the direct pyramid tract; 3, a fibre of the ventro-lateral descending tract; 4, a fibre of the prepyramidal tract; \bar{b}, fibres of the comma tract. "Ascending" tracts:-6, a fibre of the dorsomesial tract; 7, fihres of the dorso-lateral tract; 0 , one belonging to the dorsal cerebellar; 10 , a fibre of the ascending ventro-lateral or ventral cerebellar tract. Also, m, motor nerve-fibres; δ, sensory (afferent). nerve-fibres; n.grac., a cell of nucleus gracilis; n.cun., a cell of nuclens cnneatus; nucl. pontib, cells of nucleus of pons. The arrows indicate the direction of the nerve-impulees.
pyramid tract is only found in man and the anthrepoid apes; it varies considerably in extent. It is always most distinct in the cervical region, becoming gradually lost as it is traced down.

The pyramid tracts are composed of "descending" fibres, which have their cells of origin in the cerebral cortex (precentral and paracentral gyri) and end by arborisations in the grey matter at the base of the dorsal horn of the spinal cord. In some mammals (rat, mouse, guinea-pig, sheep, kangaroo, squirrel, etc.) the pyramid tracts are situated in the dorsal columns of the cord, in others, including the monkey, dog, cat, and rabbit, they run wholly in the lateral columns. The pyramid tracts are very small in the lower mammals, and are not found at all in vertebrates below mammals.

Abstract

It has been calculated that there are about 80,000 fibres of the pyramid tract in each half of the human cord. The pyramid tracts are generally regarded as the paths along which volitional impulses are conveycd from the cerebral cortex to the spinal cord. But experiments have shown that they are not the only cortico-spinal paths nor even the most important in many mammals, for the paralysis which results from their section is soon recovered from in most mammals, whereas that resulting from section of the ventral colunin and adjacent part of the lateral column may be marked and permanent in animals, although such section in man may produce no motor paralysis. It appears to be the finer and more delicate movements which are permanently lost when the pyranid tract is affeoted by disease in man.

2. Tract of Loewenthal.- Besides the pyramid tracts there are four other "descending" tracts of fibres in the ventro-lateral column. One of these (the ventro-lateral descending tract or tract of Loewenthat, figs. 588, 589, 3) lies on the side of the ventral median fissure, and extends along the margin of the cord in the "root" zone, even reaching the ventral part of the lateral column. These fibres are continued down, chiefly from the dorsal longi tudinal bundle of the medulla oblongata and pons (bulbo-spinal and pontospinal fibres), partly from other sources which will be afterwards referred te. They end by arborisations in the ventral horn. Similar arborisations pass from the dorsal longitudinal bundle to the nuclei of the moter cranial nerves. This tract is mainly uncrossed.
3. Rubro-spinal tract.-Another "descending" tract in the ventro-lateral column lies just in front of the cressed pyramid tract; this is the prepyramidal or rubro-spinal tract (figs. 588, 589, 4). Its fibres end by arborising in the grey matter of the middle of the crescent; the situation of its cells of origin is the red nucleus of the tegmentum on the opposite side of the mid-brain (p. 472). This tract is also known as Monakor: surdle. Some of its fibres may be derived from cells in the reticular formation of the pons and medulla oblongata.
4. T'ecto-spinal fibres.-Intermingled with the fibres of the rubro-spinal tract (but far fewer in number in man) are fibres derived from the quadrigeminal bodies of the opposite side. These frbres form a part of the tectospinal tract. Another part of this tract (ventral longitudinal bundle) passes
down the ventral column of the cord along with the fibres of the tract of Loewenthal.
5. Olivo-spinal tract.--This is a small triangular group of "descending" fibres traceable from the neighbourhood of the olive in the medulla oblongata, and passing down the cervical cord in the ventral part of the

Fig. 590.-Diagram slowing the origin, coursle, and destination of the spino-cerebellar fibres constiputing tue mracts of Flechitio and of Gawers.
u, cells of Clarke's column in the dorsal horn of the spinal cord, giving origin to fibres which pass into both spino-cerebellar tracts; b, tract of Flechsig, passing above by way of the restiform body to the cerebellar vermis; c, tract of Gowers; d, passage of most of its fibres aloog the superior peduncle to the vermis of the cerehellum: they are seen turning sharply hackwards immediately after passing the level of the place of exit of the 5th nerve (V). Some of the fibres of this tract leave it in the medulla oblongata and join the fibres of the tract of Flechsig which are passing to the cerebellum by its inferior peduncle. One such fibre is ehown in the diagram.
lateral column (fig. 588, 3a); the exact origin and destination of its fibres is unknown. It is also known as the bundle of Helweg.

Ascending tracts of the ventro-lateral column.-1. Tract of Flechsig.This is a well-marked tract, which is, however, only distinct in the cervical and dorsal regions, where it lies external to the crossed pyramid tract. It consists of large fibres derived from the cells of Clarke's column (fig. 588, d) which pass into the lower or posterior part of the cerebellar vermis by the inferior peduncle of the same side (dorsal spino-cerebellar tract; direct cerebellar tract, fig. 584 ; also figs. 588, 589, 9 ; 590, b).
2. Iract of Gowers, ventro-lateral ascending tract.-This is situated ventrally to the tract of Flechsig and the lateral crossed pyramid tract in the lumbar region; while in the thoracic and cervical regions it forms a narrow band of fibres curving round close to the lateral surface of the cord, and extending into the ventral column (figs. 588, 589, 10). Its fibres are partly intermingled with those of the ventro-lateral descending tract. Most of the fibres of the tract of Gowers are connected with the upper or anterior part of the vermis of the cerebellum. They constitute the ventral spino-cerebellar tract, which passes to the cerebellum along with the superior cerebellar peduncle (fig. 590). Both in the cord and medulla oblongata it gives off fibres to join the tract of Flechsig and to pass in this to the cerebellum by the inferior peduncle. According to some authors the tract of Gowers gives off a few fibres to enter the opposite cerebellar hemisphere by the middle peduncle.

Some of the fibres included within the area of Gowers' tract are continued up to the corpora quadrigemina (spino-tectal tract). Others pass into the tegmentum of the crus cerebri, where they can be traced as far as the lower part of the thalamus (spino-thalamic tract).

Most of the fibres of Gowers' tract take origin from the cells of Clarke's column, of the same side of the cord, especially from its lower part. This is the case at least with the cerebellar fibres. But the tectal and thalamic fibres probably arise from cells situated in the middle and dorsal parts of the grey matter, partly on the same but chiefly on the opposite side of the cord.
3. Tract of Lissauer.-Lastly, there is another small tract of fibres which undergoes degeneration above the point of section of the cord. This is the marginal bundle of Lissauer (marked m in fig. 584). It is formed by fine fibres from the posterior roots. Many of these fibres are nonmyelinated. They are said to be derived from the small, darkly staining cells of the spinal ganglia (p. 172).

Other portions of the ventro-lateral columns near the grey matter which are differentiated by the method of Flechsig are probably short tracts uniting adjacent portions of the grey matter of the cord.

Proprio-spinal or endogenous fibres of the ventro-lateral oolumn.Sherrington has shown that in the dog the lateral column in the thoracic
region of the cord contains a certain number of long fibres which take origin in the cervical, thoracic and upper lumbar segments and are traceable down

Fio. 591.-Diagram of sections of the spinal cord of the monkey showing the position of degenerated traots of nerve-fibres after speolito Lasions of the cord itself, or of afferent nerve-roots or of the motor region of the oerbbral coritex. The degenerations are shown by the method of Marchi. The left side of the cord is at the reader's left.
I. Degenerations resulting from extirpation of the motor area of the cortex of the left cerebral hemisphere. In man there, would be some degenerated fibres in the left ventral column also, close to the ventral fissure.
II. Degenerations produced by section of the dorsal longitudinal bundles in the upper part of the medulla ablongata.
111. and 1V. Result of section of dorsal roots of the first, second, and third lumbar nerves on the right side. Section 111. is from the segment of cord between the last thoracic and first lumbar roots; Section IV. from the same cord in the cervical region.
V. to VIII. Degenerations resulting from (right) lateral section of the cord in the upper thoracic region. V. is taken a short distance above the level of section; V1., higher up the cord (cervical region); VII,', a little below the level of section; VIII., lumbar region.
to the lumbo-sacral enlargement. These must serve to convey excito-reflex impulses from the upper to the lower parts of the body. Probably similar fibres arise all along the cord from the cells of the lateral column and pass upwards as well as downwards.

A tract of endogenous fibres has been observed in man close to the ventral median fissure lying amongst the fibres of the direct pyramid tract. This is the ventral sulco-marginal tract of Marie.

The ventro-lateral column contains also many endogenous fibres, both ascending and descending, derived from cells in the grey matter of the cord, which have only a short course, serving to connect adjacent segments.
groups of gells in grey matter of cord.
The nerve-cells which are scattered through the grey matter are in part disposed in definite groups. Thus there are several groups of large multipolar nerve-cells in the ventral horn in the cervical and lumbar enlargements (fig. 584), although in other regions of the cord the number of groups in this situation is reduced to two, a mesial and a lateral. The larger groups in the enlargements correspond with segments of the limb (Van Gehuehten); thus there appear to be groups associated with foot, leg, and thigh, and with hand, arm, and shoulder movements respectively. The groups from which the motor nerves to the shoulder and arm muscles arise, appear in somewhat higher segments of the cervical cord than those belonging to the hand muscles. The same bolds good, mutatis mutandis, for the lumbar cord in relation to the leg and foot. Further, the larger groups show subdivisions which may be related to particular movements, i.e. to particular groups of muscles. In the case of the diaphragm there is a special cell-group or cell-column on each side in the ventral horn of the cervical cord from which the fibres of the phrenic nerve arise, so that in this case a cell-group is set apart for a special muscle.

The axis-cylinder processes of the ventral horn cells mostly pass out into the corresponding ventral nerve-roots (fig. 589, m), but a few send their axons to the ventral column of the opposite side through the white commissure or to the ventral or lateral column of the same side. It is noteworthy that in birds a few cells of the ventral horn send their axons into the dorsal roots. A well-marked group of large nerve-cells, best marked in the thoracic region, lies at the base of the dorsal horn (dorsal mucleus: of Stilling, Clarke's column, fig. 588, d). The cells of Clarke's column send their axis-cylinder processes into the dorsal cerebellar tract (Mott). If this tract be cut experimentally, the large cells of Clarke's column on the same side below the section undergo Nissl degeneration and eventually atrophy, but the degeneration does not affect all these cells unless the tract of Gowers be also severed (Ninian Bruce). There are in addition a few small cells with short axons in Clarke's column which do not give rise to fibres of either of these long tracts.

Another group is seen on the outer side of the grey matter lying in a projection which is sometimes known as the lateral horn (lateral cell-column,

Fig. 592.-Dtagram of sections of human spinal cord at different levels. (Edinger.)
The names refer to the origin of the corresponding nerve-roots. The relative shape and size of the cord and grey matter the relative amounts of grey and white matter, and the size and position of the principal cell-proning ara chnm
intermedio-lateral column, fig. 588, i). This is most distinct in the thoracic region as far up as the second thoracic segment. The axons from its cells for the most part leave the cord along with the ventral roots, and probably furnish the outgoing visceral and

Fig. 593.-From longitodinala section of cord of chick embryo, showing GNTERING DORSAL ROOT-FIBRES AND THE PASSAGE OT COLLATERALS FROM THFM INTO THE GREY MATTER. ATSO THREE CELIS OF THE DORSAL HORN SENDING THELR AXONS INTO THE WHITE MATEER, (Cajal.)
A, entering root-fibres; S , dorsal white column ; O, grey matter; C, D, E, cells of dorsal horn; B, F, G, I, arborisation of collaterals in grey matter. vascular fibres (preganglionic sympathetic fibres of Langley (see p. 153)). Another group (middle cell-column) lies in the middle of the crescent (fig. 584, e). Cells are very numerous in the dorsal horn but are not collected into definite groups. Those of the sub-

Fig. 594.-Arborisation of collaterals from the dorsal rootflbkes aroind cells of the dorsal horn we orey matcer. (Cajal.)
A, fibres of dorsal column derived from dorsal root ; B, collaterals; C, D, nerve-cells in grey matter surrounded by the arborisations of the collaterals ; E, an arborisation shown separately.
stantia gelatinosa of Rolando send their nerve fibre processes partly into the lateral, partly into the dorsal columns.

The cells which send their axons into the adjacent parts of the white columns but not into any special tract are sometimes termed the "cells of the white colmmns."

CONNEXION OF THE NERVE-ROOTS WITH THE SPINAL GORD.
The ventral (anterior) roots leave the ventral horn in a number of bundles. Most of their fibres are directly continued from the nerve-cells in the ventral and lateral horns ; according to Golgi in part also from cells in the dorsal

Fig. 595. -Collaterals from the dorsal column fibres passing into the grey matter: new-born mouse. (Cajal.) Golgi method.
$A_{,}$a bunch of collaterals ending amongst the cells of the middle cell-column ; B , ending of collaterals, a, in the ventral horn: a few side branches of these collaterals, b, are passing to the middle cell-column; \mathbf{C}, collaterals to dorsal horn; \boldsymbol{c}, others to substance of Rolando.
horn. The cells, from which the ventral root-fibres arise, are surrounded by an interlacement of ramified nerve endings, derived from various sources, especially from axons of cells of the dorsal horn, from collaterals of the dorsal root-fibres (see below), and from those of the fibres of the adjacent white columns.

Whether the pyramid fibres send any branches to end amongst the ventral horn-cells is not certainly known ; but Sherrington found a secondary degenera-
tion of these cells in a climpanzee from which he had removed the motor cortex cerebri of the opposite side ; an observation which suggests a more direct connexion than the intermediation of cells of the dorsal horn, to which most of the branches of the pyramid tract fibres are directed (see also p. 446).

The fibres of the dorsal (posterior) roots originate in the cells of the root ganglia and enter the dorso-lateral column (see diagram, fig. 589), but the smallest fibres pass to the marginal bundle of Lissauer, and some go directly into the dorsal horn. On entering the spinal cord the fibres bifurcate (fig. 593), one branch passing upwards, the other downwards. Both from the main fibre and from its branches collateral fibres pass at frequent intervals into the grey matter, and end in arborisations of fibrils which envelop the nerve-cells both of the dorsal (fig. 594) and of the ventral horn (fig. 595), and, in the thoracic region, the cells of Clarke's column and those of the intermedio-lateral column. Many of the main fibres also ultimately end in a similar manner in the grey matter, some after a short course only, others after a long course. But a considerable number of fibres pass upwards in the dorso-lateral and dorso-medial columns (in the latter especially those of the lower spinal nerves), until they arrive at the medulla oblongata, where they end in terminal arhorisations around the cells of the nucleus gracilis and nucleus cuneatus (fig. 589, 6, 7).

LESSON XLI.

CENTRAL NERVOUS SYSTEM.

The Medulla Oblongata.

Sections of the medulla oblongata (made in the same way as with the spinal cord) : (α) at the level of the decussation of the pyramids, (b) just above the decussation,

Fig. 596. -Section across the lower part of the meddlla oblongata in the region of the decussation of the ryramids. Magnified 6t diameters.
(c) opposite the middle of the olivary body, and (d) through the uppermost part of the olivary body, or just above it.

Divisions of the brain.-The brain consists of three great morphological divisions associated with the three primary cerebral vesicles of the embryo; they are termed respectively the hind-brain, mid-brain, and fore brain.

The hind-brain includes the parts around the fourth ventricle, viz. the medulla oblongata (myelencephalon) and the pons; consisting of a stem, and of peduncles uniting it with the cerehellum (metencephalon) : the medulla
oblongata and pons-stem form a continuation of the spinal cord termed the "spinal bulb." The mid-brain includes the region of the corpora quadrigemina (mesencephalon). The fore-brain comprises the parts immediately above that region and centering around the third ventricle ; its lower portion includes the thalami (thalamencephalon), its upper portion the corpora striata and cerebral hemispheres (telencephalon).

Fig. 597.-_Section taken immediatelit above the decussation of the prramids. Magnified 6it diameters.

general structure of medulla oblongata.

The structure of the medulla oblongata can best be made out by the study of a series of sections taken from below upwards, and by tracing in these the changes which occur in the constituent parts of the spinal cord, taking note at the same time of any parts which may be superadded.

A section through the region of the decussation of the pyramids (fig. 596) bas much the same form as a section through the upper part of the spinal cord; most of the structures of the cord can be recognised in it. A considerable alteration of the grey matter is, however, produced by the passage of the large bundles of the crossed pyramid tract from the lateral column of the spinal cord on each side tbrough the base of the ventral horn and across the ventral median fissure to the onoosite vgntrol column of the
medulla oblongata, where, together with the fibres of the direct pyramid tract, which already lies in the ventral column of the cord, they constitute the prominent mass of white fibres which is seen on the ventral aspect of the medulla oblongata, on each side of the middle line, known as the pyramid, from which the name of the tract is derived. By this passage of fibres through the grey matter the tip of the ventral horn is cut off from the rest and is pushed to the side ; part of it appears as an isolated.mass of grey matter, known as the lateral nucleus.

In sections a little higher, viz. just above the decussation of the pyramids, a wavy band of grey matter makes its appearance on the lateral aspect of each pyramid, corresponding with a prominence on the surface which is known as the olive. The wavy or plicated grey matter is termed the olivary nucleus (figs. 597, 599, 600).

The pyramids of the medulla oblongata are formed of fibres which originate in the frontal region of the cerebral cortex, and can be traced from the axons of the large cells in the grey matter of that cortex. The fibres course through the white matter of the hemisphere, through the middle third or more of the internal capsule and crusta, and through the pyramid bundles of the pons into these structures (pyramids) of the medulla oblongata. As we have just seen, they pass at the lower limit of the bulb chiefly to the opposite or crossed lateral column of the cord, but partly to the lateral column of the same side, and, in man and anthropoid apes, partly to the mesial part of the ventral white column. They collectively constitute the tract of the pyramid, which is smaller

Fig. 598.-Diagram to show the COURSE OF THE DORSAL ROOT. fibres after entering the cord.
u, afferent fibres before entering ganglion; g.8., spinal ganglion-cells; g.V., gaaglion of fifth nerve ; c, descending branuhes (forming comma traot) giving off collaterals to grey matter. The ascending branches are shown partly ending in grey matter of dorsal horn, partly in the nucleus gracilis ($n . g$.) and nucléus cuneatus (n.c.) of the medulla oblongata; s.Ro., substantia Rolandi; f, fibres of fillet arising in nuclei of medulla oblongata and crossing the raphe to the opposite side; e, efferent nerve-fibres from motor nerve cells. in the medulla oblongata than in the pons, since many of its fibres leave the main tract whilst within the pons and pass across the middle line towards
the grey matter which lies in the dorso-lateral part of the pons and medulla oblongata, especially in that portion of the grey matter with which the sensory fibres of the cranial nerves are connected. Sometimes such a bundle of fibres,' after passing towards the sensory nuclei in the lateral part of the medulla oblongata, does not end in them, but again comes ventralwards and joins the main or central part of the pyramid tract near its decussation (bundle of Pick).

Fig. 599.-Section across the medulla oblongata at the folnt of the calamos scriptorius of the fourth ventricle. Magnified 6 $6 \frac{1}{2}$ diameters.

It is not a little remarkable that although the fibres of the tract of the pyramid give off numerous collaterals to the grey natter of the cerebral cortex, the basal ganglia of the cerebrum, the substantia nigra of the mid-brain, the nuclei of the pons and the base of the dorsal horn of the spinal cord, no collaterals are seen to leave them in their course through the pyramids of the medulla ohlongata, except a very few to the olivary nuclei. Various observers have professed to describe collaterals and terminations of the pramid fibres as passing to the motor nuelei of the cranial nerves as well as to the motor cells in the ventral horn of the spinal cord, but statements to this effect must be received with caution, for although current in most text-books, they have not been substantiated by accurate observations. It is certain that most if not all of the fibres of the pyramid tract end not in the rentral but in the dorsal part of the spinal grey matter. Sherrington has, however, found degenctative chinges in the cells of the contralateral ventral horn to follow, eventually, a lesion of the precentral convolution on one side of the brain in a chimpauzee. This observation suggests a more direct connexion in this
animal between the pyramid fibres and the motor cells in the cord than is usually found. In any case the occurrence of degeneration in the cells is difficult of explanation.

In consequence of the increased development of the dorsal columns of white matter, a change also occurs in the grey matter of the dorsal horns, which in the medulla oblongata are pushed towards the side, the V which they form with one another being thus opened out; at the same time the tip

Fig. 600.-Section across the medulla oblongata, at about the midde of the olitvary body. Magnified $6 \frac{1}{2}$ diameters.
of each horn becomes enlarged and causes a prominence upon the surface of the medulla oblongata, which is known as the tubercle of Rolando. Below, this is continuous with the substantia Rolandi of the apex of the dorsal horn of the cord. Above, its grey matter is prolonged into the sensory nucleus of the fifth nerve. On its outer side and partly embracing it is a bundle of fibres seen in every section of the medulla oblongata, and traceable up to the pons Varolii. This is the inferior or descending root of the fifth nerve-formerly known as the "ascending" root. Its fibres extend down as far as the upper cervical region of the spinal cord. Grey matter also soon becomes formed within the upward prolongations of the gracile funiculus (dorso-
mesial column), and of the cuncate funiculus (dorso-lateral column), appearing at first as thin strands in the middle of the columns (fig. 596), but rapidly increasing in thickness (fig, 597) so as eventually to occupy almost the whole of them, forming the nucleus gracilis and the nucleus cuneatus respectively.

It is in these nuclei that the fibres of Goll's and Burdach's tracts, which are continued up from the dorsal columns of the spinal cord, find their ultimate ending in complicated arborisations amongst the cells of the nuclei. These nuclei do not, however, receive all the ascending branches of the dorsal root-fibres, for a considerable number of these have already disappeared by entering the grey matter of the cord, in which they also end by arborisation amongst the cells. The cells of the nucleus gracilis and nucleus cuneatus are of small or moderate size with long dendrons. Their axons pass as internal arcuate fibres through the reticular formation into the inter-olivary layer, cross the median raphe dorsal to the pyramids (fig. 598, f), and then turn upwards, constituting the tract of the fillet. This tract, which in its lowest part is thus formed by the nerve-iibres which helong to the second relay (second neurones) of gne of the sensory spinal paths, is reinforced in the higher regions of the medulla oblongata and in the pons by fibres derived from cells of the sensory nuclei of the cranial nerves. The majority of its fibres end in the lateral nucleus of the thalamus, but some pass to both the anterior and posterior corpora quadrigemina.

According to Van Gehuchten the fibres of the fillet which are derived from the nucleus cuneatus lie dorsally to those which are derived from the nucleus gracilis.

The continuation of the central canal of the spinal cord is still seen in the lower medulla oblongata (figs. 596, 597), but it comes nearer to the posterior surface and eventually opens out at the point of the calamus scriptorius of the fourth ventricle (fig. 599). The grey matter which surrounds it contains two well-marked groups of nerve-cells; the ventral of these is the lower part of the nucleus of the hypoglossal or twelfth nerve, the dorsal, with smaller cells, that of the vago-accessory or tenth and eleventh. But most of the grey matter of the crescent becomes broken up, by the passage of bundles of nerve-fibres through it, into a well-marked reticular formation. And instead of the comparatively narrow isthmus which joins the two halves of the spinal cord, a broad raphe now makes its appearance; this is formed of fibres coursing obliquely and ventro-dorsally, together with some grey matter containing nerve-cells.

In the section at about the middle of the olive (fig. 600), it will be seen that a marked cbange has been produced in the form of the medulla oblongata and the arrangement of its grey matter, by the opening out of the central canal into the fourth ventricle. This causes the grey matter, which lower down surrounded the central canal, to be spread out at the floor of the fourth ventricle, and the collections of nerve-cells from which the hypoglossal and vagus nerves respectively arise, now, therefore, lie in a
corresponding situation near the ventricular floor. At this level the outer small-celled group which corresponds with the nucleus of the spinal accessory in the lower part of the bulb has become the dorsal nucleus of the vagus or tenth nerve, and yet higher up the dorsal nucleus of. the glosso-pharyngeal or ninth nerve. The nerve-bundles of the roots of these nerves can be seen in some of the sections (fig. 600) coursing through the thickness of the bulb and emerging, those of the hypoglossal just outside the pyramids, those of the vagus at the side of the medulla oblongata.

The dorsal part of the section is chiefly occupied by the grey matter of the floor of the fourth ventricle, and by fibres which are passing obliquely upwards and outwards towards the cerebellum, forming its inferior peduncle (restiform body). The grey matter forming the nucleus of the funiculus gracilis and of the funiculus cuneatus has now almost disappeared, but in place of these nuclei and near the outer part of the floor of the fourth ventricle are seen some masses of grey matter with a number of bundles of nerve-fihres amongst them. The grey matter is the lower part of the principal nucleus of the vestibular nerve (see p. 457), and the white bundles are formed of descending branches of the fibres of that nerve. Below these structures is the descending root of the fifth, with its nucleus mesial to it.

The ventral part of the section is occupied by the pyramid, and dorsal to this by a reticular formation (reticularis alba), composed of longitudinally coursing bundles of fibres belonging to the tract of the fillet and to the dorsal and ventral longitudinal bundles, interlaced with internal arcuate fibres that are passing across the raphe from the nuclei of the contralateral dorsal columns into the fillet, and from the opposite olive into the restiform body.

The middle portion of the section consists for the most part of a similar reticular formation, but with more grey matter and nerve-cells (reticularis grisea). This is a development of the formatio reticularis of the cervical cord, and the longitudinally coursing white bundles in it are probably formed of fibres derived from cells in the upper part of the cord. The nerve-cells of the grey reticular formation in the medulla oblongata give origin to fibres which bifurcate and pass both upwards to the same formation in the pons, and downwards towards the upper part of the cord, probably serving to associate these parts. Some also are said to give origin to arcuate fibres, which either traverse the raphe, or remain on the same side and eventually enter the cerebellum through the inferior peduncle (Van Gehuchten).

Ventro-laterally is 'the olive, within which is developed a peculiar wavy lamina of grey matter containing a large number of nerve-cells; this is the dentate nucleus of the olive. The lamina is incomplete at its mesial aspect (hilus olivce), and here a large number of fibres issue, and, passing through the raphe, course as internal arcuate fibres to the opposite restiform body, and thus to the cerebellum. Some, however, turn sharply round and course below the dentate nucleus, forming an investment and capsule to it (siliqua
olivese, passing towards the restiform body of the same side: the main connexion of the olivary nucleus is, however, with the cerebellar hemisphere of the opposite side. The olives receive numerous collaterals'from the neighbouring white columns, including a few from the pyramids. Dorsal, or dorso-lateral to the olive, is the continuation upwards of the ventral spino-cerebellar bundle (tract of Gowers) of the spinal cord ; the continuation of the dorsal spinocerebellar bundle (tract of Flechsig), just above it, is now passing into the

Fig. 601.-Diagrams illustrating the origin and relations of the ROOT-FIBRES OF THE CRANIAL NERVES.
$A_{;}$efferent fibres only : profile view.
\mathbf{B}_{1} shows on the left the motor nuclei and efferent fibres (except those of the fourth nerve), and on the right side the afferent fibres: view trom the dorsal aspeet. The parts are supposed to be transparent.
restiform body. Lastly a tract of fibres which originate within the thalamus passes over the lateral surface of the nucleus olive and ends within its grey matter (thalamo-olivary tract, central tegmental tract of Bechterew).

The cells of the dentate nucleus have numerous dendrons; their axons all pass towards the hilus, whence they emerge, and, for the most part, cross the raphe, pierce the opposite olivary nucleus, and pass, as already mentioned, into the restiform body (olivo-cerebellar tract).

Nerves arising from the medulla oblongata.--The twelfth, eleventh, tenth, ninth, and eighth nerves all take origin in the medulla oblongata, and
their fibres may be seen emerging on each side, those of the twelfth ventrally between the pyramid and olive, and those of the other three nerves in succession from below up at the side of the medulla oblongata between the olive and restiform body.

The twelfth or hypoglossal nerve arises from a nucleus of large cells, similar to those of the ventral horn of the cord. This nucleus is situated in the lower part of the bulb ventro-lateral to the central canal (fig. 597); in the upper part near the floor of the fourth ventricle close to the middle. line (figs. 599, 600). None of the fibres cross to the opposite side; according to Van Gehuchten, this is true of all the cranial nerves, except a few fibres of the third nerve and the whole of the fourth nerve. The hypoglossal nucleus extends throughout the lower two-thirds of the bulb (fig. 601, $n X I I$). It receives many collaterals from adjacent sensory tracts in the reticular formation and from the descending sensory fibres of the fifth, ninth, and tenth nerves, as well as from the dorsal longitudinal bundle. These form within the nucleus a plexus of fine fibrils which is highly characteristic. A similar plexus is seen in the oculo-motor nucleus.

Mesial to the hypoglossal nucleus, in the open part of the medulla oblongata, is the nucleus of the fasciculus teres, a column of moderate-sized cells which extends towards the lower margin of the pons and appears to receive fibres from the cerebellum (Edinger).

The eleventh or spinal accessory nerve begins to take origin from cells in the lateral part of the grey matter of the spinal cord as low down as the fifth cervical nerve. Its fibres from the cord (spinal fibres) are those to the (voluntary) sternomastoid and trapezius muscles. They pass from the cells of origin in the lateral part of the ventral horn (motor nucleus) at first dorsalwards ; they then take a sharp bend outwards through the lateral column to emerge at the side of the cord and medulla oblongata. The fibres which join the vagus (bulbar fibres) take origin in a nucleus of relatively small cells lying dorso-laterally to the central canal of the medulla oblongata and behind the hypoglossal nucleus. This nucleus is continnous above with the corresponding nucleus of the vagus, and with it forms the dorsal vago-accessory nucleus (figs. 597, 599 to 601). Below, it extends nearly as far as the first cervical nerve ; its upper part (vagal part) is in the floor of the fourth ventricle lateral to the hypoglossal nucleus, and reaches nearly as far as the lower border of the pons. Of the whole nuclens about the lower two thirds, i.e. as far as the lower end of the calamus scriptorius, give origin to fibres of the accessory. These fibres, as already stated, join the vagus, to which they supply certain motor fibres, including those of the thyro-arytenoid muscle (Van Gehuchten). The twelfth and eleventh nerves are entirely efferent.

The tenth or vagus nerve (pneumogastric) contains both motor (efferent) and sensory (afferent) fibres. The efferent fibres arise (1) from the upper part of the dorsal vago-accessory nucleus just described, (2) from a nucleus
of grey matter containing large cells situated in the reticular formation (figs. 600, 602, n.amb.). This nucleus begins near the lower limit of the bulb and extends nearly to the facial nucleus, which it resembles in general position; it is known as the nucleus ambiguus or ventral nucleus of the tenth nerve. The axons of its cells are directed at first dorsalwards and inwards and then turn sharply round in the lateral direction to join the rest of the issuing fibres of the nerve, coursing in the same manner as the spinal fibres of the accessory ; indeed, this nucleus is continuous below with the columan of cells from which those fibres take origin.
'The sensory fibres of the vagus take origin in the ganglion of the root and

Fig. 602.-Plan of the origin of the twelfth and TENTH NERVES.
$p y r$, pyramid; n. XII, ancleus of liypoglossal ; III., fibre of hypoglossal; d,u, N.Ne, dorsal mucleus of vagus and accessory; $n . a m b .$, nucleus ambiguus ; $f . s .$, tasciculus solitarius (descentl. ing root of vagus and plossophar'yngeal) ; f.s.rn., its nucleus ; $I_{.}$., emerging motor fibres of vagus $; g$, cell in ganglion of vagus giving origin to a sensory flbre; d, V, descending root of fifth; r, corpus restiforme. the ganylion of the trunk (jugular and plexiform ganglia), from unipolar cells like those of the spinal ganglia (fig. 602,g). They enter the medulla oblongata, and then bifurcate, one branch, a short (ascending) one, passing at once into an upper sensory nucleus, the other, a long one, descending. The upper sensory nucleus (principal nucleus), in which the short branches from the sensory root end, lies in grey matter near the floor of the ventricle, and is continuous with the grey matter which accompanies the fasciculus solitarius (figs. 599, $600,602)$. This is formed by the descending fibres, with similar fibres of the ninth and those of the pars intermedia of the seventh, and is to be regarded as the descending root of facial; vagus, and glossopharyn. geal. It is traceable to the lower limit of the medulla oblongata; the fibres and in a nucleus of grey matter lying along the mesial border of the root (descending nucleus of facial, vagus, and glossopharyngeal). This nucleus approaches the middle line as it descends, and in some animals terminates by joining its fellow of the opposite side over the central canal to form the commissural nucleus of Cajal.

The ninth or glossopharyngeal nerve also contains both efferent and afferent fibres. The former have their cells of origin in a special nueleus (motor nucleus of glossopharyngeal) which occupies a position similar to
that of the nucleus ambiguus, and lying near the anterior end of that nucleus, just below the nucleus of the facial. The afferent fibres of the

Fig. 603.-Section of medulla oblongata at the level of the eififth nerve. Magnified about 6 diameters.
n.v., part of vestibular nucleus; n. $I X$., parts of nucleus of ninth nerve; D, nucleus of Deiters; u, descending fibres of vestibular nerve; $f . s$. , fasciculus solitarius; n.. $\%$, snaall nucleus in restiform ; r, restiform body; $I X$. fibres of ninth nerve ; $n . a$, nucleus ambiguus: n.V., sensory nucleus of fifth nerve; V.d., descending root of fifth; n.c., part of dorsal cochlear nuclens; VIII.c., cochlear division of eighth nerve; v.n.c., ventral cochlear nucleus; n.l., lateral nucleus ; o, olivary nucleus; n.ar., nucleus of arciform fibres; py, pyramid; n.g., grey matter in floor of fourth ventricle; n.XII., nucleus of twelfth ; VIII', fibres of coehlear nerve entering raphe; p.l., dorsal longitudinal bundle; ra., raphe ; a.l., ventral longitudinal bundle ; a.o., accessory olivary nucleus; $h .0$., fibres issuing from the hilus of the olive; f, fibres of fillet.
nerve arise in the jugular or upper and in the petrosal ganylia, from unipolar cells like those of the spinal ganglia. Their central axons enter the medulla oblongata, and, like other sensory fibres, divide into two branches, ascending
and descending. The course of these is like those of the vagus, the descending passing down in the fasciculus solitarius (extending to about one-third of its length, according to A. Bruce), and ending by arborising in the grey matter accompanying it (descending root and its nucleus), while the ascending branches pass nearly borizontally backwards and inwards to a nucleus (principal nucleus) beneath the inferior fovea of the fourth ventricle; this is continuous with the upper end of the nucleus of the descending root. The arrangement of the roots is almost exactly a counterpart of that of the vagus shown in the dia-

Fig. 604.-Transverge section of the upper part of the
medulla oblongata. Four times the natural size.
Fig. 604.--Transverse section of the upper part of the
medulla oblongata. Four times the natural size. (Schwalbe.)
$p y$, pyramid; 0 , olivary nucleus; F, descending root of the fifth nerve; VIII, root of the auditory nerve, formed of two parts, π, cochlear, and b, vestibular, which enclose the restiform hody, $6 . r . ;$ ' n. VTIL/ 2 , principal nucleus of the vestibular division; n.VIIIac, ventral or accessory nucleus of the cochlear division; g, dorso-lateral nucleus of the cochlear division; n.f.f., nucleus of the funiculus teres; n.IXII, nucleus of the hypoglossal ; r, raphe ; $\vec{j} \cdot r \cdot$, reticular formation.
號 gram given in fig. 602.

According to Edinger the sensory nuclei of these nerves receive fibres from the cerebellum ; constituting a cerebellobulbar trast, which is much better marked in lower vertebrates than in man and mammals.

A section taken through the uppermost part of the olivary zrominence will still show very much the same form and structural arrangements as that just deseribed (fig. 603). The nucleus of the hypoglossal (figs. 603, $604, u . T 11$) is still visible in the grey matter of the floor of the ventricle near the middle line, but the nerve which is now seen connected with the lateral part is the eighth or auditory (VIII), the bundles of which, as they enter the bulb, embrace the inferior peduncle of the cerebellum (corpus restifirme, c.r.), which is now passing into that organ. The origin of the eighth nerve is thus subdivided into two principal parts, known respectively as the dorsal or cochlear and the ventral or vestibular divisions (fig. 604).

The eighth nerve.--The fibres of the cochlear division take origin in the ganglion of the cochlea; those of the vestibular division in the gamplion of Scarpa. These ganglia, which are situated at the periphery, the former within, the latter near the internal ear, are composed of bipolar cells, of
which the peripheral axons end by ramifying amongst the cells of the sensory epithelium, and the central axons form the cochlear and the vestibular divisions of the auditory nerve, and pass into the medulla oblongata in the manner here described.

The fibres of the dorsal or cochlear division (cochlear nerve) bifurcate as they enter the medulla oblongata. Each fibre divides into a thick and a thin branch. The thicker branches pass partly to a mass of ganglion-cells which is wedged in between the two roots and the restiform body, and is known as the ventral or accessory auditory nucleus (figs. 604, 605, n.acc.), applying themselves with a peculiar form of terminal arborisation to the

Fig. 605. -Plan of the course and connexions of the fibres forming the COCHLEAR ROOT OF THE AUDITORY NERVE.
r, restiform body ; \boldsymbol{V}, descending root of the fifth nerve; tub.ac., tuberculum acusticum ; n.acc., necessory nucleus; s.o., superior olive; n.tr., nucleus of trapezium ; n.V I., nucleus of sixth nerve; VI., issuing root-fibre of sixth nerve. The "acoustic stria" are seen at the dorsal part of the section.
cells of this nucleus ; partly over the restiform body to terminate in a prominent mass of grey matter which overlies that body, and also extends to the lateral part of the floor of the fourth ventricle at its widest part (dorsolateral nucleus, tuberculum acusticum). The cells of the tubercle have a peculiar spindle shape and are set vertically to the surface. They begin to appear in the root itself, lying amongst the fibres of the nerve. Here they are sometimes spoken of as forming the "ganglion of the root." The thinner branches of the bifurcated cochlear fibres pass downwards for a certain distance and break up into a plexus of fine fibrils.

These two nuclei, viz., the accessory nucleus and the acoustic tubercle, are the nuclei of ending of the cochlear fibres. From their nerve cells new fibres arise which continue the auditory path centrally (see fig. 605). Those from the accossory nucleus enter the trapezium -which consists of transverse fibres running behind the pyramid bundles of the pons Varolii-and pass in
it partly to the superier elive and trapezoid nucleus of the same side of the pens, but mestly to the corresponding structures of the opposite side. Some end in those nuclei, but others merely traverse them, giving off numerous cellaterals to them and to the superior olives and other nuclei near by (see pons), and then turn upwards in the lateral part of the tract of the fillet to pass ultimately towards the posterior cerpora quadrigemina; in tending towards these structures they form at the side of the mid-brain the lateral fillet, or fllet of Reil, which is there conspicuous. Some of the fibres from the cells of the accessery nucleus do not pass directly to the trapezium, but

Fig. 606.-Plan of the course and connexions of the fibres forming the vestibular root of the additory nerve.
r, restiform body; $l{ }^{\gamma}$, descending root of fifth nerve ; p., cells of principal nucleus of vestikular root; d, fibres of descending vestibular roat; n.d, a eell of the descending vestibular nuoleus; D, cells of nucleus of Deiters; B, cells of nucleus of Bechterew; n.t., cells of nucleus tectí (fastigii) of the cerebellum ; p.l.b., fibres of the dorsal longitudinal bundle. No attempt has been made in this diagram to represent the actual positions of the several nuclei. Thus a large part of Deiters' nucleus lies dorsal to and in the immediate vicinity of the restiform body.
first curve round the restiform body (Held) ; these form the most dorsally situated fibres of the trapezium. The fibres which arise in the acoustic tubercle pass fer the most part over the floor of the fourth ventricle, where they are seen superficially as the medullary or acoustic strice (fig. 605), and entering the raphe, traverse it in a dorso-ventral direction; they then jein the others from the accessory nuclens in their course to the superier olive and lateral fillet of which they constitute the deeper layer. A few fibres are directed into the fillet of the same side as their cells of orisin.

Edinger states that, at least in the dog, all the fibres of the trapezium end in its nucleus or in the superior olivary nucleus, the central acoustic path being wholly continued, so far as the trapezium fibres are concerned, by fresh neurones, the cell-bedies of which lie in those nuclei, and the axons
of which pass into the lateral fillet. On the other hand, from the cells in the tuberculum acusticum, the axons are said to be continucd upwards in the opposite lateral fillet without the intervention of any corresponding nuclei. The lateral fillets pass above into the posterior corpora quadrigemina.

The accessory nuclous also receives fibres through the trapezium, which end by ramifying amongst its cells. These are perhaps derived from the accessory nucleus of the opposite side. Both sets of fibres (from the accessory nucleus and tuberculum) give off collaterals near their origin, which terminate within these nuclei.

The ventral or vestibular division (vestibular nerve), which enters a little in front of (above) the cochlear division, passes between the restiform body and the descending root of the fifth (fig. 606), to enter a mass of grey matter containing for the most part cells of small size, which is termed the principal or dorsal nucleus of the vestibular division. Here each of its fibres bifurcates with a Y-shaped division into an ascending and descending branch (fig. 606). The descending branches are collected into small bundles (descending vestibular root) which run downwards towards the lower part of the medulla oblongata, and gradually end by arborising around cells in the adjacent grey matter (descending vestibular nuoleus), which is continued down from the principal nucleus. The ascending branches pass upwards on the inner side of the restiform body towards the nucleus tecti of the cerebellum. In their course they give off numerous collaterals which arborise round the large cells of two nuclei which occur in this part of the medulla oblongata and pons near the outer part of the floor of the fourth ventricle. These two nuclei are termed respectively the nucleus of Deiters and the nucleus of Bechterew (fig. 606).

Van Gehuchten states that the nucleus of Bechterew alone receives fibres from the ascending branches and that all the other nuclei (dorsal, descending, and nucleus of Deiters) are furnished with fibres from the descending branches.

The nucleus of Deiters is especially characterised by the large size of its cells and hy the manner in which they are enveloped as by a basket work by the ramifications of the collaterals in question. From these cells fibres arise which pass to the dorsal (posterior) longitudinal bundles of both sides: in these the fibres bifurcate (Cajal), one branch passing upwards to the oculomotor nucleus and giving off collaterals to the nucleus of the sixth nerve, and the other downwards, eventually reaching the ventral column of the spinal cord (ventrolateral descending tract), and terminating by arborisations amongst the cells of the ventral horn (see p. 434). By means of the collateral fibres which supply the sixth and oculomotor nuclei it is probable that the conjugate movements of the two eyes are brought about, and by the fibres to the spinal cord the associated movements of the head and trunk. Fibres have also been described as passing from Deiters' nucleus to the nucleus tecti of the cerebellum. Owing to its connexion with the semicircular canals, the cerebellum, the oculomotor nuclei, and the nuclei in the ventral horn of the
spinal cord, this nucleus must exercise important functions in connexion with co-ordination of head and eye movements and equilibration in general.

The fibres which originate in the nucleus of Bechtereur pass into the reticular formation and become longitudinal, but their destination is not certainly known. Some are said to pass into the ventral column of the cord.

The reticular formation still occupies the greater part of each lateral half of the bulb between the grey matter at the floor of the fourth ventricle and the pyramids, and a small portion of the olivary nucleus may still be seen. The descending root of the fifth nerve with its adjacent grey matter is conspicuous.

The restiform body is formed (1) of the fibres of the dorsal spino-cerebellar tract of the same side, which are derived below from cells. of Clarke's column, and pass above into the middle lobe of the cerebellum, (2) of fibres from the opposite olivary nucleus, and (3) of fibres from the olivary nucleus of the same side. The olivary fibres pass mainly to the cerebellar hemisphere. According to some authorities the restiform body also contains fibres derived from the nucleus gracilis and nucleus cuneatus of the opposite side, as well as some from a nucleus which lies just outside the main mass of grey matter of the funiculus cuneatus, and is known as the outer cuneate nucleus.

Fourth ventricle.-The floor is covered by a layer of ciliated epitheliumcells, continuous below with those lining the central canal, and above, through the aqueduct, with the epithelium of the third and lateral ventricles. The epithelium rests upon, and its cells assist in forming, a layer of neuroglial tissue known as the ependyma of the ventricle. The fourth ventricle is roofed over by a layer of pia mater, with projecting choroid plexuses; the under surface of these is covered by a thin epithelial layer continuous at each side with the ciliated epithelium of the floor. The roof becomes somewhat thickened as it is continued into the ependymal layer of the floor of the ventricle; this thickened part (teenia or ligula, figs. 599,600) is often left attached when the thin epithelial roof is removed along with the pia mater which covers it.

LESSONS XLII. AND XLIII.

CENTRAL NERVOUS SYSTEM.

The Pons Varolii, Mesencephalon, and Thalamencephalon.

1. Sections through the lower, middle, and upper parts of the pons.
2. Sections across the region of the corpora quadrigemina, one at the level of the inferior, the other at the level of the superior, pair.
3. A section across the posterior part of the third ventricle passing through the thalami.

In all the above sections sketch under a low power the general outlines of the grey and white matter, inserting the positions of the chief groups of nerve-cells.
[The tissue is hardened and the sections are prepared, stained, and mounted in the same way as those of the spinal cord and medulla oblongata.]

GENERAL STRUCTUPE OF THE PONS VAROLII,

Sections through the lower part of the pons (fig. 607) show much the same arrangement of grey and white matter as that met with at the upper part of the medulla oblongata, but the general appearance of the sections is much modified by the presence of a large number of transversely coursing bundles of nerve-fibres, most if not all of which are passing to the hemispheres of the cerebellum (fibres of middle peduncle of cerebellum). Some of the most anterior of these peduncular fibres often form a detached bundle which is known as the tcenia pontis. In the interstices of the transverse bundles is a considerable amount of grey matter (nuclei pontis) from the cells of which the fibres of the middle peduncle of the opposite side are derived. Amongst the cells of the nuclei pontis many collaterals of the pyramid tracts end, and the cortico-pontine fibres (see below) also terminate here; in this way is formed a connexion between the cerebral hemisphere of the one side and the cerebellar hemisphere of the opposite side. The continuation of the pyramids of the medulla oblongata in the pons takes the form of a number of separate bundles (fig. 607, py.) which run between the transverse bundles. These bundles are collectively much more bulky than the pyramids of the medulla oblongata, for, in addition to fibres of the pyramid tract proper (cortico-spinal), derived from the motor area of the cortex, they are largely composed (especially the dorso-lateral bundles) of other fibres (cortico-pontine) connecting the cortex with this part of the hind-brain. The pyramid bundles are separated from the reticular formation by deeper transverse fibres, which belong to a different system from those of the middle peduncle. They form what has already been referced to as the trapezium
(figs. 605, 607); a collection of fihres which forms part of the central auditory path; some appear to be commissural between the auditory nuclei of the two sides. The fibres of the trapezium traverse a collection of nerve-cells lying ventral to the superior olivary nucleus, and known as the nucleus of the trapezium (fig. 605, n.tr.).

This nucleus is characterised by the peculiar chalice-like synapses which the

Fig. 607.-Trangyerse section throveh the lowermost part of the rons. From a photograph. Magnified 4 diameters.
v. $1 V^{\prime}$., fourth ventricle; c, white matter of cerebellar hemisphere; c.d., corpus dentatum; f., floceulus; c.r., corpus restiforme; \boldsymbol{R}, bundle of Roller, counposed of the descending branches of the vestibular nerve ; D, nueleus of Deiters; VIII., issuing root of auditory nerve ; VIII, d., principal or dorsal nucleus of the vestibular nerve; VIIX. v, nucleus of cochlear nerve; $t r$., trapezimm; n.tr., its nucleus; f, fillet; p.l.b., dorsal longitudinal bundle; f.r., formatio reticularis; $n, n^{\prime}, n^{\prime \prime}$, various nuclei within it; V.a., descending root of fifth nerve; s.g., substantia gelatinosa; s.o., superior olive; VII., issuiner root of facial nerve; n. I'Tl., its nucleus; V'., root-luudles of sixth nerve; py., pyramid bundles; n.p., nuclei pontis.
entering axons of the larger acoustic fibres form with the cell-bodies (Held). According to Cajal these large fibres are continued directly from the root-fibres of the cochlear nerve, and are not derived from the cells of its accessory nucleus.

The olivary nucleus is no longer seen, but there are one or two small collections of grey matter, more conspicuous in some animals than in man, which lie in the ventral part of the reticular formation, known as the superior olivary nucleus (o.s.), the preolivary uucleus, and the semilunar nucleus (Cajal). All thesc, as well as the nuclous of the traperium itself, are connected with the fibres of the trapezium which form the central
auditory path; these fibres either ending in the nuclei in question or giving off to them numerous collaterals; whilst from the cells of the nuclei axons pass into the trapezium or into the adjacent lateral part of the fillet. On the other hand, the superior olive is said to receive some fibres from the posterior colliculi of the corpora quadrigemina. The nucleus of Deiters, which begins to appear in the upper part of the medulla oblongata, where it has been already studied (p. 457), extends into the pons Varolii ; where it lies near the floor of the fourth ventricle, a little mesial to the restiform body (D, fig. 607). The nerve-fibres connected with its cells pass towards the middle line and enter the dorsal longitudinal bundle. Here, as already stated, they divide, one branch passing upwards in the bundle and terminating by arborescence chiefly in the opposite oculomotor nucleus: the other branch extending downwards in the medulla oblongata and cord. In the spinal cord they are found in the ventro-lateral descending tract: fibres from each nucleus of Deiters occur in both of these tracts (E. H. Fraser). They terminate by arborescences in the ventral horn of the spinal cord.

Nerves of the pons Varolii.-
The nerves which enter or emerge from the grey matter of this region of the brain are part of the eighth, the seventh, the sixth, and somewhat higher up the fifth cranial nerve. Of

Fig. 608.-Plan of the origin of the six̧tif and seventh nerves.
VI., sixth nerve ; VII., seventh nerve ; a.VII., ascending part of root of seventh shown cut across near the floor of the fourth ventricle; g, genu of seventh; n.VI., chief nucleus of the sixth nerve; n^{\prime}.VI', accessory nucleus of sixth; n.VII., nueleus of seventh; d.V., descending root of fifth; pyr., pyramid bundles; VIII.\%., vestibular root of eighth nerve.
these the eighth (already considered) and fifth are connected with groups of nerve-cells which occupy the grey matter opposite the external border of the floor of the ventricle ; the sixth with a nucleus which is placed in the grey matter of the floor of the ventricle but nearer the middle line, and the seventh with a special nucleus which lies in the formatio reticularis.

The seventh or facial nerve and the nerve of Wrisberg (pars intermedia). -The motor fibres of the seventh nerve arise from the facial nucleus in the formatio reticularis. This nucleus is homologous with the nucleus ambiguus seen in sections of the medulla oblongata. It has been shown that the motor fibres to the stapedius arise from the mesial part of the nucleus. and then in succession those to the external ear muscles, those to the mouth and face muscles, and, finally, from a group of cells situated dorsally to the
rest, the motor fibres supplied to the superior branch of the facial (Marinesco, Van Gehuchten). From the nucleus of origin thic fibres first pass obliquely backwards to the floor of the ventricle, then longitudinally upwards for a short distance (fig. 601, A; fig. 608), and finally bend obliquely forwards and downwards to emerge between the transverse fibres at the side of the pons. None of the fibres of the seventh are derived from the nucleus of the sixth, as has sometimes been thought to be the case. As they curve over that nucleus the filbes of the scyenth give off fine branches which cross the

Fig. 609.-Section across the middle of the pons varolit. Photograph. Magnified about 4 diameters.
raphe ; their destination is unknown. The nucleus of the facial receives collaterals from the adjacent sensory tracts in the formatio reticularis.

The facial is not a purely motor nerve, but has a ganglion upon it of the spinal type (geniculate ganglion) from which fibres arise (fig. 601, B) which pass centrally into the pars intermedia of Wrisberg. This last enters the pons between the seventh and eighth nerves, and its fibres bifurcate into ascending and descending branches like other sensory nerves; the descending branches pass into the solitary bundle and end like those of the glossopharyngeal in the upper part of its accompanying grey matter. The peripheral axons of the cells of the geniculate ganglion pass into the large
superficial petrosal and chorda tympani-to which they furnish afferent, probably gustatory, fibres. Other (efferent) fibres pass into the pars intermedia and nltimately into the chorda tympani from certain moderately large cells in the dorsal part of the facial nucleus. These are probably the secretory fibres of the chorda to the submaxillary and sublingual salivary glands.

The sixth nerve (abducens). -The fibres of the sixth nerve (figs. 601, 608), which are purely motor, leave the nucleus at its mesial aspect and turn forwards; passing between the pyramid bundles they emerge at the lower margin of the pons. A féw fibres are derived from a small ventral nucleus lying near the nucleus of the facial; these run at first backwards and then turn forwards to join the others (Van Gehuchten) (fig. 608, n^{\prime}.VI.).

The fifth or trigeminal nerve emerges at the side of the pons in two roots, a smaller motor and a larger sensory (fig. 610).

The motor root is derived partly from fibres which arise in the upper part of the pons and lower part of the mesencephalon from large spherical unipolar nervecells lying at the side of the grey matter bounding the Sylvian aqueduct (accessory or superior motor nucleus of fifth, fig. 601, n Vms ; fig. 611, $m^{\prime} . n . V$.), partly from the motor núcleus proper (figs. 601, $n V m$; 611, m.n.V.) which lies in the grey matter at the lateral edge of the fourth ventricle (figs. 609, 610). As they pass the motor

Fig. 610.-Shetion taken somewhat olsLIQUELY THROUGH THE PONS FOLLOWING THE COURSE OF THE ISSUING ROOTS OF THE FIFTH NERVE.
m.s., median sulcus; l, dorsal longitudinal bundle; s.f., substantia ferruginea; $n . v$, sensory, and $n . v^{\prime}$, motor nucleus of fifth; V^{\prime}, sensory, and V^{\prime}, motor roots of fifth; r, raphe; $p y$, pyramid bundles; p, transverse fibres of middle pednncle of cerehellum. nucleus proper the fibres from the superior or accessory nucleus give off into it a large number of collaterals which ramify between and around its cells.

The fibres of the sensory root are derived from the cells of the Gasserian ganglion which are homologous with the cells of the spinal ganglia. These fibres of the sensory root when traced into the pons are found to bifurcate, the ascending branches ending in a mass of grey matter (principal sensory nucleus of the fifth, fig. 611, p.s.n.V.) lying just lateral to the motor nucleus, while the descending branches trend downwards into the medulla oblongata where they form the descending or spinal root of the fifth (fig. 611, d.s. V.) ; some even reach the upper part of the spinal cord. They lie immediately
lateral to and in close connexion with the substantia gelatinosa Rolandi which forms the inferior sensory nucleus (d.s.n.V.); it is continued above into the principal nucleus. The substantia gelatinosa which forms the sensory nucleus of the fifth contains numerous nerye-cells, both small and large; many of the small cells are grouped into nest-like clusters (islands of Calleja). The axons of the larger cells pass for the most part across the raphe to the formatio reticularis of the opposite side, where they reinforce the ascending fibres of the intermediate fillet,

Fig. 611:-Plan (longitudinal) of the origin of the FIBRES OF THE FIFTH NERTE.
G, Gasserian ganglion; a, b, c, three divisions of the nerve; min. \boldsymbol{m}. , superior motor nuclens; m.n. F.. principal motor nucleus; p.s.n. V., principal sensory nucleus; d.s.n. V., descending sensory nucleus: d.s.V., descending root ; c. V., é.V., nentral sensory tracts composed of fibres emanating from the sensory nuclei; r, plane of the raphe. but some ascend in the fillet of the same side; others pass to a special ascending bundle of fibres on the opposite side of the raphe lying nearer the fioor of the fourth ventricle, and in the tegmentum of the mid-brain lies lateral to the dorsal longitudinal bundle; bence it is continued upwards into the thalamus. Collaterals are given off from these ascending fibres to the adjoining grey matter, and especially to the nucleus of the facial nerve. Branches also pass downwards into the formatio reticularis.

DESCENDING TRACTS IN THE PONS AND MEDULIA OBLONGATA.

Traot of the pyramid.-The fibres of this tract are much more numerous in the pons than in the medulla oblongata. They send numerous collaterals into the grey matter of the nuclei pontis (fig. 612, A).

The cortico-bulbar tract lies mesial to the fillet (see p. 468). It consists of fibres passing from the motor cortex towards the nuclei of the facial and hypoglossal. In the crusta of the mid-brain these fibres lie mesial to the
ordinary pyramid fibres, but they then leave the latter and pass into the vential part of the tegmentum and are continued downwards in the formatio reticularis into the medulla oblongata.

The dorsal (posterior) longitudinal bundle forms another very distinct tract. It contains both ascending and descending fibres and runs just ventral to the grey matter of the floor of the fourth ventricle, near the middle line.

Fig. 612.-Section of pons (A), medulla oblongata (B), of cervical (C), thoracic (D), lumbar (E), and sacral (F) regions of spinal cord of monkey WHICH HAD SUFEERED REMOVAL OF THE PRECENTRAL GYRUS OF THE RIGHT CEREBRAL HEMISPHERE.

The sections are stained by the Marchi method.
As already noticed it connects Deiters' nucleus with the oculomotor nucleus, the nucleus of the sixth, and the ventral horn cells of the spinal cord; it probably receives some of its fibres from the axons of certain large cells of the fermatio reticularis.

Other descending tracts in the pons which are not so distinctly marked in the normal condition, but which can be traced by special methods, are: 1. The rubro-spinal tract; 2. The ventral longitudinal bundle; 3. The ponto-spinal lateral tract; 4. The vestibulo-spinal tract; 5. The central tract of the tegmentum.

Fig. 613.--Diagram of sensory path to mid-brain and thalamis.
Monakow's bundle or the rubro-spinal tract has already been seen as the prepyramidal tract of the spinal cord ($\mathbf{p} .434$). Its fibres arise from the cells of the red nucleus of the mid-brain of the opposite side, crossing the raphe
in Forel's decussation (p. 474, footnote). In the upper part of the pons it is dorsal to the mesial fillet, but lower down runs in the lateral part of the tegmentum, dorsal to the lateral fillet.

The ventral longitudinal bundle (tecto-spinal truct) consists of fibres which arise in the opposite superior quadrigeminal body. These cross the raphe in Meynert's decussation (p. 474), and run down ventral to the dorsal longitudinal bundle, giving off collaterals to the oculomotor nuclei and the nuclei of the fourth and sixth nerves as they descend. Its fibres eventually mix with those of the dorsal longitudinal bundle, and pass into the ventral column of the cord, joining the ventro-lateral descending tract (p .434).

The ponto-spinal lateral tract is formed of fibres which arise from large cells of the reticular formation, and run down within the lateral area of this formation in the pons and medulla oblongata to reach the part of the lateral column of the cord which lies between the grey matter and the tracts of Monakow and Gowers. It is, however, mixed here with many fibres of different origin. The destination of its fibres is similar to those of the dorsal and ventral longitudinal bundles, viz.: the adjacent grey matter of the ventral horn.

The vestibulo-spinal tract is composed of fibres derived from the cells of the nuclei of Deiters and Bechterew, and is therefore similar in its origin to the fibres of the dorsal longitudinal bundle. The destination is in part also similar, for the fibres pass below into the ventral root zone of the cord and end in the grey matter of the ventral horn; but in their course downwards they lie in the lateral part of the medulla oblongata mixed up with those of Monakow's tract and the ponto-spinal tract, as well as with the ascending fibres of Gowers'.tract.

The central tract of the tegmentum (Bechterew) runs in the pons exactly in the middle of the reticular formation of the tegmentum, but in the medulla oblongata it lies more ventrally near the olivary nucleus, beyond which it has not been traced. The origin of its fibres is not certainly known, but appears to be the thalamus; their destination is the olivary body of the same side (see p. 450, thalamo-olivary tract).

Ascending tracts in the pons and medulla oblongata-Tract of the fillet.In the ventral part of the reticular formation is a very well-marked tract of fibres somewhat flattened dorso-ventrally in the pons; this is the tract of the fillet. Its fibres are partly derived from cells in the nuclei of the opposite funiculus gracilis and funiculus cuneatus of the medulla oblongata which have crossed the raphe as internal arcuate fibres; partly from cells in the nuclei which are connected with the terminations of the sensory cranial nerves.

In the mid-brain the fillet splits up into two distinct bundles of fibres termed respectively the lateral or lower and the intermediate or upper fillet. The fibres of the lower fillet are seen at the side of the mesencephalon (fillet
of Reil), and are traceable partly to the grey matter of the inferior corpora quadrigemina (fig. 620), partly to the mesial geniculate body, in both of which they terminate; they are derived from the sensory nuclei of the medulla oblongata and pons (mainly from the acoustic nuclei). Those of the upper fillet go to the thalamus (fig. 625); they are chiefly the fibres from the cells of the opposite dorsal columns of the medulla oblongata (fig. 613).

 Photograph. Magnified about $3 \frac{1}{2}$ diameters.

Besides the ascending fibres of the tract of the fillet, this bundle includes a certain number of fibres which degenerate below a section of the tract and are therefore descending (centrifugal): their cells of origin appear to lie in the thalamus ; these fibres are situated mesial to the true fillet of which they were formerly considered to be a part (being termed "mesial" fillet): they form a thechung-bulbur treet. Mesial to the tract just mentioned is a bundle, also consisting of descending fibres, belonging to the system of the pyramid tract, and containing fibres which eventually come into relation with certain of the cranial motor nuclei (Hoche). Tluis constitutes the romtio-bulbar truet (see p. 464). In the crusta it lies dorso-lateral to the other pyramid tract fibres.

Many of the fibres which continue the sensory path of the cranial nerves upwards lie in the formatio reticularis（tegmentum），somewhat dorsal to the tract of the fillet，forming a homologous but not clearly defined tract，which runs up through the pons and mid－brain to terminate in the subthalamic region and，in the optic thalamus（central tract of the sensory cranial nerves）．

Fig．615．－Dlagram slowing the origin，course，and destination of the spino－Cerebellar fibres constituting the tracts of Flechsig and of Gowers．
u ，cells of Clarke＇s column in the dorsal horn of the spinal cord，giving origin to fibres which pass into both spino－cerebellar tracts；b ， tract of Flechsig，passing above by way of the restiform body to the cerebellar vermis；c ，tract of Gowers；d ，passage of most of its fibres along the superior peduncle to the vermis of the cerebellum：they are seen turning sharply backwards immedi－ ately after passing the level of the place of exit of the 5th nerve （V）．Some of the fibres of this tract leave it in the medulla oblongata and join the fibres of the tract of Flechsig which are passing to the cerehellum by its inferior peduncle．One such fibre is $⿴ 囗 十 一$ hown in the diagram．

Another ascending tract is the special bundle of fibres from the sensory nucleus of the fifth to the thalamus previously referred to (p. 464).

At the upper part of the pons (fig. 614) the fourth ventricle narrows gradually towards the Sylvian aqueduct, and above on each side of it two considerable masses of longitudinal white fibres make their appearance. These are the superior peduncles of the cerebellum. They tend, as they pass forwards, gradually to approach the middle line ; immediately below and in the region of the posterior colliculi of the corpora quadrigemina, they pass across this, decussating with one another, to enter the formatio reticularis of the opposite side.

Fig. 616.--The corpora quadrigemina and nelghiouring parts of the brain. (Edinger from G. Retzius.)
Grach. ant. cerebelli, the superior cerebellar peduncles, between them the anterior medullary velum partly covered by the lingula; Tr.spino-cereb. ventr., tract of Gowers curving round the peduncle; lemniscus, the lateral fillet; N.trochl., fourth nerve; N.V., fifth nerve.

The fibres of the superior cerebellar peduncles take origin in the cerebellum, emerging from its dentate nucleus, from the cells of which they are derived. They cross the raphe in the mid-brain and terminate in the red nucleus of the (opposite) tegmentum; but some of them give off a deseending branch within the peduncle after erossing : its destination is not known.

The ventro-lateral ascending tract of the spinal cord (p. 436) is continued up in the lateral column of the medulla oblongata dorso-lateral to the olive and through the ventral part of the pons Varolii lateral to the pyramid bundles, but at about the level of the exit of the fifth nerve many of its fibres begin to pass obliquely towards the dorso-lateral part of the pons (fig. 615), where the superior cerebellar peduncle is emerging from the cerebellar hemisphere. The tract in question (ventral spino-cerebellar tract) now eurves over the lateral aspect of this peduncle (fig. 616, T'r. spino-cercb. ventr.), and then takes a sharp backward turn, passing over the dorsal aspeet of the peduncle to enter the middle lobe of the cerehellum in the superior medullary velum.
continuity of the parts which have already been described in the lower nervecentres can still in great measure be traced.

The Sylvian aqueduct (fig. 619, Sy), with its lining of ciliated epithelium, represents the central canal of the cord and the fourth ventricle of the medulla oblongata. In the grey matter which surrounds it (central grey matter) there is seen in all sections of the region a group (column) of large nerve-cells (oculomotor nucleus) lying ventrally on each side of the middle line, close to the reticular formation. From the lowest cells of this column the root-bundles of the fourth nerve arise at the lower part of the mesencephalon and pass obliquely backwards and downwards around the central grey matter, decussating with those of the opposite sidc to emerge just above the pons Varolii (figs. 614, 617). Higher up, in the region of the

 A, transverse section at the place of emersence of the nerve-fibres. F , oblir tue section carried along the course of the bundles from the muclens of origin to the place of emerbence. Ay, Sylvian aqueduct, with its surrounding grey matter ; J°, the nerve.hmoles emerging ; $J \mathbf{V}^{\prime \prime}$, decussation of the nerves of the twosides; $3 V^{\prime \prime}$, a bundle passingry the side of the aqueduct to emerge a little lower down; $n . / l^{\prime}$, nucleus of the fourth nerve: l, lateral fillet: s.c. p., superior cerebellar jeqduncle; E.m. J^{\prime}, superior motor root of the fifth nerve; ph, dorsal longitudinal bundle; r, raphe.
anterior colliculi, the bundles of the third nerve spring from a continuation of the same nucleus (fig. 621, n.III.), and these pass forwards and downwards with a curved course through the reticular formation, to emerge at the mesial side of the crusta. According to Van Gehuchten, some of the fibres of the third nerve cross the middle line and emerge with the nerve of the opposite side.

TEGMENTUM.
The reticular formation of the pons is continued up into the mesencephalon and is here known as the tegmentum. It is composed as before of longitudinal and transverse or arcuate bundles of fibres with much grey matter intermingled. The transverse fibres include the decussating fibres of the superior peduneles of the cerebellum (s.c.p.), which are derived from cells in the dentate nucleus of the cerebellum, and on reaching the opposite side bifurcate. Their ascending branches become gradually lost amongst a number of nerve-cells which collectively constitute what is known as the red nucleus or nueleus of the tegmentum, whilst the descending branches
turn downwards in the reticular formation (Cajal) (see p. 470). But some of the fibres of the superior peduncle go on past the red nucleus to the ventral part of the thalamus. The red nucleus also receives fibres in its lateral aspeet which are derived from the lentieular nucleus of the corpus striatum, and some of which are said to come from the eerebral cortex; these fibres form a sort of eapsule to the red nueleus before entering it.

TRACTS IN TIIE TEGMENTUM.

1. Vestibulo motor tract; dorsal (posterior) longitudinal bundle.-This is well marked in the mid-brain, and gives off many collaterals and terminal fibres to the oculomotor nucleus which is immediately dorsal to it. The

Fig. 618. -OUTline of two sections across THE MESENCEPHALON. Natural size.
A, through the middle of the inferior corpora quadrigemina B, through the region of the superior corpora quadrigemina. cr., erusta; s, n, substantia nigra; t, tegmentum; s, Sylvian aqueduct, with its surrounding grey matter; e.q., grey matter of the eorpora quadrigemina; l.g., lateral groove ; p.l., dorsal longitudinal bundle ; d.V., superior root of the fifth nerve ; s.c.p., superior cerebellar peduncle; f, lateral tillet; I/I ., third nerve; $n . I I I$., its nucleus. The dotted circle in B indicates the situation of the tegmental or red nucleus. bundle largely eonsists of nervefibres derived from the cells of Deiters' nucleus (see p. 457), which on reaching the situation of the bundle either on the same or on the opposite side, bifureate, one branch ascending, the other deseending. But it receives fibres from other sources than Deiters' nucleus, e.g. from large cells of the sensory nueleus of the fifth, and from large eells in the reticular formation of the medulla oblongata, pons, and mid-hrain. All these fibres, like those from Deiters' nucleus, bifureate on joining the bundle, one branch passing upwards, the other downwards. Some fibres of the bundle are of different origin from the rest, arising beyond the oculomotor nucleus. These are very fine; they are descending fibres, and are traceable from the cells of the nucleus of the dorsal longitudinal bundle, which lies in front of the Sylvian aqueduct in the grey matter at the side of the third ventricle. Some of the fibres of the dorsal longitudinal bundle are traceable as far up as the thalamus.

The bundle gives eollaterals not only to the oeulomotor nucleus (fig. $620, j$) but also to the nueleus of the sixth, and probably to the nuclei of other eranial motor nerves. Its descending fibres are eventually continued down the spinal eord in the ventro-lateral descending traet, and give off terminals and collaterals to the ventral horn.
2. Rubrospinal tract; Monakow's bundle.-The cells of the red nucleus send their axons downwards and forwards. They form Monakow's bundle or the rubro-spinal tract, whieh is continued below into the prepyramidal tract of the spinal cord.
3. Tecto-spinal tract; ventral longiturlinal bundle,-Other longitudinal fibres of the tegmentum are those of the fasciculus retroflexus of Meynert lying mesially to the red nucleus and passing obliquely downwards and inwards from the ganglion of the habenula to the interpeduncular ganglion of the opposite side, and the bundle of Ifinzer, which passes from the posterior tubercle downwards into the lateral part of the

Ftg. 619. -Section across the mid-brain throdgh the fosteriok palk of corpora quadrtgbmina. Magnified about 31 diameters. From a photograph.
$S y$, aqueduct of Sylvius; c.gr., central grey matter of the aqueduct; $n . I I I, I F$., group of cells forming part of the conjoined nucleus of the third and fourth nerves; c.p.q., one of the posterior corpora quadrigemina; gr, median groove separating it from that of the opposite side; str. l., stratum lemnisci (layer of the fillet), forming its superficial layer; f, upper tillet f^{\prime}, lateral fillct; V, accessory motor root of fifth nerve ; p.l.b., dorsal longitudinal bundle ; f.r.t., formatio reticularis tegmenti; d, d^{\prime}, decussating fibres of tegmenta (fountain-decussations oí Forel and Meynert); s.c.p., superior cerebellar peduncles, decussating ; p.p., pes pedunculi (orusta); s.n., substantia nigra; g.i-p., interpeduncular ganglion.
reticular formation of the pons. But the longest and most important is the ventral or anterior longitudinal bundle, which passes lateral to the red nucleus and partly through it. Although the red nucleus receives many collaterals from this bundle the fibres of the bundle are derived, according to Held and Cajal, from cells in the grey matter of the opposite anterior tubercle of the corpora quadrigemina; these cells send their axons sweeping round the central grey matter just central to the
dorsal longitudinal bundle to cross in the raphe, where they form the fountain-like deoussation of Meynert (fig. 619, $\left.d^{\prime}\right)^{1}{ }^{1}$ The downward continuation of the tecto-spinal tract has already been studied, but it should be stated that the prolongation of its fihres into the ventral column of the spinal cord is denied by Van Gehuchten, who traces them only as far as the medulla oblongata.
4. Tract of the fillet.-The continuation upwards of the fillet is also

 CORPORA QUADRIGEMINA. (Cajal.)
A, principal mass of grey matter; B, O, cortical layer ; D, grey matter around Sylvian aqueduct: K, decussation of superior peduncles of cerehellum ; a, b, r, d, hbres of central acoustic path from lateral fillet; e, axons from cells of principal nucleus passing towards brachium ; f, fibres from brachium passiog into superficial layer; g, fibres from fillet passing into superficial layer; h, a fibre of fillet passing to central grey matter of aqueduet; j, collaterals from dorsal longitudinal bunde passing to oculomotor nucleus; l, axons of cells in superomesial part of colliculus curving round grey matter of aqueduct and forming the deep white layer.
apparent in this part of the brain. Some of its fibres are seen passing in an oblique manner to the side of the mesencephalon, to enter the grey matter of the prominences of the posterior corpora quadrigemina.

This part is the lower or lateral fillet (see p. 467), formed chiefly by fibres derived from the accessory auditory, the inferior olivary, and the trapezoid nuclei of the opposite side, forming the central acoustic tract. Its fibres send numerous collaterals to the posterior tubercle (fig. 620) and a few to the anterior, and end by ramifying amongst the cells of the

[^24]mesial geniculate body (Cajal). In its course it traverses the nucleus of the fillet. This consists of cells interpolated amongst its fibres (the greater number in the lower part near the superior olive) ; amongst the cells some of the fibres and many collaterals from them end. The axons of the cells trend inwards towards the raphe. The upper fillet is continued upwards in the ventral part of the tegmentum towards the thalamus (p. 480).

Fig. 621.-Section across the mid-brain through the anterior corfora quadrigemina. Magnified about $3 \frac{1}{2}$ diameters. From a photograph.

[^25]
crusta.

Lateral and ventral to the tegmentum is seen on either side the white mass known as the crusta or pes pedunculi (fig. 618, cr.; figs. 619, 621, p.p.). This is formed by longitudinally coursing bundles of fibres lying on the ventral aspect of each half of the mesencephalon, and diverging above into the internal capsule of the cerebral hemisphere.

The fibres of the crusta are continued below into the so-called "pyramid bundles" of the pons-which contain, as we have seen, many other fibres
than those of the pyramid tract. This is also the case with the bundles of the crusta; in which the pyramid tract proper-composed of fibres emanating from the precentral and paracentral gyri-is confined to the middle threefifths (this, however, includes many cortico-pontine fibres), whilst the mesial fifth is mainly occupied by fibres passing from the lower frontal region to the pons, carrying impulses to the nuclei of the facial and hypoglossal ; and the lateral fifth by fibres the origin and function of which are not certainly known. But it is probable that these last fibres are connected with the regions of the hemisphere behind the Rolandic fissure, especially, perhaps, with the temporal and occipital regions; and are passing from the pyramidal cells of those parts to end in the nuclei of the pons.

Substantia nigra.-The crusta is separated from the tegmentum by a layer of grey matter containing a number of very deeply pigmented nervecells (substantia nigra; figs. 619,621 , s.ie.). The substantia nigra receives many collaterals from the adjacent pyramid bundles of the crusta (Sutherland Simpson). The crusta and tegmentum, together with the intervening substantia nigra, constitute the cerebral peduncle or crus cerebri.

Interpeduncular ganglion.-Between the cerebral peduncles, just where they diverge from the mass of transverse fibres of the pons, is seen close to the ventral surface of the brain a small mass of grey matter containing a large number of small nerve-cells with large and irregular deadrons, and axons which are directed dorsally into the tegmentum. This is the interpeduncular ganglion (fig. 619, g.i-p.). It receives on each side the ending of the fusciculus retroflexus of Meynert; coming from the ganglion of the habenula, a collection of nerve-cells near the superior and mesial part of the thalamus, close to the commencement of the third ventricle. Both these ganglia are much better marked in many of the lower animals than in man.

CORPORA QUADRIGEMINA,

The prominences (colliculi or tubercles) of the corpora quadrigemina are formed mainly of grey matter. Connected laterally with each is a bundle of white fibres forming the brachia of the geniculate bodies.

The posterior or inferior colliculi consist of a grey centre enclosed by superficial and deep white layers (figs. 619, 620). The superficial white layer is derived mainly from the brachium. The fibres of the fillet divide as they approach the colliculus ; one branch enters its grey matter while the other passes to the mesial geniculate body. In animals with a highly developed sense of hearing all these parts are proportionately welldeveloped. The deep white layer is derived from cells of the grey centre, but many of the cells of the latter send their axons towards the suporficial layer. The destination of the fibres of the deep white layer is not certainly known; some pass over the central grey matter of the aqueduct to the opposite side.

In the anterior or superior colliculi four layers can be distinguished (fig. 622), viz. . superficially, a thin white layer (A), containing nerve-fibres and a few nerve-cells disposed parallel to the surface; next to this a grey cap (в), containing many and various nerve-cells amongst which the terminations of the optic nerve (h, h) ramify ; below this the optio nerve layer (c), which is formed of antero-posteriorly running fibres derived from the optic tract, and ending as just stated for the most part in the grey layer. The optic nerve layer also contains some nerve-cells. Lastly there is a deep white layer, the so-called deep medulla, of transversely disposed fibres (1) derived partly from the fillet

Fig. 622.-Diagram showing the characters of the cells in the grey matter of the anterior corpora quadrigemina. (After Cajal.)
M, portion of dorsal median groove; A, smperficial white layer; B, grey cap; O , optic fibre layer (upper grey-white layer); D, layer of the fillet (lower grey-white layer).
u, a^{\prime}, marginal nerve-cells; their axons are not represented; b, v^{\prime}, horizontal spindle-shaped cells of Golgi's type II.; $c, \boldsymbol{c}^{\prime}$, small cells with much brancbed dendrons and an axon extending to the optic fibre layer ; d, e, e^{\prime}. spindle and stellate cells of the grey cap, and f, f^{\prime}, cells of the stratum opticum, sending their axons into the layer of the fillet; g, g^{\prime}, cells of the layer of the fillet; h, h, fibres of the optic nerve layer ending in the grey and superficial white layers.
but comprising many fibres which come from the cells of the colliculus itself, and a few which are continued up from the ventro-lateral column of the spinal cord. This deep layer also contains a number of large dendritic cells amongst the fibres. 'The superior corpora quadrigemina receive through their brachia many of the fibres of the optic tracts, which in mammals enter the grey matter at the middle of its thickness and traverse it from before back, so that in transverse sections of the mid-brain they appear cut across. In birds they form a superficial white stratum covering the grey matter; this white stratum is not homologous with the superficial stratum of mammals, for the fibres in the latter are not derived directly from the optic tract. The optic fibres are all derived from ncrve-cells in the retina, and as they traverse the stratum opticum they pass obliquely into the grey matter (in a ventral
direction in birds, in a dorsal direction in mammals) and end in arborisations amongst its cells. The cells of the grey matter are very various in form and size (fig. 622). Most of their axis-cylinder processes pass ventralwards. The destination of all is not certainly known, but some form the commencement of the ventral longitudinal bundle of the opposite side, and others run down on the same side towards the pons Varolii, intermingled with the ascending fibres of the fillet. A certain number of fibres which take origin in the cells of the anterior colliculi course over the central grey matter which surrounds the Sylvian aqueduct and sweep round this towards the fillet tract of the opposite side. These commissural fibres are continuous in front with those of the posterior commissure.

The nerve-fibres of the optic nerve and optic tract do not all enter the corpora quadrigemina. Many, indeed the majority, pass into the lateral geniculate bodies and optic thalami to form arborisations there (fig. 627). On the other hand, axons from the cells of these structures pass to the cortex of the hrain (occipital region).

As has just been stated, many arcuate fibres issue from the grey matter of the corpora quadrigemina and pass obliquely downwards into the ventral part of the mesencephalon encircling the central grey matter. These fibres intercross in the raphe, where they constitute the fountain-decussation of Meynert (p .474 , and after crossing constitute the main mass of the ventral longitudinal bundles. These are continued into the ventral columns of the spinal cord; they give off collaterals to the motor nuclei of the eye-muscles, and probably to the motor nuclei generally. Other fibres which appear to belong to the same (tecto-spinal) system are traceable as a distinct tract into the lateral column of the cord (see p. 434).

In the cat, the anterior corpora quadrigemina receive a number of fibres from the pyramid tract in the crusta of the. same side, a few crossing over the aqueduct to the opposite colliculus (Boyce, Sutherland Simpson). But in most animals the fibres which pass from the cortex cecebri to the corpora quadrigemina enter these bodies through their respective brachia.

No fibres are given off from the cells of the corpora quadrigemina to the cortex cerebri.

Posterior commissure.-Immediately in front of the corpora quadrigemina, visible in the roof of this part of the mid-brain, is the posterior commissure. This consists of fibres which arise in a nucleus at each side of the Sylvian aqueduct, pass across the middle line dorsal to the central grey matter, and then turn ventralwards and caudalwards in the tegmentum lateral to the dorsal longitudinal bundle, which is partly reinforced by the fibres in question. Fibres of the posterior commissure extend into the region of the third ventricle.

NERVES OF MID-brain.

The optic nerves.-The only sensory nerves which are immediately connected with the mid-brain are the second or optic. The origin of their fibres is from the large nerve cells of the ganglion of the retina. The optic nerve leaves the globe of the eye at its posterior aspect, passes through the optic foramen to the base of the brain, and joins the nerve of the opposite side to form the optic chiasma (fig. 627). Of the fibres which enter the chiasma, those from the inner (or nasal) two-thirds of the retina cross to the optic tract of the opposite side, while the remaining third, comprising the fibres from the temporal part. of the retina, pass along the lateral borler of the chiasma to the tract of the same side. In the optic tract they are continued to the parts of the brain where they have their terminal arbores. cences, viz, the external geniculate body and adjoining posterior part of the thalamus (pulvinar), and the anterior corpora quadrigemina. A certain number of the fibres of the optic nerve bifurcate on reaching the chiasma; the branches pass one into each optic tract (Cajal).

Fif. 623.-Transtrese section throuthif the cekebeum tiv the reigon of the middle commissite. Natural size.
c.c., corpas callosum ; formix ; n.e., nucleus caudatus; th, that amus; s.t.r., subthalamic resion; er, censta passing into
 nuclei of thalanms; a, its latticed layer; $1, \therefore, \dot{,}$, parts of subthalamus; n.l, nucleus lenticularis; e.c., external capsule; cl., elaustrum; I, insula; m.c., middle commissure; above and below it is the third ventricle, communicating above on each side through the foramen of Monro with the lateral ventricle. Below the fornix are seen the choroid plexuses; t.s., stria terminalis.

The fibres which pass
to the anterior corpora quadrigemina are much finer than those to the corpora geniculata. It is probable that the former furnish the path for reflex movements of the pupil, etc., and the latter the path for visual impressions, since the lateral corpus geniculatum and the pulvinar thalami are directly connected with the visual cortex in the occipital lobe, while as already stated, no such direct connexion obtains between that cortex and the anterior corpora quadrigemina.

A small bundle of fibres (transverse peduncular bundle) leaves the optic tract as it enters the mid-brain and passes round the cerebral peduncle to lose itself in the mesial part of the teginentum near the fillet. Its destination appears to be a small nucleus situated near the red nucleus. Its fibres degenerate after enucleation of the opposite eyeball.

The optic tracts and chiasma also contain the fibres of v. Gudden's commissure, which connects the posterior corpora quadrigemina; these fibres appear to have no relation to the visual function.

There are present in the optic nerve and tract a few fibres which originate in the nerve centres--where is not known-and terminate in the retina.

Fig. fir4.-Hortzontal section througe THE OPT1C TIALAMUS AND CORHUS STKI'Atum. Natural size.
n.l., lateral ventricle, its anterior cornu; c.c., corpus callosum; r.l., septumi lucidum; $a f_{\cdot}$, anterior pillars of the fernix; 0.3 , third ventricle; th.,

- thalamus opticus; at., stria medullaris ; ne, me'. nucleus caudatus, and $n l$., nucleus lenticularis of the corpus striatum ; i.c., internal capsule ; η, its angle or genn; né., tail of the nucleus caudatus appearing in the flescending cornu of the lateral ventricle; cl., clanstrum ; \bar{T}, insula.

Motor nerves. -The motor nerves arising from the mid-brain are the third and fourtl. The pusition of their nuclei and their moxle of exit have been already describerd (p. 471).

the thalamexceiphalon.

The thalamus (fiys. 623, 624, th.), which liess at the side of the thired ventricle, and forms part of the flom of the lateral ventricle, is covered on its frece surface by a layer of white fibres. Laterally it is bounded by the internal capsule. Fibres from the latter pass into the thalamus and serve to connect it with the hemisphere.

The grey matter of the thalamus is partially subdivided (fig. (i23) by an oblique white lamina into a smaller mesial mucleus; and a larger lateral nucleus; these contain a large number of small nerve-cells. Anteriorly another portion of grey matter (anterior nucleus) is divided off in a similar way; this contains comparatively large nerve-cells. All these nuclei are formed of groups of cells having different connexions, many of which still require elucidation.

The thalamus receives the terminal branches of the fibres of the upper fillet, continued from the cells of the opposite nuclei of Goll and Burdach (spino-thalamic tract), those of the central path of the fifth cranial nerre of the opposite side, and some fibres from the superior cerebellar peduncle of the opposite side ; besides the fibres of the optic tract which pass to the external geniculate body and pulvinar thalami.

From the cells of the thalamus nerve-fibres pass in every direction
into the white matter of the hemisphere, and eventually to the cortex. From the outer part they tend especially towards the occipital region, assisting to form the central visual tract which passes to the visual cortex. From the inner and deeper 'part they converge towards the subthalamic region. Here many are collected into the ansa lenticularis (see p. 484), by which they pass into the nucleus lenticularis, while others, as already stated, enter the corona radiata and thus reach the cortex of the hemisphere.

Fig. 625.-Diagram of the connexions of the thalamus with the ascending fibres of the fifth nerve, and of the upper fillet on the one hand, and with the cortex cereberi on the other. (Cajal.)
A, B, D, D, E, various nuclei in thalamus; l, afferent fibres passing to mammillary body, $F ; G$, tract of upper fillet ending in A (at c), and giving collaterals to D (posterior nucleus) ; H , central tract from sensory nucleus of fifth; T, cortex cerebri; V, visual cortex; R, anterior collioulus ; J, optic chiasma; S, optio fibres; K, hippocampus.
(1, fibres from cortex to thalamus, ending at e; b, fibres from cells in thalamms (d) to cortex; f, fibres from lateral geniculate body and thalamus to visual cortex, ending at g in stria of Gennari.

These fibres from the thalamus to the cortex probably form the third and the last link in the chain of sensory neurones, the second being formed by the neurones of the fillet and the first by the neurones of the sensory roots. On the other hand, the thalamus receives fibres both from the cortex and from the corpus striatum, to end amongst its cells.

Corpora geniculata.-Attached to the thalamus below and behind are the geniculate bodies (fig. 626). These at first sight appear to be both connected with the optic tract, but only the lateral one actually receives optic fibres, the mesial body receiving fibres from the central auditory tract through the lateral fillet. Of the geniculate bodies the outer or lateral has a lamellated structure consisting of alternating layers of grey
and white matter, the white layers being composed partly of the entering optic fibres and partly of fibres emerging from the grey matter and passing to the central optic path, while the grey substance contains very numerous nerve-cells amongst which the fibres of the optic tract end in complex arborisations. From these cells axons arise and join a bundle of fibres

Fig. 626. -Fifitre showing the olfactory tracts ind their koots, the oftic CHIASMA AND OPTIC TLACTS, THE VFNTETJATF RODIES UNW THE PCLVINAK THALAMI. (Edingel.)
The pons is cut through at the anterior yart, and the section shows the sylvian aqueduct, the fillet (lamina larteario), superior cerebellar peduncles, et The corpora mammillaria are partly concealed by the pons; between and in front of then is seen the infundibulum.
which enters the white matter of the hemisphere above and along with the internal capsule, and passes to the visual area of the cortex (central visual tract). Some of the fibres from the corpus geniculatum laterale, as they enter the visual tract, send branches downwards towards the tegmentum.

The cells of the mesial geniculate body are collected into two main nuclei, dorsal and ventral. Most of the cells are small, but at one part there is a group of large cells. The axons appear to pass through the
brachium and eventually to the cortex: probably to that of the temporal lobe.

The ganglion of the habenula (fig. 628, g^{\prime}) is a collection of nerve-cells which lies at the posterior part of the thalamus on each side, near the roof of the third ventricle. This ganglion receives on the one hand the fibres of the habenula or stria medullaris, and on the other hand gives off from its cells the fibres which form the fasciculus retroflexus or Meynert's buindle (fig. 654),

Flg. 627. -Diagram to show the probable cotrse and retations of THE OPTIC FIBRES.

Only single fibres are shown emerging from the anterior quadrigeminal -and external geniculate bodies, contiuuing the course of the two tibres from coriesponding points in the retine. This is merel, to simplify the diagram, and is not intended to assume that the retinal impressions are fused in those situations.
passing downwards to the interpeduncular ganglion (p. 476). The two ganglia of the habenule are joined by a white commissure.

The corpora mammillaria (fig. 626) are seen at the base of the brain immediately below the posterior part of the third ventricle Each is composed of white matter externally and grey matter internally, Each receives fibres from the anterior pillar of the fornix of the same side; these fibres arise from cells in the hippocampus and end in the mammillary body. According to Edinger some fibres from the olfactory tract pass directly to it. The axons of its cells bifurcate; one branch, the coarser, passing into the anterior and upper part of the thalamus in the bundle of Vicq d'Azyr, and the other into the tegmentum of the mid-brain in v . Gudden's bundle. The corpora mammillaria form part of the central olfactory apparatus (fig. 654).

Subthalamic region.-The tegmentum of the crus cerebri is prolonged below the thalamus, and between it and the internal capsule is represented by a mass of grey substance, with longitudinally and obliquely crossing white bundles, which is known under the name of subthatamus or hypothalamus (fig.

FIg. 628.-SECTIUN TAKEN OBLIUUELY THRUEGH THE THALAMUS - NVD INTERSAL CAPSULE SHOWING SOME OF THE STRANDS OF FIBRES OF THE SUBTHALAMUS. Magnified $2 \frac{1}{2}$ diameters. From a photograph.
Th., thalamus; v.iii., third ventricle; t., tania, or attachment of epithelial roof of ventricle; str., stria medullaris or habenula; g, ganglion of the habenula; n.t., mesial nucleus of thalamus; opt., optic fibres passing into pulvinar of tbalamus; z,i, zona incerta, from which fihres are seen emerging and sweeping as the ansa lenticularis, a.l., round the internal capsule, c.i., to pass toward the lenticular nucleus; c.s., corpus subthalamicum; ; f, anterior pillar of fornix passing back wards to corpus mammillare; V.A., bundle of Vicq d'Azyr, passing upwards and forwards from corpus mammillare into thalamus; g, group of nerve-cells, probably belonging to the nucleus of the corpus mammillare; x, fasciculus retroflexus.
(608). Its deepest part contains a lens-shaped mass of grey matter prolonged forwards from the substantia nigra known as the corpus subthalamicum of Luys. A mass of fibres sweeps round this and round the internal capsule, passing between the thalamus and the nucleus lenticularis; the terms zona incerta and ansa lenticularis are employed to denote some of these strands, but their origin and destination have not been definitely ascertained.

LESSONS XLIV. AND XLV.

CENTRAL NERVOUS SYSTEM.

The Cerebellum and Cerebrum.

1. Sections of the cerebellum vertical to the surface, (a) across the direction of the laminæ, (b) parallel with the laminæ.
2. Sections across the whole of one hemisphere of the cerebrum of a monkey or cat passing through the third ventricle.
3. Vertical sections of the cerebral cortex :-one across the central gyri, another from the occipital lobe (calcarine region), another across the superior temporal gyrus and island of Reil, and one across the hippocampal gyrus and hippocampus.
4. Transverse sections of the olfactory tract and bulb.

In all these preparations make outline sketches under a low power of the arrangement of the grey and white matter, and the disposition of nerve-cells in the grey matter. Sketch some of the details under a high power.

The preparations are made in the same way as those of the spinal cord. Other preparatiuns may be made by the Golgi method to exhibit the relation of the cells to one another. Such preparations may have been already partly studied (Lessons XVII. and XVIII.).

THE CEREBELLUM.

The cerebellum is composed of a white centre and a grey cortex (fig. 629). Both extend into all the folds or laminæ, so that when the laminæ are cut across, an appearance is presented of a white arborescence covered super-

Fig. 629.-Section through one of the hemispheres of the cerebellum, showing the laminated arborescent appearance of the orey matrer at the surface and the nucleus dentatus ($n . d$.) in the midde of the white centre. The pons is indicated by a dotted outline.
ficially by grey matter. The white matter is in largest amount in the middle of each carebellar hemisphere. There is here present a peculiar wavy lamina of grey matter, similar to that in the olivary body, and known as the nueleus dentatus (fig. 629, n.d.). This receives numerous nerve-fibres from the cells of Purkinje of the cortex, which end by arborising around its cells. The latter give off axons which become the fibres of the superior cerebellar peduncles, and for the most part end in the opposite red nucleus (p. 471),

Fig. 630.-Section across the cerebellum and medtlla oblontiata showina THE POSITION OF THE NUCLEI IN THE WHITE CENTEE OF THE CEREBELLTM (Stilling.)
n.d., nucleus dentatus cerebelli ; к.c.p., fibres of superior peduncle ; com, com', com". commissural fibres; X, root-fibres of vagus; XII, root-fibres of hypoglossal nerve.
but some pass beyond this into the subthalamic region. The dentate nucleus also receives collaterals from fibres of the inferior peduncle (Cajal).

Other isolated grey nuclei lie in the white matter of the middle lobe over the roof of the fourth ventricle and constitute collectively the nuclei of Stilling. The most important of these appears to be the uncleus tecti seu fastigii (fig. 630). This receives many of the ascending fibres of the vestibular nerve (p. 457) ạd collaterals from the spino-cerebellar tracts, and gives origin to a bundle of fibres which crosses to the opposite side and descends in the mesial part of the restiform body to the reticular formation of the medulla oblongata (Risien Russell).

The grey matter of the cerebellum appears of essentially similar structure throughout the whole extent of the cortex. It consists of two layers. The
inner or granule layer (fig. 631, d, and fig. 633, B) lies next to the white centre, and is composed of a large number of very small nerve-cells intermingled with a few larger ones and some neuroglia-cells. The outer or molecular layer (fig. 631, b, and fig. 633, 4) is thicker, and is formed chiefly of fine nerve-fibres with small nerve-cells scattered through it. Into its outer part processes of the pia mater conveying bloodvessels pass vertically. Lying between the two layers of the grey matter is an incomplete stratum of large flask-shaped cells, termed the cells of Purkinje (fig. 631, c; fig. 632, fig. 633, a). Each of these cells gives off from its base a fine process (axon), which becomes the axis-cylinder of one of the myelinated fibres of the white centre, while from the opposite pole of the cell large ramified processes (dendrons) extend into the superficial layer of the grey matter.

The dendrons of the cells of Purkinje spread out in planes transverse to the direction of the lamelle of the organ, so that they present a different appearance according to whether the section is taken along a lamella or across it (compare fig. 633, I and II). These dendrons are invested at their attachment to the cell and, for some extent along their branchings, by a basket-work formed by the terminal arborisations of certain fibres (climbing or tendril fibres) of

Fig. 631.-Section of cortex of cerebellum. (Sankey.)
us pia mater ; b, outer or molecnlar layer ; e, corpuscles of Purkinje; d, inner or granule layer ; e, medullary centre. the medullary centre (fig. 635; fig. 636, cl.f.f. The body of the cell of Purkinje is further invested by a feltwork of fibrils formed by the arborisation of axis-cylinder processes of nerve-cells (basket-cells) in the outer layer of the grey matter (figs. 634; $636, b)$. Each cell has therefore a double investment of this nature, one covering the dendrons, the other investing the body of the cell and extending along the commencement of the axon,

The granules of the inner layer of grey matter are mostly small nerve cells, each with a few dendrons penetrating amongst the other granules, and an axon directed between the cells of Purkinje into the outer layer. After penetrating a variable distance into this layer the axon bifurcates, and its two branches pass in opposite directions at right angles to the main stem, and parallel to the direction of the lamella (fig. 633, I). What ultimately becomes of the branches is not known. In sections

Fig. 632.-A cell of Porkinje of the cerebellum, shown by Golgr's method. (Cajal.)
u, axon ; b, collateral from axon ; c, d, arborisation of dendrons. cut across the lamella the cut ends of these fibres give a finely punctated appearance to the outer layer (fig. 633 , II).

Some of the cells of the granule layer are far larger than the others, and send their much-branching axons amongst the smaller granules. They are known as cells of Golgi, fig. 636, G. Certainother large "granules" have been noticed by Cajal, occurring both in the granule layer and in the wbite centre, with long axons passing into the white matter of the cerebellum. These are comparatively .few in number.

Ramifying amongst the cells of the granule layer are peculiar fibres derived from the white centre, and characterised by having pencils of fine short branches at intervals, like tufts of moss (fig. 636, m.f.). These have been termed by Cajal the moss-fibres; they end partly in the granule layer, partly in the molecular layer.

The neuroglia of the cerebellum is peculiar in containing, besides the ordinary "spider" and "branched" neuroglia-cells (fig $636, g l^{1}, g l^{2}$), other large cells with long parallel processes which extend through the molecular.

Fig. 633.-Sections of cortex cerebelli stained by Goloi's method. (Cajal.)
I.-Section made in the direction of a lamina. II.-Section taken across a lamina.
A, onter or molecular layer ; B, inner or granule layer ; C, medullary centre.
 of a granule; d, nerve-fibre process of a granule passing into the molecular layer, where it bifurcates and becomes a longitudinal fibre (in II these longitudinal fibres are ent across and appear as dots); e, bifurcation of another fibre; g, a granule lyingin the white centre.

Fig. 634.-Basket-cell of cerebellum showing the arborisations of its axon over the cells of Porkinje. (Cajal.)
A, row of Purkinje cells; B, basket-cell of molecular layer ; d, its dendrons; c, its axon ; a and b, endings of axon.
layer to be attached to the surface of the lamelli" ($\left(f^{\prime}\right)$. The cell-bodies lic at about the same level as those of Purkinje's cells.

Fibres of the cerebellar peduncles. The peduncles of the cerebellum have heen already studied in connexion with the medulla oblongata, pons, and midbrain, but it may be convenient briefly to summarise what has there been stated. The inferior peduncle (restiform body) is composed mainly (1) of ascending fibres derived from the dorsal spino-cerebellar tract running in its outer part; and (2) of fibres from both olivary nuclei, but chiefly from that of the opposite side. This peduncle is also said to receive fibres from the nuclei of the gracile and cuneate funiculi, from cells and nuclei of the reticular formation of the medulla oblongata, and from the sensory nuclei of the cranial nerves, especially of the vestibular nerve. Most of the fibres of the peduncle pass to the lower part of the vermis, crossing to

Fig. 635.-Ending of a "tendril" fibre over thef dendrons of a Ptrkinie ceril: hyman. (Cajal.) the opposite side over the fourth ventricle, lout before doing so they give off strong collaterals to the hemisphere of the same side. Besides its ascending fibres the peduncle also contains a small bundle of fibres descending to the medulla oblongata from the nucleus tecti of the opposite side: this bundle bends round the superior peduncle to join the inferior peduncle, its fibres lying between those of the superior peduncle and (qowers' tract (Risien Russell). In the middle of the inferior peduncle is a rers small nucleus of grey matter (Déjerine) which is almost completely concealed amongst the mass of white fibres (fig. 603, n.r.).

The middle pedunele is formed of fibres from the cells of the nuclei pontis which are passing to the opposite hemisphere of the cerebellum.

The supprior pedincle is formed of fibres which mostly take origin in the corpus dentatum cerebelli, but some are said to arise in the hemisphere and pass through this nucleus. The superior peduncles decussate in the mid-brain across the raphe, and their fibres then bifurcate into ascending and descending branches. The ascending hranches pass forwards and end in the red mueleus, but some fibres go past this into the ventral part of the thalamus. The descending branches are traceable into the dorsal part of the reticular formation of the pons.

The superior peduncle, as it issues from the hemisphere, is joined by the bundle of Gowers, which runs over it, and passes backwards along its mesial border to the vermis.

TIIE CEREBRTMM.

The grey matter of the cerebral cortex is always deseribed as if composed of a number of layers, but the strata are not sharply differentiated and they vary in number and in relative development in different regions of the cortex.

Fig. 636.-Diagrammatic section of cerebellum to show the characters and RELATIONS OF THE CELLS AND FIBRES MET WITH IN THE SEVERAL LAYERS 'AS EXHIBITED BY THE CHROMATE OF SILVER METHOD. (After Kölliker.)
P, a cell of Purkinje ; C, a cell of Golgi; b, a basket-cell; m, m, other cells of the molecular layer ; $g r$, granules; p, a nerve-ibre of the white substance derived from a Purkinje cell ; m.f., "moss"-fibres; cl.f., a climbing fibre; $g l l^{1}, g l^{2}, g l$, types of neuroglia-cells.

Most of the cells are of a long, irregularly conical shape: these are known as the pyramidal cells of the cortex, a name which is somewhat inappropriate as a term intended to describe their form (fig. 637). They vary considerably in size in different levels. The following eight strata are generally distinguishable, but in some parts of the cortex a larger number can be made out, whilst in other parts there are fewer.

1. A peripheral stratum (molecular or plexiform layer) containing scattered

Fig. 637.-Ascendino parietal or post. central, con rolution : Golgh method. (Cajal.)
1, plexiform layer ; 2, small pyramids; 3, medium pyramids; 4, superficial large pyramids; 5 , granules; (small stellate cells); fi, deep large pyramids; 7 , deep medium pyramids.
nerve-cells and many neuroglia-cells (figs. 637, 638, 1). In the most superficial part of this layer, immediately under the pia mater, is a thin stratum of nerve-fibres running parallel with the surface; the layer also contains a large number of ramified fibres. Most of the fibres of this plexiform layer are derived from nerve-cells of the deeper parts of the cortex. Intermingled with the fibres a few ramified cells, each with numerous dendrons and a long axon, are disposed parallel with the surface; the axons terminate by arhorisations within the layer itself (horizontal cells of Cajal) (fig. 638). Other cells with shorter axis-cylinder processes also occur in this layer.
2. A layer of closely set small pyramidal nerve-cells, several deep (layer of small pyramids, fig. 637, 2). This layer also contains other cells with short axons.
3. A layer of medium-sized pyramidal cells less closely set, with small granule-like cells amongst them (layer. o^{+}medium-sized pyramids, fig. 637, 3).
4. A layer of larger pyramidal cells (suparficial large pyramids, fig. 637,4).
5. A layer of small irregular cells (small stellate cells, fig. 637, 5). The large pyramids may extend down into this layer.
6. A layer of still larger pyramids (deep large pyramids, fig. 637, 6). In themotor region of the cortex, which in man appears to be confined to the precentral gyrus and paracentral Iobule, pyramidal cells of very large size (giantcells) occur within this layer, disposed in small clusters or "nests" (Betz, Bevan Lewis). The fibres of the pyra-

Fig. 638.-Diagram showing the relations of some of the cells of the obrebral cortex. (Barker, after Starr, Strong, and Leaming.)
1, plexiform layer with horizontal cells of Cajal; 2, small (d, e) and middle size (f) pyramids ; 3, large pyramids (g, g, k); also m, cell with axon passing towards the surface, but soon ramifying; n, n, cell of Golgi's second type, with axon ramifying in the adjacent grey matter; one of these belongs to the kind termed by Cajal "double-brush" cells; 4, polymorphous cells, of which p sends its axon towards the surface and q its axon into the medullary centre; cells in the grey matter, and including also
mid tract arise from these giant-cells. In some parts of the cortex the layer of large pyramids is either absent or is blended with the next layer.
7. A layer of medium-sized pyramidal cells (deep medium pyramids, fig. 637, 7).
8. A layer of small scattered cells (fig. 638, 4), many of a fusiform shape (polymorphous layer). This layer lies next to the white centre. In the island of Reil it is considerably developed, and is separated from the rest of the grey matter by a layer of white substance. It is here known as the claustrum, and on that account the layer is termed the claustral layer.
sume authorities describe the cortex as consisting only of tliree layers, viz. : the molecular layer, the layer of pyramids, and the layer of polymorphous cells; others of four, five, etc., up to nine. As a matter of fact, the complexity and the number of distinct layers largely vary in different regions.

Each pyramidal cell has several basal and one large apical dendron. This process extends to the plexiform layer, on approaching which it breaks up into numerous ramifications which have a general vertical direction and extend almost to the outer surface. The apical dendron is beset, both in its undivided part and in its branches, by minute spinous projections: similar "spines" may also

-Fli: 639.-Settinns of cerebisal con vole tiuns. (After Baillarger.) Natural size.
a, from the neighbourhood of the calcarine fissure with only one white line clearly visible (the line of ('ennari); b, ordinary type, with the superficial white layer and outer and inner lines of Baillarger shown.
be seen upon the hasal dendrons. These projections are believed by some authors to be retractile (ameboid) and to be the means of effecting (or breaking) nervous connexion with afferent fibrex; since they are in some preparations prominent, in others hardly visible: sometimes the dendrons are entilely free from them, and have an even outline or may be slightly moniliform. Each pyramidal cell has a single axon, which is usually directed towards the medullary centre, of which it forms one of the fibres: but the axon sumetimes curves lack and passes outwards again, ending in an arborisation in one of the other layers. Intermingled with the pyramids and polymorphous cells are two other kinds of cells, viz. . (1) cells with axis-cylinder process ramifying near the cell-body; these occur in all the layers (fig. 638); and (2) small cells sending their axons towards the plexiform layel: (Martinotti) : these we found chiefly in the deeper layers of the grey matter.

From the white eentre bundles of myelinated nerve-fibres pass in vertical streaks through the deeper layers of the grey matter to lose themselves amongst the pyramidal cells of the more superficial layers (figs. 645, 648). Many large fibres, however, are seen running not vertically but obliquely into the grey cortex from the white matter. Most of the vertically disposed fibres are the nerve-fibre processes of the pyramidal and polymorphous cells, and have taken origin in the cortex ; others, including the oblique fibres just mentioned, are passing into the cortex, probably from the thalamus, to end in close arborisations amongst the cells (fig, 640).

Besides these vertical strands of fibres there are others lying in planes parallel to the surface of the cortex, and derived partly from
the fibres which enter the cortex from the white matter, partly from the collaterals which are given off from the axis cylinder processes of the cortical cells themselves. The planes in which these fibres occur are: (1) near the surface, in the plexiform (molecular) layer: this superficial stratum of white fibres is best marked in the hippocampal region; (2) in the layer of medium-sized pyramids: here the fibres give the appearance of a whitish line in the section of the grey matter (outer line of Baillarger, fig. 639, b). There is a particularly dense plexus of fibres in this situation in the visual region of the cortex (all over the occipital lobe in animals but in man only in the convolutions bounding the calcarine fissure), producing a very distinct line, known as the line of Gennari (fig. 639, a). This plexus of nervefibres is in intimate association with certain (large and small) stellate cells characteristic of the visual region. (3) In most regions of the brain, in the plane of the layer of large pyramids, another white line is seen; this is known as the inner line of Baillarger (fig. 539, b). The planes in which these white lines are found are characterised, especially in the occipital and temporal lobes, by the presence amongst the pyramids of great numbers of very small nerve-cells, amongst which the white fibres of the layers ramify and probably terminate. According to Cajal,

Fig. 640.-Pkerparation showing some of the afferent fibres of the ascending frontal or pracentral gyrus. (Cajal.)
A, part of second layer; B, close terminal plexus in layer of medium-sized pyramids; C to D, intermediate plexus of horizontal fibres; \mathbf{E}, deep plexus of large oblique afferent fibres; a, b, afferent fibres arhorising in the layer of middle pyramids, amongst which they form, along with fibres derived from cells in the cortex itself, the dense plexus which is shown in the left half of the figure. The efferent fibres are not shown in this figure.
in the brain of man as compared with the lower mammals, there is a marked preponderance in the grey matter of the cortex cercbri of cells with a short axis-cylinder ramifying near the cell body. Such cells are most numerous amongst the stellate cells and the small pyramids.

The axis-cylinder processes of the pyramidal cells pass into the white centre (fig. 641). Here some of them are continued into the corpus callosum and through this to the cortex of the opposite hemisphere as commissural

Fig. 641.-Diagram to illutstrate the origin and course of the association, commissural and projection fibres of the cerebral cortex, (Cajal.)
A, commissural fibres connecting cells of the motor cortex, M, witb the opposite bemisphere; B , commissural fibres connecting the opposite sensory regions of the cortex; C, cells in basal ganglia giving origin to descending fibres and receiving collaterals from projection fibres, H , of cells of the motor cortex; D, E, endings of commissural fibres in grey matter; F, f , endings of association fibres in grey matter; I, a projection fibre from sensory (hippocampai) eortex; a, b, c, collaterals.
fibres; others form association fibres which eventually pass again into the grey matter of other parts of the same hemisphere; whilst others again, especially those of the largest pyramidal cells, extend downwards as

Fig. 642.-Neurogha cells of cortex chabiki : Molgi mathod. (C. Retziue.)
projection fibres through the corona radiata and internal capsule. These include the fibres of the pyramid tract and of the cortico-pontine tract. As the projection fibres pass through the grey and white matter of the hemisphere they give off collateral fibres to the adjacent grey matter, to the corpus callosum, and to the corpus striatum and optic thalamus, and some probably end in these masses of grey matter.

The neuroglia of the cortex cerebri like that of the cerebellum contains three types of glia-cell, viz.: spider cells, arborescent cells, and cells the body of which is placed near the surface while the processes extend for a considerable distance vertically into the grey matter (fig. 642). The ependyma cells of the ventricles are prolonged, like the cells of the central canal of the cord, in the form of long neuroglia-like fibres far into the adjacent grey matter.

SPECIAL FEATURES OF CERTAIN PARTS OF THE CORTEX.

There is, as already stated, a great amount of variation met with in the relative extent of development of the above layers. This is exemplified in the accompanying drawings by Cajal (figs. 643 to 648) of convolutions of the human brain. From these it will be seen that smaller-sized cells prevail in certain regions of the cortex (occipital, temporal); larger and fewer cells in others (frontal, parietal, limbic). Nests or groups of "giant" cells are characteristic of the "motor" region (precentral gyrus and paracentral lobule in man and anthropoid apes) ; these cells give origin to the fibres of the pyramid tract, and undergo Nissl degeneration when those fibres are severed (Page May). The occipital region (in man, the neighibourhood of the calcarine fissure) is especially characterised by containing a great number of the small stellate cells and by the presence in the layer superficial to these of a stratum of very large stellate cells with long spreading dendrons (fig. 646, 4): amongst these small and large stellate cells the optic fibres from the lateral geniculate bodies ramify. A preponderance of small stellate cells is also seen, but to a less extent, in sections of the temporal lobe. In the prefrontal and parietal regions they are less numerous, and least in the motor cortex. The first temporal gyrus is characterised by the presence in nearly all the layers, but especially the deepest, of special large cells with widely spreading dendrons and an axon passing towards the white substance but giving off many collaterals in the grey matter. There are also in this gyrus very many cells with their axons ramifying in a most complex manner near the cell-body, mainly in a plane vertical to the surface. The hippocampal gyrus has groups or islets of stellate cells (groups of small cells alternating with groups of larger) in the plexiform layer. The cortex of the insula has special cells similar to those in the first temporal gyrus, and is further characterised by the peculiar spindle-shape of many of the large pyramids.

The size and number of the myelinated fibres of the grey matter vary

Fis. 643.

Fig. $1 ; 44$.

Fis. 645.

Fig. (i43. -..fection of pust-chntral gyrus of van. stained by Nissl's metiod. (Cajal.)
1, plexiform layer ; 2, small pyramids; 3, medium pyramids ; 4, superficial large pyramids : 5 , small stellate cells (granules); 6, deep large and medim pyramids; i, fusiform cells.
Fig. 1i44--Settion of precentral gyrt's (motor cortex), stained by Nissl's method. (Cajal.)
1 to 6 as before ; a, c, small cells amongst the pyramids ; b, a large pyramid; d, a giant cell of Betz

Fig. 64.- Segtion of one of the motor convolutions (man), Stained by Weigert-Pal method. (Cajal.)

Fig. 646.-Calcarine (visual) cortrx of mán. (Cajel.) Nissl's method.
1, plexiform layer: 2, small pyramids; 3, medium pyramids; 4, large stellate cells (characteristic of this part of the cortex) ; 5, small stellate cells; 6, a deep plexiform layer, containing some emall pyramids; ${ }^{7}$ ', large pyrauids; 8 , layer of small and medium pyramids with bent ascending axons; 9 , fusiform cells.
Fig. 647.-Shotion of first temporal gyrus (acoustic cortex) of man, stained by Nissl's method. (Cajal.)
1, piexiform layer; 2, layer of small pyramids; 3, superficial medium pyramids; 4, large pyramids ; 5 , small stellate cells (granules) ; 6, deep medium pyramids; 7 , fusiform cells.
in different regions. ${ }^{1}$ In some they are large and numerous (motor part of frontal lobe, calcarine area, hippocampal area), in others fine and much less conspicuous (gyrus fornicatus, temporal area, parietal area, prefrontal area, insula and lobus pyriformis), whilst an intermediate condition presents itself in the occipital area (except the calcarine legion), the transverse temporal gyri and superior temporal gyrus, and the part of the frontal immediately in front of the motor region. These diffcrences have been employed by Campbell

F1i: 469. -Suphrficlal layers of motor cortex of child : Golgi method. (Cajal.) A, B, C, cells of Cajal in plexiform lnyer ; D to K , cells of type ii. of Golgi (with axons romifying near cell-body); H, J, "double-brush" types of cell.
in an attempt to differentiate the functions of the various cerebral regions by a comparison of their structure. ${ }^{2}$

THE RHINENCEPHALON.

The rhinencephalon (olfactory region of the telencephalon), on account of the peculiarities of its structure, its importance in most animals, and the

[^26]fact that it has been the part of the telencephalon to appear first in phylogenetic development, merits a special description, although in man and

Fig. 650.

Fig. 651.

Fig. 650.-Section across the hippocampus major, dentate fissure, dentate fascia and fimbria. (W. Krause.)
D, fascia dentata, or dentate convolution; F, fimbria, composed of longitudinal fibres here cut across; H, medullary centre of the hippocampal gyrus prolonged around the bippocampus, as the so-called alveus, into the fimbria; 1, layer of large pyramidal cells; 2, their processes (stratum radiatum); 3, stratum granulosum ; 4, plexiform layer (stratum laciniosum); 5, superficial white layer; 6, nerve-cells of fascia dentata; 7, stratum granulosum of fascia dentata; 8, termination of superficial white layer, its fibres becoming longitudinal.

Fig. 651.-Hippocampal region: Goloi method. (Cajal.)
A, B, hippocampal gyrus; C, hippocampus major; D, dentate gyrus; E, fimbria; F, wbite matter of hippocampal gyrus; G, in lateral ventricle; the line points to the crossed spheno-hippocampal bundle; H, fibres of corpus callosum.
a, efferent fibres of hippocampal gyrus; b, afferent fibres of hippocampal gyrus; c, afferent fibres of hippocampus and dentate gyrus; d, others perforating grey matter of hippocampal gyrus; e, others eut obliquely; f, fibres of alveus; g, h, cells of hippocampus major sending their axons into the alveus and towards the fimbria; $; k$, collaterals from these axons passing to the molecular layer; r, collateral fibres of alveus. The arrows indicate the probable course of the nerve impulses.

Primates generally, and in some other (microsmatic) mammals, it is reduced to a comparatively rudimentary condition. In the so-called osmatic (maerosmatic) mammals the rhinencephalon consists of a large hollow olfactory bulb, the cavity of which communicates with the lateral ventricle.

It forms the anterior termination of a thick olfactory lobe which broadens out behind and becomes continuous with the hippocampal gyrus and hippocampus. The whole forms a pyriform mass, separated from the rest of the cortex by a well-marked fissure-the limbic fissure-and has special connexions through the anterior commissure and fornix with other parts of the brain on the same and on the opposite side.

In man the rhinencephalon consists anteriorly of the small olfactory bulb from which the thin olfactory tract extends backwards to the grey matter at the base of the brain and to the hippocampal region. Posteriorly the cortex of the rhinencephalon is doubled in so as to form a projection (hippocampus major) in the descending cornu of the lateral ventricle: its edge here thins off and is continued merely as a thin layer of epithelium covering the choroid plexus of the pia mater, which is invaginated into the ventricle. At this thin edge the white matter comes to the surface as the fimbria which is continued on each side into the commissural band known as the fornix. Lying along the fimbria is the small and half-concealed dentate gyrus, which is formed by the sharp bending of the grey matter, and is traceable round into the hippocampus major, the hippocampal fissure being between them: the hippocampus major is continuous externally with the gyrus hippocampi. The olfactory tract is connected directly with the hippocampal region by a lateral root, whilst a mesial root passes into the anterior commissure and forms a connexion with the rhinencephalon of the opposite side. The structure and connexions of all these parts as they occur in man may be briefly given.

In the region of the hippocampus major (figs. ${ }^{6} 650,651$) the cortex is simpler in structure than elsewhere, and in the hippocampus major itself, which is an infolded part of the cortex, the pyramids are reduced to a single layer of large cells lying in the deeper portion and sending their apical dendrons as long fibres into the plexiform layer. The plexiform layer and the superficial white stratum overlying it are both very strongly marked, the plexiform layer having a distinctly reticular aspect, due partly to neuroglia-cells, partly to the arborescence of the dendrons of the pyramids. The plexiform layer is here termed stratum laciniosum; internal to it near the dentate gyrus is a layer of closely packed small cells termed stratum granulosum. The pyramidal cells lie close to a white layer known as the alveus. This is the part of the hippocampus seen within the ventricle, and represents the white matter of the hemisphere, here greatly attenuated. The alveus is prolonged externally into the fimbria, in which its fibres become longitudinal in direction and are continued into part of the fornix.

In the dentate gyrus (fascia dentata, figs. 650, 651) the pyramidal cells (6) arc arranged in an irregularly radiating manner. They occupy the centre of the convolution, and are surrounded by a ring of closely packed small cells (stratum granulosum of fascia dentata, fig. 650, 7). External to these small cells is a thick plexiform layer (stratum laciniosum).

The anterior part of the hippocampal gyrus, known as the lobus pyriformis, receives the lateral root of the olfactory tract. It is characterised by the presence in the plexiform layer of peculiar nests of nerve-cells. The cells in these nests are of two types, viz., large polymorphous cells and small pyramidal cells, each being confined to its own nest. This part of the cortex is regarded by Cajal as the true olfactory region. In some animals the anterior perforated space forms a distinct prominence of the cortex (tuberculum olfactorium) and this is also characterised by cell-nests (islets of Calleja). They also occur in the cortex of the hippocampal fissure.

Tbe olfactory tract is an outgrowth of the brain which was originally hollow, and remains so in many animals; but in man the cavity has become obliterated, and the centre is occupied by neuroglia, containing no nerve-cells. Outside the central neuroglia lies the white or medullary substance, consisting of bundles of longitudinal white fibres. Most externally is a thin superficial layer of neuroglia.

The olfactory bulb (fig. 652) has a more com-

Fig. 652.--Secmion across a part of the olfactory bulb. (Henle.)
1,3 , bundles of very fine transversely cut nerve-fibres, forming the flattened medullary ring, enclosing the central neuroglia, 2: this ring is the anterior continuation of the olfactory tract; 4, 5 , white layer with numerous snall cells (granules); 6 , mitral-cell layer; 7 , layer of olfactory glomeruli; 8, layer of olfactory nerve-fibres, bundles of which are seen at 势 passing through the eribritorm plate of the ethmoid bone. plicated structure thar the tract. Dorsally there is a flattened ring of longitudinal white bundles enclosing neuroglia ($1,2,3$), as in the olfactory tract, but below this ring several layers are recognised as follows:-

1. A white or medullary |layer (fig. 652, 4, 5), characterised by the presence of a large number of small cells ("granules") witb reticulating bundles of myelinated nerve-fibres rumning longitudinally between them.
2. A layer of large nerve-cells (6), with smaller ones ("granules") intermingled, the whole embedded in an interlacement of fibrils derived from the cell-dendrons. From the shape of most' of the large cells of this layer (fig. 653, m.c.) it has been termed the "mitral" layer. These cells send their
axons upwards into the next layer; they eventually become fibres of the olfactory tract and pass along this to the base of the brain, giving off numerous collaterals into the bulb as they run backwards.
3. The layer of olfactory glomeruli (fig. 652, 7; fig. 653, gl.). This consists of rounded nest-like interlacements of fibrils which are derived on the one hand from the terminal arborisations of the non-myelinated olfactory fibres which form the subjacent layer, and on the other hand from arborisations of dendrons of the large "mitral" cells of the layer above. There are

Fig. 653.-Diagram to show the relationg of cells and fibres in the olfactory bulb.
olf.c., olfactory cells in the olfactory mucous membrane, sending their basal processes as (nonmyelinated) nerve-fibres into the deepest layer of the olfactory bulb (olf.n.); gl., olfactory glomeruli containing the terminal arborisations of the olfa tory fibres and of processes from the mitral cells; mc, mitral cells, sending processes down to the olfactory gloneruli, others laterally to end in free ramifications in tbe nerve-cell layer, and their axis-cylinder processes, \boldsymbol{a}, a, upwards, to turn sharply backwards and hecome fibres of the olfactory tract (n.tr.). Numerous collaterals are seen coming off from these fibres; n, a nerve-fibre of the olfactory tract ending in a free ramification in the olfactory bulb.
also a few small nerve-cells immediately external to and extending within the glomeruli (periglomerular cells). These are short-axoned cells and appear to connect neighbouring glomeruli.

The layer of olfactory nerve-fibres (fig. 652, 8; fig. 653, olf.n.). These are all non-myelinated, and are continued from the olfactory fibres of the olfactory mucous membrane of the nasal fosse. In this mucous membrane they take origin from the bipolar olfactory cells, which are characteristic of the membrane (see Lesson XLIX., fig. 696), and they end in arborisations within the olfactory glomeruli, where they come in contact with the arborisations of the mitral cells. The relations of the olfactory cells and fibres to the mitral cells, and the continuation of the axis-cylinders of the latter
upwards and backwards in the olfactory tract, are shown in the accompanying diagrams (figs. 653, 654). Besides the centripetal nerve-fibres there is a certain number of centrifugal fibres which end by ramifying in the olfactory bulb amongst the mitral cells (fig. 653, n^{\prime}).

As shown in fig. 654, many of the fibres of the olfactory tract pass to the

Fig. 654.-Diagram of the olfactory path in the brain. To simplify the diagram the various divarications of the olfactory path have been represented by branehings of individual fibres, althongh in sone cases the divergence is brought about by the turning aside of bundles of entire fibres.
hippocampal region of the brain, terminating by arborescence in the grey matter (molecular layer) of the base of the olfactory lobe in the region of the anterior

Fig. 655.-Frontal section through the cerebrum in the reoion of the middle commissure. Natural size.
c.c., orrpus callosum ; f, fornix ; n.c., nucleus candatus; th, thalamus; s.t.r., subthalamic region; or., crusta passing into internal capsule ; $8 . n$., substantia nigra; u, e, i, various nuolei of thalamus; a, its latticed layer: $1,2,3$, parts of subthalamus; $n . l$, nucleus lenticularis; e.e., external capsule: cl., claustrum ; 1 , insula ; m.e., middle commissure ; above and below it is the third ventricle, communicating above on each side through the foramen of Monro with the lateral ventricle. Below the fornix are seen the choroid plexuses; t.s., stria terminalis.

perforated space, as well as in that of the uncus and the hippocampal gyrus. Fibres are also given off from the olfactory tract to the anterior commissure which proceed to the opposite tract and bulb. Besides these the anterior commissure contains many fibres which are passing from the hippocampal region on one side to the corresponding region on the opposite side of the brain. From the pyramid-cells of the base of the olfactory lobe and hippocampal gyrus fibres pass to the grey matter of the hippocampus, and from the pyramid-cells of the hippocampus others proceed by way of the fimbria
and fornix to the hippocampus of the other side, to the subcallosal gyrus and septum lucidum, to the ganglion of the habenula, and finally by the anterior pillar of the fornix to the corpora mammillaria.

(OPPUS STRIATUN.

Besides the grey matter of the cerebral cortex the cerebral hemispheres conceal in their deeper parts certain

Fig. 656.-Horizontal section through the thalamus and corpes striatem. Natural size.
r.l., lateral ventricle, its anterior cornu; c.e., corpus (allosum; 8.l., septum lucidum; a.f., anterior pillars of the fornix ; 13 , third ventricle ; th, thalamus ; s., stria medullaris; n.c, nucleus caudatus, and $u . l$., nueleus lenticularis of the corpus striatum: i.c., internol capsnle ; g, its angle or genu; n.ct, tail of the nucleus candatus appearing in the descending cornu of the lateral ventricle; cl., claustrum; I. insula. other masses of grey substance (figs. 655, 656). The principal of these are the corpus striatum (consisting of nucleus caudatus, n.c., and unclen, Tenticularis, n.l.) and thalamus (th.). Between them run the bundles of white fibres which are passing downwards to the crus cerebri, forming a white lamina termed the internal capsule. Above the level of these nuclei the internal capsule expands into the medullary centre of the hemisphere. Below the thalami are the prominent ganglia known as corpora albicantia or mammillarin, Of these the optic thalami and corpora mammillaria have already been noticed.

The nucleus caudatus of the corpus striatum is composed of a reddish-grey substance containing nerve cells some with long, others with shor axon-processes; some of the cells with long processes being very large. It receives fibres from the part of the internal capsule which separates it from the nucleus lenticularis. Next to the lateral ventricle it is covered by a thin layer of neuroglia, and over this by the epithelium of the cavity (ependyma).

The nucleus lenticularis, which corresponds in position internally with the island of Reil externally, is divided by two white lamine into three zones. It is separated from the nucleus caudatus and optic thalamus by the interual capsule (i.c.), which consists of the bundles of fibres which are passing between the white centre of the hemisphere and the crus cerebri. It receives on its inner side many fibres from the cansule ; these impart
to it a radially striated aspect. Many of the nerve cells of the nucleus lenticularis contain yellow pigment. The fibres of the ansa lenticularis (p. 484) appear to arise from some of them, but the exact course and destination of these fibres is not known.

The internal capsule (i.c.) is continued below into the crusta. It consists mainly of fibres connected with the cortex cerebri, and passing to (or from) the corpus striatum, thalamus, mid-brain, pons, medulla oblongata, and spinal cord. A borizontal section across the internal capsule (fig. 656) shows it to be bounded laterally by the lenticular nucleus, mesially by the caudate nucleus, the stria medullaris, and the thalamus. Such a section shows a sharp bend in the plane of the capsule-the genu. Fibres

Fig. 657.-Section through the upper part of the brain, to show the relations of uts membranes. (Axel Key and Gustaf Retzius.)
c.c., corpus callosum; f, great longitudinal fissure between the hemispheres containing the projection of dura mater known as the falx cerebri; s.c., subarachnoid space between pia mater which closely covers the surface of the brain and dura mater which lines the skull. The arachnoid is in this part close to the dura mater into which and into the great longitudinal venous sinus in the middle it sends villous projections (Pacehionian glands).
from the motor region of the cortex (pyramid-tract) pass down in the part of the capsule extending from the genu as far as the posterior limit of the lenticular nucleus. In this area the fibres for the head and eyes are nassed chiefly in the anterior part: those for the lower limb in the posterior part, while those for the face, arm, and trunk occupy intermediate positions from before backward, in the order named (Beevor and Horsley), but without being strictly confined to definite zones.

The fibres from the cortex to the thalamus lie mainly in the anterior limb of the internal capsule, while afferent fibres from the thalamus to the cortex occur in the posterior part of the posterior limb; but they extend forwards so as to mingle with the descending fibres of the pyramid-tract.

MEMBRANES OF THE BRAIN.

The membranes of the brain (fig. 657) are similar in general structure and arrangement to those of the spinal cord with which they are continuous through the occipital foramen. The dura mater is, however, more closely adherent to the inner surface of the bony enclosure than is the case in the vertebral canal, while the arachnoid is in most places close to the dura mater, and separated from the pia mater by a wide subarachnoid space, which is bridged across by finely reticulating bands of areolar tissue. In the vicinity of the longitudinal sinus, small rounded elevations (arachnoidal villi, Pacchionian bodies) project into the dura mater, and even become embedded in the skull itself. The pia mater is closely adherent to the surface of the brain, and dips into all the sulci, but without forming actual folds (Tuke). In it the blood-vessels ramify before passing into the substance of the brain, and they are accompanied, as they thus enter the cerebral substance, by prolongations of the pia mater, which do not, however, closely invest them, but leave a clear space around each vessel, presumably for the passage of lympb (perivascular space). The capillary network is much closer in the grey than in the white matter. The larger veins are enclosed by two layers of the dura mater, within which they run in certain parts in the form of sinuses; the chief of these are found at the lines of junction of the principal folds (falx, tentorium) with the main portion of the membrane.

The pia mater sends highly vaseular infoldings of the pia mater into the ventricles known as the choroid plexuses; they are believed to play the part of glands for the secretion of the cerebro-spinal fluid. They are covered with ependymal epithelium.

LESSONS XLVI., XLVII., AND XLVIII.

THE EYE.

1. Sections of the eyelid vertical to its surfaces and across its long axis.

Notice the long sacculated Meibomian glands lying in dense connective tissue close to the conjunctival surface, their ducts opening at the margin of the lid. External to these the small fibres of the orbicularis palpebrarum are cut across; a few of the fibres of the musole lie on the conjunctival side of the duct. A short distance from the Meibomian gland' may be observed a tolerably large sebaceous gland: outside this again are the eyelashes. In the skin, covering the outer surface of the eyelid a few small hairs may be seen. At the attached part of the eyelid are some bundles of involuntary muscular fibres cut longitudinally in the section, and in the upper eyelid the fibrous insertion of the elevator muscle may be observed attached to the dense connective tissue.

Make a general sketch under a low power.
2. Sections through the posterior part of an eyeball (man or pig). These sections will show the relative thickness of the several coats and the layers of which each coat is formed. Sections which pass through the point of entrance of the optic nerve will also exhibit the manner in which the nerve pierces the several coats to reach the inner surface of the retina. The modifications which are found in the neighbourhood of the yellow spot may be made out in sections through that region ; but they must be taken from the human eye.
3. Sections of the anterior half of an eyeball. These sections should pass through the middle of the cornea. The lens may be left in situ, but this renders the preparation of the sections and the mounting of them difficult on account of the extreme hardness which is imparted to the lens-tissue by alcohol. ${ }^{1}$

In these sections make a general sketch under a low power, showing the relations of the several parts one with another; and study carefully, and sketch in detail, the layers of the cornea, the junction of the cornea and sclerotic, the ciliary muscle, the muscular tissue of the iris, the mode of suspension of the lens, and the pars ciliaris retinæ.
4. Mount in glycerine thin tangential sections of a cornea stained with chloride of gold by Cohnheim's method; if from the frog, the cornea can be torn with fine forceps into thin lamellæ, which are mounted whole. Sketch three or four of the connective-tissue cells (corneal corpuscles). The arrangement and distribution of the nerve-fibres and their termination amongst the epithelium-cells as shown in chloride of gold preparations have been already studied (Lesson XIX.).
5. Mount in glycerine or dammar sections of a cornea which has been stained with nitrate of silver. Notice the branched cell-spaces corresponding with the connective-tissue cells of the last preparation.

This preparation is best made by rubbing the surface of the cornea of a recently killed animal with lunar caustic, first scraping off the epithelium with a scalpel. After ten minutes (by which time the nitrate of silver will have penetrated the thickness of the cornea) the eye is washed with distilled water, and exposed to the light. When brown, tangential sections may be made, for which purpose the stained cornea may be hardened in alcohol or soaked with gum and frozen.
6. Remove the sclerotic from the anterior part of an eye which has been preserved in Müller's fluid, and tear off thin shreds from the surface of the choroid, including amongst them portions of the ciliary muscle. Stain the shreds with hæmatoxylin and mount them in glycerine. Sketch the branched pigment-cells, the elastic network, the mode of attachment of the fibres of the ciliary muscle, etc.

[^27]7. Injected preparation of choroid and iris. Mount portions of the choroid coat and iris from an eye (preferably of an albino rabbit or rat), the blood-vessels of which have been filled with coloured injection. Make sketches showing the arrangement of the capillaries and veins.
8. Teased preparation of human retina.

Fio. 658. - Vertical section through the UPPER EYELID. (Waldeyer.)
a, skin; b, orbieularis; b^{\prime}, ciliary bundle ; c, involuntary muscle of eyelid ; d, conjunctiva; e, tarsus with Meibomian gland; f, duct of the gland; g, sebaceous gland near eyelashes; h, evelashes; i, small hairs in outer skin; j, sweat glands ; h, postsrior tarsal glands.

Break up with needles in a drop of glycerine a minute fragment of retina which has heen placed in 1 per cent. osmic acid solution for some hours, and has subsequently been kept in dilute glycerine. Completethe separation of the retinal elements by tapping the cover-glass. Draw carefully under a high power some of the isolated elements-e.g. the rods and cones with their attached fibres and nuclei, the inner granules, the gang-lion-cells, the fibres of Müller, hexagonal pigment-cells, etc. In some of the fragments the arrangement of the elements in the retinal layers may be made out even better than in actual sections. ${ }^{1}$

Measure the length and diameter of some of the cones, the length of the cone-fibres, and the diameter of some of the outer and inner nuclei.
9. Teased preparation of frog's retina. To be prepared in the same way as 8 . Notice the very large rods, their outer segments breaking up into disks, and the relatively small cones. Also the pigment extending between the rods, the distance varying according as the eye has been kept in the dark or in the light before treatment with osmic acid.

A fresh frog-retina may also be teased in ritreous humour.
10. Sections of retina of ox or dog, which have been prepared by Golgi's method. A curled-up piece of fresh retina is placed in osmiumbichromate mixture and is subsequently treated with nitrate of silver solution. ${ }^{2}$
11. Teased preparation of lens. Separate in water the fibres of a crystalline lens which has been macerated for some days in bichromate of potassium. Sketch some of the filres, together and separate.

The eyelids (fig. 658) are covered externally by the skin, and internally or posteriorly by a mucous membrane, the conjunctiva, which is reflected from
${ }^{1}$ For the distribution of the nerve fibres and cell-processes within the retina Golgi's silver chromate method is employed (see § 10).
${ }^{2}$ See Appendix. Cajal's reduced silver method may also be used,
over the globe of the eye. They are composed in the main of connective tissue, which is dense and fibrous under the conjunctiva, where it forms what is known as the tarsus.

Embedded in the tarsus is a row of long sebaceous glands (the Meibomian glands, f), the ducts of which open at the edge of the eyelid. The rest of the thickness of the eyelid is composed of a somewhat loose connective tissue, which contains the bundles of the orbicularis muscle (b). In the upper eyelid the levator palpebrce is inserted into the tarsus by a fibrous expansion; some bundles of involuntary muscle are also present near the attachment of the eyelid. The skin has the usual structure ; it includes small sweat glands and the follicles of small hairs, and, in addition, at the edge of the eyelid, the large hair-follicles from which the eyelashes grow. The epithelium of the conjunctiva palpebre is columnar, passing at the edge of the lid into the stratified epithelium of the skin; it also becomes stratified in the part which is reflected over the globe of the eye. The nerves of the conjunctiva terminate for the most part in end-bulbs, which in man are spheroidal, and formed chiefly of a small mass of polyhedral cells; but in the calf and most animals they are elliptical (see Lesson XIX.).

The lacrimal glands may be mentioned in connexion with the eyelid. They are

Fig. 659.-Alveoli of lackimal gland of man. Photographed from a preparation by Prof, Martin Heidenhain. Magnified 200 diameters. Some of the cells show secretion granules. In one or two situations the intercellular canaliculi which open into the lumen of the alveolus can be made out. compound racemose glands yielding a watery secretion. Their alveoli are lined by columnar or polyhedral cells (fig. 659), which are normally filled with granules, but, after profuse secretion, these disappear, and the cells become shorter and smaller. The ducts, of which there are several, open at the upper fold of the conjunctiva near its outer extremity.

THE SCLEROTIC AND CORNEA.

The globe of the eye (fig. 660) is enclosed by three coats, the corneasclera, choroid-iris, and retina. It is filled by the vitreous and aqueous humours and the crystalline lens which lies between them.

The sclerotic coat (sclera) is composed of dense fibrous tissue, the bundles of which are intimately interlaced. It is thickest at the back of the eyeball. It is covered externally with a lymphatic endothelium, while internally it is
lined by a layer of connective tissue containing pigment-cells, which give it a brown appearance (lamina fusca). At the entrance of the optic nerve the sclerotic is prolonged into the sheath of that nerve, the bundles of which, piercing the coat, give a sieve-like aspect to the part (lamina cribrosa).

The cornea (figs. 661, 662) consists of the following layers (enumerated from before back) :-

Fig. 660.-Diagram of a section thiocgh the (rieht) human exe passingi ilorizontally nearly through the middle, Magdified about 4 diameters. μ, b, equator : x, y, optic a ais.

1. A stratifed epithelium continuous with the epithelium of the conjunctiva.
2. A thin lamina of homogeneous connective tissue (membrane of Bowman), upon which the deepest cells of the epithelium rest.
3. A thick layer of fibrous connective tissue which forms the proper substance of the cornea. This is continuons laterally with the tissue of the
sclerotic. It is composed of bundles of white fibres arranged in regular laminx, the direction of the fibres crossing one another at right angles in the alternate laminæ. Between the laminæ lie flattened connective-tissue cor-

Fig. 661. -Vertical section of homan corinea from near the marein. (Waldeyer.) Magnífied.
1, epithelium ; 2, anterior homogeneous lamina; 3, substantia propria cornew; 4, posterior homogeneous (elastic) lamina; 5 , endothelium of the anterior chamber; a, oblique fibres in the anterior layer of the substantia propria; $\quad 3$, lamella with their fibres cut across, producing a dotted appearance; c, corneal corpuscles appearing fusiform in section; d, lamellæ with their fibres cut longitudinally; c, transition to the sclerotic, with more distinct fibrillation, and surmounted by a thicker epithelium ; f, small blood-vessels cut across near the margin of the cornea.
puscles (fig. 663). These are branched and united by their processes into a continuous network; there is, of course, a corresponding network of cellspaces (fig. 664). In vertical sections the cells appear narrow and spindle-
shaped (fig. 661). In the superficial lamine near the margin there are a few buadles of fibres which run obliquely towards the surface (fig. 661, a).

Fig. 662.-SECtion of human Cornea, showing the stratified epithelium, the membrane of bowman, and the supfrfictat layers of the propria. Photograph." Highly magnified.
4. A homogeneous elastic layer (membrane of Descemef). This completely covers the back of the cornea, but near the angle which the cornea forms

Fig. 663.-Cells of rabbit's cornea stained with gold chloride. Magnified 300 diameters.
with the iris it breaks up into separate fibres (ligamentum pectinatum) which are partly continued into the iris as the pillars of the iris.
5. A layer of pavement-epithelium (endothelium of Descemet's membrane) covering the posterior surface of the elastic lamina, and lining the front
of the anterior chamber of the eye (fig. 661, 万). At the sides it is continuel over the ligamentum pectinatum into a similar eudothelium covering the anterior surface of the iris. The cells of the enduthelium of

Fig. 664. - Ceml-spaces of ilabbit's cornea prepared with silyer nitrate, Magnified 300 diameters. Photographed from a preparation by H. Pringle.

Descemet's membrane are separated from one another by intercellular spaces which with suitable treatnent may be seen to le bridged across by bundles of fibrits which pass through the cells (fig. 665).

Fig. 665.-Epithelifm-Cells of Descemet's membrane. (Smirnow.)
The nerves of the cornea pass in from the periphery, losing their myelin sheath as they enter the corneal substance. They form a primary plexus in the substantia propria, a secondary or subepithelial plexus immediately under the epithelium which covers the anterior surface, and a terminal plexus of fine fibrils which pass from the subepithelial plexus

Fit́．666．－Vertical section throdgh tile cornea．（Cohnheim．）
The corneal corpuscles and the cells of Descemet＇s membrane are not represented；the anterior epithelium is represented only in part．a ，Descemet＇s membrane ；b ，part of nerve plexus in substantia propria；c ，branches going to the epithelium；d ，fibres of the subepithelial layer： e ，vertical fibrils with horizontal outrunners．

Fig．667．－Celly and nelive－fiekils of postertor surface of frog＇s cornea．Gold preparation．Photograph．
in pencil-like tufts and become lost between the epithelium-cells (fig. 666). In some animals (e.g. frog) there is also a plexus of fine fibrils near the

Fifx. fiGS.-SECTION OF CHORUID (MAN) WITH PAFT OF SCLERA. ATTACHED TO THE INNER SURFACE OF THE CHOROID $1 S$ A PORTION OF THE RETINAL PIGMENT. Magnified 200 diameters.
sc, sclera; l.s., lamina suprachoroidea; r, larger blood-vessels of choroid ; c.e., chorio-capillaris; m, basement-membrane (membrane of Bruch) ; p, portions of retinal pigment-cells.

FI:. 669.-A SBLALL PORTION OF THE LAMINA SUPRACIIOROIDEA FROM THE HUMAN EYE. Highly magnified.
The branching pigment-cells and elastic fibres are well shown: n, nuclei of endothelial-cells (the outlines of the cells are not indicated) ; l, lymph-cells.
posterior surface under the endothelium of Descemet's membrane (fig. 667). There are no blood-vessels or lymphatics in the cornea, although they come close up to its margin.

THE CHOROID AND IRIS.

The choroid or vascular coat of the eye is of a black colour in many animals, but in the human eye it is brown. It is composed of connective tissue, the cells of which are large and filled with pigment (figs. 668, 669). It contains in its inner layer a close network of blood-vessels, and in its anterior part the involuntary muscular fibres of the ciliary muscle, which pass backwards from their origin at the junction of the cornea and sclerotic, to be inserted into the choroid. The choroid is separable into the following layers (enumerated from without in):-

1. The laminasufra-

Fig. 670.-Injected blood-vessejs of the chorolb соат. (Sappey.)
1 , one of the larger veins; 2 , small anastomosing vessels; 3 , hranohes dividing into the smallest vessels. choroidea (fig. 668, l.s.). This is a loose membrane composed of delicate connective tissue pervaded by a network of fine elastic fibres, and containing many large branched pigment-cells and lymph - corpuscles (fig. 699). It is covered superficially by a lymphatic endothelium, and is separated from the lamina fusca of the sclerotic by a cleft-like lymph-space which is bridged across here and there by the passage of vessels and nerves, and by bands of connective tissue.
2. The vascular layer of the choroid (fig. $668, v$ and c.c.) resembles the suprachoroidea in structure, but contains the blood-vessels of the coat. In its outer part are the larger vessels (arteries and veins), the veins having a peculiar vorticose arrangement; in its inner part (chorio-capillaris) are the capillaries, which form an extremely close network with elongated meshes, the capillaries radiating from the extremities of the small arteries and veins in a highly characteristic manner (fig. 670). In the ciliary processes the vessels have for the most part a longitudinal direction, but there are numerous convoluted transversely disposed capillaries uniting the longitudinal vessels (fig. 677, d).
3. Lining the inner surface of the choroid is a thin transparent membrane known as the membrane of Bruch (fig. (ifis. m)

The sclera, lamina suprachoroidea and vascular layer of the choroid bear the same relation to the retina-which is developed as a hollow outgrowth of the primitive brain-that the dura mater, arachnoid, and pia mater bear to the brain generally.

Fig. 671.-Section across the postertor part of threm ciliary processis. Magnified 155 diameters. (Piersol.)
a, recesses between the ciliary processes; b, the deeper (pigmented) layer of epithelium ; c, the superficial layer of non-pigmented columnar cells. These two layers of epithelium form what is termed the pars ciliaris retiriæ (p. 534).

Ciliary processes, -Anteriorly the choroid coat becomes thickened, partly by the appearance of radially arranged plaits or ridges (ciliary processes with intervening grooves), partly by the development of a ring of muscle (ciliary muscle) which encircles the globe at this part, lying

Fig. 672.-GlandS of the ciliary processes as seen after bleachinc the pigment covering them. (E. Treacher Collins.)
between the sclera and choroid. The ciliary processes are formed like the rest of the cboroid of highly vascular pigmented connective tissue, but, in place of retina, they are covered internally by two layers of epithelium, the outer layer being thickly pigmented (fig. 671). In the middle and anterior parts the epithelium dips down into the connective-tissue corium in the form of glandular tubos, which in all probability assist in the secretion
of the aqueous humour. In order to bring these ciliary glands distinctly into view, it is necessary to bleach the pigment (fig. 672).

The ciliary muscle consists of involuntary muscular bundles which arise at the corneo-sclerotic junction, and pass meridionally backwards to be inserted in the choroid (fig. 673, M). Many of the deeper-seated bundles take an oblique direction, and these pass gradually into others which run circularly around the circumference of the iris, on a level with the ciliary

Fig. 673.-Section through the cillary part of the eye, licldiding part of THE CORNEA, TAE ORA SERRATA, THE IRIS AND THE EDGE OF THE LENS WITII 1TS SUSPENSORY LITAMENT. (Fuchs.)
C, cornea; S, sclerotic; $C h$, chornid ; R, retina; $P e$, its pigmented epithelium; 0 . pars ciliaris: this is continued over the choroid processes; pe., pc., pigmented and non-pigmented layers of pars ciliaris; L, lens; M, ciliary muscle; r, its raciliating (meridional) fibres passing frnm their origio at the corneo-sclerotic junction; $M u$, circular ciliary nuscle; ci, artery of sclerotic; 8, vein (canal of Schlemm); z, fibres of zonula of Zinn passing between choroid prncesses into the suspensory ligament of the lens $\left(z_{1}, i\right) ; l$, angle of anterior chamber : $s p$, sphincter pupilla; p_{r} edge of pupil; h, pigmented epithelium of iris (accidentaly detached at this point and showing, v, layer of dilatator pupillw) ; c, r, f, f, ereases and folds of anterior surpace of iris ; $c r$, a fissure in this surface (accidental) ; a, arters at insertion of iris ; k, capmule of lens.
processes. This set of circularly arranged bundles constitutes the rircular ciliary muscle of H . Muller ($1 / u$) ; it is most marked in hypermetropic eyes.

The iris. -The iris is that part of the vascular coat of the eye which extends in front of the lens. It is continuous with the choroid and has a somewhat similar structure, but its pigment-cells often contain variously coloured pigment. Besides the delicate connective tissue with numerous elastic fibres and blood-vessels of which it is chiefly composed, it contains two sets of plain muscular fibres. The one set forms the sphincter pupille (figs. $673, s p . ; 674, a$), which encireles the pupil ; the other set consists of a

Fig. 674.-Segment of the tris, seen from the posterior surface after removal of the uveal pigment. (Iwanoff.) a, sphincter muscle; b, dilatator muscle of the pupil.

Filf. 675.-Section (from the eye of a mán) showing the relations of the CLliARY MUSCLE TO THE SCLEROTIC, THE IRIS, AND THE CAVERNUUS SPACES NEAR THE ANGLE OF THE ANTLRLOR CEAMBER.
The figure, which is copied from a photograph, includes a small portion of the ciliary muscle, the fibres of which are seen to be converging to a point immediately anterior to the angle of the anterior chamber. Here they are attached through the medium of a band of the fihrous tissue of the selerotic (consisting mainly of circular bundles) to the outer part of the lipamentum pectinatum, which forms a loose tissue with open meshes lying between the canal of Schlemm and the anterior chamber. In the right half of the flgure the fibres of the ligamentum pectinatum are seen to be gradually converging towards the posterior surface of the cornea, and somewhat beyond the part shown in this figure they merge into the membrane of Descemet. A communication of the canal of Schlemm, which is double in this section, with the endothelium-lined spaces of the ligamentum pectinatum, is apparent, and also communications between the last-named spaces and the anterior chamber.
flattened layer of radiating fibres which extend from the attachment of the iris nearly to the pupil, lying close to the posterior surface and constituting the dilatator pupillae (figs. 674, $b ; 675$ and 676).

The back of the iris is covered by a thick double layer of pigmented

Fig. 676.-Segtion of posterior layers of hlman hris, neak ats attachment to the choroto. Magnified 600 diameters.
s, iris stroma, with connective tissue, branched pigment-cells, and blood-vessels; d, dilatator musele; η^{\prime}, deeper loyer of uveal pigment ; $p^{\prime \prime}$, superficial dayer of uveal pigment ; this dayer is broken away from the larger part of the section.
epithelium (uvea) (fig. 676) continuous with the epithelium of the pars ciliaris retinae (p. 534).

The blood-vessels of the iris (fig. 677, e) converge towards the pupil. Near the pupil the small arteries form an anastontogic circle, from which

Fig. 677.-Vessels of the choroit, citriturgrocesses and iris oe a child. (Arnold.) 10 diameterg;
u, capillary network of the posterior part of the choroid, ending at b, the ora serrata; c, arteries of the corona ciliaris, supplying the ciliary processes, d, and passing into the iris, c; t, the eapillary network close to the pupillary margin of the iris.
capillaries arise and pass still nearer the pupil, around which they form a close capillary network.

A large number of nerve-fibres are distributed to the choroid and iris, chiefly to the muscular tissue of those parts (ciliary muscle and sphincter and dilatator pupill:r).

The museular tissue of the iris is developed from the epithelium at the back of the iris (Nussbanm, Szili).

THE RETINA.
The retina consists of the eight layers shown in the accompanying diagram (fig. 678), numbered as they occur from within out.

The inner surface of the retina rests upon the hyaloid membrane of the vitreous humour. It is formed of the united bases of the fibres of Müller, which will be afterwards described.

1. The layer of nerve-fibres is formed by the expansion of the optic nerve after it has passed through the coats of the eye (fig. 679). The optic nerve differs from other cerebro-spinal nerves in being made up not of separate cylindrical bundles or funiculi, but of one large bundle, covered with a thick sheath and subdivided by numerous interlacing septa into portions of irregular size and shape (fig. 680). A section across the nerve taken near its entrance into the globe shows a central strand of connective tissue containing the central retinal artery and vein which pass obliquely into the nerve a few millimeters from the back of the eyeball. The sheath of the nerve has a composite structure, being formed externally of a thick fibrous membrane continuous proximally with the dura mater and distally with the selera, internally of a membrane continuous proximally with the pia mater, whilst between the two is a space containing a prolongation of the arachnoid; the space itself is continuous with the

Fig. 678.-Diagrammatic section of the human retina. (M. Schultze.)
1, Layer of optic nerve-fibres; 2 , layer of optic nervecells; 3, inner synapse or molecular layer; 4, layer of inner granules or bipolars; 5 , outer synapse or molecular layer; 6 , layer of outer granules (outer nuclear layer); 7 , layer of rods and cones; 8 , layer of pigment-cells; m.l.i., membrana limitans interna; m.l.e., membrana limitans externa. subdural and subarachnoid spaces of the cranial cavity. The nervous tissue is greatly diminished at the lamina cribrosa owing to the disappearance of the myelin sheath of the nerve-fibres, which are continued into the retina as axis-cylinders only.

At its entrance the nerve forms a slight eminence (colliculus nervi optici). The nerve-fibres are connected with (derived from) the cells of the

entrance of the optic neeve. (Toldt.)
$V c$, dural sheath; Im, arachnoidal sheath, and $V^{\prime} i$, pia-matral sheath of the optic nerve, with lymphspaces between them ; $O, 0$, nerve bundles; L, lamina cribrosa ; A, central artery; δ, sclerntic; Ch, choroid; R, retina. Tbe small letters refer to the various parts of the retina, l being the layer of rods and cones, rod- and cone-fibres, i optic nerve-fibres, and k the hyaloid membrane of the vitreous humour.

Fig. 680. - Sletion of ohtic nerve : man. (Greetil Magnitied 24 diametark The section is taken near the junction wit
ganglionio or optic nerve-cell layer (fig. 681) and are passing centripetally to enter the brain, but some aro contrifugal and are derived from cells in the brain: these traverse the ganglionic and molecular layers to form a

Fig. 681.-Section of dog's retini, Golgi method. (Cajal.)
u, cone-fibre ; b, rod-fibre and nucleus ; c, d, bipolar cells (inner granules) with vertical ramifica. tions of their outer processez or dendrons: in the centre of the ramiflcation lie the enlarged ends of rod-fibres; e, other bipolars with flattened ramifications abutting against ramified ends of cone-fibres; f, large bipolar with flattened ramifications; g, inner granule-cell sending an axon towards the rod-and cone-fibres; h, amacrine cell with difituse arborisation of its processes in inner molecular layer; i, j, m, centrifugally conducting nerve-fibrils passing respectively to outer molecular, inner nuclear, and inner molecular layers; n, ganglionic cells, with axons passing into nerve-fibre layer ; A, outer molecular layer ; B, inner molecular layer.

Fig. 682. -Section throdgh the inner layers of the retina of a bird, prepared by Golgt's method. (Cajal.)
A, nerve-fibres of optic nerve layer; B, some of these fibres passing through the inner molecular layer to end in an arborisation at the junction of the inner molecular and inner nuclear layers. The layers in this and in the two succeeding cuts are numbered in correspondence with the layers in'fig. 678.
terminal arborisation in the inner nuclear layer (fig. 681, i, j, m, and fig. 682). The layer of nerve-fibres becomes gradually thinner towards the anterior part of the retina.
2. The layer of optic norve-colls, or ganglionic layer, is composed of nervecells semewhat like the cells of Purkinje of the cerebellum. They vary in
size, although those of large size are prevalent in most parts of the retina. In the yellow spot, on the other hand, smaller nerve-cells are met with; they may here lie several deep. The cells have a fine axis-cylinder process prolonged into a fibre of the layer of optic nerve-fibres and a thick branch-

Fig. 683.-SECTIon across the molecular and ganglionic layers of a bird's retina, prepared by Golai's method. (Cajal.)
Three or four ganglionic cells, A, B, C, and the terminal arborisations of their dendrons, a, b, c, in the molecular layer, are shown.

Fili. 681.-Section of a bird's retina, prepared by Golgis method. (Cajal.)
A, large (amacrine) cell of inner nuclear layer; B, C, smaller amacrine cells; D, small bipolar nervecells with the one process ramifying in the inner mnlecular layer, and the other one ramifying in the outer molecular layer and extending (E) as far as the rods and cones as a fibre of Landolt; F, G, rod- and cone.nuclei respectively; H,I, cells with dendrons ramifying in outer molecular layer ; J, fibre of Müler.
ing process, the ramifications of which terminate in the inner synapse layer in flattened arborisations at different levels (fig. 683, A, B, c).
3. The inner synapse layer (inner molecular layer) is comparatively thick. It has an appearance very like parts of the grey matter of the nervecentres. A few small cells are seattered through it, but it is mainly occupied by the processes of the optic nervecells and of the inncr granules which form
synapses within it ; it is also traversed by centrifugal fibres from the optic nerve layer, as well as by the fibres of Müller.
4. The layer of inner granules (also termed inner nuelear layer) is mainly composed of bipolar nerve-cells containing large nuclei. One process (the axon) of each of these cells (fig. 681) extends inwards into the inner molecular layer where it spreads out into a terminal arborisation. These arborisations occur at different levels in the layer, forming synapses with the optic nerve-cells. Another process (dendron) is directed outwards, and arborises in the outer molecular layer, where it forms synapses with the terminations of the rod- and cone fibres. It has been shown by Ramon y Cajal that there are two kinds of bipolars, one kind (rod-bipolars, fig. 681, cd) being connected externally with the rods of the retina, and passing inwards to ramify over the bodies of the nerve-cells; whilst the others (conebipolars, e) are connected with the conefibres, and ramify in the middle of the inner molecular layer. The outwardly directed processes of the cone-bipolars are, in some animals, but not in mammals, continued as far as the external limiting membrane, where each ends in a free extremity (fibre of Landolt, fig. 684, e). Besides these bipolar nerve-cells, there are other larger inner granules (spongioblasts of some authors) which are different in character, having ramified processes which extend into the inner molecular layer (figs. 681, h; $684, \mathrm{~A}, \mathrm{~B}, \mathrm{o}$), in which also their bodies are often partly embedded. The cells in ques-

Fig. 685.-Diagrammatic repressentation of the rod- and cone-elements of the retina. (After Schwalbe.)
The designation of the numbers is the sume as in fig. 678. tion have been regarded as of the nature of neuroglia-cells, but according to Cajal they are probably nerve-cells. He termed them amacrino-cells, since he believed them to be destitute of a long process; but some of the amacrine-cells have since been noticed to give off, besides the branching processes or dendrons, which ramify in the molecular layer, an axis-cylinder process extending into the nerve-fibre layer. There are also certain cells in the outer part of the granule layer which send their processes entirely into the outer molecular layer (fig. 684, घ). These are the horizontal cells of Cajal (spongioblasts of outer molecular layer of some authors). The fibres of Müller have nucleated enlargements (fig. 684, J) amongst the bipolars of this layer.
5. The outer molecular layer is thin, and is composed mainly of the arborisations of the inner granules and of the rod- and cone-fibres, as
well as of the horizontal cells (figs. 681, 684), which all form synapses in this layer.

6 and 7. The outer nuclear layer and the layer of rods and cones are composed of elements which are continuous through the two layers, and they should properly, therefore, be described as one. It has been termed the sensory epithelium of the retina (fig. 685, 6 and 7). The elements of which this nerve-epithelium consists are elongated cells of two kinds. The most numerous, which may be termed the rod-elements, consist of peculiar rod-like structures (retinal rods) set closely side by side, each of which is prolonged internally into a fine varicose fibre (rod-fibre) which swells out at one part of its course into a nucleated enlargement, and ultimately ends (in mammals) in a minute knob within the outer molecular layer, where it is

Flg. 686.-Diagram of the connexions of the retinal elements with one ANOTHER AND WITH THE CENTRAL NERVOUS SYSTEM. (Cajal.)
a to g, layers of retina; a, rods and cones; b, outer nuclear layer; c, outer molecular layer; d, inner nuclear layer ; e inner molecular layer; f, nerve-cells giving origin to fibres of optic nerve; g, h, i, a centrifugally conducting fibre, arising from a cell in the brain, and with its terminal arborescence in the retina; j, grey matter of corpus quadrigeminum.
embedded in the ramifications of the dendrons of the rod-bipolars. The rod consists of two segments, an outer cylindrical and transversely striated segment which during life has a purplish-red colour if the eye has not been recently exposed to light, and an inner, slightly bulged segment which in part of its length is longitudinally striated. The nucleus of the rod-element in some animals, but according to Flemming not in man, has a transversely shaded aspect in the fresh condition (fig. 685). The cone-elements are formed of a conical tapering external part, the retinal cone, which is directly prolonged into a nucleated enlargement, from the further side of which the conefibre, considerably thicker (in mammals) than the rod-fibre, passes inwards, to terminate by an expanded arborisation in the outer molecular layer; here it comes into relation with a similar arborisation of the dendrons of a conebipolar. The cone, like the rod, is formed of two segments, the outer of which, much the smaller, is transversely striated; the inner, bulged segment
being longitudinally marked. The inner ends of the rod- and cone-fibres, as already stated, form synapses with the peripheral arborisations of the bipolars,

Fig. 687.-Pigmentled epithelidm of the homin retina. (M. schultze.) Highly magniified.
", cells seen from the outer surface with clear lines of intercellular substance between; ", two cells seen in profile with fine offsets extending insards; c, a cell still in comexion with the outer ends of the rods.

FIG. GSS. - A. PART OF A SECTION OF THE RETINA FRUM THE ETE OF A FROG WHICF HAD BEEN KEFT IN THE DARK FOR SOAE HOURS BEFORE DEATH, (v. Genderen-Stort.)

The pirment is collected towards the outer ends of the rods, which were red, except the outer detached rod, which was green. The cones, which in the frog are much smaller than the rods, are mostly elongated.
B. A SIMILAR SECTION FROM A FROG WIICH ILAD AFEN EXPUSED TO LILiIt.

The pigment is extended leetween the rods, and is acecmmulaterl near their bases. The rods were colourless. All the cones are contracted.
and through the latter elements and their synapses in the inner molecular layer a connexion is brought about with the nerve-cells and nerve-fibres of the innermost layers.

The connexion of the retiral elements with one another and through the optic fibres with the central nervous system (anterior corpora quadrigemina and laterul geniculate bodies) is shown diagrammatically in fig. 686.

In birds, reptiles, and amphibia a small oil-globule, often brightly coloured red, yellow, or green, is found in the inner segment of each cone. Many other variations of structure are met with in different animals.

The cones are most numerous at the back of the retina; they are fewer in number, and the rods are proportionally more numerous towards the anterior part.

Fig. 689.-A flbre of
Müller from the dog's retina: Golgi metiod. (Cajal.)
1, nerve-fibre layer ; 2, nerve-cell layer; 3, inner molecular layer ; 4, inner granule layer; 5 , outer molecular layer; 6 , outer granule layer; b, nucleus of the fibre ; a, a process extending into inner molecular layer; m. l.i., membrana limitans interna; m.l.e., membrana limitans externa.

Fig. 690. -Internal Limptine membrane of retina treated with silver nithate, showing the oftlines of the bases of the fibres of Müller, (G, Retzius.)
8. The pigmentary layer forms the most external part of the retina. It consists of hexagonal epithelium-cells (fig. 687), which are smooth externally where they rest against the choroid, but are prolonged internally into thin lamellæ which extend between the rods. The pigment-granules, many of which are in the form of minute crystals, lie in the inner part of the cell, but after prolonged exposure to light they are found extending along the
cell processes between the rods (Kiihne), their function being probably connected with the restoration of the purple colouring matter, which

HIG. 691. - SECTION THRODGH THE CENTRAL PART OF THE FOVEA centralis. 200 diameters. (Photographed from a preparation by C. H. Golding-Bird.)

 AT THE CENTRAL FOVEA.
M, bases of Müllerian fibres ; g, ganglion-cells; b, nuclei of imer granules (bipolars); n, cone-fibre nuclei ; c, cones.
has been bleached by the light. This extension of the pigment is accompanied by a shortening of the cones (Engelmann) (fig. 688).

Fibres of Mïller, -The fibres of Müller (fig. 684, J, and fig. 689) are long cells which pass through several of the retinal layers. Commencing
at the inner surface of the retina by expanded bases which unite with one another to form the so-called internal limiting membrane (fig. 690), they pass through all the layers in succession, until they reach the outer granule layer. Here they branch and expand into a sort of honeycomb tissue which serves to support the fibres and nuclei of the rod- and coneelements. At the bases of the rods and cones this sustentacular tissue ceases, being here bounded by a distinct margin which has been called the external limiting membrane (fig. 689, m.l.e.), but delicate sheaths pass from it around the bases of the rods and cones. Each Mullerian fibre, as it passes through the inner granule layer, has a nucleated enlargement (b), indicating the cell-nature of the fibre. The fibres of Müller represent

Fig. 693.-Section of human retina at ora serrata, showing the abrupt TERMINATION OF THE USUAL RETINAL LAYERS ANI THE CONTINUATION OF THE RETINAL SHEET AS TWO LAYERS OF CELLS, WHICH FORM THE PARS CLLIARIS RETINA. (Piersiol.)
", ", pigment layer ; b, rod- and cone-layer ; c, outer nuclear layer; d, outer molectular layer ; c, inner nuclear layer; f, inner molecular lajer; g, ganglion-cell and nerve-fibre layers; h, section at transition line ; k, columnar cells of pars ciliaris; i, a cy st (such cysts oecur oceasionally here).
ependyma-cells or long neuroglia-cells such as are found in some parts of the nerve-centres.

There are two parts of the retina which call for special description.
The macula lutea (yellow spot), with its central fovea, is the part of the retina which is immediately, concerned with direct vision. It is characterised, firstly, by its greater thickness (except at the middle of the fovea); secondly, by the large number of its ganglion-cells, which are relatively small; and thirdly, by the number of cones it contains as compared with the rods. In the central fovea itself (figs. 691, 692) there are no rods, and the cones are very long and slender, measuring not more than 2μ in diameter; all the other layers become gradually thinned down almost to complete disappearance, so that the middle of the central fovea is the thinnest part of the retina. Since there are few rods, the outer granule layer loses in great measure its appearance of being composed of closely packed nuclei, and the cone-fibres are very distinct, forming the so-called fibrous layer. Except at the very centre the direction of these fibres is oblique in this part of the retina.

Fig. 694.-SECTION THROUGH THE MARGIN OF THE RABBIT'S LENS, SHOWING THE TRANSITION OF THE EPITHELIUM OF THE CAPSULE INTO

Fif: 695.-Fibres of the crystalline LENS. 350 diameters.
A, longitudinal "Yiew of the fibres of the lens of the ox, showing the serrated edges. \mathbf{B}, transverse section of the fibres of the lens of the human eye, C, longitudinal view of a few of the fibres from the efuntorial region of the baman lens. Most of the fibres in C? are seen edirewise, and, towards 1 , present the swell. insers and nuclei of the "nuclear zone"; at 2 , the flattened sides' of two fibres are seen. (A and B from kialliker; (from Henle.)

The pigmentary layer is thickened over the fovea, and there is also a thickening in the choroid coat here, due to a large accumulation of capillary vessels.

The pars ciliaris retinæ, which commences at the ora serrata, where the retina proper abruptly ends (fig. 693), is composed of two epithelial layers without nervous structures. Of the two layers, the external is a thick stratum of pigmented epithelium formed of rounded cells and continuous with the pigmentary layer of the retina on the one hand, and with the uvea of the iris on the other; the inner is a layer of columnar cells (fig. 671 ; fig. 693, a, k).

Vessels of the retina.-The retina contains relatively few blood-vessels. The central artery enters and the vein leaves it in the middle of the expansion of the optic nerve. The larger vessels ramify in the nerve-fibre layer. There are capillary networks in this layer and in the inner nuclear layer. Perivascular lymph-spaces surround the veins and capillaries. The sensory epithelium receives no blood-vessels, it is nourished from the vessels of the choroid.

THE LENS AND VITREOUS HUMOUR.

The lens.-The lens is a laminated fibrous body enclosed by a transparent elastic capsule to which, around the circumference, the fibres of the suspensory ligament are attached (fig. 673). Immediately within the capsule, in front and at the sides, there is a layer of cubical epithelium termed the epithelium of the capsule, but at the margin of the lens the cells become longer and pass by a gradual transition into the lens-fibres (fig. 694). The fibres which compose the lens are long and riband-shaped, with finely serrated edges (fig. 695, A); their transverse sections are prismatic (B). Many of the superficial fibres are nucleated (C), the lensfibres having originally been developed by the elongation of epitheliumcells.

The vitreous humour. - This is composed of soft gelatinous tissue, apparently structureless when examined in the fresh condition, but containing fibres and a few scattered cells, the processes of which are often long and varicose, and the cell-bodies distended by large vacuoles. The hyaloid membrane, which invests the vitreous humour, is homogeneous and structureless except in the region of the ciliary processes, where it is fibrous in structure, forming the zonule of Zinn and spreading out into the suspensory ligament of the lens (fig. 673). This part of the hyaloid membrane is connected with an annular fibrous portion of the vitreous humour which serves to give additional firmness to the attachment of the fibres of the suspensory ligament of the lens (Anderson Stuart).

LESSONS XLIX. AND L.

THE NOSE AND EAR.

1. Vertical sections of the nasal mucous membrane. The sections may be carried either across the upper turbinate bone, after decalcification, or across the upper part of the nasal septum. Make a sketch under the low power. Notice the difference in the character of the epithelium in the olfactory and respiratory parts of the nembrane.
2. Teased preparation of the epithelium of the olfactory mucous membrane. A piece of the membrane is placed quite fresh in osmic acid (1 per cent.) for a few hours, and is then macerated for two days or more in water. The epithelium is broken up in dilute glycerine; the cells easily separate from one another on tapping the cover-glass. Notice the two kinds of cells. Sketch some of the cells under a high power. ${ }^{1}$
3. Sections of the external ear (these have been already studied for the cartilage, Lesson XII.).
4. Sections across the cartilaginous part of the Eustachian tube. These may be included in the same preparation that furnishes sections of cochlea. Sketch under the low power.
5. Preparation of the membrana tympani. A piece of the membrane, stained with magenta and gentian violet (see Lesson IX., §2), is mounted flat in dammar.

Determine the composition of the membrane-i.e. the several layers composing it-by focussing carefully with the high power.
6. Sections across one of the membranous semicircular canals of a fish (skate).
7. Longitudinal sections through the ampulla of a semicircular canal (skate).

6 and 7 may be hardened in chromic and osmic acid (see below under 10) and embedded in celloidin.
8. Golgi preparations of the macula of the utricle from the skate.
9. Teased osmic preparations of the auditory epithelium of an ampulla or of the macula of the utricle, from the skate.
10. Vertical sections through the middle of the cochlea of a mammal (guinea-pig).

The part of the petrosal containing the cochlea is put quite fresh into 02 per cent. chromic acid containing one-fifth its volume of 1 per cent. osmic acid, or into undiluted Flenming's solution, or into 10 per cent. neutral formol. The decalcification can be effected by the use of the phloroglucin-nitric acid fluid, or by sulphurous acid. (See Appendix.) When decalcified, the preparation is well washed, and then transferred to alcohols of gradually increasing strength.

The semicircular canals and their ampullæ may also be seen cut across in these sections of the petrosal.

In preparing sections of the membranous labyrinth it is advisable, in order that the epithelium should be kept in position, to embed in celloidin. If the paraffin method of embedding is used, the sections are fixed to the slide by the albumen process. The organ should preferably be stained in bulk.
${ }^{1}$ The connexion of the olfactory cells with the olfactory nerve fibres is displayed in embryos, the method of Golgi heing employed.
11. Teased osmic preparations of the epithelium of the organ of Corti from the guinea-pig.

Make sketches from all these preparations under the high power. ${ }^{1}$

THE OLFACTORY MUCOUS MEMBRANE.

The olfactory region of the nasal fosse includes in man the upper and

Fig. 696.-Cells and terminal nerve-fibres of the olfactory reoion. Highly magnified.
1, from the frog; ? and 3, from man. In 1 and $2:-a$, sustentacular cell, extending deeply into a ramified process ; l, olfactory cells; c, their peripheral processes; e, the extremities of these, seen in 1 to be prolonged into fine hairs ; d, their central filaments. In $3:-h$, hairlets; c, free border of cell ; p, periphepral process; b, body of cell; n, nerve-fibre, 1 and $\%$ from M. Schultze; 3 from \%. Brunn.
middle turbinate processes and the upper third of the septum. It is covered by a soft vascular mucous membrane of a yellow colour.

The epithelium of the olfactory mucous membrane (fig. 697, a) is very thick and is composed of long cells, set closely side by side and bounded superficially by a cuticular lamina, through which the free ends of the cells project. The cells are of two kinds: 1 . Long, narrow, spindle shaped, or bipolar nerve.cells consisting of a larger part or body (fig. 696, b) containing the nucleus, and of two processes or poles, one (c) straight and cylindrical and

[^28]extending to the frec surface, the other (d) very delicate and varicose, looking not unlike a nerve-fibril and extending down towards the corium. The position of the nuclear enlargement varies, and with it the relative length of the two processes. The distal or free process terminates in a small clear projection, which passes beyond the cuticular membrane; in amphibia, reptiles, and birds, and perhaps also in mammals, it bears fine stiff hair-like filaments (fig. 696, 1, 3). The proximal or varicose process becomes lost amongst the plexus of olfactory nerve-fibres, at the base of the epithelium. It is continuous with one of these fibres, and ultimately passes through the cribriform plate of the ethmoid to end in an arborisation within an olfactory glomerulus (see diagram, fig. 653, p. 504). These, cells have been termed the

Fig. 697.-Section of olfactory mucous membrane. (Cadiat.) u, epithelium ; b, glands of Bowman ; c, nerve-bundles:
olfactory cells. 2. Long columnar epithelium-cells (fig. 696, a), with comparatively broad cylindrical nucleated cell-bodies placed next to the free surface, and forked, branching, taillike processes extending down to the corium. These are regarded not as sensory epithelium-cells, but merely as serving to support the proper olfactory cells. They are termed sustentacular cells. 3. Tapering cells are present, at least in some animals, in the deeper part of the epithelium. They rest by their bases upon the corium, and project between the other cells, which they assist to support.

The corium of the olfactory mucous membrane is also thick (fig. 697). It contains, besides numerous blood-vessels, bundles of the olfactory nervefibres (which are non-myelinated), and a large number of granular-looking serous glands known as Bowman's glands (b), which open upon the surface by ducts passing between the epithelium-cells.

THE EXTERNAL AND MIDDLE EAR.

The external ear proper (pinna) is composed of elastic fibro-cartilage, invested by a thin closely adherent skin. The skin is covered by small hairs, and connected with these are the usual sebaceous follicles. In the lobule there is a considerable amount of adipose tissue; voluntary muscular fibres are in places attached to the cartilage of the pinna, and are seen in sections.

The external auditory meatus is a canal formed partly of cartilage•

Fif. 698.-Section of ceruminous gland of the external ear. Photograph.
d, duct of gland, having a spiral course and therefore cut several times; it is partly filled with cerumen ; gl. secreting tubules of gland; 8 , extremity of a tubule of a sebaceous gland which extended as far as the base of the ceruminons gland.
continuous with that of the pinna, partly of bone. It is lined by a prolongation of the skin and is closed by the membrana tympani, over which the skin is prolonged as a very thin layer. Near the orifice the skin has hairs and sebaceous glands; the meatus is also provided throughout the cartilaginous part with convoluted tubular glands of a brownish-yellow colour, which yield a waxy secretion (ceruminous glands). They represent modified sweat glands. A section of one is represented in fig. 698.

The tympanum is lined by a mucous membrane which is continuous through the Eustachian tube with the mucous membrane of the pharynx; it is also prolonged into the mastoid cells. The epithelium is columnar and ciliated in some parts, but in others--e.g. roof, promontory, ossicles, and membrana tympani--there is a pavement-epithelium.

The membrana tympani is a thin membrane formed of fibrous bundles which radiate from a central depression (umbo). Within the radial fibres are a few annular bundles. Covering the fibrous membrane externally is a thin layer continuous with the skin of the meatus; covering it internally is anotber thin layer, derived from the mucous membrane of the tympanic cavity. A few blood-vessels and lymphatics are distributed to the membrane, chiefly in the cutaneous and mucous layers.

The Eustachian tube is the canal leading from the tympanum to the

Fic. 699.-Section across the cartilafinous part of the Eustachian tube. (Rüdinger.)
1,2 , bent cartilaginous plate; 3, musc. dilatator tubæ ; to the left of 4, part of the attachment of the levator palati muscle; 5 , fibrous tissue uniting the tube to the base of the skull; 6 aurl 7 , mucous glands; 8,10 , fat; 9 to 11 , lumen of the tube; 12 , connective tissue on the lateral aspect of the tube.
pharynx. It is formed of bone near the tympanum, but below, near thie pharynx, it is bounded partly by a bent piece of cartilage (fig. 699, 1, 2), partly by fibrous tissue. The latter contains numerous mucous glands $(6,7)$, which open into the tube, and on the other side a band of muscular tissue (3) which joins the tensor palati. The epithelium is ciliated.

THE INTERNAL EAR.

The labyrinth, which is the essential part of the auditory organ, consists of a complex membranous tube lined by epithelium and filled with endolymph, contained within a bony tube-the osseous labyrinth-of corresponding complexity of shape (figs. 700, 701). The membranous labyrinth does not wholly fill the bony cavity; the rest of the space is occupied by perilymph.

The membranous labyrinth (fig. 700) is composed of the utricle (u), the three semicircular canals (each with an enlargement or ampulla at one end), the sacculc (s), and the canal of the cochlea (c.e.).

The branches of the auditory nerve pass to certain parts only of the membranous labyrinth, viz., the maculæ of the utricle and saccule, the cristre of the ampullo, and along the whole length of the canal of the cochlea (the shaded parts in fig. 700). At these places the lining epithelium is specially modified to form a sensory or nerve-epithelium ; elsewhere it is a simple pavement epithelium.

The membranous semicircular canals and the utricle and saccule are composed of fibrous tissue, which is adherent along one side to the endosteum

Fig. 700. - Plan of the right membranous labtrinth viewed from the medial aspect. Magnified $1 \frac{1}{2}$ times.
u,-utricle, with its macula; s.s.c., p.s.c., and e.s.c., the three semicireular canals with their ampulla ; s, saccule; aq.v., aquæductus vestibuli ; s.e., saccus endolymphaticus; c.r., canalis reuniens; c.c., canal of the cochlea.

Fig. 701.-View of the interior of the left osseots labirinth.
The bony wall of the labyrintb is removed superiorly and externally. 1 , fovea hemielliptica; $\mathbf{2}$, fovea hemispherica; 3 , common opening of the superior and posterior semicircular canals; 4 , openintr of the aqueduct of the vestibule; 5 , the superior ; 6 , the posterior, and 7 , the external semifcircular canals; 8 , spiral tube of the cochlea; 9 , scala tympani; 10, s'ala vestibuli.
of the bony canal ; from the opposite side bands of fibrous tissue pass across the perilymph (fig. 702). Within the fibrous membrane is a thick clear tunica propria, which, in the semicircular canals, may form papilliform elevations in the interior of the tube.

The places of entrance of the nerve-fibres are marked in each ampulla by a transverse, inwardly projecting ridge (crista), in the saccule and utricle by a broader thickening of the tunica propria (macula). The epithelium at these places is formed of columnar cells (fig. 703), which are surmounted by long, stiff, tapering hairs (fig. 703, h; fig. 704). Around these hair-cells the axis-cylinders of the nerve-fibres ramify (fig. 705) ; they are thereforelike the gustatory cells of the taste-buds-sensory epithelium-cells. Between them are a number of thin and somewhat rigid nucleated cells (fibre-cells of Retzius), which rest upon the basement-membrane, and are connected at
their free extremity with a cuticular membrane, through which the abovementioned hairs project.

The hairs do not jut freely into the endolymph, but into a soft mucuslike substance, of a dome-like form in the ampullæ (cupula terminalis, fig.

Fif. 702.-Section of semicirciular canale, new-born child. (Sobotta.) Magnified 55 diameters.
c.t., connective-tissue strands, between membranous canal and endosteum of bony canal ; $m_{\text {, }}$ membranous canal ; b, wall of bony canal ; c, remains of fortal cartilage; end, endosteum ; v, blood-vessels.
703) ; in the saccule and utricle this substance has a quantity of calcareous particles (otoliths) embedded in it.

The cochlea consists of a bony tube coiled spirally around an axis which is known as the columellac (figs. 706, 707). The tube is divided along its length by a partition-formed partly by a projecting lamina of bone (spiral lamina), partly by a flat membrane (basilar membrane)-into two parts
(scaloc) ; the upper (supposing the cochlea resting base downwards) being termed the scala vestibuli, the lower scala tympani; the latter is closed near its larger end by the membrane of the fenestra rotunda through which, in the macerated bone, the cavity of the tympanum communicates with the scala tympani. The scalæ are lined by endosteum, and are filled with perilymph, continuous with that of the rest of the lahyrinth at the com-

 crista acustica (diagkammatic).
abp., cavity of the ampulla; scec, semicircular canal opening out of it; c, comnective tissuc attached to the wall of the membranous ampulla and traversing the perilymph; e, e, flattened epitheliun of ampulla ; h, hairs projecting from the columnar cells of the epithelinm into the cupula, cup.term; v, bleod-vessels; n, nerve-fibres entering the base of the crista and passing into the columnar epithelium.
mencement of the scala vestibuli; they communicate with one another at the apex of the cochlea by an opening, the helicotrema.

The scala vestibuli does not occupy the whole of that part of the bony tube of the cochlea which is above the partition just mentioned. Its outer and lower third is cut off by a delicate connective-tissue membrane (membrane of Reissner, fig. 708, R), which springs from near the end of the spiral lamina, and passes upwards and outwards to the outer wall, thus separating a canal (d.c.) triangular in section, which is lined by epithelium, and represents the membranous labyrinth of the cochlea (duct or canal of the cochlea).

The floor of the canal of the cochlea is formed (1) of the extremity
of the spiral lamina, which is thickened above by a peculiar kind of connective tissue, forming an overhanging projection known as the limbus

Fig. 704.-Section of ampulla of guineareig. Photographed from a preparation by H. Pringle.
e, epithelium becoming colunnar over the crista, where the cells are furnished with hairlets; c, corium of delicate connective tissue, with the nerve-fibres passing to the epithelium; b, bone with canals containing bundles of nerve-fibres.

Fig. 705.-Nerve teeminatións in macula : Golgi method. (v. Lenhossék.)
(fig. 708, l); and (2) of the basilar membrane (b.m.), which stretches across from the end of the bony lamina to the outer wall, and is attached to this
by a projection of reticular connective tissue termed the spiral ligament (l.sp.).

The basilar membrane is composed of stiff straight fibres, which extend from within out, and are embedded in a homogeneous substance. The membrane is covered below by a layer of connective tissue continuous with the endosteum of the scala tympani ; the modified epithelium which forms

Fig. 706. -Section throveh the cochlea of the cat. (Sobotta.)
Magnified 25 diameters.
tlc, duct of cochlea; wer, scala vestibuli ; set, seala tympani; w, bony wall of cochlea; C, organ of Corti on membrana basilaris; $m h$, membrane of Reissner; n, nerve-fibres of cochlear gerve: $g s p$, ganglion spirale ; str, v. , stria vascularis.
the organ of Corti rests upon its upper surface. It becomes gradually broader in the upper turns of the cochlea (rather more than twice as broad in the uppermost as compared with the lowermost turn), and its constituent fibres become therefore gradually longer.

The organ of Corti consists of the following structures:-

1. The rods of (arti, two serics (inner and outer) of stiff, striated structures, of a peculiar shape, the iuner somewhat like a human ulna, the

Fig. 707.-Vertical section through the middle of the human cochlea. (Diagrammatic.)

Fig. 708. -Vertical section of the first turn of the human cochlea.

> (G. Retzius.)
s.v, scala vestibuli; s.t, scala tympani; d.c, canal or duct of the cochlea; sp.l, spiral lamina; n, nerve-fibres; $l . s p$, spiral ligament; str.v, stria vascularis; s.sp, spiral sulcus; R, section of Reissner's membrane; l, limbus lamina spiralis; m. t, membrana tectoria; $t C$, tunnel of Corti ; $b . m$, basilar membrane ; $h . i, h . e$, internal and external hair-cells,
outer like a swan's head and neek (fig. 709). They rest by one extremity (the foot) on the basilar membrane a short distance apart, and are inelined towards one another, their larger ends (heads) being fixed together; the series of rods thus encloses a sort of tunnel, the floor of which is formed by

Fig. 709. - A pair of rods of Corti, fkom tife rabbit's cor'illea, in side view. Highly magnified.
b, b, basilar membrane; i.T., inner rod ; e.r., outer rod. The nueleated protoplasmie masses at the feet, which represent the cells from which the rods have heen formed, are also shown.
a part of the basilar membrane (fig. 711). Close to their feet may usually be seen the remains of the cells from which they have heen formed. The inner rods are narrower and rather more numerons than the outer. The head of each outer rod has a process which extends outwards and is known as the phalangeal process. This forms part of -
2. A reticular lamina (fig. 711, l.r.), which is a cuticular structure extending like a wirenet over the outer epithelium-cells of the organ of

Fio. 710.-Section through the organ of (obti of the hitman cor illea. (C . Retzius.) Highly magnified.

Corti, and is composed of two or three series of stiff fiddle-shaped rings (phalanges) cemented together in such a mamer as to leave square or oblong apertures through which the hairlets of the outer hair-cells project.
3. The outsr hair-rells placed external to the rods of Corti These are
cells of columnar shape, forming three series in most mammals but four in man (fig. 710). The free extremity of each cell is surmounted by a bundle of short auditory hairlets, and projects through one of the apertures in the reticular

Fig. 711.-Semi-diagrammatic view of part of the basilar membrane and titnnel of Corti of the rabbit, from above and the side. Muoh magnified.
l, limbus; Cr., extremity or cest of limious with tooth-like projections; b, basilar membrane; sp.L., spiral lamina with, p, perforations for transmission of nerve fibres ; i.r., fifteen of the inner rods of Corti ; h.i., their flattened beads seen from above ; e.r., nine outer rods of Corti ; h.e., their heads, with the phalangeal proceases extending outward from them and forming, with the two rows of phalanges, the lamina retieularis, l.r.

Fig. 712.-Four cells of Deiters from the rabbit. (G . Retzius.) Highly magnified.
The varicose lines are nervo-fibrils. The phalangeal processes are attached above to a portion of the lamina reticularis.

lamina; the fixed extremity is prolonged into a stiff cuticular process, which is attached to the basilar membrane. Between the hair cells are other (sustentacular) cells which are tapered in the same manner, but rest by their larger end upon the basilar membrane, and are prolonged above into a cuticular process which is attached to the reticular lamina (cells of Deiters, figs. 710, 712).
4. The inner haircells (fig. 710), placed internal to the rods of Corti.

They form a single series of columnar cells surmounted by auditory hairlets, lying in close apposition to the inner rods.

The remaining epithelium cells have no important characteristics. They

Fis. 713. - Portion of membrana tectoria of pís, displaying the under surficie and a cross section. (Hardesty.)
i, thinner edge by which it is attached to the limbus; a, distal edge; s, section showing arrangement of crossed filores; l, line impressed by edge of limbus; H, line of Hensen, which overlies the heads of the rods of Corti; \boldsymbol{H} to a, latticed layer on under surface. The thin prolongation at the distal edge is not shown.

Fig. 714.-General view of the MODE OF DISTRIBUTION OF THE COCHLEAR NERVE, ALL THE OTHER PARTS HAVING BEEN REMOVED. (Arnold.)
are long and columnar next to the outer hair-cells, but soon diminish in size and becone cubical ; in this form they are continued over the outer wall of the cochlear canal. Here they cover a very vascular membrane (stria vascularis, fig. 708, str.v.), which is frequently pigmented; its capillary blood-vessels penetrate between the epithelium-cells. Internal to the inner hair-cells the epithelium also soon becomes cubical ; it is prolonged over the
limbus of the spiral lamina. The epithelium of Reissner's membrane is of the pavement variety.

The membrana tectoria (figs. 708, 710, 713) is a soft, fibrílated structure, which is attached along the upper surface of the limbus where it is thin: it lies like a pad over the organ of Corti. It has a thin distal prolongation which is reticular in appearance when seen on the flat. According to Retzius this thin part is attached to the lamina reticularis. Probably the lower surface of the membrane rests on the epithelium of the organ of Corti during life, although in sections it usually appears raised a short distanco above the auditory hairs.

The fibres of the cochlear branch of the auditory nerve enter the base of the columella, and run in canals through its substance (figs. 706, 707), being gradually deflected outwards, as they pass through it into the spiral lamina; at the base of this they pass into a continuous ganglionic cord (spiral ganglion, ganglion of the cochlea). The fibres take origin from the bipolar cells of this ganglion,

The peripheral fibres pass out from the other side of the ganglioncells. Traversing the spiral lamina

Fig. 715.-Ending of some of the fibres OF THE COCHLLAR NERVE AMONGST THE hair-cells. (G. Retzius.)
This preparation is made by Golgi's method, and is viewed from above. g, a cell belonging to the spiral ganglion. they emerge in bundles, and, having lost their myelin sheath, enter the inner hair-cell region. Here some of them turn at a right angle and are directly applied to the inner hair-cells, whilst others cross the tunnel of Corti, to become applied in like manner to the outer hair-cells and the cells of Deiters (figs. 710, 715). The nerve-fibrils apparently lie in close contact with these cells, but there does not appear to be any direct continuity between the fibrils and the cell-substance.
.

APPENDIX.

METHODS USED IN HISTOLOGY. ${ }^{1}$

Mounting solutions:-1. Normal salt solution.-A 0.6 to 0.9 per cent. solution of common salt is uscd in place of scrum for mounting fresh tissucs for immediate examination. The lower percentage is used for frog's tissues, the higher for mammals. Ringer's solution may be substituted for normal salt solution with advantage. The composition of Ringer's solution for mammalian tissues is as follows: $-\mathrm{NaCl}, 9 \mathrm{gm} . ; \mathrm{KCl}, 042 \mathrm{gm}$. ; $\mathrm{CaCl}_{2},{ }^{\circ} 024 \mathrm{gm}$; ; in 100 c.c. distilled water. For frog tissues $6 \mathrm{gm} . \mathrm{NaOl}$ is taken. Preparations mounted in these salt solutions cannot be preserved permaneutly.
2. Glycerine, diluted with an equal quantity of water. The cover-glass should be fixed by gold size.
3. Farrant's solution.-This is made by dissolving 10 gm . of clear picked gum arabic in 10 c.c. distilled water, and mixing with 5 gm . glycerine. A piece of camphor is added to prevent the growth of moulds. As a mounting medium Farrant's solution has the advantage over glycerine of setting firm at the edges of the cover-glass.
4. Canada balsam, from which the volatile oils have been driven off by heat, dissolved in xylol.
5. Dammar solution, made by dissolving dammar resin in xylol. The solution is filtered through paper wetted with chloroform. This is used for the same purpose as xylol balsam and has the advantage of remaining colourless, whereas Canada balsam becomes yellow with keeping.
6. Acetate of potassium, a ncarly saturated solution. This is the best medium for osmic preparations and is also used for iodine-stained preparations, to show glycogen withiu cells. The cover-glass is fixed by soluble glass or by gold size.

General methods of preserving and hardening tissues and organs.-The following fluids are used: Alcohol (75 per cent. to ahsolute) ; acetone; Carnoy's fluid (absolute alcohol 60 c.c., chloroform 30 c.c., glacial acetic acid 10 c.c.) ; formol (diluted with water) ; corrosive sublimate (saturated solution in normal salt solution) ; chromic acid solution (1 in 200 to 1 in 500 , to which glacial acetic acid may advantageously be added in the proportion of 2 parts acetic acid to 1000 chromic solution) ; picric acid solution (saturated) either alone or containing 2 parts of nitric or sulphuric acid to 1000 , or mixed with an equal volume of 10 per cent. formol ; Manu's fluid (a misture of equal parts of saturated aqueous solutions of mercuric chloride and picric acid; to this mixture formol may be added to the extent of 5 per cent.); osmic acid solution (1 to. 2 per cent.); bichromate of putassium solution (2 to 3 per cent.), to which glacial acetic acid may advantageously bc added to the extent of 5 per cent. (Tellyesniczky), or formol to the extent of

[^29]10 per cent. (the latter especially for the central nervous system) ; Müller's fluid (bichromate of potassium $2 \frac{1}{2}$ parts, sulphate of soda 1 part, water 100 parts); Zenker's fluid (this is Müller's fluid containing 5 parts per cent. of mereuric chloride, to which 5 c.c. of acetic acid is added at the time of using; Kingsbury recommends the addition of 10 parts formol and 4 parts copper sulphate); and solutions of bichromate of potassium and osmic aeid in varying proportions. Altmann's Hluid (for displaying cell-granules) consists of a mixture of equal parts of 2.5 per cent. bichromate of potassium solution and 2 per cent. osmic acid.

It is best, if possible, to inject the fixing fluid into the blood-vessels after washing them out with warm Ringer; if this is not possible, very small picces of tissue should be taken, and always a considerable amount of the fixing fluid.

The solution of most general application is formol. This is a 40 per cent. solution of formaldehyde. It should be made up with water as a 10 per cent. or even a 20 per cent. solution; it penetrates readily and hardens quickly. Commercial formol invariably contains acid impurities, which renders it unsuitable for the fixation of certain tissues, such as mueous membranes. This difficulty may be overcome by employing formol neutralised with caustic soda. Tissues should not be left in formol more than a few days, but transferred to alcohol. For rapid fixation a very small piece of the tissue is placed in 10 per cent. formol and warmed to a temperature of about 40° or 50°; it will be sufficiently fixed in half aul hour for sectious to be made by the freezing method. Or the piece may be transferred from the formol solution first to weak and then to increasing strengths of alcohol, and finally to xylol, so that it is ready for embedding in paraffin in an hour:

Pure acetone is also of utility for rapid fixation and bardening. Small pieces of the tissue are dropped into a large amount of acetone, which not only fixes and hardens but also delydrates, so that the tissue can be transferred in an hour or so direct to molteu paraffin for embedding. But better results are got by placing in warm 10 per cent. formol for thirty minutes, and then transferring to acetone. Acetone is abo used for dehydrating methylene-blue stained preparations instead of alcohol.

For preserving the structure of cells and nuclei, one of the lest fixing fluids is that recommended by Flemming. This consists of 15 vols. of 1 per cent. chromic acid, 4 vols. of 2 per cent. osmic acid, and 1 vol. glacial acetic acid. It must be quite freshly prepared. It is sometimes diluted with from two to five times its bulk of water before use. One day is sufficient for fixation and hardening ; the pieces of tissue must be very small. The tissue should be washed for several hours in running water after 1rmoval from the mixture, and then placed in 80 per cent. alcohol. Tissures fixed in any mixture containing osmic acid stain with difficulty. The best stains for use in this case are saffranin, gentian violet, fuchsin and carmalum. Carnoy's thioid (see previous page) is in many abses excellent for cell-structure and division, and very rapid in its action. For soft and delicate whjorts it is probably the best fixing reagent. It can be used with advantage for the futal lomin which shrinks in most fixatives. After three hours or more in Camoy's thuid the preparation is transferred to absolute alcohol, and after twenty-four hours in this it is ready for cmbedding. Zenker's fluid is also of value for exhibiting the tiner structure of cells.

Tissues to be fixed in alcohol may be placed at once in absolute aleohol, but for some tissucs it is best to begin with 5 , per cent. alcohol, and pass the pieces through successive grades of 75 per cent., and 95 per cent., into absolute alcohol, leaving thent a few hours in each. They are ready for embedding as soon as they are dehydrated, but as a rule thev mav he liftel lone tima in almonol withont
deteriorating. Organs which contain much fibrous tissuc, such as the skin and tendons, should not go into stronger alcohol than about 80 per cont.; otherwise they become too hard to cut. Alcohol (80 to 90 per cent.) is generally used after olher fixing reagents to complete the hardening, and as a preservative; but previous to passing into xylol for embedding in paraffin all trace of water must be removed from the tissue by absolute alcohol. If mercuric chloride is an ingredient of any fixing fluid, iodine must be added to the alcohols subsequently used (except the final alcohol), to get rid of a mercurial precipitate which otherwise forms in the tissue. This object can also be effected by washing the sections with a solution of iodine in alcohol. A mixture of mercuric chloride (saturated solution) (2 parts) and alcobol (1 part) is sometimes used; this requires about two days to harden a tissue. Mercuric chloride is one of the best fixatives for cbtaining the full value of dyes, but is slow in penetration and it is difficult to wash out the excess of the salt. The pieces taken must always be very small, and must be washed at least twenty-four hours in running water and then kept in a large quantity of 80 per cent. alcohol containing iodine.

Many tissues are instantly fixed by being plunged for a minute into boiling water and then placed in alcohol ; this is not, however, a good method for glands.

For tissues that are to be hardened in chromic acid an immersion of from seven to ten days is generally necessary; they may then, after washing for some hours or days in running water, be placed in alcohol for preservation and to complete the process of hardening. The alcohol should be changed once or twice.

Organs placed in bichromate of potassium or Müller's fluid are ready for section in a fortnight or three weeks; they may, however, be left a somewhat longer time in those fluids without deterioration.

With picric acid the hardening process is generally complete in two days; the organs may then be transferred to alcohol, which must be frequently changed.

The hardening of the brain and spinal cord in Müller's fluid takes from three weeks to as many months. It is hastened by warmth, and by the addition of acetic acid to the fluid.

Tissues containing calcareous matter, e.g. bone and tooth, may be rapidly decalcified in a solution made by dissolving, with the aid of heat, 1 gm . phloroglucin in 10 c.c. nitric acid, and filling up to 100 c.c. with water, to which more nitric acid may be added if desired. Another rapid decalcifying fluid, is commercial sulphurous acid solution. If it is desired to preserve the soft parts within fresh bone, it should first be placed for a few hours in 10 per cent. formol. The following fluids decalcify more slowly, (1) 1 per' cent. solution of nitric acid in water or aicohol, (2) saturated solution of picric acid containing a superabundance of crystals, (3) 1 per cent. solution of chromic acid. After decalcification the tissue must always be washed in running water for at least twenty-four hours.

Embedding of hardened tissues, and preparation of sections.-Sectionsare most advantageously made with some forn of microtonie. It is generally needful to support the hardened tissue whilst it is being cut; with this object it is embedded in some substance which is applied to it in the fluid condition and becomes solid on standing. The embedding substance can either simply enclose the tissue, or the tissue may le soaked in it; the latter method is the one commonly employed.

The embedding substance chiefly used is paraffin of about $50^{\circ} \mathrm{C}$. melting point. The precise temperature depends upon that of the atmosphere. In summer and in hot climates a paraffin of higher melting point may be required.

Embedding in paraffin.--Before being soaked in melted paraffin, the piece of tissue may be stained in bulk (see p. 559) ; it is then dehydrated by a series of
alcohols (50 per cent., 75 per cent., 95 per cent.), finishing up with absolute alcohol; after which it is soaked in cedar-wood oil, xylol, or chloroform. If chloroform is employed the piece of tissue can le left overnight in a saturated solution of paraffin in chloroform. This is especially advantageous for delicate objects. The prepared piece is now transferred to molten paraffin, which should not be too hot but kept only just molten : it is soaked in this for from one to several hours, according to thickness. For this purpose an incubator is employed. When thoroughly impregnated with the paraffin the object is placed in a paper mould or in a metal capsule: this is first partly filled with the molten paraffin : the piece is placed on this ; more paraffin is then poured in, and the whole allowed to cool quickly. A square block of the paraffin containing the tissue is then cut wot and fixed is the desired position on the microtome; thin sections are made and fixed to a slide (see below); the paraffin is dissolved out by xylol, and the sections mounted in dammar.

If it be desired to cut a riband of successive sections, and the paraffin used prove too hard for them to stick to one another at the edges, a paraffin of lower. melting point ($40^{\circ} \mathrm{C}$.) is smeared over the opposite sides of the block; the sections then adhere together as they are cut.

Preparation of frozen sections.-The bichromate solutions and formol are the best fluids to use for preserving tissues which are to be frozen in place of being embedded. If alcohol is employed for fixation it should be thoroughly washel out with water. The tissue is soaked in gum-water before being placed upon the freezing microtome. A thin syrup of either gum arahic or dextrin may be used. The preliminary soaking in gum is not necessary after formol.

Embedding in celloidin.--The piece to be embedded, which should not be thicker than 2 or 3 mm , is dehydrated by absolute alcolnol, transferred for a few hours to a mixture of absolute alcohol (1 part) and ether (3 parts) and then placed another twenty-four hours or more in a solution of celloidin in alcohol and ether similar in strength to ordinary collodion; finally it gocs into celloidin solution of double strength. After twenty-four hours in this it is removed and placed upon a wood or metal holder. When the celloidin is set by evaporation of its ether the holder is plunged in alcohol (80 to 85 per cent.) ; after a few hours, sections may be cut with a knife wetted with spirit of the same strength. The sections are placed in 95 per cent. alcohol; then passed through cedar-wood oil or bergamot oil into dammar. They must not go into clove vil, nor int" alisolute alcohol. The advantage of the method is that the celloidin, which is quite transparent, need not be got rid of in mounting the sections, and serves to kee] the parts of a section together ; it is thus useful for friable tissues or for large sections. The tissue may either be stained in lunk before embedding, or the sections may be stained. They can be attached to the slide, ley transferring them to it from 95 per cent. alcohol, and allowing ether vapour to pour out of a half full bottle on to their surface. They may then be prossed down ly curering witl filter or tissue paper, the thumb being passed firmly over the paper; this fixes them securely enough to allow of their being treated by staining and clearing solutions.

Microtomes.-A section-cutting apparatus ur microteme is essential for histological work. Useful instruments for students are the tripod microtome for objects which have been embedded in paruffin and the Catheart microtome for freezing.

The tripod microtome is a simple and efficient little instrmmeot, and has the advantage of being inexpensive. It consists of a metal frame (fig. 716) in which a razor is securely clamped. It is provided with a micromoter screw hy which the

Fig. 716.-Tripod microtome. (Birch's pattern.) The paraffin-block should be cut with square edges.

Fig. 717. CAthcart freiezinc michotome.
fixed by the aid of heat on a flat piece of glass or on a glazed tile over which the tripod slides. The block should be cut with square, parallel edges after being fixed on the glass. The razor-edge is lowered after each successive section by turning the micrometer screw at the back of the frame.

In the Catheart freezing microtome (fig. 717) the tissue, after being soaked in

Fig. 718.-Rocking microtome with simple object-holder.

Fig. 719.- Minot's automatic rotary michotome.
gum-water, is placed on a metal plate and frozen by playing an ether or other refrigerating spray on the under surface of the plate. The plate is moved upwards by a finely-cut micrometer serew, and the knife ow nlane nsed to mot the continno io
guided over the plate by passing over plate-glass slips. Instead of the ether-spray plate, a solid brass block may be fitted to the microtome. This block is plunged in an ice-and-salt freezing mixture for half an hour: it is then taken out, wiped dry, put in the microtome, and the gum-soaked tissuc is placed on its upper surface, where it freezes into a solid máss. The block is moved upwards by the micrometer screw below, and scctions are successively cat as with the ether method. When using any freezing microtome, especially for the nervous system, it is important that the tissue should not be frozen too hard, otherwise the sections will roll up and crack. If necessary the surface can be temporarily thawed just before cutting by breathing upon it.

More expensive and complicated, but also more efficient, instruments are the rocking microtome of the Cambridge Scientific Instrument Company (fig. 718) and the miorotomes designed by C. S. Minot and by Delépine: the last is arranged for freezing with liquid CO_{2}. The action of all of these is automatic, i.e. every movement of the handle not only cuts a section of the tissue of definite thickness, but also either moves the knife or the tissue in such a manner that another

Fig. 720.-Inclined plañe miorotome.
section of exactly the same thickness is cut by the next movement, and so on indefinitely. By employing a rectangular block of paraffin of the proper consistency, a long series of sections of the same object, of equal thickness, can be obtained and made to adhere together in a riband (as shown in fig. 718). Such sections can be mounted in series upon a slide in any desired number.

For celloidin-embedded preparations it is necessary to cut the sections with a knife kept wetted with spirit. For this purpose a sliding microtome (fig. 720), in which the knife or razor is moved horizontally over the tissue, with the edge obliquely inclined to the direction of movement, is the most useful. The best arrangement for this purpose, especially for large sections, such as those of brain, is one in which the celloidin-soaked object is immersed in spirit during the process of cutting. For every kind of microtome it is all-important that the edge of the knife or razor should be in perfect order : to secure this frequent stropping is necessary. If the razor edge has irregularities every section will be scored by them.

Methods of mounting in xylol balsam or dammar.-Fixation with albumen.-Paraffin-cut sections, such as are cut with the rocking and other microtomes, are fixed to a glass slide or cover-glass as a preliminary to being treated with stains and other fluids-in the following way: The slide (or cover-glass), after having been carefully cleaned, is smeared very thinly with fresh white of egg:
this can be done with the finger or with a clean rag; the albuminized slide is then put aside to dry, protecter from dust. A dilute solution of agar jelly (1 gm . per 1000 c.c. distilled water) may be used in place of white of egg. It is convenient to prepare a large number of slides at a time in this way, and to keep them at hand in a suitable receptacle. When required for use a little water is poured on to the slide and the riband of sections is placed on the water, which is then warmed on a hot plate or over a small flame until the paraffin becomes fiattened out, without actually melting. But it is not always necessary to use albuminized slides for fixing the sections. For most objects, especially those mixed with formol and alcohol, an ordinary well-cleaned slide answers every purpose, the section or sections being flattened out in a drop of warmed water (see also below). In either casc the water is then drained off, the slide put in a warm place for the remainder of the water to evaporate (this will take from half an hour to an hour according to the size of the section and the temperature at which it is kept), and then heated just sufficiently to melt the paraffin. It is next immersed in xylol to remove the paraffin, after which the sections may, if already stained, be mounted at once in dammar. If not stained, they are treated, after xylol, first with absolute and then with gradually lower grades of alcohol, then with water and stain, and finally are passed through water, alcohol (in grades, ending with absolute alcohol), and xylol, into dammar. For many sections some of the grades of alcohol can be omitted, but it is always well to employ 50 per cent. alcohol between water and absolute alcohol, and to wipe off excess of moisture before the absolute alcohol.

Hater-fixation.-A simple method of fixation, but one which, in most cases, answers the purpose well, is to place the riband or the individual sections cut from paraffin on the surface of water in a basin, just sufficiently warm to flatten out the paraffin, but not to melt it, then pass a perfectly clean slide under the surface of the water and float the sections on to it ; remove, drain off the water, and put the slide and sections aside for an hour or more until all the water has evaporated. The sections are found to have adhered firmly to the slide. They may, if desired, be yet more firmly fixed by drawing a brush moistened with solution of celloidin in oil of cloves over them. The paraffin can now he removed by washing the slide with xylol or immersing it in xylol. If not previously stained they can then be passed through alcohols and stained and mounted as just described. After certain hardening solutions have been used (bichromates or osmic acid) the sections cannot be fixed by the water method alone : an albumenized slide or celloidin solution is necessary.

It is convenient to keep the several solutions which are required for remoring the paraffin and for staining, dehydrating, and clearing the sections after ther are fixed to the slide, in cylindrical tubes or in grooved glass receptacles in is regular row upon the working table, the slide being transferred from one to the other in succession. Such a series would be (1) xylol ; (2) absolute alcohol ; (3) 75 per cent. alcohol ; (4) 50 per cent. alcohol ; (5) distilled water; (6) staining solution; (7) tap water ; (8) distilled water; (9) 50 per cent, alcohol ; (10) 7.5 per cent. alcohol ; (11) absolute alcohol ; (12) xylol. The changes are sometimes effected by pouring the solutions over the sections and draining off.

After the paraftin has been removed by xylol the sections must never, on any account, be allowed to dry, or they will inevitably be spoiled.

The following tahle shows the methods to be adopted for the treatment of paraffin-cut sections or ribands of sections:-

Methods of staining.--Staining by dyes is dependent partly upon the physical processes of osmosis and adsorption, partly upon chemical affinities. The theory of stains has been treated of at great length by various authors: it would occupy far too much space to deal with the matter in this work. The methods of staining employed for teased preparations have been dealt with under the several tissues. We may here, therefore, confine our attention to the staining of sections.

The fluids most commonly employed for the staining of sections are: (1) Solutions of hæmatoxylin and alum; (2) solutions of carmine with or without alum; (3) certain aniline dyes. The time of immersion in the staining fluid varies accurding to the strength of the fluid and the mode by which the tissue has been hardened. The necessity of staining sections may in some cases be avoided by staining the tissue in bulk before embedding. For this purpose a small piece of hardened tissue well washed with distilled water is placed for twenty-four hours or more in dilute solution of hæmalum or of Ehrlich's hæmatoxylin or borax-carmine. The tissue is then passed through ascending grades of alcohol into absolute and then through xylol saturated with alcohol-soluble eosin into paratfin : the sections being mounted in dammar. But if to be cut by the freezing method the tissue goes into gum aftcr being stained and the sactions are placed in tap-water to remove gum, floated on to a slide, and the excess of water allowed to drain off. Alcohol is then dropped on from a drop bottle and the sections pressed flat with blotting or tissue paper. This fixes them to the slide. They are then dehydrated by absolute alcohol and passed through xylol into dammar. If the tissue has not been stained in bulk the sections are usually stained on the slide in the manner described on p. 558. The most useful general method for class purposes is to immerse the slide on which the sections from paraffin are fixed, and which has been carried through xylol and alcohol into water, in hæmatoxylin solution for fifteen minutes ; after rinsing with water they are counter-stained with water-solution of eosin for five minutes, and then carried through alcohol and xylol into dammar. Sections may be stained whilst still infiltrated with paraffin by floating them, as they are cut, on to the surface of a staining solution, whịh is gently warmed
(but not enough to melt the paraffin); under these circumstances they require far longer exposure to the stain. The subserquent treatment is simple, for they need only be transferred to warm water, floated on to a slide and allowed to dry. The paraffin is then melted and allowed to set ; the solidified paraffin is dissolved away with xylol, and the sections are mounted in dammar.

The following are some of the principal staining solutions :-

1. Delaficld's hematoxylin.-To 150 c.c. of a saturated solution of potash alum in water add 4 c.c. of a saturated solution of homatoxylin in alcohol. Let the mixture stand eight days, then decant, and add 25 c.c. of glycerine and 25 c.c. of methyl alcohol. The solution must stand a few days before it is ready for use.

To stain free sections add a few drops of this solution to a watch-glassful of distilled water. If overstained the excess of colour can be removed by alcohol containing 1 per cent. nitric or hydrochloric acid. With long keeping this hæmatoxylin solution becomes reddened; a trace of ammonia will restore the blue colour.
2. Ehrlich's hementorylin.—Dissolve 2 gm . hæmatoxylin (or hæmatein) in 100 c.c. alcohol ; add 100 c.c. water, 100 c.c. glycerine, and 10 c.c. glacial acetic acid: also potish alum to saturation. This solution will keep almost indefinitely: it is valuable for staining in bulk, since it does not easily overstain. For sections the solution may be diluted either with distilled water or with a solution containing one part alcohol to two parts distilled water. After the sections have been stained they must be thoroughly washed with tap-water. This develops the blue colour of the hematoxylin.
3. Kultwhit-k'y's hrematoxyl in.-Dissolve 1 gm . hematoxylin in a little alcohol, and add to it 100 c.c. of a 2 per cent. solution of acetic acid. This solution is valuable for staining sections of the nervous system by the Weigert-Pal process (p. if4).
4. Hemalum.-Hiematoxylin-alum solutions acquire their colouring properties only as the hæmatoxylin on keeping hecomes converted into hemateïn. The latter substance may, therefore, as recommended by Mayer, be used advantageously in place of hæmatoxylin if the stain is required immediatcly. The following is the mode of preparing the solution : Dissolve 50 gm . of ammonia alum in 1 litre of distilled water, and 1 gm , of hæmateïn in 100 c.c. of rectified spirit. Add the hæmatein solution gradually to the alum. The mixture is ready for staining at once, either as it is or diluted with distilled water. A small piece of thrmol or a little carbolic acid should be added to prevent the growth of moulds.
5. R. Heidenhain's methorl-After hardening in alcohol, or in saturated solution of picric acid and then in alcohol, place the tissue from twelve to fourteen hours in 0.3 per cent. aqueous solution of hamatoxylin, and then from twelve to twenty-four hours more in a 0.5 per cent. solution of rellow chromate of potash, which may be changed more than once. Then wash in water, place in alcohol, pass through xylol, and embed in paraffin.
6. M. Heidenhain's iron-homatorylin methot.-Harden in formol, followed br alcohol ; fix sections to slide by water method; transfer tor 25 per cent. iron alun (sulphate, or tartrate, of iron and ammonia) and leave a quarter of an hour or longer; rinse with distilled water; place in 0% to 1 per cent. pure hamatoxylin in water containing 10 per cent. alcohol, for a few minutes; wash with water : differentiate in the iron and ammonia solution until nearly decolorised: the sections must be examined from time to time with a low power after wasbing away the iron alum with water. When differentiated wash for fifteen minutes in tap-water ; dehydrate and mount in the usual way. This method is especially adapted for exhibiting the centrosomes of cells and the alterations of the nuclens in cell-division. It is also a good general method for many tissues.

Both the process of mordanting with iron alum and the subsequent staining with hematoxylin may often with advantage be considerably prolonged (up to twelve hours or more).
7. Carmalum.-This is useful either for sections or bulk staining. If the sections are subsequently passed through alcohol containing picric acid in solution a double stain is produced.

Carminic acid	1 gm.
Ammonia, alum	10 gm.
Distilled water	$200 \mathrm{e.c}$.

Boil together, allow to cool, and filter. Add 1 c.c. formol or carbolic acid to prevent the growth of moulds.
8. Carminate of ammonia.-Prepared by dissolving carmine in ammonia, and allowing the excess of ammonia to escape by slow evaporation. The solution may be diluted with water as required.
9. Rorax-carmine.-Dissolve 4 gm . borax and 3 gm . carmine in $100 \mathrm{c} . \mathrm{c}$. of water with the aid of heat. Add 100 c.c. of 70 per cent. alcohol, let stand two days or more and filter. This solution improves on keeping. It is used for staining in bulk. The piece of tissue can be left in it for several days or weeks. It is transferred, without wasbing, to 70 per cent. alcohol containing 5 drops of hydrochloric acid to 100 c.c. in order to fix the colvor. It should remain in this for two or three days. Then proceed with dehydration.
10. Picro-carminate of amnonia.-This is a double stain unsuitable for sections, but useful for some tissues. The staining occurs very slowly. a. Ranvier's picro-carmine.-To a saturated solution of picric acid add a strong solution of carmine in ammonia, until a precipitate begins to form. Evaporate on the water bath (or, better, allow it to evaporate spontaneously) to one half its bulk, adding a little carbolic acid to prevent the growth of moulds; filter from the sediment. ß. Bourne's picro-carmine.-"Add 5 c.c. of ammonia to 2 gm . carmine in a bottle capable of containing about 250 c.c. Stopper, shake, and put aside till next day. Add slowly, shaking the while, 200 c.c. of a saturated solution of picric acid in distilled water. Put aside till next day. Add slowly, constantly stirring, 11 c.c. of 5 per cent. acetic acid. Put aside till next day. Filter; to the filtrate add four drops of ammonia, put back in the stoppered bottle" (Langley).
11. Van Gieson's stain.-This is also a double stain. It consists of a saturated solution of picric acid in water, with 5 c.c. of a 1 per cent. aqueous solution of acid fuchsin added to each 100 c.c. It stains the white fibres of connective-tissue bright red; elastic fibres, muscle-fibres and epithelium yellow. Sections may first be stained deeply with hæmalım or hematoxylin, then placed in Van Gieson's stain for five minutes, then passed through 75 per cent. alcohol, absolute alcohol and clove oil or xylol, and mounted in dammar. The method is suitable for frozen and celloidin sections. It is valuable for the nervous system, especially as a counterstain in the Weigert-Pal method; for this it is recommended to increase the proportion of the acid-fuchsin solution to fifteen parts per cent.

Anilinc dyes.-These are used either in simple aqueous solution, or in 0.01 per cent. solution of caustic potash, or in water shaken up with aniline oil ; it is usual to overstain a tissue with them, and subsequently to decolorise with absolute alcohol containing one-fifth its bulk of aniline oil (from this the sections pass through absolute alcohol into xylol) or with alcohol containing 0.1 to 1 per cent. hydrochloric acid : this is also followed by absolute alcohol and this by xylol. The aniline colours most employed are the "basic" dyes-methylene-blue, gentian violet, toluidin-blue, thionin, saffranin, and vesuvin; and the "acid" dyes-eosin,
erythroxin, magenta ir acid fuchsin, mange and methyl-blue; si-called "neutral" dyes are also used.
12. Eosin.-A 1 per cent. solntion in water. The sections are first stained deeply with hematoxylin and rinsed with distilled water. They are then stained with the eosin solution, passed throngh 75 per cent. alcobol, and then through absolute alcohol-which is allowed to dissolve ont some but not all of the easin stain-into xylol: they are finally monnted in dammar. Erythrosin may be used in place of eosin. An alcohol-soluble eosin is also employed (see below).

Ensin colours bemoglolin of an orange-red colour, so that the blood-corpuscles are well shown when a fixing tluid has been employed which does not remove the henogglobin from them (such as merearic chloride, bichromate of potassiunt, or formol).
13. Illcoholir cusi" and methylene-blue.-The sections are first stained for one minute in 1 per cent. alcohol-soluble eosin, and after rinsing with water for another minute in 1 per cent. methylene-blue in water, after which they are again rinsed, and the slide wiped dry of moistare; they are then decolorised rapidly by absolute alce,tol. The decolorisation is arrested by xylol.
14. Jenner's stuin.-This is made by dissolving in pure wethyl alcohol the precipitate which is prodnced when eosin solution is added to methylene-blue solution. It is valuable for blood films, which nay be stained for four or five miuutes. Then wash, dry, and mount in dammar.
15. Leishman's stain is largely used for the same purpose. It is made by dissolving 1 part pare methylene-blue in 100 parts of 05 per cent. sodium bicarbouate solution with the aid of heat and precipitating by five times its bulk of a 0.1 per cent. ayueons solution of yellow water-soluble eosin. The precipitate is collected on a filter, and when dry is dissolved in methyl alcohol in the proportion of 0.1 gm . to 60 c.c. (Wright). The stain is applied for one minute, when an equal amount of distilled water should be added; the diluted Leishnan is left to stain for alrout five minutes. The tiln nay then be washed, dried and monnted.
16. Morn's double stain.-A good double stain for sections is the methyl-blueeosin of 6 . Mann. To prepare this take 3. c.c. of a 1 per cent. solution of methylblue in distilled water, and 45 c.c. of a 1 per cent. solution of essin in distilled water : mix and add 100 c.c. of distilled water. In sections it stains comectivetissue fibres and mucus-containing cells deep blue.
17. Muir's doable stuin.-Sections of formol-hardened tissue are fixed on a slide, a saturated solution of alcohol-soluble eosin in rectified spirit poured on and heated over a lamp. When nearly dry rinse with water, place for three minntes in saturated solution of potash alum, and again rinse. Decolorise with alcohol containing a trice of ammonia. Wash again and stain with saturated methylene-blue solution for a few minutes; then rinse once more, pass through grades of alcohol and xylol ; mount in dammar.

1s. F'u hain or mayenta.- A 1 per cent. solution in 50 1er' cent, alcohol (to which 1 drop of 1 per cent. alcohol-solution of gentian or methyl-violet may be added per cubic contimeter just before use) is an excellent stain for fresh connective tissue. For this purpose the mixture should lee diluted twenty times with distilled water. It coloms all the eloments of the tissue but most intensely the elastic fibres.
19. Maflory's methme. Wections are treated for three minutes with acid fuchsin (1 per cent.); then washed in water and immerserl for several minutes in phosphomolybdic acil. They are then again thoroughly washed in water, and placed for two minutes or more in the following solution :-

Aniline blue	0.5 g.
Orange G.	2.0 g.
Oxalic acid	2.0 g.
Water -	$100 \mathrm{c.c}$.

After being stained with this they are passed through water, alcohol, and xylol into damnar.

This is a good method for demonstrating connective tissue; it also shows the zymogen granules in gland-cells, and serves to display the various types of cell met with in the gastric glands.
20. Orceitr is a dye obtained from lichens. It is chiefly useful for staining elastic fibres in sections of organs. For this purpose 1 gnı. orceïn is dissolved in 100 c.c. absolute alcohol, containing 1 c.c. hydrochloric acid. The sections are placed in some of this solution in a watch-glass for about an hour. - They are dehydrated in alcohol, which removes the excess of stain; then passed through xylol into damnar. Either saffianin or neutral red may be employed as a counterstain.
21. Flemming's method for staining dividing nuclei.-The tissue is fixed in Flemming's solution (see p. 552), and small shreds or thin sections are placed for two days in saturated alcoholic solution of saffranin, mixed with an equal amount of aniline water. They are then washed with distilled water and decolorised in aniline alcohol or in alcohol containing 1 per 1000 hydrochloric acid until the colour is washed out from everything except the nuclei. They are then again rinsed in water, and placed in saturated aqueous solution of gentian violet for two hours, washed again in distilled water, decolorised with aniline alcohol until only the nuclei are left stained, then transferred to bergamot oil or xylol, and from this are mounted in dammar. Gentian violet and several other basic aniline colours may be employed in place of saffranin from the tirst. Delafield's hamatoxylin, followed by acid, and Ehrlich's hæmatoxylin also stain mitotic figures well. Heidenhain's iron-hæmatoxylin method is also used for this purpose, as well as for exhibiting centrioles and the achromatic spindle of the dividing cell.
22. Staining with nitrate of silver (v. Recklinghausen).-Wash the fresh tissue with distilled water; immerse in 1 per cent. nitrate of silver solution for from one to five minutes; rinse with distilled water and expose until just brown to bright sunlight. The tissue, if it is a thin membrane, may be mounted in glycerime. But a better plan is to spread it out flat in water on a slide, drain ofl' the watcr, allow the tissue to dry completely, and then mount it in dammar. This method is used to exhihit endothelium, and generally to stain intercellular substance. It depends upon the fact that the chlorides of the tissues are almost exclusively confined to the intercellular substance.

The following mothods are especially useful in investigations relating to the nervous system :-
23. Marchi's method.-This is of value for staining nerve-fibres in the earlier stages of degeneration, before sclerosis sets in (especially a few days after the establishment of a lesion). The degenerated myelinated fibres are stained black, whilat the rest of the section remains almost unstained. In employing the method for the brain or cord the organ is first fixed and partially hardened by immersion for ten days in Miiller's fluid (p. 552). Thin pieces of the tissue are then cut and are placed singly, resting on a little cotton wool, in a fairly large quantity of a mixture of two parts Müller's fluid and one part 1 per cent. osmic acid. They are left in this for at least a week; the fluid should be changed once or twice.

The pieces are then washed in water, and passed through grades of alcohol and
through xylol into paraffin; the seetions are mounted-after removing the paraflin with xylol-in dammar without further staining.
24. Weigert-I'al method.- This is chiefly used for the central nervous system. By it normal myelinated nerve-fibres are stained dark, while grey matter and sclerosed tracts of white matter are left uncoloured. The following moditication of the original method is recommended: Pieces which have lueen hardened in Müller's fluid and afterwards transferred to and kept a short time in alcohol (without previous washing in water) are embedded in celloidin, and sectious are cut as thin as possible. Or sections may be made by the freezing method direct from Muller's fluid, the pieces to be cut being first soaked in gum-water for a few hours. In either case the sections axe placed in water, and from this are transferred $t r$, Marchi's fluid (see above, $\S 22$) in which they are left for six to twelve hours. They are then again washed iu water and transferred to Kultschitzky's hicmatoxylin (see p. 560, §3). In this they are left overnight, by which time they will be completely hlack. After again washing in water they are ready to be bleached. This is accomplished by Pal's method as follows: Place the overstained sections, first in $0 \cdot 9$ per cent. solution of potassium permanganate for five minutes (or for a longer time in a weaker solution); rinse with water; transfer to the following bleaching solution, viz., sulphite of soda 1 gnt ., oxalic acid 1 gm ., distilled water 200 c.c. ${ }^{1}$ The stain is usually sufficiently differentiated in a few minutes; but the sections can be left longer in the bleaching solution without detriment. If after half an hour they are not differentiated enough, they must be put again (after washing) into the perinanganate for some minutes, and then again into the bleaching solution. After differentiation they may be counterstained with Van Gieson and sulsequently passed through water, grades of alcohol (with or without eosin), and oil of bergamot (or xylol), to be mounted in dammar. The advantages which this modification has over the original method are: (1) even the finest myelinated fibres are brought to view with great surety; (2) the staining of the fibres is jet black, and offers a strong contrast to the colourless grey matter ; (3) the sections are easily seen and lifted out of the acid bematoxylin, which has very little colour ; (4) it is difficult to overbleach the sections; (5) the stain is remarkably permanent.

Ass a further improvement, J. S. Bolton recommends to harden with formol, place the sections for a few minutes in 1 per cent. osmic acid, stain for two hours in Kultschitzky's Liematoxylin at $40^{\circ} \mathrm{C}$., and then proceed with the bleaching process.
25. Stainiung with chloride of gold.-a. Cohnhrim's methorl.-Place the fresh tissue for from thirty to sixty minutes (according to thickness) in a 05 per cent. solution of chloride of gold; then wash and transfer to a large quantity of water faintly acidulated with acetic acid. Keep for two or three days in the light in a warm place. This answers very well for the cornea. If it is principally desired to stain the nerve-fibrils within the epithelium, the cornea maty be transferred after twenty-four hours (the outlines of the larger nerves should be just apparent to the naked eye) to a mixture of glycerine (1 part) and water (2 prarts), and left in this for twenty-four hours longer (Klein).
β. Lönit's method.-Place small pieces of the fresh tissue in a minture of 1 part of formic acid to 3 parts of water for one minute; then in 1 per cent. chloride of gold solution for fifteen minutes; then back again into the formic acid mixture for twenty-four hours, and into pure formic acid for tweuty-four

[^30]hours more. After removal from the gold, and whilst in the acid, the tissue must be kept in the dark. This method is especially good for motor nerveendings in cross-striated muscle.
γ. Ranuier's method.-Immerse in lemon-juice for ten minutes, then wash with water and place in 1 per cent. gold-chloride solution for twenty minutes. Then treat either as in Cohulieim's or as in Löwit's method.
26. Golgn's chromate of silvor methods.-These are chiefly cmploycd for investigating the relations of cells and fibres in the central nervous system. Two methods are mostly used, as follows :-
a. Very small pieces of the tissue, which bas been hardened for some weeks in 3 per cent. bichromate of potassium or Müller's fluid, are placed (without previous washing) for half an hour in the dark in 0.75 per cent. nitrate of silver solution, and are then transferred for twenty-four hours to a fresh quantity of the same solution (to which a tracc of formic acid may be added). They may then be placed in 96 per cent. alcohol (half an hour), and sections, which need not he thin, are cut from celloidin with a microtome or with the free hand after embedding (but not soaking) with paraffin. The sections should be placed in dammar on a cover-glass and the dammar allowed to dry in a uniform laycr. The glass is inverted over a thin glass ring and fixed to a slide with the surface of the dammar dependent and exposed to air. Golgi-stained preparations must not be mounted and covered in the usual way.
β. Instead of being slowly hardened in bichromate, the tissue is placed at once in very small pieces in a mixture of bichromatc and osmic acid (3 parts of 3 per cent. bichromate of potassium or of Miiller's fluid to 1 of osmic acid). In this it remains from one to eight days, a piece being transferred each day to 0.75 per cent. silver nitrate. The subsequent procedure is the same as described under a.

For some organs it is found advantageous to repeat the process, replacing the pieces for a day or two in the osmic-bichromate mixture after silver nitrate and then putting them back into silver nitrate (Cajal's double method).

This method is not only more rapid than that in which bichromate of potassium alone is used, but is more sure in its results.

A combination of the metbods under α and β is often found advantagenus. To ennploy this a numher of very small pieces of the tissue are placed in 3 per cent. bichromate of potassium as in the slow method. Of these one is every day transferred to osmium-bichromate solution and allowed to remain in this for a few days, after which the silver treatment follows as before.
27. Cox's chromate of mercury method.-This serves the same purpose as the Golgi methods but is not as good for fine details. Mix 20 c.c. of 5 per cent. corrosive sublimate solution with $30-40$ c.c. distilled water, and add slowly 16 c.c. of 5 per cent. chromate of potassium solution, then add 20 c.c. of 5 per cent. bichromate of potassium solution to the mixture. Larger pieces of tissue may be taken than for the Golgi methods; they are left for two months or more. Sections are cut by the freezing method and passed through water and successive grades of alcohol, and then through clove oil into danmar. They may be mounted with a cover-glass in the usual way, and as the cells remain white they show up well by reflected light and quite thick opaque sections can be examined. If it is desired to convert the white impregnation into a black one, this can be done by passing the sections through dilute ammonia, but after this they must be mounted like the Golgi preparations without being sealed up.
28. Nissl's method of staining the chromatic granules of nerve-cells.-This is a method of overstaining with methylene-blue and subsequent differentiation with
alcohol (see § 14). Nissl recommended 90 per cent. alcohol as the hardening agent, but both formol and corrosive sublimate followed by alcohol may be equally well employed. Tolnidin-blue (Mann) may be used in place of methylene-blue. The sections are stained with 1 per cent. methylene-blue or toluidin-blue, and differentiated in absolute alcohol ; they may be counterstained by being passed through xylol-cosin. The effect of heating the solutions to about $70^{\circ} \mathrm{C}$. is to ancelerate and accentnate the staining.

A Nissl stain may also be ohtained by staining in bulk thin pieces of the fixed and hardened nervous tissue in 1 per cent. solution of thionin for several days; the tissue is then dehydrated and embedded in paraffin.
29. Cajut's mothods for exhibiting nerrofilurils.-a. A small piece of the tissue (brain, spinal cord, ganglion, etc.), not more than 4 mm . thick, and preferably from a young or fortal animal, is placed in 50 c.c. of rectified spirit. After four or five hours in this, followed ly twenty-four hours in absolute alcohol, rinse with distilled water and place in a large quantity of 1.5 per cent. solution of silver nitrate, which is maintained at a temperature of about 35: C. After being five or six days in this, the piece is removed, rinsed for a few seconds in distilled water, and transferred for twenty-four hours to the following developing solution :-

Hydrokinone	1 to $1 \% \mathrm{gm}$.
Distilled water	100 e.c.
Formol	5%
Rectified spirit	$10 "$.

The addition of rectified spirit to the above is not indispensable, but favours penetration. The piece is then washed in water for some minutes, transferred to alcohol, embedded in celloidin or paraffin, and sections are prepared and mounted in dammar.
β. Place several small pieces of the fresh tissue direct in 2 per cent. silrer nitrate solution at $35^{\circ} \mathrm{C}$. in the dark: a piece is taken out on the third and on each subsequent day until the eighth. The piece is rinsed in distilled water for a minute or two and then immersed in the above developing solution for twent y-four hours: after whicl proceed as before. The tissue should be placed on cotton wool in the silver solution. The eentral parts of the tissue are usually best, the superficial parts being often too dark.
30. Bimphouskiy's method for neuruibrils.-Place small pieces of tissue in 12 per cent. formol for twenty-four hours; wash for several hours in distilled water which should have been redistilled from potassinm permanganate (da Fano); cut sections by freezing method. Proceed as follows: Place the sections in 2 per cent. nitrate of silver for twenty-four hours; wash in redistilled water for a few minutes. Then transfer them to the following solution, viz. : \supseteq per cent. nitrate of silver 20 c.c., to which three drops of a 40 per cent. solution of caustic potash are added, and enough ammonia to cause the disappearance of the brown precipitate produced. The sections may be left in this solution for some time. They are then passed through redistilled water and transferred to 20 per cent. formol solution made with tap water. After twenty-four hours in the formol the sections can be washed with wat \cdot, delydrated and monnted in dammar, but it is preferable first to tone them with chloricle of gold. This is done by placing the washed sections in very dilute (002 per cent.) gold "hloride solution acidified with acetic acid. They must then be tixed with 5 per cent. acid sodinm hyposulphite solution, washed with water, and passed through alcohol and xylol into dammar.

INTRA JYT'AM HTAINING METHOLS

31. Methylene-hlue method.-This method is of great value for exhibiting nerveterminations, and in some cases the relation of nerve-cells to nerve-fibres in the central nervous system. For its application the tissue must be living ; it is therefore best applied (Ehrlich) by injecting a solution of methylene-llue (I part to 100 of warm Ringer) into a vein in an anasthetised mammal, until the whole blood is of a bluish colour ; or the injection may be made through the vessels of the part to be investigated, immediately after killing an animal. Good results can sometimes be obtained by immersing small pieces of freshly excised living tissue in a less concentrated solution ($0 \cdot 1$ per cent.), or, in the case of the central nervous system, by dusting the methylene-blue powder over a freshly cut surface, allowing some time for it to penetrate and then treating it with pierate of ammonia and Bethe's solution (see below). In either case the tissue should be freely exposed to air; only then does the blue colour appear in the nerve-cells and axis-cylinders, to their finest ramifications. It does not, however, remain, but after a time fades from them, and other tissues then become coloured. To fix the stain the tissue is taken at the moment that the nerve-fibres are most distinctly seen ancl is placed for an hour or two in saturated solution of picrate of ammonia, after which the preparation can be mounted ia glycerine containing picrate of ammonia. But to allow of sections being made for mounting in balsam or dammar, the pieces of tissue must, suhsequently to the treatment with picrate of ammonia, ho placed for some hours in Bethe's fluid, viz. :-

Molybdate of ammonia	1 gm.
Chromic acid 2 per cent. solution	10 c.c.
Distilled water	10 c.c.
Hydrochloric acid	1 drop.

This renders the colour insoluble in alcohol.
32. Dogiel's modification of the methylene-blue method.-The fresh tissue is placerl in a capsule containing l per 1000 methylene-blue and kept at $36^{\circ} \mathrm{C}$. for two hours. It is then placed in 6 per cent. molybdate of ammonia for twentyfour hours; washed during four hours in distilled water; dehydrated with alcohol, and passed through xylol into dammar.
33. Neutral red.-This is really a basic dye of a neutral tint, readily converted by alkalies to yellow and by acids to red. It is a relatively non-poisonous substance and can be used.for intra vitam injection as a concentrated solution in normal saline. It has no specific affinity for neurofibrils but it colours certain cell-granules intensely. It has been used by Bensley for exhibiting by its selective stain the islets of Langerhans of the pancreas.
34. Jonusegreen.-This is a basic aniline dye, readily soluble in water. It can be employed in very dilute solution (1 to 300,000 normal saline) for injection into the blood-vessels. It has been used by Ehrlich for staining nerves intravitally, and by Michaelis for the granules of gland-cells. Bensley has employed it also for showing the islets of Langerhans.
35. Bismarck-brown or resurin has also been recommended for intra vitam injection. It is used in a 03 per cent. solution; the tissues are subsequently fixed with 0.2 per cent. chromic acid or 1 per cent. osmic acid.

ADDITIONAL NOTES TO APPENDIX OF ESSENTIALS OF HISTOLOGY. ${ }^{1}$

DISSOCIATION METHODS.

Special methods of dissociation are given under the notes of preparation at the beginning of each chapter, but there are certain general principles which must be remembered in order to make successful preparations. The dissociation may be of fresh tissue in Ringer's solution, but is most frequently of a tissue which has been macerated for some days in dilute chromic acid (1 in 2000), bichromate of potassium (1 in 800), or one-third alcohol (1 part rectified spirit to 2 parts water). Osmic acid preparations are first fixed in I per ceut. osmic for an hour and then macerated in water for several days: they can be kept permanently in a mixture of equal parts of water and glycerine and are available for use at any time. A piece of thymol should be added to the macerating fluids. In all cases a small fragment of the macerated tissue is rinsed in distilled water. It is then placed on a slide in a drop of distilled water, and broken up into as minute pieces as possible with needlez and covered with a cover-glass. This is then repeatedly and firmly tapped with the handle of a mounted, needle held balanced lightly between the first and second fingers, care being taken not to break the cover-glass. To prevent crushing of the cells a small hair from the back of the hand is cut off and placed in the drop prior to covering it. The stains to be used are introduced at one edge; or the dissociation can be made in the diluted stain instead of distilled water. When the cells are stained a small drop of glycerine and water is brought in contact with one edge of the cover-glass and is allowed gradually to diffuse under this. It must not be sucked under with filter paper. The cover is fixed next day with gold size.

In some cases it is of advantage to add a little glycerine to the diluted stain in which the tissue is dissociated, and to cover the specimen in this fluid, allowing the water to dry off at the edges before fixing the cover-glass with gold size.
METHODS OF FIXATION.

Formol.-When formol is used as a fixative its solutions should be made up with isotonic saline (0.6 por cent. for frog tissues, 0.9 per cent. for mammalian), not with water (Carleton). Sometimes black granules (of tri-oxymethylene) make their appearance in formol fixed specimens. They can be got rid of by treatment with 1 to 5 per cent. ammonia in 70 per cent. alcohol.

Bouin's solution :-

Picric acid, saturated solution	75 c.c.
Formol	25 c.c.
Glacial acetic acid (or saturated solution of citric acid)	5 c.c.

Place the tissue in this for twelve to eighteen hours, wash out the picric acid with 50 per cent. alcohol (to which has been added a few drops of a saturated solution

[^31]of lithium carbonate) for twelve hours. Then transfer through 70 per cent. alcohol to 80 per cent. The fixative penetrates well and equally. Finer details of cell structure are much better preserved than after formol alone, and tissuey so fixed stain well if the picric acid has been thoroughly removed, which can be done if a small amount of lithium iodide (Landau) is added to the alcohols through which the tissue is passed. They can then be dehydrated and embedded in the usual way, or may first be stained in bulk with hæmatoxylin and ensin (see p. [573], Staining in hulk).
"Bouin" is unsuitable for salivary glands or for any cells containing mucigen, which becomes greatly swollen by the acetic acid.

Oşmic acidl (see Appendix, p. 551). -In 0.5 to 2 per cent. solution. or as osmic vapour, it fixes protoplasm well, but tends to swell the tissues slightly. Fix half to two hours, wash thoroughly and transfer to dilute alcohol. Or suspend thin pieces of the fresh tissue in gauze over 2 per cent. osmic acid in a stoppered bottle for one and a half hours at $37^{\circ} \mathrm{C}$. ; then transfer to 50 per cent. alcohol. For cytological purposes the pieces may be put from the osmic acid into Altmann's fluid (equal parts of 5 per cent. potassium bichromate and 2 per cent. osmic acid).

Osmic acid does not penctrate readily and is only suitable for the fixation of small objects. Its vapour is irritating to the eyes: it must therefore be used with care and kept covered. The action of light tends to reduce it, so that it must be kept in the dark and in bottles covered with black paper. Staining after osmic acid fixation is difficult, but if the sections are treated with a solution of hydrogen peroxide. they stain well, even with Delafield's hæmatoxylin. Pal's method (Appendix, p. 564) can be used with advantage instead of hydrogen peroxide.

Champy's methot.-Small pieces of tissue are placed for twenty-four hours in the following fluid :-

3 per cent. potassium bichromate	7 c.c.
1 per cent. chromic acid	7 c.e.
1 per cent. osmic acid	4 c.c.

and then washed for six hours in running water.
Heidenhain's "susa " solution.-This is made as follows :-

Sublimate salt solution (saturated)	50 c.c.
Trichloracetic acid	2 gm.
Formalin	20 c.c.
Glacial acetic acid	\pm c.c.
Distilled water	30 c.e.

"Susa " is a very good general fixative. The acetic acid and trichloracetic acid counteract the tendency to shrinkage caused by the sublimate. Tissues cut more easily after "susa" fixation than after alcohol, formol, or Zenker (Appendix, p. $5 \overline{5} \boldsymbol{2}$). and their staining qualities are uniformly good.

As with Zenker and other fluids containing mercuric chloride, it is necessary after fixation to get rid of the excess of mercury salt by iodised alcohol (see p. [571] (d)).

Szent-Györgi's fluid for fixing the whole eveball.-This is made up as follows :-

Concentrated sublimate salt solution	50 c.c.
Glacial acetic acid	5 c.c.
Formalin	40 c.c.
Acctone	125 с.c.
Distilled water	$\mathbf{5 0}$ c.c.

Add the other reagents to the sublimate solution immediately before using. Fix two to three days for small eyes, six to seven days for large. Then add to the fluid
half its total volume of acetone, and leave two to four days longer. Dehydrate in pure acetone; change to fresh acetone after two days; in two days more transfer to ether-alcohel, equal parts, and leave for twenty-four hours. Cut with a sharp knifo into suitable pieces and embed in celloidin.

Fixatices which also decalcify (Appendix, p. 553).-Trichloracetic acid, a 5 per cent. solution in water, fixes and decalcifies at the same time. Larger pieces will take from eight to ten days, although forty-eight hours may be sufficient for small objects ; test with a needle. Wash out the acid with 96 per cent. alcohol, changing three times at intervals of three hours. Water must not be used for this as, after trichloracetic acid, it causes swelling of the tissues. The fixed tissue is dehydrated with absolute alcohol and embedded in celloidin ; the sections (40μ) are stained and passed through alcohol and xylol-creosote (xylol 2 parts, creosote 1 part) to dammar.

White's method of decalcifcation.-The novelty of this method lies in the use of a neutral instead of an acid fluid. It works very well after formalin or Bouin fixation and does not affect any subsequent staining. The fluid is a solution of ammonium citrate which has the property of dissolving the insoluble salts of calcium (phosphate, carbonate, sulphate) even when neutral or alkaline from an excess of ammonia. It is made up as follows: A saturated water-solution of citric acid is diluted 1 : 10 with $\mathrm{H}_{2} \mathrm{O}$. A little methyl red and a little a-naphthol-phthalein are added and then strong ammonia until the fluid is of a clear yellow colour. Too much ammonia will turn the fluid green. Add a little chloroform to prevent the growth of moulds. After decalcification is complete, the tissues must be well washed in running water before being placed in alcohol. Embed cither in paraffin or celloidin.

Treatment after fixation.-The fluid employed for fixation must be washed out as indicated under each fixative, or according to the following rules:-
(a) After osmic acid, chromic acid, or mixtures containing these acids, prolonged washing in running water is necessary.
(b) After fixatives containing formol or bichromates; rinse or wash for a short time in water and transfer to the ascending series of alcohols, beginning with 60 per cent. and ending with 96 per cent. alcohol. Tissues fixed in fluids containing chromic acid or its salts must be kept in the dark while being washed out by alcohol, since alcohol causes a precipitate in these fluids under the influence of light.
(c) After fixatives containing mercuric chloride or picric acid wash at once with 80 per cent. alcohol, changing several times, unless otherwise indicated.
(d) Further, after all fixatives containing sublimate it is necessary to get rid of the mercury; othcrwise, small needle-shaped or amorphous crystals of mercury chloride remain in the sections. To effect this the first alcohol is iodised, i.e. coloured tawny brown with a solution of 2 per cent. iodine in 3 per cent. alcoholic solution of potassium iodide; but since iodine is harmful to stains, especially anilin stains, it must be removed by subsequent alcohol baths. Or, instead of treating the tissue in bulk with iodine, sections may be placed in iodised aloohol for fifteen minutes and then treated with 0.25 per cent. sodium thiosulphate for fifteen minutes. Rinse in water before staining.

METHODS OF EMBEDDING.

Embedding tissues in paraffin (p. 553).-The tissue is passed from ahsclute alcohol, in which it has been dehydrated, either through xylol, or spirit of turpentine, or carbon tetrachloride followed hy carbon disulphide.

Xylol although freely miscible with aloohol, ether, resins, paraffin, takes up no
water, therefore very perfect dehydration is necessary, and it is advisable to proceed through absolnte alcohol and xylol equal parts, before transferring the tissucs to pure xylol. This step or the use of xylol-creosote is generally useful in transferring tissues from alcohol to xylol, since it combats the tendency of xylol to produce shrinkage. Xylol is chemically inert, and is therefore suitable for the embedding of material impregnated with silver, gold, or osminm, as it does not affect these. Other ethereal oils, such as turpentine and cedar-wood oil, oxidise and are therefore unsuitable for metal-impregnated tissue. Tissues must not be left too long in xylol, especially if much connective tissue or plain muscle is present, since the hardening they undergo may make cutting difficult.

Spirit of turpentine is freely miscible with alcohol, xylol, etc., and, unlike xylol, can take up a moderate amount of water. It interferes with the action of some stains and may be deleterious to metal impregnatious. It is not, therefore, suitable for tissues stained in bulk with hæmatoxylin, or by Cajal's reduced silver methode. It penetrates well and makes connective tiesue and smooth muscle easy to cut, and is useful for large topographical scctions, and for dense tissues such as the uterus, prostate, scalp, etc. It is not very easily extracted in the paraffin bath, but even if a trace remains it does no harm, and has the advantage of keeping the tissue softer and more easy to cut. For tissues containing much smonth muscle or connective tissue it is well to use Müller's fluid as a fixative, and after dehydration to pass the material through turpentine into paraffin.

Carbon disulphide and tetrachloride.-Even if the purest carbon disulphide obtainable is used, hrown granules will be found in the periphery of the tissue. But if carbon tetrachloride is used first, the tissue remains free from granules, and carbon disulphide is then used to ensure that the tissue will cut easily. Complete dehydration is essential. Since carbon disulphide has an objectionable smell it should be kept in tightly stoppered hottles. (The process of transference is best carried through in one special shelf of a dark cupboard, so that the solutions are disturbed as little as possible and are protected from light.) It penetrates readily and is easily replaced ly paraffin. It is possible to cut very thin sections (2 to 3μ) by this method.

In embedding through carbon tetrachloride and carbon disulphide, tissues are passed from absolute alcohol into a mixture of absolute alcohol and carbon tetrachloride, equal parts, then into pure carbon tetrachloride for twenty-four hours. They are given two baths of carbon disulphide, twenty-fonr hours in each, and embedded, through paraffin saturated with carbon disulphide, in pure paraffin.

Einbedding in celloidin (Appendix, p. 554)-Da Fano's method for serial sections. --Pieces of any desirable size are embedded in celloidin by means of paper boxes or a similar device which may allow one to arrange them according to the way in which the series will have to progress. At the same time care should be taken that the pieces arc surrounded by an amount of celloidin sufficient for subsequently writing a progressive number on the sections. The celloidin blocks are stuck to appropriate supports and these are fixed on the microtome as usual. A rather large, flat glass plate is placed near the mierotome and cosered with a sheet of thick blotting paper of the same size. This is thoroughly wetted with 70 per cent. alcohol. Numbered strips of thin smooth paper are then placed in a given order on the wet blotting paper and cutting is started. The sections are collected from the knife by means of a soft brush and placed in series on the paper strips. When a sufficient number of sections has been cut the first paper strip witb its sections is lifted from the wet blotting paper and placed on a dry strip. The seotions are then gently pressed and dried a little with a piece of repeatedly folded filter paper. Without any loss of time a number is written on a corner of the celloidin surrounding the
aections by means of a small brush with a mixture of 10 c.c. of Indian ink and 3 c.c. of equal parts of anhydrous ether and acetone. The figures dry instantaneously. If the paper strip with the sections is moved about in a dish of 60 or 70 per cent. alcohol, the sections float in it. One then proceeds to number the sections placed on the second paper strip and so on until all sections are used. The numbers thus written on the celloidin are not obliterated by water and common reagents such as alcohol, xylol, the Weigert mordant, the bath used for toning and fixing Golgi-Cox specimens, and so on. Many sections can, therefore, be stained and treated as desired at the same time and finally mounted according to the progression of their numbers; provided, of course, that media which dissolve celloidin are not used.

If it is imperative to dissolve the celloidin before mounting, the sections should be first arranged in definite serial order on slides previously numbered by means of a diamond point.

METHODS OF STAINING AND COUNTERSTAINING.

Staining in bulk.-Tissues fixed in various ways, but especially in Bouin's solution, may be stained in bulk with hæmatoxylin and eosin as follows: Transfer the tissue to Ehrlich's hæmatoxylin diluted with 3 parts of distilled water in the case of invertebrate and embryonic material or with 2 parts of 2 per cent. acetic acid if the tissues are from adult vertebrates. The pieces remain in the dilute hæmatoxylin from two to four weeks or longer-according to their thickness, more or less compact structure and state of development-while the hæmatoxylin is changed once at the end of the first week. After a quick wash the material is kept for two or three hours in 0.5 to 1 per cent. HCl in 70 per cent. alcohol, washed in tap water cvernight, and then passed through the ascending series of alcohols up to 95 per cent. alcohol. This is replaced with a 1 per cent. solution of eosin in alcohol of the same strength, and the pieces are left therein for about a week. They are now washed for some hours in 95 per cent. alcobol, dehydrated in absolute alcohol, cleared in xylol and embedded in paraffin.

An alternative method of obtaining the eosin counterstain is to add a little eosin to all the alcohols used.

Delafield's hoematoxylin (Appendix, p. 560).-The stock solution must be diluted with distilled water 1 in 5 , and should be filtered each day before using. The activity of the stain increases for a few months as it ripens, but after that it decreases. The time necessary for staining sections varies with the sample of stain and the fixative which has been employed. Tissues fixed with Zenker or Flemming are very resistant to Delafield. The best fixative for good nuclear staining with Delafield is alcohol, but "susa," sublimate, formol, or trichloracetic are also good.

Sections are stained until the nuclei stand out clearly and the protoplasm and connective tissues are still almost colourless when viewed with a low magnifying power. With those fixativcs which are more resistant, e.g. those containing chromic acid, it is best to leave the sections in the fluid until they are overstained, and then to differentiate by removing the excess of colour (see below).

After staining with Delafield's hæmatoxylin the sections are washed for at least ten minutes in tap water, either running or frequently renewed. The slight alkalinity of the water neutralises any acid present; the sections become blue, losing their reddish tinge. The neutralisation may be effected most quickly by inverting the slide over dilute ammonia and exposing to the vapour for a second, then washing thoroughly in water. Or the neutralisation with ammonia may be done when the sections are in xylol immediately before mounting them.

Decolorisation of overstained sections.-If the excess of colour is slight, decolorise
in distilled water weakly acidulated with acetic acid. The result is a clearing of the sections without harming the nuclear stain. The acid must be thoroughly removed by washing in tap water. If more heavily overstained, use 10 per cent. of concentrated picric acid solution in distilled water. The yellow of the picric acid tones down the bluish shade of the protoplasm and a very pure nuclear stain is obtained.

Chromotrop $2 R$.-This is the best protoplasm stain to use after Delafield's hæmatoxylin. The sections are rinsed in water, alkalinised over ammonia vapour, and passed through dilute alcohols to absolute alcohol. They are placed for two minutes in a saturated solution of chromotrop 2 R in absolute alcohol, rinsed in alcohol, transferred to xylol and mounted in dammar. Chromotrop gives a beautiful red colour and a very sharp contrast ; it is permanent.

Eosin (see Appendix, p. 362,12).-Delafield stained scctions to be treated with eosin must be neutralised only with tap water; eosin will not stain well if a trace of alkali: is present, and will fade in a comparatively short time if alkali remains in the preparation. Chromic-fixed tissues are best for staining with eosin.

Thiazin red.-This is a water-soluble, permanent anilin dye to be used after Delafield's hæmatoxylin, or Heidenhain's iron-bæmatoxylin. Sections stained in hæmatoxylin are placed for from two to five minutes in a solution of -

Thiazin red, 0.5 per cent. in water	45 c.c.
Concentrated pieric acid	5 c.c.
Alcohol, 96 per cent.	15 c.c.
Distilled watcr	100 c.c.

They are then passed through water and alcohol into xylol. alkalinised by inverting over ammonia vapour, and mounted in dammar. Before counterstaining with thiazin red, Delafield hæmatoxylin sections require only to be rinsed. Heidenhain ironhæmatoxylin sections must be washed for fifteen minutes in running or frequently changed tap water.

For muscle, cardiac or voluntary, Heidenhain uses thiazin red after ironhæmatoxylin. Or thin sections of tissues fixed in 5 per cent. trichloracetic acid are stained in 1 per cent. thiazin red solution for thirty minutes, then rinsed in distilled water and placed in 1 per cent. water-solution of methylene-blue for from one to two hours; the excess of blue is in turn removed by 96 per cent. alcohol, and the dehydrated sections are cleared and mounted.

Rosindulin.-A saturated solution in absolute alcohol is used after Delafield's hæmatoxylin as a contrast stain for developing bone, and is differentiated, if overstained, in alcohol.

Heidenhain's "azan" method.-This is a modification of Mallory's method (p. 562 of Appendix). It is a very good stain for connective tissue. and is also useful for general purposes. Zenker's fluid, "susa," or other sublimate mixtures are the best fixatives to employ for it, but good results are also obtained after Bouin, formol, etc.

Place sections for one hour at $55^{\circ} \mathrm{C}$. in 0.2 per cent. solution of azocarmine (x acidified with 1 per cent. acetic acid. Rinse in distilled water. Differentiate in 0.1 per cent. anilin oil in 96 per cent. alcohol until the protoplasm and connective tissue are pale pink and the nuclei stand out sharply. The differentiation proceeds sufficiently gradually to allow of perfect control, but if too slow a few drops of distilled water may be added to the alcohol. Control the differentiation by riusing in acid alcohol -96 per cent. alcohol with 1 per cent. glacial acetic acid. This interrupts the process momentarily and gives time for an examination under the low power. When the differentiation is complcte rinse in this acid alcohol. Transfer to 5 per cent. phospbotungstic acid for two hours. In this the connective tissue and
protoplasm become quite colourless. A pure nuclear stain is thus ensured, while the connective tissue is mordanted for the anilin blue. Rinse in distilled water. Counterstain with orange G and anilin blue. For this purpose a stock solution is prepared as follows :-

Orange G	2 gm.
Anilin blue, water-soluble (Gräbler)	0.5 gm.
Acetic acid	8 c.c.
Distilled water	100 c.c.

Dilute for use with twice its volume of watcr. Stain until the very finest fibres of connective tissue are sharply stained; rinse with distilled water. Dehydrate quickly through 96 per cent. absolute alcohol, and clear in xylol, mount in dammar.

Azocarmine Gx (Badisohe Anilin- u. Soda-Fabrik) is an acid anilin dye, obtained as a dark red powder, very insoluble in water. A 0.2 per cent. solution is made with boiling distilled water and is filtered on cooling, and acidified with 1 por cent. acetic acid. This contains very fine needle crystals, but at the staining temperature these are in solution.

Note that in the counterstain Heidenhain has replaced the oxalic acid of ordinary Mallory with acetic acid, since oxalic acid is harmful to azocarmine.

The "azan" method colours all the nuclear chromatin red, protoplasm pink, connective tissue, including basement membranes and the fine reticular fibres of lymph glands, blue; muscle yellow to red, according to the fixative; colloid material blue; bene-corpuscles red; cell-granules red, yellow, or blue, according to their nature; neuroglia red.

The method brings out very clearly the presence of small bundles of plain musclecells lying in much connective tissue. It is useful for embryological tissues, for lymphatic structures, and for all glandular organs, especially the thyroid and ovary. It is very permanent.

Arocarmine B.-This is an acid, water-soluhle anilin dye. Sections are first stained in Delafield's hæmatoxylin for ten minutes, rinsed in distilled water, and then placed for ten minutes in the following solution :-

Azocarmin B, 1 per cent.	3000 c.c.
Distilled water	6000 c.c.
Glacial acetic acid	2 to 3 drops

Differentiate in 1 per cent. picric acid solution, rinse in distilled water, bring through alcohols to xylol, alkalise over ammonia, and mount.

This is a good and permanent stain after Delafield. Heidenhain uses it as a selective stain for cornified substance, differentiation being continued until the red coloration has faded from the other tissues. It is recommended for striated musclo (Walker).

Azocarmine with indigo carmine and picric acid (Walker).-Sections fixed with "susa" are stained fifteen to thirty minutes in a solution of azocarmine Gx at 55°, and differentiated in anilin alcohol. They are rinsed in acid alcohol and placed for fifteen minutes in a solution of 0.2 per cent. of indigo carmine in a saturated aqueous solution of picric acid. They are dehydrated in ahsolute alcohol, cleared in xylol, and mounted in dammar.

Counterstain for Nissl's method (Appendix, p. 565, 28).-Sections after being stained in a solution of I per cent. toluidin blue containing a trace of sodium bicarbonate, for thirty minutes, at a temperature of $37^{\circ} \mathrm{C}$., are counterstained by alcohol to which has heen added 1 per cent. of a saturated solution of chromotrop 2 R in absolute alcohol. The chromotrop hastens the differentiation, faintly tinges the ground tissue of the section and increases the permanence of the blue stain. After the desired
point of differentiation is reached the sections may be placed for ten minutes in a 5 per cent. solution of phosphotungstic acid in water; this ensures permanence.

Mitochondria and Centrioles.

Regaud's iron-hematoxylin method.-Small pieces of fresh tissne are fixed in a mixture of 4 parts of 3 per cent. potassium bichromate and 1 part of commercial formalin (neutralised over calcium carbonate) for four days, changing the mixture every day. Mordant in 3 per cent. potassium bichromate for eight days, changing every second day. Wash in running water, twenty-four hours. Dehydrate in alcohols of increasing strengths, commencing with 30 per cent., pass throngh equal parts of absolute alcohol and xylol, clear with xylol, embed in paraffin melting at 56° to $58^{\circ} \mathrm{C}$. The sections must be as thin as possible and mounted by the albumen method. Pass them quickly throngh xylol and absolute alcohol down to water, and mordant them in 5 per cent. iron-alnm at $36^{\circ} \mathrm{C}$. for twenty-four hours. Rinse in distilled water and stain for twenty-fonr hours in hæmatoxylin made up by dissolving 1 gm . of hæmatoxylin (cryst.) in 10 c.c. of absolute alcohol and adding 10 c.c. of glycerine and 80 c.c. of distilled water. Differentiate in 5 per cent. iron-alum under microscopic control. Wash in tap water, dehydrate, clear and mount in the usual way. In successful specimens, besides mitochondria, nuclei and centrioles are stained.

Cowdry's method.-Treat the tissue as by Regand's method until the slides with the sections on them are in distilled water. Pass them for about thirty seconds into 1 per cent. potassium permanganate, rinse in distilled water and bleach in 5 per cent. oxalic acid for about thirty seconds; wash in several changes of distilled water ; stain with Altmann's anilin fnchsin prepared as follows: Add some anilin oil to 100 c.c. of distilled water, shake and filter; add 10 gm . of acid fuchsin; shake vigorously and let stand for twenty-four hours: it must be used within a month. To stain, dry the slide with a cloth, except the small area on which the section is placed; cover the section with the stain and heat over a flame until fumes come off; allow to cool for about six minutes; return the excess of stain to the bottle, and rinse the slide quickly in distilled water. Allow a little I per cent. methyl green in water to flow from a pipette over the section, holding the slide over a piece of white paper so that the colour may be seen. Apply the methyl green for five scconds at first and modify as required. Drain off excess of stain ; plnnge into 96 per cent. alcohol; rinse in absolute alcohol, clear in xylol or toluol; mount in balsam or dammar. In successful specimens the nuclei are green, while mitochondria and certain secretion granules (pancreas) are red.

Modification of the Champy-Kull method.-Very small pieces are fixed in the slightly modified Champy fluid suggested by Kolatschev; this consists of 4 parts of 1 per cent. chromic acid, 4 parts of 3 per cent. potassinm bichromate, and 2 parts of 2 per cent. osmic acid; to each 10 c.c. of this mixture 2 to 3 drops of a 0.1 per cent. solution of pyrogallic acid may be added. After twenty-four hours the pieces are washed for some hours in running water and placed (Nassonov) for three to seven days in 1 per cent. osmic acid at room temperature in summer, in an incubator at about $30^{\circ} \mathrm{C}$. in winter. After washing, dehydrating, and cmbedding in hard paraffin, sections are made and fixed to slides by the albumen method. The sections, which need not be bleached, are staincd with Altmann's anilin fuchsin as by Cowdry's method. Rinse in water and counterstain for one to two minutes with either 0.5 per cent. toluidin blue or 1 per cent. thionin; wash in distilled water; differentiate for twenty to thirty seconds in 0.5 per cent. solution of aurantia in 70 per cent. alcohol ; pass through 96 per cent. alcohol, absolute alcohol and xylol into balsam or dammar. This method is difficult, but it is important for the study of the relationship between
mitochondria, Golgi's apparatus, and secretory activity in certain glandular organs. In successful specimens the nuclear chromatin is bluish; mitochondria, purple-blue to purple-violet ; secretion granules, golden-red ; ground cytoplasm, golden-yellowish ; Golgi's apparatus, black.

Golgi's Internal Apparatus.

The fixation is important. In general a fixation with osmic-chromic mixtures is good. The methods of Cajal (uranium nitrate), Da Fano (cobalt nitrate), and Golgi (arsenious acid) are also useful.

Cajal's method.-Pieces of fresh tissue, 4 mm . thick, are placed in

Uranium nitrate -	1 gm.
Neutral formol	15 c.c.
Distilled water	85 c.c.

For the Golgi apparatus it is best to use tissue from young mammals, and fixation must only be for from ten to twelve hours; for neuroglia twenty-four to forty-eight hours. Rinse in distilled water and place in 1.5 per cent. silver nitrate solution for two or more days at room temperature. Wash quiokly in distilled water and reduce for twenty-four hours in

Hydroquinone	1 gm.
Formal	5 o.c.
Distilled water	50 c.c.
Sodium sulphite, just sufficient to give a yellow tinge to the solution.	

Rinse with water, dehydrate, and embed either in paraffin or celloidin.
Da Fano's method.-This is a modification of Cajal's uranium nitrate method, and is recommended for routine work, as it seldom fails. Pieces of quite fresh tissue no more than 4 mm . thick are fixed for six to eight hours in a solution of cobalt nitrate 1 gm ., distilled water 100 c.c., formalin 15 c.c. The solution can be prepared beforehand and keeps unaltered indefinitely. The formalin need not be neutralised unless strongly acid. For embryonic organs and in all cases in which a shrinkage of delicate tissues is to be feared the quantity of formalin may be reduced to 10 , 8 , or even 6 c.c. for every 100 c.c. of distilled water, particularly during the first one to two hours of fixation, after which the fixing fluid is changed for one containing the usual amount of formalin. In the case of tissues from invertebrates this can usefully be raised to 20 c.c. for every 100 of distilled water. The time of fixation should be reduced to two to four hours for very small organs such as spinal ganglia, pituitary body and suprarenals of mice and rats, as well as small pieces of pancreas, etc. Pieces of spinal cord, cerebrum, and cerebellum fron adult mammals give the best results if fixed for ten to eighteen hours. If fixation is carried out in an incubator at 25° to 36° C., mitochondria stain frequently at the same time as the Golgi apparatus.

After fixation the pieces are quickly washed in distillod water and transferred to 1.5 per cent. AgNO_{3} for about two days at room temperature. Fach piece is then split into two halves, and after a quick wash passed into Cajal's reducing fluid (see above).

Dehydrate through the ascending series of alcohols, clear with cedar-wood oil, embed in paraffin. The sections can be stuck to slides in series, toned, fixed, counterstained, and finally mounted in balsam or dammar in the usual way.

Golgi's method.-The tissues are fixed for twenty-four hours in equal parts of 20 per cent. formalin, saturated solution of arsenious acid, and 95 per cent. alcohol.

They are then transferred to 1 per cent, silver nitrate solution, in which they are left for some hours (up to forty-eight); rinsed in distilled water and transferred to Cajal's reducing fluid.

After reduction, wash in water, quickly dehydrate with alcohol, and embed in paraffin. The sections can be afterwards toned (see p. [582]).

Neuro-Fibrils, Nerve-Endings, Nerve-Cells, Neuroglia, etc.

Kultschitzky's method for motor and sensory endings in muscle.-Small shreds of perfectly fresh muscle, preferably snake or lizard, are placed in 20 per cent. formic acid or in lemon juice. Use as little fluid as possible in proportion to the amount of tissue. Keep the tissue well under the surface, by touching with a glass rod, and leave until transparent (five to fifteen minutes, depending on size). Throughout, no metal instrument must touch the tissues, and only needles of glass or of unoxidisable metal and bone or paraffin-coated forceps should be used. Transfer to a glass plate and remove the excess of acid with filter paper. Place in

1 per cent. gold chloride	1 part
20 per cent. formic acid	3 parts

for half an hour, or until the tissue takes on a distinct yellow tone. Remove the excess of fluid again with filter paper, and keep in 20 per cent. formic acid in the dark, or in water acidulated with a few drops of acetic acid in the light. Leave at least twenty-four hours, preferably two to three days. Transfer to glycerine and water equal parts, or glycerine, water, and alcohol, equal parts, and keep in this. Examine small pieces from time to time. It may be good immediately, but may improve up to one or two years. When good preparations are obtained they may be mounted in glycerine and ringed with gold size, or in Apathy's fluid, which is made as follows :-

Pure gum arabic	50 gm.
Crystalline cane sugar	50 gm.
Distilled water	$50 \mathrm{c.c}$.

Dissolve over a water bath and add thymol 05 gm .
Kultschitzh'y's method for nerve-endings in tendons.-Small shreds of tendon are fixed and stained overnight in

3 per cent. uranium nitrate	100 c.c.
1 per cent. osmic acid	1 c.c.

They are then mounted in glycerine, in Apathy's fluid or, after dehydrating and clearing, in dammar.

Ruffini's method for nerve-endings in muscle and tendon.-Pieces of fresh tissues are immersed in a 25 per cent. solution of pure formic acid for ten to fifteen minutes, using the minimum quantity of fluid for complete immersion. They are then transferred from the acid and pressed gently between the folds of a olean towel or filter paper to absorb as much acid as possible. They are now placed in a 1 per cent. gold chloride solution-sufficient only to cover them thoroughly-for fifteen minutes, using no metal instrument, but agitating until they become an even golden brown. After the excess of fluid is removed by a cloth or filter paper, they are again placed in a minimum quantity of 25 per cent. formic acid and left in absolute darkness for twenty-four hours. The colour hecomes reddish-purple; if still light red or yellow
leave for a longer period; if very dark purple the tissue has been over-reduced and must be retoned in the gold solution. Remove the excess of fluid again as above, transfer to pure glycerine, and leave in ordinary light in a closed vensel. The longer the tissue is left in glycerine the clearer it becomes; the best results are gat in tissue examined after several years.

Golgi's rapid silver method for nerve-cells (Appendix, p. 565, 26, β).-Recommended for young or feetal vertebrate tissues and adult invertebrate. The tissues must be absolutely fresh and not larger than 4 mm . cub. They are fixed for two to five or six days, or, in the case of young embryos, for two to three or four days, in the bichromate-osmium mixture. The container is sealed with paraffin and kept in the dark in an incubator at 22° to $24^{\circ} \mathrm{C}$. The pieces of tissue are rinsed in a small quantity of 0.75 per cent. silver nitrate before being placed in a larger amount of the same fluid for thirty hours or more.

In addition to the double method referred to in the Appendix, p. 365, as used by Cajal, the same authority recommends a third impregnation if necessary, the tissue being returned for a third time to bichromate-osmium mixture and retransferred to silver nitrate solution. Exact times must be found out by trial for each tissue, the times varying with the species and age of the animal and the particular tissue to be studied. Thus, neuroglia-cells usually require from two to three days in the osmicbichromate mixture, ganglion-cells three to five days, and nerve-fibres five to six days.

Cajal's rapid silver method.-Tissues fixed in 14 per cent. formol for fourteen days or longer are cut with the freezing microtome and received again into the formol solution. They are rinsed in two baths of distilled water and rapidly immersed in

$$
\begin{array}{lc}
2 \text { per cent. silver nitrate } & 10 \text { c.c. } \\
\text { Pyridin } & 5 \text { drops }
\end{array}
$$

In this they are heated to below $50^{\circ} \mathrm{C}$. until they become dark brown, or if convenient they may remain in the dark, at room temperature, for twelve to forty-eight hours. Sections are rinsed for half a minute in 96 per cent. alcohol to which 2 drops of a 2 per cent. silver nitrate solution may be added and are then reduced in

Hydroquinone	0.2 gm.
Formol	30 c.c.
Distilled water	70 c.c.

The reduction is rapid, a few seconds being sufficient. The sections are rinsed in water, transferred to absolute alcohol, cleared in origanum oil or in carbol-xylol, and mounted in dammar.

C'hromate of mercury method for nerve-cells (Appendix, p. 565, 27).-This method can be used for the impregnation of relativcly large pieces of nervous tissue from young and even adult vertebrates as well as for whole brains of small animals. The impregnating fluid should be renewed once after twenty-four hours and again on the third or fourth day. The container should be kept in an incubator at 22° to $24^{\circ} \mathrm{C}$. for about a month and at room temperature for another six months or longer. The material is then washed for some hours in running water, passed through many changes of alcohols of ascending strength, starting from 60 per cent., and embedded in celloidin. The blocks can be preserved indefinitely in 70 per cent. alcohol. If a sufficient amount of celloidin is left round the pieces a progressive number can be written on the sections by Da Fano's method (see p. [572]). The sections, which should be 20 to 40μ thick or more, are floated in 70 per cent. alcobol, passed through a weaker alcohol and wasked in running tap water for balf an hour. They are then collected in distilled water and transferred for about ten minutes to 5 or

10 per cent. ammonia. After another prolonged wash in repeatedly changed distilled water they are toned by means of the following solutions :-

(a)Distilled water Sodium hyposulphite	$1000 \mathrm{c.c}$.
Potassium alum	155 gm.
Ammonium thiocyanate	20 gm.
Sodium chloride	10 gm.
	40 gm.

Allow to stand for eight days and then filter. This solution keeps for months, and can be used even if it becomes turbid.

(b) Gold chloride	1 gm.
Distilled watcr	$100 \mathrm{c.c}$.

At the moment of use, filter into a glass dish 50 c.c. of solution $a, 40$ c.c. of old (used) combined bath, and 7 c.c. of solution b.

The sections are transferred from the distilled water into this bath and kept therein for half an hour, or longer if they are rather thick. They are then washed for another half hour in repeatedly changed distilled water, while the toning and fixing mixture is poured into a bottle and kept for further use as " old combined bath." It is not necessary to bleach the sections, which can be faintly counterstained with a dilute solution of alum-carmine. This may be preserved in a separate bottle for further use. The sections are finally passed through alcohols of ascending strength up to 95 per cent., cleared with carbol-xylol and mounted in balsam or dammar under thin coverslips. The specimens keep unaltered for years.

Modifications of Cajal's methods for exhibiting neuro-fibrils (see Appendix, p. 566, 29).-In addition to α and β several different fixation fluids are recommended by Cajal. Of these the most useful are the following :-
(a) Instead of rectified spirit, as in $29, a, 95$ per cent. alcobol to which has been added three to five drops of ammonia to each 50 c.c. may be used. Fix for twenty-four hours and then proceed as in a.
(b) Tissues are fixed for twenty-four hours in 70 per cent. pyridin, washed for at least twelve hours in running water to remove all traces of pyridin, then placed in . absolute alcohol for twenty-four hours. They are dried superficially with filter paper and transferred to the silver bath. Useful for peripheral nerve-endings.
(c) For endocrine organs and peripheral nerve-endings in general, the tissue may he placed in the following fluid :-

Chloral hydrate	5 gm.
Absolute alcohol	$50 \mathrm{c.c}$.
Distilled water	$50 \mathrm{c.c}$.

for two days, then transferred to ammoniacal alcohol as in (a).
(d) For tissues which require at the same time to he decalcified the best method (De Castro) is to fix for twenty-four hours in the following :-

Urethane	2 gm.
(or chloral hydrate	5 gm.)
Alcohol	$40 \mathrm{c.c}$.
Distilled water	40 c.c.
Concentrated nitric acid	$3 \mathrm{c.c}$.

The tissucs are then washed for twenty-four hours in running water and transferred to ammoniacal alcohol, as in (a), for twenty-four hours, before placing in the silver bath.

For adult mammals in all cases the silver bath should contain 3 to 5 per cent. AgNO_{3} in preforence to weaker solutions, but for young mammals $\mathbf{l} .5$ per cent. is a useful routine strength, while for embryos and very young mammals and for invertebrates 0.75 is sufficiently strong.

Cajal's gold-sublimate method for neuroglia.-Absolutely fresh material is placed for two to fifteen days in 15 c.c. of neutral formol, 2 gm . of amnonium bromide, and 85 c.c. of distilled water. This fixation is for the neuroglia of both grey and white matter ; with longer fixations only the astrocytes of the white matter will be stained.

Sections are cut frozen, 25 to 30μ in thickness, rinsed rapidly in distilled water and placed in the following solution :-

Gold chloride (brown variety), 1 per cent. solution	6 c.c.
Mercuric chloride crystallised in needles	0.5 to 0.8 gm.
Distilled water	$\mathbf{3 5}$ c.c.

Dissolve the mercuric chloride in the gold chloride solution at the moment of use. The above amount is sufficient for about six large sections. They are flattened out carefully, by means of a glass rod, on the bottom of a glass crystallising dish sufficiently small to give a depth of about 1 cm . of fluid. After four to six hours at 18° to $22^{\circ} \mathrm{C}$. the sections take on an intense purplered tonc, and are then transferred to a bath of distilled water and left for several minutes. They are fixed in
Sodium hyposulphite, 5 per cent. $\quad 40$ c.c.
Alcohol, 96 per cent. $\quad 10$ c.c.
for from six to ten minutes. After washing for several minutes in one-third alcohol they are arranged on slides, dried by firm pressure with fine filter paper, then treated with absolute alcohol, origanum oil, and xylol, and mounted in dammar. The method gives good results with human, mammalian, and all vertebrate tissues.

Del Río-Hortega's rapid silver method for normal and pathological tissues.-Tissues are fixed in formol for five days at room temperature, ten to fifteen hours at 37°, or ten minutes at 60°. They are cut frozen, 20μ thick, and washed in several baths of distilled water, then placed in a solution of silver carbonate prepared as follows :-

$$
\begin{array}{lr}
\text { Silver nitrate solution, } 10 \text { per cent. } & 50 \text { c.c. } \\
\text { Sodium carbonate solution, } 5 \text { per cent. - } & 150 \text { c.c. }
\end{array}
$$

Add pure ammonia very carefully until the precipitate is dissolved, then 500 c.e. distilled water. Keep in the dark in brown glass bottles.

The solution containing the sections is warmed over a spirit lamp to 45° to 50°, and kept gently agitated at this temperature for one to two minutes until the sections become pale yellow, when they are transferred to 2 to 10 per cent. formol, where they become dark yellow. They are toned in 0.2 per cent. gold chloride solution at room temperature until they become dark grey, then warmed until they hecome purple. They are fixed in 5 per cent. sodium thiosulphate solution, and may be counterstained. Dehydration is through alcohol, carbol-xylol, to dammar or balsam. For connective tissue, especially when it is difficult to colour, e.g. that of striated muscle, give a preliminary bath in 2 per cent. silver nitrate at $40^{\circ} \mathrm{C}$. until sections are yellow, then transfer, after cinsing in distilled water, to the silver carbonate bath with 2 drops of pyridin added to each 40 c.c. until they become dark brown. The sections are again rinsed in distilled water and transferred singly to the 10 per cent. formol (where they become very dark) and toned as above.

If the tissue is fixed by formol-bromide as in Cajal's gold-sublimate method,
and if the sodium carbonate (see above) is replaced by lithium carbonate (saturated solution), the method is suitable for neuroglia.

Toning of Sections Stained by Silver Methods.

The very dilute solution of gold chloride suggested in the Appendix, p. 566, 30, is too weak; a solution not weaker than 0.2 per cent. is as a rule needed. It is, however, not usually necessary to have recourse to an exact dilution. It is more convenient to bave some l per cent. solution of gold chloride ready in a dropbottle, by means of which it is added to a dish containing 30 to 50 c.c. of distilled water. Add as many drops of the 1 per cent. solution as will give the water a bright yellow colour, and then three to four drops of acetic acid. The sections, no matter whether from celloidin or paraffin blocks or made by freezing, are transferred to the gold bath from distilled water aud kept therein until the peculiar yellowish-brown colour of the untoned sections has disappeared. Microscopical control may occasionally be necessary. The operation should be carricd out by daylight. Wash the sections in distilled water, pass them for a few minutes through 5 per cent. sodium hyposulphite, wash again, counterstain if desirable, dehydrate, clear, and mount in balsam or dammar.

For toning sections exhibiting either neuro-fibrils or the Golgi internal apparatus of cells, the following solutions may be used :-
(a) Sodium hyposulphite 3 gm .
Anımonium sulphocyanate
3 gm .
Distilled water
100 е.е.
(b) Gold chloride
Distilled water

$$
1 \mathrm{gm} .
$$

$$
100 \mathrm{cc} .
$$

Equal parts of (a) and (b) are taken and mixed just before use. This mixture strengthens the impregnation; it should only be used when it seems necessary to do this. However, if after toning the background is too dark, the sections can be carefully bleached by Pal's method. After toning (and bleaching) they are washed in distilled water, dehydrated with alcohols, cleared, and mounted in the usual way in balsam or dammar.

INDEX.

ACH

Achromatic spindle, 8, 18, 19
Adenoid tissuc, 91
Adipose tissue, 81,88
Adrenals. See suprarenal capsules
Agglutination of blood corpuscles, 51

- ot blood-platelets, 38, 57

Air-bubbles, 28
Ameloblasts, 316
Amitosis, 11
Amceba, 3
Anceboid movements, 3, 6, 7, 8, 35, 36, 37, 46, 55
Aniline dyes, 561
Ansa lenticularis, 481, 484, 507
Aorta, 212 .
Appendix, vermiform, 359
Aqueduct, 471
Arachnoid, 423, 508
Archoplasm, 8, 403
Arcuate fibres, 448, 449, 478
Areolar tissue, 81, 82
—— cells of, 84

- - fibres of, 82

Arrector pili, 282
Arteries, vessels and nerves of, 221

- structure of, 209
- variation in structure of, 212
- and veins, smaller, structure of, 217

Articular corpuscles, 193
Association fibres, 496
Attraction particle, 8, 18, 19

- sphere, 8

Auditory hairs, 540, 547

- meatus, 538

Auerbach, plexus of, 344, 348
Auriculo-ventricular buadle, 290
Antonomic nerves, 153
Axis-cylinder, 149, 163, 183
Axon, 158, 183

Bacteria, 29
Baillarger, lines of, 495
Basement membranes, 96
Basilar membrane, 54], 544
Basket-cells, 487
Bechterew, nucleus of. Sep nucleus
Bellini, ducts of, 378, 380
Bethe's fluid, 567
Bielchowsky's method for neurofibrils, 566
Bile-channels, 367
Bile-ducts, 368
Bladder, 374

CAP

Blastoderm, 23
Blood, 30
Blood-cells, 38
Blood-corpuscles, action of reagents upon, 49,52
— of amphibia, 53

- coloured, 33, 48, 53
- colourless, 33, 35, 52, 55
- - amoeboid phenomena of, 58
- - granules of, 35
- - migration of, 59, 62, 220
- varieties of, 35,36
— development of, 41, 43, 47
- enumeration of, 32
- human, 30
- structure of, 33, 49

Blood-crystals, 49, 52
Blood-film, 31
Blood-islands of Pander, 42
Blood-platelets, 30, 33, 38, 57, 221
Blood-vessels, development of, 41, 222

- structure of, 207, 216

Bone, 81, 112

- development of, 118, 127
- lacunæ and canaliculi of, 114, 117
- lamelle of, 114, 117
- marrow of, 45, 113

Bowman, glands of, 537

- membrane of, 512

Brain, 443. See. cerebrum, cerebellum, medulla oblongata, mesencephalon, pons

- divisions of 443
- membranes of, 508

Brain-sand, 263
Bridging fibrils, 66, 146, 267
Bronchi, 299
Bronchial tubes, 299
Bronchioles, respiratory, 300
Brownian movements, 29
Bruch, membrane of, 518
Brïnner, glands of, 341, 353
Bundle. See tract
Burdach, tract of, 430, 448

Carat's methods for neurofibrils, 566
Calleja, islands of, 464, 503
Canaliculi, bile, 368
一 of bone, 114

- of nerve-cells, 162

Capillaries, 218, 220

- circulation in, 220
- lymphatic, 227
CAR

Carnoy's fluid, 55I
Carotid gland, 254
Cartilage, 81, 100

- articular, 104
-- calcified, 104
-- costal, 106, 107
- development of, 110
- emhryonic, 111
- fibro-, 100, 106, 109
- hyaline, 101, 106
- ossification of, 119
- parenchymatous, 110
- transitional, 104
- varieties of, 100

Cartilage-bone, 119
Cartilage-cells, 101

- rapsules of, 101

Cell, division of, 11
——amitotic, 11

- - reduction, 16
- embryonic, 1, 23
- membrane of, 2, 9, 7
- nucleus of, 2, 10, 12
- structure of, 2

Celloidin, embedding in, 554
Cell-plate, 19
Cell-spaces, 2, 80, 82
Cement of tooth, 309, 315

- substance, 2, 63

Central canal of cord, 424, 426, 448

- fnyea of retina, 532
- tendon of diaphragm, 216

Centriole, 8
Centrosome, 8, 13
Cerehellum, 4×5

- grey matter of, 486
- peduncles of. 490
- - inferior, 490
- - middle, 459, 490
-- - superiur, 470, 472, 480, 490
Cerebrum, 485
- basal ganglia of, 506
- cortex of, 491 .
_- structure of different parts, 497
-- peduncle of, 476
Chemotaxis, 8
Chondrin-balls, 101
Choroid coat of eye, 510,51s
- plexuses, 508

Chromatic substance, 10
Chromatolysis, 177
Chromaffin or chromaphil cells, 253,254
Chromomeres, 11
Chromosomes, 11, 13, 16, 17, 15
Cilia, 72, 78

- action of, 72, 78
- - theories regarding, 70

Ciliary muscle, 520
Circulation, 216, 220
Clarke, column of, 438
Clasmatocytes, 86
Claustrum, 494
Clitoris, $42:$
Coccygoal gland, 254

HIV

Curhlea, 5355, 541

- canal of, 540, .i42

Cotom, 231
Cohnheim, areas of, 131

- method of staining nerve endings, 564

Collagen, 83
Collaterals, 166
Colliculi, 476
Colliculus nervi optici, 523
Colloid substance, 255,240
Colostrum-corpuscles, 25 ;
Columella, 541
Commissural fibres, 4%, 49\%
Commissures of cerebrum, anterior, in 15
-. - posterior, 478

- of spinal cord, 424

Conjunctiva, $\overline{\mathrm{I}} 0$
Cimnective tissue, cells of, wit, Xt

- - development of, 97
- - fibres of, $82,83,93,94$
- - jelly-like, !16
- tissues, 1, 80

Corium, 269
Cornea, 511,512

- nerve-endings in, 200, 51.

Corpora albicantia s. mammillaria, 483, 506

- geniculata, 481
- quadrigemina, 476

Corpus cavernosum, 387

- luteum, 410
- spongiosum, 387
- striatum, 506
- subthalamicum, 4×4

Corti, organ of, 536, int

- rods of, 544

Cotton fibres, 29
Cowper, glands of, $3 \times!$
Cox, chromate of mercury, method of . $6 . \overline{1}$
Crista acustica, $\bar{i} 40$
Crus cerehri, 476
Crusta, 475, $\mathbf{2 1 5}$

- petrosa, 309, 315

Cupula terminalis, 541
Cutis vera, 216, 269
Cytomitome, 8
Cyton, 158
Cytoplasm, 2, s
Derilctifyint: Anids, $3 . \sin$
Decidua, 419
Decussation of pyrimids, 443
Deiters, cells of. 54
nuelcus of, 4.7T. 161
Delatiold's hamatoxylin, inio
Dendrons or dendrites, $1 \mathrm{is}, \mathrm{l} 6 \mathrm{t}, 1 \mathrm{si}$
Dontinc, 309, 313
Joseemet, mombrane of, 514, il .
Dilatator pupillar, ise?
Division of colls, 13

- of muclons, 13. 11;
- reduction, 16. 21
- of avum, ${ }^{2} 1$

DOB

Dobie, line of, 131
Dogiel, method of, 567
Doyere, eminence of, 205
Dura mater, 423, 508
Dust, 29

Ear, external and middle, 538

- internal, 539

Ehner, glands of, 322
Ehrlich, bæmatoxylin stain of, 560

- methylene-blue method of, 567

Elastic tissue, 81, 82, 92, 97, 107
Eleïdin, 267, 269, 274
Elementary particles, 38
Embedding, methods of, 553
Embryonic cells, 1, 23
Enamel, 309

- formation of, 316
- organ, 318

Knd-bulbs, 156, 189, 190, 198
Endocardium, 289
Endomysium, 130
Endoneurium, 156
Endoplasm, 6
Endothelium, 25, 68. 209, 217, 289

- lymphatic, 226
- serous, 230

End-plates, 139, 204
Ependyma, 426, 447
Epicardium, 288
Epidermis, 266
Epidịdymis, 387, 393
Epineurium, 154
Epiphysis corebri, 262
Epithclinm, 63

- ciliated, $65,72,76$
- columnar, 65, 72
- germinal, 404
- glandular, 65, 68
- nerve-endings in, 199
- pavement, 65, 68
- protective, 65
- respiratory, 299
- secreting, 65
- stratified, 65
- transitional, 65, 67, 386
- varieties of, 65

Epitrichial layer, 268
Epenychium, 274
Erectile tissue, 388
Erythroblasts, 41, 42, 46, 49, 248
Erythrocytes, 33, 43. See also bloodcorpusoles, coloured
Eustachian tube, 539
Exoplasm, 6, 99
Eye, 509, 511
Eyelids, 509, 510
Eye-piece of microscope, 26

Fallofian tubes, 404, 413
Fasoia dentata, 502
Fascieulus retroflexus, 473, 483

GLA

Fasciculins solitarins, 45
Fat, 88. See also adipose tissue

- absorption of, 355
- in cartilage cells, 106

Female pronucleus, 21
Fenestrated memlriane, 210
Fibres. See connentive tissue, musele, nerve, etc.
Fibrin, 30, 38
Fibro-cartilage, elastic, 100, 107

- white, 100, 109

Fibrous tissue, 81, 92, 94
Fillet. See tract of fillet
Fimbria, 502
Flechsig, method of, 430

- tract of, 436, 450

Flemming, fluid of, 552
-- germ centres of, 235, 241, 243
— stainable bodies of, 235, 241

- method of staining nuclei, 563

Forel, decussation of, 474 (feot-note)
Formatio reticularis, 427, 443, 449, 469, 471
Freezing method for preparation of sections, 554
Funiculus cuneatus, 424, 448

- gracilis, 424, 448

Gall-rladder, 368
Ganglia, 158, 169

- cells of, 169
- development of, 184
- spinal, 169, 187
- sympathetio, 173, 187

Ganglion of cochlea, 454

- of glossopharyngeal, 453
- of habenula, 476, 483
— of Scarpa, 454
- of vagus, 452
- Gasserian, 463
- geniculate, 462
- interpeduncular, 476

Gas-chamber, 72
Genital corpuscles, 193
Gennari, line of, 495
Germinal spot, 408

- vesicle, 408

Ciant-cells of cerebrum, 492

- - of marrow, 46
- - of spleen, 242

Gianuzzi, erescents of, 330
Van Xieson's stain, 561
Gland or glands

- agminated, 244, 353
- anal, 359
- of Bowman, 537
— of Brünner, 340, 353
- carotid, 254
- cernminous, 285, 538
- classification of, 70
- coccygeal, 254
- of Cowper, 389
- ductless, 71

GLA

Gland or glands of Ebner, 322

- gastric, 336
- hemal, 232, 236
- internally scoreting, 71
- lacrimal, 511
- of Lieberkïhn, 350
- of Littré, 389
- lymph, 2225, 232
- mammary, 285
- Meibomian, 283, 511
- Pacchionian, 508
- pineal, 250, 262
- pituitary, 256, 258, 259
- racemose, 70
- saccular, 70
- salivary, 327
- sebaceous, 270, 282
- seereting, 63, 68
- serous, 322, 330
- solitary, 244, 353, 359
- sweat, 272, 283
- thymus, 232, 246
- tubular, 70

Glia oells, 181, 188
Glisson, eapsule of, 361
Glomeruli of kidney, 375

- olfactory, 504

Goll, tract of, 430, 448
Glycogen, in colourless blood-corpuscles, 57

- in liver-cells, 367

Goblet-cells, 75
Gold-methods of staining nerve-cndings, 564
Golgi, cells of, 488

- methods of investigating the nervous system, 504
- organs of, 198
- reticulum of, 161
- types of nerve cells, 164

Golgi-Mazzoni corpuscles, 198
Graafian follicles, 405
Grandry, corpuscles of, 189, 193, 195
Granules of protoplasm, 5

- of colourless blood-corpuscles, 31, 35

Ground substance, ${ }^{2}, 82,97,98,99,112$, 114, 146
v. Gudden, method of, 180

Gullet. See œesophagus
Gustatory cells, 324

- organs, 320)
porc. 324
Gyrus dentatus, 502
- hippocampi, 502

Habendla, 476, 483
Hremacy tometer, 32
Hiemal glands, 232, 236
Hæmatin, 52
Hæmatoblasts, 41
Hæmatoidin, 5
Hæmin, 52
Hæmoglobin, 49, 52

KUP

Hæmolysis, 50
Hair-cells of internal ear, 540, 546, 547
Hair-follicle, structure of, 274
Hairs, 29, 270, 274

- development of, 279
- muscles of, 282

IIardening solutions, 551
Hassal, concentric corpascles of, 248
Haversian canals, 114, 117

- fringes, 104
- lamcllæ, 115
- systems, 115

Hayem's solution, 33
Heart, 288

- muscle of, 140,288
- nerves of, 292
- valves of, 292
-- vessels of, 292
Heidenhain's stain, 560
Henle, fencstrated membrane of, 210
- looped tubules of, 376, 379
- sheath of, 156, 194

Hensen, line of, 131
Hepatic artery, 361

- cells, 365
- lobules, 361
- veins, 214, 361

Herbst, corpuscles of, 189, 193
Hippocampus major, 502
His, bundle of, 290
Histogenesis, 23
Histology, meaning of term, 1
Hyaloid membrane, 534
Hyaloplasm, 5, 10
Hypophysis cerebri, 256, 25: 259
Hypothalamus, 484

Idiozome, 403
Intercellular channels, 66, 141, ${ }^{2} 67$

- substance, 2, 81, $82,97,98,99,112,146$

Internal capsule, 506,507
Intestine, large, 344, 354

- small, 344

Intra vifram staining metlods, 567
lris, 510, 520

Jelly of Wharton, 98
Jelly-like connective tissue, 96
Ienner's'stain, $56{ }^{\circ}$?

Karyoinfinsts, 11
Karyomitome, 10
Karyoplasm. 10
Keratinisation, 64
Kerato-hyalin, 267, 269)
Kidney, 374

- bluod-vessels of, 381
- clevelopment of, 38:

Kultschitzky's hæmatoxylin stain, 560
Kupffer, cells of, 364

LAB
Labyrinth of ear, 539
-- of kidney, 376
Lacrimal glands, 511
Lacteals, 349, 354
Lacunæ of bone, 114

- of urethra, 389

Lamelle of bone, 114, 115
Lamina cribrosa, 512

- fusea, 512
- reticularis, 546
- suprachoroidea, 518

Landolt, fibre of, 527
Langerhans, islets of, 369

- centro-acinar cells of, 371

Lanugo, 280
Larynx, 296
Leishman's stain, 562
Lens, 510, 534
Leucocytes, 33, 35, 47, 52, 58. See ulso
blvod-corpuscles, colourless
Lieberkühn, crypts of, 350
Ligamentum pectinatum, 514
Ligùla, 458
Limbus of cochlea, 543
Linen fibres, 29
Linin, 11
Lipoid substances, 2, 7, 33
Liver, 360, 361

- blood-vessels of, 361
-- cells of, 365
- ducts of, 361, 368
- intracellular canals of, 365
- lobules of, 361
- lymphatics of, 368

Lüwit, chloride of gold method of, 564
Lung, 295, 219

- blood-vessels of, 301
- development of, 304
- lymph-vessels of, 304

Luys, corpus subthalamicum of, 484
Lymph-corpuscles. See blood-corpuscles, colourless
Lymph-glands or lymphatic glands, 225 , 232

- - hæmal, 232, 236

Lymph-plexuses, 227
Lymph-vessels or lymphatics, 216, 225

- connexion with cells of connective tissue, 88, 228
- development of, 228, 245
- nerves of, 227

Lymphocytes, 35, 36
Lymphoid nodules, 232, 233, 243, 351, 359

- tissue, 91, 233, 245

一 - development of, 245

Macdla acustica, 540

- lutea of retina, 532

Male pronacleus, 21
Mallory, stain of, 562
Malpighi, rete mucosun of, 266

- pyramids of, 374

MUS
Malpighian corpuscles of kidney, 375

- - of spleen, 239, 245

Mammary glands, 285
Mann's double stain, 562
Marcano's solution, 33
Marchi's method of staining degenerated
nerve-fibres, 563
Marrow, 45, 114, 118
Martinotti, cells of, 494
Mast-cells, 86
Mayer's stain, 560
Measuring objects, 27
Medulla oblongata, 443

- nerves arising from, 450

Megakaryocytes, 46
Meissuer, plexus of, 349
Membrana tectoria, 549

- tympani, 539

Mesencephalon, 444, 459, 470
Mesenchyme, 25, 97
Mesothelium, 68
Metencephalun, 443
Methods' of embedding, 553

- of measuring nicroscopic objects, 27
- of mounting sections, 551, 557
- of preparing sections, 553
- of preserving and hardening, 551
- of staining, 559

Meynert, bundle of. See tracts

- decussation of, 474, 478

Micron, 34
Micrometer, 27
Microscope, 26
Microscopic work, requisites for, 26
Microtomes, 554
Mid-brain, 443, 470
Migration of colourless bloud-corpuscles, 6C, 220
Minot, microtome of, 557
Mitochondria, 6, 371, 403
Mitosis, 11

- heterotypical, 16, 20
- homotypical, 16, 20
- multipolar, 18
- somatic, 16

Moist chamber, 73
Mould, 29
Mounting fluids, 551, 557
Mouth, mucous membrane of, 325
Mucigen, 75, 329
Mucin, 75
Mncoid cells, 339
Mucous cells, 330
Mucus-secreting cells, 75, 329
Muir's staining method, 562
Müller, fibres of, 527, 531
-- helicine arteries of, 388

- musele of, 520
- fluid of, 552

Muscle-corpuscles, 131
Muscle, cardiac, 138, 140
— cross-striated ,129

- blood-vessels and lymphatics of, 138, 139

MUS

Muscle, cross-striated, changes in contraction, 134, 136

- - comparisen with protoplasm, 136
- - development of, 139
- - ending of, in tendon, 138
— - of insects, $133,134,135$
- - nerves ef, 139, 201
- - nuclei of, 131
- - in polarised light, 13.5
- - end plates of, 139

Muscle, plain or nen-striated, 138, 145

- - development of, 146
- - nerves of, 205

Muscle-spindles, 128, 139, 189, 201
Muscles, red, of rablit, 133
— - bleod-vessels of, 139
Myelencephalon, 443
Myelin, 149
Myelination, 430
Myelocytes, 45
Myeloplaxes, 46
Myecardium, 288

Naits, 272

- development of, 273

Nerve or nerves

- abducens, 463
- autenomic, 153
- cherda tympani, 463
- cochlear, 455, 549
- eighth, 454, 540
- faciat, 461 "
- glossopharyngeal, 452
- hypoglossal, 451
- metor, 183
- eptic, 479
- spinal accessery, 451
- trigeminal, 447, 463
- vagus, 45I
- vestibular, 457
- of Wrisherg, 461

Nerve-cells, 157, 158

- bipolar, 164
- degeneration of, 177
- development of, 181
- multipolar, 164
- processes of, 163
- reticulum of, 161
- of spinal ganglia, 169
- of sympathetic ganglia, 173
- trophespengium of, 162
- types of, 166
- unipolar, 164, 169

Nerye-fibres, 147, 148

- axis-cylinder of, 148, 1.51, 163
- degeneration of, 175
- development of, 181
- myelin segments of, 150
- motor, terminations of, 189, 204
- non-myelinated, 148, 153
- regeneration of, 177

NUC

Nerve-fibres, sensory, modes of termina tion of, 189, 190, 199, 200, 201
-size of, 151

- sheaths of, 148, 156, 185, 194
- varieties of, 148

Nerve-trunks, structure of, 154
Nerve-unit, 166
Nervi nervorum, 156
Ncureblasts, 183
Neurofibrils, 151, 158, 161, 177
Neureglia, 180, In8, 425, 4אK, 497
Neurokeratin, 151
Neurolemma, 149, 188
Neuren, 158
Neurone, 166

- theory, 169

Neuro-synapse, 168
Nissl, granules of, in nerve-cells, 1.8

- degeneration, 177
- method of staining nerve-cells, 563

Nuclein, 10
Nucleolus, 10,13
Nucleus of cell, 2, 8, 10, 13
Nucleus or nuclei (nerve)

- of abducens, 463
- of accessory, 448,451
- accessory auditury, 4..
- ambiguus, 452
- of Bechterew, 457
- caudatus, 506
- of cochlear nerve, 45.
- comnịssural, 4.02
- cuneatus, 432,448
-- - outer, 458
- of Deiters, 457, 461
- dentatus, 449, 486
- descending, of faciat, vagus, and glossopharyngeal, 452
- descending vestibular, 457
- of facial, 461
- of fascicutus teres, 451
- of itlet, 475
- of forrth nerve, 471
- of glossopharyngeal, 449,452
- gracilis, 431, 448
- of hypoglossal, 4.1, 452, 454
- laterat, 445
- Ienticularis, 506
- oculomotor, 471
- of olive, $445,449,453$
- of pons, 459
- of pesterior or dersal longitudinal bundte, 472
-- preotivary, 460
-red, of tegmentum, 471
- semitunar, 460
- of Stitling, $43 \mathrm{k}, 486$
- superior olivary, 4.at, 46in
- tecti (s. fastigii), 486
- of thatamus, 480
- of trapezium, 459
- of trigeminal, 449, 463
- of vagus, 448, 4in
- of vestibutar nerve, 44:, 457

ODO
Obontoblasts, 313, 314
Esophagus, 326
Olfactory bulb, 501, 50.3

- cells, 537
-- glomeruli, 504
- mueons monibrane, 536
- nerve-fibres, 504
- path, 505
- tract, $50,5,503$

Olive, $445,448,44!1$

- superior, 456,460

Omentum, 216
Onychogenic substance, 272
Oorytes, 407
Oogenesis, 409
Opsonins, 60
Optic chiasnia, 479

- nerves, 479.
- thalamus, 480, 506
— tract, 469, 477, 478, 480, 481
Ora serrata, 534
Ossification, endochondral, 119
- in membrane, 119, 127

Osteoblasts, $117,118,120,127$
Ostecolasts, 122, 319
Osteogenic fibres, 127
Otoliths, 541
Ovary, 404
Ovum, 23, 404, 405

- division of, 20

Pacintan corpuscles, $189,190,194,222$, 273, 373, 388
Pancreas, 361, 369
Papillæ of hairs, 274
-- of tongue, $3: 20$

- of skin, 270
- of kidney, 374

Paranucleus, 6, 371
Paraplasm, 6
Parathyroids, 256
Pelvis of kidney, 374
Penis, 387
Peptic cells, 339
Perforating fibres, 115
Pericardium, 288
Perineurium, 154
Periosteum, 115,117
Perimysium, 139
Pes pedunculi, 475
Peyer, patches of, 244, 353
Phagocytes, 35, 36, 60, 238, 242, 364
Pharynx, 325
Phototaxis, 8
Pia mater, 423, 508
Piok, bundle of, 446
Pigment-cells, 87
Pigment-granules, 161
Pineal gland, 262
Pinna, 538
Pituitary body, 256
Placenta; 404, 419
Plasma-cells, 86

SIL

Pleura, 305
Polar bodies, 20
Pons, 459

- nerves arising from, 461

Portal canal, 361
Preserving solutions, 551
Prickle cells, 66
Projection fibres, 497
Pronuclei, 21
Proprio-spinal fibres of cord, 432, 436
Prostate, 387, 389
Protoplasm, 2

- comparison with musele, 136

Pseudonucleoli, 10
Pseudopodia, 59, 60
Purkinje, cells of, 487

- fibres of, 288, 289

Pyramids of medulla oblongata, 444, 445, 459

Ranvier, gold-chloride method of, 565

- constrictions of, 150
- picro-carmine stain of, 561
v. Recklinghausen, method of staining with silver nitrate, 563
Reil, fillet of, 456, 467
- island of, 494

Reissner, membrane of, 512
Remak, fibres of, 153
Restiform body, 449, 458, 490
Reticular tissue, 80, 89, 361, 448, 458
Retina, 510, 523

- macula lutea of, 532
- pars ciliaris of, 534
- sensory epithelium of, 523

Rhinencephalon, 500
Ringer's solution, 30, 551
Risien Russell, tract of, 490
Rolando, tubercle of, 447
Rollett, method of staining muscle, 128
Rouleaux of blood-corpuseles, 31, 33, 34, 50
Ruffini, organs of, 196

Saccule, 540
Salivary corpuscles, 63, 244

- glands, 325

Salt-solution, normal, 551
Sarcolemma, 128, 129, 140, 145
Sarcomeres, 133
Saccoplasm, 129, 136
Sarcostyles, 128, 129
Sarcous elements, 131
Scliwann, sheath of, 149
Sclerotic coat of eye, 511
Sections; preparation of, $5 \overline{5} 4$
Semicircular canals, 535,540
Seminiferous tubules, 398
Serous membranes, 216, 225, 229
Scrtoli, cells of, 399
Sharpey, fibres of, 115
Siliqua olivz, 449

Silver-methods, 565, 566
Sinusoids, 209, 220, 223, 253, 364
Skin, 264
Spermatogenesis, 401
Spermatozou, 387, 400
Sphincter ani, internal, 359

- puipillæ, 520

Spinal bulb. See medulla oblongata
Spinal cord, 423
— - blood-vessels of, 427

- - cell-columns of, 438
— - central canal of, 424
- - characters in different parts, 427
- -- commissures of, 424
- - connexion of nerve-roots with 424, 441
- - cornia of, 424, 438, 444
- - grey matter of, 424, 426, 438
- - niembranes of, 423
— - nerve-cells of, 430, 438
- - proprio-spinal fibres of, 432, 436
—— tracts in, 430
-- white columns of, 424, 430, 447
Spinal ganglia, 169
Spindle, achromatic, 8, 18, 19
Spleen, 238
Splenic cells, 60, 242
Spongioblasts; 183, 188
Spongioplasm, 5, 7
Staining of sections, 559
Stanley Kent, bundle of, 290
Starch granules, 28
Stilling, nucleus of, 438, 486
Stomach, 335
— blood-vessels of, 343
- glands of, 336
- lymphatics of, 343

Stomata, 216, 230
Stria medullaris, 483

- vascularis, 548

Stroma-theory of blood-corpuscle, 33, 50
Substantia gelatinosa, 426, 464

- nigra, 476

Subthalamus, 484
Suprarenal capsules, 250
Sweat glands, 272, 283
Sympathetic ganglia, 173, 187

- nerves, 153

Synapse, 166, 168
Syncytium, 2, 143, 146, 223, 375
Synovial membranes, 100, 104

Tactile corpuscles, 190, 191

- disks, 193, 201

Tænia, 458
Taste-buds, 322
Teeth, 306

- developmont of, 315
- pulp of, 313
- structure of, 309. See also onamel, dentine, cement
Tegmentum, 469, 471
Telencephalon, 44

TRA

Tendon, 95

- connexion with muscle, lis\%
- nerve-endings in, 198

Tendon-cells, 94
Testicle, 387, 393

- intertubular tissue of, 3!\%;

Tetrads, 16
Thalamencephalon, 444, 459, 480
Thalamus, 480, 506;
Thermotaxis, 8
Thigmocytes, 40
Thrombocytes, 38, 57
Thymus gland, 232, 246
Thyroid body, $251,2.24$
Tissues, cnumeration of, 1

- formation from blastodermic layers, 23
Tongue, 320
Tonsils, 232,243
- pharyngeal, 244

Tooth. Ste teeth
Trachea, 295
Tract or tracts, methods of studying, 430°
Tract or tracts or bundle

- anterior (ventral) longitudinal. it. tecto-spinal tract
- anterolateral (ventro-lateral) ascending. See tract of Gowers
-- descending. See tract of Loewenthal
- ascending, $430,431,432,436,46{ }^{-}$
- bulbo-thalamic. See tract of fillet
- of Burdach, 480, 448
- central of acoustic, 474
- - of cranial nerves, $46: 3,480,4 \mathbf{N}^{2}$
— - of tegmentum, 4:11, 465
- cerebello-bulbar, 4.44
- comma, 432
- of corll, 430
-- cortico-bulluar, 464.41 S
- cortice-pontine, $4.71,47 i$
- cortico-spinal. N's pyramid tract
- crossel pyramidal. N" pyramid tract
- descending, $430,432,434,43.7,464$. 465, 478
- descending cerebellar, 434
- direct pyramid. See pyramid tract
- dorsal or posterior longitudinal, 434, 449 , $4.76,461$. $46.5,4.2$
- myelination of, 430
- of fillet, $44 s, 449,4.11 i, 474,480$
- of Flerhsig, 436, 450
- of Goll, 430, 448
- of liowers, $436,4.07 .471$
- of Gudden, 474, 483
- of Helweg, 436
- of Lissauer, 43 li
- of Loewenthal, 434, 4.) 7
- of Marie, 438
- of Meynert, $473,476,478,4 \times 3$
- of Monakow, 434, 46i, 472
- of Münzer, $4^{7} 3$
- of Pick, $44 i$
- of Risien Russell, 490

TRA
Tract or tracts or bundle

- of Vieq d'Azyr, 483
- olfactory, 202,503
- olivo-cerebellar, 450
- olivo-spinal. See tract of Helweg
- optic, 469, 477, 478, 480, 481
- ponto-spinal, 434, 467
- prepyramidal. See tract of Monakow
- pyramid. 432, 444, 445, 459, 464, 476
- rubro-spinal. See tract of Monakow
- spino-cerebellar, 436, 450, 470, 490
- spino-tectal, 436
- spino-thalamic, 436, 480
- sulco-marginal, 438
- tecto-spinal, 434, 449, 467, 473, 478
- thalamo-bulbar, 468
- thalamo-olivary, 450, 467
- transverse peduncular, 479
- ventral or anterior longitudinal. See tecto-spinal tract
- vestibulo - motor. See dorsal or posterior longitudinal tract
- vestibulo-spinal, 465, 467

Trapezium, 455, 460
Trophospongium, 5, 162
Tubercle of Rolando, 447
Tuberculum acusticum, 455

- olfactorinm, 503

Tympanum, 338

Ureter, 385
Urcthre, 388, 389
Urinary bladder, 385
Uriniferous tubules, 375, 380, 382
Uterus, 404, 413
Utricle, 540

ZYM
Vagina, 422
Vas deferens, 393
Vasa vasorum, 221
Vasoformative cells, 43, 223
Veins, structure of, 207, 213

- valves of, 214, 215
- variations in, 214, 217

Ventricle, fourth, 448, 457, 470

- lateral, 483
- third, 444, 480, 483

Vermiform appendix, 359
Vesicule seminales, 395
Vilii, arachnoidal, 508

- chorionic, 419
- of intestine, 353
- of synovial membrane, 104

Vitellus, 408
Vitreous humour, 534
Volkmann, canals of, 115

Wallerian degeneration, 175,430
Wander-cells, 87
Warming apparatus, 58
Weigert-Pal method for staining sections
of the nervous system, 564
Wharton, jelly of, 98
Woollen fibres, 29
Wrisberg, nerve of, 461

Yeast, 28
Yolk, 408

Zenker, fluid of, 552
Zinn, zonule of, 534
Zymogen, 331

PRINTED IN GREAT BRITAIN AT
THE DARIEN PRESS, EDINBURGH

[^0]: ${ }^{1}$ From lotós, a web or texture.

[^1]: " Bayliss has shown that protoplasm is in the "s sol" condition when amoboid and in the "gel" condition when stimulated to contract.
 ${ }^{2}$ Cf. Bayliss, Principles of General Physiology.

[^2]: ${ }^{1}$ The dircetions for making the principal fluids used in histological work, and a degcription of microtomes for the preparation of sections, will be found in the Appendix.

[^3]: 1 Also expressed as 7.5μ or microns; a micron being toty mm.
 ${ }^{2}$ The following list gives the diameter in parts of a millimeter of the red bloodcorpuscles of some of the common domestic aninials:-Dog, 0.0073 ; rabbit, $0 \cdot 0005!4$: cat,
 0.0065 ; sheep, 0.0050 ; goat, 0.0041 .

[^4]: ${ }^{1}$ The following are the dimensions in parts of a millimeter of the coloured corpuscles of some oviparous vertebrates :-

 | Pigeon | Long Dianeter. | Short Diameter. |
 | :--- | :---: | :---: |
 | Frog. | 0.0147 | 0.0065 |
 | Newt | 0.0223 | 0.0157 |
 | Proteus | 0.0293 | 0.0195 |
 | Amphiuma | 0.0580 | 0.0350 |
 | An | 0.0770 | 0.0460 |

[^5]: ${ }^{1}$ For exact work, an apparatus somewhat more complex than the above is required. For description of such apparatus, see the author's Course of Practicab Histology.
 ${ }^{2}$ The water used for the dilution of hæmatoxylin solutions must always be distilled.

[^6]: ${ }^{1}$ The columnar epithelium of the intestine is concerned as nuch with absorption as with secretion, but absorption may be regarded as a kind of reversed secretion.

[^7]: The cells have heen isolated after maceration in very weak chronic acid. The colls are much vacnolated, and ons of them has a fat-globule adhering to it near its attached end ; the striatell horder ($8 t r$) is well seen, and the bright disk separating it from the cell-protopiasm : n, nucleus, with intranuclear network; a, a thinned-out wing-like projection of the cell which probably fitted hetween two adjncent cells.

[^8]: ${ }^{1}$ Some authors have inferred from this that these cells arc transformed into white fibril-bundles and have termed them "fibroplasts"; but the fibrillation which they exhibit is not of the same charaoter as that of the white fibres, and is probably a form of oytomitome, such as is seen in many oells.

[^9]: I Nuch a section should be purchased: it is ditticult to make without a proper lathe.
 ${ }^{2}$ See Appendix for method of staining in bulk. In place of this sections nay be stained by Mallory's method, whieh brings out the osteogenie tibres.

[^10]: ${ }^{1}$ I am indebted to the late Professor Engelmann for these two photographs.

[^11]: ${ }^{1}$ This method is the one given by Ranvier (Treilt' Technique). The musole endings may also sometimes be well seen at the extremities of the tendons which are removed from the monse's tail in the manner deseribed in Lesson λ.

[^12]: ${ }^{1}$ See Appendix.

[^13]: ${ }^{1}$ But section of the dorsal root-fibres central to the ganglia does not entail degeneration of the ganglion-cells from which they arise. Nor does section of a spinal nerve always entail degeneration of the ventral horn cells from which its motor fibres arise"(Van Gehuchten). Why these apparent exceptions occur is not understood.

[^14]: Int, intestinal entoderm with outgrowth on the left to form the liver and gall-bladder, and on the right to form the pancreas. V.C.I., rena cava inferior ; V.F., vena porta ; V, vein, and $A r$, artery supplying pancreas. It is seen that the sinusoids or apparent capillaries of the liver are formed by the breaking up of a large blood-spase into ohannels by the growth into it of cell-columns derived from the hepatic outgrowth of the entoderm.

[^15]: t, commencing down-growth of epidermis ; b, further stage of down-growth; c, connective-tissue oells beginning to accumulate to produce the dermie cont of the follicle; d, hair-follicle more advanced in development; e, section of a blood-vessel.

[^16]: ${ }^{1}$ The appearances which are to be studied in sections 1,2 , and 3 can all be obtained in one preparation, viz. a. vertical section including a portion of auricle and ventricle and a flap of the intervening auriculo-ventricular valve.

[^17]:

[^18]: ${ }^{1}$ For detailed information on the subject of dental structure and development see J. Howard Mummery, "The Microscopic Anatomy of the Teeth," London, 1919.

[^19]: ${ }^{2}$ I am indebted to Dr Lim for the above description of the two types of central cell.

[^20]: ${ }^{1}$ In many animals (e.g. dog, cat, rabhit, monkey) the whole kidney is formed of only a single pyramid; in others the pyranids are even more munerouis than in man. In some dirimals the pyramids form distinct portions of kidney suhstance united by connective tissue.

[^21]: a, u, seminiferous tubules; b, fibrous stroma rontinned from the mediastinum testis;

[^22]: Blood-vessels of the spinal cord.-The blood-supply of the grey matter is derived mainly from a series of arterioles, which come off from the medially situated ventral spinal artery, pass into the vential median fissure, and at the bottom of this divide each into two branches, one for the grey matter of each lateral half of the cord. In the grey matter is a very close capillary plexus which is supplied not alone by the vessels just mentioned, but also by small arterioles which converge from the small arteries of the pia mater, passing through the white matter, and supplying this as they traverse it. These arterioles are branches of the abovementioned ventral spinal artery and of the dorsal spinal arteries (which run on each side along the line of the dorsal roots). The capillary plexus of the white matter is far less dense than that of the grey matter. It forms longitudinal meshes.

 The veins of the spinal cord accompany the arteries. Two longitudinal venous vessels, accompanying corresponding anastomotic arterioles, are seen, onc on either side of the central canal, in most transverse sec-

 Fig. 583.--Part of ependyma of central canal of newborn child, stained by golgi's method. (Sobotta.) Magnified I20 diameters.
 $e p$, epithelitum ; ng, neuroglia-cells in adjacent grey matter.

[^23]: ${ }^{1}$ Flechsig found that the fibres of the dorsal roots aro myelinated in at least three stages, and that the dorso-lateral tract shows a corrosponding differentiation into three chief parts: tho wintral, middlr, and dorsal root-zomes. Probably this differentiation corresponds with functional differences of the fibres.

[^24]: ${ }^{1}$ This is not to be confounded with tho fountain-like decussation of Forel (fig. 619, d), which lies nearer the ventral part of the tagmentum, and is partly formed by the intercrossing of Monakow's bundle and partly by v. Gudden's bundle coming from the corpora mammillaria te and in t1.n tanment.....

[^25]: c.p., posterior commissure of brain ; gl.pi., pineal gland ; c.q.a., grey matter of one of the anterior corpora quadrigemina; c.g.m., mesial geniculate body; c.g.l., lateral geniculate body; tr.opt., optic tract; $p . p$., crusta or pes pedunculi ; p.l.b., dorsal longitudinal bundle ; j i, upper fillet; $r . n$. , red nucleus; 1lI., issuing fibres of third nerve ; n. III., its nucleus; l.p.p., locus perforatus posticus ; $S y$, Sylvian aqueduet.

[^26]: ${ }^{1}$ Except, perhaps, in the bundle of Lissauer in the cord there are no non-myelinated fibres in the central nervous system, oxclusive of a few which pass to the membranes and blood-vessels from the sympathetic chain of ganglia.
 ${ }^{2}$ For further details regarding the cells and fibres of different regions of the cortex and the special oharacters of the several regions see the volume of (hinin's Anatomy dealing with Neurology.

[^27]: ${ }^{1}$ The celloidin method of embedding is best for preparations of this kind.

[^28]: ${ }^{1}$ For details of the somewhat complicated methods of obtaining the various parts of the labyrinth for microscopical examination, the student is referred to the author's Course of Practical Histology.

[^29]: ${ }^{1}$ For fuller details than can be here given of the methods used in Histology, the reader is referred to the Enzyklopuedie der mikr. Technik, 1908, edited by R. Krause. The theories of fixation and slaining are dealt with in Mann's Physiological Histology, Oxford, 1902.

[^30]: ${ }^{1}$ Diluted sulphurous acid solution may be employed to bleach the soctions instead of this solution.

[^31]: ${ }^{1}$ I have to thank Dr May L. Walker and Dr C. Da Fano for assistance in preparing these notes.

