

$$
29.673 / \mathrm{l}
$$

ASPECTS OF NATURE,

DIFFERENT LANDS AND DIFFERENT CLDMATES;

WITH
Zcientific $\mathfrak{E l}$ lucidations.

ALEXANDER VON HUMBOLDT.

TRANSLATED BY MRS. SABINE.

IN TWO VOLUMES.

> VOL. II.

LONDON:

PRISTED FOR
LONGMAN, BROWN, GREEN, AND LONGMANS,
PATERNOSTER ROW; AND
JOHN MURRAY, ALBEMARLE STREET.
1849.

Wilson and Ogily y, Skinner Strcet, Suuwhill, London.

CONTENTS OF VOL. II.

PAGE
Physiognomy of Plants 3
Amotations and Additions 33
Postscript on the Physiognomic Classification of Plants 205
On the Structure and Mode of Action of Volcanos, in different Parts of the Globe 214
Annotations and Additions 213
Tife Vital Force, of tife Rioniax Genius 251
Note 259
The Plateal of Calamarca, the Ancient Capital of the Inca Atamuallpa, and the First Viem of the Pacific Occan, from the Crest of the Andes 203
Annotations and Additions 303
Gencral Summary of the Contents of the Sceond Volume 327
Index 341

PHYSIOGNOMY OF PLANTS.

Digitized by the Internet Archive in 2017 with funding from Wellcome Library

ASPECTS OF NATURE

DIFFERENT LANDS AND DIFFERENT CLIMATES.

PHYSIOGNOMY OF PLANTS.

When the active curiosity of man is cngaged in interrogating Nature, or when his imagination dwells on the wide fields of organic creation, anong the multifarious impressions which his mind receives, perlaps nonc is so strong and profound as that of the universal profusion with which life is cverywhere distributcd. Even on the polar ice the air resounds with the cries or songs of birds, and with the hum of insects. Nor is it only the lower dense and vaporous strata of the atmosphere which arc thus filled with life, but also the higher and more cthereal regions. Whencver Mont Blanc or the summits of the Cordilleras have been ascended, living creatures have been found there. On the Chimborazo, (${ }^{1}$) cight thousand fcet higher than Etna, we found butterflies and other winged insects, bornc by ascending currents of air to those almost unapproachable solitudes, which man, led by
a restless curiosity or unappeasable thirst of knowledge, treads with adventurous but cautious steps: like him strangers in those clevatcd regions, their prescnee shows us that the more flexible organization of animal creation can subsist far bcyond the limits at which vegetation eeases. The condor, $\left({ }^{2}\right)$ the giant of the Vulture tribe, often soared over our heads above all the summits of the Andes, at an altitude higher than would be the Peak of Tencriffc if pilcd on the snow-covered crests of the Pyrcuces. The rapacity of this powerful bird attracts him to thesc regions, whence his far-seeing eye may disecrn the objects of his pursuit, the soft-wooled Vicunas, which, wandcring in hcrds, frecquent, like the Chamois, the mountain pastures adjacent to the regions of perpetual snow.

But if the unassisted eye secs life distributed throughout the atmosphere, whon armed with the microscope we discover far other marvcls. Rotiferæ, Brachionæ, and a multitude of microscopie animalculæ, arc earricd up by the winds from the surface of evaporating waters. These minutc ereatures, motionless and apparently dead, are borne to and fro in the air until the falling dews bring them back to the surface of the eartll, dissolve the film or envelope which eneloses their transparent rotating bodics, $\left(^{3}\right.$) and, probably by means of the oxygen which all watcrs contain, breathe new irritability into their dormant organs.

According to Ehrenberg's brilliant diseovery, the yellor sand or dust which falls like rain on the Atlantic near the Cape de Verdc Islands, and is occasionally carried even to Italy and Middle Enrope, consists of a multitude of siliceous-
shelled mieroseopic animals. Perhaps many of them float for years in the upper strata of the atmosphere, until they are brought down by vertical currents or in aeeompaniment with the superior current of the trade-winds, still susceptible of revivifieation, and multiplying their speeies by spontaneous division in conformity with the partieular laws of their organisation.

But, besides ereatures fully formed, the atmosphere contains imumerable germs of future life, sueh as the eggs of inseets and the sceds of plants, the latter provided with light hairy or feathery appendages, by means of whieh thcy are wafted through the air during long autumnal wanderings. Even the fertilizing dust or pollon from the anthers of the male flowers, in speeies in whieh the sexes are separated, is carried over land and sea, by winds and by the agency of winged insects, ${ }^{4}$) to the solitary female plant on other shores. Thus wherever the glance of the inquirer into Nature penetrates, he sees the continual dissemination of life, either fully formed or in the germ.

If the aereal oeean in which we are submerged, and above the surface of whieh we cannot rise, be indispensable to the existenec of organised beings, they also require a morc substantial aliment, whiell they ean find only at the bottom of this gaseous oeean. This bottom is of two kinds ; the smallcr portion eonsisting of dry land in immediate contaet with the external atmosphere, and the larger portion consisting of water, which may porlaps lave becn formed thousands of years ago by electrie ageneies from gascous substanecs, and which is now ineessantly undergoing deeom-
position in the laboratories of Nature, in the clouds and in the pulsating vessels of animals and plants. Organic forms also descend decp bclow the surface of the earth, wherever rain or surface water can percolatc cither by natural cavities or by mines or other excavations made by man: the subterranean cryptogamic Flora was an object of my scientific research in the early part of my life. Thermal springs of very high tempcrature nourish small Hydropores, Confcrve, and Oscillatoria. At Bear Lake, ncar the Arctic Circle, Richardson saw the ground, which continucs frozen throughout the summer at a depth of twenty inches, covercd with flowering plants.

We do not yet know where life is most abundant,whether on continents or in the unfathomed depths of the ocean. Through the excellent work of Ehrenberg, "Über das Verhalten des kleinsten Lebens," we have seen the sphere of organic life extend, and its horizon widen before our cyes, both in the tropical parts of the ocean and in the fixed or floating masses of ice of the Antarctic scas. Siliceousshelled Polygastrica, and even Coscinodisce, with their green ovaries, have been found alive enveloped in masses of icc only twelve degrees from the Pole; the small black Glacicr flea (Dcsoria glacialis) and Podurcllx inhabit the narrow tubular holes examined by Agassiz in the Swiss glaciers. Ehrenberg has shown that on several microscopic Infusoria (Synedra, Cocconeis) others live as parasites, and that in the Gallionelle such is their prodigious power of development, or capability of division, that in the space of four days an animalcule invisible to the naked eye can form
two eubie feet of the Bilin polishing slate. In the sea, gelatinous worms, living or dead, shine like stars, $\left({ }^{5}\right)$ and by their phosphoric light ehange the surfaee of the wide oeean into a sea of fire. Ineffaeeable is the impression made on my mind by the ealm nights of the torrid zone, on the waters of the Paeifie. I still see the dark azure of the firmament, the constellation of the Ship near the zenith, and that of the Cross deelining towards the horizon, shedding through the perfumed air their soft and planetary lustre ; while bright furrows of flashing light marked the traek of the dolphins through the midst of the foaming waves.

Not only the ocean, but also the waters of our marshes, hide from us an innumerable multitude of strange forms. The naked eye ean with diffieulty distinguish the Cyelidias, the Euglenes, and the host of Naids divisible by branehes like the Lemna or Duekweed, of whieh they seek the shade. Other ereatures inhabit reeeptaeles where the light eannot penetrate, and an atmosphere variously eomposed, but differing from that whieh we breathe: suel are the spotted Asearis, whieh lives beneath the skin of the earthworm ; the Leucophra, of a bright silvery eolour, in the interior of the shore Naid ; and a Pentastoma, whieh inhabits the large pulmonary eells of the rattlesnake of the tropies. ${ }^{6}$) There are animaleulx in the blood of frogs and of salmon, and even, aeeording to Nordmann, in the fluids of the eyes of fishes and in the gills of the Bleak. Thus the most hidden reeesses of ereation teem with life. We propose in these pages to direet our attention to the vegetable world, on the existence of which that of animals is dependent. Plants are inees-
santly engaged in disposing into order towards subsequent organization the raw materials of which the earth is composcd : it is their offiee, by their vital forces or powers, to prcpare those substanees whieh, after undergoing a thousand modifications, are gradually converted to nobler purposes in the formation of nervous tissues. In direeting our considcration towards the various families of plants, we shall at the same time glance at the multitude of animated beings to whieh they afford mutriment and protection.

The earpet of flowers and of verdure spread over the naked crust of our planet is unequally woven ; it is thieker where the sun rises high in the ever eloudless heavens, and thimer towards the poles, in the less happy elimes where returning frosts often destroy the opening buds of spring, or the ripening fruits of autumn. Everymhere, however, man finds some plants to minister to his support and enjoyment. If new lands are formed, the organic forces are ever ready to eover the naked roek with lifc. Sometimes, as at an early period among the Greek Islands, volcanie forces suddenly elevatc above the surface of the boiling waves a rock covered with Seoriæ: sometimes, by a long-eontinued and more tranquil series of phenomena, the collective labours of united Lithophytes (${ }^{7}$) raise their cellular dwellings on the crests of submarine mountains, until, after thousands of years, the structure reaches the level of the ocean, when the creatures which have formed it die, leaving a low flat coral island. How are the seeds of plants brought so immediately to these new shores? by wandering birds, or by the winds and maves of
the oeean? The distanee from other eoasts makes it difineult to detcrmine this question ; but, no sooner is the roek of the newly raised islands in direct contact with the atmosphere, than there is formed on its surface, in our northern eountries, a soft silky net-work, appearing to the naked eye as coloured spots and patches. Some of these patches are bordered by single or double raised lincs running round their margins; other patehes are crossed by similar lines traversing them in various directions. Gradually the light colour of the patehcs beeomes darker, the bright yellow whiel was visible at a distance changcs to brown, and the bluish gray of the Leprarias becomes a dusty blaek. The edges of neighbouring patchcs approach and run into cach othcr ; and on the dark ground thus formed there appear other liehens, of a eircular shape and dazzling whitencss. Thus an organie film or covering establishes itself by successive layers ; and as mankind, in forming settlcd communities, pass through different stages of eivilisation, so is the gradual propagation and extension of plants eonnected with determinate physical laws. Lichcus form the first covering of the naked rock, where afterwards lofty forest trees rear their airy summits. The successive growth of mosses, grasscs, herbaceous plants, and shrubs or bushes, occupies the intervening period of long but undetermined duration. The part whieh lichens and mosses perform in the northern eountrics is effeeted within the tropics by Portulacas, Gomphrenas, and other low and sueeulent shore plants. The history of the vegetable covering of our planct, and its gradual propagation over the desert crust of the
earth, has its cpochs, as wcll as that of the migrations of the animal world.

Yct although organie life is cverywhore diffused, and the organic powers arc ineessantly at work in reconneeting with each other the elements set frec by death or dissolution, the abundanee and variety of organised bcings, and the rapidity with whieh they are renewed, diffcr in diffcrent elimates. In the cold zones, the aetivity of organic life undergoes a temporary suspension during a portion of the year by frost ; fluidity is an essential condition of lifc or vital action, and animals and plants, with the exeeption of mosses and other eryptogamia, arc in those regions buricd for several months of each year in winter sleep. Over a large part of the carth, therefore, there eould only be developed organic forms capable of supporting either a considerable diminution of heat, or, being without leaves, a long intcrruption of the vital functions. Thus we sce variety and graec of form, mixture of colours, and generally the perpetually youthful energy and vigour of organie life, inerease as we approach the tropies. This inerease can be denied only by those who have never quitted Europe, or who have negleeted the study of physical geography. When, learing our oak forests, we traversc the Alps or the Pyrenees, and cnter Italy or Spain, or when we direet our attention to some of the Afriean shores of the Mcditcrrancan, we might easily be led to draw the erroncous inferenec that hot countries are marked by the absence of trces. But those who do so, forget that the South of Europe worc a different aspect on the first arrival of Pelasgian or Carthaginian colonies ; they forget that an
aneient eivilisation causes the forests to reeede more and more, and that the wants and restless aetivity of large eommunities of men gradually despoil the face of the earth of the refreshing shades which still rejoice the eye in Northern and Middle Europe, and which, even more than any historie documents, prove the reecnt date and youthful age of our eivilization. The great catastrophe which oeeasioned the formation of the Mcditerranean, when the swollen waters of what was previously an immense lake burst through the barriers of the Dardanelles and of the Pillars of Hercules, appears to have stripped the adjacent countries of a large portion of their eoating of vegetable mould. The traditions of Samotlurace, (${ }^{8}$) handed down to us by Grecian writers, appear to indicate the reeentness of the epoch of the ravages eaused by this great change. In all the countries which surround the Mediterranean, and which are characterised by beds of the tertiary and erctaeeous periods (nummulitic limestone and neocomian rocks), great part of the surfaee of the earth consists of naked rock. One cspecial eause of the picturesque beauty of Italian scenery is the eontrast thus afforded between the bare rock, and the islands if I may so call them of luxuriant vegetation seattered over its surface. Wherever the rook is less intersected with fissures, so that it retains water at the surfaee, and where it is covered with vegetable mould, there, as on the enchanting shores of the Lake of Albano, Italy has her oak forests, with glades as deeply cmbowered and verdure as fresh as those whieh we admire in the North of Europe.

The deserts to the south of the Λ tlas, and the immense plains or steppes of South Ameriea, must be regarded as only loeal phenomena. The latter, the South American steppes, are elothed, in the rainy season at least, with grass, and with low-growing almost herbaceous mimosas. The Afriean deserts are, indeed, at all seasons devoid of vegetation; seas of sand, surrounded by forest shores clothed with perpetual verdure. A few seattered fan-palms alone reeall to the wauderer's recollcetion that these awful solitudes belong to the domain of the same animated terrestrial ereation which is elsewhere so rieh and so varied. The fantastic play of the mirage, oeeasioned by the effects of radiant heat, sometimes eauses these palm trees to appear divided from the ground and hovering above its surface, and sometimes shews their inverted image refleeted in strata of air undulating like the waves of the sea. On the west of the great Peruvian chain of the Andes, on the coasts of the Pacifie, I have passed eutire weeks in traversing similar deserts destitute of water.

The origin of extensive arid traets destitute of plants, in the midst of countries rieh in luxuriant vegetation, is a geognostieal problem whieh has hitherto been but little considered, but whieh has doubtless depended on aneient revolutions of nature, such as inundations or great voleanie changes. When onee a region las lost the eovering of plants with which it was invested, if the sands are loose and mobile and are destitute of springs, and if the heated atmosphere, forming constantly ascending eurrents, prevents precipitation taking plaee from clouds (${ }^{9}$), thou-
sands of years may elapse ere organie life can pass from the verdant shores to the interior of the sandy sea, and repossess itself of the domain from which it had been banished.

Those, therefore, who ean view nature with a comprehensive glanee and apart from local phenomena, may see from the poles to the equator organic life and vigour gradually augment with the augmentation of vivifying heat, But, in the course of this progressive increase there are reserved to each zone its own peculiar beauties; to the tropics, variety and grandeur of vegetable forms; to the north, the aspect of its meadows and green pastures, and the periodie rcawakening of nature at the first breath of the mild air of spring. Each zone, besides its own peculiar advantages, has its own distinetive elaraeter. Primeval laws of organisation, notwithstanding a certain degree of freedom in the abnormal development of singlc parts, bind all animal and vcgetable forms to fixed ever-recurring types. As we recognise in distinct organic beings a determinate physiognomy, and as descriptive botany and zoology, in the restricted sense of the terms, consist in a detailed analysis of animal and vegetable forms, so eaeh region of the earth has a natural physiognomy peculiar to itsclf. The idea indieated by the painter by expressions such as "Swiss nature," "Italian sky," \&cc., rests on a partial perception of this local charaeter in the aspect of nature. Thi azure of the sky, the lights and sladows, the haze resting ou the distance, the forms of animals, the succulency of the plants and herbage, the brightucss of the foliage, the outline
of the mountains, are all elements whieh determine the total impression elaraeteristie of each distriet or region. It is true that in every zone the same kinds of roeks, traehyte, basalt, porphyritie sehists, and dolomite, form groups having the same physiognomy and aspeet. The greenstone preeipiecs of South Ameriea and Mexieo rescmble those of the Fiehtel-Gebirge of Germany, just as among animals the form of the Alleo, or native raee of dogs of the New Continent, corresponds perfectly with that of the European raee. For the inorganie erust of the globe sherws itself independent of elimatic influenees; whether it be that differenees of elimate depending on differenees of latitude were more reeent than the formation of the roeks, or that the mass of the earth in solidifying and parting with its heat regulated its own temperature, $\left({ }^{10}\right)$ instead of receiving it from without. Thus all the kinds of roek with whieh we are aequainted may be met with in all parts of the globe, and everywhere affeet the same eharaeteristie forms. Everywhere basalt rises in twin mountains and truneated cones; everywhere the porphyritie trap appears in grotesquely arranged masses, and granite in rounded summits. Also similar forms of trees-pines and oaks-adorn the deelivities of the mountains of Sweden, and those of the most southern part of Mexieo. (${ }^{11}$) Yet, notwithstanding these correspondenees of form, and this similarity of outline in the component parts of the pieture, their grouping gives to the whole the greatest differenee of character.

Mineralogy is not more distinct from geology than is the individual deseription of natural objeets from a general
description of the physiognomy of nature. Gcorgc Forster, in the narrative of his voyages, and in his other publications, -Goctle, in the descriptions of nature which so many of his immortal works contain,—Buffon, Bernardin de St. Pierre, and Chateaubriand, have traced with inimitable truth of deseription the character of some of the zones into which the earth is divided. Not only do such descriptions afford us mental enjoyment of a high order, but the knowledge of the character whieh nature assumes in differcut regious is moreover intimately connected with the history of man, and of his civilisation. For although the commeneement of this civilisation is not solely determined by physical relations, yct the direetion which it takes, the national character, and the more grave or gay dispositions of men, are dependent in a very ligh degree on climatic influenees. How powerfully have the skics of Grcece acted on its inhabitants! The nations scttled in the fair and happy regions bounded by the Euphrates, the Halys, and the Egean Sea, also early attaincd amenity of manners and delicaey of sentiment. When in the middle ages religious enthusiasm suddenly re-opened the sacred East to the nations of Europe who were sinking baek into barbarism, our ancestors in returning to their homes brought with them gentler manners, acquired in those delightitul valleys. The poctry of the Greeks, and the ruder songs of the primitive northern nations, owe great part of thcir peeuliar character to the aspect of the plants and animals seen by the bard, to the mountains and vallcys which surrounded him, and to the air which he breathed. And to recall more familiar objects, who does not
feel hinself differently affeeted in the dark shade of the beeeh, on hills erowned with seattered fir-trees, or on the turfy pasture, where the wind rustles in the trembling foliage of the bireh? These trees of our native land have often suggested or reealled to our minds images and thoughts, either of a melaneholy, of a grave and elevating, or of a cheerful eharaeter. The influence of the physieal on the moral world,--that reeiprocal and mysterious aetion and reaction of the material and the immaterial,- gives to the study of nature, when regarded from higher points of view, a peeuliar eharm, still too little reeognised.

But if the elaraeteristie aspeet of different portions of the earth's surfaee depends conjointly on all external pheno-mena,-if the contours of the mountains, the physiognomy of plants and animals, the azure of the sky, the form of the clouds, and the transpareney of the atmosphere, all combine in forming that general impression whieh is the result of the whole, yet it cannot be denied that the vegetable covering with whiel the whole earth is adorned is the principal element in the impression. Animal forms are deficient in mass, and the individual power of motion whieh animals possess, as well as often the smallness of their size, withdraw them from our sight. The vegetable forms, on the eontrary, produce a greater effeet by their magnitude and by their eonstant presence. The age of trees is marked by their size, and the union of age with the manifestation of eonstantly renewed vigour is a eharm peeuliar to the vegetable kingdom. The gigantic Dragon-tree of Orotava, (${ }^{12}$) (as saered in the cyes of the inhabitants of the Canaries as
the olive-tree in the Citadel of Athens, or the Elm of Ephesus), the diameter of whieh I found, when I visited those Islands, to be more than 16 feet, had the same colossal size, when the Frenelı adventurers, the Bétheneourts, conquered these gardens of the Hesperides in the begimning of the fifteenth eentury ; yct it still flourishes, as if in perpetual youth, bearing flowers and fruit. A tropical forest of Hymenæas and Cæsalpinieæ may perlaps present to us a monument of more than a thousand years' standing.

If we embrace in one general view the different species of phænogamous plants at present contained in herbariums, the number of which may now be estimated at considerably above 80000 , $\left({ }^{13}\right)$ we shall recoguise in this prodigious multitude certain leading forms to which many others may be refcrred. In detcrmining thicse leading forms or types, on the individual beauty, the distribution, and the grouping of which the physiognomy of the vegetation of a country depends, we must not follow the mareh of systcms of botany, in which from other motives the parts eliefly regarded are the smaller organs of propagation, the flowers and the fruit; we must, on the contrary, consider solely that which by its mass stamps a peeuliar charaetcr on the total imprcssion produccil, or on the aspeet of the eountry. Among the leading forms of vegetation to which I allude, there arc, indced, some which coineide with fanilies belonging to the "natural systcms" of botanists. Such are the forms of Bananas, Palms, Casuarincex, aud Coniferx. But the botanie systematist divides many groups which the physiognomist is obliged to unite. When plants or trees present themvol. II.
selves in masses, the outlines and distribution of the leaves and the form of the stems and of the branches are blended together. The painter (and here the artist's delieate tact and appreciation of nature are demanded) can distinguish in the middle distance and background of a landseape groves of palms or pines from beeeh woods, but he cannot distinguish the latter from woods consisting of other deeiduous forest trees.

Above sixteen different forms of vegetation are principally coneerned in determining the aspect or physiognomy of Nature. I mention only those which I have observed in the course of my travels both in the New and Old Continents, where during many years I have attentively examined the vegetation of the regious comprised between the 60th degree of North and the 12th degree of South latitude. The number of these forms will no doubt be eonsiderably auginented when travellers shall have penetrated farther into the interior of Continents, and discovered uew genera of plants. In the South-eastern part of Asia, the interior of Africa and of New Holland, and in South Ameriea from the river of the Amazons to the provinee of Chiquitos, the vegetation is still entirely unknown to us. How if at some future time a country should be diseovered in which ligneous fungi, Cenomyee rangiferina, or mosses, should form tall trees? The Neekera dendroides, a German species of moss, is in faet arboreseent; and bamboos (which are arboressent grasses) and the tree ferns of the tropics, which are often higher than our line-trees and alders, now present to the Luropean a sight as surprising as would be that
of a forest of tree mosses to its discovercr. The absolute size and the degree of devclopment attaincd by organic forms of the same family (whether plants or animals), depened on laws which arc still unknown to us. In eaeh of the great divisions of the animal kingdom, inseets, erustacc:, reptiles, birds, fishes, or mammalia, the size of the body oseillates betwecn eertain extreme limits. But these limits, which liave been established by observation as far as it has yet gone, may be eorreeted by the diseovery of species with whieh we are still unaequainted.

In land amimals the higher temperatures of the low latitudes appear to have favoured organic development. The small and slender form of our lizards is exehanged in the south for the gigantie, heavy, and euirassed bodies of croeodiles. In the formidable tiger, lion, and jaguar, we sec repeated, on a larger seale, the form of the eommon eat, one of the smallest of our domestie animals. If we penetrate into the interior of the earth, and seareh the eemeteries in which the plants and animals of the ancient world lie entombed, the fossil remains which we diseover not ouly anmounee a distribution ineonsistent with our present climates,--they also disclose to us gigantie forms that contrast no less with those which now surround us, than docs the simple heroism of the Greeks with the eharaeter of human greatness in modern times. Has thic temperature of our planct undergone considerable changes,-possibly of periodical reeurrence? If the proportion betwecu land and sea, and even the height of the acrial ocean and its pressure, $\left({ }^{1+}\right)$ have not always been the same, the physiog ${ }^{-}$-
nomy of nature, and the dimensions and forms of organised beings, must also have been subjected to various alterations. Huge Pachydermata, Mastodons, Owen's Mylodon robustus, and the Colossochelys, a land-tortoise above six feet high, have existed, and in the vegctable kingdom there have been forests composed of gigantic Lepidodendra, cactus-like Stigmarias, and numerous kinds of Cycader. Unable to dcpict fully according to its present features the plysiognomy of our planet in this its later age, I will only venture to attempt to indicate the characters which principally distinguish those vegetable groups which appear to mc to bc most strongly marked by physiognomic differences. However favoured by the richness and flcxibility of our mative languagc, it is still an arduous and hazardous undertaking when we attempt to trace in words that which belongs rather to the imitative art of the paintcr. I fcel also the neccssity of avoiding as much as possible the wearisome impression almost inscparable from all lengthened cnumerations.

We will begin with palms, ${ }^{15}$) the loftiest and noblest of all vegctable forms, that to which the prize of beauty has been assigned by the concurrent voice of nations in all ages; for the earliest civilisation of mankind bclonged to countries bordering on the region of palms, and to parts of Asia where they abound. Their lofty, slender, ringed, and, in some cases, prickly stems, terminate in aspiring and shining either fanlike or pirnated foliage. The Icaves are frequently curlcd, like those of some graminer. Smooth polished stems of palms carefully measured by me had attained 192 Erglish feet in height. In receding from
the equator and approaehing the temperate zone, palms diminish in height and beauty. The indigenous vegetation of Europe only comprises a single representative of this form of plants, the sea-eoast Dwarf-palm or Chamærops, which, iu Spain and Italy, extends as far north as the 44th parallel of latitude. The true elimate of palms has a mean annual temperature of $20^{\circ} .5-22^{\circ}$ Reaumur ($75^{\circ} .2-81^{\circ} .5$ Fahr). The Date, whieh is mueh iuferior in beauty to several other genera, has been brought from Africa to the south of Europe, where it lives, but ean seareely, be said to flourish, in a mean temperature not exceeding $12^{\circ}-13^{\circ} .5$ Reaumur ($59^{\circ}-62^{\circ} .4$ Fahr). Stems of palms and fossil bones of elephants are found buried beneath the surface of the earth in northern eountries, in positions whieh make it appear probable that their presence is not to be aceounted for by their having beeu drifted thither from the tropies, and we are led to infer that in the eourse of the great revolutions whieh our planct has undergone, great elianges of elimate, and of the physiognomy of nature as dependeut on elimate, have taken place.

In all parts of the globe the palm form is aeeompanied by that of Plantains or Bauanas; the Seitaminex and Musaecer of botanists, Helieouia, Amomum, and Strelitzia. In this form, the stems, whieh are low, suceulent, and almost herbaceous, are surmounted by long, silky, delieately-veined leaves of a thin loose texture, and bright and beautiful verdure. Groves of plantains and bananas form the ormunent of moist plaees
in the equatorial regions. It is on their fruits that the subsistence of a large part of the imhabitants of the torrid zone ehiefly depends, and, like the farinaceous cercals of the north, they have followed man from the infaney of his eivilisation $\left({ }^{16}\right)$. The aboriginal site of this nutritious plant is placed by some Asiatie fables or traditions on the banks of the Euphrates, and by others, with more probability, at the foot of the IImalaya. Greeian fables named the fields of Enna as the lappy native land of the cereals; and if in northern elimes, where eorn is eultivated in immense unbroken fields, their monotonous aspeet adds but little to the beanty of the landseape, the inhabitant of the tropics, on the other hand, in rearing groves of plantains wherever he fixes his habitation, contributes to the adornment of the earth's surface by the extension of one of the most noble and beautiful forms of the vegetable world.
The form of Malvaeere (${ }^{17}$) and Bombacere, represented by Ceiba, Cavanillesia, and the Mexiean hand-tree Cheirostemon, has enormously thiek trunks; large, soft, woolly leaves, either heart-shaped or indented; and superb flowers frequently of a purple or erimson hue. It is to this group of plants that the Baobab, or monkey bread-tree, (Adansonia digitata), belongs, whieh, with a very moderate elevation, has a diameter of 32 English feet, and is probably the largest and most aneient organie monument on our planet. In Italy the Malvaeere already begin to impart to the vegetation a peeuliar sonthern eharaeter.

The delieately pimmated foliage of the Mimosa form (${ }^{18}$), of whieh Aeaeia, Desmanthus, Gleditsehia, Porleria, and

Tamarindus are important members, is entirely wanting in our temperate zone in the old eontinent, though found in the United States, where, in eorresponding latitudes, vegetation is more varied and more vigorous than in Europe. The umbrella-like arrangement of the branches, resembling that seen in the stone pine of Italy, is very frequent among the Mimosas. The decp blue of the tropie sky seen through their finely divided foliage has an extremely picturesque effect.

The Heath form (19) belongs more especially to the old world, and particularly to the Afriean continent and islands : taking for our guides physiognomie character and general aspeet, we may class under it the Epacrideæ and Diosmeæ, many Proteaeere, and those Australian Aeacias which have mere leaf-stalks instead of leaves (phyllodias). This furm has some points of similarity with that of needle trees, and the partial resemblanee enhances the effect of the pleasing contrast which, when these two are placed together, is afforded by the abundant bell-shaped blossoms of the heaths. Arboreseent heaths, like some other African plants, extend to the northern shores of the Mediterranean : they adorn Italy, and the cistus-covered grounds of the south of Spain. The declivity of the Peak of Teneriffe is the loeality where I have seen them growing with the greatest luxuriance. In the countries adjoining the Baltic, and farther to the north, the aspeet of this form of plants is unwelcome, as announcing stcrility. Our heaths, Eriea (Calluna) vulgaris, Eriea tetralis, E. carnea, and E. cinerea, are soeial plants, and for eenturics agrieultural nations have eombated their
advance with little success. It is remarkable that the extensive genus which is the leading representative of this form appears to be almost limited to one side of our planet. Of the 300 known sjecics of Erica only onc has been discovered across the whole extent of the New Continent, from Pensylvania and Labrador to Nootka aud Alashka.

The Cactus form, $\left({ }^{20}\right)$ on the other hand, is almost cxclusively American. Sometimes spherical, sometimes articulated or jointed, and sometimes assuming the shape of tall upright polygonal columns resembling the pipes of an organ, this group presents the most striking contrast to those of Liliaceæ and Bananas. It comprises some of the plants to which Bernardin de St. Pierre has applied the term of "vegetable fountains in the desert." In the watcrless plains of South America the animals suffering from thirst seek the moloncactus, a spherical plant half buried in the dry sand, and encased in formidable prickles, but of which the interior abounds in refreshing juice. The stems of the columnar cactus rise to a height of 30 or 32 fcet; they are often covered with lichens, and, dividing into candelabra-like branches, resemble, in physiognomy, some of the Euphorbias of Africa.

While the above-mentioned plants flourish in deserts almost devoid of other vegetation, the Orchidex (${ }^{21}$) enliven the clefts of the wildest rocks, and the trunks of tropical trees blackened by excess of heat. This form (to which the Vamilla belongs) is distinguished by its bright green succulent leaves, and by its flowers of many colours and strange and curious shape, sometimes resembling that of
ringed inseets, and sometimes that of the birds which are attracted by the perfume of the honey vessels. Sueh is their number and variety that, to mention ouly a limited distriet, the entire life of a painter would be too short for the delineation of all the magnifieent Orelidex whieh adorn the reeesses of the deep valleys of the Audes of Peru.

The Casuarina form $\left({ }^{22}\right)$, leafless, like almost all speeies of Caetus, consists of trees with branches resembling the stalks of our Equisetums. It is found only in the islands of the Paeifie and in India, but traces of the same singular rather than beautiful type are seen in other parts of the world. Plumier's Equisetum altissimum, Forskall's Ephedr:a aphylla from the north of Afriea, the Peruvian Colletias, and the Siberian Calligonum pallasia, are nearly allied to the Casuarina form.

As the Banana form shews the greatest expansion, so the greatest eontraction of the leaf-vessels is shewn in Casuarinas, and in the form of Needle trees $\left({ }^{(23}\right)$ (Coniferæ). Pines, Thuias, and Cypresses, belong to this form, which prevails in northern regions, and is comparatively rare within the tropics: in Dammara and Salisburia the leaves, though they may still be termed needle-shaped, are broader. In. the eolder latitudes the never-failing verdure of this form of trees eheers the desolate winter laudscape, and tells to the iuhabitants of those regions that wheu suow and iee cover the ground the inward life of plants, like the Promethean fire, is uever extinet upon our planet.

Like mosses and liehens in our latitudes, and like orehidere in the tropieal zone, plants of the Pothos form $\left({ }^{2 t}\right)$ elothe
parasitieally the trunks of aged and decaying forest trees: succulent herbaeeous stalks support large leaves, sometimes sagittate, sometimes either digitate or elongate, but always with thiek veins. The flowers of the Aroideæ are cased in hooded spathes or sheaths, and in some of them when they expand a sensible increase of vital heat is pereeived. Stemless, they put forth aerial roots. Pothos, Draeontium, Caladium, and Arum, all belong to this form, whieh prevails chiefly in the tropical world. On the Spanish and Italian shores of the Mediterranean, Arums eombine with the succulent Tussilago, the Acanthus, and Thistles whieh are almost arboreseent, to indieate the inereasing luxurianee of southern vegetation.

Next to the last-mentioned form of whieh the Pothos and Arum are representatives, I plaee a form with which, in the hottest parts of South Ameriea, it is frequently assoeiated, -that of the tropieal twining rope-plants, or Lianes, ${ }^{(25)}$ which display in those regions, in Paullinias, Banisterias, Bignonias, and Passifloras, the utmost vigour of vegetation. It is represented to us in the temperate latitudes by our twining hops, and by our grape vines. On the banks of the Orinoeo the leafless branehes of the Bauhinias are often between 40 and 50 feet long: sometimes they hang down perpendicularly from the high top of the Swietenia, and sometimes they are stretehed obliquely like the cordage of a ship: the tiger-eats climb up and descend by them with wonderful agility.

In strong contrast with the extremeflexibilityandfresh lightcoloured verdure of the climbing plants, of which we have just
been speaking, are the rigid sclf-supporting growth and bluish hue of the form of Alocs, $\left({ }^{26}\right)$ which, instead of pliant stcins and branches of enormous length, are either without stems altogether, or have branehless stems. Thic leaves, whieh are suceulent, thiek, and fleshy, and terminate in long points, radiate from a centre and form a elosely crowded tuft. The tall-stemined aloes are not found in close clusters or thickets like other social or gregarious plants or trecs ; they stand singly in arid plains, and impart thereby to the tropieal regions in which they are found a peculiar, melaneholy, and I would almost venture to eall it, Afriean elaracter. Taking for onr guides rescmblanee in physiognomy, and influence on the impression produced by the landseape, we plaec together under the head of the Aloe form, (from among the Bromeliaccec) the Piteairnias, which in the ehain of the Audes grow ont of elefts in the roeks ; the great Pournetia pyramidata, (the Atsehupalla of the elcvated plains of New Grauada) ; the Ameriean Aloe, (Agave); Bromelia aranas and B. karatas; from among the Euphorbiacer the rarc species which have thiek short candelabra-like divided stems; from the family of Asphodeleæ the Afriean Aloc and the Dragon tree, (Draeæna draeo) ; and lastly, from among the Liliacere, the tall flowering Yucea.

If the Aloe form is charaeterised by an almost mournful repose and immobility, the form of Gramince, $\left({ }^{27}\right)$ cspecially the physiognomy of arboreseent grasses, is charaeterised, on the eontrary, by an expression of eheerfulness and of airy grace and tremulous lightness, combined with lofty stature. Both in the East and West Indics groves of Bamboo form
shaded over-arehing walks or avenues. The smooth polished and often lightly-waving and bending stems of these tropical grasses are taller than our alders and oaks. The form of Gramincer begins even in Italy, in the Arundo donax, to risc from the ground, and to detcrmine by height as well as mass the natural elaracter and aspeet of the country.

The form of Ferns, $\left({ }^{28}\right)$ as well as that of Grasses, becomes ennobled in the hotter parts of the globe. Arboreseent ferns, when they reach a licight of above 40 feet, have something of a palm-like appearance; but thcir stens are less slender, shorter, and more rough and scaly than those of palms. Thicir foliage is more delicate, of a thimer and more translucent texture, and the minutely indented margins of the fronds are finely and sharply cut. Tree ferns belong almost entirely to the tropical zone, but in that zone they seek by profercnce the more tompered heat of a modcrate elcration above the level of the sea, and mountains two or three thousand fect high may be regarded as their principal scat. In South America the arborescent ferns are usually found associated with the tree which has confcrred sueh benefits on mankind by its fever-healing bark. Both indieate by their presenee the happy region where reigns a soft perpetual spring.

I will next name the form of Liliaccous plants, (${ }^{29}$) (Amaryllis, Ixia, Gladiolus, Pancratium) with their flag-like leaves and superb blossoms, of whieh Southern Africa is the prineipal country ; also the Willow form $\left({ }^{30}\right)$, which is indigenous in all parts of the globe, and is represented in the elevated plains of Quito, (not in the shape of the leaves but
in that of the ramifieation), by Sehinus Molle ; Myrtacee (${ }^{31}$), (Metrosideros, Eucalyptus, Eseallonia myrtilloides); Melastomaeer $\left({ }^{32}\right)$, and the Laurel form $\left({ }^{33}\right)$.

It would be an enterprise worthy of a great artist to study the aspeet and eharaeter of all these vegetable groups, not merely in hot-houses or in the deseriptions of botanists, but in their native grandeur in the tropieal zone. How interesting and instruetive to the landseape painter $\left({ }^{(34)}\right.$ would be a work whieh should present to the eye, first separately and then in combination and eontrast, the leading forms whieh have been here enumerated! How picturesque is the aspect of tree-ferns spreading their delieate fronds above the laurel-oaks of Mexieo; or groups of plantains overshadowed by arboreseent grasses (Guaduas and Bamboos)! It is the artist's privilege, having studied these groups, to analyse them: and thus in his lands the grand and beautiful form of uature whieh he would pourtray resolves itself, (if I may venture on the expression) like the written works of men, into a few simple elements.

It is under the burning rays of a tropieal sun that vegetation displays its most majestie forms. In the eold north the bark of trees is eovered with liehens and mosses, whilst between the tropies the Cymbidium and fragrant Vanilla enliven the trunks of the Anacardias, and of the gigantie fig trees. The fresh verdure of the Pothos leaves, and of the Draeontias, contrasts with the many-eoloured flowers of the Orehider. Climbing Bauhinias, Passifloras, and yellow flowering Banisterias, twine round the trunks of the forest trees. Delieate blossoms spring from the roots of the Theobroma, and from
the thick and rough bark of the Creseentias and the Gustavia. (${ }^{35}$) In the midst of this profusion of flowers and fruits, and in the luxuriant intertwinings of the elimbing plants, the naturalist often finds it diffienlt to discover to whieh stem the different leaves and flowers really belong. A siugle tree adorned with Paullinias, Bignonias, and Dendrobium, forms a group of plants whieh, if disentangled and separated from each other, would cover a considerable space of ground.

In the tropics vegetation is generally of a freslier verdure, more luxuriant and suceulent, and adomed with larger and more shining leaves than in our northern climates. The "socia" plants, whieh often impart so uniform and monotonous a charaeter to European countries, are almost entirely absent in the Equatorial regions. Trees almost as lofty as our oaks are adorned with flowers as large and as beautiful as our lilies. On the slady banks of the Rio Magdalena in South Ameriea, there grows a climbing Aristoloehia bearing flowers four feet in eireumference, whieh the Indian boys draw over their heads in sport, and wear as hats or helmets. ${ }^{(36}$) In the islands of the Indian Arehipelago the flower of the Rafflesia is nearly three feet in diameter, and weighs above fourteen pounds.

The great elevation attained in several tropieal countries not only by single mountains but even by extensive distriets, enables the inhabitants of the torrid zone-surrounded by palms, bananas, and the other beautiful forms proper to those latitudes-to behold also those vegetable forms which, demanding a cooler temperature, would seem to belong to
other zones. Wlevation above the level of the sea gives this cooler temperature cven in the hottest parts of the earth; and Cypresses, Pines, Oaks, Berberries and Alders, (nearly allied to our own) eover the mountainous districts and clevated plains of Southern Mexieo and the chain of the Andes at the Equator. Thus it is given to man in those regions to behold without quitting his native land all the forms of vegetation dispersed over the globe, and all the shining worlds which stud the heavenly vault from pole to pole. $\left({ }^{37}\right)$

These and many other of the enjoyments which Nature affords are wanting to the nations of the North. Many constellations, and many vegetable forms, -and of the latter, those which are most beautiful, (palms, tree ferns, plantains, arborescent grasses, and the finely-divided feathery foliage of the Mimosas),-remain for ever unknown to them. Individual plants languishing in our hot-houses can give but a very faint idea of the majestic vegetation of the tropical zone. But the high eultivation of our languages, the glowing faney of the poet, and the imitative art of the painter, open to us sources whence flow abundant compensations, and from whence our imagination call derive the living inage of that more vigorous nature which other climes display. In the frigid North, in the midst of the barren heath, the solitary student can appropriate mentally all that has been diseovered in the most distant regions, and ean create within himself a world free and imperishable as the spirit by which it is conceived.

ANNOTATIONS AND ADDITIONS.

${ }^{(1)}$ p.3.-" On the Chimborazo, eight thousand feet higher than Etna."

Small singing birds, and even butterflies, are found at sea at great distanees from the eoast, (as I have several times had opportunities of observing in the Paeifie), being carried there by the force of the wind when storms come off the land. In the same involuntary manner insects are transported into the upper regions of the atmosphere, 16000 or 19000 feet above the plains. The heated crust of the earth oceasions an aseending vertical current of air, by which light bodies are borne upwards. M. Boussingault, an excellent ehemist who, as Professor at the newly instituted Mining Academy at Santa F'é de Bogota, visited the Gineiss Mountains of Caraceas, in asecuding to the summit of the Silla witnessed, together with his companion Don Mariano de Rivero, a phenomenon affording a remarkable ocular demonstration of the fact of a vertically ascending current. They saw in the middle of the day, about noon, whitish shining bodies rise from the valley of Caraccas to the summit of the Silla, whieh is 5100 (5755 E.) feet high, and then sink down towards the neighbouring sea eoast. These movements continued uninterruptedly for the voL. II.
space of an hour, and the objeets, whieh at first were mistaken for a flock of small birds, proved to be small agglomerations of straws or blades of grass. Boussingault sent me some of the straws, which were immediately recognised by Professor Kunth for a species of Vilfa, a genus whiel, together with Agrostis, is very abundant in the provinees of Caraecas and Cumana: it was the Vilfa tenacissina of our Synopsis Plantarum æquinoctialium Orbis Novi, T. i. p. 205. Saussure found butterflies on Mont Blanc, as did Ramond in the solitudes which surround the summit of the Mont Perdu. When Bonpland, Carlos Montufar, and myself, reached, on the 23d of June, 1802, on the eastern declivity of the Chimborazo, the leight of 18096 (19286 E.) feet-a height at which the barometer sank to 13 inches $11 \frac{1}{3}$ lines (14.850 English inches), we saw winged insects fluttering around us. We could see that they were Dipteras, resembling flies, but on a sharp ridge of roek (cuchilla) often only ten inches wide, between steeply descending masses of snow, it was impossible to eatch the insects. The height at which we saw them was nearly the same at which the uncovered trachytic roek, piercing through the eternal shows, gave to our view, in Lecidea geographica, the last traces of vegctation. The insects were flyiug at a leight of about 2850 toises (18225 E. feet), or about 2600 E. fcet ligher than Mont Blanc. Somewhat lower down, at about 2600 toises (10626 E. feet), also therefore within the region of perpetual snow, Boupland had seen yellow butterflies flying very near the ground. According to our present knowledge the Mam-
malia which live nearest to the region of pcrpetual snow are in the Swiss Alps, the Marmot which sleeps through the winter, and a very small ficld-mouse (IIypudæus nivalis), described by Martins, which on the Faulhorn lays up ar store of the roots of phrnoganous alpinc plants almost under the snow. (Actes de la Société Helvétique, 1843, p. 324.) The beautiful Chinchilla, of which the bright and silky fur is so much prized, is often supposed by Europeans to be an inhabitant of the high mountain regions of Chili: this, howevcr, is an crror ; the Chinchilla laniger (Gray) only lives in the mild tempcrature of the lower zone, and is not found farther south than the parallel of 35°. (Claudio Gay, Historia fisica y politica de Chile, Zoologia, 1844, p. 91.)

While on our Europcan Alps, Lecidcas, Parmelias, and Umbilicarias form only a fcw coloured patches on the rocks which are not completely covered with snow, in the Andes, beautiful flowering phrenogamous plants, first described by us, live at elevations of thirtcen to fourteen thousand feet (13700 to nearly 15000 E.) Wc found there woolly species of Culcitium and Espeletia (C. nivale, C. rufescens, and C. reflexum, E. grandiflora, and E. argentea), Sida pichinchensis, Ranunculus nubigenus, R. Gusmanni with red or orange-colouredblossoms, the small moss-likc umbelliferous plant Myrrhis andicola, and Pragosa arctioides. On the declivity of the Chimborazo the Saxifraga boussingaulti, described by Adolph Bronguiart, grows beyond the limit of perpetual snow on loose boulders of rock, at 14796 (15770 E.) fect above the level of the sea, not at 17000 , as stated
in two estimable English journals. (Compare my Asie Centrale, T. iii. p. 262, with Hooker, Journal of Botany, vol. i. 1834, p. 327, and Edinburgh New Philosophical Journal, vol. xvii. 1834, p. 380.) The Saxifrage discovered by Boussingault is certainly, up to the present time, the highest known phrenogamous plant on the surface of the carth.

The perpendicular height of the Chimborazo is, according to my trigonometrical measurcment, 3350 toises (21422 E . fcet.) (Recueil d’Obscrv. Astron., vol. i., Introd. p. 1xxii.) This result is intermediate between those given by French and Spanish academicians. The differenees depend not ou different assumptions for refraction, but on differences in the reduction of the measured base lines to the level of the sea. In the Andes this reduction could only be made by the barometer, and thus cvery moasurcment called a trigonometric measurement is also a barometric one, of which the result differs according to the first term in the formula employed. If in chains of mountains of great mass, such as the Andes, we insist oll determining the greater part of the whole altitude trigonometrically, measuring from a low and distant point in the plain or nearly at the level of the sca, we can only obtain very small angles of altitude. On the other hand, not only is it difficult to find a convenient base among mountains, but also cvery step increases the portion of the leight mhich must be determined barometrically. These difficulties have to be encountered by every traveller who sclects, among the clevated plains which surround the Andes, the station at which he may exccute his grodesical measurcments. My measure-
ment of the Chimborazo was made from the plain of Tapia, whieh is eovered with pumiee. It is situated to the west of the Rio Chambo, and its elevation, as determined by the barometer, is 14.82 toises (94.77 E . feet.) The Llanos de Luisa, and still more the plain of Sisgun, whieh is 1900 toises (12150 E. feet) high, would have given greater angles of altitude ; I had prepared everything for making the measurement at the latter station when thick elouds coneealed the summit of Chimborazo.

Those who are engaged in investigations on languages may not be unwilling to find here some conjeetures respecting the etymology of the widely eelebrated name of Chimborazo. Chimbo is the name of the Corregimiento or Distriet in whieh the mountain of Chimborazo is situated. La Condamine (Voyage à l'Equateur, 1751, p. 184) deduces Chimbo from "ehimpani," "to pass over a river." Chimbo-raço signifies, aceording' to him, "la neige de l'autre bord," beeause at the village of Chimbo one erosses a stream in full view of the enormous snow-elad mountain. (In the Quiehua language "ehinpa" signifies the "other, or farther, side;" and ehimpani signifies to pass or eross over a river, a bridge, dee.) Several natives of the provinee of Quito have assured me that Chimborazo signifies merely "the snow of Chimbo." We find the same termination in Carguai-razo. But razo appears to be a provineial word. The Jesuit Holguin, (whose exeellent " Voeabulario de la Lengua general de todo el Peru llamada Lengua Qquiehua ó del Inea," printed at Lima in 1608, is in my possession,) knows nothing of the word "razo." The genuine word
for snow is "ritti." On the other hand, my learned friend Professor Busehmann remarks that in the Chinchaysuyo dialect (spoken nortll of Cuzco up to Quito and Pasto,) raju (the j apparently guttural) signifies snow; see the word in Juan de Figueredo's notiee of Chinehaysuyo words appended to Diego de Torres Rubio, Arte, y Vocabulario de la Lengua Quichua, reimpr. en Lima, 1754 ; fol. $222, \mathrm{~b}$. For the two first syllables of the name of the mountain, and for the village of Chimbo, (as chimpa and chimpani suit badly on account of the a), we may find a definite signifieation by means of the Quichua word chimpu, an expression used for a coloured thread or fringe (señal de lana, hilo ó borlilla de colores), -for the red of the sky (arreboles), -and for a lialo round the sun or moon. One may try to derive the name of the mountain direetly from this word, without the intervention of the village or distriet. In any ease, and whatever the etymology of Chimborazo may be, it must be written in Peruvian Chimporazo, as we know that the Peruvians have no b.

But what if the mame of this giant mountain should have nothing in eommon with the language of the Ineas, but slould lhave deseended from a more remote antiquity? Aceording to the generally reeeived tradition, it was not long before the arrival of the Spauiards that the Inca or Quichua language was introduced into the kingdom of Quito, where the Puruay language, which has now entirely perished, had previously prevailed. Other names of mountains, Piehincha, nlinissa, and Cotopaxi, have no signifieation at all in the language of the Ineas, and are therefore certainly older
than the introduetion of the worship of the sun and the court language of the rulers of Cuzeo. In all parts of the world the names of mountains and rivers are among the most aneient and most certain monuments or memorials of languages; and my brother Wilhelm von Humboldt has employed these names with great sagaeity in his researehes on the former diffusion of Iberian nations. A singular and unexpected statement has been put forward in reeent years (Velaseo Historia de Quito, T. i. p. 185) to the effcet that "the Ineas Tupae Yupanqui and Huayna Capae were astonished to find at their first conquest of Quito a dialect of the Quiehua language already in use among the natives." Preseott, however, appears to regard this statement as doubtful. (Hist. of the Conquest of Peru, Vol. i. p. 115.)

If the Pass of St. Gothard, Mount Athos, or the Rigi, were plaeed on the summit of the Chimborazo, it would form an elevation equal to that now aseribed to the Dhawalagiri in the Himalaya. The geologist who rises to more gencral views connected with the interior of the earth, regards, not indeed the direction, but the relative height of the roeky ridges which we term mountain ehains, as a phenomenou of so little import, that he would not be astonished if there should one day be diseovered between the Himalaya and the Altai, summits whieh should surpass the Dhawaligiri and the Djawahir as muelı as these surpass the Chimborazo. (See my Vues des Cordillères et Monumens des peuples indigènes de l'Amérique, T. i. p. 116; and my Notiee on two attempts to aseend the Chimborazo, in 1802 and 1831, in Sehumacher's Jahrbueh
for 1847, S. 176.) The great height to whieh the snow line on the northern side of the Himalaya is raised in summer, by the influence of the heat returied by radiation from the ligh plains of the interior of Asia, renders those mountains, although situated in 29 to $30 \frac{1}{2}$ degrees of latitude, as aeeessible as the Peruvian Andes within the tropies. Captain Gerard has attained on the Tarhigang an elevation as great, and perhaps (as is maintained in the Critieal Researches on Philosophy and Geography) 117 English feet greater than that reached by me on the Chimborazo. Unfortunately, as I have shewil more at large in another place, these mountain journies beyond the linits of perpetual snow (however they may engage the euriosity of the publie) are of only very ineonsiderable scientific use.
$\left.{ }^{(2}\right)$ p. 4.-" The Condor, the giant of the Tulture tribe."
In my Reeueil d'Observations de Zoologie et d'Anatomie eomparée, vol. i. pp. 26-45, I have given the natural history of the Coudor, which, before my journey to the equatorial regions, had been much misrepresented. (The name of the bird is properly Cuntur in the Inca language ; in Chili, in the Arauean, Mañque ; Sarcoramphus Condor of Duméril.) I made and had ellgraved a drawing of the head from the living bird, and of the size of mature. Next to the Condor, the Laimmergeier of Switzerland, and the Faleo destructor of Daudin, probably the Falco Harpyia of Limmus, are the largest flying birds.

The region whiel may be regarded as the ordinary haunt of the Condor begins at the height of Etna, and comprises
atmospherie strata from ten to cighteen thousand (about 10600 to 19000 English) feet above the level of the sea. Humming birds, whieh make summer excursions as far as $61^{\circ} \mathrm{N}$. latitude on the north-west coast of Ameriea on the one hand, and the Tierra del Fuego on the other, have been seen by Von Tsehudi (Fauna Permana, Ornithol. p. 12) in Puna as high as 13700 (14600 English) feet. There is a plcasure in comparing the largest and the smallest of the feathered inhabitants of the air. Of the Condors, the largest individuals found in the ehain of the Andes round Quito measured, with extended wings, 14 (nearly 15 Fnglish) feet, and the smallest 8 ($8 \frac{1}{2}$ English) feet. From these dimensions, and from the visual angle at whieh the bird often appeared vertieally above our heads, we are enabled to infer the enormous height to whieh the Condor soars when the sky is screne. A visual angle of 4^{\prime}, for example, gives a perpendieular height above the cye of 6876 (73:30 English) fect. The eave (Maelay) of Antisana, which is opposite the mountain of Chussulongo, and from whence we measured the height of the soaring bird, is 14958 (15942 English) fect above the surfaee of the Paeifie. This would give the absolute height attained by the Condor at fully 21834 (23270 Einglish) feet; an elevation at which the barometer would hardly reaeh 12 Frenelı inches, but which yet docs not surpass the highest summits of the IImalaya. It is a remarkable plysiologieal phenomenon, that the same bird, which ean fly round in circles for hours in regions of an atmosphere so rarified, should sometimes suddenly descend, as on the western declivity of the Voleano of Piehincha, to
the sea-shore, thus passing rapidly through all gradations of climate. The membranous air-bags of the Condor, if filled in the lower regions of the atmosphere, must undergo extraordinary distension at altitudes of more than 23000 English feet. Ulloa, more than a century ago, expressed his astonishment that the vulture of the Andes could soar in regions where the atmospheric pressure is less than 14 French inches, (Voyage de l'Amérique meridionale, T. ii. p. 2, 1752; Observations astronomiques et physiques, p. 110). It was then believed, in analogy with experiments under the airpump, that no animal could live in so low a pressure. I have myself, as I have already noticed, seen the barometer sink on the Chimborazo to 13 French inches $11 \cdot 2$ lines (]4.850 English inches). Man, indced, at such elevations, if wearied by muscular exertion, finds limself in a state of very painful exhaustion ; but the Condor seems to perform the functions of respiration with equal facility under pressures of 30 and 13 English inches. It is apparently of all living creatures on our planet the one which can remove at pleasure to the greatest distance from the surface of the earth; I say at pleasure, for minute insects and siliceousshelled infusoria are carried by the ascending current to possibly still greater elerations. The Condor probably flies ligher than the altitude found as above by computation. I remember on the Cotopaxi, in the pumice plain of Suniguaicu, 13575 (14470 English) feet abore the sea, to lave seen the bird soaring at a height at which he appeared only as a small black speck. What is the smallest angle under which feebly illuminated objects can be discerned? Their form, (linear
extension) has a great influence on the minimum of this angle. The transparency of the mountain atmosphere at the equator is such that, in the province of Quito, as I have elsewhere noticed, the white mantle or Poncho of a horseman was distinguished with the maked eye at a horizontal distance of 84132 (89665 English) feet; therefore under a visual augle of 13 seconds. It was my friend Bonpland, whom, from the pleasant country seat of the Marques de Selvalegre, we saw moving along the face of a black precipice on the Volcano of Pichincha. Lightning conductors, being long thin objects, are seen, as has already been remarked by Arago, from the greatest distances, and under the smallest angles.

The accounts of the habits of the Condor in the mountainous districts of Quito and Peru, given by mc in a monograph on this powerful bird, have been confirmed by a later traveller, Gay, who has explored the whole of Chili, and has described that comntry in an excellent work entitled Historia fisica y politica de Chile. The Condor, which, like the Lamas, Vicunas, Alpacas, and Guanacos, does not extend beyond the equator into New Granada, is found as far south as the Straits of Magellan. In Chili, as in the mountain plains of Quito, the Condors, which at other times live cither solitarily or in pairs, assemble in flocks to attack lambs and calves, or to carry off young Guanacos (Guanacillos). The ravages amually committed among the herds of sheep, goats, and cattle, as well as among the wild Vicunas, Alpacas, and Guanacos of the Andes, are very considerable. The inhabitants of Chili assert that, in cap-
tivity, the Condor can support forty days' hunger; when frce, his voracity is cxccssive, and, vulture-like, is directed by preference to dcad flcsh.

The mode of capture of Condors in Pcru by mcaus of palisades, as described by me, is practised with cqual success in Chili. When the bird has gorged himself with flesh, he eannot risc into the air without first rumning for some little distance with his wings half expanded. A dead ox, in which decomposition is begimning to take place, is strongly fcnced round, leaving within the fcnce only a small spacc, in which the Condors attracted by the prey are crowded together. When they have gorged themselves with food, the palisades not permitting them to obtain a start by running, they become, as remarked above, unablc to rise, and are either killcd with clubs by the eountry poople, or taken alive by the lasso. On the first declaration of the political independence of Chili, the Condor appeared on the eoinage as the symbol of strength. (Claudio Gay, Historia fisica y politica de Chilc, publicada bajo los auspicios del Supremo Gobicrıo ; Zoologia, pp. 191-198.)

Far more useful than the Condor in the great economy of Nature, in the removal of putrefying animal substanees and in thus purifying the air in the ncighbourlood of human habitations, arc the diffcrent species of Gallinazos, of which the number of individuals is mueh greater. In tropieal Ancriea I have sometimes secn as many as 70 or 80 assembled at once round a dead animal ; and I am able, as an eye-witness, to confirm thic fact long since stated, but which las recently been doubted by ornithologists, of the whole
assembly of these birds in sueh cases taking flight on the appearanee of a single king-vulture, who yet is no larger than the Gallinizos. No combat ever takes plaee ; but the Gallinazos (the two species of which, Cathartes urubu and C. aura, have been confounded with each othicr by an unfortunately fluctuating nomenclature) appcar to be terified by the sudden appearance and courageous demcanour of the riehly coloured Sarcoramphus papa. As the ancient Egyptians protected the bird whieh rendered them similar scrvices towards the purification of their atmosphere, so in Peru the careless or wanton killing of the Gallinazos is punished with a fine, whieh in some towns amounts, aecording to Gay, to 300 piastres for each bird. It is a remarkable circumstanee, stated so long ago as by Don Fclix de Azara, that these speeics of vultures, if taken young and reared, will so accustom themselves to the person who fceds them, that they will follow him on a journcy for many miles, flying after the waggon in whieh he travels over the Pampas.

$\left.{ }^{(3}\right)$ p. 4.-" Their rotutiny bodies."

Fontana, in his exeellent work "Übcr das Viperngift," Bd. i. S. 62, relates that he sueeceded, in the course of two hours, by mcans of a drop of water, in bringing to lifc a rotifera which had lain for two years and a half dried up and motionless. Ou the action and cffcct of water, sec my "Vcrsuche über die gereizte Muskel-und Nervcnfaser," Bd. ii. S. 250 .

What has been ealled the revivification of Rotifcrex, since observations have been more exaet and have had to undergo
stricter critieism, has been the subjeet of much animated discussion. Baker affirmed that he had resuseitated, in 1771, paste-cels which Needhan had given him in 1744! Franz Baucr saw his Vibrio tritici, which had been dried up for four years, move again on being moistencd. An extremely careful and experieneed observer, Doyère, in his Mémoire sur les Tardigrades, et sur lcur propriété de revcnir à la vie (1842), draws from his own fine experiments the following eonclusions:-Rotiferæ eome to life, i. e. pass from a motionless state to a state of motion, after laving been exposed to temperatures of $19^{\circ} .2$ Reaumur below, and 36° Reaumur above, the freezing point ; i. e. from $11^{\circ} .2$ to $113^{\circ} .0$ Fah. They preserve the capability of apparent revivifieation, in dry sand, up to $56^{\circ} .4 \mathrm{R}$. ($155^{\circ} .9$ 1'ah.) ; but they lose it, and eannot be cxeited afresh, if heated in moist sand to 44° only ($131^{\circ} .0$ Fah.) Doyère, p, 119. The possibility of revivification or reanimation is not prevented by their being plaeed for twenty-eight days in barometer tubes in vaeuo, or even by the applieation of ehloride of lime or sulphurie acid (pp. 130-133). Doyère has also seen the rotifcræ come to life again very slowly after being dried without sand (dcsséchés ì nu), which Spallanzani had denied (pp. 117 and 129). "Toute dessieeation faite à la température ordinaire pourroit souffrir des objcetions auxquellcs l'emploi du vide sce n'eût peut-être pas complètement repondu: mais en voyant les Tardigrades périr irrévocablement à unc températurc de 44°, si leurs tissus sont pénétrés d'cau, tandis que desséehés ils supportent sans périr une chalcur qu'on peut évaluer à 96°

Reaumur, on doit être disposé à admettre que la revivification n'a dans l'animal d'autre condition que l'intégrité de composition et de connexions organiques." In the same way, in the vegetable kingdom, the sporules of cryptogamia, which Kunth compares to the propagation of eertain phenogamous plants by buds (bulbillæ), retain their germinating power in the highest temperatures. According to the most recent experiments of Payen, the sporules of a minute fungus (Oïdium aurantiacum), which covers the erumb of bread with a reddish feathery coating, do not lose their power of germination by being exposed for half an hour in elosed tubes to a temperature of from 67° to 78° Reaumur ($182^{\circ} .75$ to $207^{\circ} .5$ Fah.), before being strewred on fresh perfeetly unspoilt dough. May not the newly discovered monad (Monas prodigiosa), which causes blood-like spots on mealy substances, have been mingled with this fungus?

Ehrenberg, in his great work on Infusoria (S. 492-496), has given the most complete history of all the investigations whieh have taken place on what is called the revivification of rotiferæ. He believes that, in spite of all the means of desiccation employed, the organization-fluid still remains in the apparently dead animal. He eontests the hypothesis of "latent life ;" death, he says, is not "life latent, but the want of life."

We have evidence of the diminution, if not of the entire disappearance or suspension of organic functions, in the lyybernation or winter sleep both of warm and cold-blooded animals, in the dormice, marmots, sand martins (Hirundo riparia) according to Cuvier (Règne animal, 1829, T. i. p.
396), frogs and toads. Frogs, awakened from winter-sleep by warmth, can support an eight times' longer stay under water without being drowned, than frogs in the breeding season. It would seem as if the functions of the lungs in respiration, for some time after their excitability had been suspended, required a less degree of activity. The circumstance of the sand-martin sometimes burying itself in a morass is a phenomenon which, while it seems not to admit of doubt, is the more surprising, as in birds respiration is so extremely euergetic, that, according to Lavoisier's experiments, two small sparrows, in their ordinary state, decomposed, in the same space of time, as much atmospheric air as a porpoise. (Lavoisier, Mćmoires de Chimic, T. i. p. 119.) The winter-sleep of the swallow in question (the Hirundo riparia) is not supposed to belong to the entire species, but only to have been observed in some individuals. (Mihe Edwards, Elémens de Zoologie, 1834, p. 543.)

As in the cold zone the deprivation of heat causes some animals to fall into winter-sleep, so the hot tropical countries affurd an analogous phenomenon, which has not been sufficiently attended to, and to which I lhave applied the name of summer-sleep. (Relation historique, T. ii. pp. 192 and 626.) Drought and continuous high. temperatures act like the cold of winter in diminishing excitability. In Madagascar, (which, with the exception of a very small portion at its southern extremity, is entirely within the tropical zone,) as Bruguiere had before observed, the hedgelog-like Tenrecs (Centenes, Illiger), one species of which (C. ccaudatus)
has been introdueed into the Isle of France, sleep during great heat. Desjardins makes, it is true, the objection that the time of their slumber is the winter season of the southern hemisphere; but in a country in which the mean temperature of the eoldest month is 3° Reaumur ($6^{\circ} .75$ Fah.) above that of the hottest month in Paris, this circumstance eamnot change the three months' "summer-sleep" of the Tenree in Madagasear and at Port Louis, into what we understand by a winter-sleep, or state of hybernation.

In the hot and dry season, the erocodile in the Llanos of Venezucla, the land and water tortoises of the Orinoco, the huge boa, and several smaller kinds of serpents, become torpid and motionless, and lie incrusted in the indurated soil. The missionary Gili relates that the natives, in seeking for the slumbering Terekai (land tortoises), which they find lying at a depth of sixteen or serenteen inches in dried mud, are sometimes bitten by serpents which becone suddenly aroused, and which had buried themselves at the same time as the tortoise. An exeellent observer, Dr. Peters, who has just returned from the East Coast of Afriea, writes thus to me on the subject:-" During my short stay at Madagascar I could obtain no eertain information respecting the Tenrec ; but, on the other hand, I know that in the East of Afriea, where I lived for several years, different kinds of tortoises (Pentonyx and Trionehydias) pass months during the dry season of this tropieal country inclosed in the dry hard earth, and without food. The Lepidosiren also, in places where the swamps are dried up, remains coilcd up rol. II.
and motionless, encased in indurated earth, from May to December."

Thus we find an annual enfeeblement of certain vital functions in many and very different elasses of animals, and, what is partieularly striking, without the same phenomena being presented by other living ereatures nearly allied to them, and belonging to the same family. The northern glutton (Gulo), though allied to the badger (Meles), does not like him sleep during the winter; whereas, according to Cuvier's remark, " a Myoxus (dormouse) of Senegal (Myoxus coupeii), whieh could never have known wintersleep in his tropieal home, being brought to Europe fell asleep the first year on the setting in of winter." This torpidity or enfeeblement of the rital funetions and vital aetivity passes through several gradations, aceording as it extends to the proeesses of nutrition, respiration, and muscular motion, or to depression of the activity of the brain and nervous system. The winter-sleep of the solitary bears and of the badger is not aeeompanied by any rigidity, and hence the reawakening of these animals is so easy, and, as was often related to me in Siberia, so dangerous to the hunters and eountry people. The first reeognition of the gradation and comection of these phenomena leads us up to what las been called the "vita minima" of the mieroscopic organisms, whieh, oceasionally with green ovaries and undergoing the process of spontancous division, fall from the elouds in the Atlantic sand-rain. The apparent revivifieation of rotiferæ, as well as of the siliecous-shelled infusoria, is only the renewal of long-enfeebled vital functions, -
a state of vitality whieh was never entirely extinct, and whieh is fanned into a fresh flame, or exeited anew, by the appropriate stimulus. Physiologieal phenomena ean only be eomprehended by being traeed throughout the entire series of analogous modifieations.

${ }^{(4)}$ p. 5.-" Winged insects."

Formerly the fertilization of flowers in whieh the sexes are separated was aseribed prineipally to the aetion of the wind: it has been shown by Kölreuter, and with great ingenuity by Sprengel, that bees, wasps, and a host of smaller winged inseets, are the chief agents. I say the chief agents, beeause to assert that no fertilization is possible without the intervention of these little animals appears to me not to be in conformity with nature, as indeed has been shown in detail by Willdenow. (Grundriss der Kräuterkunde, 4te Aufl., Berl. 1805, S. 405-412.) On the other hand, Diehogamy, coloured spots or marks indieating honeyvessels (maeulæ indieantes), and fertilization by inseets, are, in muel the greater number of cases, inseparably assoeiated. (Compare Auguste de St. Hilaire, Leçons de Botaniçue, 1840, p. 565-571.)

The statement whieh has been often repeated since Spallanzani, that the diceeious eommon hemp (Cannabis sativa) yields perfeet seeds without the neighbourhood of pollen-bearing vessels, has been refuted by later experiments. When seeds have been obtained, anthers in a rudimentary state, eapable of furnishing some grains of fertilizing dust, have been diseovered near the ovarium. Suelı hermaphro-
ditism is frequent in the entire family of Urticer, but a peeuliar and still unexplained phenomenon has been presented in the forcing-houses at Kew by a small New Holland shrub, the Coclebogyne of Smith. This phænogamous plant produees in England perfect seeds without trace of male organs, or the hybridising introduction of the pollen of other species. An ingenious botanist, Adrien de Jussieu, in his "Cours Elementaire de Botanique," 1840, p. 463, expresses himself on the subject as follows:-Un genre d'Euphorbiacées (?) assez nouvellement déerit mais eultivé depuis plusieurs années dans les serres d'Angleterre, le Coclebogyne, y a plusieurs fois fruetifié, et ses graines étaient évidemment parfaites, puisque non seulement on y a observé un embryou bien eoustitué, mais qu'en le semant eet embryon s'est développé en une plante semblable. Or les fleurs sont dioïques; on ne comnait et ne possède pas (en Angleterre) de pieds mîles, et les recherehes les plus minutienses, faites par les meilleurs observateurs, n'ont pu jusqu'iei faire déeouvrir la moindre traee d'anthères ou seulement de pollen. L'embryon ne venait done pas de ee pollen, qui manque entièrement : il a dû se former de toute pièce dans l'orule."

In order to obtain a fresh eonfirmation or elueidation of this highly important and isolated phenomenon, I addressed myself not long since to my young friend Dr. Joseph Hooker, who, after making the Antaretie royage with Sir James Ross, has now joined the great Thibeto-Himalayan expedition. Dr. Hooker wrote to me in reply, on his arrival at Alexandria near the end of Deeember 1847, before embarking at Suez: "Our Coclebogyne still flowers with my father at Kew as well
as in the Gardens of the Hortieultural Soeiety. It ripens its seeds regularly: I have examined it repeatedly very closcly and earefully, and have never bcen able to discover a penetration of pollen-tubes either in the style or ovarium. In my herbarium the male blossoms are in small catkins."

${ }^{(5)}$ p. 7.--" Shine like stars."

The luminosity of the oeean is one of those superb natural phenomena whieh eontinue to exeite our admiration even when we have seen them reeur every night for months. The sea is phosphoreseent in every zone ; but those who have not witnessed the phenomenon within the tropies, and especially in the Pacifie, have only an imperfeet idca of the grand and majestie speetaele whieh it affords. When a man-of-war, impelled by a fresh breeze, euts the foaming waves, the voyager standing at the ship's side feels as if he could never be satisfied with gazing on the speetacle whieh presents itself to his view. Evcry time that in the rolling of the vessel her side emerges from the water, blue or reddish streams of light appear to dart upwards like flashes of lightning from her keel. Nor can I deseribe the splendour of the appearanee presented on a dark night in the tropic seas by the sports of a troop of porpoises. As they eut through the foaming waves, following eaeh other in long winding lines, one sees their mazy track marked by intense and sparkling light. In the Gulf of Cariaeo, between Cumana and the Peninsula of Maniquarez, I have stood for hours enjoying this speetaele.

Le Gentil and the elder Forstcr attributed the flashing to the eleetrie friction excited by the ship in moving through
the water, but the present state of our knowledge does not permit us to reecive this as a valid explanation. (Joh. Reinh. Forster's Bemerkungen auf seiner Reise um die Welt, 1783, S. 57 ; Le Gentil, Voyage dans les Mers de l’Inde, 1779, T. i. p. 685-698.)

Perhaps there are few natural subjeets of observation which have bcen so long and so much debatcd as the luminosity of the waters of the sca. What we know with certainty on the subject may be reduced to the following simple facts. There are several luminous animals which, when alive, give out at pleasure a faint phosphorie light: this light is, in most instanecs, rather bluish, as in Nereis noctiluca, Medusa pelagica var. β (Forskäl, Fauna Fgyptiaco-arabiea, s. Descriptioncs animalium quæ in itinere orientali observavit, 1775 , p. 109), and in the Monophora noctiluca, diseovered in Baudin's expedition, (Bory de St.-Vineent, Voyage dans les Ilcs des Mers d’Afrique, 1804, T. i. p. 107, pl. vi.) The luminous appearance of the sea is due partly to living animals, such as are spoken of above, and partly to organie fibres and membranes derived from the destruction of these living torch-bearcrs. The first of these eauses is undoubtedly the most usual and most extensive. In proportion as travellers engaged in the investigation of natural phenomena have become more zealous in their researchcs, and more experienced in the use of exeellent mieroseopes, we have seen in our zoological systems the groups of Mollusea and Infusoria, whieh beeome luminous either at pleasure or when excited by external stimulus, inerease more and more.

The luminosity of the sea, so far as it is produced by
living organic beings, is principally due, in the class of Zoophytcs, to the Aealephæ (the families of Medusa and Cyanca), to some Molluser, and to a countless host of Infusoria. Among the small Acalephæ, the Mammaria seintillans offers the beautiful spectaele of, as it were, the starry firmament ${ }^{-}$ reflccted by the surfacc of the sea. This little creature, when full grown, hardly equals in size the head of a pin. Michaelis, at Kiel, was the first to show that there are luminous sili-ceous-shelled infusoria : he observed the flashing light of the Peridinium (a ciliated animaleule), of the cuirassed Monad the Prorocentrum micans, and of a rotifera to whieh he gave the name of Synehata baltica. (Miehaelis uiber das Leuehten der Ostsce bei Kiel, 1830, S. 17.) The same Synchata baltica was subscquently diseovered by Focke in the Lagunes of Venicc. My distinguished friend and Siberian travelling companion, Ehrenbcrg, has succeeded in keeping luminous infusoria from the Baltie alive for almost two months in Berlin. He shewed them to me in 1832 with a microscope in a drop of sea-water: placed in the dark I saw their flashes of light. The largest of these littlc infusoria were 1-Sth, and the smallest from 1-4.Sth to 1-96th of a Paris linc in length (a Paris line is about nine-hundredths of on English ineh) : aftcr they wcre cxhausted, and had ceascd to scnd forth sparkles of light, the flashing was renewed on their being stimulated by the addition of acids or of a little alcohol to the sca-water.

By repeatcdly filtering water taken up fresh from the sea, Ehrenberg succeeded in obtaining a fluid in whieh a greatcr number of thesc luminous crcatures were concentrated.
magnetie lightnings), whieh, as the result of an increased tension ill the interior of the globe, are announced for hours beforehand by the suddenly altered movements of the magnetie needle. (See my letter to the Editor of the Anmalen der Physik und Chemie, Bd. xxxvii. 1836, S. 242-244).

Sometimes one eannot even with high magnifying powers diseern any animaleules in the luminous water ; and yet, whenever the wave strikes and breaks in foam against a hard body, a light is seen to flash. In sueh ease the eause of the phenomenon probably eonsists in the decaying animal fibres, which are disseminated in immense abundanee throughout the body of water. If this luminous water is filtered through fine and elosely woven eloths, these little fibres and membranes are separated in the shape of shining points. When we bathed at Cumana in the waters of the Gulf of Cariaeo, and afterwards lingered awhile on the solitary beach in the mild evening air without our elothes, parts of our bodies continued Iuminous from the shining organie partieles whieh had adhered to the skin, and the light only beeame extinet at the end of some minutes. Considering the enormous quantity of animal life in all tropieal seas, it is, perhaps, not surprising that the sea water should be luminous, even where no visible organie partieles ean be detaehed from it. From the almost infinite subdivision of the masses of dead Dagyse and Medusx, the sea may perhaps be looked on as a gelatinous fluid, whieh as sueh is luminous, distasteful to, and undrinkable by man, and capable of affording nourishment to many fish. If
one rubs a board with part of a Medusa hysocella, the part so rubbed regains its luminosity on friction with a dry finger. On my passage to South Ameriea I sometimes placed a Medusa on a tin plate. When I struek another metallic substance against the plate, the slightcst vibrations of the tin were sufficient to cause the light. What is the manner in which in this ease the blow and the vibrations aet? Is the temperature momentarily augmented? Are new surfaees exposed? or does the blow press out a fluid, such as phosphuretted hydrogen, which may burn on coming into contact with the oxygen of the atmosphere or of the air held in solution by the sea-water. This light-exeiting influenee of a shock or blow is partieularly remarkable in a " cross sea," i.e. when waves coming from opposite directions meet and clash.

I have secn the sea within the tropies appear luminous in the most different states of weathcr ; but the light was most brilliant when a storm was near, or with a sultry atmosphere and a vaporous thickly-elouded sky. Heat and cold appear to have little influenec on the phenomenon, for on the Banks of Newfoundland the phosphorescence is often very bright during the coldest winter weather. Sometimes under apparently similar external cireumstances the sea will be highly luminous one night and not at all so the following night. Does the atmosphere influenee the disengagement of light, or do all these differences depend on the aecident of the observer sailing through a part of the sea more or less abundantly impregnated with gelatinous animal substanees? Perhaps it is only in certain states of the
magnetie lightnings), whieh, as the result of an increased tcusion in the intcrior of the globe, are announced for hours bcforehand by the suddenly altcred movements of the magnctic necdle. (See my letter to the Editor of the Annalen der Physik und Chemie, Bd. xxxvii. 1836, S. 242-244).

Sometimes one eannot even with high magnifying powers diseern any animalcules in the luminous water ; and yet, whenever the wave strikes and breaks in foam against a hard body, a light is scen to flash. In such case the cause of the phenomonon probably eonsists in the decaying animal fibres, which are disseminatcd in immense abundance throughout the body of water. If this luminous watcr is filtered through fine and elosely woven cloths, these little fibres and membranes are separated in the shape of shining points. When we bathed at Cumana in the waters of the Gulf of Cariaco, and afterwards lingered awhile on the solitary beach in the mild cvening air without our elothes, parts of our bodies continued luminous from the shining organie particles which had adhered to the skin, and the light only became cxtinet at the cnd of some minutes. Considering the enormous quantity of animal life in all tropieal seas, it is, pcrhaps, not surprising that the sea watcr should be luminous, even where no visible organie partielcs ean be detaehcd from it. From the almost infinite subdivision of the masses of dead Dagysæ and Medusæ, the sea may perhaps be looked on as a gelatinous fluid, whieh as sueh is luminous, distastcful to, and undrinkable by man, and capable of affording nourishment to many fish. If
one rubs a board with part of a Medusa hysocella, the part so rubbed regains its luminosity on frietion with a dry fingcr. On my passage to South America I sometimes placed a Medusa on a tin plate. When I struck another metallie substance against the plate, the slightest vibrations of the tin were sufficient to eause the light. What is the manner in which in this case the blow aud the vibrations at? Is the tcmperature momentarily augmented? Are new surfaces exposed? or does the blow press out a fluid, sueh as phosphuretted hydrogen, whieh may burn on coming into contact with the oxygen of the atmosphere or of the air held in solution by the sea-water. This light-exciting influence of a shock or blow is partieularly remarkable in a "cross sca," i.e. when waves coming from opposite directions meet and clash.

I have seen the sea within the tropics appear luminous in the most different states of weather ; but the light was most brilliant when a storm was near, or with a sultry atmospherc and a vaporous thickly-clouded sky. Heat and cold appear to have little influcnee ou the phenomenon, for on the Banks of Newfoundland the phosphorescence is often very bright during the coldest winter wcather. Sometimes under apparcutly similar external eircumstances the sea will be highly luminous one night and not at all so the following night. Does the atmosphere influenec the discngagement of light, or do all these differenees depend on the aceident, of the observer sailing through a part of the sca more or less abundantly impreguated with gelatinous animal substances? Perhaps it is only in certain states of the
atmosphere that the light-evolving animaleulx come in large numbers to the surface of the sea. It has been asked why the fresh water of our marshes, whieh is filled with polypi, is never seen to beeome luminous. Both in animals and plants, a partieular mixture of organie partieles appears to be required in order to favour the production of light. Willow-wood is oftener found to be luminous than oak-wood. In England experiments have suceeeded in making saltwater shine by pouring into it the liquor from piekled herrings. It is easy to shew by galvanic experiments that in living animals the evolution of light depends on an irritation of the nerves. I have seen an Elater noctilueus whieh was dying emit strong flashes of light when I touehed the ganglion of his fore leg with zine and silver. Medusæ sometimes shew inereased brightness at the moment of completing the galvanic eireuit. (Humboldt, Relat. Hist. T. i. p. 79 and 533.)

Respeeting the wonderful development of mass and power of inerease in Infusoria, see Ehrenberg, Infus. S. xiii. 29I and 512. He observes that "the galaxy of the minutest organisms passes through the genera of Vibrio and Baeterium and that of Monas, (in the latter they are often only $\frac{1}{3000}$ of a line,) S. xix. and 244.
${ }^{(6)}$ p.7.-" Which inhabits the large pulmonary cells of the rattle-snake of the tropics."
This animal, whieh I formerly called an Eelinorhynehus or even a Porocephalus, appears on closer investigation, and aecording to the better founded judgment of Rudolphi, to
belong to the division of the Pentastomes. (Rudolphi, Entozoorum Synopsis, p. 124 and 434.) It inliabits the ventral cavities and wide-celled lungs of a species of Crotalus which lives in Cumana, sometimes in the interior of houses, where it pursues the mice. Ascaris lumbrici (Gözen's Eingeweidewürmer, Tab. iv. Fig. 10,) lives under the skin of the common earthworm, and is the smallest of all the species of Ascaris. Leucophra nodulata, Gleichen's pcarl-animalculc, las been observed by Otto Friedrich Müllcr in the interior of the rcddish Nais littoralis. (Mïller, Zoologia danica, Fasc. II. Tab. lxxx. a-e.) Probably these microscopic animals are again inhabited by others. All arc surrounded by air poor in oxygen and variously mixed with hydrogen and carbonic acid. Whether any animal can live in pure nitrogen is very doubtful. It might formerly have been believed to be the case with Fischer's Cistidicola farionis, because according to Fourcroy's experiments the swimming bladders of fish appeared to contain an air entirely deprived of oxygen. Erman's experience and my own shew, however, that fresh-water fishes nover contain pure nitrogen in thair swimming bladders. (Humboldt et Provençal, sur la respiration des Poissons, in the Recucil d'Obscrv. de Zoologic, Vol. ii. p. 194-216.) In sea-fish as much as 0.80 of oxygen has becn found, and according to Biot the purity of the air would appear to depend on the depth at which the fish live. (Mémoires de Plysiquc ct de Chimie de la Societé d’Arcueil, T. i. 1807, p. 252-281.)
(7) p. 8.-" The collected labours of united Lithophytes."

Following Linnæus and Ellis, the ealeareous zoophytes, amoug which Madrepores, Meandrinæ, Astreæ, and Poeilloporæ, espeeially, produee wall-like coral-reefs,-are inhabited by living ereatures which were long believed to be allied to the Nereids belonging to Cuvier's Annelidæ. The anatomy of these gelatinous little ereatures las been elueidated by the ingenious and extensive researehes of Cavolini, Savigny, and Ehrenberg. We have learnt that in order to understand the entire organization of what are called the roekbuilding eoral animals, the seaffolding whieh survives them, i. e., the layers of lime, whieh in the form of thin delieate plates or lamellæ are elaborated by vital funetions, must not be regarded as something extraneous to the soft membranes of the food-receiving animal.

Besides the more extended knowledge of the wonderful formation of the animated coral stocks, there have been gradually established more aecurate views respecting the influence exereised by corals on other departments of Nature,-on the elevation of groups of low islands above the level of the sea,-on the migrations of land-plants and the suceessive extension of the domains of partieular Floras,and, lastly, in some parts of the oeean, on the diffusion of raees of men, and the spread of partieular languages.

As minute organic ereatures living in society, eorals do indeed perform an important part in the general eeonomy of Nature, although they do not, as was begun to be believed at the time of Cook's voyages, enlarge continents and build
up islands from fathomless depths of the ocean. They excite the liveliest interest, whether considered as subjects of physiology and of the study of the gradation of animal forms, or whether they are regarded in reference to their influence on the geography of plants and on the geological relations of the crust of the Earth. According to the great views of Leopold von Buch, the whole formation of the Jura consists of " large raised coral-bauks of the ancient world surrounding the ancient mountain chains at a certain distance." In Ehrenberg's Classification, (Abhandlungen der Akad. der Wiss. zu Berlin aus dem, J. 1832, S. 393-432) Coralanimals, (oftcn improperly called, in English works, Coralinsects) are divided into two great classes: the singlemouthed Anthozoa, which are either frec or capable of detaching themselves, being the animal-corals, Zoocorallia; and those in which the attachment is permanent and plantlike, being the Phyto-corals. To the first order, the Zoocorallia, bclong the Hydras or Arm-polypi of Tramblcy, the Actiniæ decked with beautiful colours, and the mushroomcorals ; to the second order or Phyto-corals belong the Madrepores, the Astroids, and the Ocellinr. The Polypi of the second order are those which, by the cellular wavedefying ramparts which they construct, arc the principal subject of the present note. These ramparts consist of an aggregatc of coral trunks, which, however, do not instantly lose their common vitality as docs a forest tree when cut down.

Every coral-trunk is a whole which has arisen by a formation of buds taking place according to certain laws, the
parts of whieh the whole eonsists forming a number of organieally distinet individuals. In the group of Phytocorals these individuals eamot detach themselves at pleasure, but remain united with eaeh other by thin plates of earbonate of lime. It is not, therefore, by any means the case that each trunk of eoral has a eentral point of eommon vitality or life. (See Ehrenberg's Memoir above referred to, S. 419.) The propagation of eoral-animals takes place, in the one order, by eggs or by spontaneous division ; and in the other order, by the formation of buds. It is the latter mode of propagation whieh, in the development of individuals, is the most rich in variety of form.

Coral-reefs, (aeeording to the definition of Dioseorides, sea-plants, a forest of stome-trees, Lithodendra), are of three kinds;-coast reefs, ealled by the English "shore or fringing reefs," whieh are immediately conneeted with the eoasts of eontinents or islands, as almost all the coral banks of the Red Sea seen during an eighteen months' examination by Ehrenberg and Hemprich;-"barrier-reefs," "eneir-eling-reefs," as the great Australian barrier-reef on the north-east eoast of New Holland, extending from Sandy Cape to the dreaded Torres Strait; and as the encireling-reefs surrounding the islands of Vanikoro (between the Santa Cruz group and the New Hebrides) and Poupynete (one of the Carolinas; - and lastly, coral banks enelosing lagoons, forming "Atolls" or "Lagoon-islands." This highly natural division and nomenelature have been introduced by Charles Darwin, and are intimately conneeted with the explanation whieh that ingenious and
excellent investigator of nature has given of the gradual produetion of these wonderful forms. As on the one hand Cavoliui, Ehrenberg, and Savigny have perfeeted the scientifie anatomieal knowledge of the organisation of coralanimals, so on the other land the geographical and geological relations of coral-islands have been investigated and elucidated, first by Reinhold and George Forster in Cook's Seeond Voyage, and subsequently, after a long interval, by Chamisso, Péron, Quoy and Gaimard, Flinders, Liitke, Beechey, Darwin, d’Urville, and Lottin.

The coral-animals and their stony cellular structures or scaffolding belong principally to the warm tropical seas, and the reefs are found more frequently in the Southern than in the Northern Hemisphere. The Atolls or Lagoon Islands are erowded together in what has been ealled the Coral-Sea, off the north-east eoast of New Holland, including New Caledomia, the Salomon's Islands, and the Louisiade Arehipelago ; in the group of the Low islands (Low Archipelago), eighty in number ; in the Fidji, Ellice, and Gilbert groups; and in the Indian Ocean, on the north-east of Madagasear, under the name of the Atoll-group of Saya de Matha.

The great Chagos bank, of whieh the strueture and roeks of dead eoral have been thoroughly examined by Captain Moresby and by Powell, is so mueh the more interesting, beeause we may regard it as a eontinuation of the more northerly Laceadives and Maldives. I have already ealled attention elsewhere (Asie Centrale, T. i. p. 218), to the importance of the succession of these Atolls, running exactly in the direetion of a meridian and continued as far as 7°

VOL. II.
south latitude, to the general system of mountains and the configuration of the earth's surface in Central Asia. They form a kind of continuation to the great rampart-like mountain elevations of the Ghauts and the more northern chain of Bolor, to which correspond in the trans-Gangetic Peninsula the North and South Chains which are intersected near the great bend of the Thibetian Tzang-bo Rirer by several transverse mountain systems ruming east and west. In this eastern peninsula are situated the chains of Cochin China, Siam, and Malacca which are parallel with each other, as well as those of Ava and Arracan which all, after courses of unequal length, terminate in the Gulfs or Bays of Siam, Martaban, and Bengal. The Bay of Bengal appears like an arrested attempt of nature to form an inland sea. A deep invasion of the ocean, between the simple western system of the Ghauts, and the eastern very complex trans-Gangetic system of mountains, has swallowed up a large portion of the low lands on the eastern side, but met with an obstacle more difficult to overcone in the existence of the extensive high plateau of Mysore.

Such an invasion of the ocean has occasioned two almost pyramidal peninsulas of very different dimensions, and differently proportioned in breadth and length; and the continuations of two mountain systems (both running in the direction of the meridian, i. e., the mountain system of Malacca on the east, and the Ghauts of Malabar on the west), shew themselves in submarine clains of mountains or symmetrical series of islands, on the one side in the Andaman and Nicobar Islands which are very poor
in corals, and on the other side in the three longextended groups or series of Atolls of the Laecadives, the Maldives, and Chagos. The latter series, ealled by navigators the Chagos-bank, forms a lagoon eneircled by a narrow and already much broken, and in great measure submerged, coral reef. The longer and shorter diameters of this lagoon, or its length and brcadth, are respectively 90 and 70 geographical miles. Whilst the enclosed lagoon is ouly from seventeen to forty fathoms deep, the depth of water at a small distanee from the outer margin of the coral, (which appears to be gradually sinking), is such, that at half a mile no bottom was found in sounding with a line of 190 fathoms, and, at a somewhat greater distance, none with 210 fathoms. (Darwin, Structure of Coral Reefs, p. 39, 111, and 183.) At the coral lagoon called Keeling-Atoll, Captain Fitz-Roy, at a distanee of only two thousand yards from the rcef, found no soundings with 1200 fathoms.
"The corals which, in the Red Sea, form thick wall-like masses, are species of Meandrina, Astrea, Favia, Madrepora (Porites), Poeillopora (hempriehii), Millepora, and Heteropora. The latter are among the most massive, although they are somewhat branched. The corals which lie deepest below the surface of the water in this locality, and which, being magnified by the refraction of the rays of light, appear to the eye like the domes or cupolas of a cathedral or other large building, beloug, so far as we were enabled to judge, to Mcandriua and Astrea." (Elirenberg, manuscript notices.) It is neeessary to distinguish between separate and in part
free and detaehed polypifers, and those whieh form wall-like struetures and roeks.

If we are struek with the great aceumulation of building polypifers in some regions of the globe, it is not less surprising to remark the entire absence of their structures in other and often nearly adjoining regions. These differences must be determined by eauses whieh have not yet been thoroughly investigated ; sueh as eurrents, loeal temperature of the water, and abundance or defieieney of appropriate food. That eertain thin-branelied eorals, with less deposit of lime on the side opposite to the opening of the mouth, prefer the repose of the interior of the lagoon, is not to be denied; but this preference for the unagitated water must not, as has too often been done (Annales des Seiences Naturelles, 1825, T. vi. p. 277), be regarded as a property belonging to the entire class. According to Ehrenberg's experience in the Red Sea, that of Chamisso in the Atolls of the Marshall Islands east of the Caroline group, the observations of Captain Bird Allen in the West Thidies, and those of Capt. Moresby in the Maldives, living Madrepores, Millepores, and speecies of Astrea and of Menndrina, ean support the most violent aetion of the waves,--" a tremendous surf," (Darwin, Coral Reefs, pp. 63-65), and even appear to prefer the most stormy exposure. The living organic forees or powers regulating the cellular strueture, whieh with age aequires the hardness of roek, resist with wouderful sueeess the meehanieal forees acting in the shook of the agitated water.

In the Pacific, the Galapagos Islands, and the whole

Western Coast of America, are entirely without coral reefs, although so near to the many Atolls of the Low Islands, and the Archipelago of the Marquesas. This absence of corals might perhaps be ascribed to the presence of colder water, since we know that the coasts of Chili and Peru are washed by a cold current coming from the south and turning to the westward off Punta Parina, the temperature of which I found, in 1802 , to be only $12^{\circ} .5$ Reaumur ($60^{\circ} .2$ Fah.), while the undisturbed adjacent masses of water were from 22° to 23° Reaumur ($81^{\circ} .5$ to $83^{\circ} .8$ Fah.); and there are also among the Galapagos small currents running between the islands, having a temperature of only $11^{\circ} .7$ Reaumur ($58^{\circ} .2$ Fah.) But these lower temperatures do not extend farther to the north along the shores of the Pacific, and are not found upon the coasts of Guayaquil, Guatimala, and Mexico ; nor does a low temperature prevail at the Cape de Verd Islands on the West Coast of Africa, or at the small islands of St. Paul (St. Paul's rocks), or at St. Helena, Ascension, or San Fernando Noronha,which yet are all without coral reefs.

While this absence of coral reefs appears to characterise the western coasts of Africa, America, and Australia, on the other hand such reefs abound on the eastern coasts of tropical America, of Africa, on the coasts of Zamzibar and Australia, and on that of New South Wales. The coral banks which I have chiefly had opportunities of observing are those of the interior of the Gulf of Mexico, and those to the south of the Island of Cuba, in what are called the "Gardens of the King and Queen" (Jardines y Jardinillos
del Rey y de la Reyna). It was Columbus himself who, on his second voyage, in May 1494, gave that name to this little group of islands, because the agreeahle mixture of the silver-leaved arborescent Tournefortia gnapholoides, flowering species of Dolichos, Avicennia nitida, and mangrove hedges, gave to the coral islands the appearance of a group of floating gardens. "Son Cayos verdes y graciosos llenos de arboledas," says the Admiral. On the passage from Ba1abano to Trinidad de Cuba, I remained several days in these gardens, situated to the east of the larger island, called the Isla de Pinos, which is rich in mahogany trees: my stay was for the purpose of determining the longitude of the different keys (Cayos). The Cayo Flamenco, Cayo Bonito, Cayo de Diego Perez, and Cayo de piedras, are coral islands rising only from eight to fourteen inches above the level of the sea. The upper edge of the reef does not consist simply of blocks of dead coral ; it is rather a true conglomerate, in which angular pieces of coral, cemented together with grains of quartz, are embedded. In the Cayo de piedras I saw such embedded pieces of coral measuring as much as three cubic feet. Several of the small West Indian coral islands have fresh water, a phenomenon which, wherever it presents itself, (for example, at Radak in the Pacific ; see Chamisso in Kotzebue's Entdeckungs-Reise, Bd. iii. S. 108), is deserving of examination, as it has sometimes been ascribed to hydrostatic pressure operating from a distant coast, (as at Venice, and in the Bay of Xagua east of Batabano), and sometimes to the filtration of rain water. (See my Essai politique sur l’Ile de Cuba, 'I. ii. p. 137.)

The living gelatinous investment of the stony caleareous part of the coral attraets fish, and even turtles, who seek it as food. In the time of Columbus the now unfrequented loeality of the Jardines del Rey was enlivened by a singular kind of fishery, in which the inhabitants of the eoasts of the Island of Cuba engaged, and in whieh they availed themselves of the serviees of a small fish. They employed in the eapture of turtle the Remora, onee said to detain ships (probably the Eeheneis Nauerates), called in Spanish "Reves," or reversed, beeause at first sight his baek and abdomen are mistaken for eaeh other. The remora attaehes itself to the turtle by suetion through the interstices of the indented and moveable eartilaginous plates which eover the head of the latter, and "would rather," says Columbus, " allow itself to be eut in pieces than lose its hold." The natives, therefore, attael a line, formed of palm fibres, to the tail of the little fish, and after it has fastened itself to the turtle draw both out of the water together. Martin Anghiera, the learned seeretary of Charles V., says, "Nostrates piseem reversum appellant, quod versus venatur. Non aliter ar nos eanibus gallicis per æequora eampi lepores inseetamur, illi (incolæ Cubæ insulæ) venatorio pisec pisees alios eapiebant." (Petr. Martyr, Oeeaniea, 1532, Dee. I. p. 9 ; Go. mara, Hist. de las Tudias, 1553, fol. xiv.) We learu by Dampier and Commerson that this piseatorial artifiee, the employing a sueking-fish to eateh other inlabitants of the water, is much praetised on the East Coast of Afriea, at Cape Natal and on the Mozambique Chamel, and also in the Island of Madagasear. (Laeépède, Hist. nat. des Pois-
sons, T. i. p. 55.) The same necessities combine with a knowledge of the habits of animals to induce the same artifices and modes of capture among nations who are entirely unconnected with each other.

Although, as we have already remarked, the zone included between 22 or 24 degrees of latitude on either side of the equator, appears to be the true region of the calcareous saxigenous lithophytes which raise wall-like structures, yet coral reefs are also found, favoured it is supposed by the warm current of the Gulf-stream, in lat. $32^{\circ} 23^{\prime}$, at the Bermudas, where they have been extremely well described by Lieutenant Nelson. (Transactions of the Geological Society, $2 d$ Series, 1837, Vol. V. Pt. i. p. 103.) In the southern hemisphere, corals, (Millepores and Cellepores), are found singly as far south as Chiloe, the Archipelago of Chonos, and Tierra de Fuego, in 53° lat. ; and Retepores are even found in lat. $72 \frac{1^{\circ}}{}{ }^{\circ}$.

Since the second voyage of Captain Cook there have been many defenders of the hypothesis put forward by him as well as by Reinhold and George Forster, according to which the low coral islands of the Pacific have been built up by living creatures from the depths of the bottom of the sea. The distinguished investigators of nature, Quoy and Gaimard, who accompanied Captain Freycinet in his voyage round the world in the frigate Uranie, were the first who ventured, in 1823, to express themselves with great boldness and freedom in opposition to the views of the two Forsters (father and son), of Flinders, and of Péron. (Aunales des Sciences Naturelles, T. vi., 1825, p. 273.)
"En appelant l'attention des naturalistes sur les animalcules des coraux, nous espérons démontrer que tout ce qu'on a dit ou cru observer jusqu'it ce jour relativement aux immenses travaux qu'il sont susceptibles d'exécuter, est le plus souvent inexact et toujours cxcessivement exagéré. Nous pensons que les coraux, loin d'ćlever des profondeurs de l'océan des murs perpendiculaires, ne forment que des couches ou des encroûtemens de quelques toises d’èpaisseur." Quoy and Gaimard also propounded (p. 289) the conjecture that the Atolls, (coral walls enclosing a lagoon), probably owed thcir origin to submarine volcanic craters. Their estimatc of the depth below the surface of the sea at which the animals which form the coral reefs (the species of Astræa, for example) could live, was doubtless too small, being at the utmost from 25 to 30 fcet ($26 \frac{1}{2}$ to 32 E.) An investigator and lover of nature who has added to his own many and valuable obscrvations a comparison with those of others in all parts of the globe, Charles Darwin, places with greater certainty the depth of the region of living corals at 20 to 30 fathoms. (Darwin, Journal, 1845, p. 467; and the same writer's Structurc of Coral Reefs, p. 84-87 ; and Sir Robert Schomburgk, Hist. of Barbadoes, 1848, p. 636.) This is also the depth at which Professor Edward Forbes found the greatest number of corals in the Egean Sca: it is his "fourth region" of marine animals in his very ingenious memoir on the "Provinces of Depth" and the geographical distribution of Mollusca at vertical distances from the surface. (Report on Ngean Invertcbrata in the Report of the 13th Meeting of the British Association, held at Cork in 1843, pp. 151 and 161.) The depths at which corals
live would seem, however, to be very different in different species, and espeeially in the more delieate ones which do not form sueh large masses.

Sir James Ross, in his Antaretic Expedition, brought up eorals with the sounding lead from great depths, and entrusted them to Mr. Stokes and Professor Forbes for more thorough examination. On the west of Vietoria Land, near Coulman Island, in S. lat. $72^{\circ} 31^{\prime}$, at a depth of 270 fathoms, Retepora cellulosa, a speeies of Homera, and Prymnoa Rossii, were found quite fresh and living. Prymnoa Rossii is very analogous to a speeies found on the eoast of Norway. (See Ross, Toyage of Diseovery in the Southern and Antaretie Regions, vol. i. pp. 334 and 337.) In a similar manner in the high northern regions the whalers have brought up Unbellaria greenlandiea, living, from depths of 236 fathoms. (Ehrenberg, in the Abhandl. der Berl. Akad. aus dem J. 1832, S. 430.) TWe find similar relations of speeies and situation among sponges, whieh, indeed, are now eonsidered to belong rather to plants than to zooplaytes. On the coasts of Asia Minor the common sponge is found by those engaged in the fishery at depths, varying from 5 to 30 fathoms; whereas a very small speeies of the same genus is not found at a less depth than 180 fathoms. (Forbes and Spratt, Travels in Lyeia, 1847, Vol. ii. p. 124.) It is diffieult to divine the reason which prevents Madrepores, Meandrina, Astrea, and the entire group of tropieal Phyto-eorals whieh raise large cellular calcareous struetures, from living in strata of water at a eonsiderable depth below the surface of the sea. The diminution of temperature in descending takes place but slowly;
that of light ahmost equally so ; and the existenee of numerous Infusoria at great depths shews that the polypifers would not want for food.

In opposition to the hitherto generally reeeived opinion of the entire absence of organic life in the Dead Sea, it is deserving of notice that my friend and fellow labourer, M. Valeneieunes, has received through the Marquis Charles de l'Escalopier, and also the Freneh consul Botta, fine specimens of Porites elongata from the Dead Sea. This fact is the more interesting beeause this species is not found in the Mediterranean, but belongs to the Red Sea, whieh, aecording to Valeneiennes, has but few organie forms in common with the Mediterraneau. I have before remarked that in Franee a sea fish, a species of Pleuroneetes, advanees far up the rivers into the interior of the country, thus becoming accustomed to gill-respiration ins fresh water; so we find that the coral-animal above spoken of, the Porites elongata of Lamarek, has a not less remarkable flexibility of organisation, since it lives in the Dead Sea, which is over-saturated with salt, and in the open oeean near the Seychelle Tslands. (See my Asie Centrale, T. ii. p. 517.)

Aceording to the most reeent chemieal analyses made by the younger Silliman, the genus Porites, as well as many other cellular polypifers, (Madrepores, Andreas, and Meandrinas of Ceylon and the Bermudas), contain, besides 92-95 per eent. of earbonate of lime and magnesia, some fluoric and phosplioric acids. (See p. 124-131 of "Structure and Classifieation of Zoophytes," by James Dana, Geologist of the United States' Exploring Expedition, under the command
of Captain Wilkes.) The presence of fluorine in the solid parts of polypifers reminds us of the fluorate of lime in the bones of fishes, according to the experiments of Morechini and Gay Lussac at Rome. Silcx is only found mixed in very small quantity with fluorate and phosphate of lime in coral stocks; but a coral-animal allied to the Horn-coral, Gray's Hyalonema, has an axis of pure fibres of silce resembling a queue or braided tress of hair. Professor Forchhammer, who has been lately cngaged in a thorough analysis of the sea-water from the most diffcrent parts of the globe, finds the quantity of linc in the Caribbcan Sca remarkably small, being only 247 parts in ten thousand, while in the Catcgat it amounts to 371 parts in ten thousand. He is disposed to attribute this difference to the many coral-banks among the West Indian Islands, which appropriate the lime, and lower the per centage remaining in the sca-water. (Report of the 16th Meeting of the British Association for the Advancement of Science, held in 1846, p. 91.)

Charlcs Darwin has devcloped in a very ingenious manner the probable genetic commection between fringing or shorerecfs, island-cncircling rcefs, and lagoon-islands, i.e., narrow ring-shaped reefs enclosing interior lagoons. According to his views these threc varicties of form are dependent on the oscillating condition of the bottom of the sea, or on pcriodic elcvations and subsidcnces. Thic hypothesis which has becn scveral times put forward, according to which the closed ring or annular form of the coral-rcefs in Atolls or Lagoon Islands marks the configuration of a submarine volcano, the structure having been raised on the margin of the
crater, is opposed by their great dimensions, the diameters of many of them being 30, 40, and sometimes cven 60 geographical miles. Our firc-emitting mountains have no such craters ; and if we would compare the lagoon, with its submerged interior and narrow enclosing reef, to one of the ammular mountains of the moon, we must not forget that those lunar mountains are not volcanoes, but wall-surrounded districts. According to Darwin, the process of formation is the following :-He supposes a mountainous island surrounded by a coral-reef, (a "fringing reef" attached to the shore), to undergo subsidence: the "fringing reef" which subsides with the island is contimually restored to its level by the tendency of the coral-animals to regain the surface of the sea, and becomes thus, as the island gradually sinks and is reduced in size, first an "encircling recf" at some distance from the included islet, and subsequently, when the latter has entirely disappearcd, an atoll. According to this view, in which islands are regarded as the culminating points of a submerged land, the relative positions of the different coral islands would disclose to us that which we could hardly learn by the sounding line, conccrning the configuration of the land which was above the surface of the sea at an earrier cpoch. The cntire elucidation of this attractive subject, (to the connection of which with the migrations of plants and the diffusion of races of men attention was called at the commencement of thic present note), can only be hoped for when inquirers shall have succeeded in obtaining greater knowledge than is now possessed of the depth and the nature of the rocks on which the lowest strata of the dead corals rest.

${ }^{(8)}$ p. 11.-"Traditions of Samothrace."

Diodorus has preserved to us this remarkable tradition, the probability of whieh renders it in the eyes of the geologist almost equivalent to a historical certainty. The Island of Samotliraee, formerly called also Nethiopea, Dardania, Leueania or Leueosia in the Seholiast to Apollonius Rhodius, and which was a seat of the ancient mysteries of the Cabiri, was inhabited by the remains of an ancient nation, several words of whose language were preserved to a later period in the eeremonies aceompanying saerifiees. The situation of this island, opposite to the Thracian Hebrus and near the Dardanelles, renders it not surprising that a more detailed tradition of the catastrophe of the breaking forth of the waters of the Euxine should have been preserved there. Rites were performed at altars supposed to mark the limits of the irruption of the waves; and in Samothrace as well as in Bootia, a belief in the periodically recurring destruction of mankind, (a belief which was also found among the Mexicans in the form of a myth of four destructions of the world), was comected with historical reeolleetions of partieular inundations. (Otfr. Müller Geschiehten Helleniseher Stänme und Stiidte, Bd. i. S. 65 and 119.) Aceording to Diodorus, the Samothraeians related that the Blaek Sea had onee been an inland lake, but that, being swollen by the rivers whieh flow into it, it had broken through, first the strait of the Bosphorus, and afterwards that of the Hellespont ; and this long before the inundations spoken of by other nations. (Diod. Sieul. lib. v. cap. 47, p. 369, Wesseling.) 'These ancient revolutions
of nature have been treated of in a special work by Dureau de la Malle, and all the information possessed on the subject has been colleeted in Carl von Hoff's important work, entitled Gesehiehte der natürliehen Veränderungen der Erdoberfliehe, Th. i. 1822, S. 105-162; and in Creuzer's Symbolik, 2te Aufl. Th. ii. S. 285, 318, and 361. A reflex, as it were, of the traditions of Samothraee appear's in the "Sluiee theory" of Strato of Lampsaeus, aceording to whieh the swelling of the waters of the Euxine first opened the passage of the Dardanelles, and afterwards eaused the outlet through the pillars of Hereules. Strabo has preserved to us in the first book of his Geography, among critieal extraets from the works of Eratosthenes, a remarkable fragment of the lost writings of Strato, presenting views which extend to almost the entire cireumferenee of he Mediterrancan.
"Strato of Lampsaeus," says Strabo (Lib. i. p. 49 and 50, Casaub.), " is even more disposed than the Lydian Xanthus," (who had deseribed impressions of shells at a distanee from the sea) "to expound the eauses of the things whieh we see. He asserts that the Euxine had formerly no outlet at Byzantium, but the sea becoming swollcn by the rivers whieh ran into it, had by its pressure opened the passage through whieh the waters flow into the Propontis and the Hellespont. He also says that the same thing has happened to our Sea (the Mediterranean);" "for here, too, when the sea had beeome swollen by the rivers, (whieh in flowing into it had left dry their marshy banks), it foreed for itself a passage through the isthmus of land eonneeting the

Pillars. The proofs whieh Strato gives of this are, first that there is still a bank under water running from Europe to Libya, shewing that the outer and inner seas were formerly divided; and next that the Euxine is the shallowest, the Cretan, Sieilian, and Sardoie Seas being on the contrary very deep ; the reason being that the Euxine has been filled with mud by the many and large rivers flowing into it from the North, while the other seas eontinued deep. The Euxine is also the freshest, and the waters flow towards the parts where the bottom of the sea is lowest. Hence he inferred that the whole of the Euxine would finally be cloked with mud if the rivers were to continue to flow into it: and this is already in some degree the ease on the west side of the Euxine towards Salmydessus (the 'Thracian Apollonia), and at what are called by mariners the "Breasts" off the mouth of the Ister and along the shore of the Seythian Desert. Perhaps the Temple of Ammon (in Lybia) may once have stood on the sea-shore, and eauses suel as these may explain why it is now far inland. This Strato thought might aceount for the celebrity of the Oraele, whieh would be less surprising if it had been on the sea-shore; whereas its great distance from the coast made its present renown inexplieable. Egypt, too, had been formerly overflowed by the sea as far as the marshes of Pelusium, Mount Casius, and Lake Serbonis; for, on digging beneath the surface, beds of sea-sand and shells are found; shewing that the eountry was formerly overflowed, and the whole distriet round Mount Casius and Gerrha was a marshy sea whieh joined the gulf
of the Red Sea. When our Sea (the Mediterranean) retreated, the land was uncovered ; still, however, leaving the Lake of Serbonis: subsequently this lake also broke through its bounds and the water flowed off, so that the lake beeame a swamp. The banks of Lake Mœris are also more like sea than river banks." An erroneously eorreeted reading introduced by Grosskurd on aeeount of a passage in Strabo, Lib. xvii. p. S09, Cas., gives instead of Moris "the Lake Halmyris:" but this latter lake was situated not far from the mouth of the Danube.

The sluice-theory of Strato led Eratosthenes of Cyrene (the most eelebrated of the series of librarians of Alexandria, but less happy than Arehimedes in writing on floating bodies), to examine the problem of the equality of level of all external seas, i. e., seas surrounding the Continents. (Strabo, Lib. i. p. 51-56 ; Lib. ii. p. 104, Casaub). The varied outlines of the northern shores of the Mediterranean, and the artieulated form of the peninsulas and islands, had given oeeasion to the geognostieal myth of the ancient land of Lyetonia. The supposed mode of origin of the smaller Syrtis and of the Triton Lake (Diod. iii. 53-55) as well as that of the whole Western Atlas (Maxinus Tyrius, viii. 7) were drawn in to form part of an imaginary scheme of igneous eruptions and earthquakes. (See my Examen erit. de l’hist. de la Géographie, Vol. i. p. 179 ; T. iii. p. 136.) I have reeently touehed more in detail on this subjeet (Kosmos, Bd. ii. S. 153; Engl. ed. p. 11S-119) in a passage whieh I permit myself to subjoin :-
"A more riehly varied and broken outline gives to the
northern shore of the Mediterranean an advantage over the southern or Lybian shore, which aecording to Strabo was remarked by Eratosthenes. The three great peninsulas, the Iberian, the Italian, and the Hellenic, with their sinuous and deeply indented shores, form, in combination with the neighbouring islands and opposite eoasts, many straits and isthmuses. The configuration of the continent and the islands, the latter either severed from the main or volcanically elevated in lines, as if over long fissures, early led to geognostieal views respeeting eruptions, terrestrial revolutions, and overpourings of the swollen higher seas into those which were lower. The Euxine, the Dardanelles, the Straits of Gades, and the Mediterranean with its many islands, were well fitted to give rise to the view of such a system of sluices. The Orphic Argonaut, who probably wrote in Christian times, wove antique legends into lis song; he deseribes the breaking up of the aneient Lyktonia into several islands, when 'the dark-haired Poseidon, being wroth with Father Kronion, smote Lyktomia with the golden trident.' Similar phantasies, whieh indeed may often have arisen from imperfect knowledge of geographical circumstanees, proeeeded from the Alexandrian sehool, where erudition abounded, and a strong predilection was felt for antique legends. It is not neeessary to determine here whether the myth of the Atlantis broken into fragments should be regarded as a distant and western reflex of that of Lyktonia (as I think I have elsewhere shewn to be probable), or whether, as Otfried Miiller considers, "the destruetion of Lyktonia (Leueonia) refers to
the Samothracian tradition of a great flood which had ehanged the form of that district."
${ }^{(9)}$ p. 12.-" Prevents precipitation taling place from clouds."

The vertically-ascending eurrent of the atmosphere is a prineipal eause of many most important meteorological phenomena. When a desert or a sandy plain partly or cntirely destitute of plants is bounded by a ehain of high mountains, we see the sea breeze drive the dense clouds over the desert without any precipitation taking plaee before they have reached the mountain-ridge. This phenomenon was formerly cxplained in a very inappropriate manner by a supposed superior attraetion exercised by the mountains on the clouds. The true reason of the phenomenon appears to eonsist in the ascending column of warm air whieh rises from the sandy plain, and prevents the vesieles of vapour from being dissolved. The more complete the absence of vegctation, and the more the sand is heated, the greater is the height of the elouds, and the less ean any fall of rain take plaee. When the elouds reael the mountains these causes cease to opcrate; the play of the vcrtieally-aseending atmospherie eurrent is feebler, the clouds sink lower, and dissolve in rain in a coolcr stratum of air. Thus, in deserts, the want of rain, and the absence of vegetation, act and react upon cach other. It does not rain, because the naked sandy surface having no vegetable covering, becomes more powerfully heated by the solar rays, and thus radiates more heat; and the absence of rain forbids the descrt being converter!
into a steppe or grassy plain, beeause without water no organic development is possible.
$\left.{ }^{(10}\right)$ p. 14.-" The mass of the carth in solidifying and parting with its heat."
If, aecording to the hypothesis of the Neptunists, now long sinee obsolete, the so-called primitive rocks were preeipitated from a fluid, the transition of the crust of the earth from a fluid to a solid state must have been aceompanied by an enormous disengagement of heat, whieh would in turn have caused fresh evaporation and fresh precipitations. The later these preeipitations, the more rapid, tumultuous, and unerystalline they would have been. Sueh a sudden disengagement of heat might cause local augmentations of temperature independent of the height of the pole or the latitude of the place, and independent of the position of the earth's axis; and the temperatures thus eaused would influence the distribution of plants. The same sudden disengagement of heat might also occasion a species of porosity, of which there seem to be indications in many enigmatical geological phe-nomena in sedimentary rocks. I have developed these eonjectures in detail in a small memoir "uber ursprungliche Porosität." (See my work entitled Versuehe über die chemische Zersetzung des Luftkreises, 1799, S. 177; and Moll's Jahrbiicher der Berg- und Hüttenkunde, 1797, S. 234.) Aeeording to the newer views which I now entertain, the shattered and fissured earth, with her molten interior, may long have maintained a high temperature on her oxydised surfaee, independently of position in respeet to the sun
and of latitude. Would not the climate of Germany be wondcrfully altercd, and that perhaps for centuries, if there werc opened a fissure a thousand fathoms in depth, reaching from the shores of the Adriatic to the Baltic? If in the present condition of our planet, the stable equilibrium of temperaturc, first calculated by Fourier in his Théorie analytique dc la chaleur, has been almost completely restored by radiation from the carth into space; and if the external atmosphere now only communicates with the moltenintcrior through the inconsiderable openings of a few volcanoes,-in the earlier state of things numerous clcfts and fissurcs, produced by the frequently recurring corrugations of the rocky strata of the globe, emitted strcams of heated air which mingled with the atmospherc and wcre entirely independent of latitude. Every planet must thus in its earlicst condition have for a time determined its own temperaturc, which afterwards becomes dependent on the position rclatively to the central body, the Sun. The surface of the Moon also shows traces of this reaction of the interior upon the crust.
${ }^{(11)}$ p. 14.-" The mountain declivities of the southern
part of Mexico."

The grecnstone in globular concretions of the mountain district of Guanaxuato is quite similar to that of the Francodian Fichtcl-Gcbirge. Both form grotesquely shaped summits, which pierce through and cover the transition argillaccous schists. In the same manncr, pearl stone, porphyritic schists, trachyte, and pitch-stonc porpliyry, constitute rocks similar in form in the Mcxican mountains near Cinapccuaro and Moran, in Hungary, in Bohemia, and in Northern Asia.

$$
{ }^{(22)} \text { p. 16.-"The dragon-tree of Orotava." }
$$

This eolossal dragon-tree, Draerena draeo, stands in the garden of Dr. Franqui in the small town of Oratava, the aneient Taoro, one of the most delightful spots in the world. In June 1799, when we aseended the Peak of Teneriffe, we measured the cireumference of the tree, and found it nearly 48 English feet. Our measurement was taken several feet above the root. Lower dorm, and nearer to the ground, Le Dru made it nearly 79 English feet. Sir George Staunton found the diameter still as mueh as 12 feet at the height of 10 feet above the ground. The height of the tree is not much above 69 English feet. Aecording to tradition, this tree was venerated by the Guanehes (as was the ash-tree of Ephesus by the Greeks, or as the Lydian plane-tree which Xerxes deeked with ornaments, and the saered Banyan-tree of Ceylon), and at the time of the first expedition of the Bétheneourts in 1402, it was already as thiek and as hollow as it now is. Remembering that the Draeena grows extremely slowly, we are led to infer the ligh antiquity of the tree of Orotava. Bertholet, in his deseription of Teneriffe, says, "En comparant les jeunes Dragomniers, voisins de l'arbre gigantesque, les ealeuls qu'on fait sur l'age de ce dernier effraient l'imagination." (Nova Aeta Aead. Leop. Carol. Nature Curiosorum, T. xiii. 1827, p. 781.) The dragon-tree has been eultivated in the Canaries, and in Madeira and Porto Santo, from the earliest times ; and an accurate observer, Leopold von Bueh, has even found it wild in Teneriffe, near Igueste. Its original eountry, therefore, is not India, as had long been believed ; nor does its appear-
ance in the Canaries eontradict the opinion of those who regard the Guanches as having been an isolated Atlantic nation without intereourse with African or Asiatie nations. The form of the Dracenas is repeated at the southern extremity of Afriea, in the Isle of Bourbon, and in Nerv Zealand. In all these distant regions species of the genus in question are found, but none have beeu met with in the New Continent, where its form is replaced by that of the Yucea. Dracena borealis of Aiton is a true Convallaria, and has all the "habitus" of that genus. (Humboldt, Rel. hist. T. i. p. 118 and 639.) I have given a representation of the dragou-tree of Orotava, taken from a drawing made by T. d'Ozonne in 1776, in the last plate of the Pieturesque Atlas of my American journey. (Vues des Cordillères et Monumens des Peuples indigènes de l'Amérique, Pl. lxix.) I found d'Ozonne's drawing among the manuscripts left by the celebrated Borda, in the still unprinted travelling journal entrusted to me by the Dépôt de la Marine, and from which I borrowed important astronomically-determined geographieal, as well as barometric and trigonometric notices. (Rel. hist. T. i. p. 282.) The measurement of the dragon-trec of the Villa Franqui was madc on Borda's first voyage with Pingré, in 1771; not in his second voyage, in 1776, with Varela. It is affirmed that in the early times of the Norman and Spanish Couquests, in the 15th century, Mass was said at a small altar erected in the hollow trunk of the tree. Unfortunately the dragon-tree of Orotava lost one side of its top in the storm of the 21st of July, 1819. There is a fine and large English copperplate engraving which represents the preseut state of the tree with remarkable truth to nature.

The monumental charaeter of these colossal living vegetable forms, and the kind of reverence whieh has been felt for them among all nations, have oeeasioned in modern times the bestowal of greater eare in the numerical determination of their age and the size of their trunks. The results of these inquiries lave led the author of the important treatise, "De la longévité des Arbres," the elder Decandolle, Endlieher, Unger, and other able botanists, to consider it not improbable that the age of several individual trees which are still alive goes back to the carliest historical periods, if not of Egypt, at least of Greeee and Italy. It is said in the Bibliothèque Universelle de Genève, 1831, T. lxvii. p. 50 :-" Plusieurs exemples semblent eonfirmer l'idée qu'il existe eneore sur le globe des arbres d'une antiquité prodigieuse, et peut-être témoins de ses dernières révolutions physiques. Lorsqu'on regarde un arbre comme un agrégat d’autant d'individus soudés ensemble qu'il s'est développé de bourgeons ì sa surface, on ne peut pas s'étonner si, de nouveaux bourgeons s'ajoutant sans eesse aux anciens, l'agrégat qui en résulte n'a point de terme néeessaire à sou existenee." In the same manner Agardh says:-"If in trees there are produced in each solar year new parts, so that the older hardened parts are replaced by new ones eapable of conducting sap, we see herein a type of growth limited only by external eauses." He aseribes the shortness of the life of herbs, or of sueh plants as are not trees, "to the preponderanee of the production of flowers and fruit over the formation of leaves." Unfruitfulness is to a plant a prolongation of life. Endlieher cites the example of a plant of Medieago sativa, var. β versieolor,
which, bearing no fruit, lived cighty ycars. (Grundzüge der Botanik, 1843, S. 1003).

With the dragon trces, which, notwithstanding the gigantic development of their closed vassular bundles, must by reason of their floral parts be placed in the same natural family with asparagus and garden onions, we must associate the Adansonia (monkey bread-tree, Baobab,) as being certainly among the largest and oldest inhabitants of our planet. In the very first voyages of discovery of the Catalans and Portuguese, the navigators wcre accustomed to cut their names on these two species of trecs, not morcly to gratify the desirc of handing down their names, but also to serve as marks or signs of possession, and of whatcver rights nations claim on the ground of being the first discoverers. The Portuguesc navigators often used as their "marco" or token of possession the Irench motto of the Infant Don Henrique the Discoverer. Manucl de Faria y Sousa says in lis Asia Portuguesa ('T'. i. cap. 2, pp. 14 and 18) :-"Era uso de los primeros Navegantes de dexar inscrito el Motto del Infante, talent de bien faire, en la cortcza de los arboles." (Compare also Barros, Asia, Dec. I. liv. ii. cap. 2, T. i. p. 148; Lisbua, 1778.)

The above-named motto cut on the bark of two trecs by Portuguese navigators in 1435, twcnty-cight years therefore beforc the death of the Infante, is curiously connected in the history of discoveries with the elucidations to which the comparison of Vespucci's fourth voyage with that of Gonzalo Coelho, in 1503, has given rise. Vespucci relates that Coello's admiral's ship was wrecked on an island
which has been sometimes supposed to be San Fernando Noronha, sometimes the Peñedo de San Pedro, and sometimes the problematieal Island of St. Matthew. This lastnamed island was diseovered by Gareia Jofre de Loaysa on the 15 th of October, 1525 , in $2 \frac{1^{\circ}}{}{ }^{\circ} \mathrm{S}$. lat., in the meridian of Cape Palmas, alnost in the Gulf of Guinea. He remained there eighteen days at anehor, found erosses, as well as orange trees which had been planted and had become wild, and on two trunks of trees inseriptions dating baek ninety years. (Navarrete, T. v. pp. 8, 247, and 4.01.) I have examined the questions presented by this aceount more in detail in my inquiries into the trustworthiness of Amerigo Vespueei. (Examen eritique de l’hist. de la Geographie, T. v. pp. 129-132.)

The oldest deseription of the Baobab (Adansonia digitata), is that given by the Venetian Aloysius Cadamosto (the real name was Alvise da Ca da Mosto), in 1454 . He found at the mouth of the Senegal, trunks of which he estimated the cireumference at seventeen fathoms, or 102 feet, (Ramusio, Vol.i. p. 109) : he might have eompared them with Dragon trees whieh he had seen before. Perrottet says in his "Flore de Sénégambie" (p. 76), that he had seen monkey bread-trees which, with a height of only about 70 or 80 feet, had a diameter of 32 English feet. The same dimensions had been given by Adanson, in the aecount of his voyage in 1748 ; the largest trunks which he himself saw (in 1749) in one of the small Magdalena sslands near Cape de Verd, and in the vieinity of the mouth of the Senegal River, were from 26 to $28 \frac{1}{2}$ English feet in diameter, with a height of little more than 70 feet, and a top about 180 feet broad;
but he adds at the same time, that other travcllers had found trunks of nearly 32 English feet diameter. Freneh and Dutch sailors liad cut their mames on the trees seen by Adanson in letters half a foot long; the dates added to the names shewed these inseriptions to be all of the 16th eentury, except one which belonged to the 15 th. (In Adanson's "Familles des Plautes," 1763, P. I. pp. cexv.eexviii., it stands as the 14th century, but this is doubtless an crror of inadvertence.) From the depth of the inseriptions, whieh were covered with new layers of wood, and from the comparison of the thiekness of different trunks of the same species in which the relative age of the trees was known, Adanson computed the probable age of the larger trees, and found for a diameter of 32 English feet 5150 years. (Voyage au Sìnegal, 1757, p. 66.) He prudently adds (I do not alter his eurious orthography) :- "Le caleul de l'aje de clake couche u'a pas d'exactitude géometrike." In the village of Grand Galarques, also in Senegambia, the negroes have ornamented the entranee of a hollow Baobab tree with sculptures cut out of the still fresh wood; the interior serves for holding meetings in which their interests are debated. Such a hall of assembly reminds one of the hollow or eave (speeus) of the plane tree in Lycia, in which Lueinius Mutianus, who had previously been consul, feasted with twenty-one guests. Plino (xii. 3) assigns to sueln a eavity in a hollow tree the somewhat large allowance of a breadth of eighty Roman feet. The Baobab was seen by Réné Caillié in the Valley of the Niger near Jenne, by Caillaud in Nubia, and by Wilhelm Peters along the whole castern coast of Afriea (where
it is called Mulapa, i.e. Nlapa-tree, more properly Mutinlapa) as far as Lourenzo Margues, almost to 26° of S . lat. Although Cadamosto said in the 15 th century " eminentia non quadrat magnitudini," and although Golberry (Fragmens d'un Voyage on Afriquc, T. ii. p. 92) found in the "Vallée des deux Gagnacks" trunks which, with 36 English fect diameter near the roots, wcre only 64. English fcet high, yet this great disproportion between licight and tlickness must not be regarded as general. The learncd traveller Peters remarks that "very old trecs lose height by the gradual decay of the top, while they eontinue to inerease in girth. On the East Coast of Africa onc sees not unfrequently trunks of little more than ten feet diameter reach a height of 69 English fect."

If, according to what has been said, the bold estimations of Adauson and Perottet assign to the Adansonias measured by them an agc of from 5150 to 6000 years, which would make them contemporaneous with the epoch of the building of the Pyramids or cven with that of Menes, a period when the constellation of the Southern Cross was still visible in Northern Germany (Kosmos, Bd. iii. S. 4.02 and 4.87; Eng. cd. p. 29:3, and note 146), on the other hand, the morc seeure cstimations madc from the annual rings of trees in our northern tcmperate zonc, and from the ratio which has been found to subsist between the thiekness of the layer of wood and the time of growtll, give us shorter periods. Deeandolle finds as the result of his inquiries, that of all European spccies of trees the yew is that which attains the greatest age. Hc assigns to the yew (Taxus baccata) of

Braborne, in the eounty of Kent, thirty eenturies; to the Scoteh yew of Fortingal, from twenty-five to twenty-six; and to those of Crowhurst in Surrey, and Ripon in Yorkshire, respeetively, fourteen and a half and twelve centuries. (Deeandolle, de la longévité des arbres, p. 65.) Endlieher remarks that the age of another yew tree, in the Churehyard of Grasford, in North Wales, which measures 52 English feet in eireumference below the branches, is estimated at 1400 years, and that of a yew in Derbyshire at 2096 years. In Lithuania lime trees have been eut down whieh were 87 English feet in eireumferenee, and in whieh 815 annual rings have been eounted." (Endlieher, Grundziige der Botanik, S. 399.) In the temperate zone of the southeru hemisphere some speeies of Euealyptus attain an enormous girth, and as they also reaeh to a great stature (above 230 Paris, 245 English, feet), they are singularly contrasted with our yew trees, whose great dimension is in thiekness only. Mr. Baekhouse found in Emu Bay, on the eoast of Van Diemen Land, trunks of Eucalyptus which measured 70 English feet round the trunk near the ground, and five feet higher up 50 English feet. (Gould, Birds of Australia, Vol. I. Introd. p. xv.)

It is not, as is eommonly stated, Malpighi, but the ingenious Miehel Montaigne, who has the merit of having been the first, in 1587, in his Voyage en Italie, to notiee the relation of the annual rings to the age of the tree. (Adrien de Jussieu, Cours élémentaire de Botanique, 1840, p. 61.) A skilful artist, engaged in the preparation of astronomieal instruments, lad ealled the attention of Mon-
taigne to the ammal rings; and he also maintained that the rings were narrower on the north side of the tree. Jean Jacques Rousseau had the same belief ; and his Emile, if he loses himself in a forest, is to direct himself by the indications affiorded by the relative thickness of the layers of wood. More recent observations on the anatomy of plants teach us, however, that both the acceleration and also the retardation or intermission of growth, or the varying production of circles of ligneous fascicles (ammal deposits) from the Cambium cells, depend on influences which are wholly distinct from the quarter of the heavens towards which one side of the ammal rings is turned. (Kunth, Leln'buch der Botanik, 1847, T. i. S. 146 and 164 ; Lindley, Introduction to Botany, 2d edition, p. 75.)

Trees which in individual cases attain a diameter of more than twenty feet, and an age extending to many centuries, belong to the most different matural families. I may name here Baobabs, Dragon-trees, some species of Eucalyptus, Taxodium disticum (Ricl.), Pinus Lambertiana (Douglas), Hymenra courbaril, Cæsalpinieæ, Bombax, Swietenia mahagoni, the Banyan tree (Ficus religiosa), Liriodendron tulipifera? Platanus orientalis, and our Limes, Oaks, and Yews. The celebrated Taxodium distichon, the Ahuahuete of the Mexicans, (Cupressus disticha Limu., Schubertia disticha Mirbel); at Santa Maria del Tule, in the state of Oaxaca, lias not a diameter of 57, as Decandolle says, but of exactly 38 French ($40 \frac{1}{2}$ English) feet. (Mühlenpfordt, Versuch einer getreuen Schilderung der Republik Mexico, Bd. i. S. 153.) The two fine Ahuahuetes near Chapoltepec,
whieh I have often seen, and whieh are probably the surviving remnants of an aneient garden or pleasurc-ground of Montezuma, measure, (aeeording to Burkart's aceount of his travels, Bd. i. S. 26S, a work whieh otherwise eontains muelı information), only 36 and 38 English feet in eireumference; not in diameter, as has often been erroneously asserted. The Buddhists in Ceylon venerate the gigantie trunk of the saered fig-tree of Anourahdepoura. The Indian fig-tree or Banyan, of which the branehes take root round the parent stem, forming, as Onesieritus well deseribed, a leafy eanopy resembling a many-pillared tent, often attain a thiekness of 28 ($29 \frac{1}{2}$ English) feet diameter. (Lassen, Indisehe Alterthumskuude, Bi. i. S. 260.) On the Bombax ceiba, see carly notiees of the time of Columbus, in Bembo's Historiæ Venetæ, 1551, fol. 83.

Among oak-trees, of those which have been aceurately measured, the largest in Europe is no doubt that near the town of Saintes, in the Departement de la Charente Inférieure, on the road to Cozes. This tree, which is 60 (64 English) feet high, has a diameter of 27 feet $8 \frac{1}{2}$ inehes (29ㅛㅗㄹ English feet) near the ground ; 21 $\frac{1}{2}$ (almost 23 English) feet five feet higher up; and where the great boughs commence 6 Parisian feet (6 feet 5 inehes English.) In the dead part of the trunk a little ehamber has been arranged, from 10 feet S inehes to 12 feet 9 inehes wide, and 9 feet 8 inehes high (all English measure), with a semi-eireular beneh cut out of the fresh wood. A window gives light to the interior, so that the sides of the ehamber (whieh is elosed with a door) are elothed with ferns and
lichens, giving it a pleasing appearance. Judging by the size of a small piece of wood which has been cut out above the door, and in which the marks of 200 amular rings have been counted, the oak of Saintes would be between 1800 and 2000 ycars old. (Annales de la Soeiété d'Agriculture de la Rochellc, 1843, p. 380.)

In the wild rose-trec of the crypt of the Cathedral of Hildesheim, said to be a thousand years old, it is the root only, and not the stem, which is eight eenturics old, according to accurate information derived from ancient and trustworthy original documents, for the knowledge of whieh I am indebted to the kindness of Stadtgerichts-Assessor Römer. A lcgend connects the rose-tree with a vow made by the first founder of the cathedral, Ludwig the Pious; and an original document of the 11th century says, "that when Bishop Hezilo rebuilt the cathedral whieh had been burnt down, he enclosed the roots of the rose-tree with a vault which still exists, raised upon this vault the crypt, which was re-conscerated in 1061, and spread out the branches of the rose-trce upon the walls." The stem now living is $26 \frac{1}{2}$ feet high and about two mehes thick, and the outsprcad branches eover about 32 fcet of the cxternal wall of the eastern crypt; it is doubtless of considerable antiquity, and well deserving of the celebrity which it has gained throughout Germany.

If extraordinary development in point of size is to be regarded as a proof of long continued organie life, particular attention is due to one of the thalassophytes of the sub-marine vegetable world, $i . e$., to the Fuens giganteus,
or Macrocystis pyrifera of Agardh. According to Captain Cook and George Forster, this sea-plant attains a length of 360 English feet; surpassing, therefore, the hicight of the loftiest Coniferæ, cven that of the Sequoia gigantea, Endl., or Taxodiun sempervirens, Hook and Arnott, which grows in Califormia. (Darwin, Journal of Researches into Natural History, 1845, p. 239 ; and Captain Fitz-Roy in the Narrative of the Voyages of the Adventure and Bcagle, vol. ii. p. 363.) Macrocystis pyrifera is found from 64° south to 45° north latitude, as far as San Francisco on the northwest coast of America; and Joscph Hookcr belicves it to extend as far as Kamtschatka. In the Antarctic seas it is eren seen floating among the pack-ice. (Joseph Hooker, Botany of the Antarctic Voyage under the command of Sir James Ross, 1844, pp. 7, 1, and 178 ; Camille Montagnc, Botanique cryptogame du Voyage de la Bonite, 1846, p.36.) The immense length to which the bands or ribbands and the cords or lines of the ccllular tissue of the Macrocystis attain, appears to be limited only by accidental injuries.
$\left({ }^{13}\right)$ p. 17.-" Species of phenogamous plants already
contained in herbarimns."

We must carefully distinguish between three difficrent questions: How many species of plants are described in printed works? how many have becn discovcred, i. e. are contained in hcrbariums, though without being described? how many are probably existing on the globe? Murray's cdition of the Limncan system contains, including crypto-

VOL. II.
gamia, only 10042 species. Willdenow, in his edition of the Species Plantarum, between the years 1797 and 1807, had already described 17457 phænogamous speeies, (from Monandria to Polygamia dioceia.) If we add 3000 cryptogamous species, we obtain the number which Willdenow mentions, viz. 20000 species. More recent researches have shown how mueh this estimation of the number of species described and contained in herbariums falls short of the truth. Robert Brown counted above 37000 phænogamous plants. (General Remarks on the Botany of Terra Australis, p. 4.) I afterwards attempted to give the geographieal distribution (in different parts of the earth already explored), of 44000 phænogamous and, cryptogamous plants. (ILumboldt, de distributione geographiea Plantarum, p. 23.) Decandolle found, in comparing Persoon's Enehiridium with his Universal System in 12 several families, that the writings of botanists and European herbariums taken together might be assumed to contain upwards of 56000 species of plants. (Essai élementaire de Géographie botanique, p. 62.) If we consider low many species lave since that period been described by travellers,-(my expedition alone furnished 3600 of the 5800 collected species of the equinoctial zone), -and if we remember that in all the botanical gardens taken together there are certainly above 25000 phenogamous plants cultivated, we shall easily perceive how much Decandolle's number falls short of the truth. Completcly macquainted as we still are with the larger portions of the interior of Soutl America,-(Mato-Grosso, Paraguay, the eastern declivity of the Andes, Santa Cruz
de la Sierra, and all the countrics betwcen the Orinoco, the Rio Negro, the Amazons, and Puruz), -of Afriea, Madagasear, Borneo, and Central and Eastern Asia,-the thought rises involuntarily in the mind that we may not yet know the third, or probably even the fifth part of the plants existing on the earth! Drège has eolleeted 7092 species of phænogamous plants in South Afriea alone. (See Meyer's ptlanzen g'eographische Doeumente, S. 5 and 12.) He belicves that the Flora of that district consists of more than 11000 phænogamous speeies, while on a surface of equal area (12000 German, or 192000 English square geographieal miles) von Koch has deseribed in Germany or Switzerland 3300, and Decandolle in Tranee 3645 species of plrenogamous plants. I would also recall that even now new Gcucra, (some even consisting of tall forest trees), arc being discovered in the small West Indian Islands which have been visitcd by Europeans for three centurics, and in the vicinity of large commercial towns. These considcrations, which I propose to develop in further detail at the elose of the prescnt annotation, make it probable that the aetual number of species cxcceds that spoken of in the old myth of the Zend-Avesta, whiel says that "the Primeval Crcating Power ealled forth from the blood of the saered bull 120000 different forms of plants!"

If, then, we eannot look for any direet scientific solution of the question of how manyforms of the vegctablc kingdom, including leafless Cryptogamia (water Algr, funguscs, and lichens), Charaeex, liver-worts, mosscs, Marsilaeer, Lyeopodiaceæ, and ferns,--exist on the dry land and in the occan
in the present state of the organie life of our globe, we may yet attempt an approximate method by whieh we may find some probable "lowest limits" or numerieal minima. Since 1815, I have sought, in arithmetieal eonsiderations relating to the geography of plants, to examine first the ratios whieh the number of speeies in the different natural families bear to the entire mass of the phænogamous vegetation in countries where the latter is suffieiently well known. Robert Brown, the greatest botanist among our eotemporaries, had previously determined the numerieal proportions of the leading divisions of the vegetable kingdom ; of Aeotyledons (Agamæ, Cryptogamie or eellular plants) to Cotyledons (Phanerogamie or vascular plants), and of Monoeotyledonous (Endogenous) to Dieotyledonous (Exogenous) plants. He finds the ratio of Monocotyledous to Dieotyledons in the tropieal zone as $1: 5$, and in the eold zones of the parallels of $60^{\circ} \mathrm{N}$. and $55^{\circ} \mathrm{S}$. latitude, as $1: 2 \frac{1}{2}$. (Robert Brown, General Remarks on the Botany of Terra Australis, in Flinders' Voyage, vol. ii. p. 338.) The absolute number of speeies in the three leading divisions of the vegetable kingdom are eompared together in that work aeeording to the method there laid down. I was the first to pass from these leading divisions to the divisions of the several families, and to consider the ratio whieh the number of speeies of each family bears to the entire mass of phænoganous plants belonging to a zone of the earth's surface. (Compare my memoir cutitled " De distributione geographiea Plantarum seeundum eoeli temperiem et altitudinem montium, 1817, p. 24-44; and the farther development of the subject of these numerieal
relations given by me in the Dietionnaire des Scienees naturelles, T. xviii. 1820, p. 422-4:36; and in the Amnales de Chimie et de Physique, T. xvi. 1821, p. 267-292.)

The numerieal relations of the forms of plants, and the laws observed in their geographieal distribution, may be eonsidered in two very different ways. If plants are studied in their arrangement aecording to natural families, without regard to their geographical distribution, it is asked, What are the fundamental forms or types of organisation to which the greatest number of species eorrespond? Are there on the entire surfaee of the earth more Glumaceæ than Compositre ? Do these two orders make up between them onefourth part of the whole number of phrnogamous plants? What is the proportion of Monocotyledons to Dieotyledons? These are questions of General Phytology, or of the seienee whieh investigates the organsation of plants and their mutual eonnection, or the present state of the entire vegetable world.

If, on the other hand, the species of plants which have been grouped aceording to the analogy of their strueture are considered, not abstraetedly, but aecording to their elimatie relations, or aceording to their distribution over the surfaee of the earth, we have questions offering quite another and distinet interest. We then examine what are the families whieh prevail more in proportion to other Phanerogamæ in the torrid zone than towards the polar cirele? Are Compositre more numerous, either in the same geographical latitudes or on the same isothermal lines, in the New than in the Old Continent? Do the forms which gradually lose
their predominance in advancing from the equator towards the poles follow a similar law of decrease in ascending mountains situated in the equatorial regions? Do the proportions of particular families to the whole mass of Phanerogamæ differ in the temperate zones, and on equal isothermal lines, north and south of the equator? These questions belong properly to the Geography of Plants, and eomect themselves with the most important problems of meteorology and terrestrial physies. The charaeter of a landseape or country is also in a high degree dependent on the predominanee of particular families of plants, which render it either desolate or adorned, smiling or majestie. Grasses forming extensive savannahs, Palms and other trees affording food, or social Conifere forming forests, have powerfully influenced nations in respect to their material condition, to their manners, to their mental dispositions, and to the more or less rapid development of their prosperity.

In studying the geographical distribution of forms, we may consider species, genera, and natural families, separately. In social plants, a single speeies often covers extensive tracts of country; as in northern regions forests of Pines or Firs and extensive heaths (ericeta), in Spain cistus-covered grounds, and in tropieal America assemblages of the same species of Cactus, Croton, Brathys, or Bambusa Guadua. It is interesting to examine these relations more elosely, and to view in one case the great multiplicity of individuals, and in another the variety of orgamie development. We may inquire what species produces the greatest number of individuals in a particular zone, or we may ask
whieh are the families to whieh, in different elimates, the greatest number of speeies belong. In a high northern region, where the Composite and the Ferns are to the sum of all the plronogamous plants in the ratio of $1: 13$ and $1: 25$ (i.e. where these ratios are found by dividing the sum total of all the Phanerogamæ by the number of speeies belonging to the family of Composite or to that of Filiees or Ferns), it may nevertheless happen that a single speeies of fern eovers ten times more ground than do all the speeies of Compositæ taken together. . In this ease Ferns predomiuate over Composite by their mass, or by the number of individuals belonging to the same speeies of Pteris or Polypodium ; but they do not so predominate if we only eompare the number of the different speeifie forms of Filiees and Composite with the sum of all the phænogamous plants. Sinee, then, multiplieation of plants does not follow the same law in all speeies,-that is to say, all speeies do not produee the same number of individuals,-therefore the quotients given by dividing the sum of the phrnogamous plants by the number of speeies belonging to one family, do not suffiee by themselves to determine the eharaeter of the landseape, or the physiognomy which Nature assumes in different regions of the earth. If the attention of the travelling botanist is engaged by the frequent repetition of the same speeies, their mass, and the uniformity of vegetation thus produeed, it is even more arrested by the rarity or infrequency of several other speeies whieh are valuable to mankind. In tropieal regions, where the Rubiaeer, Myrtaeex, Leguminosx, or Terebinthaeex, form forests, one is
astomished to find the trees of Cinchona, particular species of Swictenia (Mahogany), Hæmatoxylon, Styrax, and balsamic Myroxylum, so sparingly distributed. We had occasion, on the dcelivities of the high plains of Bogota and Popayan, and in the eountry round Loxa, in desecnding towards the unhealthy valley of the Catamayo and to the Amazons River, to remark the manner in which the trees which furnish the preeious fever-bark (species of Cinehona) are found singly and at considerable distances from caeh othcr. The China Huntcrs, Cazadores de Casearilla (the name given at Loxa to the Indians and Mestizoes who collect eael year the most effieaeious of all fever-barks, that of the Cinehona Condaminca, among the lonely mountains of Caxanuma, Uritusinga, and Rumisitana), elimb, not without peril, to the summits of the loftiest forest trecs in order to gain a wide prospeet, and to discern the solitarily scattered slender aspiring trunks of the trecs of whieh they are in scarch, and which they recognise by the shining reddish tint of their large leaves. The mean temperature of this important forcst region, situated in 4° to $4 \frac{1}{2}^{\circ} \mathrm{S}$. lat. and at an clevation of about 6400 to 8000 English feet, is from $12 \frac{1}{8}^{\circ}$ to 16° Réaumur ($60^{\circ} \cdot 2$ to 65° Fahr.) (Humboldt and Bonpland, Plantes équinoxiales, T. i. p. 33, tab. 10.)

In considering the distribution of species, we may also procecd, without regard to the multiplication of individuals, to the masses which they form or the space whieh they occupy, and may simply compare together the absolute number of species belonging to a particular family in cach country. This is the mode of comparison which Dccandolle has
employed in the work entitled Regni vegetabilis Systema naturale (T. i. p. 128, 396, 439, 464, and 510), and Kunth has carried it out in regard to the whole number of species of Composite at present known (above 3300). It does not show which is the predominant family either in the number of species or in the quantity of individuals as compared with other familics ; it merely tells how many of the speeies of onc and the same family are indigenous in eaeh eountry or eaeh quarter of the world. The results of this method are on the whole more exact, beeause they are obtained by the careful study of singlc families without the neeessity of being acquainted with the whole number of the planerogamæ belonging to eaeh eountry. The most varied forms of Ferns, for cxample, are found between the tropies; it is there, in the tempered heat of moist and shaded plaees in mountainous islands, that each genus presents the largest number of specics: this variety of speeies in each genus diminishcs in passing from the tropical to the temperate zone, and deereases still farther in approaehing nearcr to the pole. Nevcrtheless, as in the cold zone-in Lapland, for example-those plants sueceed best whieh ean best resist the cold, so the specics of Ferns, altnough the absolute number is less than in France or Germany, are yct relatively morc numerous than in those eountrics ; i. e. thcir number bears a greater proportion to the sum total of all the phanerogamous plants of the country. These proportions or ratios, given as abovementioned by quotients, are in France and Germany $\frac{1}{73}$ and $\frac{1}{71}$, and in Lapland $\frac{1}{25}$. I published numerieal ratios of
this kind,-(i.e. the entire quantity of phænogamous plants in each of the different Floras divided by the number of species in each family) -in my Prolegomenis de distributione geographica Plantarum, in 1817; and in the Memoir on the distribution of plants over the Earth's surface, subsequently published in the French language, I corrected my previously published numbers by Robert Brown's great works. In advancing from the Equator to the Poles, the ratios taken in this manner vary considerably from the numbers which would be obtained from a comparison of the absolute number of species belonging to each family. We oftcn find the value of the fraction increase by the decrease of the denominator, while yet the absolute number of species has diminished. In the method by fractions, which I have followed as more instructive in reference to the geography of plants, there are two variables; for in proceeding from onc isothermal line, or one zone of equal temperature, to another, we do not see the sum total of all the phanerogamæ change in the same proportion as does the number of species belonging to a particular family.

We may, if we please, pass from the consideration of species to that of divisions formed in the natural system of botany according to an ideal series of abstractions, and direct our attention to Gencra, to Familics, and even to the still lighcr, i.e. more comprchensive, Classes. There are some gencra, and even some entire familics, which belong exclusively to particular zones of the Earth's surface ; and this not only because they can only flourish under a particular
eombination of elimatie conditions, but also beeause both the loealities in whieh they originated, and their migrations, have been limited. It is otherwisc with the greater number of genera and of families, whieh have their representatives in all regions of the globe, and at all latitudes of clevation. The carliest investigations into the distribution of vegetable forms related solcly to genera; we find them in a valuable work of Treviranus, in liis Biology (Bd. ii. S. 47, 63, 83, and 129). This method is, however, less fitted to afford general results than that whieh compares either the number of species of eaeh family, or the great leading divisions (of Acotyledons, Monocotyledous, and Dieotyledons) with the sum of all the phanerogamæ. We find that in the cold zones the variety of forms does not alcercase so much if estimated by genera as if cstimated by species ; in other words, we find relatively more genera and fewer species. (Decandolle, Théorie élémentaire de la Botanique, p. 190 ; Humboldt, Nova genera et species Plantarum, T. i. pp. xvii. and l.) It is almost the same in the ease of ligh mountains whose summits support single nembers of a large number of genera, whieh we should have bcen \dot{a} priori inelined to regard as belonging exclusively to the vegetation of the plains.

I have thought it desirable to indieatc the different points of view from whiel the laws of the gcographical distribution of plauts may be considered. It is by eonfounding these different points of view that apparent contradietions are found, which are unjustly attributed to uncertainties of observation. (Jahrbö̈cher der Gewächskunde, Bd. i. Berlin, 1818, S. 18, 21, 30.) When sueh expressions as the following are made use of -"This form, or this
fanily, diminishes as the eold zones are approached ;it has its true home in such or such a latitude; -it is a southern form;-it predominates in the temperate zone;" care should always be taken to state expressly whether the writer is speaking of the absolute number of species, and its increase or deerease with the ehange of latitude; or whether he means that the family in question prevails over other families of plants as compared with the entire number of phanerogamæ of whieh a Flora consists. The impression of prevalence as conveyed by the eye depends on relative quantity.

Terrestrial physies have their numerieal elements, as has the System of the Universe, or Celestial Plysies, and by the united labours of botanical travellers we may expect to arrive gradually at a true knowledge of the laws which determine the geographieal and elimatic distribution of vegetable forms. I have already remarked that in the temperate zone the Compositæ (Synantherex), and the Glumacer (including under this latter name the three families of Grasses, Cyperoidæ and Juneacex), make up the fourth part of all phænogamous plants. The following numerical ratios are the results of my investigations for 7 great families of the vegetable kingdom in the same temperate zone.

Glumacce	$\frac{1}{8}$ (Grasscs alone $\frac{1}{12}$)
Compositr	$\frac{1}{8}$
Leguminosx	$\frac{1}{18}$
Labiatæ	$\frac{1}{2 \cdot 1}$
Umbelliferæ	
Amentacex (Cupulifcre, 13ctulinex, and Salicinex) $\frac{1}{45}$
Crucifcræ	$\frac{1}{19}$

The forms of organie beings are in reeiprocal dependenee on each other. In the unity of nature these forms limit each other according to laws whieh are probably attached to periods of long duration. If on any particular part of the globe we know with aceuracy the number of species of one of the great families of Glumacex, Leguminose, or Compositr, we may with a tolerable degree of probability form approximative inferenees, both as to the sum of all the phanerogame of the country, and also as to the number of speeies belonging to the rest of the leading families of plants. The number of Cyperoidæ determines that of Compositr, and the number of Compositre that of Leguminose ; they even cnable us to judge in what elasses or orders the Floras of countries are still incomplete, and teaeh us, if we are on our guard against confounding together very different systems of vegetatiou, what harvest may still remain to be reaped in the several families.

The comparison of the numerical ratios of families in different already well explored zones, has conducted me to the reeognition of laws aceording to whieh, in proceeding from the equator to the poles, the vegetable forms constituting a natural family decrease or increase as compared with the whole mass of planerogamæ belonging to caeh zone. We have here to regard not only the direetion of the ehange (whether an inerease or a decrease), but also its rapidity or mcasure. We see the denominator of the fraction which expresses the ratio inerease or decrease: let us take as our cxample the beautiful family of Leguminosx, whieh decrcases in going from the equinoctial zone towards the North Pole. If we find its proportion or ratio for the
torrid zone (from 0° to 10° of latitude) at $\frac{1}{10}$, we obtain for the part of the temperate zone which is between 45° and 52° latitude $\frac{1}{18}$, and for the frigid zone (lat. 67° to 70°) only $\frac{1}{35}$. The direction followed by the great family of Leguminose (increase on approaehing the equator), is also that of the Rubiaeex, the Euphorbiaeex, and especially the Malvaeex. On the eontrary, the Grasses and Juneaceæ (the latter still more than the former), diminish in approaching the equator, as do also the Ericere and Amentacer. The Compositæ, Labiatæ, Umbelliferæ, and Crueiferæ, dccrease in proeeeding from the temperate zone, either towards the pole or towards the equator, the Umbellifere and Cruciferæ deereasing most rapidly in the last-named direetion; while at the same time in the temperate zone the Crueifcre are three times more numerous in Europe than in the United States of North America. On reaehing Grecnland the Labiatre have entirely disappeared with the exeeption of one, and the Umbelliferx with the exception of two species; the entire number of phonogamous speeics, still amounting, according to Hornemann, to 315 species.

It must be remarked at the same time that the development of plants of different families, and the distribution of vegetable forms, does not depend cxclusively on geographieal, or even on isothermal latitude; the quotients are not always on the same isothermal line in the temperate zone, for cxample, in the plains of North America and those of the Old Continent. Within the tropies there is a very sensible difference between America, India, and the West Coast of Africa. The distribution of organie beings over the surfaee of the earth does not depend wholly on thermic or climatic
relations, which are of themselves very eomplieated, but also on gcological eauses almost unknown to us, belonging to the original state of the earth, and to eatastrophes which have not affected all parts of our planet simultaneously. The large paehydermatous auimals are at the present time wanting in the New Coutinent, while we still find them in analogous elimates in Asia and Afriea. Thesc differenees ought not to deter us from endeavouring to search out the eoneealed laws of nature, but should rather stimulate us to the study of them through all their intrieacics.

The numerieal laws of the families of plants, the often striking agreement of the numbers expressing their ratios, where yct the speeies of which the families consist are for the most part different, conduct us into the mysterious obseurity whieh envelopes all that is connected with the fixing of organic types in the specics of plants and animals, or with their original formation or creation. I will take as examples two adjoining eountrics which have both been thoroughly explored-Franee and Germany. In Franee, many speeies of Grasses, Umbellifere and Crueiferæ, Compositæ, Leguminosæ, and Labiatr, are wanting whieh are common in Germany ; and yet the numerical ratios of these six great families arc almost idcntical in the two eountries, as will be seen by the subjoined comparison.

Families. Gramince.	Germany.	France.
Umbellifere.	$\frac{1}{13}$	$\frac{1}{13}$
Crucifere.	$\frac{1}{23}$	$\frac{1}{21}$
Composite.	$\frac{1}{18}$	$\frac{1}{18}$
Leguminose.	$\frac{1}{8}$	$\frac{1}{7}$
Labiate.	$\frac{1}{18}$	$\frac{1}{7}$

This agreement in the number of species in each family eompared to the whole number of phrenogamous speeies in the Floras of France and Germany, would not by any mcans exist if the Gcrman species which arc missing in France were not replaced there by other types belonging to the same families. Those who arc fond of imagining gradual trausformations of species, and suppose the differcnt kinds of parrots proper to two islands not far removed from each other to present cxamples of sueh a change, will be inclined to attribute the remarkable similarity between the two columns of figures whieh have just been given, to a migration of species, whieh, having been the same at first, have bcen altered gradually by the long-eontinucd action of elimatic eauses during thousands of ycars, so that their identity being lost they appear to replace caeh other. But why is it that our eommon heather (Calluna vulgaris), why is it that our oaks have never advanced to the castward of the Ural Mountains, and so passed from Europe to Northern Asia? Why is there no speeics of the genus Rosa in the Southern Hemisphere, and why arc there scarcely any Caleeolarias in the Northern Hemisphere? The neeessary conditions of temperaturc are insuffieient to explain this. Thermic relations alone eannot, any more than the hypothesis of migrations of plants radiating from certain eentral points, cxplain the present, distribution of fixed organie forms. Thermic relations are hardly suffieient to explain the limits beyond which individual specics do not pass, either in latitude torrards the pole at the level of the sca, or in vertical elevation towards the summits of mountains. The eycle of regetation in each species, however different its duration may be,
requircs, in order to be successfully passed through, a certain minimum of temperature. (Playfair, in the Transactions of the Royal Soeiety of Edinburgh, vol. v. 1805, p. 202 ; Humboldt, on the sum of the degrees of temperature required for the cycle of vegetation in the Cerealia, in Mem. sur les lignes isothermes, p. 96 ; Boussingault, Economie rurale, T. ii. p. 659, 663, and 667; Alphonse Decandollc sur les causes qui limitent les espèces végétales, 1^47, p. 8.) But all the conditions necessary for the existence of a plant, either as diffused naturally or by cultivation,--conditions of latitude or minimum distance from the pole, and of elevation or maximum height above the level of the sea, -are farther complicated by the difficulty of determining the commoncement of the thermic cycle of vcgetation, and by the influence which the unequal distribution of the same quantity of heat into groups of successive days and nights exercises on the cxcitability, the progrcssive development, and the whole vital process; to all this must be farther added hygrometric influences and those of atmospheric electricity.

My investigations respecting the numerical laws of the distribution of forms may possibly be applied at some future day with advantage to the different classes of Rotifcree in the animal creation. The riclı collections at the Muscum d'Histoirc Naturelle in the Jardin des Plantes at Paris, already contained, in 1820, (acccording to approximate estimations) above 56000 phrnogamous and cryptogamous plants in herbariums, 44000 insects (a number doubtless too small, though given me by Latreille), 2500 species of
fish, 700 reptiles, 4000 birds, and 500 mammalia. Europe has about 80 speeies of indigenous mammalia, 400 birds, and 30 reptiles. In the Northern temperate zone, therefore, the species of birds are five times more numerous tlan those of mammalia, as there are in Europe five times as many Compositæ as there are Amentaceæ and Coniferæ, and five times as manyLeguminosæ as there are Orchidere and Euphorbiacee. In the southern hemisphere the ratio of mammalia is in tolerably striking agreement, being as 1. to $4 \cdot 3$. Birds, and still more reptiles, increase in the number of speeies in approaching the torrid zone more than the mammalia. Cuvier's researches might lead us to believe that the proportion was different in the carlier state of things, and that many more mammalia liad perished by revolutions of Nature than birds. Latreille has shewn what groups of insects increase towards the pole, and what towards the equator. Illiger has given the countries of 3800 species of birds according to the quarters of the globe: it would lave been much more instructive if the same thing had been done aceording to zones. We should find little diffieulty in comprelending how on a given spaee of the earth's surface the individuals of a class of plants or animals limit each other's numbers, or how, after long continued contest and many fluctuations caused by the requirements of nourishment and mode of life, a state of equilibrium should be at last established; but the causes which have limited not the number of individuals of a form, but the forms themselves, in a particular spaee, and founded their typieal diversity, are placed beneath the impenetrable veil which still coneeals
from our eyes all that relates to the manner of the first creation and eommeneement of organie beings.

If, then, we would attempt to solve the question spoken of in the early part of this dissertation, by giving in an approximate manner the numerical limit, (le nombre limite of Freneh mathematieians), whieh the whole phanerogame now existing on the surfaee of the earth eannot be supposed to fall short of, we may perhaps find our safest guide in a comparison of the numerieal ratios (whieh, as we have seen, may be assumed to exist between the different families of plants), with the number of speeies contained in herbariums and eultivated in our great botanie gardens. I have said that in 1820 the number of speeies contained in the herbariums of the Jardin des Plantes at Paris was already estimated at 56000 . I do not permit myself to eonjeeture the amount whiel the herbariums of England may contain; but the great Paris herbariun, whieh was formed with mueh personal saerifiee by Benjamin Delessert, and given by him for free and general use, was stated at his death to contain 86000 speeies; a number almost equal to that whieh, as late as 1835, was conjeeturally assigned by Lindley as that of all the speeies existing on the whole eartlı. (Lindley, Introduetion to Botany, 2d edit. p. 504.) Few herbariums liave been reekoned with eare, after a eomplete and striet separation and withdrawal of all mere varicties. Not a few plants eontained in sunaller eolleetions are still wanting in the greater herbariums which are supposed to be general or eomplete. Dr. Klotzsch estimates the present entire number of phrenoganous plants in the great

Royal Herbarium at Schöneberg, near Berlin, of which he is the curator, at 74000 specics.

Loudon's useful work, Hortus Britannieus, gives an approximate vicw of all the speeies which are, or at no remote time have been, cultivated in British gardens: the edition of 1832 enumerates, ineluding indigenous plants, exactly 26660 phænogamous speeies. We must not confound with this large number of plants which have grown or been eultivated at any time and in any part of the whole British Islands, the number of living plants which can be shewn at any single moment of time in any single botanie garden. In this last-named respeet the Botanic Garden of Berlin has long been regarded as one of the riehest in Europe. The fame of its extraordinary riches rested formerly only on uncertain and approximatc estimations, and, as my fcllowlabourer and friend of many years' standing, Professor Kunth, las justly remarked (in manuseript notices eommunicated to the Gartcnbau-Vercin in Deeember 1846), " 110 real enumeration or computation could be made until a systcmatie catalogue, based on a rigorous cxamination of speeies, had been prepared. Sueh an cnumeration has given rather above 14060 species: if we deduct from this number 375 cultivated Ferns, we have remaining 13685 phænogamous species; among whieh we find 1600 Compositæ, 1150 Leguminosæ, 428 Labiatæ, 370 Umbelliferæ, 460 Orchidex, 60 Palms, and 600 Grasses and Cyperaeer. If we compare with these numbers those of the speeies already deseribed in reeent works,-Compositæ (Deeandolle and Walpers) about 1.0000 ; Leguminosx, 8070 ; Labiatæ
(Bentham), 2190; Umbellifere, 1620; Grasses, 3544; and Cyperacere (Kuntl, Enumeratio Plantarum), 2000 ;we shall perccive that the Berlin Botanic Garden cultivatcs, of the very large families (Compositx, Lcguminose, and Grasses), only 1-7th, 1-Sth, and 1-9th ;-and of the small families (Labiatæ and Umbclliferæ), about 1-5th, or 1-4th, of described species. If, then, we estimate the number of all the diffcrent phænogamous plants cultivated at one timc in all the botamic gardens of Europe at 20000, we find that the cultivatcd species appear to be about the eighth part of those which are already either described or prescrved in herbariums, and that these must nearly amount to 160000 . This estimate need not be thought excessive, since of many of the larger families, (for example, Guttifere, Malpighiacex, Mclastomeæ, Myrtacere, and Rubiaceæ), lardly a huudredth part arc found in our garden." If we take the number given by Loudon in his Hortus Britannicus (26660 species) as a basis, we shali find, (according to the justly drawn succession of inferences of Profcssor Kunth, in the manuscript notices from which I have borrowed the above), the estimate of 160000 species risc to 213000 ; and even this is still very moderate, for Hcynhold's Nomenclator botanicus hortcnsis (1846) even rates the phænogamous specics then cultivated at 35600 ; whereas I have employcdLoudon's number for 1832 , viz. 26660 . On the whole it would appear from what has becn said,-and the conclusion is at first sight a sufficiently striking one,-that at present there arc almost more known species of phænogamous plants (with which we are
aequainted by gardens, deseriptions, or herbariums), than there arc known insects. Aeeording to the average of the statements whieh I have reeeived from sevcral of our most distinguished entomologists whom I have had the opportunity of consulting, the number of inseets at present deseribed, or eontained in eollections without being deseribed, may be taken at between 150000 and 170000 species. The rieh Berlin colleetion does not eontain less than 90000 specics, among whieh are about 32000 Coleoptera. A very large number of plants have been collected in distant parts of the globe, without the insects which live ou them or near them being brought at the same time. If, however, we limit the estimates of numbers to a single part of the world, and that the one whieh has been the best explored in respeet to both plants and insects, viz. Europe, we find a very different proportion; for while we ean hardly enumerate between seven and eight thousand European phenogamous plants, more than thrce tumes that number of European insects are already known. Aceording to the intcresting eommunieations of my friend Dohrn at Stettin, 8700 inseets have already been eolleeted from the rieh Fauna of that vieinity, (and many micro-Lepidoptere are still wanting), while the phrnogamous plants of the same district scarcely exeeed 1000. The Insect Fauna of Great Britain is estimated at 11600 species. Such a preponderance of animal forms need the less surprise us, since large classes of insects subsist solely on animal substances, and others on agamous vegetation (funguses, and even those which are subterra-
nean). Bombyx pini alone (the spider which infests the Scotch fir, and is the most destructive of all forest insccts), is visited, according to Ratzeburg, by thirty-five parasitical Ichneumonides.

If these considerations have led us to the proportion borne by the species of plants cultivated in gardens to the entire amount of those whicli arc alrcady either described or preserved in herbariums, we have still to consider the proportion borne by the latter to what we conjecture to be the whole number of forms existing upon the earth at the present time; i.e. to test the assumed minimum of such forms by the relative numbers of specics in the different families, therefore, by uncertain multipliers. Such a test, however, gives for the lowest limit or minimum number results so low as to lead us to perceive that even in the great familics,-our knowledge of which has been of late most strikingly enriched by the descriptions of botanists, -we are still acquainted with only a small part of existing plants. The Repertorium of Walpers completes Decandollc's Prodromus of 1825, up to 1846: we find in it, in the family of Leguminosæ, 8068 species. We may assume the ratio, or relative numerical proportion of this family to all phenogamous plants, to be $\frac{1}{2 \top}$-as we find it $\frac{1}{10}$ within the tropics, $\frac{1}{18}$ in the middle temperate, and $\frac{1}{33}$ in the cold northern zone. The described Leguminoser would thus lead us to assume only 169400 existing phænogamous species on the whole surface of the earth, whereas, as we have slicwn, the Composite indicate more than 160000 already linown species. The discordance is instructive, and
may be further elueidated and illustrated by the following analogous eonsiderations.

The major part of the Compositæ, of whieh Linmæus knew only 785 species and whieh has now grown to 12000 , appear to belong to the Old Continent: at least Decaudolle deseribed only 3590 Ameriean, whilst the European, Asiatie, and Afriean speeies amounted to 5093. This apparent richness in Compositæ is, however, illusive, and considerable only in appearanee; the ratio or quotient of the family, ($\frac{1}{13}$ between the tropies, $\frac{1}{7}$ in the temperate zone, and $\frac{1}{13}$ in the cold zone), shews that even more species of Composite than Leguminose must hitherto have eseaped the researehes of travellers; for a multiplieation by 12 would give us only the improbably low number of 144000 Phænogamous speeies. The families of Grasses and Cyperaeer give still lower results, beeause eomparatively still fewer of their speeies have been deseribed and colleeted. We have only to cast our cyes on the map of South Ameriea, remembering the wide extent of territory oeeupied by grassy plains, not only in Venezuela and on the banks of the Apure and the Meta, but also to the south of the forest-eovered regions of the Amazons, in Chaeo, Easteru Tueuman, and the Pampas of Buenos Ayres and Patagonia, bearing in mind that of all these extensive regions the greater part have never been explored by botanists, and the remainder only imperfeetly and ineompletely so. Northern and Central Asia offer an almost equal extent of Steppes, but in whieh, however, dieotyledonous herbaceous plants are more largely mingled with the Graminer. If we had sufficient grounds for be-
lieving that we are now aequainted with half the phrenogamous plants on the globe, and if we took the number of known species only at one or other of the beforc-mentioned numbers of 160000 or 213000 , we should still have to take the number of grasses (the general proportion of whieh appears to be $\frac{1}{10}$), in the first case at lcast at 26000 , and in the sccond case at 35000 different speeies, which would give respectively in the two eases only either $\frac{1}{8}$ or $\frac{1}{10}$ part as known.

The assumption that we already know half the existing speeies of phænogamous plants is farther opposed by the following eonsidcratious. Several thousand species of Monoeotylcdons and Dycotylcdons, and among them tall trees,-(I refer here to my own Expedition),--have been discovered in regions, eonsiderable portions of which had been previously examined by distinguished botanists. The portions of the grcat eontinents which have never even been trodden by botanieal observers eonsiderably exeeed in area those which have been traversed by sueh travellers, even in a superficial manner. The greatcst varicty of phænogamous vegetation, $i . c$. the greatest number of spceies on a given arca, is found between the tropics, and in the sub-tropical zones. This last-mentioned consideration renders it so much the more important to remember how alnost entirely unaequainted we arc, on the New Continent, north of the equator, with the Floras of Oaxaca, Yucatan, Guatimala, Nicaragua, the Isthmus of Panama, Choeo, Antioquia, and the Provincia de los Pastos; -and south of the equator, with the Illoras of the vast
forest region between the Ueayale, the Rio de la Madera, and the Toeantin (three great tributaries of the Amazons), and with those of Paraguay and the Provineia de los Missiones. In Afriea, exeept in respeet to the eoasts, we know nothing of the vegetation from 15° north to 20° south latitude ; in Λ sia we are unaequainted with the Floras of the south and south-east of Arabia, where the highlands rise to about 6400 English feet above the level of the sea,-of the countries between the Thian-sehan, the Kuenliun, and the Himalaya, all the west part of China, and the greater part of the eountries beyond the Ganges. Still more unknown to the botanist are the interior of Borneo, New Guinea, and part of Australia. Farther to the south the number of species undergoes a wonderful diminution, as Joseph Hooker has well and ably shewn from his own observation in his Antaretie illora . The three islands of whieh New Zealand consists extend from $34 \frac{1}{2}^{\circ}$ to $47 \frac{1}{4}^{\circ} \mathrm{S}$. latitude, and as they contain, moreover, snowy mountains of above 8850 English feet elevation, they must inelude considerable diversity of climate. The Northern Tsland has been examined with tolerable eompleteness from the voyage of Banks and Solander to Lesson and the Brothers Cumningham and Colenso, and yet in more than 70 years we have only beeome acquainted with less than 700 phenogamous species. (Dieffenbaeh, Travels in New Zealand, 1843, vol. i. p. 419.) The paueity of vegetable corresponds to the paucity of animal speeies. Joseph Hooker, in his Flora Antaretiea, p. 73-75, remarks that " the botany of the densely wooded regions of the Southern Islands of the New Zealand group
and of luegia is mueh more meagre not only than that of similarly elothed regions of Europe, but of islands many degrees nearer to the Northern pole than these are to the Southern one. Ieeland, for instanee, whieh is from 8 to 10 degrees farther from the equator than the Auckland and the Campbell Islands, contains certainly five times as many flowering plants. In the Antaretie Flora, under the influenee of a cool and moist, but singularly equable elimate, great uniformity, arising from paucity of species, is associated with great luxurianee of vegetation. This striking uniformity prevails both at different levels, (the speeies found on the plains appearing also on the slopes of the momntains), and over vast extents of country, from the south of Chili to Patagonia, and even to Tierra del Fuego, or from lat. 45° to 56°. Compare, on the other hand, in the northern temperate region, the Flora of the South of France, in the latitude of the Chonos Arehipelago on the eoast of Chili, with the Flora of Argyleshire in Seotland in the latitude of Cape Horn, and how great a difference of species is found ; while in the Southern Hemisplere the same types of vegetation pass through many degrees of latitude. Lastly, on Walden Island, in lat. $80 \frac{1}{2}^{\circ} \mathrm{N}$., or not ten degrees from the North Pole of the earth, ten species of flowering plants lave been colleeted, while in the southernmost islet of the South Shetlands, though only in lat. 63° S., only a solitary grass was found." These considerations on the distribution of plants confirm the belief that the great mass of still unobserved, uncolleeted, and undeseribed flowering plants must be sought for in tropieal
countries, and in the latitudes from 12° to 15° distant from the tropics.

It has appeared to me not unimportant to show the imperfect state of our knowledge in this still little cultivated department of arithmetical botany, and to propound numerical questions in a more distinct and determinate manner than could have been previously done. In all conjectures respecting numerical relations we must seek first for the possibility of deducing the lower or minimum limits; as in a question treated of by me clsewhere, on the proportion of coined gold and silver to the quantity of the precious metal fabricated in other ways; or as in the questions of how many stars, from the 10th to the 12th magnitude, are dispersed over the sky, and how many of the smallest telescopic stars the Milky Way may contain. (John Herschel, Results of Astron. Observ. at the Cape of Good Hope, 1847, p. 381.) We may consider it as established, that if it were possible to know completely and thoroughly by observation all the species belonging to one of the great families of phanerogamous or flowering plants, we should learn thercby at the same time, approximatively, the entire sum of all such plants (including all the families). As, therefore, by the progressive exploration of new countries we progressively and gradually exhaust the remaining unknown species of any of the great families, the previously assigned lowest limit rises gradually higher, and since the forms reciprocally limit each other in conformity with still undiscoveredlaws of universal organisation, we approach continually nearer to the solution of the great numerical problem of
organic lifc. But is the number of organie forms itself a constant number? Do new vegetable forms spring from the ground after long periods of time, while others beeome more and more rare, and at last disappear? Geology, by means of her historical monuments of aneient terrestrial life, answers to the latter portion of this question affirmatively. "In the Ancient World," to use the remark of an eminent maturalist, Link (Abhandl. der Akad. der Wiss. zu Berlin aus dem Jahr 1846, S. 322), " we see eharaeters, now apparently remote and widely separated from eaeh other, associated or crowded together in wondrous forms, as if a greater development and separation awrited a later age in the history of our planet."

${ }^{(14)}$ p. 19.-"If the height of the aerial ocean and its pressure luve not always been the same."

The pressure of the atmosphere has a decided influenee on the form and life of plants. From the abundance and importanee of their leafy organs provided with porous openings, plants live prineipally in and through their surfaces; and hence their dependenee on the surrounding medium. Animals are dependent rather on in. terual impulses and stimuli; they originate and maintain their own temperature, and, by means of museular movement, their own electrie eurrents, and the chemical vital processes which depend on and react upon those currents. A species of skin-respiration is an active and important vital function in plants, and this respiration, in so far as it consists in evaporation, inhalation, and exhala-
tion of fluids, is dependent on the pressure of the atmosphere. Therefore it is that alpine plants arc more aromatic, and are hairy and covercd with numerous pores. (Sce my work über die gereiztc Muskel-und Nervenfaser, Bcl. ii. S. 142-145.) For aecording to Zoonomic expcrience, organs bccome more abundant and more perfect in proportion to the facility with which the conditions neecssary for the excrcise of their funetions are fulfilled,-as I have clscwhere shown. Th alpinc plants the disturbance of their skinrespiration oecasioncd by increased atmospheric pressure makes it very difficult for such plants to flourish in the low grounds.

The question whether the mean pressure of the acrial ocean which surrounds our globe has always bcen the same is quite undecided: we do not even know accuratcly whether the mean height of the barometer has continucd the samc at the samc place for a century past. Aceording to Poleni's and Toaldo's observations, the pressure would have scemed to vary. The eorrectness of these observations has long been doubted, but the recent researches of Carlini render it almost probable that the mean height of the barometcr is diminishing in Milan. Pcrhaps the phenomenon is a very local one, and dependent on variations in deseending atmospherie currents.

$$
\left.{ }^{(15}\right) \text { p. 20.-"Palms." }
$$

It is remarkable that of this majcstic form of plants,(some of which rise to morc than twicc the height of the Royal Palace at Berlin, and to whieh the Indian

Amarasinha gave the characteristie appellation of "Kings among the Grasses"), -up to the time of the death of Limmeus only 15 speeies were deseribed. The Peruvian travellers Ruiz and Pavon added to these 8 more speeies. Bonpland and I, in passing over a more exteusive range of country from $12^{\circ} \mathrm{S}$. lat. to $21^{\circ} \mathrm{N}$. lat., deseribed 20 new speeies of palms, aud distinguished as many more, but without being able to obtain complete speeimens of their Hlowers. (Humboldt de distrib. geogr. Plantarum, p. 225233.) At the present time, 44 years after my return from Mexico, there are from the Old and New World, including the East Indian species brouglt by Griffith, above 440 regularly described species. The Enumeratio Plantarum of my friend Kuuth, published in 1841, had already 356 species.

A few, but only a few species of palms, are, like our Coniferæ, Quereince, and Betulineæ, soeial plants : such are the Mauritia flexuosa, and two speeies of Chanærops, one of which, the Clamærops humilis, oecupies extensive tracts of ground near the Mouth of the Ebro and in Valencia; and the other, C. mocimi, discovered by us on the Mexiean shore of the Pacific and entirely without prickles, is also a soeial plant. While some kinds of palms, including Chremerops and Cocos, are littoral or shore-loving trees, there is in the tropies a peeuliar group of mountain palms, whieh if I am not mistaken was entirely unknown previous to my South American travels. Almost all speeies of the family of palms grow on the plains or low grounds in a mean temperature of between 22° and 24° Reaumur
($81^{\circ} .5$ and 86°, Fahr.) ; rarely aseending so high as 1900 English feet on the declivities of the Andes: but in the mountain palms to which I have alluded, the beautiful Wax-palm (Ceroxylon audicola), the Palmeto of Azufral at the Pass of Quindiu (Oreodoxa frigida), and the reed-like Kunthia montana (Caña de la Vibora) of Pasto, attain elevations between 6400 and 9600 English feet above the level of the sea, where the thermometer often sinks at night as low as $4^{\circ} .8$ and 6° of Reaunur ($42^{\circ} .8$ and $45 .^{\circ} 5$, Fahr.), and the mean temperature scareely amounts to 11° Reaumur, or $56^{\circ} .8$ Fahrenheit. These Alpine Palms grow among Nut trees, yew-leaved speeies of Podocarpus and Oaks (Quereus granatensis). I have determined by exact barometrical measurement the upper and lower limits of the range of the WaxPalm. We first began to find it on the eastern deelivity of Andes of Quindiu, at the height of 7440 (about 7930 English) feet above the level of the sea, and it extended upwards as far as the Garita del Paramo and los Voleancitos, or to 9100 (almost 9700 English) feet : several years after my departure from the country the distinguished botanist Don Jose Caldas, who lad been long our eompanion amidst the mountains of New Granadi, and who afterwards fell a vietim to Spanish party hatred, found three speeies of palms growing in the Paramo de Guanaeos very near the limits of perpetual snow ; therefore probably at an elevation of more than 13000 (13855 English) feet. (Semanario de Santa Fé de Bogotá, 1809, No. 21, p. 163.) Even beyond the tropics, in the latitude of 28° North, the Chamærops mar-
tiana reaehes on the sub-Himalayan mountains a height of 5000 English feet. (Wallieh, Plantr Asiatiex, Vol. iii. Tab. 2ll.)

Iif we look for the extreme geographieal limits of palms, (whiel are also the extreme elimatie limits in all the speeies whien inlabit loealities but little raised above the level of the sea), we see some, as the date-palm, the Chamærops humilis, C. palmetto, and the Areca sapida of New Zealand, advance far into the temperate zones of either hemisphere, into regions where the mean temperature of the year hardly equals $11^{\circ} .2$ and $12^{\circ} .5$ Reaumur ($57^{\circ} .2$, and $60^{\circ} .2$ Falrenheit). If we form a series of cultivated pliants or trees, placed in order of suecession aceording to the degree of heat they require, and beginning with the maximum, we have Caeao, Indigo, Plantains, Coffee, Cotton, Date-palms, Orange and Lemon Trees, Olives, Sweet Clestnuts, and Vines. In Europe, date-palms (introduced, not indigenous) grow mingled with Chamærops humilis in the parallels of $43 \frac{1}{2}^{\circ}$ and 44°, as on the Genoese Rivera del Ponente, near Bordighera, between Monaeo and San Stefano, where there is an assemblage of more than 4000 palm-stems ; and in Dalmatia round Spalatro. It is remarkable that Chamærops hunilis is abundant both at Niee and in Sardinia, and yet is not found in the island of Corsica which lies between those loealities. In the New Continent, the Chamærops palmetto, whieh is sometimes above 40 English feet high, only advanees as far North as 34° latitude, a difference suffieiently explained by the inflexions of the isothernal lines. In the Southern hemivol. ir.
sphere, in New Holland, palms, of which there are very few, (six or seven speeies) only advance to 34° of latitude (see Robert Brown's general remarks on the Botany of Terra Australis, p. 45) ; and in New Zealand, where Sir Joseph Banks first saw an Areea palm, they reach the 38th parallel. In Afriea, which, quite eontrary to the ancient and still widely prevailing belief, is poor in species of palms, only one palm, the Hyphæne eoriaeea, advances to Port Natal in 30° latitude. The eontinent of South Ameriea presents almost the same limits in respect to latitude. On the eastern side of the Andes, in the Pampas of Buenos Ayres and in the Cis-Plata province, palms extend, aecording to Auguste de St.-Hilaire, to 34° and 35° S. latitude. This is also the latitude to whieh on the western side of the Andes the Coeo de Chile (our Jubæa spectabilis?), the only Chilian palm, extends, aecording to Claude Gay, being as far as the banks of the Rio Naule. (Sce also Darwin's Journal, edition of 1845 , p. 244 and 256).

I will here introduce some detaehed remarks whieh I wrote in Marel, 1801, on board the ship in whieh we were sailing from the palny shores of the month of the Rio Sinu, west of Darien, to Cartagena de las Tndias.
"We lave now, in the course of the two years whiel we have spent in South Ameriea, seen 27 different speeies of palms. How many must Commerson, Thunberg, Banks, Solander, the two Forsters, Adauson, and Somerat, have observed in their distimt voyages! Yet, at the present moment, when I write these lines, our systems of botany do not iuclude mose than from 14 to 18 systematically
deseribed speeies. In truth, the diffieulty of proeuring the flowers of pahns is greater than can readily be imagined. We have felt it so mueh the more from having especially direeted our attention to Palms, Grasses, Cyperacee, Juncaeer, Cryptogamous Plants, aud such other objects as have been least studied litherto. Most speeies of palms flower only onee a year, in the neighbourhood of the Equator in the months of January and February. But how often is it impossible for travellers to be precisely at that season in plaees where palms are prineipally found. In many speecies of palms the flowers last only so few days that one almost always arrives too late, and finds the fertilization completed and the male blossoms gone. Frequently only three or four species of palms are found in areas of 2000 square German geographieal miles (3200 Euglish geographieal square miles). How is it possible during the short flowering season to visit the different places where palms abound: the Missions on the Rio Caroni, the Moriehales at the mouth of the Ormoeo, the valley of Caura and Erevato, the banks of the Atabapo and the Rio Negro, and the side of the Duida Mountain? Add to this the diffieulty of reaehing the flowers, when, in the dense forests, or on the swampy river banks, (as on the 'Temi and 'Tuamini), one sees then hangings from stems above 60 feet high, and armed with formidable spines. A travelier, when preparing to leave Europe on an expedition in whieh natural history is one of his leading objeets, flatters himself with the thoughts of shears or enrved blades fastened to long poles, with whieh he imagines he will be able to reaeh and eut down whatever he desires ; he
dreams, too, of native boys, who, with a cord fastened to their two feet, are to elimb up the highest trees at his bidding. But, alas! very few of these faneies are ever realised; the great height of the blossoms renders the poles useless; and in the missions established on the banks of the rivers of Guiana, the traveller finds himself among Indians whose poverty, stoicism, and uncultivated state, renders them so rieh, and so free from wants of every kind, that neither money nor other presents that ean be made to them will induce them to turn three steps out of their path. This insurmountable apathy is the more provoking to a European, beeanse he sees the same people elimb with ineonceivable agility wherever their own fancies lead them; for example, when they wish to eateh a parrot, or an iguana, or a monkey, which having been wounded by their arrows saves limself from falling by holding on to the branches with his prehensile tail. Even at the Havamah we met with a similar disappointment. We were there in the month of January, and saw all the trees of the Palma Real (our Oreodoxa Regia), in the immediate vicinity of the city and on the publie walks, adorned with snow-white blossoms. F'or several days we offered the negro boys whom we met in the streets of Regla and Guabavacoa two piastres for a single bunch of the blossoms which we wanted, but in vain! Between the tropies men are indisposed to laborious exertion, uuless compelled by constraint or by extreme destitution. 'The botanists and artists of the Royal Spanish Commission for rescarches in Natural History, under the direction of Count Jarueo y Mopor (Estevez, Boldo, Guio,
and Echeveria), -aeknowledged to us that during several years they had not been able to obtain these flowers for examination. These diffieulties suffieiently explain what would have been ineomprehensible to me before my voyage, namely, that although during our two years' stay up to the present time, we have, indeed, discovered more than 20 different species of palms, we have as yet been only able to deseribe systematically 12. "How interesting a work might be produced by a traveller in South America who should oceupy himself exelusively with the study of palms, and should make drawings of the spathe, spadix, inflorescence, and fruit, all of the size of nature!" (I wrote this many years before the Brazilian travels of Martius and Spix, and the admirable and excellent work of Martius on Palms.) "There is considerable unnformity in the shape of the leaves of palms; they are generally either pimate (feathery, or divided like the plume of a feather) ;-or else palmate or palmo-digitate (of a fan-like form) ; the leaf-stalk (petiolus), is in some species without spines, in others sharply toothed (serrato-spinosus). The form of the leaf in Caryota urens and Martinezia earyotifolia, (whielı we saw on the banks of the Orinoco and Atabapo, and again in the Andes, at the pass of Quindiu, 3000 Fr . (3197 English) fcet above the level of the sea), is exeeptional and almost unique among palms, as is the form of the leaf of the Gingko among trees. The port and physiognomy of palms have a grandeur of eharacter very diffieult to convey by words. The stem, shaft, or eaudex, is generally simple and undivided, but in extremely rare exeeptions divides into branches in the
mamer of the Dracernas, as in Cueifera thebaiea (the Doumpalm), and Hyphæne coriacea. It is sometimes disproportionately thick (as in Corozo del Sinu, our Alfonsia oleifera) ; sometimes feeble as a reed (as in Piritu, Kunthia montana, and the Mexiean Corypha nana) ; sometimes swelling towards the base (as in Coeos) ; sometimes smooth, and sometimes scaly (Palma de eovija o de sombrero, in the Llanos) ; sometimes armed with spines (as Corozo de Cumana and Macanilla de Caripe), the long spines being distributed with mueh regularity in coneentrie rings."
"Charaeteristie differenees are also furnished in some species by roots which, springing from the stem at about a foot or a foot and a half above the ground, either raise the stem as it were upon a scaffolding, or surround it with thick buttresses. I have seen Viverras, and even very small monkeys, pass underneath this kind of seaffolding formed by the roots of the Caryota. Often the shaft or stem is swollen only in the middle, being more slender above and below, as in the Palma Real of the Island of Cuba. The leaves are sometimes of a dark and shiming green (as in the Mauritia and the Cocoa nut palm) : sometimes of a silvery white on the under side (as in the slender Fan-palm, Corypha miraguama, whieh we found in the Harbour of Trinidad de Cuba). Sometimes the middle of the fan or palmate leaf is ornamented with coneentrie yellowish or bluish stripes like a peacock's tail; as in the thorny Mauritia which Bonpland diseovered on the banks of the Rio Atabapo."
"The direction of the leaves is a character not less important than their form and colour. The leaflets (foliola), are
sometimes arranged like the teeth of a comb, set on in the same plane, and elose to each other, and having a very rigid parenehyma (as in Coeos, and in Phouix the genus to whieh the Date belongs) ; whenee the fine play of light from the sun-beams falling on the upper surface of the leaves (which is of a fresher verdure in Coeos, and of a more dead and aslyy hue in the date palm) ; sometimes the leaves are flag-like, of a thimer and more flexible texture, and curl towards the extremities (as in Jagua, Palma Real del Sinu, Palma Real de Cuba, and Piritu dell' Orinoeo). The peculiarly majestie charaeter of palms is given not only by their lofty stems, but also in a very ligh degree by the direction of their leaves. It is part of the beauty of any partieular spceies of palms that its leaves should possess this aspiring charaeter; and not only in youth, as is the ease in the Date-palm, but also throughout the duration of the life of the tree. The more upright the direetion of the leaves, or, in other words, the more aeute the angles whieh they form with the upper part or eoutinuation of the stem, the grander and more imposing is the general eharaeter and physiognomy of the tree. How different are the charaeter and aspeet given by the drooping leaves of the Palma de eovija del Orinoeo y de los Llanos de Calabozo (Corypha teetorum) ; the more nearly horizontal or at least less upright leaves of the Date and Coeoa-nut palins; and the aspiring heavenward pointing branelies of the Jagua, the Cueurito, and the Pirijao!

Nature has lavished every beauty of form on the Jagua palm, whieh, intermingled with the Cueurito or Vadgihai,
(85 to 106 English fect high), adorns the cataracts of Atures and Maypures, and is oeeasionally found also on the lonely banks of the Cassiquiare. The smooth slender stems of the Jagua, rising to between 64 and 75 English feet, appear above the dcusc mass of foliage of other kinds of trecs from anidst which they spring like raiscd colomades, their airy summits contrasting beautifully with the thickly-leaved speeies of Ceiba, and with the forest of Laurinex, Calophyllum, and diffcrent species of Amyris which surround them. The leaves of the Jagua, which are fcw in number (scareely so many as seven or cight), are sixteen or scventeen feet long, and rise almost vertically into the air ; their cxtremities are curled like plumes; the ultimate divisions or leaflets, having only a thin grass-like parenehyma, flutter lightly and airily round the slowly balancing central lcaf-stalks. In all palms the inflorescence springs from the trunk itself, and below the place wherc the leaves originate; but the manner in which this takes place modifies the physiognomie character. In a few speeies only (as the Coro\%o del Sinu), the spathe (or sheath enclosing the flowers and fruits), rises vertically, and the fruits stand erect, forming a kind of thyrsus, like the fruits of the Bromclia : in most species of palms the spathcs (which are sometimes smooth and sometimes rough and armed with formidable spines) are pendent; in a few spccies the male flowers are of a dazzling whitencss, and in such cascs the flower-covcred spadix, whon fully developed, shines from afar. In most species of palms the male flowers are ycllowish, closcly crowded, and appear almost withered when they disengage themselves from the spathe.
"In Palms with pimate foliage, thic leaf-stalks cither procced (as in the Cocoa-nut, the Datc, and the Palma Real del Sinu) from the dry, rough, woody part of the stem; or, as in the Palma Real de la Havana (Oreodoxa regia) sccu and admired by Columbus, there rises upon the rough part of the stem a grass-green, smooth, thinuer shaft, like a columu placed upon a column, and from this the leafstalks spring. In fau-palms, "foliis palmatis," the leafy crown (as in the Moriche and the Palma sombrero de la Havana) often rests on a previous bed of dry leaves, a circumstance which gives to the tree a sombre and melancholy appcarance. In some umbrella-palms the crown consists of very few leaves, which rise upwards, carried on very slender petioles or foot-stalks (as in Miraguama).
"The form and colour of the fruits of Palms also offer much moic varicty than is commouly believed in Europe. Mauritia flcxuosa bears egg-shaped fruits, whose scaly, brown, and shining surface, gives them sometling of the appcarance of young fir-cones. What a difference between the enormous triangular cocoa-mut, the soft flesly berries of the datc, and the small lard fruits of the Corozo! But among the fruits of palms none equal in bcauty those of the Pirijao (Pihiguao of S. Feruando de Λ tabapo and S. Balthasar) ; they arc cgg-shaped, mealy, and usually without sceds, two or threc inches thick, and of a golden colour, which on one side is overspread with crimson ; and thesc richly coloured fruits, crowded together in a bunch, like grapes, arc pendent from the summits of majcstic palin
trees." I have already spoken in the first volume of the present work, p. 216, of these beautiful fruits, of whieh there are seventy or eighty in a buneh, and which can be prepared as food in a variety of ways, like plantains and potatoes.

In some species of Palms the flower sheath, or spathe surrounding the spadix and the flowers, opens suddenly with an audible sound. Richard Schomburgk (Reisen in Britisclı Guiana, Th. i. S. 55) has like myself observed this phenomenon in the flowering of the Oreodoxa oleracea. This first opening of the flowers of Palms aceompanied by sound reealls the vernal Dithyrambus of Pindar, and the moment when, in Argive Nemea, " the first opening shoot of the date-palm proelaims the arrival of balmy spring." (Kosmos, Bd. ii. S. 10 ; Eng. ed. p. 10.)

Three vegetable forms of peculiar beauty are proper to the tropieal zone in all parts of the globe; Palms, Plantains or Bananas, and Arboreseent Ferns. It is where heat and moisture are combined that vegetation is most vigorous, and its forms most varied ; and henee South Ameriea exeels the rest of the tropieal world in the number and beauty of her species of Pahms. In Asia this form of vegetation is more rare, perhaps beeause a considerable part of the Indian eontinent whieh was situated immediately under the equinoctial line has been broken up and eovered by the sea in the eourse of former geologieal revolutions. We know scarcely anything of the palm trees of Africa between the Bight of Benin and the Coast of Ajan; and, generally
speaking, we are only acquainted, as las been already remarked, with a very small number of species of Palms belonging to that quarter of the globe.

Palms afford, next to Coniferee and speeies of Euealyptus belonging to the family of Myrtaeex, examples of the greatest loftiness of stature attained by any of the members of the vegetable kingdom. Of the Cabbage Palm (Areea oleraeea), stems have been seen from 150 to 160 Freneh (160 to 170 English) feet high. (Aug. de Saint-Hilaire, Morphologie végétale, 1840, p. 176.) The Tax-palm, our Ceroxylon andicola, diseovered by us on the Andes between Ibague and Carthago, on the Montana de Quindiu, attains the immense height of 160 to 180 Freneh (170 to 192 English) feet. I was able to measure with exaetness the prostrate trunks which had been cut down and were lying in the forest. Next to the Wax-palm, Oreodoxa Sancona, whieh we found in flower near Roldanilla in the Cauea Valley, and whieh affords a very hard and execllent building wood, appeared to me to be the tallest of Ameriean palms. The eireumstanee that notwithstanding the enormous quantity of fruits produeed by a single Palm tree, the number of individuals of eaeh species whieh are found in a wild state is not very eonsiderable, ean only be explained by the frequently abortive development of the fruits (and eonsequent absenee of seeds), and by the voracity of their numerous assailants, belonging to all elasses of the animal world. Yet although I have said that the wild individuals are not very numerous, there are in the basin of the Orinoeo entire tribes of men who live for several months of the year on the fruits
of palms. "In palmetis, Pihiguao eonsitis, singuli trunci quotannis fere 400 fruetus ferunt poniformes, tritumque est verbum inter Fratres S. Francisei, ad ripas Orinoei et Gauinise degentes, mire pingueseere Indorum corpora, quoties uberem Palmre fructum fundant." (Humboldt, de Distrib. geogr. Plant. p. 240.)
${ }^{16}$) p. 22.-" Since the earliest infancy of human cicilisation."

In all tropieal countries we find the eultivation of the Banana or Plantain established from the earliest times with whieh tradition or history make us aequainted. It is eertain that in the eourse of the last few eenturies African slaves have bronght new varieties to America, but it is equally ecrtain that Plantains were eultivated in the new world before its discovery by Columbus. The Guaikeri Indians at Cumana assured us that on the Coast of Paria, near the Golfo Triste, when the fruits were allowed to remain on the tree till ripe, the plantain sometimes produced seeds which would germinate ; and in this manner plantains are oceasionally found growing wild in the reeesses of the forest, from ripe seeds eonveyed thither by birds. Perfeetly formed seeds lave also sometimes been found in plantain fruits at Bordones, near Cumana. (Compare my Essai sur la Géographie des Plantes, p. 29; and my Relat. hist. T. i. pp. 104 and 587, T. ii. pp. 355 and 367.)

I have already remarked elsewhere (Kosmos, Bd. ii. S. 191; English edition, p. 156), that Onesieritus and the other companions of Alexander, while they make no
allusion to the tall arborescent ferns, speak of the fanleaved umbrella palm, and of the delicate and always fresh verdure of the cultivated plantains or bananas. Among the Sanscrit names given by Amarasinha for the plantain or banana (the Musa of botanists) there are bhanu-phala (suinfruit), varana-buseha, and moko. Phala signifies fruit in general. Lassen explains the words of Pliny (xii. 6), "arbori nomen palie, pomo arieuæ" thus: "The Roman mistook the word pala, fruit, for the mane of the tree ; and varana (in the mouth of a Greek ouarana) beeame transformed into aricua. The Arabie mauza may have been formed from moko, and hence our Musa. Bhanu-fruit is not far from banaua-fruit." (Compare Lassen, Indische Alterthumskunde, Bd. i. S. 262, with my Essai politique sur la Nouvelle Espagne, T. ii. p. 382, and Rel. hist. T. i. p. 491.)
(17) p. 22.—" The form of Malvaceere."

Larger malvaceous forms begin to appear as soon as we have erossed the Alps ; at Niee and in Dalmatia, Lavatera arborea; and in Liguria, Lavatera olbia. The dimensions of the Baobab, monkey-bread tree, lave been mentioned above, (Vol. ii. p. 90.) To this form are attaehed the also botanieally allied fanilies of the Byttneriaeeæ (Stereulia, Hermamia, and the large-leaved Theobroma Cacao, in which the flowers spring from the bark both of the trunk and the roots) ; the Bombacere (Adansonia, Helicteres, and Cheirostemon) ; and lastly the Tiliacere (Sparmamia Africana.) I may name more particularly as superb representatives of the Mallow-form, our Cavanillesia platanifolia, of

Turbaco near Carthagena in South Ameriea, and the celebrated Oehroma-like Hand-tree, the Maepalxoehiquahuitl of the Mexieans, (from mucpulli, the flat hand), Arbol de las Manitas of the Spaniards, our Cheirostemon platanoides; in whieh the long eurved anthers project beyond the fine purple blossom, causing it to resemble a hand or elaw. Throughout the Mexican States this one highly aneient tree is the only existing individual of this extraordinary raee : it is supposed to be a stranger, planted about five centuries ago by the kings of Toluea. I found the height above the sea where the Arbol de las Manitas stands to be 8280 French (88.44 English) feet. Why is there only a single individual, and from whence did the kings of Toluca procure either the young tree or the seed? It seems no less diffieult to aceount for Montezuma not having possessed it in liis botanical gardens of Huaxtepee, Chapoltepee, and Tztapalapan, of which Heruander, the surgeon of Philip TI., was still able to arail himself, and of which some traces remain even to the present day; and it seems strange that it should not have found a place among the representations of objects of natural listory which Nezahualcoyotl, king of Tezeueo, eaused to be drawn half a century before the arrival of the Spaniards. It is asserted that the Hand-tree exists in a wild state in the forests of Guatimala. (Humboldt and Bonpland, Plantes équinociales, T. i. p. 82, pl. 24; Essai polit. sur la Nouv. lisp., T. i. p. 98.) At the equator we have seen two Malvaceer, Sida Phyllauthos (Caran), and Sida pielinehensis, ascend, on the mountain of Autisana and the Volenno Rueu-Piehineha, to the great elevations of 12600
and 14136 French (13430 and 15066 English) feet. (See our Plantes équin., T. ii. p. 113, pl. 116.) Only the Saxifraga boussingaulti (Brongn.) reaches, on the slope of the Chimborazo, an altitude six or seven hundred feet higher.

$$
{ }^{(18)} \text { p. 22.-" The Mimosa furm." }
$$

The fincly feathered or pimated leaves of Mimosas, Acaeias, Sehrankias, and species of Desmanthus, are most truly forms of tropical vegetation. Yet there are some representations of this form beyond the tropies; in the northern hemispliere in the Old Continent I ean indeed cite but one, and that only in Asia, and a low-growing shrub, the Aeacia Stephaniana, according to Kunth's more recent investigations a species of the genus Prosopis. It is a social plant, covering the arid plains of the province of Shirwan, on the Kur (Cyrus), as far as the ancient Araxes. Olivier also found it near Bagdad. It is the Aeacia foliis bipimnatis mentioned by Buxbaum, and extends as far north as 42° of latitude. (Tableau des Provinces sitnées sur la Côte oceidentale de la Mer Caspieme, entre les fleuves Terek et Kour, 1798, pp. 58 and 120.) In Africa the Acacia gummifera of Willdenow advances as far as Mogador, or to 32° north latitude.

On the New Continent, the banks of the Mississipi and the Temessec, as well as the savammahs of Illinois, are adorned with Aeacia glandulosa (Michaux), and Λ. brachyloba (Willd). Miehaux found the Sehrankia uneinata extend northwards from Florida into Virginia, or to $37^{\circ} \mathrm{N}$. latitude. Gleditsehia tricanthos is found, according to Barton, ou the
cast side of the Alleghany mountains, as far north as the 38 th parallel, and on the west side even as far as the 41 st parallel. Gleditschia monosperma ceases two degrees farther to the south. 'These are the limits of the Mimosa form in the northern hemisphere. In the southern hemisphere' we find bryond the tropic of Capricorn simple leared Acacias as far as Vau Diemen Island; and even the Acacia cavenia, described by Claude Gay, grows in Chili between the 30 th and 37 th degrees of south latitude. (Molina, Storia Naturale del Chili, 1782, p. 174.) Chili has no true Mimosa, but it has three species of Acacia. Even in the north part. of Chili the Acaeia cavcnia only grows to a height of twelve or thirteen feet; and in the south, near the sea eoast, it hardly rises a foot above the ground. In South America, north of the equator, the most excitable Mimosas were (ncxt to Mimosa pudica), M. dormiens, M. sommians, and M. somnieulosa. Theophrastus (iv. 3) and Pliny (xiii. 10) mention the irritability of the African sensitive plant; but I find the first rescription of the South American scnsitive plants (Dormideras) in Herrera, Deead. II. lib. iii. cap. 4. The plant first attracted the attcution of the Spaniards in $151 S$, in the saramahs on the isthmus near Nombre de Dios: "parece como cosa sensible;" and it was said that the leaves ("dc echura de una pluma de pajaros") only contracted on being tonehed with the finger, and not if touched with a piecc of wood. In the small swamps which surround the town of Mompox on the Magdalena, we discovered a beautiful aquatie Mimosacea (Desmanthus lacustris). It is figured in our Plantes équinoxiales, 'I. i.
p. 55, pl. 16. In the Andes of Caxamarea we found two Alpine Mimoser (Mimosa montana and Aeaeia revoluta), 8500 and 9000 French (about 9060 and 9590 English) feet above the surface of the Paeific.

Hitherto no true Mimosa (in the sense established by Willdenow), or even Inga, has been found in the temperate zone. Of all Acacias, the Oriental Acacia julibrissin, which Forskai has confounded with Mimosa arborea, is that whieh supports the greatest degree of eold. In the botanic garden of Padua there is in the open air a tree of this species with a stem of considerable thickness, although the mean temperature of Padua is below 10.0° Reanmur ($55^{\circ} .6$ Fahr.)
(19) p. 23.-"Heath.s."

In these plysiognomie considerations we by no means comprise under the name of Heaths the whole of the natural fanily of Erieaeer, whieh on aceount of the similarity and analogy of the floral parts includes Rhododendron, Befaria, Gaultheria, Eseallonia, \&e. We coufine ourselves to the highly aecordant and eharacteristie form of the speeies of Eriea, including Calluna (Hrica) Tulgaris, L., the common heather.

While, in Europe, Eriea earnea, E. tetralix, E. eincrea, and Calluna vulgaris, eover large tracts of ground from the plains of Cermany, France, and England to the extremity of Norway, South Africa offers the most varied assemblage of species. Only one species whieh is indigenons in the southern hemisphere at the Cape of Goorl Ifope, Erica umbellata, is found in the northern hemisphere, i.c. in the vol. II.

North of Afriea, in Spain, and Portugal. Eriea vagans and E. arborea also belong to the two opposite eoasts of the Nediterranean: the first is found in North Afriea, near Marseilles, in Sicily, Dalmatia, and cven in England ; the second in Spain, Italy, Istria, and in the Canaries." (Klotselı on the Gcographical Distribution of speeies of Erica with persistent corollas, MSS.) The common heather, Calluna vulgaris, is a social plant covering large tracts from the mouth of the Scheldt to the western declivity of the Ural. Beyond the Ural, oaks and heaths cease together: both are entircly wanting in the whole of Northern Asia, and throughout Siberia to the shores of the Pacifie Ocean. Gmelin (Flora Sibirica, T. iv. p. 129) and Pallas (Flora Russica, T. i. Pars 2, p. 53) have expressed their astonishment at this disappearance of the Calluna vulgaris, -a disappearance which, on the eastern declivity of the Ural Mome tains, is even more sudden and deeided than might be inferred from the cxpressions of the last-named great naturalist. Pallas says merely: "ultra Uralense jugum sensim deficit, rix in Isctensibus campis rarissime apparet, ct ultcriori Sibiriæ plane deest." Chamisso, Adolph Erman, and Heimrich Kittlitz, have found Andromedas indeed in Kamtschatka, and on the North West coast of America, but no Calluna. The accurate knowledge, which we now posscss of the mean tempcrature of sevcral parts of Northcrn Asia, as well as of the distribution of the annual temperature into the difficrent seasous of the year, affords no sort of explanation of the ccssation of heatlicr to the cast of thic Ural Mountains. Joseph Hookcr, in a note to his Flora Antare-
tiea, has treated and contrasted with great sagaeity and clearness two very different phenomena which the distribution of plants presents to us: on the one hand, "uniformity of surface aceompanied by a similarity of vegetation;" and on the other hand, "instanees of a sudden eliange in the vegetation unaceompanied by any diversity of geologieal or other features." (Joseph Hooker, Botany of the Antaretie Voyage of the Erebus and Terror, 1844, p. 210.) Is there any speeies of Eriea in Central Asia? The plant spoken of by Saunders in Turner's Travels to Thibet (Phil. Trans. Vol. lxxix. p. 86), as having been found in the Highlands of Nepaul (together with other European plants, Vaccinium myrtillus and V. oxycoeeus) and deseribed by him as Eriea vulgaris, is believed by Robert Brown to have been an Andromeda, probably Andromeda fastigiata of Wallieh. No less striking is the absenee of Callunat vulgaris, and of all the species of Eriea throughout all parts of the Continent of Ameriea, while the Calluna is found in the Azores and in Ieeland. It has not hitherto been seen in Greenland, but was diseovered a few years ago in Newfoundland. The natural family of the Erieacere is also almost entirely wanting in Australia, where it is replaeed by Epaerider. Linnæus deseribed only 102 speeies of the genus Eriea; aceording to Klotzseh's cxamination, this genus really contains, after a eareful exelusion of all mere rarieties, 440 true species.

$$
\left({ }^{(20}\right) \text { p. 24.-" The Cactus form." }
$$

If we take the natural family of the Opuntiacer separated
from the Grossulariacere (the species of Ribes), and, viewed as it is by Kunth (Handbuch der Botanik, S. 609), we may well regard it as belonging exclusively to America. I am aware that Roxburgh, in the Flora Indica (inedita), cites two species of Cactus as belonging to South Eastern Asia ;Cactus indicus and C. chinensis. Both are widely disseminated, and are found in a wild state (whether they were originally wild or have become so), and are distinct from Cactus opuntia and C. coccinellifer; but it is remarkable that the Indian plant (Cactus indicus) has no ancient Sanscrit name. Cactus chinensis has been introduced in St. Helena as a cultivated plant. Now that a more general interest has at length been arrakened on the subject of the original distribution of plants, future investigation will dispel the doubts which have been felt in several quarters respecting the existence of true Asiatic Opuntiacere. In the animal kingdom particular forms are found to occur singly. Tapirs were long regarded as a form exclusively characteristic of the New Continent; and yet the American tapir has been found as it were repeated in that of Malacca (Tapirus indicus, Cuv.)

Although the species of Cactus belong, generally speaking, more properly to the tropical regions, yet some are indigenous in the temperate zone, as on the Missouri and in Louisiana, Cactus missuriensis and C. vivipara; and Back saw with astonishment the shores of Rainy Lake, in north lat. $45^{\circ} 40^{\prime}$, covered with C. opuntia. South of the equator the species of Cactus do not extend beyond the Rio Itata, in lat. 36°, and the Rio Biobio, in lat. $37^{\circ} 15^{\prime}$. In the
part of the Andes whiel is situated between the tropies, I have seen speeies of Caetus (C. sepium, C. chlorocarpus, C. bomplandii) growing on elevated plains nine or ten thousand (1reneh) feet (about 9590 and 10660 English) above the level of the sea; but a still more alpine eharaeter is shewn in latitudes belonging to the temperate zone, in Chili, by the Opuntia ovallei, whieh has yellow flowers and a ereeping stem. The upper and lower limits beyond which this plant does not extend have been aeeurately determined by barometrie measurement by the learned botanist Claude Gay: it has never been found lower than 6330 Freneh (6746 English) feet, and it reaehes and even passes the limits of perpetual snow, having been found on uneovered masses of rock rising from amongst the snows. The last small plants were eolleeted on spots situated 12820 Freneh (13663 English) feet above the level of the sea. (Claudio Gay, Flora Chilensis, 1848, p. 30.) Some speeies of Eehino-eaetus are also true alpine plants in Chili. A eounterpart to the fine-haired Caetus senilis is found in the thiek-wooled Cereus lauatus, ealled by the natives Piseol, whieh has landsome red fruit. We found it in Peru, near Guaneabamba, whien on our journey to the Λ mazons river. The dimensions of the different kinds of Caetacee (a group on whieh the Prinee of Salm-Dyek has been the first to throw great light) offer great variety and eontrasts. Eehinoeaetus wislizeni, whieh is 4 feet high and 7 feet in eireumferenee (4 feet 3 inehes and 7 feet 5 inehes Euglish), is still only the third in size, being surpassed by E. ingens
(Zuec.) and by E. platyecras (Lem.) (Wislizenus, Tour to Northern Mexieo, 1848, p. 97.) The Echinocaetus stainesii reaches from 2 to $2 \frac{1}{2}$ feet diameter; E. vismago, from Mexieo, upwards of 4 English feet high, is above 3 English feet diameter, and weighs from 700 to 2000 lbs.: while Caetus nanus, which we found near Sondorillo, in the provinee of Jaen, is so small that, being only slightly rooted in the sand, it gets between the toes of dogs. The Melocactuses, whieh are full of juice in the dryest seasons like the Ravenala of Madagasear (forest-leaf in the language of the country, from rave, raven, a leaf, and ala, the Javanese halas, a forest), are vegetable fountains; and the manner in which the horses and mules stamp them open with their hoofs, at the risk of injury from the spines, has been already mentioned (Vol. I. p. 19). Since the last quarter of a century Cactus opuntia has extended itself in a remarkable manner into Northern Afriea, Syria, Grecee, and the whole of the South of Europe ; even penetrating, in Afriea, from the coasts far into the interior of the country, and assoeiating itself with the indigenous plants.

When one has been accustomed to see Caetuses only in our hothouses, one is astomished at the degree of density and hardness whieh the ligneous fibres attain in old caetus stems. The Indians know that caetus wood is incorruptible, and excellent for oars and for the thresholds of doors. There is lardly anything in vegetable plysiognomy which makes so singular and ineffaceable an impression on a newly arrived person, as the sight of an arid plain thickly
covered, like those near Cumana, New Bareclona, and Coro, and in the provinee of Jaen de Bracamoros, with columnar and caudelabra-like divided eactus stems.
(21) p. 24.—" Orchidece."

The almost animal shape of blossoms of Orchidex is partieularly striking in the celebrated Torito of South Ameriea (our Anguloa, grandifiora) ; in the Mosquito (our Restrepia ontenuifera) ; in the Flor del Espiritu Santo (also an Anguloa, according to Hlorex Peruvianæ Prodrom. p. 118, tab. 26) ; in the ant-like flower of the Chiloglottis cornuta (Hooker, Flora antarctica, p. 69) ; in the Mexican Bletia speciosa ; and in the highly curious host of our European species of Ophrys: O. muscifera, O. apifera, O. aranifera, O. arachnites, \&c. A predilection for this superbly flowering group of plants has so increased, that the number cultivated in Europe by the brothers Loddiges in 1848 has been estimated at 2360 species ; while in 1843 it was rather more than 1650 , and in 1813 ouly 115 . What a rich mine of still unknown superb flowering Orehider the interior of Afriea must contain, if it is well watered! Lindley, in his fine work entitled "The Genera and Speeies of Orchideous Plants," deseribed in 1840 precisely 1980 species; at the end of the year 1848 Klotzselh reckoned 3545 species.

While in the temperate and cold zones there are only "terrestrial" Orchider, i.c. growing on and close to the ground, tropieal countries possess both forms, i.e. the "terrestrial" and the "parasitie," whieh grow on trunks of trees. To the first-named of these two divisions belong the tropieal genera

Neottia, Craniehis, and most of the Habenarias. We lave also found both forms growing as alpine plants on the slopes of the ehain of the Andes of New Granada and Quito: of the parasitical Orchideæ (Epidendrex), Masdevallia uniflora (at 9600 French, or about 10230 English feet) ; Cyrtoehilum flexuosum (at 9480 French, or about 10100 English feet) ; and Dendrobium aggregatum (8900 French, or about 9480 English feet) : and of the terrestrial Orchidere, the Altensteinia paleacea, near Lloa Chiquito, at the foot of the Volcano of Pichinclia. Claude Gay thinks that the Orehidex said to have been seen growing on trees in the Island of Juan Fernandez, and even in Chiloe, were probably in reality only parasitical Pourretias, whieh extend at least as far south as $40^{\circ} \mathrm{S}$. lat. In New Zealand we find that the tropical form of Orchideæ lianging from trees extends even to $45^{\circ} \mathrm{S}$. lat. The Orchider of Auckland's and Campbell's Islands, however (Chiloglottis, Thelymitra, and Acianthus), grow on the ground in moss. In the animal kingdom, one tropical form at least advances much farther to the south. In Macquarie Island, in lat. $54^{\circ} 39^{\prime}$, nearer to the South Pole therefore than Dantsie is to the North Pole, there is a native parrot. (See also the section Orehidere in my work de Distrib. geogr. Plant., pp. 241-247.)

$$
\left.{ }^{(22}\right) \text { p. 25.-"The Casuarinea." }
$$

Acacias which have phyllodias instead of leaves, some Myrtaceæ (Eucalyptus, Metrosideros, Melaleuca, and Leptospermum), and Casuarinas, give a uniform charaeter to the vegetation of Australia and Tasmania (Vau Diemen Island).

Casuarinas with their leafless, thin, string-like, articulated branehes, having the joints provided with membranous denticulated sheaths, have been eompared by travellers, according to the particular species whieh fell under their observation, eithcr to arborescent Equisetaceæ (Horsetails) or to our Scotch firs. .(See Darwin, Journal of Researehes, p. 449.) Near the eoast of Peru the aspeet of small thiekets of Colletia and Ephedra also produeed on my mind a singular impression of leaflessncss. Casuarina quadrivalvis advances, according to Labillardière, to $43^{\circ} \mathrm{S}$. lat. in Tasmania. The sad-looking Casuarina form is not unknown in India and on the east coast of Afriea.

$$
\left.{ }^{(23}\right) \text { p. 25.-"Needle-leaved trees." }
$$

The family of Conifere holds so important a place by the number of individuals, by their geographical distribution, and by the vast traets of country in the northern temperate zone eovered with trees of the same species living in soeiety, that we are almost surprised at the small number of species of which it consists,-even including members which belong to it in essential respeets, but deviate from it in a degree by the shape of their leaves and their manner of growth (Dammara, Ephedra, and Gnetum, of Java and New Guinea). The number of known Conifere is not quite equal to three-fourths of the number of described species of palms; and there are more known Aroidere than Conifere. Zucearini, in his ${ }^{\text {• }}$ Beitriigen zur Morphologic der Coniferen (Ablandl. der mathem. physikal. Classe der Akademie der Wiss. zu Müuehen, Bd. iii. S. 752, 1837-1843), reekons 216 species,
of whiel 165 bclong to the northern and 51 to the southern hemisphcre. Since my researelics these proportionate numbers must be modificd, as, including the species of Pinus, Cupressus, Ephedra, and Podocarpus, found by Boupland and myself in the tropical parts of Pern, Quito, New Granada, and Mexieo, the number of speeies betwecn the tropies riscs to 42. The most rceent and excellent work of Endlicher, Synopsis Coniferarum, 1847, contains 312 species now living, and 178 fossil species found in the coal measures, the buntcr-sandstone, the kcupcr, and the Jurassic formations. The regetation of the ancient world offcrs to us more particularly forms which, by their simultancous affinity with scveral diffcrent families of the present vegetable world, remind us that many intermediate links have perished. Coniferæ abounded in the ancient world: thcir remains, bclonging to an early epoch, arc formd especially in association with Palms and Cycadcer ; but in the latest beds of lignite we also find pines and firs associated as now with Cupulifere, maples, and poplars. (Kosmos, Bd. i. S. 295-298, and 468-4.70 ; Engl. edit. p. 271-274, and lxxxis.)

If the carth's surface did not rise to considerable clevations within the tropics, the highly characteristic form of needle-lcaved trecs would be almost mnknown to the imhabitants of the equatorial zonc. In eommon with Bonpland I have labourcd much in the determination of the exact lower and upper limits of the region of Conifcree and of oaks in the Mexican highlands. The heights at whieh both begin to grow (los Pinales y Encinales, Pineta et Querceta)
are hailed with joy by those who come from the sea-coast, as indicating a elimate where, so far as experience has hitherto shewn, the deadly malady of the black vomit (Vomito prieto, a form of yellow fever) does not reach. The lower limit of oaks, and more partieularly of the Quercus xalapensis (one of the 22 Mexiean species of oak first described by us), is on the road from Vera Cruz to the eity of Mexico, a little below the Venta del Eneero, 2860 (3048 E.) feet above the sea. On the western side of the highlands between the city of Mexico and the Pacific, the limit is rather lower down, for oaks begin to be found near a hut called Venta de la Moxonera, between Aeapuleo and Chilpanzingo, at an absolute elevation of 2328 (24.80 E .) feet. I found a similar difference in the height of the lower limit of pine woods on the two sides of the continent. On the Pacifie side, in the Alto de los Caxones north of Quaxiniquilapa, we found this limit for Pinus Montezumæ (Lamb.), which we at first took for Pinus oeeidentalis (Swartz), at an elevation of 3480 (3709 E.) feet ; while towards Vera Cruz, on the Cuesta del Soldado, pines are first met with at a height of 5610 (5950 E. .) feet. Therefore both the kinds of trees spoken of above, oaks and pines, descend lower: on the side of the Pacific than they do on the side of the Antillean sea. In ascending the Cofre di Perote, I found the upper limit of the oaks 9715 (10354 E.) feet, and that of the Pinus Monterume at 12138 (12936 E.) feet above the sea, or almost 2000 (2132 E.) feet higher than the summit of Etna. Considerable quantities of snow had fallen at this elevation in the month of February.

The more considerable the heights at which the Mexican Coniferex are first met with, the more striking it appears to find in the Tsland of Cuba (where, indeed, on the borders of the torrid zone, northern breezes sometimes cool the atmosphere down to $6 \frac{1^{\circ}}{}{ }^{\circ}$ Reaumur, $46^{\circ} .6$ Fal..), another species of pine (P . oceidentalis of Swartz), growing in the plains or on the low hills of the Isla de Pinos, intermixed with palms and mahogany trees (Swietenias). Columbus mentions a small pine wood (Pinal) in the journal of his first voyage (Diario del 25 de Nov. 1492), near Cayo de Moya, on the north-east of the Island of Cuba. In Hayti also, Pinus oceidentalis deseends from the mountains to the sea-shore, near Cape Samana. The trunks of these Pines, earried by the Gulf-stream to the Islands of Graeiosa and Fayal in the Azores, were among the ehief iudieations from which the great discoverer inferred the existenee of unknown lands to the west. (See my Examen crit., T. ii. p. 246-259.) Is it true that in Jamaiea, notwithstanding the lieight of its mountains, Pinus oceidentalis is entirely wanting? We may also ask what is the speeies of Pinus found on the eastern coast of Guatimala, as P. tenuifolia (Benth.) probably belongs only to the mountains near Chinanta?

If we east a general glanee on the species which form the upper limits of arboreseent vegetation in the northern hemisphere, from the frigid zone to the equator, we find, beginning with Lapland, that according to Wahlenberg, on the Sulitelma Mountain (lat. 68°) it is not needle-trees which form the upper limit, but that birches (Betula alba) extend much higher up than Pinus sylvestris; -whilst in the tem-
perate zone, in the Alps (lat. $45 \frac{33^{\circ}}{4}$), Pinus picea (Du Roi) advances highest, leaving the birches behind ; and in the Pyrences (lat. $42 \frac{1}{2}^{\circ}$), Pinus uncinata (Ram.) and P. sylvestris var. rubra: within the tropies, in lat. $19^{\circ}-20^{\circ}$, in Mexico, Pinus Montezumie leaves far behind Alnus toluccensis, Quercus spicata, and Q. crassipes; while in the snow mountains of Quito at the equator, Escallonia myrtilloides, Aralia avicemnifolia, and Drymis winteri, take the lead. The last-named tree, which is identical with Drymis granatensis (Mut.) and Wintera aromatica (Murray), presents, as Joseph Hooker las shewn (Flora Antaretica, p. 229), the striking example of the uninterrupted extension of the same species of tree from the most southern part of Tierra del Fuego and Hermit Island, where it was discovered by Drake's Expedition in 1577, to the northern highlands of Mexico; or through a range of 86 degrees of latitude, or 5160 geographical miles. Where it is not birches (as in the far north), but needle trecs (as in the Swiss Alps and the Pyrenees), which form the limit of arborescent vegetation on the highest mountains, we find above them, still nearer to the snowy summits which the gracefully elwreath with their bright garlands, in Europe and Western Asia, the Alp roses, the Rhododendra,-which are replaced on the Silla de Caracas and in the Peruvian Paramo de Saraguru by the purple flowers of another genus of Ericacer, the beautiful race of Befarias. In Lapland the needle-trees are immediately followed by Rhododendron laponicum ; in the Swiss Alps by Rhododendron ferrugincum and R. hirsutum ; in the PYrenees by the R. ferrugineum only ; and in the Caucasus by
R. eaueasieum. Deeandolle found the Rhododendrou ferrugineum growing singly in the Jura (in the Creux de Vent) at the moderate altitude of 3100 to 3500 (3304 to 3730 E .) feet, 5600 (5968 E .) feet lower down than its proper elevation. If we desire to trace the last zone of vegetation nearest to the snow line in the tropics, we must name, from our own observations, in the Mexican part of the tropieal zone, Cricus nivalis and Chelone gentianoides; in the cold mountain regions of New Granada, the woolly Espeletia grandiflora, E. corymbosa and E. argentea; and in the Andes of Quito, Culcitium rufescens, C. ledifolium, and C. nivale,-yellow flowering Compositr which replace in the last-named mountains the somewhat more northerly Espeletias of New Granada, to which they bear a strong physiognomic resemblanee. This replacement, the repetition of resembling or almost similar forms in countries separated either by seas or by extensive tracts of land, is a wonderful law of nature which appears to prevail even in regard to some of the rarest forms of vegetation. In Robert Brown's family of the Rafflesiex, separated from the Cytineex, the two Hydnoras deseribed by Thunberg and Drege in South Africa (H. africana and H. triceps) have their counterpart in South America in Hydnora americana (Hooker).

Far above the region of alpine plants, grasses, and liehens, and even above the limit of perpetual snow, the botanist sees with astonishment, both in the temperate and tropieal zones, isolated phænogamous plants oeeur now and then sporadieally on rocks whieh remain free from the general
surrounding snowy covering, and which may possibly be warined by heat ascending through open fissures. I have already spoken of the Saxifraga boussingaulti, which is found on the Chimborazo at an elevation of 14800 (15773 E .) feet; in the Swiss Alps, Silene acaulis has been seen at a height of 10680 (11380 E.) feet, being in the first-named ease 600 (640 E .) feet, and in the second 2460 (2620 E .) feet above the limit of the snows, that limit being taken as it was in the two cases respectively at the time when the plants were found.

In our European Conifere, the Red and White Pine shew great and remarkable differenees in respect to their distribution. Whilc in the Swiss Alps the Red Pine (Pinus picea, Du Roi, foliis eomprcsso-tetragonis; uufortunately called by Linnreus, and by most of the botanists of the present day, Pinus abies!) forms the upper limit of arborescent vegetation at a mean height of 5520 (5883 English) fect, only an occasional low growing mountain-alder (Alnus viridis, Dec., Betula viridis, Vill.) advaneing now and then still ncarer to the snow-line; the White Pine (Pinus abies, Du Roi, Pinus picea, Limu., foliis planis, pectinatodistichis, emarginatis) ccases, aceording to Wahkenberg, more than a thousand feet lower down. The Red Pine does not appear at all in the South of Europe, in Spain, the Λ ppennines, and Greece ; even on the northern slope of the Pyrenecs it is scen only, as Ramond remarks, at great elevations, and is entirely wanting in the Caueasus. The Red Pine advances in Scandinavia farther to the north than the White Pine, of which last-mamed tree there is in Greece
(on Mounts Parnassus, Taygetus, and (Eta) a long needled varicty (foliis apiec integris, breviter mucronatis), the Abies Apollimis of Link. (Limnæa, Bd. xv. 1841, S. 529 ; and Endliehcr, Synopsis Coniferarum, p. 96.)

On the Himalaya the Conifero are distinguished by the great thickness and height of their trunks, and by the length of their leaves. The Deodwara Cedar, Pinus deodara (Roxb.), -(properly, in Sanscrit, dêwa-dâru, timber of the Gods), -which is from 12 to $13 \frac{1}{2}$ feet thick, is the great ornament of the mountains. It grows in Nepaul to 11000 (11720 E.) feet above the level of the sea. More than 2000 years ago the Deodara supplied the materials for the ficet of Ncarchus on the Hydaspes (the present Behut). In the valley of Dudegaon, north of the copper mines of Dhunpour in Nepaul, Dr. Hoffmeister, so early lost to science, found the Pinus longifolia of Royle (the Tschelu Pine) growing among tall stems of the Chamærops martiana of Wallich. (Hoffmeister's Briefe aus Indien wahrend der Expedition des Prinzen Waldemar von Preussen, 1847, S. 351.) Such an intcrmixture of pineta and palmata had cxcited the surprise of the companions of Columbus in the New Continent, as a friend and cotemporary of the Admiral, Petrus Martyr Anghiera, has informed us. (Dee. iii. lib. 10, p. 68.) I saw myself this intermixture of pines and palins for the first time on the road from Aeapulco to Chilpanzingo. The Himalaya, like the Mexiean highlands, has, besides Pines and Cedars, also the forms of Cypresses (Cupressus torulosa (Don), of Yevs (Taxus wallichiana, Zuecar.), of Podocarpus (P. nereifolia, Robert Brown), and of

Juniper (Juniperus squamata, Don., and J. excelsa, Bieberst; Juniperus exeelsa is also found at Schipke in Thibet, in Asia Minor, in Syria, and in the Greek Islands). Thnja, Taxodium, Larix, and Arauearia, are forms found in the Ners Coutinent, but wanting in the Himalaya.

Besides the 20 speeies of Pines which we already know from Mexico, the United States of North Ameriea, whieh in their present extent reaeh to the Shores of the Paeific. have 4.5 deseribed speeies, while Europe has only 15. There is a similar differcnee in respect to Oaks : i.e. greater variety of forms in the New Continent which extends continuously through a greater extent of latitude. The reeent very exaet researehes of Siebold and Zuecarini laave, however, completely refuted the previous belief, that many Luropean species of Pines extend also aeross the whole of Northern Asia to the Islands of Japan, and even grow there, interspersed, as Thime berg has stated, with genuine Mexican species, the Wermouth Pine, Pinus Strobus of Limmeus. What Thunberg took for European Pines are wholly different and distinct species. Thunberg's Red Pine (Pinus abies, Limu.) is P. polita, (Sieb.) and is often planted near Buddhistic temples; his common Seotch Fir (Pinus sylvestris) is P. Massoniana (Lamb.) ; his P. cembra (the Gernan and Siberian pine with eatable seeds) is P. parvifora (Sieb.) ; his common Larch (P. larix) is P. leptolepis (Sieb.) ; and his supposed Thaxus baccata, the fruits of which are eaten by Japanese courtiers in case of long-protracted court ceremonials, (Thumberg, Flora Juponiea, p. 275), constitutes a distinct genus, and is the Cephalotaxus drupacea of Siebold.

The Islands of Japan, notwithstanding the vicinity of the Continent of Asia, have a very distinct character of vegetation. Thunberg's supposed Japanese Weymouth Pine, (Pinus Strobus) which would offer an important phenomenon, is only a planted tree, and is besides quite distinct from the American species of Pine. It is Pinus korajensis (Sieb.), and has been brought to Nipon from the peniinsula of Corea, and from Kamtschatka.

Of the 114 species of the Genus Pinus with which we are at present acquainted, not one belongs to the Southerm Hemisphere, for the Pinus merkusii described by Junghuhn and De Vriese belongs to the part of the Island of Sumatra which is north of the Equator, to the district of the Battas ; and Pinus insularis (Endl.) although it was at first given in Loudon's Arboretum as P. timoriensis, really belongs to the Philippines. Besides the Genus Pinus, the Southern hemisphere, according to the present state of our now happily advancing knowledge of the geograply of plants, is entirely without species of Cupressus, Salisburia (Gingko), Cuminghamia (Piuus lanceolota, Lamb.) Thuja, (one of the species of which, Th. gigantea, Nutt., found on the banks of the Columbia, has a height of above 180 Eng. feet), Juniperus, and T'axodium (Mirbel's Sehubertia). I include the last-named genus with the less hesitation, as a Cape of Good Hope plant (Sprengel's Schubertia capensis) is 110 Taxodium, but constitutes a genus of itself, Widringtonia, (Endl.) in quite a different division of the family of Coniferæ.

This absence, from the Southern Hemisphere, of true Abietinex, Juniperinex, Cupressinex, and all the Taxodinex, as
well as of Torreya, Salisburia adiantifolia, and Ccphalotaxus from among the Taxince, recalls forcibly the obscurity which still prevails in the conditions which have determined the original distribution of vegetable forms, a distribution which cannot be sufficiently and satisfactorily explained solely by similarity or diversity of soil, thermic relations, or meteorological phenomena. I remarked long ago that the Southern Hemisphere for example has many plants belonging to the natural family of Rosaceæ, but not a single species of the genus Rosa. We learn from Claude Gay that the Rosa chilensis described by Meyen is only a wild variety of the Rosa centifolia (Linn.), which has been for thousauds of years a European plant. Such wild varieties, (i. e. varieties which lave bccome wild) occupy large tracts of ground in Chili, near Valdivia and Osorno. (Gay, Flora Chilensis, p. 340.$)$

In the tropical region of the Northern hemisphere we also found ouly one single native rose, our Rosa montezuna, in the Mexican highlands near Moran, at an elevation of 8760 (9336 Engl.) fcet. It is one of the singular phenomena in the distribution of plants, that Chili, which has Palms, Pourretias, and many species of Cactus, has no Agave; although A. ancricana grows luxuriantly in Roussillon, near Nicc, near Botzen and in Istria, laving probably been introduced from the New Continent since the end of the 16th century, and in Amcrica itself forms a continuous tract of vegetation from Northern Mexico across the isthmus of Panama to the Southern part of Peru. I have long bclieved that Calccolarias were limited like Roscs exclusively to one side of the Equator; of the 22 species which we
brought back with us, not one was collected to the north of Quito and the Volcano of Pichincha; but my friend Professor Kunth remarks that Calceolaria perfoliata, which Boussinganlt and Captain Hall found at Quito, advances to New Granada, and that this species, as well as C. integrifolia of Santa Fé de Bogotá, were given by Mutis to the great Limæus.

The species of Pinus which are so frequent in the tropical Antilles and in the tropical mountains of Mexico do not pass the isthmus of Panama, and are not found in the equally mountainous parts of the tropical portion of South America, and in the high plains of New Granada, Pasto, and Quito. I have been both in the plains and on the mountains from the Rio Sinu, near the isthmus of Panama, to $12^{\circ} \mathrm{S}$. lat. ; and in this tract of almost 1600 geographical miles the only forms of needle-trees which I saw were a Taxus-like species of Podocarpus with stems 60 (64 Eng.) feet high (Podocarpus taxifolia), growing in the Pass of Quindiu and in the Paramo de Saraguru, in $4^{\circ} 26^{\prime}$ north, and $3^{\circ} 40^{\prime}$ south latitude; and an Ephedra (E. anericana) near Guallabamba, north of Quito.

Among the Coniferee there are common to the northern and southern hemispheres the genera Taxus, Gnetum, Ephedra, and Podocarpus. The last-named genus was distinguished from Pinus long before L'Heritier by Columbus limself, who wrote on the 25th of November, 1492: "Pinales en la Serrania de Haiti que no llevan piñas, pero frutos que parecen azeytunos del Axarafe de Sevilla." (See my Examen crit. T. iii. p. 24.) There are species of Taxus from the Cape of Good Hope to $61^{\circ} \mathrm{N}$. lat. in Scandinavia,
or through more than 95 degrees of latitude; Podocarpus and Ephedra extend almost as far. In Cupuliferæ, the species of oak which we are aecustomed to regard as a northern form do not indeed pass beyond the equator in South America, but in the Indian Arehipclago they re-appear in the southern hemisphere in the Island of Java. To the southern hemisphcre belong exelusively ten gencra of Coniferæ, of which I will name herc only the principal: Araucaria, Dammara (Agathis Sal.), Frencla (with cighteen New Holland species), Daerydium and Lybocedrus, which is found both in New Zcaland ana at the Straits of Magellan. New Zealand has one species of the genus Dammara (D. australis) and no Araucarna. In New Holland in singular contrast the case is opposite.

Among tree vegetation, it is i. 'he form of ncedle-trees that Nature presents to us the greatcst extension in length (longitudinal axis) : I say among tree vegetation, beeausc, as wc have already remarked, among occanic Algre, Macrocystis pyrifera, which is found bctwecn the coast of California and $68^{\circ} \mathrm{S}$. lat., often attains from 370 to 400 (about 400 to 430 Eng.) feet in length. Of Conifcree, (sctting aside the six Araucarias of Brazil, Chili, New Holland, Norfolk Island, and New Caledonia), the lofticst arc those whiel belong to the northern temperate zone. As in the family of Palms we found the most gigantic, the Ceroxylon andicola, above 180 Fronch (192 English) fect high, in the temperate mountain elimate of the Andes, so the lofticst Conifcre belong, in the northcrn hemisphere, to the temperatc nortll-west coast of Ameriea and to the Roeky Mountains
(lat. $40^{\circ}-52^{\circ}$) ; and in the southern hemisphere to New Zealand, Tasmania or Van Diemen Island, the south of Chili and Patagonia (between 43° and 50° latitude). The most gigantie forms belong to the genera of Pinus, Sequoia (Endl.), Arauearia, and Daerydium. I propose to name only those speeies which not only attain but often exeeed 200 Freneh feet (213 Eng.) In order to afford a standard of comparison, it should be remarked that in Europe the tallest Red and White Pines, the latter espeeially, attain about 150 or 160 ($160-170$ Eng.) feet ; that, for example, in Silesia the Pine of the Lampersdorf Forest near Frankenstein enjoys great eelebrity, although, with a eireumference of 17 English feet, its height is only 153 Prussian, or 148 Freneh, or 158 English ${ }^{\text { }}$. ${ }^{\text {. (Compare Ratzeburg, Fur- }}$ streisen, 1844, S. 287.)

Pinus grandis (Douglas) in New California attains 224 English feet.

Pinus frémontiana (Endl.), also in New California, probably attains the same stature as the preceding. (Torrey and Frémont, Report of the Exploring Expedition to the Roeky Mountains in 1844, p. 319.)

Daerydium eupressinum (Solander), from New Zealand, 213 English feet.

Pinus lambertiana (Dougl.,, in North-west Ameriea, 224-235 English feet.

Araucaria execlsa (R. Brown), the Cupressus eolumnaris of Forster, in Norfolk Island and the surrounding roeky islets, 181-224 English feet. The six species of Arauearia
which have beeome known to us hitherto, fall, aeeording to Endlieher, into two groups:
a. The American group (Brazil and Chili) : A. brasiliensis (Rieh.), between 15° and $25^{\circ} \mathrm{S}$. lat.; and A . imbricata (Pavon), between 35° and $50^{\circ} \mathrm{S}$. lat., the latter growing to 234-260 English feet.
b. The Australian group: A. bidwilli (Hook.) and A. cunninghami (Ait.) on the cast side of Ncw Holland ; Λ. exeelsa on Norfolk Island, and A. eookii (R. Brown) in New Calcdonia. Corda, Presl. Göppert, and Endlieher, have already discovered five speeics of Arauearias belonging to the aneient world in the lias, in chalk, and in beds of lignite (Fndlicher, Coniferre fossiles, p. 301.)

Pinus Douglasii (Sabine), in the valleys of the Rocky Mountains and on the banks of the Columbia River (north lat. $43^{\circ}-52^{\circ}$). The meritorious Scotch botanist from whom this tree is named perished in 1833 by a dreadful death in colleeting plants in the Sandwich Islands, where he had arrived from New California. He fell inadvertently into a pit in which a fierec bull belonging to the cattle which have beeome wild had previously fallen, and was gored and trampled to death. By exact measurencut a stem of Pinus Douglasii was $57 \frac{1}{2}$ Fnglish feet in girth at 3 feet above the ground, and its height was 245 English fcet. (Scc Journal of thic Royal Institution, 1826, p. 325.)

Pinus trigona (Rafinesque), on the western declivity of the Roeky Mountains, described in Lewis and Clarke's Travels to the Source of the Missouri River and across the Amcriean Continent to the Paeifie Ocean (1804-1806), 1814, p. 456. This gigantie Fir was measured with great care ; the
trunks were often 38 to 45 English feet in girth, 6 feet above the ground: one tree was 300 English feet high, and the first 192 feet were without any division into branches.

Piuns Strobus grows in the eastern parts of the United States of North America, especially on the east of the Mississipi ; but it is found again in the Roeky Mountains from the sources of the Columbia to Mount Hood, or from 43° to $54^{\circ} \mathrm{N}$. lat. It is ealled in Europe the Weymouth Pine and in North Ameriea the White Pine: its ordinary height does not exceed 160 to 192 Eng. feet, but several trees of 250 to 266 Eng. feet lave been seen in New Hampshire. (Dwight, Travels, Vol. i. p. 36 ; and Emerson's Report on the Trees and Shrubs growing naturally in the Forests of Massachusetts, 1846, p. 60-66.)

Sequoia gigantea (Endl.), Condylocarpus (Sal.) from New California ; like Pinus trigona, about 300 English feet high.

The nature of the soil, and the eireumstanees of heat and moisture on which the nourishment of plants depend, no doubt influence the degree to whieh they flourish, and the inerease in the number of individuals in a species; but the gigantic height attained by the trunks of a fow among the many other nearly allied speeies of the same genus, depends not on soil or elimate; but, in the vegetable as well as in the animal kingdom, on a specifie organisation and inherent natural disposition. I will cite as the greatest eontrast to the Araucaria imbrieata of Chili, the Pinus Douglasii of the Columbia River, and the Sequoia gigantea of New California, which is from 245 to 300 Eng.
feet in height, -not a plant takcu from among a vegetation stunted by cold either of latitude or elevation, as is the case with the small Willow-trec, two inches in height, (Salix arctica), -but a small phenogannous plant belonging to the fine climate of the southern tropic in the Brazilian province of Goyaz. The moss-like 'Tristicha hypnoïdes, from the monocotylcdonous family of the Podostemex, hardly reaches the height of 3 lines ($\frac{27}{100}$ ths, or less than three-tenths of an English inch.) "En traversant le Rio Claro dans la Province de Goyaz," says an cxcellent observer, Auguste de St.-IIilaire, "j’aperęus sur unc pierre une plante dont la tige n’avoit pas plus de trois lignes de haut et que je pris d'abord pour une mousse. C'étoit cependant une plante phanérogame, le Tristicha hypıoïdes, pourvue d'organes sexuels comme nos chênes et les arbres gigantesques qui à l'entour élevaient leur cimes majcstueuses." (Auguste de St.-Hilaire, Morphologie Végétale, 1840, p. 98.)

Besides the height of their stems, the length, breadth, and position of the leaves and fruit, the form of the ramification aspiring or horizontal, and spreading out like a canopy or umbrella, -the gradations of colour, from a fresh grecu or silvery grey to a blackish-brown, all give to Conifere a peculiar physioginomy and character. The needles of Douglas's Pinus lanbertiana from North-west America are five French iuches long; those of Pinus excelsa of Wallich, on the southern declivity of the Himalaya, near Katmandoo, seven French inches ; and those of P. longifolia (Roxb.), from the mountains of Kashmecr, above a French foot long. In one
and the same speeies the length of the leaves or needles varics in the most striking mamer from the influenee of soil, air, and elevation above the level of the sea. In travelling in an east and west direetion through eighty degrces of longitude (above 3040 gcographical miles), from the mouth of the Sehcldt through Europe and the north of Asia to Bogoslowsk in the northern Ural and Barnaul beyond the Obi, I have found differences in the length of the needles of our common Fir (Pinus sylvestris) so great, that sometimes a traveller may be misled by the shortness and rigidity of the leaves, to think that he has diseovercd a now speeies allicd to the Mountain Pinc, P. rotundata (Link), P. urcinata (Ram.) Link has justly remarked (Linnæa, Bd. xv. 1841, S. 489) that such instances may be regarded as trausitions to Ledebour's P. sibirica of the Altai.

In the Mcxican highlands I have looked with partieular pleasure on the dclicate eheerful grcen of the Ahuahuete, Taxodium distichum (Rich.), Cupressus disticha (Limn.), which, however, is much given to shedding its leaves. In this tropical region the above-mentioncd tree, (of which the Aztec name signifies watcr-drum, from atl, water, and luchuctl, a drum, the trunk swelling to a great thickncss), flourishes 5400 and 7200 (5755 and 7673 English) feet above the level of the sea, while in the United Statcs of North America it is found in the low grounds of the cypress swamps of Louisiana, in the 43 d parallcl. In the Southern States of North Ameriea the Taxodium distichum (Cyprès chauve) rcaches, as in the Mexiean highlands, the height of 120 (128 English) feet, and the
enormous thickness of 30 to 37 (32 to 39 English) feet, in diameter measured near the ground. (Emerson, Report on the Forests, pp. 49 and 101). The roots present the striking phenomenon of woody excreseences whieh project from 3 to $4 \frac{\mathrm{I}}{2}$ feet above the earth, and are conieal and rounded, and sometimes tabular. Travellers have eompared these excresceuces in places where they are very numerous to the grave tablets in a Jewish burying-ground. Auguste de St. Hilaire remarks with much acuteness:-"Ces excroissances du Cyprès chauve, ressemblant à des bornes, peuvent êtrc regardées eommc des exostoses, et comme elles vivent dans l'air, il s'en éehapperoit sans doute des bourgeons adventifs, si la nature du tissu des plantes conifères ne s'opposoit au développement des germes cachés qui doment naissanee is ees sortes de bourgeons." (Morphologic végétale, p. 91). A singularly enduring power of vitality in the roots of trees of this family is shown by a phenomenon which has excited the attention of vegetable physiologists, and appears to be of only very rare oecurrence in other dicotyledonous trees. The remaining stumps of White Pines which have been cut down continuc for several years to make freshl laycrs of wood, and to increase in thickness, without putting forth new shoots, leaves, or branches. Göppert believes that this only takes place by means of root nourishment received by the stump from a neighbouring living tree of the same species; the roots of the living individual which has branches and leaves having become organieally united with those of the cut tree by their having gromn together. (Göppert, Beobachtungen über das sogenaminte Umwallen
der Tünnen-stöcke, 1842, S. 12). Kunth, in his excellent new "Lelrrbuel der Botanik," objects to this explanation of a phenomenon whiel was known, imperfeetly, so early as Theophrastus. (Hist. Plant. lib. iii. eap. 7, pp. 59 and 60, Selmeider.) He considers the ease to be analogous to what takes place when metal-plates, nails, earved letters, and even the antlers of stags, beeome enclosed in the wood of a growing tree. "The eambium, i.e. the viseid seeretion out of whieh new elementary organs are construeted either of woody or cellular tissue, continues, without referenee to the buds (and quite apart from them), to deposit new layers of wood on the outermost layer of the ligneous substance." ('Ill. i. S. 143 and 166.)
The relations whieh have been alluded to, between elevation above the level of the sea and geographieal and thermal latitude, manifest themselves often when we eompare the tree vegetation of the tropical part of the chain of the Andes with the vegetation of the north-west eoast of Ameriea, or with that of the slores of the Canadian Lakes. Darwin and Claude Gay have made the same remark in the Southern Hemisphere, in advaneing from the liigh plains of Cliili to Eastern Patagonia and Tierra del Fuego, where they found Drymis winteri and forests of Fagus antaretiea and Fagus forsteri forming a uniform eovering throughout long eontinuous lines rumning from north to south and deseending to the low grounds. We find even in Europe small deviations (dependent on loeal eauses whieh liave not yet been suffieiently examined), from the law of eonstant ratio as regards stations or habitat of plants between elevation above the sea and
geographical latitude. I would reeall the limits, in respect to elevation, of the birch and the common fir in a part of the Swiss Alps, on the Crimsel. The fir (Pinus sylvestris) extends to 5940, and the birch (Betula alba) to 6450 French (6330 and 6906 English) feet; above the birches there is a highcr line of Pinus cembra, whose upper limit is 6890 (7343 English) feet. Here, therefore, we have the bireh intervening between two zoncs of Conifere. Aeeording to the excellent observations of Lcopold Von Buch, and the rceent oncs of Martins, who also visited Spitzbergen, the following gcographical limits were found in Lapland:Pinus sylvcstris extends to 70°; Betula alba to $70^{\circ} 40^{\prime}$; and Betula nana quite up to 71°; Pinus cembra is altogether wanting in Lapland. (Compare Unger über den Einfluss des Bodens auf die Verthcilung der Gewiachse, S. 200; Lindblom, Adnot. in geographieam plantarum intra Sueciain distributionem, p. 89 ; Martins, in the Annales des Seiences naturelles, T.' xviii. 1842, p. 195).

If the length and arrangement of the necdle-slaped leaves go far to detcrmine the physiognomic character of Conifere, this character is still more influcned by the specifie diffcrenees in the breadth of the ncedles, and the degree of devclopment of the parenchyma of the appendicular organs. Several species of Ephedra may be called almost leafless; but in Taxus, Aranearia, Dammara (Λ gathis), and tho Salisburia adiantifolia of Smith (Gingko biloba, Linn.), the surfaces of the leaves become gradually. broader. I have hicre placed the genera in morphological succession. The speeifie manes first chosen by botanists
testify in favour of such a suceession. The Dammara orientalis of Borneo and Java, often above ten feet in diameter, was first ealled loranthifolia; and Dammara australis (Lamb.) of New Zealand, which is 140 (149 English) feet ligh, was first ealled zamæfolia. In both these species of trees the leaves are not needles, but "folia alterna oblongo-laneeolata, opposita, in arbore adultiore sxpe alterna, enervia, striata." The under surface of the leaves is thiekly set with porous openings. This passage or transition of the appendicular system from the greatest contraetion to a broadleaved surface, like all progression from simple to compound, has at onee a morphologieal and a physiognomie interest (Link, Urwelt, Th. I. 1834, S. 201-211). The shortstalked, broad, eleft leaf of the Salisburia (Kümpfer's Gingko) has also its breathing pores only on the under side of the leaf. The original native country of this tree is unknown to us. By the comneetion and intereourse of Buddhistic communities it early passed from the templegardens of China to those of Japan.

In travelling from a port on the Paeific to Mexico, on our way to Europe, I witnessed the singular and painful impression whieh the first sight of a pine forest near Chilpanzingo made on one of our eompanions, who, born at Quito under the equinoctial line, had never seen needle trees, or trees with "folia acerosa." It seemed to him as if the trees were leafless; and he thought that as we were travelling towards the eold North, he already recognised in this extreme contraetion of the vegetable organs the chilling and impoverishing influence of the pole. The traveller
whose impressions I here describe, whose name neither my friend Bonpland or myself can pronounce without regret, was Don Carlos Montufar (son of the Marquis of Sclvalegre), an excellent young man, whose noble and ardent love of freedom led him a few years later, in the war of independence of the Spanish Colonies, to meet courageously a violent death, of which the dishonour did not fall on him.
$\left.{ }^{(24}\right)$ p. 26.-" The Pothos-form, Aroidece."
Caladium and Pothos are exclusively forms of the tropical world; the species of Arum belong more to the temperate zone. Arum italicum, A. dracunculns, and A. tenuifolium, extend to Istria and Friuli. No Pothos has yet been discovered in Africa. India las some species of this genus (Pothos scandens and P. pinnata) which are less beautiful in their physiognomy, and less luxuriant in their growth, than the American species. We discovered a beautiful and truly arborescent member of the group of Aroidex (Caladium arboreum) having stems from 16 to 21 English fect ligh, not far fron the convent of Caripe, to the East of Cumanas. A very curious Caladium (Culcasia scandens) has been discovered by Beauvois in the kingdom of Benin. (Palisot de Beauvois, Elore d’Oware et de Benin, 'T. i. 1804, p. 4, pl. iii.) In the Pothos-form the parenchyma is sometines so much extended that the surface of the leaf is interrupted by holes as in Calla pertusa (Kunth), and Dracontium pertusum (Jacguin), which we collected in the woods round Cumana. The Aroide.e first led attention to the remarkable
phenomenon of the fever-heat, which in certain plants is sensible by the thermometer during the development of their inflorescenee, and which is comneeted with a great and temporary inerease of the absorption of oxygen from the atmosphere. Lamarek remarked in 1789 this inerease of temperature at the time of flowering in Arum italieum. Aceording to Hubert and Bory de St. Vincent the vital heat of Arum cordifolium in the Isle of France was found to rise to 35° and 39° Reaumur, ($110^{\circ} .6$ and $119^{\circ} .6$ Fahr.) while the temperature of the surrounding air was only $15^{\circ} .2 \mathrm{R}$. ($66^{\circ} .2 \mathrm{~F}$.) Even in Europe, Beequerel and Bresehet found as much as $77 \frac{1}{2}^{\circ}$ differenee, Reaumur ($39^{\circ} .4$ Fahr.) Dutroehet remarked a paroxysm, an alternate decrense and increase of vital heat, which appeared to reach a double maximum in the day. Théodore de Saussure observed analogous augmentations of temperature, though to a less amount, only from $0^{\circ} .5$ to $0^{\circ} .8$ of Reaumn's scale ($1^{\circ} .15$ to $l^{\circ} . S$ Fahr.), in plants belonging to other families; for example, in Bignomia radieans and Cueurbita pepo. In the latter plant the use of a very sensitive thermoseope shews that the inerease of temperature is greater in the male thian in the female plant. Dutrochet, who previous to his early death made such meritorious researehes in physics and in vegetable physiology, found by means of therno-magnctic multiplieators (Comptes rendus de l’Institut, T. viii. 1839, p. 454, T. ix. p. 614 and 781) an inerease of vital heat from $0^{\circ} .1$ to $0^{\circ} .3$ Reaumur, $\left(0^{\circ} .25\right.$ to $0^{\circ} .67$ Fahr.) in several young plants (Euphorbia lathyris, Lilium eandidum, Papaver sommiferum), and even anong funguses in several specios of Agariens and Lycoperdun.

This vital heat disappeared at night, but was not prevented by placing the plants in the dark during the day-time.
A yct more striking physiognomic contrast than that of Casuarineæ, Needle trecs, and the almost leaflcss Pcruvian Colletias, with Aroideæ, is presented by the comparison of those types of the greatest contraction of the lcafy organs with the Nymphæaceæ and Nelumbones. We find in these as in the Aroider, leaves, in which the cellular tissue forming their surfaee is extended to an extreme degree, supported on long fleshy succulent leaf-stalks; as in Nymphrea alba; N. lutea; N. thermalis (onee ealled N. lotus, from the hot spring of Pezce near Groswardein, in Hungary); the speeics of Nelumbo; Euryale amazoniea of Pöppig; and the Victoria Rcgina discovercd in 1837 by Sir Robert Schomburgk in the River Berbice in British Guiana, and which is allied to the prickly Euryale, although, aecording to Lindley, a very different genus. The round leaves of this magnificent water plant are six feet in diameter, and are surrounded by turned up margins 3 to 5 inehes high, light grecu inside, and bright erimson outsidc. The agrecably perfumed flowers, twenty or thirty blossoms of which may be seen at the same time within a small space, are white and rose eoloured, 15 inehes in diancter, and have many hundred petals. (Rob. Schomburgk, Rcisen in Guiana und am Orinoko, 1841, S. 233.) Pöppig also gives to the leaves of his Euryale amazonica which he found near Tefe, as much as 5 fcet 8 inehes Freneh, or 6 English feet, diameter. (Pöppig, Reise in Chile, Pcru und auf dem Amazonenstrome, Bd. ii. 1836, S. 432.) If Euryale and vol. II.

Victoria are the genera which present the greatest extension in all dimensions of the parenchyma of the leaves, the greatest known dimensions of a flower belong to a parasitical Cytinea, the Rafflesia Arnoldi (R. Brown), discovered by Dr. Arnold in Sumatra, in 1818: it has a stemless flower of three English feet diameter, surrounded by large leaf-like scales. Fungus-like, it has an animal smell, resembling beef.
> ${ }^{(25)}$) p. 26.—"Lianes, rope-plants, ('Bush ropes ;' in Spanish, Vejuccos.")

According to Kunth's division of the Bauliniex, the true genus Bauhinia belongs to the New Continent: the African Bauhinia, B. rufescens, (Lam.) is a Pauletia (Cav.) a genus of which we found some new specics in South America. So also the Banistcrias, from among the Malpighiaceex, are properly an American form; although two species are natives of India, and one specics, Banisteria leona, described by Cavanilles, is a native of Western Africa. Within the tropics and in the Southern Hemisphere we find among the most different familics of plants the twining rope-like climbers which in those regions render the forests at once so impenetrable to man, and on the other hand so accessible and habitable to the Quadrumanæ (or Monkeys) and to the Cercoleptes and the small tiger-cats. The rapid ascent to the tops of lofty trees, the passage from tree to trec, and even the crossing of streams by whole herds or troops of gregarious animals, are all greatly facilitated by these twining plants or Lianes.

In the South of Europe and in North America, Hops
from among the Urticex, and the spccies of Vitis from among the Ampelider, belong to the class of twining climbers, and between the tropics we find climbing Grasses or Gramincæ. We have seen in the plains of Bogota, in the pass of Quindiu, in the Andes, and in the Quina-producing forests of Loxa, a Bambusacea allied to Nastus, our Chusquea scandens, twine round massive and lofty trunks of trecs adorneẻ at the same time with flowering Orchidcæ. The Bambusa scandens (Tjankorreh), which Blume found in Java, belongs probably either to the genus Nastus or to that of Chusquea, the Carrizo of the Spanish settlers. Twining plants appear to me to be eutircly absent in the Pinc-woods of Mexico, but in New Zcaland, besides the Ripogonum parviflorum of Robert Brown, (a climber belonging to the Smilacce which renders the forests almost impenetrablc), the swcet-smelling Freycinetia Banksii, which belongs to the Pandanere, twines round a gigantic Podocarpus 220 English feet high, the P. dacryoides (Rich), called in the native language Kakikatea. (Dieffenbach, Travels in New Zealand, 1843, Vol. i. p. 426.)

With climbing Gramince and Pandancer are contrastcd by their beautiful and many-coloured blossoms the Passifloras (among which, however, we cven found an arboresccut sclfsupporting species, Passiflora glauca, growing in the Andes of Popayan, at an elevation of 9840 Frcnch (10487 English) feet) ;-the Bignoniaccex, Mutisias, Alströmerias, Urvillcx, and Aristolochias. Among the latter our Aristolochia cordata has a crimson-coloured flower of 17 English inches diameter ! " flores gigantci, pucris mitræ instar inscrvientes." Many of these twining plants have a peculiar physiognomy and
appearanee produced by the square shape of their stems, by flattenings not eaused by any external pressure, and by riband-like wavings to and fro. Cross sections of Bignouias and Banistcrias shew erueiform or mosaic figures produecd by the mutual pressure and interpenetration of the stems which twine around caeh other. (See very aceurate drawings in Adrien de Jussicu's Cours de Botanique, p. 77-79, fig. 105-108.)

${ }^{(26)}$ p. 27.-"The form of Aloës."

To this group of plants, eharacterised by so great a similarity of plysiognomy, bclong; Yucea aloifolia, which extends as far north as Florida and South Carolina; Y. angustifolia (Nutt.) which advances as far as the banks of the Missouri ; Alctris arborea ; the Dragon-trce of the Canaries and two other Dræcennas from New Zealand ; arborescent Euphorbias; Aloë dichotoma (Limn.) (formerly the genus Rhipidodendrum of Willdenow) ; and the celebrated Koker-boom of Southern Africa with a trunk twenty-one fect high and above four fect thick, and a top of 400 (426 Engl.) feet in eircumfercuce. (Patterson, Reiscu in das Land der Hottentotten und der Kaffern, 1790, S. 55.) The forms which I have thus brought together belong to very different familics: to the Liliacex, Asphodeleæ, Paudaneæ, Amaryllidex, and Euphorbiacere ; all, however, with the exception of the last, bclonging to the great division of the Monocotyledones. A Pandamea, Phytclcphas maerocarpa (Ruiz,) whieh we found in New Granada on the banks of the Magdalena, with its pinnated leaves,
quite resembles in appearance a small palm-tree. This Phytclephas, of which the Indian name is Tagua, is besides, as Kunth remarks, the only onc of the Pandanere found (according to our present knowledge) in the New Continent. The singular Agave-like and at the same time very tall-stcmmed Doryanthes excelsa of New South Wales ${ }_{2}$ which was first described by the acutely observing Correa de Serra, is an Amaryllidea, like our low-growing Narcissuses and Jonquils.

In the Candelabra slape of plants of the Aloë form, we must not coufound the branches of an arborescent stem with flower-stalks. It is the latter which in the American Aloë (Agave Americana, Maguey de Cocuyza, which is entirely wanting in Chili) as well as in the Yucca acaulis, (Magucy de Cocuy) presents in the rapid and gigantic development of the inflorescence a candclabrum-like arrangement of the flowers which, as is well known, is but too transient a phenomenon. In some arborescent Euphorbias, on the other hand, the physiognomic effect is given by the branches and their division, or by ramification properly so called. Lichtcnstcin, in his "Reisen im südlichen Africa" (Th. i. S. 370), gives a vivid description of the impression made upon him by the appearance of a Euphorbia officinarum which he found in the "Chamtoos Rivicr," in the Colony of the Cape of Good Hope ; the form of the tree was so symmetrical that the caudelabrum-like arrangement was regularly repeated on a smaller scale in cach of the subdivisions of the larger branches up to 32 English fect high. All the branches were armed with sharp spines.

Palms, Yuecas, Aloes, tall-stemmed Ferns, some Aralias, and the Theophrasta where I have seen it growing luxuriantly, different as they are in the structure of their flowers, yet offer to the eye in the nakedness (absenee of brauches) of their stems, and in the ornamental charaeter of their tops or erowns, a certain degree of physiognomic resemblance.

The Melanoselinum deeipiens (Hofm.), which is sometimes uprards of 10 or 12 feet ligh, and which has been introduced into our gardens from Madeira, belongs to a peculiar group of arborescent umbelliferous plants to which Araliaeeac are otherwise allied, and with whieh other plants which will doubtless be discovered in course of time will be associated. Ferula, Heracleum, and Thapsia, do indeed attain a considerable height, but they are still herbaceous plants. Melanoselinum is stillalmostentirelyalone as an umbelliferous tree; Bupleurum (Tenonia) fruticosum (Limn.) of the shores of the Mediterranean ; Bubon galbanum of the Cape, and Crithmum maritimum of our sea-shores, are only shrubs. On the other hand, the tropical zone, in which, aceording to the old and very just remark of Adanson, Umbelliferex and Crueifere are almost entirely wanting in the plains, presented to us on the high ridges of the Ameriean Andes the smallest and most dwarf-like of all umbelliferous plants. Among 38 species of plants which we collected at elevations where the mean temperature is below 10° Reaumur ($54^{\circ} .5$ Fah.), there vegetate almost like mosses, and as if they made part of the rock and of the often frozen earth, at an elevation of 12600 (13430 English) feet above the level of the
sea, Myrrhis andieola, Fragosa arctioïdes, and Peetophytum peduneulare, intermingled with whieh there is an equally dwarfed Alpine Draba. The only umbelliferous plants growing in the low grounds within the tropies observed by us in the New Continent were two speeies of Hydroeotyle (H. umbellata and H. leptostaehya) between Havaunah and Batabano ; therefore at the extreme limits of the torrid Zone.

> (27) p. 27.-" The form of Graminece."

The group of arboreseent grasses which Kunth, in his able treatise on the plants eolleeted by Bonpland and myself, has eombined under the name of Bambusaeex, is among the most beautiful adornments of the tropieal world. (Bambu, also ealled Mambu, is a word in the Malay language, but appears aeeording to Buschmann to be of doubtful origin, as the usual Malay expression is buluh, in Java and Madagascar wuluh, voulu.) The number of genera and speeies which form this group has beeu extraordinarily augmented by the 'zeal of botanists. It is now reeognised that the genus Bambusa is entirely wanting in the New Continent, to whiel on the other land Guadua, from 50 to 60 Freneh or about 53 to 64. English feet high, diseovered by us, and Chusquea, exelusively belong; that Arundinaria (Rieh) is eommon to both eontinents, although the speeies are different; that Bambusa and Beesha (Rheed.) are found in India and the Indian Arehipelago, and Nastus in the Island of Bourbon, and in Madagasear. With the exeeption of the tall-elimbing Chusquea the forms whieh have been named may be said to replaee each other morpholo-
gieally in the different parts of the world. In the northern hemisphere, in the valley of the Mississipi, the traveller is gratified, long before reaehing the tropies, with the sight of a form of bamboo, the Arundinaria maerosperma, formerly ealled also Miegia, and Ludolfia. In the Southern Hemisphere Gay has diseovered a Bambusaeea, (a still undeseribed species of Chusquea, 21 English feet high, whieh does not elimb, but is arborescent and self-supporting) growing in southern Chili between the parallels of 37° and $42^{\circ} \mathrm{S}$. latitude; where, intermixed with Drymis ehilensis, a uniform forest eovering of Fagus obliqua prevails.

While in India the Bambusa flowers so abundantly that in Mysore and Orissa the seeds are mixed with honey and eaten like riee, (Buehanan, Journey through Mysore, Vol. ii. p. 341, and Stirling in the Asiat Res. Vol. xv. p. 205) in South Ameriea the Guadua flowers so rarely, that in four years we were only twiee able to proeure blossoms; onee on the unfrequented banks of the Cassiquiare, (the arm whieh eonneets the Orinoeo with the Rio Negro and the Amazons River,) and once in the provinee of Popayan between Buga and Quiliehao. It is striking to see plants in partieular loealities grow with the greatest vigour without produeing flowers: it is thus with European olive trees whieh have been planted for eenturies between the tropics near Quito, 9000 (about 9590 English) feet above the level of the sea, and also in the Isle of France with Walnut-trees, Hazel-nuts, and, as at Quito, olive trees (Olea curopea): see Bojer, Hortus Mauritianus, 1837, p. 291.

As some of the Bambusacere (arborescent grasses) advancc into the temperate zone, so within the tropics they do not suffer from the temperate climate of the mountains. They certainly grow more luxuriantly as social plants from the sea coast to the height of about 2560 English fect; for example, in the province de las Esmeraldas, wcst of the Volcano of Pichincha, where Guadua angustifolia (Bambusa Guadua in our Plantes ćquinoxialcs, T. i. Tab. xx.) produces in its interior much of the siliceous Tabaschir (Sanscrit tvakkschira, ox-milk). In the pass of Quindiu we saw the Guadua growing at an elevation which we found by barometric measurement to be 5400 (5755 Einglish) feet above the level of the Paciic. Nastus borbonicus is called by Bory de St. Vincent a true Alpine plant; he states that it does not descend lower on the declivity of the Volcano in the Island of Bourbon than 3600 (3837 English) feet. This recurrence or repetition as it were at great elevations of the forms characteristic of the hot plains, recalls the mountain group of palms bcfore pointcd out by mc (Kunthia Montana, Ceroxylon andicola, and Oreodoxa frigida), and a grove or thicket of Musaceæ sixteen English feet high (Heliconia, perhaps Maranta), which I found growing isolated at an elevation of 6600 (7034 English) feet, on the Silla de Caraccas. (Rélation hist. T. i. p. 605-606.) As, with the exception of a few isolated herbaceous dicotyledones, grasses form the highest zone of phroogamous vcgetation round the suowy summits of lofty mountains, so also, in advancing in a horizontal direction towards cither pole of the Earth, the phrenogamous vegetation terminates with grasscs.

To my young friend Joseph Hooker, who, but just returned with Sir James Ross from the frozen antarctic regions, is now cxploring the Thibetian portion of the Himalaya, the geography of plants is indebted not only for a grcat mass of important materials, but also for excellent general deductions. Hc calls attention to the circumstance that phænogamous flowering plants (grasses) approach $17 \frac{1}{2}^{\circ}$ nearer to the Northern than to the Southern pole. In the Falkland Islands near the thick masses of Tussack grass (Dactylis crespitosa, Forstcr, according to Kunth a Festuca), and in Ticrra del Fuego or Fuegia, under the shadc of the birch-leaved Fagus antarctica, there grows the same Trisetum subspicatum which extends over the whole range of the Peruvian Cordilleras, and over the Rocky Mountains to Melville Island, Greenland, and Iceland, and which is also found in the Swiss and Tyrolese Alps, in the Altai mountains, in Kamtschatka, and in Campbell Island, south of New Zealand ; therefore, from 54° South to $74 \frac{1}{2}^{\circ}$ North latitudc, or through $128 \frac{1}{2}^{\circ}$ of latitude. "Few grasscs," says Joseph Hooker, in his Flora Antarctica, p. 97, "have so wide a range as Trisetum subspicatum, (Beauv.) nor am I acquainted with any other Arctic species which is equally an inhabitant of the opposite polar regions." The South Shetland Islands, which arc divided by Bransfield Strait from D'Urville's Terrc de Louis Philippe and the Volcano of Haddington Peak, situatcd in $64^{\circ} 12^{\prime}$ South latitude and 7046 English fcet high, have becn very recently visited by a Botanist from the United States of North America, Dr. Eights. He found there (probably in 62° or
$62 \frac{1}{4}^{\circ}$, S. latitude) a small grass, Aira antaretiea (Hooker, Ieon. Plant. Vol. ii. Tab. 150) which is "the most antaretic flowering plant hitherto discovered."
In Deception Island, of the same group, S. lat. $62^{\circ} 50^{\prime}$, liehens only are found, and not a single species of grass ; and so also farther to the south-east, in Coekburn Island (lat. $64^{\circ} 12^{\prime}$), near Palmer's Land, there were only found Lecanoras, Lecideas, and five Mosses, among whiel was our German Bryum argenteum: "this seems to be the ultima Thule of antarctic vegetation." Farther to the south, landcryptogamic, as well as phænogamie, vegetation is entirely wanting. In the great bay formed by Victoria Land, on a small island whieh lies opposite to Mount Herschel (S. lat. $71^{\circ} 49^{\prime}$), and in Franklin Island, 92 geographieal miles North of the great voleano Mount Erebus, 12400 English feet high (latitude $76^{\circ} 7^{\prime}$ South), Hooker found not a single traee of vegetable life. It is quite different in respect to the extension even of the forms of higher vegetable organisation in the high northern latitudes. Phænogamous plants there approach $18 \frac{1}{2}^{\circ}$ nearer to the pole than in the southern hemisphere: Walden Island (N. lat. $80 \frac{1}{2}^{\circ}$) has still ten speeies. The antarctie phænogamous vegetation is also poorer in speeies at corresponding distances from the pole (Iceland has five times as many flowering plants as the southern group of Auekland and Campbell Islands), but this less varied antarctic vegetation is from elimatic reasons more luxuriant and suceulent. (Compare Hooker, Flora antaretica, p. vii., 74, and 215, with Sir James Ross, Voyage in the Southern and Autaretic Regions, 1839-1843, Vol. ii. p. 335-342.)

$$
{ }^{(28)} \text { p. 28.-"Ferns." }
$$

If, with a naturalist deeply versed in the knowledge of the Agamx, Dr. Klotzseh, we estimate the whole number of cryptogamic species hitherto deseribed at 19000, this gives to Fungi 8000 (of whieh the Agarici constitute 1-8th); Liehens, according to J. von Flotow of Hirschberg, and Hampe of Blankenburg, at least 1400 ; Algæ 2580 ; Mosses and Liver-worts, aceording to Carl Mïller of Halle, and Dr. Gottsche of Hamburgh, 3800 ; and Ferns 3250 . We are indebted for this last important result to the thorough investigation of all that is known coneerning this group of plants by Professor Kunze of Leipsie. It is remarkable that of the entire number of described Filiees the family of Polypodiacex, alone, eomprises 2165 species; while other forms, even Lycopodiaece and Hymenophyllaeex, only count 350 and 200. There are, therefore, almost as many deseribed ferns as deseribed grasses.

It is remarkable that in the aneient elassie writers, Theophrastus, Dioscorides, and Pliny, no notice oeeurs of the beautiful form of arboreseent ferns ; while from information derived from the companions of Alexander, Aristobulus, Megasthenes, and Nearchus, mention is made of Bamboos "quæ fissis internodiis lembi vice vectitabant navigantes;" of the Indian trees "quarum folia non minora elypeo sunt;" of the fig-tree of whieh the branehes take root round the parent stem ; and of Pahns "tantæ proceritatis, ut sagittis superjiei nequeant." (Humboldt, de Distributione geogr. Plantarum, p. 178 and 213.) I find the first deseription of tree-ferns in Oviedo's Historia de las Indias, 1535, fol. xc.

This experienced traveller, who had been placed by Ferdinand the Catholie as direetor of the gold-washings in Hayti, says: "Among the many ferns there are some whieh I reckon among trees, for they are as thick and as tall as pines (Heleehos que yo cuento por arboles, tan gruesos eorno grandes pinos y muy altos). They grow elriefly in the mountains and where there is muel water." The height is exaggerated. In the dense forests round Caripe even our Cyathea speciosa ouly attains a height of 30 to 35 (32 to 37 English) feet ; and an excellent observer, Ernst Dieffenbaeh, in the northernmost of the three islands of New Zealand saw no stems of Cyathea dealbata of more than 40 (422 $\frac{1}{2}$ Engiish) feet in height. In the Cyathea speeiosa and the Meniseium of the Chaymas missions we observed, in the midst of the shadiest primeval forest, in very luxuriantly growing individuals, the scaly stems eovered with a shiming carbonaceous powder. It seemed like a siugular decomposition of the fibrous parts of the old frond stalks. (Humboldt, Rel. hist. 'T. i. p. 437.)

Between the tropies, where, on the deelivities of the Cordilleras, elimates are placed successively in stages one above another, the proper zone of the trec-ferns is between three and five thousand feet (about 3200 and 5330 English) above the level of the sea. In South Ameriea and in the Mexican highlands they seldom deseend lower towards the plains than 1200 (about 1280 Eng.) feet. The mean temperature of this happy zone falls between 17° and $14^{\circ} .5$ Reaumur ($70^{\circ} .2$ and $64^{\circ} .6$ Fahr.) This region enters the lowest stratum of clouds, or that which floats next above the
sea and the plains ; and lience, besides great equality of temperature, it also enjoys uninterruptedly a high degree of humidity. (Robert Brown, in Appendix to Expedition to Congo, p. 423.) The inhabitants, who are of Spanish descent, call this zone "tierra templada de los helechos." The Arabic word for fcrn is feledschun, f being changed into h in hclechos according to Spanish custom : perhaps the Arabic feledschun is connected with "faladscha," " it divides;" in allusion to the finely divided margins of fern leaves or fronds. (Abu Zacaria Ebn el Awam, Libro de Agricultura, traducido por J. A. Banqueri, T. ii. Madr. 1802, p. 736.)

The conditions of mild temperature and an atmosphere nearly saturated with vapour, together with great equability of climate in respect to both temperature and moisture, are fulfilled on the declivities of the mountains, in the valleys of the Andes, and above all in the mild and humid atmosphere of the southern hemisphere, where arborescent ferns extend not only to New Zealand and Van Diemen Island (Tasmania), but even to the Straits of Magellan and to Campbell Islands, or to a latitudc almost corresponding to that of Berlin in the northern lemispherc. Of trce-ferns, Dicksonia squarrosa grows vigorously in 46° South latitude, in Dusky Bay (New Zealaud) ; D. antarctica of Labillardière in Tasmania; a Thyrsopteris in Juan Fernandez ; an undescribed Dicksonia with stems from 12 to 15 (nearly 13 to 16 English) feet in the south of Chili, not far from Valdivia; and a Lomaria of rather less height in the Straits of Magcllan. Campbell Island is still nearer to the south pole, in $52 \frac{1}{2}^{\circ}$ lat., and even there the stem of the Aspidium venustum rises to

4 feet (4 feet 3 inehes, English) before the fronds braneh off.
The elimatic relations under whieh Ferns in general flourisll, are manifested in the numerieal laws of their quotients of distribution taken in the manner alluded to in an earlier part of the present volume. In the low plains of the great continents within the tropies, the quotient for ferns is, aeeording to Robert Brown, and aeeording to late researelies, 1-20th of all the speeies of phrenogamous plants growing in the same region ; in the mountainous parts of the great continents in the same latitudes it is from 1-8th to 1-6th. But a very different ratio is found in the small islands dispersed over the wide oeean. The proportion of ferns to the whole number of Phanerogamæ inereases there in sueh a manner that in the groups of islands between the tropics in the Paeifie the ferns equal a fourth,-and in the solitary far detaehed islands in the Atlantic Ocean, St. Helena, and Aseension, —almost equal the half of the entire phrnogamous vegetation. (See an exeellent memoir of D'Urville entitled Distribution géographique des Fougères sur la surface du Globe, in the Annales des Seienees Nat. 'I. vi. 1825, p. 51, 66, and 73). From the tropies (where in the great continents D'Urville estimates the ratio generally at $1: 20$) we see the relative frequeney of ferns deercase rapidly in the temperate zone. The quotients are : for North Ameriea :und for the British Islands $\frac{1}{35}$, for Franee $\frac{1}{38}$, for Germany $\frac{1}{32}$, for the dry parts of the south of Italy $\frac{1}{744}$, and for Greeee $\frac{1}{84}$. Towards the eolder regions of the north we see the relative
frequency increase again rapidly ; that is to say, the number of species of ferns decreases much more slowly than does the number of species of phænogamous plants. At the same time, the luxuriance, abundance, and mass of individuals in each species angments the illusive impression of absolute numbers. According to Wahlenberg's and Hornemann's Catalogues the relative numbers of Filices are, for Lapland $\frac{1}{23}$, for Ieeland $\frac{1}{18}$, and for Greenland $\frac{1}{12}$.

Such, according to the presentstate of our knowlcdge, are the natural laws manifested in the distribution of the pleasing form of Ferns. But it would seem as if in the family of Ferns, which has so long been regarded as a cryptogamie family, we had quitc recently arrived ou the traces of another natural law, a morphological one of propagation. Count Leszczyc-Suminski, who happily unites the gift of mieroscopic examination with distinguished artistic talent, has diseovered in the prothallium of ferms au organisation by which fruetifieation is cffccted. He distinguishes a bisexual arrangement in the ovule-like cell on the middle of the theca, and in the eiliated antheridia or spiral threads before examined by Niigeli. The fertilisation is supposed to take place not by pollen tubes but by the moveable eiliated spiral threads. (Suminski zur Entwiekclungs-gcschiehte der Farrnkräuter, 184S, S.10-14.) According to this view, Ferns, as Ehrenberg expresses it (Monatl. Beriehte der Akad. zu Bcrlin, Januar 1848, S. 20), would be produced by a microscopie fertilisation taking place on the prothallium as a receptacle; and throughout the whole remainder of their often arboreseent
development they would be flowerless and fruitless plants, forming buds or bulbs; the spores or sori ou the under side of the frond not being seeds but flower buds.

$$
{ }^{(29} \text {) p. 28.—" Liliaceer." }
$$

The priucipal seat of this form is Afriea, where it is both most varied and most abundant, and where these beautifully flowering plants are assembled in masses and determine the aspect and charaeter of the country. The New Continent does, indeed, also possess superb Alstromerix and species of Paneratium, Hrmanthus, and Crinum (we augmented the first-named of these genera by nine, and the second by three speeies) ; but these Ameriean Liliacerx grow dispersed, and are less social than our European Iridec.

$$
{ }^{\left({ }^{30}\right)} \text { p. 28.-" Willow Form." }
$$

Of the leading representative of this form, the Willow itself, 150 different speeies are already known. They are spread over the northern hemisphere from the Equator to Lapland. They appear to inerease in number and diversity of form between the 46 th and 70 th degrees of north latitude, and especially in the part of nortls of Europe where the eonfiguration of the land has been so strikingly indented by early geologieal changes. Of Willows as tropical plants I am aequainted with ten or twelve species, which, like the willows of the southern liemisphere, are deserving of partieular attention. As Nature seems as it were to take pleasure in multiplying certain forms of animals, for example Anatidæ (Lamellirostres) and Columbæ, in all the zones of the earth; VoL. II.
so are Willows, the different speeies of Pines, and Oaks, no less widely disseminated: the latter (oaks) being always alike in their fruit, though muel diversified in the forms of their leaves. In Willows, the similarity of the foliage, of the ramifieation, and of the whole, physiognomie appearance, in the most different elimates, is unusually great,--almost greater than even in Coniferæ. In the southern part of the temperate zone of the northern hemisphere the number of speeies of willows deereases eonsiderably, yet (aceording to the Flora atlantiea of Desfontaines) Tumis has still a speeies of its own resembling Salix eaprea; and Egypt reekons, aecording to Forskial, five speeies, from the eatkins of whose male flowers a medicine much employed in the East, Moie ehalaf (aqua salicis) is obtained by distillation. The Willow whieh I saw in the Canaries is also, aeeording to Leopold von Bueli and Christian Smith, a peeuliar speeies, eommon however to that group and to the Island of Madeira, -S. camariensis. Wallieh's Catalogue of the plants of Nepaul and of the Himalaya eites from the Indian sub-tropical zone thirteen species, partly described by Don, Roxburgh, and Lindley. Japan has its indigenous willows, one of which, S. japoniea (Thunb.) is also found as a mountain plant in Nepaul.

Previous to my expedition, the Indian Salix tetrasperma was the only known intertropieal speeies, so far as I am aware. We colleeted seven new species, three of whieh were from the elevated plains of Mexieo, and were found to extend to an elevation of 8000 (about 8500 English) feet above the level of the sea. At still greater elevations,-for example, on the mountain plains situated between 12000
and 14000 feet, (about 12790 and 14920 English,) which we often visited,-we did not find, either in the Andes of Mexico or in those of Quito and Pcru, any thing which could recall the small creeping alpiie willows of the Pyrences, the Alps, and Lapland (S. hcrbacca, S. lanatu, and S. reticulata). In Spitzbergen, where the metcorologieal conditions have much analogy with those of the Swiss and Seandinavian snow-mountains, Martins deseribed two dwarf willows, of which the small woody stems and branches creepon the ground, and which lic so concenled in the turf-bogs that their small laaves are only discovered with difficulty under the moss. The sjeccies found by me in Peru in $4^{\circ} 12^{\prime} \mathrm{S}$. latitude, near Loxa, at the cutrance of the forests where the best Cinchona bark is collectal, and describod by Willdenow as Salix humboldtiana, is the one which is most widely distributed in the western part of South Ameriea. A sea-shore species, S. faleata, which we found ou the sandy coast of the Pacific, near Truxillo, is, according to Kunth, probably only a varicty of the above; and possibly the fine and often pyramidal willow which accompanicd us along the banks of the Magdalena, from Miahates to Bojorguc, and whieh, aecording to the report of the natives, had only extended so far within a few years, may also be identical with Salix humboldtiana. At the confluence of the Rio Opon with the Magdalcna, we foumd all the islands eovered with willows, many of which had stems 64 English fect high, but only S to 10 inches in diametcr. (IIumboldt and Kunth, Nova Gen. Plant. 'I. ii. p. 22, tab. 99.) Lindley has made us acquainted with a species of Salix from Scnegal, and there-
fore in the Afriean equinoetial zone. (Lindley, Introduction to the Natural System of Botany, p. 99.) Blume also found two species of Salix near the equator, in Java: one wild and indigenous, S. tetrasperma ; and another cultivated, S. sieboldiana. From the southern temperate zone I know ouly two willows described by Thunberg, (S. hirsuta and S. mucronata) ; they grow by the side of Protea argentea (which has itself very much the physiognomy of a willow), on the banks of the Orange River, and their leaves and young shoots form the food of the hippopotamus. Willows are entirely wanting in Australia and the neighbouring islands.
(31) p. 29.-" Myrtacee."

An elegant form, with stiff, sliining, thiekly set, generally unindented, small leaves, studded with pellucid dots. Myrtacer give a peculiar character to three districts of the earth's surface, -the South of Europe, partieularly the calcareous and traehytie islands which rise above the surface of the Mediterranean ;-the continent of New Holland, adorned with Lucalyptus, Metrosideros, and Leptospermum ;-and an intertropical region, part of which is low, and part from nine to ten thousand feet high (about 9590 to 10660 English), in the Andes of South Ameriea. This mountain district, called in Quito the distriet of the Paranos, is entirely covered with trees which have a myrtlelike aspect and charaeter, even though they may not all belong to the natural family of Myrtaceæ. Here, at the above-named elevation, grow the Eseallonia myrtilloides,
E. tubar, Simploeos alstonia, some speeies of Myrica, and the beautiful Myrtus mierophylla whieh we have figured in the Plantes équinoxiales, T. i. p. 21, Pl. iv. We found it growing on miea slate, and extending to an elevation of more than ten thousand English feet, on the Paramo de Saraguru, near Vinayaeu and Alto de Pulla, whieh is adorned with so many lovely alpine flowering plants. Myrtus myrsinoides even extends in the Paramo de Guamani up to 10500 (11190 English) feet. Of the 40 speeies of the Genus Myrtus whieh we colleeted in the equinoctial zone, and of whieh 37 were undeseribed, much the greater part belonged, however, to the plains and lower mountains. From the mild tropieal mountain elimate of Mexieo we brought baek only a single speeies (Myrtus xalapensis) ; but the Tierra templada, towards the Voleano of Orizaba, must no doubt contain several more. We found M. maritima near Aeapuleo, quite on the sea-eoast of the Paeifie.

The Escallonias,-among whieh E. myrtilloides, E. tubar, and E. floribunda, are the ornament of the Paramos, and by their physiognomy remind the beholder strongly of the myrtle-form, -onee eonstituted, in combination with the European and South Ameriean Alp-roses (Rhododendrum and Befaria), and with Cletlira, Andromeda, and Gaylussaeeia buxifolia, the family of Erieer. Robert Brown (see the Appendix to Franklin's Narrative of a Journey to the Shores of the Polar Sea, 1823, p. 765), has raised them to the rank of a separate family, whieh Kuuth plaees between Philadelphex and Hamamelidex.

The Escallonia floribuuda offers in its geographieal distribution one of the most striking examples, in the habitat of the plant, of proportion between distanee from the equator and vertieal elevation above the level of the sea. In making this statement I again support myself on the authority of my aeute and judicious friend Auguste de St.-Hilaire (Morphologie végétale, 1840, p. 52):-" Messieurs de Humboldt et Bonpland ont déeouvert dans leur expédition
 australe. Je l’ai retrouvé par les 21° au Brésil dans un pays élevé, mais pourtant infiniment plus bas que les Andes du Pérou: il est commun entre les $24^{\circ} .50^{\prime}$ et les $25^{\circ} .55^{\prime}$ dans les Campos Gerres, enfin je le revois au Rio de la Plata vers les 35°, au niveau même l'ocean."

Trees belonging the group of Myrtaeea, -to whieh Melaleuca, Metrosideros, and Euealyptus belong in the sub-division of Leptospermere,-produce partially, either where the leaves are replaeed by phyllodias (leaf-stalk leaves), or by the peculiar disposition or direction of the leaves relatively to the unswollen leaf-stalk, a distribution of stripes of light and slade unknown in our forests of round-leaved trees. The first botanieal travellers who visited New Holland were struek with the singularity of the effeet thus produced. Robert Brown was the first to slow that this strange appearance arose from the leaf-stalks (the phyllodias of the Acacia longifolia and A. suaveolens) being expanded in a vertical direetion, and from the eireumstance that the light instead of falling on horizontal surfaecs, falls on and passes betreen vertical ones. (Adrien de Jussicu, Cours de

Botanique, p. 106, 120, and 700; Darwin, Journal of Researches, 1845, p. 4433). Morphologieal laws in the development of the leafy organs determine the peculiar charaeter of the effects produced, the outlines of light and shade. "Phyllodias," says Kunth, "cau, according to my view, only occur in families which have compound pimnated leaves; and in point of fact they have as yet ouly been found in Leguminosæ, (in Acacias). In Eucalyptus, Metrosideros, and Melalenca, the leaves are simple (simplicia), and their edgcwise position arises from a half turn or twist of the leaf-stalk (petiolus) ; it sloould be remarked at the same time that the two surfaces of the leaves are similar." In the eomparatively shadeless forests of New Holland the optical effects here alluded to are the more frequent, as two groups of Myrtaeere and Leguminosre, species of Eucalyptus and of Acaeia, constitutc almost the half of all the greyish green trees of whieh those forests consist. In addition to this, in Melalcuea there are formed between the layers of the inner bark easily detaelied portions of epidermis which press outwards, and by their whiteness remind the European of our birch bark.

The distribution of Myrtaccie is very different in the two continents. In the New Continent, and especially in its western portion, it scareely cxtends beyoud the 26th parallel of north latitude, according to Joscph Hooker (Flora antarctica, p. 12) ; while in the Southcru 11 cmispherc, aceording to Claude Gay, there are in Chili 10 species of Myrtus and 22 species of Eugenia, whiel, intermixed with Proteaeeæ (Embothrium and Lomatia), and witl Fagus
obliqua, form forests. The Myrtaceæ bccome more abundant beyond $38^{\circ} \mathrm{S}$. lat.,-in the Island of Chiloc, where a Mctrosidcros-like speeics of Myrtus (Myrtus stipularis) forms almost impenetrable thickets under the name of Tcpuales ; in Patagonia ; and in Fuegia to its cxtremity in $56 \frac{1}{2}^{\circ}$ S. lat. In the Old Continent they prevail in Europe as far as the 46th parallel of North latitude: in Australia, Tasmania, Ncw Zealand, and the Auckland Islands, they advance to $50 \frac{10}{2}$ South latitude.

$$
\text { (}{ }^{32} \text {) p. 29.-"Melastomacer." }
$$

This group comprises the genera Melastoma (Fothergilla and Tococa Aubl.) and Rhcxia (Meriana and Osbcckia), of which we found, on either side of the equator in tropieal America alonc, 60 new species. Bonpland las published a supcrb work on Melastomacex, in two volumcs, with coloured drawings. Some species of Rhexia and Melastoma ascend in the Andes, as alpinc or Paramos shrubs, as high as nine and ten thousand five hundred (about 9600 and 11190 English) fect: among these arc Rhexia cernua, R. stricta, Mclastoma obseurum, M. aspcrgillare, and M. lutescens.
(33) p. 29.-"Laurel-form."

To this form bclong the genera of Laurus and Persea, the Ocotce so numerous in South America, and (on aecount of physiognomic rescmblanee), Calophyllum and the superb aspiring Mammea, from among the Guttiferæ.
$\left.{ }^{(34}\right)$ p. 29.-" How interesting and instructive to the landscape painter would be a work which should present to the eye the leading forms of veyetation!"
In order to define somewhat more distinetly what is here only briefly alluded to, I permit inyself to introduce some considerations taken from a sketch of the history of landseape painting, and of a graphieal representation of the physiognomy of plants, which I have given in the second volume of Kosmos (Bd. ii. S. 88-90 ; English edit. vol. ii. p. 86-87).
"All that belongs to the expression of human cmotion and to the beauty of the human form, las attained perhaps its highest perfection in the northern temperate zone, under the skies of Italy and Greece. By the combined exereise of imitative art and of creative imagination, the autist has derived the types of historical painting at once from the depths of his own mind, and from the contemplation of other beings of his own race. Landseape painting, though no merely imitative art, has, it may be said, a more material substratum and a more terrestrial domain: it requires a greater mass and variety of distinet impressions, which the mind must receive within itself, fertilize by its own powers, and reproduce visibly as a free work of art. Hence landseape painting must be a result at onee of a deep and comprehensive reception of the visible spectaele of external nature, and of this inward process of the mind."
"Nature, in every region of the earth, is indeed a reflex of the whole ; the forms of organised beings are repeated
everywhere in fresh combinations; even in the icy north, herbs covering the earth, large alpine blossoms, and a serene azure sky, cheer a portion of the year. Hitherto landscape painting has pursued amongst us her pleasing task, familiar only with the simpler form of our native floras, but not, therefore, without depth of feeling, or without the treasures of creative imagination. Even in this narrower field, highly gilted painters, the Caracci, Gaspar Poussin, Claude Lorraine, and Ruysdael, have with magic power, by the selection of forms of trees and by effects of light, found scope wherein to call forth some of the most varied and beautiful productions of creative art. The fame of these master-works can never be impaired by those which I venture to hope for hereafter, and to which I could not but point, in order to recall the ancient but deeply-seated bond which unites natural knowledge with poetry and with arlistic feeling; for we must ever distinguish in landscape painting, as in every other branch of art, between productions derived from direct observation, and those which spring from the depths of inward fceling and from the power of the idealising mind. The great and beantiful works which owe their origin to this creative power of the mind applied to landscape-painting, belong to the poctry of nature, and like man himself, and the imagination with which he is gifted, are not rivetted to the soil, or confined to any single region. I allude here more particularly to the gradation in the form of trees from Ruysdael and Everdingen, through Claude Lorraine to Poussin and Amnibal Caracci. In the great masters of the art we perceive no trace of local limitation ; but an enlargement of
the visible horizon, and an inereased aequaintance with the nobler and grander forms of nature, and with the luxuriant fulness of life in the tropieal world, offer the advantage not only of euriching the material substratum of landseape painting, but also of affording a more lively stimulus to less gifted artists, and of thus heightening their powers of produetion."
> ${ }^{35}$) p. 30.-" From the rough barli of Crescentias and Giustaria."

In the Crescentia eujete (the Thtuma or Calabash-tree, whose large fruit-shells are so useful to the matives for household purposes), -in the Cynometra, the Theobroma (the Cacao-tree), and the Perigara (the Gustavia of Limmens), -the delicate flowers break through the half earbonized bark. When ehildren eat the fruit of the Pirigara speeiosa (the Chupo), their whole borly becomes tinged with yellow ; it is a jaundice, which lasts from 24 to 36 hours, and then disappears withont the use of medieine.

I have never forgotten the impression whiels I reeeived of the luxuriant power of vegetation in the tropical world, when on entering a Cacao plantation (Caea hual), in the Valles de Aragua, after a damp night, I saw for the first time large blossoms springing from a root of the Theobroma decply imbedded in black earth. It was one of the most instantaneous manifestations of the activity of the vegetative organie forces. Northern mations speak of the " awakening of Nature at the first breath of the mild air of spring." Suel an expression is singularly eontrasted with the imagination of the Stagirite, who recognised in plants forms which
"lie buried in a tranquil slumber that knows no waking, free from the desires which impel to spontaneous motion." (Aristot. de generat. Animal. V. i. p. 778, and de somno et vigil. eap. l, p. 455, Bekker.)
$\left.{ }^{(36}\right)$ p. 30.-" Draw over their heads."
The flowers of our Aristoloehia cordata, to whieh I have already referred in Note 25. The largest flowers in the world, apart from Composite (in the Mexiean Helianthus annuus), belong to Rafflesia arnoldi, Aristoloehia, Datura, Barringtonia, Gustavia, Carolinea, Leeythis, Nymphæa, Nelumbium, Vietoria regina, Magnolia, Caetus, and to Orehideous and Liliaceous plants.
${ }^{(37)}$ p. 31.-" To behold all the shining worlds which stud the heavenly cault from pole to pole."
The finest portion of the southern eelestial hemisphere, where shine the eonstellations of the Centaur, the Ship, and the southern Cross, and where the soft lustre of the Magellanie elouds is seen, remains for ever eoneealed from the view of the inhabitants of Europe. It is only beneath the equinoctial line that Man enjoys the peeuliar privilege of beholding at onee all the stars both of the Southern and the Northern heavens. Some of our northern eonstellations seen from thenee appear from their low altitude of a surprising and almost awful magnitude : for example, Ursus major and minor. As the inlabitant of the tropies sees all the stars of the firmament, so also, in regions where plains alternate with deep valleys and lofty mountains, Nature surrounds him with representatives of all the forms of plants.

POSTSCRIPT

ON TIE

PHYSIOGNOMIC CLASSIFICATION OF PLANTS.

Is the preceding sketch of a "Physiognomy of Plants," I have had principally in view three nearly allied subjects :-the absolute diversity of forms ; thcir numerical proportion, i. e. their local predominance in the total number of species in phænogamous floras ; and their geographic and climatic distribution. If we desire to rise to gencral views respecting organic forms, the physiognomy of plants, the study of their numerical proportions (or the arithmetic of hotany),-and their geography (or the study of thcir zones of distribution), -cannot, as it appcars to mc, be separatcd from each other. In the study of the physiognomy of plants, we ought not to dwell cxclusively on the striking contrasts presented by the larger organic forms scparatcly considcred, but we should also seck to discern the laws which determine the plysiognomy of Nature generally, or the picturesque character of vegetation over the cutire surface of the globe, and the impression produced on the mind of the belolder by the grouping of contrasted forms in different zones of latitude and of clevation. It is from this point of vicw, and with this eonecntration or combinatiou of objects, that we become
awarc, for the first time, of the elose and intimate comnection between the subjects which have been treated of in the forcgoing pages. We are here eonduetcd into a field which has been as yet but little cultivated. I have rentured to foilow the method first employed with such brilliant results in the Zoologieal works of Aristotle, and whieh is cspecially suited to lay the foundation of scientifie confidenee, - a method whieh, whilst it continually aims at generality of coneeption, sceks, at the same time, to penetrate the speeialities of phenomena by the eonsideration of partieular instances.

The enumeration of forms aceording to plysiognomie diversity is, from the nature of the case, not susceptible of any striet classifieation. Here, as cverywhere else, in the considcration of external conformation, there are ecrtain leading forms which present the most striking contrasts: such are the groups of arboreseent grasses, plants of the aloë form, the different species of eaetus, palms, needlctrees, Mimosacce, and Musaccie. Even a few scattered individuals of these groups are sufficicnt to determine the claracter of a district, and to produce on a non-seicntific but sensitive beholder a permanent impression. Other forms, though perhaps much more numerous and preponderating in mass, may not be caleulated either by the outline and arrangement of the foliage, or by the relation of the stem to the branchics,-by luxuriant vigour of vegctation,-by eheerful graec,-or, on the other hand, by cheerless eontraction of the appendicular organs, to produce any sueh elaracteristic impressions.

As, thercfore, a "plysiognomic elassification," or a divi-
sion into groups from external aspect or "facies," does not admit of being applied to the whole vegetable kingdom, so also, in such a classifieation, the grounds ou which the division is made are quite differcnt from those on which our systems of matural families and of plants (including the whole of the vegetable kingdom) have been so happily established. Plysioguonic classification grounds her divisions and the choice of her types on whatever possesses "mass," - such as shape, position and arrangement of leaves, their size, and the character and surfaces (sliming or dull) of the parenehyma,-thcrefore, on all that are called more especially the "organs of vegetation," i.e. those on which the preservation,-the nourishment and development, -of the individual depend ; while systematie Botany, on the other hand, grounds the arrangement of natural families on the consideration of the organs of propagation, -those on which the continuation or preservation of the speeies depends. (Kuuth, Lehrbuch der Botanik, 1847, Th. i. S. 511 ; Schleiden, die Pffanze und ihr Leben, 184.8, S. 100). It was already taught in the school of Aristotle (Probl. 20, 7), that the production of seed is the ultimate object of the existenee and life of the plant. Since Caspar Fried. Wolf (Theoria Gencrationis, § 5-9), and since our great (German) Poet, the process of development in the organs of fructification las become the morphological foundation of all systematic botany.

That study, and the study of the plysiognomy of plants, I here repeat, proceed from two different points of view: the first from agreement in the inflorescence or in the delicate
organs of reproduction; the second from the form of the parts whieh constitute the axes (i.e. the stems and bramelies), and the shape of the leaves, dependent principally on the distribution of the vascular faseieles. As, then, the axes and appendicular organs predominate by their volume and mass, they determine and strengthen the impression which we reeeive; they individualise the physiognomic eharaeter of the vegetable form and that of the landscape, or of the region in which any of the more strongly-marked and distinguished types severally oecur. The law is here given by agreement and affinity in the marks taken from the vegetative, i. e. the nutritive organs. In all European eolonies, the inhabitants have taken oceasion, from resemblances of physiognomy (of "habitus," "facies"), to bestow the names of European forms upon tropieal plants or trees bearing very different flowers and fruits from those from whieh the names were originally taken. Everywhere, in both hemispheres, northern settlers have thought they found Alders, Poplars, Appleand Olive-trees. They have been misled in most eases by the form of the leaves and the direction of the branches. The illusion has been favourcd by the eherished remembranec of the trees and plants of home, and thus European names have been handed down from generation to generation ; and in the slave eolonies there have been added to them denominations derived from Negro languages.
'The contrast so often presented between a striking agreement of physiognomy and the greatest diversity in the inflorescenee and fructification,-between the external aspect as determined by the appendicular or leaf-system, and the
reproductive organs on which the groups of the natural systems of botany are founded, -is a remarkable and surprising phenomenon. We should have becn inclined beforehand to imagine that the shape of what are cxclusively termed the vegetative organs (for example, the leaves) mould have been less independent of the structure of the organs of reproduction; but in reality such a dependence only shows itself in a small number of families, -in Ferns, Grasses and Cyperacex, Paims, Conifere, Umbellifere, and Aroider. In Leguminose the agreement in physiognomic character is scarccly to be recognised until we divide them into the several groups (Papilionaccex, Cecsalpininer, and Mimoser). I may name, of types which, whon compared with each other, shewr. considerable accordauce in physiognomy with great difference in the structure of the flowers and fruit, Palms and Cycadcex, the latter being more nearly allied to Conifcrer ; Cuscuta, one of the Convolvulacre, and the leafless Cassytha, a parasitical Laurinca; Equisetum (belonging to the great division of Cryptogamia), and Ephedra, closely allied to Conifere. On the other hand, our common gooscberrics and currants (Ribes) arc so closcly allied by their inflorescence to the Cactus, i.e to the family of Opuntiaccec, that it is only quite recently that they have been scparated from it! One and the same family (that of Asphodelece) comprises the gigantic Dracema draco, the common asparagus, and the Aletris with its colourcd flowers. Not only do simple and compound leares often belong to the same fanily, but they eren occur in the same genus. We found in the high plains of Pcru and New Granada, among twelve new species of Weimmamia, five
with "foliis simplicibus," and the rest with pimate leaves. The genus Aralia shews still greater independence in the form of the leaves: "folia simplicia, integra, vel lobata, digitata et pimnata." (Compare Kunth, Synopsis Plantarum yuas in itinere collegerunt, Al. de Humboldt et Am, Bonpiand, T. iii. p. 87 and 360.)
Pinaated leaves appear to me to belong chiefly to families which are in the highest grade of organic devolopment, manely, the Polypetalæ; and among thesc, in the Perigynic class, to the Leguminoss, Rosacer, Terebinthacere, and Juglandex ; and in the Hypogynic, to the Aurantiacer, Cedrelacere, and Sapindacex. The beautiful doublypinnated leaves which form one of the principal ornaments of the torrid zone, are most frequent among the Leguminosa, in Mimosex, also in some Cersalpiniex, Coulterias, and Gleditschias; ncver, as Kunth remarks, in Papilionacere. "Folia pinnata" and "folia composita" are never found in Gentianex, Rubiaceæ, and Myrtacer. In the morphological development presented by the abundance and variety of form in the appendicular organs of Dicotyledones, we can at present discern only a small number of general laws.

ON TIIE
STRUCTURE AND MODE OF ACTION

OF

VOLCANOS,

IS DIFFERENT PARTS OF THE GLORE.

STRUCTURE AND MODE OF ACTION

of

VOLCANOS,

[N DIFFERENT PARTS OF THE GLOBE.
[This dissertation was read in a public assembly of the Acardemy at Berlin, on the 24th of January, 1823.]

Wiren we refleet on the influence whieh, for some enturies past, the progress of gcography and the multiplication of distant voyages and travels have exereised on the study of nature, we are not long in pereeiving how different this influence has been, aecording as the researehes were direeted to organie forms on the one hand, or on the other to the study of the inanimate substances of whieh the earth is eomposed to the knowledge of roeks, their relative ages, and their origin. Different forms of plants and aumals enliven the surface of the earth in every zone, whether the temperature of the atmosphere varies in aceordance with the latitude and with the many infleetions of the isothermal lines on plains but
little raised above the level of the sea, or whether it elanges rapidly in ascending in an almost vertical dircetion the steep declivities of mountain-chains. Organic nature gives to each zone of the earth a peeuliar physiognomy; but where the solid crust of the earth appears unelothed by regetation, inorganic nature imparts no sueh distinctive charaeter. The same kinds of roeks, associated in groups, appear in either hemisplicre, from the equator to the poles. In a remote island, surrounded by exotic vegetation, bencath a sky where his aecustomed stars no longer shine, the voyager often recognises with joy the argillaceous schists of his birth-place, and the roeks familiar to his eyc in his native land.
This absence of any depeudence of geological relations on the present constitution of climates docs not preclude or even diminish the salutary influenee of numerous observations inade in distant regions on the advance and progress of geological science, though it imparts to this progress something of a peculiar direction. Every expedition enriches natural history with new species or nem genera of plants and animals: there are thus presented to us sometimes forms which comuect themselves with previonsly long known types, and thus permit us to traec and contemplate in its perfection the really regular though apparently broken or interrupted netrork of organie forms: at other times shapes which appear isolated,-either surviving remnants of extinct genera or orders, or otherwise members of still undiseovered groups, stimulating afresh the spirit of research and expectation. The examination of the solid crust of the globe does not, indeed, unfold to us sueh diversity and ra-
ricty; it presents to us, on the contrary, an agreement in the eonstituent partieles, in the superposition of the different kinds of masses, and in their regrular reeurrence, which excites the admiration of the geologist. In the chain of the Andes, as in the mountains of middle Europe, one formation appears, as it were, to summon to itself another. Rocks of the same name exhibit the same outlines; basalt and dolerite form twin mountains; dolomite, sandstone, and porphyry, abrupt precipices ; and vitreous feldspathie trachyte, high dome-like elevations. In the most distant zones large erystals separate themselves in a similar manner from the compaet texture of the primitive mass, as if by an intermal development, form gronps in assoeiation, and appear associated in layers, often announcing the vieinity of new independent formations. Thus in any single system of mountains of considerable extent we see the whole inorganie substances of whieh the crust of the earth is eomposed represented, as it were, with more or less distinctness ; yet, in order to beeome eompletely acquainted with the important phenomena of the eomposition, the relative age, and mode of origin of rocks, we must compare together observations from the most varied and remote regions. Problems which long perplexed the geologist in his native land in these northern countries, find their solution near the equator. If, as has been already remarked, new zones do not neeessarily present to us new kinds of rock (i. e. unknown groupings or associations of simple substanees), they, on the other hand, teach us to disecrm the great and every where cqually prevailing laws, according to which the strata of the crust of
the earth are superposed upon eaeh other, penetrate each other as veins or dykes, or are upheaved or elevated by elastie forees.
If, then, our geologieal knowledge is thus promoted by researehes embraeing extensive parts of the earth's surface, it is not surprising that the partieular elass of phenomena whieh form the subjeet of the present diseussion should long have been regarded from a point of view the inore restrieted as the points of eomparison were of diffieult, I might almost say arduous and painful, attainment and aeeess. Until the elose of the last century all real or supposed knowledge of the strueture or form of voleanos, and of the mode of operation of subterranean forees, was taken from two mountains of the South of Europe, Vesurius and Etna. The former of these being the easiest of access, and its eruptions, as is generally the ease in voleanos of small elevation, being most frequent in their oeeurrenee, a hill of minor elevation beeame the type whieh regulated all the ideas formed respeeting phænomena exhibited on a far larger seale in many vast and distant regions, as in the mighty voleanos arranged in linear series in Mexieo, South Ameriea, and the Asiatic Islands. Sueh a proceeding might not unnaturally reeall Virgil's shepherd, who thought he beheld in his humble eottage the type of the eternal City, Imperial Rome.

A more careful examination of the whole of the Meniterranean, and espeeially of those islands and eoasts where inen awoke to the noblest intelleetual eulture, might, however, have dispelled views formed from so limited a consideration of nature. Among the Sporades, traehytie roeks have been
upraised from the deep bottom of the sea, forming islands resembling that which, in the vieinity of the Azores, appeared thrice periodieally, at nearly equal intervals, in three centuries. The Peloponnesus has, between Epidaurus and Troezene, near Methone, a Monte Nuovo deseribed by Strabo and seen again by Dodwell, whieh is higher than the Monte Nuovo of the Phlegrean Fields near Baire, and perhaps even higher than the new voleano of Jorullo in the plains of Mexico, whieh I found surrounded by several thousand small basaltie eones which had been protruded from the earth and were still smoking. In the Mediterranean and its shores, it is not only from the permanent eraters of isolated mountains haviug a constant communieation with the interior, as Stromboli, Vesuvius, and Etna, that roleanie fires break forth : at Isehia, on the Monte Epomeo, and also, as it would appear by the accounts of the ancients, in the Lelantine plain near Chaleis, lavas have flowed from fissures which have suddenly opened at the surfaee of the earth. Besides these phrnomena, whieh fall within the historie period, or within the restrieted domain of wellassured tradition, and whieh Carl Ritter will colleet and elucidate in his masterly work on Geography,-the shores of the Mediterranean exhibit numerous remains of more aneient voleanic aetion. In the south part of France, in Auvergne, we see a separate complete system of voleanos arranged in lines, traehytie domes alternating with cones of eruption, from which streams of lava have flowed in narrow bands. The plain of Lombardy, as level as the surface of the sea, and forming an imner Gulf of the Adriatie, surrounds
the trachyte of the Euganean Hills, where rise domes of granular trachyte, obsidian, and pearl-stone, masses conneeted by a common origin, which break through the lower cretaccous roek and nummulitie lime-stone, but have never flowed in narrow streams. Similar evidenecs of ancient revolutions of nature are found in several parts of the mainland of Grecee and in Asia Minor, countries whieh will one day offer a rich field for geological investigation, when intelleetual light shall revisit the seats from whieh it has radiated to the western world, and when oppressed humanity shall no longer be subjeet to the barbarism of Turkish rule.

I recall the geographical proximity of these various phenomena, in order to shew that the basin of the Mediterranean, with its series of islands, might have offered to an attentive observer much that has been recently diseovered, under various forms, in South Ameriea, Teneriffe, and the Alcutian Islands near the polar eirele. The oljeets to be observed were asscmbled within a moderate distanee; yet distant voyages, and the comparison of extensive regions in and out of Europe, have been required for the elear perception and recognition of the resemblanee betreen rolcanic phenomena and their dependence on eaels other.
Our ordinary language, which often gives permanency and apparent authority to the first-formed erroneous vicws of natural phenomena, but whieh also often points instinctively to the truth,-our ordinary language, I repeat, applies the term "voleanie" to all eruptions of subterrancan fires or molten substances; to columns of smoke and vapour rising from rocks, as at Colares after the great earthquake of Lisbon ;
to "Salses" or mud voleanos, argillaccous cones cmitting mud, asphalte, and hydrogen, as at Girgenti in Sicily, and at Turbaco in South America; to the Gersers, hot springs in which, as in those of Iccland, the waters, pressed by elastic rapours, rise in jets to a considerable altitude ; and, in general, to all operations of natural forces having their seat in the interior of our planet. In Central America (Guatimala), and in the Philippine Islands, the natives even distinguish formally betwecn water- and fire-volcanos, Tolcanes de agua y de fucgo, giving the former name to those mountains from which subterrancan waters issuc from time to time with violent earthquake shocks and a hollow noise.

Not denying the connexion of the different phenomena which have been referred to, it yet appears desirable to give greater precision to the terms employed in the physical as well as in the mineralogical part of geology, and not to apply the word "volcano" at one moment to a mountain terminating in a permanent igneous opening or fiery crater, and at another to every subterranean cause of rolcanic phenomena. In the present state of our planet the most ordinary form of voleanos is indeed in all parts of the globe that of an isolated conical mountain, such as Tesuvius, Etna, the Peak of Teneriffe, Tunguragua, and Cotapaxi. I have myself seen such volcanus varying in size from the smallest hill to an elevation of 18000 (19184 English) feet above the sea. But besides these isolated cones there are also permanent openings or craters, having established channels of communcation with the interior of the carth, which are situated on long chains of mountains with serrated
crests, and not cven always on the middle of the ridge, but sometimcs at its cxtremity : such is Pichincha, situated between the Paeifie and the city of Quito, and which acquired celcbrity in comnection with Bouguer's earlicst barometric formulæ, and sueh arc the volcanos whiek rise in the elevated Steppe de los Pastos, itself ten thousand (10657 English) feet high. All these summits, whieh are of various shapes, consist of trachyte, formerly called Trapporphyry : a granular vesicular rock composed of differcnt kinds of fcldspar (Labradoritc, Oligoklase, and Albite), augitc, hornblende, and sometimes interspersed mica, and even quartz. In cases where the cridence of the first outburst or eruption, or I might say where the ancicnt structure or scaffolding remain cutire, the isolated conical mount is surrounded by an amphitheatre or lofty circular rampart of rocky strata superimposed upon each other. Such walls or ring-formed ramparts arc called "eratcrs of elcvation," a great and important phenomernon, concerning which a memorable treatise was prescnted to our Academy five years ago (i. e. in 1818), by the first gcologist of our time, Leopold von Buch, from whose writings I have borrowed several of the vicws contained in the present discussion.

Voleanos which communicate with the atmosphere through pormancnt openings, conieal basaltie hills, and craterless trachytic domes, sometimes as low as Sarcouy, sometimes as lofty as the Chimborazo, form various groups. Comparative geography shows us sometimes small clusters or distinct systems of mountains, with craters and lava-currents in the Canaries and the Azores, and without craters and without
lava-eurrents, properly so-called, in the Euganean hills and the Siebengebirge near Boun;-and at other times the same study describes to us volcanos arranged in single or double lines extending through many hundred leagues in length, these lines being either parallel to the direction of a great chain of mountains, as in Guatimala, in Peru, and in Java, or eutting it transversely or at right angles, as in tropical Mexico. In this land of the Aztees the fire-emitting traehytic mountains are the only ones which attain the elevation of the lofty region of perpetual snow; they are ranged in the direction of a parallel of latitude, and have probably been raised from a fissure 420 English geographical miles long, traversing the continent from the Pacific to the Atlantic Ocean.

These assemblages of rolcanos, whether in rounded groups or in double lines, show in the most conclusive manner that the voleanic agencies do not depend ou small or restricted eauses, in near proximity to the surfaee of the earth, but that they are great phænomena of deep-seated origin. The whole of the eastern part of the American continent, whieh is poor in metals, is, in its present state, without fire-emitting mountains, without masses of trachyte, and perlhaps even without basalt containing olivine. Ali the American voleanos are on the side of the continent which is opposite to Asia, in the chain of the Andes which ruris nearly in the direction of a meridian, and extends orer a length of 7200 geographical miles.

The whole plateau or high-land of Quito, of which Pichincha, Cotopaxi, and Tunguragua form the summits,
is to be viewed as a single volcanie furnace. The subterranean fire breaks forth sometimes through one and sometimes through another of these openings, which it las been customary to regard as separate and distinct voleanos. The progressive march of the subterranean fire has been herc direeted for three centurics from North to South. Even the carthquakes which oecasion sueh dreadful ravages in this part of the world afford remarkable proofs of the existence of subterranean communieations, not only between countries where there are no voleanos (a faet which had long becu known), but also between fire-emitting openings situated at great distanees asunder. Thus in 1797 the volcano of Pasto, east of the Guaytara River, emitted uninterruptedly for three months a lofty column of smoke, which column disappeared at the instant when, at a distance of 24.0 geographieal miles, the great carthquake of Riobamba and the immense eruption of mud ealled "NLoya" took place, causing the death of between thirty and forty thousand persons.

The sudden appearanee of the Island of Sabrina near the Azores, on the 30tl of January, 1811, was the precursor of the terrible earthquake movements which, mueh farther to the west, slook almost ineessantly, from the month of May 1811 to June 1813, furst the West Indian Islands, then the plain of the Ohio and Mississipi, and lastly, the opposite const of Venezuela or Caraeeas. Thirty days after the destruction of the principal city of that province, the long tranquil volcano of the Tsland of St. Vincent burst forth in an eruption. A remarkable phenomenon aecon-
panied this eruption: at the same moment when the explosion took plaee, on the 30th of April, 1811, a loud subterranean noise was heard in South Ameriea, which spread terror and dismay over a district of 2200 (German) geographieal square miles (35200 English geographical square miles). The dwellers on the banks of the Apure near the confluence of the Rio Nola, and the most distant inhabitants of the sca coast of Venezuela, alike eompared the sound to that of the discharge of great pieces of ordnance. Now from the confluenee of the Nula with the Apure (by which latter river I arrived on the Orinoco) to the volcano of St. Vineent is a distance in a straight line of 628 English geographical miles. The sound, which certainly was not propagated through the air, must have proceeded from a deep-scated subterranean eause; for its intensity was scarcely greater on the sca coast nearest to the voleano where the eruption was taking place, than in the interior of the country, in the basin of the Λ pure and the Orinoeo.

It would be unnecessary to multiply examples by citing other instanees which I have collected, but, to recall a phenomenon of European historical importanee, 1 will only farther mention the celebrated earthquake of Lisbon. Simultaneously with that event, on the 1st of Novenber, 17555, not only were the Swiss lakes and the sea near the coast of Sweden violently agitated, but even among the eastern West Indian Islands, Martinique, Antigua, and Barbadoes, where the tide never exeeeds thirty inches, the sea suddenly rose more than treenty feet. All these pheno-
mena show the operation of subterrancan forces, acting cither dynamically in carthquakes, in the tension and agitation of the crust ; or in volcanos, in the production and chemical altcration of substances. They also show that thesc forecs do not act superficially, in the thin outermost crust of the globe, but from great depths in the interior of our planct, through crevices or unfilled veins, affecting simultancously widely distant points of the earth's surface.

The greater the varicty of structure in volcanos, or in the elevations which surround the channel through which the molten masses of the interior of the carth reach its surface, the greater the importance of submitting this structure to strict investigation and measurement. The interest attaching to these measurements, which formed a particular object of my rescarches in another quartcr of the globe, is culhanced by the consideration that at many points the magnitude to be measured is found to be a variable quantity. The philosophical study of nature endeavours, in the vicissitudes of phonomena, to comect the prescut with the past.

If we desire to investigate cither the fact of a periodical return, or the law of progressive variations or changes in phenomena, it is cssential to obtain, by meaus of observations carcfully made and comnected with detcrminate epochs, ccrtain fixed points which may afford a base for future numerical comparisons. If we only possessed determinations made once in each period of a thousand ycars, of the mean temperature of the atmospherc and of the earth in different latitudes, or of the mean height of the barometer at the level of the sea, we should know whether, and in what
ratio, the temperature of different elimates had increased or deereased, or whether the height of the atmosphere lad undergone changes. Such points of comparison are also needed for the inclination and declination of the magnetic needle, as well as for the intensity of the magneto-electric forecs, on whieh, within the eirele of this Acadeny, two excellent physicists, Seebeek and Erman, have thrown so much light. As it is an honourable object for the exertions of scientifie societies to trace out perseveringly the cosmical variations of temperature, atmospheric pressure, and magnetic direetion and intensity, so it is the duty of the geologieal traveller, in determining the inequalities of the earth's surfaee, to attend more particularly to the variable height of volcanos. The endeavours made by ine for this objeet in the Mexiean mountains, in respect to the Volean de Toluea, the Popoeatepetl, the Cofre de Perote or Nauheampatepetl, and the Jorullo, and also the voleano of Pichinehia in the Andes of Quito, have been continued since my return to Europe at different epochs on Vesuvius. Where complete trigonometric or barometric measurements are wanting, accurate angles of altitude, taken at points which are exactly determined, may be substituted for them; and for a comparison of determinations made at different epoehs, angless of altitude so measured may even be often preferable to the complication of circumstances whiel more complete operations may involve.

Saussure had measured Mount Vesuvius, in 1773 , when the two margins of the crater, the north-western and the southeastern, appeared to him be of equal height. IIe found their
height above the level of the sea 609 toises, 3894 English feet. The eruption of 1794 oeeasioned a breaking down of the margin of the erater on the southern side, and a consequent inequality between the height of the two edges whieh the most unpraetised eye does not fail to distinguish even at a eonsiderable distanee. In 1805, Leopold von Bueh, GayLussae, and myself, measured the height of Vesurius three times, and found the northern margin opposite to La Somma, (the Roeca del Palo), exaetly as given by Saussure, but the southern margin 75 toises, or 450 Freneh or 479 English feet, lower than he had found it in 1773 . The whole elevation of the volcano on the side of Torre del Greeo (the side towards which, for the last thirty years, the igneous action has, as it were, been prineipally directed,) had at that time diminished one-eighth. The height of the eone of ashes, as compared with the whole height of the mountain, is in Vesuvius as 1 to 3 ; in Piehinela, as 1 to 10 ; and in the Peak of Teneriffe, as 1 to 20. In these three voleanie mountains, the cone of ashes is therefore, relatively speaking, highest in Vesuvius ; probably beeause, being a low volcano, the aetion has been prineipally by the summit.

A few months ago (in 182:) I was enabled not only to repeat my former barometrie measurements of the height of Vesuvius, but also, during the eourse of three visits to the summit, to make a more complete determination of all the edges of the erater ${ }^{(1}$). These determinations may not be without interest, since they inelude the long period of great eruptions between 1805 and 1822 , and constitute perhaps the only known examination and measurement of a voleano
at different epochs, in whieh the different parts of the cxamination are all truly comparable with each other. We learn from it that the margins of eraters are a phenomenon of far more permanent eharacter than had been previously inferred from passing observations, and this not only where (as in the Peak of Teneriffe, and in all the voleanos of the chain of the Andes,) they are visibly composed of traehyte, but also elsewhere. Aceording to my last determinations, the nortll-west edge of Vesuvius has, perhaps, not altered at all sinee the time of Saussure, an interval of 49 years; and the south-eastern side, on the side towards Bosche Tre Case, whieh, in 1794, had become 400 Freneh (426 English) feet lower, has since then hardly altered 10 toises (60 Trench or 64 English fect).

If the public journals, in deseribing great eruptions, often state the shape of Vesuvius to have undergone ain entire change, and if these assertions appear to be confirmed by picturesque vierrs sketched at Naples, the cause of the error consists in the outlines of the margin of the erater having been confounded with those of the cones of eruption aecidentally formed in the middle of the erater on its floor or bottom which has been upheaved by vapours. Suel a cone of eruption, consisting of loosely heaped-up rapilli and scorix, had in the course of the years 1S16-1818 gradually risen so as to be seen above the south-eastern margin of the crater; and the eruption of the month of February 1822 angmented it so much, that it even beeame from 1.00 to 110 (about 107 to 117 English) fect higher than the northwestern margin of the erater (the Roeea del Palo). This
remarkable cone, whieh it had beeome eustomary in Naples to regard as the true summit of the mountain, fell in, with a dreadful noise, in the last eruption, on the night of the 22d of Oetober (1822) : so that the floor of the crater, whieh had been eonstantly aceessible sinee 1811, is now 750 (almost 800 English) feet lower than the northern, and 200 (213 English) feet lower than the southern edge of the voleano. Variations in the form and relative position of the eones of eruption,-the openings of which ought not to be eonfounded, as they often are, with the erater of the voleano itself, -give to Vesuvius at different epochs a different appearanee, which would enable a person well aequainted with the history of the voleano, on a mere inspection of Haekert's paintings in the palace of Portici, to tell from the outlines of the summit, aecording as the northern or the southern side of the mountain is represented as the highest, in what year the artist had taken the sketch from whiel the pieture was made.

In the last eruption, in the night of the 23d to the 24th of October, twenty-four hours after the falling in of the great cone of scorix which has been mentioned, and when the small but numerous eurrents of lava had already flowed off, the fiery eruption of ashes and rapilli commeneed : it eontinued without intermission for twelve days, but was greatest in the first four days. During this period the detonations in the interior of the voleano were so violent that the mere coneussion of the air, (for no earthquake movement was pereeived), rent the eeilings of the rooms in the palace of Portici. In the neighbouring villages of

Resina, Torre del Greco, Torre del Annunziata, and Bosehe Tre Case, a remarkable phenomenon was witnessed. Thronghout the whole of that part of the country the air was so filled with ashes as to cause in the middle of the day profound darkness, lasting for several hours: lanterns were earried in the streets, as has so often been done at Quito during the cruptions of Pichineha. The flight of the inhabitants had never been more general : lava currents are regarded by those who diwell near Vesuvius with less dread than an eruption of ashes, a phenomenon whieh had nerer been known to such a degree in modern times; and the obscure tradition of the mamer in which the destruction of Herculaneum, Pompeii, and Stabio took place, filled the imaginations of men with appalling images.

The hot aqueons vapours which rose from the crater during the cruption and spread themselves in the atmosphere, formed, in cooling, a dense clond, surrounding the column of fire and ashes, whiel rose to a height of between nime and ten thousand feet. So sudden a condensation of vapour, and even, as Gay-Lussac has shewn, the formation of the cloud itself, augmented the eleetric tension. Flashes of forked lightning, issuing from the column of ashes, darted in every direction; and the rolling thunders were distinetly heard, and distinguished from the sounds which proceeded from the interior of the voleano. In no other eruption had the play of the electric forces formed so striking a feature.

On the morning of the 26th of October, a surprising rumour prevailed, to the effect that a torrent of boiling water was gushing from the crater, and pouring down the
slope of the cone of ashes. The learned and zealous observer of the volcano, Monticelli, soon discovered that this erroneous rumour had arisen from an optical illusion. The supposed torrent of watcr was in reality a flow of dry ashes, which, being as loose and moveable as shifting sands, issued in large quantitics from a crevice in the upper margin of the crater. The cultivated fields had suffered much from a long-continucd drought which had preceded the cruption; towards its close the "volcanic thunder-storm" which has been described produced an exceedingly violent and abundant fall of rain. This phenomenon is associated in all climates with the close of a volcanic cruption. As during the eruption the cone of ashes is generally cnveloped in cloud, and as it is in its immediate vicinity that the rain is most violent, torrents of mud are seen to descend from it in all directions, which the terrified husbandman imagines to consist of waters which have risen from the interior of the volcano and overflowed the crater; while geologists have erroncously thought they recognised in them cither sea-watcr or muddy products of the volcano, "Eruptions boucuses," or, in the language of some old French systcmatists, products of an ignco-aqueous liquefaction,

Where, as is generally the case in the Andes, the summit of the volcano rises into the region of perpetual snow, (even attaining, in some cases, an elevation twicc as great as that of Etna), the melting of the snows renders such inundations as have becn described far more abundant and disastrous. The phenomena in question are meteorologically connected with the eruptions of volcanos, and are variously modified
by the height of the mountain, the dimensions of that part of it which is always eovered with snow, and the extent and degree to whieh the sides of the cone of einders beeome heated; but they are not to be regarded as voleanic phenomena properly so called. Vast cavities also often exist on the slope or at the foot of voleanos which, eommunicating through many ehamels with the mountain torrents, form large subterranean lakes or reservoirs of watcr. When earthquake shocks, whieh, in the Andes, usually precede all igneous eruptions, eonvulse the entire mass of the volcano, these subterranean rescrvoirs are opened, and there issue from them water, fishes, and tufaeeous mud. This is the singular phenomenon which brings to light an otherwise unknown fish, the Pimelodes Cyelopum, ealled by the inhabitants of the highlands of Quito "Preñadilla," and which I deseribed soon after my return. When, on the night of thic 19th of June, 1698, the summit of a mountain situated to the north of Chimborazo, the Carguairazo, above 19000 English feet high, fell in, the country for nearly thirty English geographieal square miles round was eovered with mud and fishes; and seven years earlier a putrid fever, in the town of Ibarra, was ascribed to a similar cruption of fish from the volcano of Imbaburu.

I rccall these faets, beeanse they throw some light on the difference between the eruption of dry ashes and miry inundations of tufa and trass, carrying with them wood, elareoal, and shells. The quantity of ashes cmitted by Vesurius in the reeent cruption, like every thing eomneeted with voleanos and other great natural phenomena of a charaeter to exeite
tcrror, las been exccedingly exaggerated in the publie papers ; and two Ncapolitan chemists, Vicenzo Pepe and Giuseppe di Nobili, notwithatanding the statements of Monticelli and Covclli to the eontrary, even describe the ashes as containing silver and gold. Aceording to the results of my researches and inquiries, the thiekness of the bed of ashes formed by the twclve days' shower was but little above three fect, towards Bosehe Tre Case, on the slope of the cone where rapilli were mingled with them; and in the plain, from $15 \frac{1}{2}$ to 19 inches at the utmost. Such measurements ought not to be taken in places where the ashes have been heaped up by the action of wind, like drifted snow or sand, or have aecumulated from being carried thither by water. The times arc passed for seeking only the marrellous in volcanic phenomena, in the manner of the ancients among whom Ctesias made the ashes of Etna to be convcyed as far as the Indian peninsula. There are in Mexico vcins of gold and silver in trachytie porphyry; but in the ashes of Vesuvius which I brought back with me, and which an excellent chemist, Heimrich Rose, has examined at my request, no traces of either gold or silver have been discovered.

Although the above mentioned results, which are quite in aecordanee with the exaet observations of Monticelli, differ much from the aecounts which have been current during the short interval which has clapsed, it is nevertheless truc that the ermption of ashes from Vesuvius from the 24.th to the 2Sth of last October (1822) is the most memorable of any of which we possess an authentic aecount, sinee that which occasioned the death of the elder Pliny. The quantity of
ashes is, perhaps, three times as great as has ever been seen to fall since voleanie phenomena have been attentively observed in Italy. A stratum of ashes, from 16 to 19 inehes thick, appears at first sight insignificant compared with the mass whieh we find covering Pompeii ; but, not to speak of the inerease which that mass has probably received by the effeets of heavy rains and other eauses during the eenturies which have sinee elapsed, and withont renewing the animated debate respecting the causes of the destruetion of the Campanian towns, and whieh, on the other side of the Alps, has been earried on with a considerable degree of seeptieism, it should here be recalled to recolleetion that the eruptions of a volcano, at widely separated epoehs, do not well admit of comparison, as respects their intensity. All inferenees derived from analogy are inadequate where quantitative relations are concerned; as the quantity of lava and ashes, the height of the eolumn of smoke, and the loudness or intensity of the detonations.

From the geographieal deseription of Strabo, and from an opinion given by Vitruvius respecting the voleanic origin of pumiee, we perceive that, up to the year of the death of Vespasian, i.e. previous to the eruption whieh overwhelned Pompeii, Vesuvius had more the appearance of an extinct volcano than of a Solfatara. When, after long repose, the subterranean forees suddenly opened for themselves new chanels, and again broke through the beds of primitive and traehytic roeks, effeets must have been produced for whieh subsequent ones do nut furnish a standard. From the wellknown letter in which the younger Pliny informs Taeitus of
his uncle's death, it may be clearly seen that the renewal of volcauic outbursts, or what might be called the revival of the slumbering volcano, began with an eruption of ashes. The same thing was obscrved at Jorullo when, in September 1759, the new volcano, breaking through beds of syenite and trachytc, rose suddenly in the plain. The countrypeople took flight on finding their huts strewed with ashes which had been emitted from the everywherc opening ground. In the ordinary periodical manifestations of volcanic activity, on the contrary, the shower of ashes marks the termination of each particular eruption. There is a passage in the letter of the younger Pliny which shews clearly that, at a very early stage of the eruption, the dry ashes which had fallen had reached a thickness of four or five feet, without accumulation from drift or other extraneous cause. He writes, in the course of his narrative, " the court which had to be crossed to reach the room in which Pliny was taking his noon-day repose was so filled with ashes and pumice, that, if he lad longer delayed coming forth, he would have found the passage stopped." In an enclosed space like a court, the action of wind in drifting the ashes can scarcely liave becn very considerable.

I have interrupted my general comparative view of volcanos by a notice of particular observations made on Vesuvius, partly on account of the great interest excited by the recent eruption, and partly on account of those recollections of the catastrophes of Pompeii and Hcrculaneum, which are almost involuntarily recalled to our minds by the occurrence of any considerable shower of ashes. I have
recorded in a notc the measurements of height made by myself and others on Vesuvius and in its vicinity.

We have hithcrto bcen considering the structure and mode of action of those volcanos which have a permanent communication with the intcrior of the Earth by cratcrs. The summits of such volcanos consist of masses of trachyte and lava upheaved by clastic forces and traversed by veins. The permanency of their action gives us reason to iufer great complexity of structure. They have, so to speak, an individual character which remains unaltered for long periods of time. Neighbouring mountains often present the greatest diffcrences in their products: leucitic and fcldspathic lavas, obsidian with pumice, and masses of basalt containing olivinc. They belong to the most recent terrestrial phrnomena, breaking through almost all the sedimentary strata, and their products and lava currents are of later origin than our valleys. Their life, if I may permit myself to employ this figurative mode of cxpression, depends on the mamner and permanence of their communications with the interior of the Earth. They often continuc for centuries in a state of repose, arc then suddenly rekindled, and end by becoming Solfataras, cmitting aqucous vapours, gascs, and acids; sometimes, however, as in the case of the Peak of Tcneriffe, we find that their summit has already become a laboratory of regenerated sulphur; while from the sides of the mountain there still issue large torrents of lava, basaltic in the lower part, but towards the upper part, where the pressure is less, $\left({ }^{2}\right)$ presenting the form of obsidian with pumice.

Distinct from these volcanos provided with permanent
craters, there is another class of voleanic phenomena more rarely observed, but particularly instructive to the gcologist, as they recall the ancient world or the earliest geological revolutions of our planct. Traclytic mountains open suddenly, emit lava and ashes, and close again, perhaps never to rcopen. Thus it was with the gigantic mountain of Antisana in the chain of the Andes, and with the Monte Epomeo in Ischia in 1302. Sometimes such an outbreak has even taken place in plains: as in the high plateau of Quito, in Iceland at a distance from Mount Hecla, and in Euboca in the Lelantinc Fields. Many of the upheaved islands belong to this class of transitory phænomena. In all these cases the communication with the interior of the earth is not permancut, and the action ceases as soon as the cleft or fissure forming a temporary chamel closes again. Veins or dykes of basalt, dolerite, and porphyry, which in diffcrent parts of the earth traverse almost all formations, and masses of syenite, augitic porphyry, and amygdaloid, which characterise the recent transition and oldest scdimentary rocks, have probably been formed in a similar manner. In the youth of our planet, the substances of the interior being still fluid, penetrated through the everywhere fissured crust of the globe, sometimes becoming solidified in the form of rocky veins or dykes of granular texture, and sometimes spreading out in broad sheets, and resembling superimposed strata. The volcanic products or rocks transmittcd to us from the earlier ages of our planet have not flowed in narrow bands like the lavas of the isolated conical volcanos of the present time. The
mixturcs of angitc, titaniferous iron, feldspar, and hormblende, may have been the same at different epoehs, sometimes approximating more to basalt and sometimes to traehyte; and, (as we learn from the important researches of Mitscherlieh; and the analogy of artificial igneous produets) ehemical substances may have united in definite proportions in a crystallinc form: in all cases we reeognise that substanecs similar in composition have arrived at the surfaec of the earth by very different ways; either simply upheaved, or penetrating through temporary fissures; and that breaking through the oldcr roeks, (i. e the earlier oxydized crust of the globe), they have finally issued as lava currents from eonical mountains having a permancnt erater. To confound together phenomena so differcut is to throw the geological study of volcanos and volcanic action back into the obscurity from whieh, by the aid of numcrous comparative observations and researches, it las gradually began to emerge.

The question has often been propounded: What is it that burns in voleanos,- What produces the heat whieh melts and fuses together earths and metals? Modern chemical scienec has essayed to answer, that what burns are the earths, the metals, the alkalies themselves; viz, the metalloids of those substances. The solid and already-oxydised crust of the globe scparates the surrounding atmospherc, with the oxygen which it contains, from the inflammable unoxydised substances iu the interior of our planet: when those motalloids come in contact with the oxygen of the atmosphere there arises disengagement of heat. The great and celebrated chemist who propounded this explanation of vol-
canic phenomena soon himself relinquished it. Observations made in mines and caverns in all elimates, and which in concert with M. Arago I have colleeted in a separate memoir, shew that, even at what may be considered a very small depth, the temperature of the Earth is mueh above the mean temperature of the atmosphere at the same plaee. A faet so remarkable, and so generally confirmed, comeets itself with that which we learn from voleanie phenomena. The depth at which the globe may be regarded as a molten mass has been calculated. The primitive cause of this subterranean heat is, as in all planets, the process of formation itself, the separation of the spherieally condensing mass from a cosmieal gaseous fluid, and the cooling of the terrestrial strata at different depths by the loss of heat parted with by radiation. All volcanie phenomena are probably the result of a communication either permanent or transient between the interior and exterior of the globe. Elastie rapours press the molten oxydising substances upwards through deep fissures. Volemos might thus be termed intermitting springs or fountains of earthy substances ; i.c. of the fluid mixture of metals, alkalis, and earths whieh solidify into lava currents and flow softly and tranquilly, when being upheaved they find a passage by which to eseape. In a similar manner the Ancients represented (aecording to Plato's Phædon) all volcanie fiery eurrents as streams flowing from the Pyriphlegethon.

To these considerations and views let me be permitted to add another more bold. May we not find in this internal heat of our globe,-(a lieat indicated by thermometric
experiments on the waters of springs rising from different depths, $\left({ }^{3}\right)$ as well by our observations on volcanos),--a cause which may explain one of the most wonderful phrenomena with which the study of fosssils has made us acquainted? Tropical forms of animals, and, in the vegetable kingdom, arborescent ferns, palms, and bambusacere, are found buried in the cold regions of the North. Everywhere the ancient world shews a distribution of organic forms at variance with our present climatcs. To resolve so important a problem, recourse has been had to several hypotheses; such as the approach of a comct, a change in the obliquity of the Ecliptic, and a different degree of intensity in the solar light. None of these explanations are satisfactory at once to the astronomer, the physicist, and the geologist. For my part I willingly leave the axis of the Earth in its place, and suppose no change in the light of the solar disk (from whose spots a celebrated astronomer was inclined to explain the favourable or unfavourable harvests of particular years); I am disposed to recognise that in each planet there exist, independently of its relations to the central body of the system to which it belongs, and independently of its astronomical position, various causes for the development of heat ;-processes of oxydation, precipitations and chemical changes in the capacity of bodies, by increasc of clectromagnetic intensity, and communications opened between the internal and external portions of the planet.

It may be that in the Ancient World, cxhalations of heat issuing forth through the many openings of the decply
fissured crust of the globe may have favoured, perhaps for centuries, the growth of palms and trec-ferns and the existence of animals requiring a high temperature, over entire countries where now a very different clinate prevails. According to this view of things (a view already indicated by me in a work entitled " Gcological Essay on the Superposition of Rocks in both Hemispheres") the temperature of volcanos would be that of the interior of the earth, and the same cause which, operating through volcanic eruptions, now produces devastating effiects, might in primeral ages have clothed the decply fissured rocks of the nemly oxydised earth in every zone with the most luxuriant vcgetation.

If, with a view to explain the distribution of tropical forms whose remains are now discovered buried in northern regions, it slould be assumed that the long-haired species of Elephant now found enclosed in icc was originally indigenous in cold climates, and that forms resembling the same leading type may, as in the case of lions and lynxes, have been able to live in wholly different climates, atill this mamer of solving the difficulty presented by fossil remains camot be extended so as to apply to vegetable productions. From reasons with which the study of regetable physiology makes us acquainted, Palms, Mnsacere, and arborescent Monocotyledones, are incapable of supporting the deprivation of their appendicular organs which would be caused by the present temperature of our northern regions; and in the geological problem which we have to examine, it appears to
me difficult to separate vegetable and animal remains from each other. The same mode of explanation ought to comprehend both.

I have permitted myself at the conclusion of the present discussion to connect with facts collected in different and widely separated countries some unceitain and hypothetical conjectures. The philosophical study of Nature rises beyond the requirements of a simple description of Nature: it does not consist in a sterile accumulation of isolated facts. It may sometimes be permitted to the active and curious mind of man to stretch forward from the present to the still obscure future ; to divine that which camnot yet be clearly known; and thus to take pleasure in the ancient myths of geology reproduced in our own days in new and varied forms.

ANNOTATIONS AND ADDITIONS.

${ }^{(1)}$ p. 226.—" A more complete determination of the height of all parts of the margin of the crater."
Oltmanns, my astronomieal fellow labourer, of whom, alas! science has been early deprived, re-ealeulated the barometrie mcasurcments of Vcsuvius referred to in the preeeding memoir (of the 22 d and 25 th of November and of the lst of Deecmber, 1822), and has compared the results with the measurements whieh have been communicated to me in manuseript by Lord Minto, Viseonti, Monticelli, Brioschi, and Poulett Serope.
> A. Rocca del Palo, the highest and northern maryin of the Crater of Tesurius.

Saussure, barometric measurement computed in Toises. Eng. ft.
$\quad 1773$, probably by Deluc's formula . . . $609-3894$
Poli, 1794, barometric 606 - 3875
Breislak, 1794, barometric (but, like Poli, the formula emplojed uncertain).
$613-3920$
Gay-Lussac, Lcopold von Buch, and Humboldt, 1805, barometric, computed by Laplace's formula, as are also all the barometric results which follow . 603 - 3856
Brioschi, 1810, trigonometric $638-4080$
Visconti, 1816, trigonometric 622 - 397 r
Lord Minto, 1892, barometric, often repcated . 621 - 3971
Toises.
Eng. ft.
Poulett Scrope, 1822, barometric, somewhat uncertain from the proportion between the diancters of the tube and cistern being unknown . . 604 - 3862
Monticelli and Covelli, 1822. 624 - 3990
Hu:mboldt, 1822 $629-4022$
Most probable result 317 toiscs, or 2027 English feet, above the Hermitage ; or 625 toises, or 3996 English feet, above the level of the sea.
B. The lowest and southern margin of the crater opposite to Bosehe Tre Case.
After the eruption of 1794 this edge became $400{ }^{\text {Toises. }}$ Eng. ft.
(426 Eng.) fect lower than the Rocea del Palo ;
therefore if we cstimate the latter at 625 toises
(3996 English fect) $559-3574$
After the eruption of 1794 this edge beeame 400
(426 Eng.) fect lower than the Rocea del Palo ;
therefore if we cstimate the latter at 625 toises
(3996 English fect) $559-3574$
After the eruption of 1794 this edge beeame 400
(426 Eng.) fect lower than the Rocea del Palo ;
therefore if we cstimate the latter at 625 toises
(3996 English fect) $559-3574$
After the eruption of 1794 this edge beeame 400
(426 Eng.) fect lower than the Rocea del Palo ;
therefore if we cstimate the latter at 625 toises
(3996 English fect) $559-3574$
Gay-Lussae, Leopold von Buch, and Humboldt, 1805, barometric

Toises. Eng. ft.

534 - 3414
Humboldt, 1822, barometric 546-3491
C. Height of the cone of scorice inside the crater, which fell in on the 22 d of October, 1522.

Probable final result for the height of the above-mentioned cone of scorix 646 toises, or 4130 English feet.

D. Punta N'asone, highest summit of the Somma.

Toises. Eng. ft.
Schuckburgh, 1794, barometric, probably computed by his own formula 584 - 3734
Hunboldt, 1822, barometric, Laplace's formula . 5S6 - 3747

E. Plain of the Atrio del Cavallo.

Humboldt, 1S22, barometric $403-2577$

F. Foot of the cone of ashes.

Gay-Lussac, Leopold von Buch, and Humboldt, | Toises. |
| :--- | Eng.ft.

1805, barometric .
Humboldt, 1S22, barometric
.

G. Itermitage del Salcatore.

Gay-Lussac, Leopold von Buch, and Humboldt, Toises. Eng.ft.
1805, barometric $300-1918$

Lord Minto, 1822, barometric 307.9- 1969
Humboldt, 1522, barometric repcated . . . 308.7- 1974

Part of my measurements have been printed in Montieelli's Storia de' fenomeni del Vesuvio, avvenuti negli ami 1821$1823, \mathrm{p} .115$; but the negleeted eorreetion for the height of the mercury in the eistern has somewhat disfigured the results as there published. When it is remembered that the results given in the above table were obtained with barometers of very different construetions, at various hours of the day, with winds from very different quarters, and on the unequally heated deelivity of a voleano, in a loeality in which the deerease of atmospherie temperature differs greatly from that whieh is supposed in our barometric formulæ,-the agreement will be found to be as great as could be expeeted, and quite satisfaetory.

My measurements in 1822, at the time of the Congress of Verona, when I aeeompanied the late King of Prussia to

Naples, were made with more care and under more favourable circumstances than those of 1805 . Differences of height are besides always to be preferred to absolute heights, and these show that since 1794, the difference between the heights of the edges of the crater at the Rocea del Palo and on the side towards Bosco Tre Case has continued almost the same. I found it in 1805 exactly 69 toises (441 English feet), and in 1822 almost 82 toises (524 English feet). A distinguished geologist, Mr Poulett Scrope, found 74 toises (473 English feet), although the absolute heights which he assigns to the two sides of the crater appear to be rather too small. So little variation in a period of twenty-eight years, in which there were such violent commotions in the interior of the crater, is certainly a striking phænomenon.

The height attained by cones of scorix rising from the floor of the crater of Vesuvius is also deserving of particular attention. In 1776 Schuekburgh found such a cone 615 toises, or 3932 English feet, above the surface of the Mediterranean : aecording to the measurements of Lord Minto, (a very accurate observer,) the cone of scorim which fell in on the $22 d$ of October, 1822, even attained the height of 650 toises, or 4156 English feet. On both occasions, therefore, the leight of the cones of seorix in the crater surpassed that of the highest part of the margin of the crater. When we compare together the measurements of the Rocca del Palo from 1773 to 1822, we are almost involuntarily led to entertain the bold conjecture that the north margin of the crater has been gradually upraised by subterranean forces. The accordance of the three measurements between 1773
and 1805 is almost as striking as that of those taken from 1816 to 1822. In the latter period we eannot doubt the height being from about 621 to 629 toises (3970 to 4022 English feet). Are the measurements made from thirty to forty years earlier, whieh gave only 606 to 609 toises (3875 to 3894 English feet), less eertain? At some future day, after longer periods shall lave elapsed, it will be possible to deeide what is due to errors of measurement, and what to an aetual rise in the margin of the erater. There eamot be in this ease any aeeumulation of loose materials from above. If the solid traehyte-like lava beds of the Roeea del Palo really beeome higher, we must assume them to be upheaved from below by voleanie forees.

My learned and indefatigable friend Oltmanus has placed all the details of the above measurements before the public, aceompanied by a eareful eritieal examination of them, in the Abhandl. der königl. Akademie der Wissensehaften zu Berlin, 1822-1823, S. 3-20. May this investigation be the means of indueing geologists frequently to examine hypsometrieally this low and most easily aceessible (exeept Stromboli) of the European voleanos, so that in the course of centuries there may be obtained a frequently eheeked and aecurate account of its periods of development!

${ }^{(2}$) p. 235.-" Where the pressure is less."

Compare Leopold von Bueh on the Peak of Teneriffe in his Physikalisehe Besehreibung der eanarisehen Inseln, 1825, S. 213 ; and in the Λ bhandlungen der königl. Akademie zu Berlin, 1820-1821, S. 99.
$\left.{ }^{(3}\right)$ p. 239.-"Waters of sprinys rising from different depths."

Compare Arago in the Annuaire du Bureau des Longitudes pour 1835, p. 234. The increase of temperature is in our latitudes 1° of Reaumur ($2^{\circ} .25$ of a degree of Fahrenheit) for every 113 Parisian feet (120.5 English feet), or 1° Fah. to 53.5 English feet nearly. In the Artesian boring at New Salzwerk (Oeynhausen's Bad), not far from Minden, which is the greatest known depth below the level of the sea, the temperature of the water at $2094 \frac{1}{2}$ Parisian feet (22321 $\frac{1}{4}$ Eng.) is fully $26^{\circ} .2$ Reaumur, or 91° Fahr.; while the mean temperature of the air above may be taken at $7^{\circ} .7$ Reaumur, or $49^{\circ} .2$ Fahr. It is very remarkable that in the third century Saint Patricius, Bishop of Pertusa, was led by seeing the hot springs near Carthage to a very just view respecting the cause of such an increase of heat. (Acta S. Patricii, p. 555, ed. Ruinart; Kosmos, Bd. i. S. 231,-English Edition, Vol. i. p. 211.)

THE

VITAL FORCE;

OR,

THE RHODIAN GENIUS.

[FIRST PRINTED IN 1795.]

THE VITAL FORCE,

or

THE RHODIAN GENIUS.

The Syraeusans, like the Athenians, had their Pocile, in which representations of gods and heroes, the works of Greeian and Italian art, adorned the halls, glowing with varied colours. The people resorted thither continually; the young warriors to eontemplate the exploits of their ancestors, the artists to study the works of the great masters. Among the numerous paintings which the active zeal of the Syracusaus had eollected from the mother country, there was one which, for a century past, had particularly attracted the attention of spectators. Sometimes the Olympian Jove, Cecrops the founder of eities, and the heroic eourage of Harmodius and Aristogiton, would want admirers, while men pressed in crowded ranks around the picture of which we speak. Whenee this preference? Was it a rescued work of Apelles, or of the school of Callimachus? No; it possessed indeed grace and beauty; but yet neither in the blending of the eolours, nor in the character and style of the entire picture, could it be compared with many other paintings in the Poccile.

The multitude (comprehending therein many classes of
society), often regard with astonishment and admiration what they do not eomprehend : this pieture had oeeupied its place for a hundred years; but though Syraeuse contained within the narrow limits enclosed by its walls more of the genius of art than the whole of the remainder of sea-surrounded Sicily, no one had yet divined the hidden meaning of the design. It was even uneertain to what temple the painting had originally belonged, for it lad been reseued from a slipwreeked vessel, whieh was only eonjeetured from the merehandise it eontained to lave come from Rhodes.

On the foreground of the pieture youths and maidens formed a elosely erowded group. They were without elothing and well formed, but at the same time did not exhibit the more noble and graeeful proportions admired in the statues of Praxiteles and Alcamenes. Their robust limbs, shewing the traces of laborious efforts, and the purely terrestrial expression of their desires and sorrows, seemed to take from them every thing of a diviner charaeter, and to ehain them exelusively to their earthly labitation. Their hair was simply ornamented with leaves and field-flowers. Their arms were outstretehed towards eaeh other, as if to indieate their desire of union, but their troubled looks were turned towards a Genius who, surrounded by bright light, lovered in the midst. A butterfly was plaeed on his shoulder, and in his hand he held on high a lighted toreh. The eontours of lis form were soft and child-like, but his glanee was animated by eelestial fire: he looked down as a master upon the youths and maidens at lis feet. Nothing else that was eharaeteristie could be discovered in the pic-
ture. Some persons thought they eould make out at its foot the letters ζ and ς, from whence (as antiquaries were then no less bold in their conjeetures than they now are), they took oecasion to infer, in a somewhat forced manner, the name of Zenodorus; thus attributing the work to a painter of the same name as the artist who at a later period east the Colossus of Rhodes.

The "Rhodian Genius," however,--for such was the name given to the picture,- -did not want for commentators and iuterpreters in Syracuse. Amateurs of the arts, and espeeially the younger amongst them, on returning from a short visit to Corinth or Athens, would have thought it equivalent to renouneing all pretensions to connoisseurship if they had not been provided with some new explanation. Some regarded the Genius as the personifieation of Spiritual Love, forbidding the enjoyment of sensual pleasures ; others said it was the assertion of the empire of Reason over Desire : the wiser among the crities were silent, and presuming some ligh though yet undiseovered meaning, cxamined meauwhile with pleasure the simple eomposition of the pieture.

Still, however, the question remained unsolved. The picture had been eopied with various additions and sent to Greeee, but not the least light had been thrown on its origin ; when at length, at the season of the early rising of the Plciades, and soon after the reopening of the narigation of the Eigean Sea, ships from Rhodes entered the port of Syracuse, bearing a precious collection of statues, altars, eandelabras, and paintings, whieh Dionysius's love of art had caused to be brought together from diffcrent parts of Greece.

Anong the paintings was one whieh was immediately recognised as the companion or pendent of the Rhodian Gcnius: the dimensions were the same, and the eolouring similar, but in a better state of preservation: the Genius was still the eentral figure, but the butterfly was no longer on his shoulder; his head was drooping, and his torch extinguished and inverted. The youths and maidens pressing around him had met and embraced ; their glance, no longer subdued or sad, amouneed, on the eontrary, emaneipation from restraint, and the fulfilment of long-eherished desires.

The Syraeusan antiquaries were already seeking to modify the explamations they had previously proposed, so as to adapt them to the newly-arrived pieture, when Dionysius commanded the latter to be earried to the house of Epieharmus, a philosopher of the Pythagorean sehool, who dwelt in a remote part of Syracuse ealled Tyehe. Epicharmus rarely presented himself at the court of Dionysius, for although the latter was fond of ealling around him the most distinguished men from all the Greek colonial eities, yet the philosopher found that the proximity of prinees takes even from men of the greatest intelleetual power part of their spirit and their freedom. He deroted himself uneeasingly to the study of natural things, their forees or powers, the origin of animals and plants, and the harmonious lats in aecordanee with which the heavenly bodies, as well as the grains of hail and the flakes of snow, assume their distinctive forms. Oppressed with age, and unable to proceed far without assistanee, he caused limself to be eondueted daily to the Poccile, and thenee to the entrance of the port, where,
as he said, his eyes reecived the image of the boundless and the infinite whieh his spirit ever strove in vain to apprehend. He lived honoured alike by the tyrant, whose presenee lie avoided, and by the lower elasses of the people, whom he met gladly, and often with friendly help.

Exhausted with fatigue, he was reposing on his eouch, when the newly-arrived pieture was brought to him by the eommand of Dionysius. Care had been taken to bring, at the same time, a faithful copy of the "Rhodian Genius," and the philosopher desired the two paintings to be placed side by side before him. After having remained for some time with his eyes fixed upon them, and absorbed in thought, he ealled his seholars together, and spoke to them in the following terms, in a voiee which was not without emotion : -
"Withdraw the eurtain from the window, that I may cnjoy once more the view of the fair earth animated with living beings. During sixty years I have refleeted on the internal motive powers of nature, and on the differences of substances: to-day for the first time the pieture of the Rhodian Gemius leads me to see more clearly that which I had before only obseurely divined. As living bengs are iinpelled by natural desires to salntary and frmitful union, so the raw materials of inorganic nature are moved by similar impulses. Even in the reign of primeval night, in the darkness of chaos, elementary principles or substances sought or shunned each other in obedience to indwelling dispositions of amity or enmity. Thus the fire of heaven follows metal, iron obeys the attraetion of the loadstone,
amber rubbed takes up light substances, earth mixes with earth, salt collects together from the water of the sea, and the acid moisture of the Stypteria ($\sigma \tau v \pi \tau \eta \rho(a v \gamma \rho a$), as well as the flocculent salt Trichitis, love the elay of Melos. In inanimatc nature all things hasten to unite with each other according to their particular laws. Hcnee no terrestrial element (and who would dare to include light among the number of such elements?) is to be found anywhere in its purc and primitive simple state. Each as soon as formed tends to enter into new combinations, and the art of man is needed to disjoin and prcsent in a separatcd statc substanees which you would seck in vain in the interior of the earth, and in the fluid occans of air or water. In dead inorganic mattcr, entire inactivity and rcpose reigu so long as the bonds of affinity continue undissolved, so long as no third substance comes to join itsclf to the others. But even then, the action and disturbance produced are soon again succeeded by unfruitful rcpose.
"It is otherwise, however, when the same substances arc brought together in the bodics of plants and animals. In thesc the vital foree or power rcigns supreme, and regardless of the mutual amity or emmity of the atoms recognised by Demoeritus, commands the union of substances which in iuanimate nature shun eaelr other, and separates those whieh are cver seeking to enter into combination.
"Now come nearer to mc, my friends; look with me on the first of the pieturcs before us, and recognise in the Rhodian Genius, in the cxpression of youthful energy, in the butterfly on his shoulder, and in the eommanding glanee of
his eye, the symbol of vital force animating each individual germ of the orgauic ereation. At his feet are the earthy elements desiring to mix and unite, conformably to their particular tendeneies. The Genius, holding aloft his lighted toreh with eommanding gesture, controls and constrains them, without regard to their ancient rights, to obey his laws.
"Now view with me the new pieture whieh the tyrant has sent to me for explanation: turn your eyes from the image of life to that of death. The butterfly has left its former place and soars upwards; the extinguished toreh is reversed, the head of the youth has sunk: the spirit has fled to other spheres, and the vital foree is dead. Now the youths and maidens joyfully join hands, the earthy substanees resume their ancient rights : they are freed from the chains that bound them, and follow impetuously after long restraint the impulse to union.-Thus inert matter, animated awhile by vital furee, passes through an innumerable diversity of forms, and perhaps in the same substance whieh once enshrined the spirit of Pythagoras, a poor worm may have enjoyed a momentary existence.
"Go, Polycles, and tell Dionysius what thou hast heard ;and you my friends, Euryphamos, Lysis, and Scopas, come nearer to me and support me ; I feel that in my weakened frame the enfeebled vital power will not long hold in subjection the earthly substances which reelaim their aneient liberty. Lead me once again to the Poceile, and thence to the sea shore ; soon you will colleet my ashes."

NOTE.

I have noticed in the Preface to the Second and Third Editions (S. xiii., p. xii. English Trans.) the subject of the republication here of the preceding pages, which were first printed in Schiller's Horen (Jahrg. 1795, St. 5, S. $90-96$). They contain the devclopment of a physiological idea clothed in a semi-mythical garb. In the Latin "Aphorisins from the Chemical Physiology of Plants" appended to my "Subtcrranean Flora," in 1793,-I had defined the "vital force" as "the unknown causc which prevents the elements from following their original affinities." The first of my aphorisms werc as follows:-" Rerum naturam si totam considercs, magrum atque durabilc, quod iuter elementa intercedit, discrimen perspicies, quorum altera affinitatum legibus obtempcrantia, altera, vinculis solutis, varie juncta apparent. Quod quidem discrimen in clementis ipsis eorumque indole neutiquam positum, quum ex sola distributionc singulorum petendum esse videatur. Materiam scgncm, brutam, inaniman cam vocamus, cujus stamina secundum leges chymice affinitatis mixta sunt. Auimata atquc organica ea potissinuṃ corpora appcllamus, qux, licet in novas mutari formas perpetuo tcudant, vi interna quadam continentur, quominus priscan sibigue insitam formam relinquant.
" Vim intcrnam, quæ chymieæ affinitatis vincula resolvit, atquc obstat, quominus clementa corporum libere conjungrantur, vitalem voeamus. Itaque nullum eertius mortis eriterium putredine datur, qua primæ partes vel stamina rerum, antiquis juribus revoeatis, affinitatum legibus parent. Corporum inanimorum nulla putredo esse potest." (Vide Aphorismi cx doetrina Physiologix ehemiee Plantarum, in Humboldt, Flora Fribergensis subtcrranea, 1793, p. 133136).

I have placed in the mouth of Epicharmus the above propositions, which were disapproved by the aeute Vieq d'Azyr, in his Traité d'Anatomie et de Physiologie, T. i. p. 5, but are now entertained by many distinguished persons anong my friends. Refiection and continued study in the domains of physiology and chemistry have deeply shaken my earlier belief in a peeuliar so-ealled vital force. In 1797, at the close of my work cutitlcd "Versuehe über die gereizte Muskel und Nervenfaser, nebst Vermuthungen über den ehemisehen Process des Lebens in der Thier und Pflanzenwelt" (Bd. ii. S. 4.30-436), I already declared that I by no mcans regarded the existenee of such peeuliar vital forees as demonstrated. Sinee that time I have no longer ealled peeuliar forees what may possibly only be the operation of the coneurrent action of the several long-known substanees and their material forces. We may, however deduee from the ehemical rclations of the elements a safer definition of animatc and inanimate substances, than the eriteria which are taken from voluntary motion, from the cireulation of fluids within solids, from internal appropria-
tion, and from the fibrous arrangements of the elements. I term that an animated substance " of which the parts being separated by external ageney alter their state of eomposition after the separation, all other and external relations continuing the same." This definition is merely the enuneiation of a faet. The equilibrium of the elements in animated or organie matter is preserved by their being parts of a whole. One organ determines another, one gives to another its temperature and tone or disposition, in all which, these, and no other, affinities are operative. Thus in organised beings all is reeiproeally means and end. The rapidity with whieh organie parts, separated from a complete living organism, ehange their state of eombination, differs greatly, aceording to the degree of their original dependence, and to the nature of the substanee. Blood of animals, whieh varies mueh in the different elasses, suffers ehange sooner than the juiees of plants. Funguses generally deeay sooner than leaves of trees, and musele more easily than the eutis.

Bones, the elementary strueture of whiel has been very reeently reeognised, hair of animals, wood in plants or trees, the feathery appendages of seeds of plants (Pappus), are not inorganie or without life ; but even in life they approximate to the state in whieh they are found after their separation from the rest of the organism. The higher the degree of vitality or suseeptibility of an animated substanee, the more rapidly does organie change in its eomposition ensue after separation. "Ithe aggregate total of the eells is an organism, and the organism lives so long as the parts are aetive in subservience to the whole. In oppo-
sition to lifeless or inorganie, organie nature appears to be self-determining." (Henle, Allgemeine Anatomie, 1841, S. 216-219). The diffieulty of satisfaetorily referring the vital phenomena of organie life to physical and chemical laws, consists ehiefly (almost as in the question of predicting meteorological proeesses in the atmosphere), in the complieation of the phænomena, and in the multiplieity of simultancously aeting forces and of the conditions of their activity.

I have remained faithful in "Kosmos" to the same mode of viewing and representing what arc ealled "Lebenskräfte," vital forees, and vital affinitics, (Pulteney, in the Transaet. of the Royal Soc. of Edinburgh, vol. xvi. p. 305), the formation-impulse, and the aetive priueiple in organisation. I have said, in Kosmos, Bd. i. S. 67, (English Ed. vol. i. p. 62), "The myths of imponderable matter and of vital forees peeuliar to each organism have eomplieated and perplexed the view of nature. Under different conditions and forms of reeognition the proligious mass of our experimental knowledge has progressively aeeumulated, and is now enlarging with increased rapidity. Investigating reason cssays from time to time with varying suecess to break through ancient forms and symbols, invented to effect the subjection of rebellious matter, as it wcre, to mcehanical constructions." Farther on in the same volume, (p. 339 English, and 367 of the original,) I have said, "In a physlcal deseription of the universe, it should still be noticed that the same substances whieh compose the organic forms of plants and animals are also found in the inorganic crust
of the globe; and that the same forces or powers which govern inorganic matter are seen to prevail in organic beings likewise, combining and decomposing the various substances, regulating the forms and properties of organic tissues, but acting in these cases under complicated conditions yet unexplained, to which the very vague terms of 'vital phrenomena,' 'operations of vital forces,' have been assigned, and which have been systematically grouped, according to analogies more or less liappily imagined." (Compare also the critical notices on the assumption of proper or peculiar vital forces in Sclleiden's Botanik als inductive Wissenchaft (Botany as an Inductive Science), Th. i. S. 60, and in the recently published excellent Untersuchungen uber thierische Elektricität (Researcles on Animal Electricity), by Emil du Bois-Reymond, Bd. i. S. xxxiv.-l.)

THE

PLATEAU OF CAXAMARCA,

THE
ANCIENT CAPITAL OF THE INCA ATAHUALLPA:

AND

THE FIRST VIEW OF TIIE PACIFIC OCEAN, FROM THE CREST OF THE ANDES.

PLATEAU OF CAXAMARCA,

THE ANCIENT CAPITAL OF THE INCA ATAHUALLPA.

After a residence of an entire year on the crest of the chain of the Andes or Antis ${ }^{(1)}$, between 4° North and 4° South Latitude, in the high plains of New Granada, Pastos, and Quito, whose mean clevations range between 8500 and 12800 English feet, we rejoiced in descending gradually through the milder climate of the Quina-yielding forests of Loxa to the plains of the upper part of the course of the Amazons, a terra ineognita rich in magnificent vegetation. The small town of Loxa has given its name to the most cfficacious of all the speeies of medicinal Fever-Bark: Quina, or Cascarilla fina de Loxa. It is the precious production of the tree which we have deseribed botanically as Cinchona condaminea, but whieh, under the erroneous impression that all the kinds of the Quina or fever bark of commerce were furnished by the same species of tree, had previously becn called Cinchona officinalis. The Fever Bark was first brought to Europe towards the middle of the seventeenth eentury,
either, as Sebastian Badus asserts, to Aleala de Henares in 1632, or to Madrid in 1640, on the arrival of the wife of the Vieeroy, the Countess of Chinehon ${ }^{(2}$), who lad been cured of intermittent fever at Lima, accompanied by her physician, Juan del Vego. The trees which yield the finest quality of Quina de Loxa are found from 8 to 12 miles to the south east of the town, in the mountains of Uritusinga, Villonaco, and Rumisitana, growing on miea-slate and gneiss, at very moderate elevations above the level of the sea, being between 5400 and 7200 (5755 and 7673 English) feet, heights about equal respectively to those of the Hospiee on the Grimsel and the Pass of the great St. Bernard. The proper boundaries of the Quina-woods in this quarter are the small rivers Zamora and Cachiyacu.

The tree is eut down in its first flowering season, or in the fourth or seventh year of its age, aeeording as it has sprung from a vigorous root-shoot, or from a seed: we heard with astonishment that at the period of my journey, aceording to offieial computations, the eolleetors of Quina (Casearilleros and Cazadores de Quina, Quina Hunters), only brought in 110 hundred weiglit of the Bark of the Cinehona eondaminea anulually. None of this precious store found its way at that time into commerce; the whole was sent from the port of Payta on the Pacifie, round Cape Horn to Cadiz, for the use of the Spanish Court. In order to furnish this small quantity of 11000 Spanish pounds, eight or nine hundred trees were eut down every year. The older and thicker stems have beeome more and more scarce;
but the luxuriance of vegetation is such that the younger trees which are now resorted to, though only 6 inches in diameter, often attain from 53 to 64 English feet in height. This beautiful tree, which is adorned with leaves above 5 English inehes long and 2 broad, growing in dense woods, seems always to aspire to rise above its neighbours. As its upper branches wave to and fro in the wind, their red and shining foliage produces a strange and peculiar effect recognisable from a great distance. The mean temperature in the woods where the Cinchona condaminea is found, ranges between $12 \frac{1}{2}^{\circ}$ and 15° Reaumur $\left(60^{\circ} .2\right.$ and $65^{\circ} .8$ F'ahrenheit), which are about the mean annual temperatures of Florence and the Island of Madeira ; but the extremes of heat and cold observed at these two stations of the temperate zone are never felt around Loxa. Comparisons between the elimates of places, one of which is situated in an elevated tropical plain, and the other in a higher parallel of latitude, ean be from their nature but little satisfactory.

In order to descend South-South-East from the mountain knot of Loxa to the hot Valley of the Amazons, it is first necessary to pass over the Paramos of Chulucanas, Guamani and Yamoea, -mountain wildernesses of a peculiar character of which we have already spoken, and to which, in the southern parts of the Andes, the name of Puna (a word belonging to the Quichua language) is given. They mostly rise above 9500 (10125 Enghish) feet; they are stormy, often enveloped for days in dense mist, or visited by violent and formidable showers of hail,--eonsisting not merely of hailstones of different spherical forms, usually a
good deal flattened by rotation, but also sometimes of less regular forms, the hail having run together into thin plates of ice (papa-cara) which cut the faee and hands. At suel times I have occasionally seen the thermometer sink to 7° or 5° Reaumur, ($47^{\circ} .8$ and $43^{\circ} .2$ Fahr.) and the electrie tension of the atmospherc, mcasured by Volta's eleetrometer, pass in a few minutes from positive to negative. When the temperature sinks below 5° Reaumur, ($43^{\circ} .2$ Fahrcuhcit) snow falls in large and thinly seattered flakes. The vegetation of the Paramos has a peculiar physiognomy and charaeter, from the absenee of trees, the short close branehes of the small-leaved myrtlelike shrubs, the large sized and numerous blossoms, and the perpetual freshicss of the whole from the constant and abundant supply of moisture. No zone of Alpine vegetation in the temperate or eold parts of the globe can well be compared with that of the Paramos in the tropieal Andes.

The impressions produeed on the mind by the natural eharacters of these wildernesses of the Cordilleras are heightened in a remarkable and unexpected mamer, from its being in those very regions that we still sce admirable remains of the gigantic work, the artifieial road of the Ineas, which formed a linc of communication through all the provinces of the Empire, cxtending over a length of more than a thousand English geographical milcs. We find, plaeed at nearly equal distances apart, stations consisting of dwelling houses built of well-cut stone; they are a kind of Caravanserai, and are called Tambos and sometimes Inca-pilea (from pircea, thic wall?). Some of them are, surrounded by a kind of fortifieation; others weic
construeted for baths with arrangements for condueting hot water ; the larger were designed for the use of the family of the Monarch himsclf. I had previously seen, measured, and drawn with care, buildings of the same kind in a good state of preservation at the foot of the voleano of Cotopaxi, near Callo. Pedro de Cieça, writing in the 16th century, called them "Aposentos de Mulalo." (3) In the pass between Alausi and Loxa, called the Paramo del Assuay, - (a mnuch frequented route across the Ladera de Cadlud, 14568 French or 15526 English fcct above the level of the sea, or almost equal to the height of Mont Blanc),--as we were leading our heavily laden mules with great difficulty through the marshy ground on the clevated plain del Pullal, our eyes meanwhile were continually dwelling on the grand remains of the Inea's road, which with a breadth of twentyone English fect ran by our side for above a German mile. It had a deep under-strueture, and was paved with well-cut blocks of blackish trap-porphyry. Nothing that I had seen of the remains of Romair roads in Italy, in the South of France, and in Spain, was more imposing than thesc works of the aucient Peruvians, whieh are moreover situated, aecording to my barometrie measurements, at an elevation of 12440 (13258 English) feet above the sca, or more than a thousand feet higher than the summit of the Peak of Teneriffc. The ruins of what is called the Palaee of the Inca Tupac Yupanqui, and which are known by the name of the "Paredones del Inca," are situated at the same clevation on the Assuay. Proceeding from thenee to the southward towards Cuenca, the road leads to the small but well prescreced
fortress of Cañar (${ }^{4}$), belonging probably to the same period, that of Tupac Yupanqui, or to that of his warlike son, Huayna Capac.

We saw still finer remains of the old Peruvian artificial roads on the way between Loxa and the Amazons, at the Baths of the Incas on the Paramo de Chulueanas, not far from Guaneabamba, and in the neighbourhood of Ingatambo, at Pomahuaea. These last named remains are at a so much lower elevation, that I found the difference of level between the Inca's Road at Pomahuaca and that on the Paramo del Assuay upwards of 9100 (about 9700 English) feet. The distance in a straight line is by astronomically determined latitudes exaetly 184 English geographieal miles, and the ascent of the road is 3500 (3730 English) feet greater than the height of the Pass of Mount Cenis above the Lake of Como. There are two great artificial Peruvian paved roads or systems of roads, eovered with flat stones, or sometimes eveu with eemented gravel ${ }^{5}$) (Macadamised) ; one passes through the wide and arid plain between the Pacific Ocean and the ehain of the Andes, and the other over the ridges of the Cordilleras. Mile-stones, or stones marking the distances, are often found plaeed at equal intervals. The road was conducted aeross rivers and deep ravines by three kinds of bridges, stone, wood, and rope bridges (Puentes de Hamaca or de Maroma), and there were also aqueducts, or arrangements for bringing water to the Tambos, (hostelries or caravanserais) and to the fortresses. Both systems of roads were directed to the central point, Cuzco, the seat of goverument of the great empire, in $13^{\circ} 31^{\prime}$ South lati-
tude, and which is placed, according to Pentland's map of Bolivia, 10676 Paris or L1378 English feet above the level of the sea. As the Peruvians employed no wheel carriages, and the roads were consequently only designed for the march of troops, for men carrying burdens, and for lightly laden lamas, we find them occasionally interrupted, on account of the steepness of the mountains, by long flights of steps, provided with resting places at suitable intervals. Francisco Pizarro and Diego Almagro, who on their distant expeditions used the military roads of the Ineas with so much advantage, found great difficulties for the Spanish Cavalry at the places where these steps occurred (${ }^{6}$). The impediment presented to their march on these occasions was so much the greater, because in the carly times of the Conquista, the Spaniards used only horses instead of the carefully treading mule, who in the difficult parts of the mountains seems to deliberate on every step he takes. It was not until a later period that mules were employed.

Sarmiento, who saw the Roads of the Ineas whilst they were still in a perfect state of preservation, asks in a "Relacion" which long lay unread, buried in the Library of the Escorial, "how a nation unacquainted with the use of iron could have completed such grand works in so high and rocky a region ("Caminos tan grandes y tan sovervios"), extending from Cuzeo to Quito on the one hand, and to the coast of Chili on the other? The Emperor Charles," he adds, "with all his power could not accomplish even a part of what the well-ordered Govermment of the Incas effected through the obedient poople over whom they ruled."

Hernando Pizarro, the most cdueated and eivilised of the three brothers, who for his misdeeds suffered a twenty years' imprisonment at Medina del Campo, and died at last at a hundred years of age " in the odour of sanetity," "en olor de Santidad," exclains: "jul the whole of Christendom there are nowhere suelı fine roads as those which we here admire." The two important eapitals and seats of government of the Incas, Cuzco and Quito, are 1000 English geographien miles apart in a straight line (SS.E., NN.W.), without reckoning the many windings of the way ; and including the windings, the distance is estimated by Ciarcilaso de la Vega and other Conquistadores at " 500 leguas." Notwithstanding the great distance, we learn from the wellconfinned testimony of the Licentiate Polo de Ondegardo, that Huayna Capac, whose father had conquered Quito, caused some of the building materials for the "princely buildings," (the houses of the Ineas) in the latter city, to be brought from Cuzeo.

When enterprising races inlabit a land where the form of the ground presents to them difficulties on a grand seale whieh they may encounter and overeome, this eontest with nature becomes a means of inereasing their strength and power as well as their courage. Under the despotie centralizing system of the Lnea-rule, security and rapidity of communication, especially in the movement of troops, beeame an important necessity of government. Hence the construction of artifieial roads on so grand a seale, and hence also the establishment of a highly improved postal system. Among nations in very different stages of culti-
vation we see the national aetivity display itself with peculiar predilection in some particular directions, but we can by no means determine the gencral statc of culture of a people from the striking development of such partieular and partial activity. Egyptians, Greeks (7), Etruscans, and Romans, Chinese, Japanese, and Hindoos, shew many interesting contrasts in these respects. It is difficult to pronomec what length of time may have been required for the execution of the Peruvian roads. The great works in the northern part of the Empire of the Incas, in the highlands of Quito, must at all events lave been completed in less than 30 or 35 years; i. c. within the short period intervening between the def'cat of the Ruler of "Quitu" and the death of Huayna Capae, but cutice obscurity prevails as to the period of the formation of the Southern, and more properly speaking Peruvian, roads.

The mysterious appearance of Manco Capac is usually plaeed 400 years before the landing of Pizarro in the Island of Puna ($15: 32$), therefore towards the middle of the 10th century, almost 200 years before the fomndation of the city of Mexico (Tenochtitlan) ; somc Spanish writers even reckon, instead of 400, 500 and 550 years between Mance Capae and Pizarro. But the history of the empire of Pern only recognises thirtecuruling princes of the luca-dynasty, a number which, as Prescott very justly remarks, is not sufficient to occupy so long an interval as 5.50 or even 400 jear's. Quctzalcoatl, Jotschica, and Manco Capac, are the three nythical forms with which the commencements of civilisittion among the Aztecs, the Muyscas (more properly Chib)-
chas), and the Peruvians, are connected. Quetzalcoat1, bearded, clothed in black, a high pricst of Tula, subsequently a penance-performing anchorite on a mountain near Tlaxapuchicalco, comes to the highlands of Mexico from the coast of Panuco ; thercfore from the eastern coast of Anahuac. Botschica, or rather Nemterequeteba (${ }^{8}$) (a Buddha of the Muyscas), a messenger sent by the Deity, bearded and wearing long garments, arrives in the high plains of Bogota from the grassy steppes cast of the chain of the Audes. Before Manco Capac a degrce of civilisation already provailed on the picturesque shores of the Lake of Titicaca. The strong fort of Cuzco, on the hill of Sacsahuaman, was formed on the pattern of the older constructions of Tialuanaco. In the same manner the Aztecs imitated the pyramidal structures of the Toltecs, and thesc, those of the Olmees (Hulmces) ; and gradually asceuding, we arnive, still on historic ground in Mexico, as far back as the sixth century of our Era. According to Siguenza, the Toltec step)pyramid (or Tcocalli) of Cholula is a repectition of the form of thie Hulmec step-pyramid of Tcotihuacan. Thus as we penctrate through cach successive stratum of civilisation we arrive at an earlier onc ; and national self-consciousness not having awoke simultaneously in the two continents, we find in each nation the imaginative mythical domain always immediately preceding the period of historic knowledge.

Notwithstanding the tribute of admiration which the first Conquistadores paid to the roads and aqueducts of the Pcruvians, not only did they neglect the repair and prescrvation of both thesc classes of useful works, but they even wantonly
destroyed them ; and this still morc towards the sea-coast, (for the sake of obtaining fine cut stones for new buildings ; and where the want of water consequent on the destruction of the aqueducts has rendered the soil barren), than on the ridges of the Andes, or in the deep-cleft valleys by which the mountain chain is intersected. In the long day's journey from the sycnitic rocks of Zaulaca to the Valley of San Felipe (rich in fossils, and situated at the foot of the icy Paramo de Yamoca), we werc obliged to wade through the Rio de Guancabamba (which flows into the Amazons), no less than tweuty-seven timcs, on account of the windings of the stream; while we continually saw near us, rumning in a straight line along the side of a steep precipice, the romains of the high built road of the Incas with its Tambos. The mountain torrent, though only from 120 to 150 English feet broad, was so strong and rapid that, in fording it, our heavily laden mulcs werc often in danger of being swept away by the flood. They carried our manuscripts, our dricd plants, and all that we had been collecting for a yoar past. Under such circumstances one watches from the other side of the stream with very auxious suspense until the long train of cighteen or twenty beasts of burden have passed in safcty.

The same Rio de Guancabamba, in the lower part of its course, where it has many falls and rapids, is made to serve in a very singular mamer for the conveyance of correspondence with the coast of the Pacific. In order to expedite more quickly the few letters from Truxillo which arc inteuded for the province of Jaen de Bracamoros, a "swimming
couricr," "el correo que nada," as he is called in the country, is employed. This post messenger, who is usually a young Indian, swims in two days from Pomahuaea to Tomependa, first by the Rio de Cliamaya (the name given to the lower part of the Rio de Guaneabamba), and then by the Amazons. He earefully plaees the few letters entrusted to him in a large eotton handkerehief, whieh he winds round his head in the manner of a turban. When lie comes to waterfalls he leaves the river, and makes a cireuit through the woods. In order to lessen the fatigue of swimming for so long a time, he sometimes throws one arm round a picee of a very light kind of wood (Ceiba, Palo de balsa), of a tree belonging to the family of Bombaceæ. Sometimes also a friend goes with him to bear lim company. The pair have no coneern about provisions, as they are always sure of a hospitable reeeption in any of the seattered huts, whieh are abundantly surrounded with fruit trees, in the beautiful Huertas de Pucara and Cavieo.

Happily the river is free from erocodiles, whiel, in the upper part of the Amazons, are first met with below the cataraets of Mayasi. These unwieldy and slotliful monsters generally prefer the more tranquil waters. According to my measurements the Rio de Chanaya, from the Ford (Paso) de Pucara to the place where it enters the Amazons River below the village of Choros, las a fall (9) of 1668 (1778 English) feet in the short spaee of 52 English geographical miles. The Governor of the province of Jaen de Braeamoros asswred me that letters earried by this singular waterpost were rarely either wetted or lost. Soon after my return
to Europe from Mexico, I received, in Paris, letters from Tomependa, whieh had been sent in the manner above described. Several tribes of wild Indians, living on the banks of the Upper Amazons, make their journeys in a similar manner, swimming down the stream soeiably in parties. I had the opportunity of seeing in this manner, in the bed of the river, the heads of thirty or forty persons (men, women, and ehildren), of the tribe of the Xibaros, on their arrival at Tomependa. The "Correo que nada" returns by land by the diffieult route of the Paramo del Paredon.

On approaehing the hot climate of the basin of the Amazons, the cye is eheered by the aspect of a beautiful, and oeeasionally very luxuriant vegetation. We had never before, not even in the Camaries or on the hot sea eoast of Cumana and Caraeeas, seen finer orange trees than those of the Ifuertas de Pueara. They were principally the sweet orange (Citrus aurantium, Risso), and less frequently the bitter or Seville orange (C. vulgaris, Risso). Laden with many thousands of their golden fruits, they attain a height of sixty or sixty-four English feet ; and, instead of romeded tops or erowns, have aspiring branehes, alnost like a laurel or bay tree. Not far from thence, near the Ford of Cavico, we were surprised by a very unexpected sight. We saw a grove of small trees, only about eighteen or nineteen Finglish feet high, whieh, instead of green, had apparently perfectly: red or rose-eoloured leaves. It was a new speeies of Bougainvillæa, a genus first established by the elder Jussieu, from a Braziliau specimen in Commerson's herbarium. The trees were almost entirely without true leaves, as what we took
for leaves at a distance, proved to be thickly crowded bracteas. The appearance was altogether diffcrent, in the purity and freshness of the colour, from the autumnal tints which, in many of our forest trces, adorn the woods of the temperate zonc at the season of the fall of the leaf. A single spocics of the South African family of Proteacer, Rhopala fcrruginea, descends here from the cold heights of the Paramo de Yamoca to the hot plain of Chamaya. We often found here the Porlieria hygrometrica (belonging to the Zygophyllex), which, by the closing of the leaflets of its finely pinnated foliage, foretels an impending change of weather, and especially the approach of rain, much better than any of the Mimosacex. It very rarely deceived us.

We found at Chamaya rafts (balsas) in readiness to convey us to Tomependa, which we desired to visit for the purpose of determining the difference of longitude between Quito and the mouth of the Chinchipe (a detcrmination of some importance to the geography of South Amcrica on account of an old observation of La Condaminee). ${ }^{(10}$) Wc slept as usual under the open sky on the sandy shore (Playa de Guayanchi) at the confluence of the Rio de Chamaya with the Amazons. The next day we embarked on the latter river, and descended it to the Cataracts and Narrows (Pongo in the Quichua language, from juncu, door or gate) of Rentema, where rocks of coarsc-grained sandstone (conglomerate) rise like towers, and form a rocky dam across the river. I mcasured a base line on the flat and sandy shore, and found that at Tomependa the afterwards mighty River of the Amazons is only a little above 1386 English feet across. In the celebrated River Narrow or Pongo of Manseritclie,
between Santiago and San Borja, in a mountain ravine where at some points the overlanging roeks and the canopy of foliage forbid more than a very feeble light to penetrate, and where all the drift wood, eonsisting of a countless number of trunks of trees, is broken and dashed in pieees, the breadth of the stream is under 160 English feet. The roeks by whieh all these Pongos or Narrows are formed undergo many elhanges in the eourse of centuries. Thus a part of the roeks forming the Pongo de Rentema, spoken of above, had been broken up by a high flood a year before my journey ; and there has even been preserved among the inhabitants, by tradition, a lively reeolleetion of the precipitous fall of the then towering masses of roek along the whole of the Pongo,-an event whieln took plaee in the early part of the eighteentl eentury. This fall, and the consequent bloeking up of the ehamel, arrested the flow of the stream; and the inhabitants of the village of Puyaya, situated below the Pongo de Rentema, saw with alarm the wide river-bed entirely dry: but after a few hours the waters again foreed their way. Earthquake movements are not supposed to have oeeasioned this remarkable oceurrenee. The powerful strean appears to be as it were incessantly engaged in improving its bed, and some idea of the force whieh it exerts may be formed from the eireumstance, that notwithstanding its breadth it is sometimes so swollen as to rise more than 26 English feet in the eourse of twenty or thirty hours.

We remained for seventeen days in the hot valley of the Upper Marañon or Amazons. In order to pass from thenee to the shores of the Paeifie, the Andes have to be erossed at
the point where, between Mienipampa and Caxamarea (in $6^{\circ} 57^{\prime} \mathrm{S}$. lat. and $75^{\circ} 34^{\prime}$ W. long. from Greenwich), they are intersected, aeeording to my observations, by the magnet ic equator. Ascending to a still higher clevation among the mountains, the celebrated silver mines of Chota are reaehed, and from thence with a few interruptions the route descends until the low grounds of Peru are gained; passing intermediately over the ancient Caxamarca, where 316 years ago the most sanguinary drama in the annals of the Spanish Conquista took place, and also over Aroma and Ganganarca. Here, as almost everywhere in the Chain of the Andes and in the Mexican Mountains, the most elevated parts are pieturesquely marked by tower-like outbreaks of porphyry (often columnar), and trachyte. Masses of this kind give to the crest of the mountains sometimes a eliff-like and precipitous, and sometimes a dome-shaped eharacter. 'They have here broken through ealeareous rocks, which, both on this and on the northern side of the equator, are largely developed ; and which, according to Leopold ron Bueh's researehes, belong to the cretaceous group. Between Guambos and Montan, 12000 Freneh (12790 Euglish) feet above the sea, we found marine fossils (${ }^{(11}$) (Ammonitcs nearly fifteen English inehes in diametcr, the large Peeten alatus, oyster shells, Eehini, Isocardias, and Exogyra polygona). A species of Cidaris, which, aecording to Leopold von Buel, cannot be distinguished from that whieh Brongmiart found in the lower part of the ehalk series at the Perte du Rhone, was colleeted by us, both at Tomependa in the basin of the Amazons and at Mieuipampa,--stations of which the ele-
vations differ 9900 (10551 English) feet. In a similar mamer, in the Amuieh Chain of the Caucasian Daghestan, the eretaccous beds rise from the banks of the Sulak, which are hardly 530 English feet above the sea, to a height of frilly 9000 (9592 English) feet on the Tschunum; while on the summit of the Seladagh Mountain, 13090 (13950 English) feet high, the Ostrea diluviana (Goldf.) and the same eretaecous beds are again found. Abieh's exeellent observations in the Caucasus would thus appear to have eonfirned in the most brilliant manner Leopold von Buel's geologieal vierrs on the mountain developinent of the eretaecous group.
From the lonely grazing farm of Montan surrounded by herds of lamas, we aseended more to the south the eastern declivity of the Cordilleras, and arrived as night was closing in at an elevated plain where the argentiferous mountain of Gualgayoe, the prineipal site of the eelebrated silver mines of Chota, afforded us a remarkable speetaele. The Cerro de Gualgayoe, separated by a deep-eleft ravine or valley (Quebrada) from the limestone mountain of Cormolatsehe, is an isolated mass of siliceous rock traversed by a multitude of veins of silver whieh often meet or intersect, and terminated to the north and west by a deep and almost perpendieular preeipiee. The highest workings are 1445 (1540 English) feet above the floor of the gallery, the Socabon de Espinaehi. The outline of the mountain is broken by numerous towerlike and pyramidal points; the summit bears indeed the name of "Las Puntas," and oflers the most decided eontrast to the "rounded outlines" whieh the miners are aceustomed to attribute to metalliferous distriets generally. "Our monn-
tain," said a rieh possessor of mines with whom we had arrived, "stands there like an enehanted castle (como si fuese un eastillo eneantado)." The Gualgayoc reminds the beholder in some degree of a eone of dolomite, but still more of the serrated erest of the Monserrat Mountains in Catalonia, which I have also visited, and whieh were subsequently deseribed in so pleasing a mamer by my brother. The silver mountain. Gualgayoe, besides being perforated to its summit by many hundred galleries driven in every direetion, presents also natural openings in the mass of the siliceous roek, through whieh the interisely dark blue sky of these elevated regions is visible to a speetator standing at the foot of the mountain. These openings are popularly ealled "windows," "las ventanillas de Gualgayoc." Similar "windows" were pointed out to us in the traehytie walls of the voleano of Pichineha, and ealled by a similar name, "ventanillas de Pielineha." The strangeness of the view presented to us was still farther inereased by the numerous small sheds and dwelling-houses, which nestled on the side of the fortress-like mountain wherever a flat surfaee permitted their ereetion. The miners earry down the ore in baskets by very steep and dangerous paths to the plaees where the process of amalgamation is performed.

The value of the silver furnished by the mines in the first thirty years (from 1771 to 1802) amounted probably to considerably above thirty-two millions of piastres. Notwithstanding the hardness of the quartzose roek, the Peruvians, before the arrival of the Spaniards (as ancient galleries and excavations testify), extracted rich argentiferous galena on
the Cerro de la Lin and on the Chupiquiyaeu, and gold in Curumayo (where native sulphur is also found in the quartz roek as well as in the Brazilian Itaeolumite). We inhabited near the mines the small momitain town of Mienipampa, whieh is 11140 (11873 English) feet above the level of the sea, and where, though only $6^{\circ} 4.3^{\prime}$ from the equator, water freezes in the house mightly throughout a large portion of the year. In this desert devoid of vegetation live three or four thousand persons, who are obliged to have all their means of subsistence brought from the warm valleys, as they themselves ouly rear some kinds of kale and excellent salad. In this wilderness, as in every town in the high mountains of Peru, emmui leads the rieher elass of persons, who are not on that aecount more eultivated or more eivilised, to pass their time in deep gambling: thus wealth quickly wou is still more quiekly dissipated. There is mueh that reminds one of the soldier of Pizarro's troop, who, after the pillage of the temple at Cuzeo, eomplained that he had lost in one night at play "a great piece of the sun" (a gold plate). I observed the thermometer at Mienipimpa at 8 in the morning 1°, and at noon 7° Reaumur ($34^{\circ} .2$ and $47^{\circ} .8$ Fahrenheit). We found among the thin blades of Ielhu-grass (perhaps our Slipa eriostaelya), a beautiful Calceolaria (C. sibthorpioides), whieh we should not have expected at sueh au elevation.

Not far from the town of Nieuipampa, in a high plain called Llanos or Pampa de Navar, there have been found throughout an area of above an English geographical square mile, immediately under the turf, and as it were intertwined
with the roots of the alpine grasses, enormous masses of rich red silver ore and threads of pure silver (in remolinos, elavos, and vetas manteadas). Another elevated plain west of the Purgatorio, near the Quebrada de Chiquera, is called "Choropampa" or the "Field of Shells" (chur", in the Quiehua language, signifies shells, and partieularly small eatable kinds, hoslion, mexilloui). The name refers to fossils which belong to the eretaceous group, and whieh are found there in sueh abundanee that they early attraeted the attention of the natives. This is the place where there was obtained near the surface a mass of pure gold spun round with threads of silver in the riehest mamer. Sueh an oceurrenee shows how independent many of the ores thrown up from the interior of the carth into fissures or veins, are of the nature of the arjacent rock and of the relative age of the formations broken through. The rock of the Cerro de Gualgayoe and of Fuentestima has a great deal of water, but in the Purgatorio absolute dryness prevails. 1 found to my astonishment that notwithstanding the height of the strata above the level of the sea, the temperature of the last named mine was $15^{\circ} .8$ Reaumur ($67^{\circ} .4$ Pahr.); while in the neighbouring Mina de Cuadalupe the water in the mine showed about 9° Reaumur ($52^{\circ} .2$ Falur.) As in the open air the thermometer only rises to about 4° Reaumur (41° Fihr.), the miners, whose toil is severe, and who are almost without elothing, call the subterranean heat in the Purgatorio stifling.

The narrow path from Nieuipampa to the ancient city of the Incas, Caxamarca, is lifficult eren for mules. The name
of the town was originally Cassamarea or Kazamarea, i.e. the Frost town ; (marca, as signifying a place or locality, belongs to the northern Chinchaysuyo or Chinchaysuyu dialect, wiile the word in the general Quichua language signifies the stories of houses, aud also defences or forts). Our way lay for five or six hours over a suceessiou of Paramos, where we were exposed almost incessantly to the fury of the wind and to the sharp-edged hail so peculiar to the ridges of the Andes. 'The height of the routc above the level of the sea is generally between nine and ten thousand fect (about 9600 and 10660 Eng.) It afforded me, however, the opportunity of making a maguetic observation of general intcrest; i. e. the determination of the point where the North Tuclination of the Needle passes into South Inclination, or where the traveller's route crosses the Magnetic Equator. (${ }^{12}$)

On reaching at length the last of these mountain wildernesses, the Paramo de Yanaguanga, the traveller looks down with iucreased pleasure ou the fertile valley of Caxamarea. It affords a charming prosject : a small river winds through the elevated plain, which is of an oval form and about six or seven Cicrman geographical square miles in extent (96 or 112 English geographical square miles). The plain resembles that of Bogota: both are probably the bottoms of ancicut lakes; but at Caxamarea there is wanting the myth of the wonder-working Botschica or Idacanzas, the high priest of Iraca, who opencd for the waters a passage through the rock of T'equendama. Caxanarea is situated 600 (640 Lng.) feet higher than Santa Fé de Bogota,
therefore almost as ligh as the eity of Quito ; but being sheltered by surrounding mountains it enjoys a far milder and more agreeable climate. The soil is extremely fertile, and the plain full of cultivatcd fields and gardens traversed by avenues of Willows, large flowered red, white, and yellow varieties of Datura, Mimosas, and the beautiful Quinuar-trees (our Polylepsis villosa, a Rosacea allicd to Alchemilla and Sanguisorba). Wheat yields on an averagc in the Pampa de Caxamarca fifteen to twentyfold, but the hopes of a plentiful harvest are sometimes disappointed by night frosts, occasioned by the great radiation of heat towards the unclouded sky through the dry and rarefied mountain air : the frosts are not felt in the roofed houses.

In the northern part of the plain, small porphyritic domes break through the widely extended sandstone strata, and probably once formed islands in the ancient lake beforc its waters had flowed off. On the summit of one of these domes, the Cerro de Sauta Polonia, we cujoyed a pleasing prospect. The ancient residenee of Atuluallpa is surrounded on this side by fruit gardens and by irrigated fields of lucerne (Medicago sativa, "eampos de alfalfa"). Columns of smoke are seen at a distance rising from the warm baths of Pultamarca, which are still called Baños del Inea. I found the temperature of these sulphur-springs $55^{\circ} .2$ Rcaumur (156°. 2 Fahrenheit). Atahuallpa spent a part of the year at these baths, where some slight remains of his palace still survive the devastating rage of the Conquistadores. The large and deep basin or reservoir in which, according to tradition, one of the golden elnairs in whieh the Thea was
carried had been sunk and las ever sinee been sought in vain, appeared to me, from the regularity of its eircular shape, to have been artificially exeavated in the saudstone roek above one of the fissures through whieh the springs issue.

Of the fort and palaee of Atahuallpa there are also only very slight remains in the town, whieh is now adorned with some fine eliureles. The destruction of the ancieat buildings has beel aeeelerated by the devouring thirst of gold whieh led men, before the elose of the sixteenth eentury, in digging for supposed hidden treasures, to overturn walls and earelessly to undermine or weaken the foundations of all the houses. The palaee of the Inea was situated on a hill of porphyry whieh had originally been hollowed at the surfaee, so that it surrounds the principal dwelling almost like a wall or rampart. A state prison and a municipal building (la Casa del Cabildo) have been ereeted on a part of the ruins. The most eonsiderable ruins still visible, but which are only from 13 to 16 feet ligh, are opposite the convent of San Franciseo ; they consist, as may be observed in the house of the Caeique, of fine eut bloeks of stone two or three feet long, and placed upon each other without cement, as in the Inea-Pilea or stroug fortress of Canar in the high land of Quito.

There is a shaft sunk in the porphyritie roek whieh once led into subterranean eliambers, and a gallery said to extend to the other porphyritie dome before spoken of, that of Santa Polonia. Suel arrangements shew an apprelension of the uneertainties of war, and the desire to seeure the means of escape. The burying of treasures was au old and very gene-
rally prevailing Peruvian eustom. There may still be found subterranean ehambers below many of the private dwellings of Caxamarca.

We were shown steps eut in the roek, and also what is ealled the Inea's foot-bath (el lavatorio de los pies). The washing of the monarch's feet was aceompanied by some ineonvenient usages of eourt etiquette. (${ }^{(13)}$ Ninor buildings, designed aeeording to tradition for the servants, are construeted partly like the others of cut stones, and provided with sloped roofs, and partly with well formed bricks alternating with siliceous cement (muros y obra de tapia). In the latter elass of construetions there are vaulted reeesses, the antiquity of whieh I long doubted, but, as I now believe, without sufficient grounds.

In the prineipal building the room is still shown in whieh the unhappy Atahuallpa was kept a prisoner for nine months (${ }^{14}$) from November 1532, and there is pointed out to the traveller the wall on whieh the eaptive signified to what height he would fill the room with gold if set free. This height is given very variously, by Xerez in his "Conquista del Peru" whieh Bareia has preserved for us, by Hernando Pizarro in lis letters, and by other writers of the period. The prince said that "gold in bars, plates, and vessels, should be heaped up as high as he could reaeh with his hand." Xerez assigns to the room a length of 23 , and a breadth of 18 English feet. Gareilaso de la Vega, who quitted Peru in his 20 th year, in 1560 , estimates the value of the treasure collected from the temples of the sun at Cuzeo, Huaylas, Huamachueo, and Paehaeamae, up to the
fateful 20th of August 1553, on which day the lnca was put to death, at $3,838,000$ Ducados de Oro (${ }^{(5)}$).

In the chapel of the state prison, to which I have before alluded as built upon the ruins of the Inca's palaee, the stone still marked by the indelible stains of blood is shown to the eredulous. It is a very thin slab, 13 feet long, plaeed in front of the altar, and has probably been taken from the porphyry or trachyte of the viemity. One is not permitted to make any more precise examination by striking off a part of the stone, but the three or four supposed blood spots appear to be natural collections of hormblende or pyroxide in the rock. The Licentiate Fernando Montesimos, who visited Peru searcely a humdred years after the taking of Caxamarea, even at that early period gave eurrency to the fable that Atahuallpa was beheaded in prison, and that stains of blood were still visible on the stone on which the exceution had taken place. There is no reason to doubt the fact, eonfirmed by many eye-witnesses, that the Inca, in order to avoid being burnt alive, consented to be baptised under the name of Juan de Atahuallpa by his fanatic perseeutor, the Dominican monk Vicente de Valverde. He was put to death by strangulation (el garrote) publicly, and in the open air. Another tradition relates that a clapel was raised over the spot where Atahuallpa was strangled, and that his body rests beneath the stone; in such ease, however, the supposed spots of blood would remain unaecounted for. In reality, however, the eorpse was never plaeed beneath the stone in question. After a mass for the dead, and solemn funereal rites, at which the brothers Pizarro
were present in mourning habits (!), it was conveyed first to the churchyard of the convent of San Francisco, and afterwards to Quito, Atahuallpa's birthplace. This last transfer was in compliance with the expressed wish of the dying Inca. His personal enemy, the astute Rumiñavi ("stoneeye," a name given from the disfigurement of oue eye by a wart; "rumi," signifying "stone," and "naui," "eye," in the Quichua language), from political motives caused the body to be buried at Quito with solemn obsequies.

We found descendants of the monarch, the family of the Indian Cacique Astorpilco, dwelling in Caxamarca, among the melancholy ruins of ancient departed splendour, and living in great poverty and privation; but patient and uncomplaining. Their descent from Atahuallpa through the female line has never been doubted in Caxamarea, but traces of beard may perhaps indicate some admixture of Spanish blood. Of the sons of the Great (but for a child of the sun somewhat free thinking), (${ }^{16}$) Huayna Capac, neither of the two who swayed the sceptre before the arrival of the Spaniards, Huascar and Atahuallpa, left behind them acknowledged sons. Huascar became the prisoner of Atahuallpa in the plains of Quipaypan, and was soon afterwards secretly murdered by his order. Neither were there any surviving male descendants of the two remaining brothers of Atahuallpa, the insignificant youth Toparca, who Pizarro caused to be crowned as Inca in the autumn of 1553, and the enterprising Manco Capac, similarly crowned, but who afterwards rebelled again. Atahuallpa left indeed a son, whose christian name was Don Francisco, (but who died very young), and a daughter,

Doña Angelina, by whom Francisco Pizarro (with whom she led a wild and warlike life), had a son whom he loved fondly, grandehild of the slaughtcred mourch. Besides the family of the Cacique Astorpilco, with whom I was acquainted at Caxamarca, the Carguraicos and Titu Buseamayta werc pointed out at the period of my visit as belonging to the Inca dynasty ; but the Buseamayta family has since become extinct.
The son of the Caciquc Astorpilco, a pleasing and friendly youth of scventeen, who aceompanied me over the ruins of the palace of his ancestor, while living in extreme poverty, had filled his imagination with images of buried splendour and golden treasures hidden bencath the masses of rubbish upon which we trod. He related to me that one of his more immediatc forefathers had bound his wife's cyes, and then condueted her through many labyrinths eut in the roek into the subterrancan garden of the Incas. There she saw, skilfully and elaborately imitated, and formed of the purest gold, artifieial trees, with leaves and fruit, and birds sitting on the branches; and therc too was the much sought for golden travelling ehair (una de las andas) of Atahuallpa. The man commanded his wifc not to toueh any of these enchanted riches, beeause the long foretold period of the restoration of the empire had not yet arrived, and that whoever should attempt before that time to appropriate aught of thom would die that very night. These golden dreams and faneics of the youth were founded on recollections and traditions of formor days. These artifieial "golden gardens" (Jardines o Hucrtas de oro) were often
described by actual eye-witnesses, Cieza de Leon Sarmiento, Garcilaso, and other carly historians of the Conquest. They were found beneath the temple of the sun at Cuzco, in Caxamarea, and in the pleasant valley of Yucay, a favourite residence of the monarch's family. Where the golden Huertas were not below ground, living plants grew by the side of the artificial ones: among the latter, tall plants and ear's of maize (mazorcas) are mentioned as particularly well executed.

The morbid confidenee with which the young Astorpilco assured me that below our feet, a little to the right of the spot on which I stood at the moment, there was an artificial large-flowered Datura trec (Guanto), formed of gold wire and gold plates, which spread its branches over the Inea's chair, impressed me deeply but painfully, for it seemed as if these illusive and baseless visions were eherished as consolations in present sufferings. I asked the lad-"Sinee you and your parcuts believe so firmly in the existence of this garden, are not you sometimes tempted in your necessities to dig in seareh of treasures so close at hand?" The boy's anstrer was so simple, and expressed so fully the quiet resignation characteristic of the aboriginal inlabitants of the country, that I noted it in Spanish in my journal. "Such a desire (tal antojo) does not come to us; father says it would be sinful (que fuese pecado). If we had the golden braneles with all their golden fruits our white neighbours would hate and injure us. We have a small field and good wheat (buen trigo)." Few of my readers, I think, will blame me for reealling here the words of the young Astorpileo and his golden visions.

The belicf, so widely current among the natives, that to take possession of buried treasures whieh belonged to the Ineas would be wrong, and would incur punishnent and bring misfortune on the entire raee, is comected with another belief whieh prevailed, espeeially in the 16 th and 17 th centuries, i. c. the future restoration of a kingdom of the Ineas. Every suppressed mationality looks forward to a day of ehange, and to a renewal of the old government. The flight of Manco Iuca, the brother of Atahuallpa, into the forests of Vileapampa on the declivity of the eastern Cordillera, and the sojourn of Sayri Tupae and Inca Tupae Amaru in those wildernesses, have left permanent reenlleetions. It was believed that the dethroned dynasty lad settled between the rivers Apurimac and Beni, or still farther to the east in Guiana. The myth of cl Dorado and the golden eity of Manoa, travelling from the west to the east, inereased these dreams, and Raleigh's imagination was so inflamed by them, that he founded an expedition on the hope of "eonquering 'the imperial and golden city,' plaeing in it a garrison of three or four thousand Enghish, and levying from the 'Emperor of Guiana,' a descendant of Huayna Capac, and who holds his eourt with the same magnifieence, an annual tribute of $£ 300,000$ sterling, as the priee of his promised restoration to the throne in Cu\%co and Caxamarea." Wherever the Peruvian Quichua language has extended, some traees of suels expeetations of the return of the Inea's sovereignty contimue (${ }^{17}$) to exist in the minds of many among those of the natives who are possessed of some knowledge of the history of their eountry.

We remained for five days in the town of the Inca Atahuallpa, which at, that time seareely reckoned scven or eight thousand inhabitants. Our departure was delayed by the number of mules which were required for the eonveganee of our collections, and by the nccessity of making a eareful choice of the guides who were to conduct us across the chain of the Andes to the entranee of the long but narrow Peruvian sandy desert (Desierto dc Scchura). The passage over the Cordillera is from north-east to south-west. Immediately after quitting the plain of Caxamarca, on ascending a height of scarcely 9600 (10230 English) feet, the travellcr is struck with the sight of two grotesquely shaped porphyritic summits, Aroma and Cunturcaga (a favourite haunt of the powerful vulture which we commonly eall Condor; Kacca in the Quichua language signifies "the rock.") Thesc summits consisted of five, six, or sevensided columns, 37 to 42 English feet high, and some of them jointcd. The Cerro Aroma is particularly picturesque. By the distribution of its often converging series of eolumns plaeed one above another, it resembles a two-storied building, whieh, moreover, is surmounted by a dome or eupola of non-eolumnar rock. Such outbursts of porphyry and traehytc are, as I have before remarked, characteristie of the ligh crests of the Cordilleras, to which they impart a physiognomy quite distinct from that presented by the Swiss Alps, the Pyrenees, and the Siberian Altai.

From Cunturcaga and Aroma we desconded by a zig-zag coursc a stecp rocky deelivity of 6400 English feet into the deep cleft valley of the Magdalena, the bottom of whieh
is still 4260 English feet above the level of the sea. A few wretched huts, surrounded by the same wool or cottontrees (Bombax discolor) which we had first seen on the banks of the Amazons, were called an Indian village The scanty vegetation of the valley bears some resemblance to that of the province of Jaen de Bracamoros, but we missed the red groves of Bougainvillæa. This valley is one of the deepest with which I am acquainted in the chain of the Andes: it is a true transverse valley directed from east to west, deeply cleft, and hemmed in on the two sides by the Altos de Aroma and Guangamarca. In this valley recommences the same quartz formation which we had observed in the Paramo de Yanaguanga, betwcen Micuipampa and Caxamarea, at an elevation of 11720 English feet, and which, on the western declivity of the Cordillera, attains a thickness of several thousand feet, and was long an enigma to me. Since von Buch has shown us that the cretaceous group is also widely extended in the highest chains of the Andes, on cither side of the Isthmus of Panama, the quartz formation which we arc now considering, which has perhaps been altered in its texture by the action of voleanic forces, may be considered to belong to the Quadcrsandstcin, intermediate between the upper part of the chalk series, and the Gault and Greensand. On quitting the mild temperature of the Magdalcua valley we had to ascend again for three hours the mountain wall of 5120 English fect, opposite to the porphyritic group of the Alto de Aroma. The change of climate in so doing was the more sensible, as we were often enveloped in the course of the ascent in a cold fog.

The longing desire which we felt to enjoy once more the open view of the sea after eighteen months' consfant sojourn in the ever restricted range of the interior of the mountains, had been heightened by repeated disappointments. In looking from the summit of the volcano of Pichincha, over the dense forests of the Provincia de las Esmeraldas, no sea horizon can be clearly distinguished, by reason of the too great distance of the coast and height of the station : it is like looking down from an air-balloon into vacancy. One divines, but one does not distinguish. Subsequently, when between Loxa and Guancabamba we reached the Paramo de Guamini, where there are several ruined buildings of the times of the Incas, and from whence the mule-drivers had confidently assured us that we sloould see beyond the plain, beyond the low districts of Piura and Lambajeque, the sea itself which we so much desired to behold, a thick mist covered both the plain and the distant sea shore. We saw only variously shaped masses of rock alternately rise like islands above the waving sea of mist, and again disappear, as had been the case in our view from the Peak of Teneriffe. We were exposed to almost the same disappointment in our subsequent transit over the pass of Guangamarca, at the time of which I am now speaking. As we toiled up the mighty mountain side, with our expectations contimually on the stretch, our guides, who were not perfectly acquainted with the road, repeatedly promised us that at the end of the hour's march which was nearly conclnded, our hopes would be realised. The stratum of mist which enveloped us appeared occasionally to be about
to disperse, but at sueh moments our field of view was again restrieted by intervening heights.

The desire which we feel to behold eertain objeets does not depend solely on their grandeur, their beauty, or their importanee; it is interwoven in eaeh individual with many aecidental impressions of his youth, with early predileetion for partieular oeeupations, with an attachment to the remote and distant, and with the love of an aetive and varied life. The previous improbability of the fulfilment of a wish gives besides to its realisation a peculiar kind of eharm. The traveller enjoys by antieipation the first sight of the constellation of the eross, and of the Magellanie elouds eireling romed the Southern Pole,-of the snow of the Chimborazo, and the eolumn of smoke aseending from the volemno of Quito,-of the first grove of tree-ferns, and of the Paeifie Oeean. The days on whieh such wishes are realised form epochs in life, and produee ineffaeeable impressions; exeiting feelings of whieh the vividness seeks not justification by proeesses of reasoning. With the longing which I felt for the first view of the Paeific from the crests of the Andes, there mingled the interest with which I had listened as a boy to the narrative of the adventurous expedition of Vaseo Nunce de Balboa, ${ }^{(18}$) the fortunate man who (followed by Francisco Pizarro) first amony Europeans beheld from the heights of Quarequa, on the Istlunus of Panama, thie eastern part of the Paeific Ocean,--the "South Sea." The reedy shores of the Caspian, at the plaee where I first saw them, i. e. from the Delta formed by the mouths of the Volga, eannot ecrtainly be ealled pietu-
resque; yct I vicwed them with a gratifieation heightened almost into delight by the partieular intcrest and pleasurc with whiel, in early childhood, I had looked at the shape of this Asiatic inland sea on maps. That which is thus excited in us (${ }^{19}$) by childish impressions, or by accidental cireumstances in life, takes at a later period a graver direction, and often becomes a motive for seientific labours and distant enterpriscs.

When after many undulations of the ground, on the summit of the steep mountain ridge, we finally reaelied the highest point, the Alto de Guangamarca, the hearcus which had long bcen veiled bccamc suddenly clear : a sharp west wind dispersed the mist, and the deep bluc of the sky in the thin mountain air appeared between narrow lines of the lighcst cirrous clouds. The whole of the western declivity of the Cordillcra by Chorillos and Caseas, covered with large bloeks of quartz 13 to 15 English feet long, and the plains of Clala and Molinos as far as the sea shore ncar Truxillo, lay bencatl our eyes in astonishing apparent proximity. We now saw for the first time the Pacific Ocean itself; and we saw it clearly: forming aloug the line of the shore a large mass from which the light shone reflected, and rising in its immensity to the well-defined, no longer merely conjeetured horizon. The joy it inspired, and whieln was vividly shared by my compauions Bonpland and Carlos Montufar, made us forget to open the barometcr until we had quitted the Alto de Guangamarca. Fron our measurement taken soon after, but somewhat lower down, at an isolated eattle-farm called the Hato de Guangamarca,
the point from which we first saw the sea would be only somewhere betwecu 9380 and 9600 English feet above the level of the sea.

The view of the Pacific was peculiarly impressive to one who like mysclf owed a part of the formation of his mind and character, and many of the directions which his wishes had assumed, to intcrcoursc with one of the companions of Cook. My schemes of travcl were early made known, in their leading outlines at least, to Georgc Forster, when I enjoyed the advantage of making my first visit to England under lis guidance, more than half a century ago. Forster's charming descriptions of Otaheite had awakened throughout Northeru Europe a general interest (mixed, I might almost say, with romantic longings) for the Islands of the Pacifie which had at that time been seen by very few Europeans. I too eherished at the timc of whieh I am speaking the hope of soon landing on them; for the objeet of my visit to Lima was twofold,-to observe the transit of Mercury orer the solar disk, and to fulfil an engagement madc with Captain Baudin before I left Paris, to join him in a voyage of cireumnavigation which was to take place as soon as the Government of the French Republie could furnish the requisitc funds.

Whilst we were in the Antilles, North Ameriean newspapers announced that the two Corvettes, Le Géographe and Le Naturalistc, would sail round Cape Horn and toueh at Callao de Lima. On recciving this intelligence at Havana, where I then was, after liaving completed my Orinoeo journey, I relinquished my original plan of going through Mexico to
the Plilippines, and hastened to engage a vessel to convey me from the Island of Cuba to Cartagena de Tudias. Baudin's Expedition, however, took quite a different route from that which was announeed and expeeted ; instead of sailing round Cape Horn, as had been designed when it had been intended that Boupland and myself should form part of it, it sailed round the Cape of Good Hope. One of the two objeets of my Peruvian journey and of our last passage over the Chain of the Andes failed; but on the other land I had, at the critieal moment, the rare good fortune of a perfeetly elear day, during a very unfavourable season of the year, on the misty coast of Low Peru. I observed the passage of Mereury over the Sun at Callao, an observation whieh has beeome of some importance towards the exact determination of the longitude of Lima $\left({ }^{20}\right)$, and of all the south-western part of the New Continent. Thus in the intrieate relations and graver circumstanees of life, there may often be found, associated witl disappointment, a germ of eompensation.

AN゙NOTATIONS AND ADDITIONS.

${ }^{(1}$) 1.267.-" On the vidlge of the C'hain of the Andes or Antis."

The Inea Garcilaso, who was well aequainted with the language of his country and was fond of dwelling on etymologies, always ealls the Chain of the Audes las Montañas de los Antis. He says positively, that the great Mountain ehain east of Cuzco derived its name from the tribe of the Antis, and the Province of Anti which is to the east of the Capital of the Incas. The Quaternary division of the Peruvian Empire aceording to the four quarters of the Heavens, reekoned from Cuzco, borrowed its terminology not from the very eircumstantial words taken which signify East, West, North, and South in the Quiehua language (intip lluscinanpata, intip yaueunaupata, intip chantuta chayananpata, intip chaupunchau ehayananjata) ; but from the names of the Provinees and of the tribes or races, (Provincias llamadas Anti, Cunti, Chincha y Colla), whieh are east, west, north, and south of the Centre of the Empire (the city of Cuzco). The four parts of the Inea-theocraey are called aecordingly Antisuyu, Cuntisuyu, Chinehasuyu, and Collasuyu. The word suyu signifies "strip," and also "part." Notwithstanding the great distanee, Quito be-
longed to Chinehasuyu; and in proportion as by their religious wars the Ineas extended still more widely the prevalence of their faith, their language, and their absolute form of government, these Suyus also acquired larger and unequally iucreased dimeusions. Thus the names of provinees came to be used to express the different quarters of the heavens; "Nombrar aquellos Partidos era lo mismo," says Garcilaso, "que decir al Oriente, ó al Poniente." The Snow Chain of the Antis was thus looked upon as an East chain. "La Provineia Anti da nombre á las Montañas de los Antis. Llamaron la parte á del Oriente Antisuyu, por la qual tambien llaman Anti á toda aquella gran Cordillera de Sierra Nevada que pasa al Oriente del Peru, por dar á entender, que está al Oriente." (Commentarios Reales, P. I. p. 47 and 122.) Later writers have tried to deduce the name of the Chain of the Andes from "anta," whieh signifies "copper" in the Quiehua language. This metal was indeed of the greatest importanee to a nation whose tools and eutting instruments were made not of iron but of copper mixed with tin; but the name of the "Copper Mountains" can hardly have been extended to so great a chain; and besides, as Professor Busehmann very justly remarks, the word anta retains its terminal a when making part of a compound word : anta, eobre, y antamarca Provineia de Cobre. Moreover, the form and composition of words in the aucient Peruvian language are so simple that there ean be no question of the passage of an a into an i; and thus " anta" (copper) and "Anti or Ante" (meaning as dictionaries of the country explain "la tierra de los Andes,
el Tndio hrombre de los Andes, la Sierra de los Andes," i. e. the country of the Andes, an inliabitant of the Andes, or the clain of mountains themselves), are and must continue two wholly different and distinet words. There are no means of interpreting the proper name (Anti) by connecting it with any signification or idea; if such connection exist it is buried in the obscurity of the past. Other Composites of Anti besides the above-mentioned Autisuyu are "Anteruna" (the native inhabitant of the Andes), and Anteunecuy or Autionccoy, (sickness of the Andes, inal de los Andes pestifero).

> (²) p. 268.-" The Countess of Chinchon."

She was the wife of the Viceroy Don Geronimo Fernandez de Cabrera, Bobadilla y Mendoza, Conde de Chinehon, who admimistered the goverument of Peru from 1629 to 1639 . The cure of the Vice-Queen falls in the year 1638. A tradition whieh has obtained curreney in Spain, but whieh I have heard mueh combated at Loxa, uames a Corregidor del Cabildo de Loxa, Juan Lopez de Cañizares, as the person by whom the Quina-bark was first brought to Lima and generally recommended as a remedy. I lrave lreard it asserted in Loxa that the beneficial virtucs of the tree were known long before in the mountains, thouglr not generally. Immediately after my return to Europe I expressed the doubts I felt as to the diseovery having been made by the natives of the country round Loxa, since even at the present day the Indians of the neighbouring valleys, where intermittent fevers are very prevalent, shun the use of vol. II.
bark. (Compare my memoir entitled "über die Chinawilder" in the "Magazin der Gesellsehaft naturforschender Frounde" zu Berlin, Jahrg. I. 1807, S. 59.) The story of the matives having learnt the virtues of the Cinchona from the lions who "curc themselves of intermittent fevers by guawing the bark of the China (or Quina) trces," -(Hist. de l'Aead. des Scienecs, améc 1738, Paris, 1740, p. 233),-appears to be entirely of European origin, and nothing but a monkish fable. Nothing is known in the New Continent of the "Lion's fever," for the large so-called Amcriean Lion (Felis concolor), and the small mountain Lion (Puma) whose footmarks I have seen on the snow, are never tamed and made the subjects of observation; nor are the different speeies of Felinæ in cither continent accustomed to guaw the bark of trecs. The name of Countess's Powder (Pulvis Comitissx), occasioned by the remedy having been distributed by the Countess of Chinchon, was afterwards changed to that of Cardinal's or Jesuit's powder, becausc Cardinal de Lugo, Procurator-General of the order of the Jesuits, spread the knowledge of this valuable remedy during a joumey through France, and recommended it to Cardinal Mazarin the more urgently, as the brethren of the order were begiming to prosecute a lucrative trade in South American Quina-bark whieh they obtained through thicir missionaries. It is hardly necessary to remark, that in the long controversy whieh ensued respecting the good or bad effects of the fever bark, the protestant physicians sometimes permitted themselves to be influcneed by religious intolerance and dislike of the Jesuits.

$$
\left.{ }^{(3}\right) \text { p. 271.-"Aposentos de Mululos." }
$$

Respecting thesc aposentos (dwcllings, inns, in the Quiehua language tampu, whenee the Spanish form tambo), compare Cieça, Chronica del Peru, eap. 41, (ed. de 1554, p. 108) and my Vues des Cordillères, Pl. xxiv.

$$
{ }^{(4)} \text { p. 27.-" The fortress of the Cañar" }
$$

Is situated not far from Turehc, at an clevation of 9984 (10640 English) feet. I have given a drawing of it in the Vucs des Cordillères, Pl. xvii. (compare also Cieça, eap. 44, P. i. p. 120). Not far from the Fortaleza del Cañar, in the celebrated ravine of the Sun, Inti-Guaycu, (in the Quichua or Qquechlua language, Iucaycco), is the roek on whieh the natives think they sce a representation of the sun and of an enigmatical sort of bank or beneh which is ealled IngaChungana (Ineachuncana), the Inea's play. I have drawn both. See Vues des Cordillères, Pl. xviii. and xix.
${ }^{(5)}$ p. 272.-"Artificial ruads covered with cemented gravel."
Compare Vclaseo, Historia de Quito, 1844, T. i. p. 126128, and Prescott, Hist. of the Conquest of Peru, Vol. i. p. 157.
$\left.{ }^{(}{ }^{6}\right)$ p. 273.-" Where the road was interrupted by flights
of steps."

Compare Pedro Sancho in Ramusio, Vol. iii. fol. 40t, and Extracts from Manuseript Lettcrs of Hernando Pizarro,
employed by the great historical writcr now living at Boston ; Prescott, Vol. i. p. 444. "El camino de las sierras es cosa de ver, porque en verdad en tierra tan fragosa en la eristiandad no se han visto tan hermosos caminos, toda la mayor partc de calzada."
$\left.{ }^{(7}\right)$ p. 275.-" Greeks and Romans shew these contrasts." " If," says Strabo, (Lib. v. p. 235, Casaub) "the Greeks in building thair cities sought for a happy result by aiming cspecially at beauty and solidity, the Romans on the other land have regarded particularly, objects which the Grceks left unthought of ;-stone pavements in the streets; aqueduets bringing to the city abundant supplies of watcr ; and provisions for drainage so as to wash away and earry to the Tiber all uncleanliness. They also paved the roads through the country, so that waggons may transport with ease the goods brought by trading ships."
${ }^{(8)}$ p. 276.-" The messenger of the deity Nemterequeteba."
The civilisation of ancient Mexico (the Aztee land of Amahuae), and that of the Peruvian theoeracy or empirc of the Jucas, the ehildren of the Sun, have so engrossed attention in Europe, that a third point of eomparative light and of dawning civilisation, whieh cxisted among the nations inhahiting the mountains of New Granada, was long almost entircly overlookcd. I have touched on this subjeet in some detail in the Vue des Cordillères et Monumens des Peuples Indigèncs de l'Amériquc (ed. in Svo.) T. ii. p. 220 -
267. The form of the government of the Muyseas of New Granada reminds us of the eonstitution of Japan and the relation of the Seeular Ruler (Kubo or Scogun at Jeddo) to the saered personage the Daïri at Miyako. When Gonzalo Ximenez de Quesada advaneed to the high table land of Bogota (Baeata, i. e. the extremity of the cultivated fields, probably from the proximity of the mountain wall), he found there three powers or authorities respeeting whose reeiproeal relations and subordination there remains some uneertainty. The spiritual ehief, who was appointed by election, was the ligh priest of Iraea or Sogamoso (Sugamuxi, the plaee of the disappearance of Nemterequeteba) : the secular rulers or prinecs were the Zake (Zaque of Hunsa or Tunja), and the Zipa of Funza. In the feudal constitution the lastnamed prinee appears to have been originally subordinate to the Zake.

The Muyseas had a regular mode of eomputing time, with interealation for amending the lunar year: they used small eireular plates of gold, east of equal diameter, as money (any traees of whieh among the highly eivilised aneient Egyptians have been sought in vain), and they had temples of the Sun with stone eolumns, remains of whieh have very reeently been diseovered in the Valley of Leiva. (Joaquin Aeosta, Compendio historieo del Deseubrimiento de la Nueva Granada, 1848, p. 188, 196, 206, and 208; Bulletin de la Société de Géograplie de Paris, 1847, p. 114.) The tribe or raee of the Muyscas ought properly speaking to be always denoted by the name of Chibchas; as Muysea in the Chibeha language signifies merely "men," "people."

The origin and elements of the civilisation introduced are attributed to two mystieal forms, Bochiea (Botsehiea) and Neintercqucteba which are often confounded together. The first of these is still more mythical than the second; for it was only Botsehiea who was regarded as divine, and mad, almost equal to the Sun itsclf. His fair eompanion Chia or Huythaca oecasioned by her magieal arts the overflowing of the valley of Bogota, and for so doing was banished by Botsehiea from the earth, and made to revolve round it for the first time, as the moon. Botsehica struck the rock of Tequendama, and gave a passage for the waters to flow off near the ficld of the Giants (Campo de Gigantes) in whieh the bones of elephant-like mastodons lie buried at an elevation of 8250 (8792 Engl.) feet above the level of the sca. Captain Coehrane (Journal of a Residenee in Colombia, 1825, Vol. ii. p. 390) and Mr. John Ranking (Historical Researehes on the Conquest of Peru, 1827, p. 397), state that animals of this spccies are still living in the Andes, and shed their teeth! Nemtcrequeteba, also ealled Chinzapogua (enviado de Dios) is a human person, a bearded man, who came from the East, from Pasea, and disappeared at Sogamoso. The foundation of the sanctuary of Iraea is sometimes aseribed to him and sometimes to Botsehiea, and as the latter is said to have borne also the name of Nemqueteba, the confusion between the two, on ground so unhistoric, is easily aecounted for.

My old friend Colonel Acosta, in his instructive work entitled Compendio de la Hist. de la Nueva Granada, p. 185, cndeavours to prove by means of the Chibeha language that
" potatoes (Solanum tuberosum) bear at Usmè the native non-Peruvian name of Yomi, and were found by Quesada already eultivated in the province of Velez as early as 1533 , a period when their introduction from Chili, Peru, and Quito, would seem improbable, and therefore that the plant may be regarded as a native of New Granada." I would remark, however, that the Peruvian invasion and complete possession of Quito took place before 1525, the year of the death of the Inca Huayna Capae. The southern provinces of Quito even fell under the dominion of Tupac Inea Yupanqui at the eonclusion of the 15th century (Prescott, Conquest of Peru, Vol. i. p. 332.) In the unfortunately still very obscure history of the first introduction of the potato into Europe, the merit of its introduetion is still very generally attributed to Sir John Hawkins, who is sup. posed to have reeeived it from Santa Fé in 1563 or 1565. It appears more certain that Sir Walter Raleigh planted the first potatoes on his Irish estate near Youghal, from whenee they were taken to Laneashirc. Before the conquista, the plantain (Musa), which since the arrival of the Spaniards has been cultivated in all the warmer parts of New Granada, was only found, as Colonel Aeosta believes, (p. 205) at Choeo. On the name Cundinamarea,-applied by a false erudition to the young republic of New Granada in 1811, a name "full of golden dreams" (sueños dorados), more properly Cundirumarca (not Cunturmarea, Garcilaso, lib. viii. cap. 2),-see also Joaquin Acosta, p. 189. Luis Daza, who joined the small invading army of the Conguistador Scbastian de Belaleazar which came from the south, had heard of a distant country abounding in gold, ealled

Cundirumarca, inhabited by the tribe of the Chicas, and whose prince had solicited Atahuallpa at Caxamarca for auxiliary troops. These Chicas have been confounded with the Chibchas or Muyscas of New Granada; and thus the name of the unknown more southern country has been unduly transferred to that territory.

${ }^{(9)}$ p. 278.-" The fall of the Rio de Chamaya."

Compare my Recucil d'Observ. Astron., vol. i. p. 304; Nivellement barométrique, No. 236-242. I have given in the Vues des Cordillères, Pl. xxxi. a drawing of the "swimming post," as he binds round his head the landkerchief containing the letters.
${ }^{10}$) p. 280.-" Which, on account of an old observation of La Condamine, was of some importance to the geography of South America."

I desired to commect chronometrically Tomependa, the point at which La Condamine began his voyage, and other places geograplically determined by him on the Amazons river, with the town of Quito. La Condamine had been in June 1743, (59 years before me) at Tomependa, which place I found, by star observations taken for three nights, to be in south lat. $5^{\circ} 31^{\prime} 28^{\prime \prime}$, and west longitude from Paris $80^{\circ} 56^{\prime} 37^{\prime \prime}$ (from Greenwich $78^{\circ} 34^{\prime} 55^{\prime \prime}$). Previous to my return to Trance the longitude of Quito was in error to the full amount of $50 \frac{\mathrm{I}}{2}$ minutes of arc, as Oltmanns lias shown by my obscrvations, and by a laborious recalculation of all those previously made. (Humboldt, Recueil d'Observations Astrou., vol. ii. p. 309-359). Jupiter's satcllites,
lunar distanees, and occultations, give a satisfaetory accordance, and all the elements of the calculation are placed before the public. The too easterly longitude of Quito was transferred by La Condamine to Cuenca and the Amazons river. "Je fis," says La Condamine, "mon premier essai de navigation sur un radeau (balsa) en descendant la rivière de Chinchipe jusqu'a Tomependa. Il fallut me eontenter d'en déterminer la latitude et de conclure la longitude par les routes. J'y fis mon testament politique en rédigeant l'extrait de mes observations le plus importantes." (Journal du Voyage fait à l’Equateur, 1751, p. 186.)
$\left({ }^{11}\right)$ p. 282.-"At upwards of thelve thousand feet
above the sea we found fossil marine shells."

Sce my Essai géognostique sur le Gisement des Roehes, 1823, p. 236 ; and for the first zoological determination of the fossils contained in the eretaceous group in the chain of the Andes, see Léop. de Buch, Pétrifications recueillies en Amérique, par Alex. de. Humboldt et Charles Degenhardt, 1839 (in fol.), pp. 2-3, 5, 7, 9, 11, and 18-22. Pentland found fossil shells of the Silurian formation in Bolivia, on the Nevado de Antakiiua, at the lieight of 164000 French (17480 English) fiet, (Mary Somerville, Physieal Geography, 1S4.9, Vol. i. p. 185).
${ }^{(12)}$ p. 287.-" Where the chain of the Andes is intersected by the maynetic equator."
Compare my Rélation hist. du Voyage aux Régions équinoxiales, T. iii. p. 622 ; and Kosmos, Bd. i. S. 191
and 432 ; where, however, by errors of the press, the longitude is once $48^{\circ} 4.0^{\prime}$, and afterwards $80^{\circ} 40^{\prime}$, instead of, as it should be, $80^{\circ} 54^{\prime}$ from Paris (or $78^{\circ} 32^{\prime}$ from Greenwieh), (Euglish edit. p. 173, and note 159).
${ }^{(13}$) p. 290.-" Accompanied by incomvenient ceremonies of Court etiquette."
In eonformity with a lighly ancient Court ecremonial, Atahuallpa spat not on the ground, but into the hand of one of the prineipal ladies present; " all," says Gareilaso, " on aecount of his majesty." El Inea munea escupia en el suelo, sino en la mano de una Señora mui prineipal, por Majestar, (Gareilaso, Comment. Reales, P. ii. p. 46).
(14) p. 290.-" Captivity of Atahuallpa."

A short time before the eaptive Inea was put to death, he was taken into the open air, in complianee with his request, to see a large comet. The "greenish black comet, nearly as thiek as a maur," (Garcilaso says, P. ii. p. 44, una cometa verdinegra, poco menos gruesa que el euerpo de un hombre), seen by italuallpa before his death, therefore in July or August 1533, and whieh he supposed to be the same malignant comet whieh had appeared at the death of his father, Huayna Capae, is eertainly the one observed by Appian (Pingré, Cométographie, T. i. p. 496 ; and Galle's "Notice of all the Paths of Comets hitherto computed," in "Olber's Leiehtester Methode die Bahn eines Cometen zu berechnen," 1817, S. 206), and which, on the 21st of July, standing high in the north, near the eonstellation of Perseus,
represented the sword whieh Perseus holds in his right hand. (Miidler, Astronomie, 1846, S. 307; Schuurrer, Die Chrouik der Seuehen in Verbindung mit gleielzeitigen Ersehcinungen, 1825, Th. ii. S. 82.) Robertson eonsiders the year of Huayna Capae's death uneertain; but, from the researches of Balboa and Velaseo, that event appears to have oceurred towards the close of 1525 : thus the statements of Hevelius (Cometographia, p. 8ł4), and of Pingré (T. i. p. 485), derive confirmation from the testimony of Gareilaso (P. i. p. 321) and the tradition preserved among the "amautas, que son los filosofos de aquella Republica." I may here introduce the remark, that Oviedo alone, and certainly erroneously, asserts, in the inedited eontinuation of his Historia de las Indias, that the proper name of the Inea was ${ }^{\circ}$ not Atahuallpa, but Atabaliva (Prescott, Conquest of Peru, Vol. i. p. 498.)
(15) p. 291.-" Ducados de Oro."

The sum mentioned in the text is that whieh is stated by Garcilaso de la Vega in the Commentarios reales de los Ineas, Parte ii. 1722, pp. 27 and 51. The statements of Padre Blas Valera and of Gomara, Historia de las Tndias, 1553, p. 67, differ, however, eonsiderably. Compare my Essai politique sur la Nouvelle Espagne (éd. 2), T. iii. p. 424). It is, moreover, no less diffieult to determine the value of the Dueado, Castellano, or Peso de Oro. (Essai pol. T. iii. pp. 371 and 377 ; Joaquiu Aeosta, Descubrimiento de la Nueva Granada, 184.8, p. 14.) The modern excellent historieal writer, Prescott, has been able to avail
himself of a manuscript bearing the very promising title, "Acta de Repartieion del Rescate de Atahuallpa." The estimate of the whole Peruvian booty which the brothers Pizarro and Almagro divided amongst themselves at the (I believe) too large value of three and a half millions of pounds sterling, ineludes doubiless the gold of the ransom and that taken from the different temples of the Sun and from the enchanted gardens, (Huertas de Oro). (Prescott, Conquest of Peru, Vol. i. pp. 464-477.)
> ${ }^{(16)}$ p. 292.-" The great, But, for a Son of the Sun, somewhat free-thinking Huayna Capac."

The nightly absence of the Sun excited in the Inca many philosophieal doubts as to the government of the world by that luminary. Padre Blas Valera noted down the remarks of the Inca on the subjeet of the Sun: "Many maintain that the Sun lives, and is the Maker and Doer of all things (el hacedor de todas las eosas) ; but whoever would complete any thing must remain by what he is doing. Now many things take place when the Sun is absent; therefore le is not the original cause of all things. It seems also doubtful whether he is living; for though always eircling round, he is never weary (no se eansa). If he was living, he would beeome weary, as we do ; and if he was free, he would surely move sometimes into parts of the heavens where we never see him. The Sun is like an animal fastened by a eord so as always to move in the same round, (como una Res atada que siempre lace un mismo cerco) ; or as an arrow whieh only goes where it is sent,
and not where it chooses itself." (Gareilaso, Comment. Reales, P. i. lib. viii. eap. 8, p. 276.) The view taken of the eireling round of a heavenly body, as if it was fastened to a cord, is very striking. As Huayna Capae died at Quito in 1525 , seven years before the arrival of the Spaniards, he no doubt used, instead of " res atada," the general expression of an " animal" fastened to a eord ; but indeed, even in Spanish, "res" is by no means limited to oxen, but may be applied to any tame eattle. We eannot examine here how far the Padre may have mingled parts of his own sermons with the heresies of the Inea, with the view of weaning the natives from the offieial and dynastie worship of the Sun, the religion of the Court. We see in the very conservative State policy, and in the maxims of State and proceedings of the Inca Roea, the eonqueror of the province of Charcas, the solieitude whieh was felt to guard strietly the lower elasses of the people from sueh doubts. This Inea founded sehools for the upjer elasses only, and forbade, under heavy peralties, to teaeh the common people any thing, " lest they should beeome presumptuous, and should create disturbanees in the State!" (No es lecito que enseñen á los hijos de los Plebeios las Cieneias, porque la gente baja no se eleve y ensobervezea y manoseabe la Republiea ; Gareilaso, P. i. p. 276.) Thus the poliey of the Inea's theoeraey was almost the same as that of the Slave States in the United Free States of North America.
${ }^{(17)}$ p. 295.-" The restoration of an empire of the Incas."
I have treated this subject more fully in another. plaee
(Relation hist. T. iii. p. 703-705 and 713). Raleigh thought there was in Peru an old prophecy "that from Inglaterra those Ingas should be againe in time to come restored and deliuered from the seruitude of the said conquerors. : I am resolued that if there were but a smal army afoote in Guiana marching towards Manoa, the chiefe citie of Inga, he would yield Her Majestie by eomposition so many hundred thousand pounds yearely, as should both defend all enemies abroad and defray all expenees at home, and that he woulde besides pay a garrison of 3000 or 4000 soldiers very royally to defend him against other nations. The Inca wil be brought to tribute with great gladnes." (Raleigh, "The Discovery of the large, rieh, and beautiful Empire of Guiana, performed in 1595, ," aceording to the edition published by Sir Robert Sehomburgk, 1848, p. 119 and 137.) This seheme of a Restoration promised mueh that might be very agreeable to both sides, but unfortunately the dynasty who were to be restored, and who were to pay the money, were wanting!
> ${ }^{(18)}$ p. 299.-"Of the expedition of Vasco Nuñez de Balboa."

I have already remarked elsewhere (Examen critique de l'histoire de la Géographie du Nouveau Continent, et des progrès de l'Astronomie nautique aux lyème et l6ème siècles, T. i. p. 349) that Columbus kuew fully ten years before Balboa's expedition the existence of the South Sea and its great proximity to the east coast of Veragua. He was conducted to this knowledge not by theoretical specula-
tions respecting the configuration of Easteru Asia, but by the local and positive reports of the natives, which he collected on his fourth voyage (May 11, 1502, to November 7, 1504). On this fourth voyage the Admiral went from the const of Honduras to the Puerto de Mosquitos, the western end of the Isthmus of Pamama. The reports of the natives, and the comments of Columbus on those reports in the "Carta rarissima" of the 7th of July, 1503, were to the effect that "not far from the Rio de Belen the other sea (the South Sea) turns (boxa) to the mouths of the Ganges, so that the countries of the Aurea (i.e. the countries of the Chersonesus aurea of Ptolemy) are situated in relation to the eastern coasts of Veragua, as Tortosa (at the mouth of the Ebro) is to Fuentarrabia (on the Bidassoa) in Biscay, or as Venice in relation to Pisa." Although Balboa first saw the South Sea from the heights of the Sierra de Quarequa on the 25th of September (Petr. Martyr, Epist. dxl. p. 296), yet it was not until several days later that Alonso Martin de Don Benito, who found a way from the mountains of Quarequa to the Gulf of San Miguel, embarked on the South Sea in a canoe. (Joaquin Acosta, Compendio hist. del Descubrimiento de la Nueva Granada, p. 49.)

As the taking possession of a considerable part of the west coast of the New Continent by the United States of North America, and the report of the abundance of gold in New California (now called Upper Califormia) have rendered more urgent than ever the formation of a communication between the Atlantic States and the regions of the West through the Isthmus of Panama, I feel it my duty to call
attention onee again to the eireumstance that the shortest way to the shores of the Paeifie, whiel was shown by the natives to Alonso Martin de Don Benito, is in the eastern part of the Isthmus, and led to the Golfo de San Miguel. We know that Columbus (Vida del Almirante por Don Fernando Colon, eap. 90) songht for an "estreeho de Tierra firmë" ; and in the offieial doeuments whiel we possess of the years 1505 and 1507 , and espeeially 1514, mention is made of the desired "opening" (abertura), and of the pass (passo), whieh should lead direetly to the "Indian Land of Spiees." Having for more than forty years been oecupied with the subjeet of the means of eommunieation between the two seas, I have constantly, both in my printed works and in the different memoirs whieh with honourable eonfidence the Free States of Spanish Ameriea lave requested me to furnish, urged that the Isthmus should be examined hypsometrieally throughout its entire length, and more espeeially where, in Darien and the inhospitable former Provineia de Biruquete, it joins the eontinent of South Ameriea ; and where, between the Atrato and the Bay of Cupiea (on the shore of the Paeifie), the mountain ehain of the Isthmus almost entirely disappears. (See in my Atlas géographique et physique de la Nouvelle Espagne, Pl. iv. ; in the Atlas de la Relation historique, Pl. xxii. and xxiii.; Voyage aux Régions équinoxiales du Nouveau Continent, 'T. iii. p. $117-$ 154 ; and Essai politique sur le Royaume de la Nouvelle Espagne, T. i. 2de édit. 1825, p. 202-248.)

General Bolivar at my request eaused an exaet levelling of the Isthmus between Panama and the mouth of the Rio

Chagres to be made in 1828 and 1829 by Lloyd and Falmare. (Philosophieal Transaetions of the Royal Soeiety of London for the year 1830, p. 59-68.) Other measurements have sinee been exceuted by aeeomplished and experienced Freneh engineers, and projects have been formed for eanals and railways with loeks and tunnels, but always in the direetion of a meridian between Portobello and Panama, - or more to the west, towards Chagres and Cruees. Thus the most important points of the eastern and south-eastern part of the Isthmus have remained unexamined on both shores! So long as this part is not examined geographieally by means of exaet but easily obtained determinations of latitude and of longitude by ehronometers, as well as hypsometrieally in the conformation of the surfaee by barometrie measurements of elevation,--so long I consider that the statement I have repeatedly made, and whieh I now repeat in 1849, will still be true ; viz. "that it is as yet unproved and quite premature to pronounee that the Tsthmus does not admit of the formation of an Oceanie Canal (i, e. a eanal with fewer loeks than the Caledonian Canal) permitting at all seasons the passage of the same sea-going ships between New York and Liverpool on the one hand, and Chili and California on the other."

On the Atlantie side (aeeording to examinations which the Direeeion of the Deposito hidrografico of Madrid have entered on their maps sinee 1809j the Ensenada de Mandinga penetrates so decply towards the south that it appears to be only four or five German geographieal miles, fifteen to an equatorial degree, (i.c. 16 or 20 Linglish geographieal
voL. II.
niles), from the eoast of the Paeific on the east of Panama. On the Pacific side the isthmus is almost equally indented by the deep Golfo de San Miguel, into which the Rio Tuyra falls, with its tributary river the Chuehunque (Chuehunaque). This last-named stream in the upper part of its eourse approaches within 16 English geographieal miles of the Atlantie side of the isthmus to the west of Cape Tiburon. For more than twenty years I have had inquiries made from me on the subjeet of the problem of the Isthmus of Panama, by assoeiations desirous of employing eonsiderable peeuniary means: but the simple adviee which I have given has never been followed. Every scientifieally edueated engineer knows that between the tropies, (even without eorresponding observations), good barometrie measurements (the horary variations being taken into aeeount) afford results which are well assured to less than from 70 to 90 Freneh or 75 to 96 English feet. It would besides be easy to establish for a few months on the two shores two fixed eorresponding barometrie stations, and to eompare repeatedly the portable instruments employed in prelininary levelling, with eaeh other and with those at the fixed stations. Let that part be partieularly examined where, near the eontinent of South Ameriea, the separating mountain ridge sinks into hills. Seeing the importance of the subjeet to the great commerce of the world, the research ought not, as hitherto, to be restricted to a limited field. A great and comprehensive work, whieh shall inelude the whole eastern part of the Isthmus,-and which will be equally useful for every possible kind of operation or construction,-for eanal, or for
railway, -can alone decide the much discussed problem either affirmatively or negatively. That will be done at last, which should, and, had my advice been taken, would have been done in the first instance.
(19) p. 300-" That which is awakened in us by childish impressions or by the circumstances of life."
On the incitements to the study of nature, compare Kosmos, Bd. ii. S. 5, (English edit. vol. ii. p. 5).
${ }^{20}$) p. 302.-" Of importance for the exact determination of the longitude of Lima."
At the period of my Expedition, the Longitude of Lima was given in the maps published in the Deposito hidrografico de Madrid, from the observations of Malaspina. which made it 5 h .16 m .53 s . from Paris. The transit of Mercury over the Sun's disk on the 9th of November, 1802, which I obscrved at Callao, the Port of Lima, (in the northern Torreon del Fuerte de San Fclipe) gave for Callao by the mean of the contact of both limbs 5 h .18 m .16 s .5 , and by the exterior contact only 5 h .18 m .18 s . ($79^{\circ} 34$ $30^{\prime \prime}$). This result (obtained from the Transit of Mercury) is confirmed by those of Lartigue, Dupcrrey, and Captain FitzRoy in the Expedition of the Adventure and Beagle. Lartiguc found Callao $5 \mathrm{~h} .17 \mathrm{~m} .58 \mathrm{~s} .$, Duperrey 5 h .18 m . 16s., and FitzRoy 5h. 18m. 15s. (all West of Paris). As I determined the difference of longitude between Callao and the Convent de San Juan de Dios at Lima by carrying chronometers between them four times, the obscrvation of
the transit of Mercury gives the longitude of Lima 5 h .17 m . 51 s . $\left(79^{\circ} 27^{\prime} 45^{\prime \prime} \mathrm{W}\right.$. from Paris, or $77^{\circ} 06^{\prime} 03^{\prime \prime} \mathrm{W}$. from Greenwich). Compare my Recueil d'observations astron. Vol. ii. p. 397, 419 and 428, with my Relat. hist. T. iii. p. 592.

Potsdam, June 1849.

GENERAL SUMMARY
 OF THE

CONTENTS OF THE SECOND VOLUME.

GENERAI SUMMARY

CONTENTS OF VOL. II.

Physiognomy of Plants-p. 1 to p. 31.
Universal profuse distribution of organie life on the deelivities of the highest mountains, on the occan, and in the atmosphere. Subterranean Floca. Siliceous-shelled Polygastriea in masses of polar ice. Podurellæ in tubular holes in the glaciers of the Alps; the glacier flea (Desoria glaeialis). Small organie ereatures in the dust whieh falls like rain in the neighbourhood of the Afriean Desert.

History of the vegetable eovering of the surface of the globe. Gradual extension of vegetation over the bare rocky erust. Liehens, mosses, and suceulent plants. Causes of the present abscuce of vegetation in partieular distriets 8-13

Each zone has its peeuliar eharaeter. All animal and vegetable forms attaehed to fixed and always reeurring types. Physiognomy of Nature. Analysis of the general impression produeed by the aspeet of a country or distriet. The several elements whieh make up this impression; outlines of the mountains, azure of the sky, and form of the elouds : but prineipally determined by the vegetable eovering. Animal organisation far less influential on the landseape from deficieney of mass. The power of locomotion of individuals, and
frequently their small size, also contribute to lessen their general effeet on the landscape .

13-16

Enumeration of the forms of plants which principally determine the
physiognomy of Nature, and which decrease or increase from the
equator to the poles according to laws which have been made the
subject of investigation. $17-20$
Palms 20, 21, 126-140
Plantains or Bananas 21, 22, 140, 141
Malvaceæ - 22, 141-143

Mimosæ .
$22,23,143-145$
Ericeæ, or Heath form 23, 24, 145-147
Cactus form 24, 147-151
Orchidex. 24, 25, 151, 152
Casuarincæ $25,152,153$
Needle trees 25, 153-175
Pothos and Aroidcæ. 26, 175-178
Lianes, or twining rope plants 26, 178-180
Aloë form 27, 180—183
Gramineæ 27,28, 183-187
Ferns 2S, 18S-193
Liliaсеæ 2S, 193
Willow form 2S, 193-196
Myrtaceæ 2S, 196-200
Melastomacex 2S, 200
Laurel form 2S, 200
Enjoyment derived from the sight of the natural grouping and con-
trasts of these forms of plants. Importance of the plyssiognomie study of plants to the landseape painter . . 29-31, 200-203

Scientific Elucidations and Additions-p. 33 to p. 210.
Organie forms, animal and vegetable, in the highest monntain regions adjaeent to the limit of perpetual snow in the Andes and the Alps; insects earried up involuntarily by aseending eurrents of air. The Hypudæus nivalis of the Swiss Alps. On the true elevation above the sea reached by the Chinchilla laniger in Chili . . 33-35

Leeidias and Parmelias on roeks not entirely covered with snow; some phenogamons plants also wander in the Cordilleras beyond the limits of perpetual snow, as the Saxifraga boussingaulti, to 15770 English feet above the level of the sea. Groups of phænogamous plants extend in the Andes to 13700 and 1:1920 English feet above the sea; speeies of Culeitium, Espeletia, and Ranuneulus; small umbelliferous plants resembling mosses in appearanee; Myrrhis andieola and Fragosa aretioides. . . . 35, 36

Measurement of the height of Chimborazo, and etymology of the name 36-39

On the greatest absolute heights whieh have yet been reached by any human beings in cither continent; in the Cordilleras and the Himalaya, on the Climborazo and the Tarhigang . . . 40

Habits and haunts of the Condor (Cuntur in the Inea language), and singular mode of eapturing these powerful birds in an cnelosure fenced by palisades 40-44

Useful serviees rendered by the Gallinazos (Cathartes urubu and C. aura) in purifying the air in the neighbourhood of human habitations; these birds sometimes tamed 44, 45

On what has been called the revivification of Rotiferæ; views of
Ehrenberg and Doyère. According to Payen, germs of Crypto-
gamia prescrve their power of germination even after being ex-
posed to the highest temperaturcs. $45-47$
Diminution, if not cntirc suspension, of organic functions in the winter slecp of animals belonging to the higher classes . 47, 48

Summer sleep of animals in the tropical zone; great dryness acts like winter cold. Tenrecs, crocodiles, tortoises, and the Lepidosiren of Eastern Africa.

48-51

Anther dust or pollen; fertilization of flowers. The Coelebogync found to produce perfect seeds in England without any traces of pollen being discovercd. 51-53

The luminosity of the occan produced by living luminous animals and by decaying fibres and membranes of animals. Acalephæ and siliceous-shelled luminous Infusoria. Influence on the luminosity of a stimulus applied to the nerves 53-60

Pentastomes inlabiting the pulwonary colls of the rattle-suake of Cumana 60, 61

Rock-building corals. The scaffolding or solid material which survives the death of the coral animals. More correct views of recent times. Shore reefs, encircling reefs, and lagoon islands. Atolls, or coral walls enclosing a lagoon. The coral islands to the south of Cuba, the Jardines del Rey of Columbus. The living gelatinous investment of the calcarcous scaffolding of the coral trunks attracts fish and turtles in search of food. Singular mode of fishing by the aid of the Remora (the Echencis naucrates) 62-72

Probable greatest depth of coral structures
$72-75$

Besides much earbonate of lime and magnesia, Madrepores and Astreas also contain some fluoric and phosphoric acids . 75, 76

Oseillatory state of the bottom of the sea according to Darwin 76-79
Traditions of Samothraee. Irruptions of the sca. Mediterranean. Sluice theory of Strato. Myth of Lyktonia, and the "Atlantis broken into fragments" r8- ${ }^{3}$

On the causes whieh prevent the sinking down of elouds and precipitation taking place from them 83--84

Heat disengaged from the erust of the earth while solidifying. Hot eurrents of air which in the early ages of the earth, from frequent eorrugations of the strata and elevations of land, may have been diffused in the atmosphere fron temporary fissures . . 84, 85

Colossal size and great age of some kinds of trees; Dragon tree of Orotava thirteen, and Adansonia digitata (Baobab) thirty-two English feet in diameter. Characters cut in the bark of the trees in the 15 th century. Adanson assigns to some of the Baobab trunks in Senegambia an age of between 5100 and 6000 years . S6-92

Judging by the annular rings, there are yew-trees ('Taxus baccata) from 2600 to 3000 years old. Is it true that in the northern temperate zone the part of the tree turned towards the north has narrower annular rings, as Michel Montaigne affirmed in 1581? Species of trees in which individuals attain a size of above twentyone or twenty-two English feet diameter, and an age of several eenturies, belong to the most different natural families . 92-94

Diameter of the Mexiean Schubertia disticha of Santa Maria del Tule $40 \frac{1}{2}$ English feet; the sacred Banyan fig-tree of Ceylon almost 30 ; and the oak at Saintes (Dep. de la Charente Inférieure) $29 \frac{1}{2}$ English feet. The age of the oak tree estimated from its annular rings at
from 1800 to 2000 years. The root of the rose tree growing against the crypt of the Cathedral of Hildeshcim is 800 years old. A kind of sea-weed, Maerocystis pyrifera, attains a length of 630 English feet, execeding therefore the height of the loftiest Coniferæ, even that of the Scquoia gigantea 94-97

Examination of the probable number of phrnogamous plants litherto described or preserved in herbariums. Relative numbers. Laws discovered in the geographieal distribution of plants. Relative numbers of the great divisions of Cryptogamia to Cotyledonous plants, and of Monocotyledonous to Dieotyledonous plants, in the torrid, temperate, and frigid zones. Elements of arithmetieal botany. Number of individuals; predominance of soeial plants. The forms of organic beings are mutually dependent on and limit each other. If we know exactly the number of speeies of one of the great families of Glumaceæ, Leguminosæ, or Compositæ, at any one part of the globe, we may infer approximatively both the number of speeies in the remaining families, and the entire number of phænogamous plants in the same district. Applieation of the numerieal ratios to the direetion of the isothermal lines. Mysterious original distribution of types. Absenee of Roses in the southern, and of Calceolarias in the northern hemisphere. Why has our heather (Calluna vulgaris), and why have our oaks never advanced eastward beyond the Ural Mountains into Asia? The vegetation cyele of each species requires for its successful organic development a certain mininum amount of temperature.
$97-113$
Analogy between the numerical laws of the distribution of animal and of vegetable forms. If there are now eultivated in Europe above 35000 speeies of phænogamous plants, and if our herbariums probably contain, deseribed and undeseribed, from 160000 to 212000 species of phænogamous plants, it is probable that the number of collceted insects and collected phænogamous plants are nearly
equal; whilst we know that certain well-explored districts in Europe have more than three times as many inseets as phemogamous plants 113-119

Considerations on the probable proportion which the number of known phrenogamous plauts bears to the entire number existing on the surface of the globe 119-125

The different forms of plants successively noticed. Physiognomy of plants treated in a threcfold mamer ; viz. as to the absolute diversity of forms, their local predominance in comparisou with the entire uumber of species in different pliænoganous Floras, and their geographical climatic distribution . . . 126-200

Greatest extcusion in licight or of the longitudinal axis in arborescent vegetation : cxamples of 235 to 245 English feet in Pinus lambertiana and P. douglasii ; of 266 English fect in P. strobus ; of 298 and 300 Euglish feet in Sequoia gigantea and Pinus trigoua. All these examples are from the north-west part of the New Continent. Araucaria excelsa of Norfolk Island only attains, according to well-assured measurements, 203 to 223 Euglish feet; and the Mountain Palm of the Cordilleras, Ceroxylon audicola, 192 English fect

165-16S

These gigantic vegetable forms contrasted with the stem of two inches high of a willow-tree stunted by cold of latitude or of mountain elevation ; and still more remarkably witl a phrenogamous plant, Tristicha hypnoides, which, when fully developed in the plains of a tropical country, is only a quarter of aur English inch in height

Bursting forth of blossoms from the rougl bark of the Crescentia cujete, the Gustavir augusta, and the roots of the Cacao tree. The largest flowers, Rafflesia armoldi, Aristolochia cordata, Mag-
nolia, Hclianthus aunuus, Victoria regina, Euryale amazonica, \&c. 203, 240

The different forms of plants determine the eharacter of the landscape as dependent on vegetation in different zoncs. Physiognomic classification or division into groups according to external "facies" or aspect, entirely different in its principles from the classification according to the system of natural families. The study of the plysiognomy of plants is based principally on what are called the vegetative organs, or those on which the preservation of the individual depends; systematic botany grounds the arrangement of natural families on a consideration of the reproductive organs, or those on which the preservation of the species depends 205-210

On the Structure and Mode of Action of Tolcanos in the different Parts of the Earth-p. 211 to p. 241.

Influence of journeys in distant countrics on the generalisation of ideas, and the progress of plysieal geology. Iufluence of the form of the Mediterranean on the earliest ideas respecting voleanic phenomena. Comparative geology of volcanos. Periodical recurronce of certain natural changes or revolutions which have their origin in the interior of the globe. Relative proportion of the leight of volemos to that of their cones of ashes in Pichincha, the Peak of Tencriffe, and Vesuvius. Changes in the height of the summit of volcanos. Measurements of the height of the margins of the crater of Vesuvius from 1773 to 1822 : the author's measurements comprise the period from 1805 to $1822,213-228$

Particular deseription of the cruption in the night of 23-24 October, 1822. Falling in of a cone of cinders 426 English fect in height, which previously stood in the interior of the crater. The eruption of ashes from the 24 th to the 28 th of October is the most
remarkable of which we possess any certain knowlenge since the death of the clder Pliny 228-235

Difference between voleanos with permanent eraters; and the phenomena (very rarely observed within historic times) in which trachytic mountains open suddenly, emit lava and ashes, and reclose again perhaps for ever. The latter class of phenomena are particularly instructive to the geologist, because they recall the earliest revolutions of the oscillating, upheaved, and fissured surface of the globe. They led, in classical antiquity, to the view of the Pyriphlegethon. Voleanos are intermitting earth springs, indicating a communication (permanent or transient) between the interior and the exterior of our planet; they are the result of a reaction of the still fluid interior against the crust of the carth; it is therefore needless to ask what chemical substance burns, or supplics materials for combustion, in volcanos. . 235-238

The primitive cause of subterrancian heat is, as in all planets, the process of formationitself, i.e. the forming of the aggregating mass frum a cosmieal gascous fluid. Power and influence of the radiation of heat from numerous open fissures and unfilled veins in the ancient world. Climate (or atroospheric tempcrature) at that period very independent of the geographical latitude, or of the position of the planet in respect to the central body, the sum. Organic forms of the present tropical world buried in the iey regions of the north 238-241

Scientific Elucidations and Additions-p. 243 to p. 248.
Barometric measurements of Vesuvius. Comparison of the height of different points of the erater of Vesuvius . . 243-247

Increase of temperature with depth, 1° Reaumur for every 113 Parisian feet, or 1° of Fahrenhcit for every 53.5 English feet. Tremperature of the Artesian well at Oeynhauscn's Bad (New

Salzwerk, near Minden), the greatest deptli yet reached below the level of the sea. The hot springs near Carthage led Patricius, Bishop of Pertusa, in the 3rd century, to form just conjectures respecting the cause of the inercase of temperature in the interior of the earth .

The Vital Force, or the Rhodian Genius-p. 249 to p. 257.

Note to "The Vital Force, or the Rhodian Genius"-p. 259 to p. 263.

The Rhodian Genius, the development of a physiological idea in a mythical garb. Difference of riews respecting the hypothesis of peculiar vital forces 259,260

The difficulty of satisfactorily reducing the vital phenomena of organisation to physical and chemical laws, is principally founded on the complieation of the phenomena, and on the multiplicity of simultaneously acting forecs, as well as the varying conditions of the activity of those forces. Definition of the expressions "animate" and "inanimate" substances. Criteria derived from the composition of the elements after a substance has been separated into parts by extermal agency are the simple enunciation of facts

260-263

The Platean of Caxamarca, the ancient residence of the Inca Atahuallpa, and the first view of the Pacific fiom the crest of the Andesp. 265 to p. 302.

Quina-producing forests in the valleys of Loxa. First use of the fever-bark in Europe; the Countess of Chinchon, wife of the Viccroy

267-269

Alpine regetation of the Paramos. Remains of ancient Perwian artifieial roads; they rise in the Paramo del Assuay almost to the height of the summit of Mont Blane . . . 269-277

Singular mode of communieation by a "swimming post" messenger. 277-279

Descent to the Amazons river. Vegetation round Chamaya and Tomependa; Red Groves of Bougainvillæa. Ridges of rock traverse the Amazons. Its breadth at the Pongo de Manseriehe less than 160 English fect. The falling in of masses of rock at Rentema left the bed of the river below the falls dry for some hours, to the great alarm of those who lived on the banks . 279-281

Passage across the chain of the Andes at the part where it is intersected by the magnetie equator. Ammonites nearly 15 English inehes long, Eehini, and Isocardias of the cretaecous group, eollected between Guambos and Montan, 12790 English fect above the level of the sea. Rieh silver mines of Chota. The picturesquely towering Ccrro de Gualgayoe. Large mass of pure native silver in filaments or wire found in the Pampa de Navar. A fine pieec of pure gold, wound round with similar threads of silver, found in the Choropampa (field of shells), so ealled from the numerous fossils. Outbursts of silver and gold ores amongst the eretaceous rocks. The small mountain torm of Mieuipampa is 11874 English fect above the level of the sea .

282-286

From the mountain wilderness of the Paramo de Yanaguanga the traveller deseends into the beantiful valley, or rather plateau, of Caxamarea (the elevation of whieh is nearly equal to that of the eity of Quito). Hot baths of the Ineas. Ruins of the Palaec of Atahuallpa inhabited by lis desecndants, the family of Astorpileo, who live there in the greatest poverty. Strong belief of the still remaining subterranean "golden gardens" of the Inea

beneath the 'Temple of the Sun at Cuzeo, and at sereral other points. Conversation with the southful son of the Curaea Astorpilco. The room is still shewn in which (1553) the muhappy Atahuallpa was imprisoned for nine months, also the wall on which the Inea indicated the height to which he would fill the room with gold if he should regain his liberty. Mamer in whieh the Inca was put to death on the 20th of August, 1533, and remarks on what are crroneously called "the indelible stains of blood" on a stone slab in front of the altar of the chapel of the state prison, 287-295

Hope of a restoration of the cmpire of the Incas (whieh was also entertained by Raleigh) has been preserved among the natives. Cause of this expectation 205

Journcy from Caxamarea to the sea-coast. Passage over the Cordillera by the Altos de Guangamarca. Often disappointed hope of enjoying the first vicw of the Pacific Occan from the erest of the Andes. This hope at last fulfilled at an clevation of 9380 English fect .

296-302

Scientific Elucidations and Additions-p. 303 to p. 324.
On the origin of the name bornc by the chain of the Andes 303-305
Epoch of the introduction of the Quina-bark in Europe 305, 306
Remains of the roads of the Ineas, and of fortificd dwellings; Apozentos de Mulalo, Fortalezar del Cañar, Inti-Guayeu 307, 308

On the ancient civilisation of the Clibehas or Muyscas of New Granadia

305-310
Potatoes and Plantains, wheu first eultivated 311

Etrmology of the word Cundinamarea, whieh has been corrupted
from Cundirumarca, and was used in the first years of republican independence to denote the whole country of New Granada, 311, 312

Chronometric connection of the town of Quito with Tomependa on the upper waters of the Amazons, and with Callao de Lima, the position of which was accuratcly determined by observations of the transit of Mercury on the 9th day of November, 1502, 312, 31:3

Unpleasant ctiquette in the Inca's court. Atahnallpa's captivity; his proposed ransom 314

Philosophic doubts of Huayna Capae (according to the report of Padre Blas Valcra) respecting the Deity of the Sun. Objections of the Inca-govermment to the extension of knowledge among the poorer and lower classes of the people 316, 317

Raleigh's project for restoring the dynasty of the Ineas under English protcction, for which a yearly tribute of several hundred thousand pounds was to be paid 317, 318

Earlicst evidence obtained by Cohmbus of the existence of the South Sea or Pacifie Occan. The Sonth Sea first beheld by Vasco Nuñcz de Balboa (25th Scpt. 1513), and first navigated by Alonso Martin de Don Benito 318, 319

On the possibility of the formation of an oceanic canal (with fewer locks than the Caledonian Canal) throngh the Isthmus of Panama. Points in which the examination has been neglected 319-323

Determination of the longitude of Lima 323, 324.

> | \cdot |
| :--- |
| |
| |

I N D E X.

Adinsonia digitata (monkey-bread tree), one of the largest and oldest trees of the globe, ii. 89.
Alleo, the native Peruvian dog, i. 10 s.
Alöe, ii. 27, 150.
Lltai, one of the four parallel mountain chains in Central Asia, i. S6.
Ameriean races, conneetion between the inlabitants of Western America and Eastern Asia probable, but its nature and period unecrtain, i. 176.
Indes, etymological considerations connected with the word Andes or Antis, ii. 303.

Animal life, its universal diffusion, ii, 1.
Asia, Central, general review of its mountain systems, i. S5.
Atlas.-The position of the aueient Atlas diseussed, i. 144.
Itahuallpa, site of his ancient palace, ii. 2S9; his prison, 290; death, 291; descendants, 292; notice of the comet which appeared in the year on which the Inea was put to death, 313 .

Bauks, slightly elevated portions of the Llanos, ealled "Banks" by the uatives, i. 2, 33 .
Boa, swims in the South American rivers, and earries its head above water like a dog, i. 190.
Bogota, the seat of an aneient civilisation of the Muyseas or Chibehas, ii. 309.
Cactus, ii. 24, 147.
Camel, i. 68 ; Ritter's memoir on the diffusion of the eamel, present existence in a wild state, i. 70 ; fossil in the Sewalik hills, i. 71.
Casas grandes, ruins of all Aztee palace, i. 168.

Casuariuce, ii. 25, 1 ̌2.
Caranarca, the ancient eapital of the lneas, ii. 267, 287.
Cereals.-Original country of the prineipal Cercals diseussed, i. 169.
Chibchas, ii. 309.
Chimborazo, conjeetures as to the origin of the name, ii. 37.
Chota, silver mines of, ii. 282 .
Cinchona, fever-bark, or quina, ii. 267, 305.
Climate of the eastern or flat portions of South America widely different from that of Afriea in the same latitudes, eauses of the differenee, i. 8, 123 ; the southern hemisphere eooler and moister than the northern, 139.
Climatie cffeets of extensive forests, i. 126.
Cockbogyne, produces perfeet seeds without any trace of pollen having been diseovered, ii. 51.
Condor.-Disenssion of the height in the atmosphere to whiel the condor aseends, ii. 40.
Comifcre, or needle trees, ii. 25, 175.
Coral reefs, classified by Darwin, ii. 64; his hypothesis of the origin and growth of coral reefs, 76 .
Correo que nada, the "swimming post" in the upper waters of the Amazons river, ii. 277.
Curare, plant from whieh the poison is obtained, i. 203.
Current.-Great revolving eurrent of the Atlantie Ocean discussed, i. 150

Dogs.-European dogs have become wild in South Ameriea, and live in troops in the Pampas, i. 107; 11ative Peruvian dogs, 108; Tschudi's remarks on the indigenous races of dogs in Ameriea, 111.
1)ragou-tree of Orotava, ii. 16, 8ŏ.

Esquimaux, instanees recorded of their having been earried across the Atlantic to the shores of Europe, i. 162.

Ferus, ii. 28, 188.
Figured rocks, i. e. figures engraven on rocks in an extensive district of Sonth Amcriea, i. 196.
Fresh-water springs in the ocean near Cuba, i. 233.

Fournel, reeent coutributions to the physieal geography of Northeru Afriea, i. 115.

Prémont, Captain, importance of his geographieal menoirs on our knowledge of the geography of North America, i. 37, and gencrally in Note (5), also i. 280.

Geographical distribution of plants, laws of the, ii. 102.
Gobi, the plateau of, i. $74,79$.
Graminere, ii. 27, 183.
Guaranis, a tribe inhabiting the sea-coast and rivers near the mouth of the Orinoco, i. 178.
Granite, leaden-coloured rocks of, in the Orinoco, i. 188.
Great basin, the elevated plain so called, between the Rocky Mountains and the Sierra Nevada of California, i. 44 ; forms an inland elosed river basin, 280.
Gymnotus, deseription of its capture in Sonth America by means of horses, i. 22.

Heat in plants developed during infloreseenec, ii. 175.
Heaths, ii. 23, 145.
Himalaya, ouc of the four parallel mountain clains of Central Asia, i. 92.
Hiongme, i. 101.
Hooker, Dr. J., recent determination of the elevation of the Kinchinjinga, one of the lighest peaks of the Himalaya, i. 93 ; ou the production of perfect seeds $\overrightarrow{b y}$ the Colebogyne, ii. 51 ; remarks on the geographical distribution of plants in Antaretie fioras, ii. 12:2.

Illimani and Sorata, their height abore the sea reeently correeted, i. 57, 96, 277.

Kashmecr, valley of, i. 80.
Kinehinjinga, one of the highest peaks of the Inimalaya, its elevation recently determined, i. 92.
Kucu-liin, one of the four parallel mountain chains in Central Asia, i. 72, 90 .
Lama, alpaea, and gtanaco, three originally distinet speeies of animals, described, i. 166.

Laurels as a charaeteristie form of veretation, ii. 28200.
Lianes, ii. 26, 178.
Liliaece, ii. 28, 193.
Llanos, their description, i. 7 ; climate strongly contrasted with that of the African plains, 8 ; animals which inlabit them, 15 ; their prevalent regetation, 120.

Luminosity of the ocean, ii. 53.
Malvaeer, ii. 22.
Maranon, or Arnazons, upper valley of, ii. 251
Mauritia palm, i. 16, 181.
Melastomacer, ii. 28, 200.
Mimoser, ii. 22, 145.
Mississipi, river, its source correetly*aseertained, i. 22 .
Moon, mountains of the, their cxisteuec, extent, distance from the Equator, and gencral direetion, discussed, i. 149.
Mountain chains in Asia, in the direetion of parallels of latitude, i. 85 ; those coineiding nearly with meridians, i. 94.
Muyscas, ancient eivilisation of the, ii. 3 U8.
Myrtacee, ii. 28, 196.

North Amcriea, general aspect of its natural features, and considerations on its physical geography, i. 39 .

Orchider, ii. 24, 151.
Oriuoco, i. 207; magnitude of the river compared with that of the rivers Plate and Amazons, 211; its sourees yet unvisited, 213; general deseription of its course, 214 ; "black waters" of the Upper Orinoco, 215; eataracts of Atures and Maypures, 217; diseussion of questions conccruing its sourees, 239 ; supposed origin in a lake, 243.
Otomaes, a tribe on the Orinoeo who use earth as focd, i. 190.

Paeifie, the author's gratifieation at frist seeing the Pacifie from the Alto de Guangamarea, ii. 300.
Palms, ii. 20, 128.

Panama.-Communication by canal or railroad across the Isthmus of Panama discussed, ii. 319.
Paramo, a mountainons region in South America so called, i. 10ă; its climate and vegetation, i. 105, ii. 269.
Pastoral life almost unknown to the original inhabitants of America, i. 13.
Plants, physiognomy of, essentially distinct from a botanical arrangement, ii. $14,17,208$; is the principal clement in the claracteristic aspect of different portions of the earth's surface, 16 ; about sixteen different forms of plants enumerated, which are chiefly concerned in determining the aspect of Nature, 18; Palms, 20; Plantains or Bananas, 21 ; Malvaceex and Bombacer, 22; Mimosas, 22; Heaths, 23; Cactuscs, 24; Orchideæ, 24; Casuariner, 25 ; Conifere, 25 ; Pothos, 26 ; Lianes, 26; Alocs, 27; Grasses, 27; Ferns, 28; Liliaceer, 28; Willows, 25 ; Myrtacer, Melastomacer, and Lanriner, 29 ; number of species contained in herbariums, 97 ; points of view in which the laws of the geographical distribution of plants may be regarded, 102 ; conjectures as to the whole number of species on the globe, 119; more than half the rumber of species are probably yet unknown, 121; heat developed during inflorescence, 175 ; gencral remarks on a physiognomic classificalion, 205.
Pothos, ii. 26, 175.

Quina (or fcver bark), ii. 267.

Roads, old Peruvian, of the times of the Incas, ii. 270.
Rotifcre, their revivification, ii. 45.
Sahara (African desert) composed of several detached basins, i. 114.
Sand-sponts a pheuomenon characteristic of the Peruvian Sand Desert, i. 183. Sargasso, Mar de; its geographical position discussed, i. 63; is the most remarkable assemblage of plants of a single species yet known on the globe, i. 6.t.
Schomburgk.-Travels of the brotlecrs Robert and Richard Schomburgk inportant in many respects in regard to the physical geograplly of Gimiana and the bordering countries, i. 178, 197, 236, 250.

Sleep, summer and winter, of animals, i. 18, 185 ; ii. 48.
Snow, limit of perpetual ; inequality of this limit on the northeru and southern declivities of the Himalaya, i. 98.
Sorata aud Illimani; their heights above the sea reeently eorreeted, i. 57 , 96, 277.
Steppes aud Deserts, Charaeteristies of the European, i. 2; Afriean, i. 3 ; Asiatie, i. 4; South Ameriean, i. 7; aualogies and contrasts between the steppes and the ocean, i. 2,35 .
Strato, his sluiee theory, ii. 78.
Sugar-eaue; of Tahiti, of the West Indies, aud of Guiana, i. 31.

Taearigua, Lake of, i. 1; its seenery and regetation, i. 27.
Temperature.-Contrast between the temperature of the east eoast of Ameriea and the west eoast of Europe in the same latitudes, i. 129; general remarks on the temperature of the United States of Ameriea, i. 131.
Thian-sehan, one of the four parallel mountain ehains in Central Asia, i. $72,82$.
Thibet, oeeupying the valley between the great ehains of the Kuen-lür and Himalaya, divided iuto Upper, Middle, and Little Thibet ; its mean elevation and deseription, i. 81 .
Tibbos, i. 67.
Timpanogos, Laguna de, i. 44 ; is the Great Salt Lake of Frémont, 280.
Traditions of Samothraee, ii. 78.
Trees, age of, ii. 86 ; trees of highest growth, ii. 165.
Trisetum subspieatum, an inhabitant both of the Aretie and Antaretic Cireles, ii. 186.

Tuarieks, i. 67.

Urwald, or primeval forest, a name too lightly used, i. 261; true character of a primeval forest, 262; deseription of the noeturnal life of wild animals in the Urwald, 266.

Vegetation, its propagation aud extension over newly formed lands, ii. S; the absence of trees erroueously supposed to eharaeterise hot countries, 10 ; estensive arid traets in eountries otherwise of luxuriant vegetation a
geological problem which has not been sufficiently considered, 12 ; characteristic aspect of vegetation in the tropics, 30 ; characteristic vegetation of the Alps and Audes at great clevations, 35 .
Vesuvius, measurements of height at different periods, ii. 225, 243; particulars of the eruption of 1822, 228.
Vital forec, the, or Rhodian Genius, ii. 251.
Volcanos of the Thian-schau chain situated in the interior of Asia far distant from the sea, i. 88 ; structure and mode of action of, ii. 213 ; instances of cxtcnsive volcanic connection, 221 ; importance of repcating exact measurements of the heights of cratcrs, 224.

Willows, ii. 28, 193.

THE END.

In MISCELLANEOUS and GENERAL LITERATURE,
PUBLISHED BY
Messrs. LONGMAN, BROWN, GREEN, añd LONGMANS,
PITERNOSJER ROW, LONDON.

CLASSIFIED INDEX.

AGRICULTURE \& RURAL AFFAIRS.

Pages
Rayldon on Valuing Rents, ctc. - 6
Crocker's Land Surteying -

- 10

Davy's Agricultural Chemistry \quad - 10
Fresenins \quad, \quad, 12 Johuson's Framer's Encyelóopadia - - 16
Loudon's Eneyclopredia of Agriculture - 19 , Self-Instruction for Farmers, ete. 18 O (Mrs.)Lady's Country Companion 18
Low's Brecds of the DomesticatedAtimals 20 , Elements of Agriculture - . 50 ") On Landed Property - - 19 *On the 1)omesticated Arrimals - 19 Parnell on Roals

- 24

Stewart on Transfer of Landed Property 29 Thomson on lintteniug Cattle, etc. 'Iopham's Agricultural Chemistry - 3I

ARTS, MANUFACTURES, AND ARCHITECTURE.

Bail on the 3lanufacture of Tea 6
Brande's Dictionary of Scicuce, ctc. - 7
Builge's Miner's Guide
7
8
Cartoons (The l'rite)
Cresy's Encycl. of Civil Fingincering - 9
I'Agiucourt's History of Art - - 10
Dresden Gallery
Eastlake on Oil Painting

- 11

Eivnns's Sugar Planter's Manual - . 11
Gwilt's Encyclopredin of Arclritceture - 13
Haydon's Leetures on Painting \& Design 13
Ilolland's Mamufnetures in Metal - 17
Jameson's Sacreol and Legendary Art - 15
Loudou's Rural Architecture - - - 19
Moseley's Englneering and Architecture 23
Paricil on Roarls
Porter's Mamfacture of Silk
Poreclain \& (ilass 17
Reid' (Dr.) on Warming and Ventilating
Steant Engitte ("X"he), by the Artisan Clab
Ure's Dictionary of Arts, cec.
Rowton's British Poctesses
Russell's Bedford Correspondence
Schopenhaner's Youthfnl Life
Pages

Shelley's literary Men of ltaly, ete.
Fininent French Writers
Southey's Lives of the British Admirals - 17
Life of Wesley.
20

Taylor's Lorols
Townsend's Twelve cminent Judges - 31
Watcrton's Autobiography nud Essays - 32
BOOKS OF CENERAL UTILITY.
Actou's (Eliza) Cookery Book - .
Black's Treatise on Brewing - - - 6
Cabinet lawyer (The)

- 8

Collegian's Guide

- 8

Donoram's Domestic Feonomy : $\quad 17$
Foster's liand book of Literature - - 12
Hints on Eiiquette - 13
Hudson's Exucntor's Guide . - 15
On Making W'ills

- 15

Hunce's Arronnt of Learned Socicties, cte. 15
Loudou's Self Instruction - - - 18
(Mrs.) dmateur Gardener - 18
Maunder's'Treasury of Knowledge - $\quad 22$
, Scientificand LiteraryTreasury 22
", Treasury of listory - -
," Biographical Treasury . .
, ${ }^{\circ}$ Nitural Ilistory - - 22
Farkes's Domestic Duties - . . $2 t$
Pocket amrl the Stul - - - .
Pyeroft's Course of English Reading : \bar{y}^{5}
Reader's Tine Tables - * - . 35
Rich's Companion to the Latin Dictionary
Ridule"s Fing.-Lat. Aud IJat, -Eng. Dict. -
Robinsou's Art of Curing, Pickling, ctc.
Art of Baking British Wines,
Rowton's Debater
Short Whist
Suitor's luniructor (The) - $\quad-27$
Thomson's Jlamarement of Sick Room Interest lables
Webster's Encocel. of Dumestic Feonomp ?
Zumpt's Litim Grammir - . - 32

BIOGRAPHY.

Andersen's (1I. C.) Autobiograplyy
Bell's Lives of the 13 ritish Poets
Dunham's Early Writers of Britain
$1 \frac{1}{1}$
Forster, Lives of the British 1)ramatists 17
Forster's Statesmen of the Commonwealth 17 life of Jebb
Gleis's British Military Commanders - 17 Gratit (Mrs.) Memoir and Correspotidence $1:$ Haydon's Autobiography and Journals - 13
Jance's Life of the Blacik Prince - - 15
Kindersler's De Bareigrt Statesmen - 17

- - 16

Lál's (M.) Life of Host Mobammed - - 23
Leslic's Life of lionstable - - 18
Mackintosh's life of Sir T. More - . 20
Mrunder's Biographical'Trensury - -
Roscoe's Lives of Eminent [3ritish Lawyers 17

BOTANY AND GARDENING.
Abercrombie's Practieal Gardener • - 5
Fall ont the Cultivation of Ten - $\quad=6$
Calleott's Scripture Ilerbal . . . 8
Conversationsun botany - . - 9
Evanss Sugar Plarter's Manual - - 11
Henslow's Butany - - - 17
Hoare On the (irspe Vine on Open Walls 14
nober's Britishlilora - - \quad - $1: 1$
Guide to Kicw Gardens - - 14
Liudley's Theory of llorticulture - - 1s
, Orchard and liftchen Garden - is
," Introllection to Botany - . IS
,' Synopsis of British Flora - - 19
Louilon's Hortus Britamnicus . . - I

Pages oudon's Hortus Lignosus Loudincusis - 19 ", Encyclopedin ot Trecs ※ Shrubs $\underset{\text { Gardening }}{ } 19$ | " | " | Gardening |
| :--- | :--- | :--- |
| " | 19 | |
| | Plants | -19 | ", Suburban Gardener - Self-instruction for Gardeners ", Ser-hstruction Gardeners is Repton's Landscupe Gardening, ete. - 25 livers's Rose Amsteures Guide

Rogers's Vegetable Cultivator -
Sinith's Introduction to Botany English Fitora
", Compentium of Euglishlilora - is

CHRONOLOCY.

Blair's Chronological Tables
Bosanquet's Chrouology of Eara, etc. Bunsen's Ancient Eyypt
Nicolus's Clironolngy of History
$\begin{array}{r}6 \\ -\quad 7 \\ \hline-17\end{array}$
-17
Riddle's Ecclesiastical Chronology . - I6

COMMERCE AND MERCANTILE AFFAIRS.

Banfeld and Weld's Statistics 6
Baylis's Arithmetic of Annuities 6
M'Culloch's Dictionary of Commerce - 20 Reader's Time Tables $\stackrel{20}{25}$

Stecl's Shipmaster's Assistant 29
Syumonds' Merchant Seamen's Laws - $\quad 99$ Thomson's Tables of finterest - - - 30 Walford's Customs' Laws 31

GEOGRAPHY AND ATLASES.

Butler's Ancient and Modern Gcography ", Atlas of Modern (icograply
Ancient (fiography
",
", General (iocornply ", Atlas of Modern (icograply
Ancient (fiography
",
", General (iocournply

8

De Strzelecki's New South Wales : - 10
Forster's Historical Georraphy of Arabia 11
Hall's Large feneral Atlas
M'Culloch's Geographical Dictionary - 20
Mitchell's Australim Fxpedition
Murray's Fncyclopedia of Geography
Parrot's Ascent of Mount Ararat
Schomburgh's Barbados, and Map -

HISTORY AND CRITICISM.

Bell's History of Russia

Black Prince

6
Blair's Chron. and Historical Tables
Bloomfield's Transiation of Thacydides Edition of Thueydides
Bunsen's Ancient Figypt
Bunsen's Ancient rowsoll:
Conybeare and Howsons St. Panl6
ooley's Maritime and huland Discorers
Crowe's History of France
Coulton on Junins's Letters 17
De Sismondi's Fall of the Roman Empire $1 \frac{9}{7}$ Italian Repmblics
Dunhan's fistory of Spain and Portural
, Europe in the Middle Ites - 17
", History of the German Empire
Demmark, Sweden, and Norway
History of Poland - - -
Dunlop's History of Fietion

- 11

Eastlake's History of Oil Painting - 11
Fecleston's Euglish Autiquities - - Ji
Foster's Europern Jiterature -

- 12

Fergus's United states of America - 17
Gibbon's Roman Empire -
17
12
Grant (Mrs.) Memoir and Corespondence Gruttan's History of Netheriands
Grimblot's William III. and Lonis XIV.
Halsted's Life of Richard $\{11$.
12
12
Harrison On the English Langnage - I
Haydon's Lectures on Painting and Design Ia

Historical Charades
Pages
Historical Pictures of the Middle Ages - 13
Jeffrcy's ímord) Contributions - - 16
Keightley's Outlines of History - - 17
Laing's Kings of Norway -
Lemprière's Classical Dietionary
Macaulay's Fissays
History of England

- 16

Mackintosh's Mistory of Fugland
Mackintosh's Mistory of Fugland

- 20
M^{6} Culloch's IDictionary, Historical, Geo-
graphical, nud Statistical
Manuder's 'Treasury of History Miluer's Church IIistory
Aloore's listory of I reland
Mosheim's Ecclesiastical History
Nicolas's Chronology of llistory
Passages from Modern History
Ranke's Histury of the Reformation
Rich's Companfon to the Latin Dictionary
Riddle's Latin Dictionaries
Rome, History of
- 22

Rowton's British Poctesses
-
Russell's Bedford Correspondence
Scott's History of Scotland
Sinnett's Byways of Ilistory
Sonthey's boctor, etc.
Stebbing's Historr of the Cluristion Co
S." Churchilistory - - - $1 \frac{17}{}$

Switzerland, History of
Srdney Emith's Works
Taylor's Loyola

- 17

Tomalks history of Grece
Tonke's Historics of Prices

- 30
- 30

Turner's Hist orv of England

- 31

Zumpt's Latin Granımar

- 32

JUVENILE BOOKS.

Amy llerbert
Callicott's Home among Strangers Gertrude
Gower’s Scicutific Plenomena
Historival Charades -
Howitt's Boy's Country Book -
Children's Jear
Laneton I'arsonage

- 5

Mackintosh's Life of Sir T. More
Marect's Conyersations-
On Chemistry
On Natural Philosophy
On Political Economy
On Vegetable Physiology
On Lavid and Water
Marryat's Masterman heady Privatcer's-Man
, Scttlersin Cnnada
," Mission: or, Scenes in Africa
Passages from Modern History
Pycroft's Course of English Reading
Twelve Years Ago

MEDICINE.
 .

Bull's Hints to Mothers
Management of Children
Copland's Dictionary of Mediciue
EHiotson's IIuman Physiology Holland's Medical Notes
Lane's Water Cure at Malveru
Latham On Discascs of the Heart
Percira On Food and Diet
Sandly On Mesmerism
Thomsou On Food
Thomsou OnFood - - $\quad=\quad 30$

MISCELLANEOUS.

Blessington's Fugitive Fancies
Carey's Past, Present, and Future -
Cartoons (The Prize)
Cocks's Bordcaux, its Wines, ete.
Collegian's Guide

	oulton On Authorship of Jun
	De Jaenisela On Chess Opening
	c la Graviere's Last Vum
	e Morgan On Probabilitie
	e Strzelceki's New south Wr
	Dresden Gallery
	unlop's Ilistor
	cld On Prison Discipline
	ardiner's Sights in Italy
	wer's Seient
	Graham's English
	(rant's letters from the Mountains
	(obles's (Thos.)
	ooker's Kew Guide
	owitt's Rural Life of England
	", Visits to Remarkablel
	" Stulent life of (is
	Tural and Social Li
	Colomisation and Cliristianity
	ume's Account of Lea
	Mrey's (Lord) Contrihutions
	ce's life at the Wa
	ulon's (Mrs.) Lad
	caulay's Critieal and 11
	ckintosh's 'Sir J.) 11
	itandis churel in
	ceker De Sanssure's on E
	ukett On the Nuyy
	croft's Course of English
	ch's Companion to the Latin Dictio
	- liter's Levana
	iddle's Latin Di
	oget's Economic Chuss-board
	wton's Debater
	amy's Mesincri
	undford's Parochialia
	award's Narrative of his Shipwreck
	they's Common- Plate Book
	listructor (Tlic)
	minerly's Sed
	dney Smith's W
	homson on Food of Animals, etc. - - 30
	Maker's Chess stmdies - - - 31
	Honyliby's (araly) liary
	Latin Grammar

NATURAL HISTORY IN CENERAL.

Swainson on the Study of Nuturallistory Auimals

8

1)oublediry's Butterflics and Moths 10 I6 O \quad - 12
Kírby and Spënc's decipitres - - 12
Lee's Taxidermy

- 18
*Hements of Natnral History - - Is
cinder sreasury of Natural listory
20
29
", Quadrupeds - - - -
", Aris Anals Menageries
- 17
, Fish, Anpbibia, and lieptiles
," Insects
Maliccology
llabits and - - 17
," Maxits aul lastinets -
- 17
- 17

Turton's Shells of the britislilslands
Waterton's Eissays ou Nitural llistory 31
Westwood's Classification of lascets.

- 32

NOVELS AND WORKS OF FICTION.
Callcott's Home among Strangers -

- 8

1) unlop's llistory of liction

- 11

Hall's Midsummer Eve

- 13

Lady W'illougliby's Diary
32
Madame De Malguet

Mirryat's Masterman Ready		Pages
" Privateer's-Man	-	-
" Sctlers in Canadn		
"		

ONE VOLUME ENCYCLOPAEDIAS AND DICTIONARIES.

Blane's, of Rurnl Sports

Brallde's, of Science, literature, and Art $\frac{8}{7}$
Copland's, of Medicine - - !
Cresy's, ot Civil lugineering - - . 9
Gwilt's, of Architecture - - - 13
Juhnson's Furmer - - - - 16
Loudon's, of 'Trees and Shrubs
," of Gardening

- 19
, of Gardening - - - 19
," of Agriculture - - - 19
, of llinits - - - . . 19
of Rural Arclitecture - $\quad-19$
M'Culloch's Feorrapliceal Dictionary
Dictionary of Commerce
Murriy's Encyclopedia of Geography
Ure's irts, Manniactures, and Mines
Webster's Dumestic Lconomy
- 29

POETRY AND THE DRAMA.

Aikin's (Dr.) British Pocts \qquad
Chalenor's Whater (iray -
Collier's Roxburghe Ballads 8
Costello's Persimbliose Garden 9 9
Flowers and their lindred 'I'houghts
Goldsmith's l'ocms, illustrated 11
(iray's Filcqy, illuminated - - - 12
Howitt's (Mary) Ballads

- 12
- - - 1.
- $\quad 16$

Linwool's Antholoyia Oxoniensis - - IS
Mitcauliy's Lays of Ancient Rome - \quad - 0
Mackay's Euplinh Lakes - .
Montgomery's Poetical Works
Moore's Irish Mclodies -
oo Lalla Rookh -

- 20

Ioral of Flowers
Poets' l'leasaumce
Rowton's British Poetesses
Shakspeare, by Bowdler
Sophocles, by liuwood
Southey's Poctical Works
Spirit of the Woorls
-- 23
$-\quad .3$
-

Thomson's Seasous, illnstrated
, with Notes, by Dr - . 30

POLITICAL ECONOMY AND STATISTICS.

Banfeld and Weld's statistics
M'Cullorih's Geogrnphical, Statistical, and
Historical Dictionary
A'Culloch's Dictionary of Commerce
, Oiteraturc of Polit. Ficonomy
, Onsuceession to Property
", On Taxationand liunding
Darcet: Statistics of the British Iompire 20
Marcet s Conversations on Polit. Economy 21
Symonds' Mercliwit scamen's Liwv
Tooke's Histories of l'rices

- 24

Twiss's (Dr) View of Politieal Fe - 30
", Schleswig-llolstciu Kuestion

RELIGIOUS AND MORAL WORKS, ETC.

Amy Ilerbert, edited by Rev. W. Sewell
Barrett's Old Testament Criticisms.

5

Bloomficld's Greek Testament College and School ditto , lexiconto Greek Testament Bunsen's Chureh of the Future
Burder's Oriental Customs
Burns's Christian Philosoplyy
Christian lirugnents
Pages

Calícote's Seripture Herbal Closing Secue
Conybeare and Howson's St. Paul Coopler's Sermons
Cornerel's Cliristinnity
Dale's Domestic Liturgy
Dibdin's Sunday library
Discipline

> Hebrew Concordance Greek Coneordnace
Forster's Historical Geograplyy of Arabia Life of Bishop Jeub
From Oxford to Rome
Gertrude, edited by the Rev. W. Sewell Hook's (Dr.) l,ectures on Passion Week Horne's Introduction to the Scriptures -
" Compendium of ditto
Jameson's Saered and Lecgeudary Art
Jebb's Correspondence with Knox
Translation of the Psalms
Lip's Christmas in Rome16

Knox's (Alexander) Remains -
Laneton Parsonage
Letters to my Unknown Friends
Maitland's Church in the Catac
Margnret Percival
Miluer's Church History
Miracles of Our Saviour
Moore on the Puwer of the Soul
", on the Use of the Body
," on Man and his Motives
Mosheim's Eeclesiastical History
Parables of Our Lord
Parkes's Domestic Duties
Pitman's Sermons on the Psalms
Ranke's Reformation
Renaud's Matutina
Rest in the Chureh
Ridulle's Jetters from a Godfather
Sandford On Feinale Iniprovement On Woman ", 's Parochialia
Sermon on the Mount (The)
Slmmammite (The Good) -
Sinclair's Journey of Life
Business of Life
Sketclies (The)
Smith's (G.) Perilous Times
" Religion of Ancient Britain " (J.) St. Paul's Ship
J.) St. Panl's Shipwreck

Soames's I atiu Chureh
southey's Life of Wesley
Stcbbing's Christian Chureh
Reformation
Steplien's Clureli of Scotland
Syduey Smith's Sermons
Tinte's History of Sit. 'anl
Tayler's (Rev. C. 13,) Margaret
Taylor's (Jerenir) Works -
(1same) Lovola
-
Tomline's lutroduction to the Bible

- 30
'lurner's Sincred llistory

Twelve Years Ayo

- 31
$-\quad-31$
Wardlaw Ons Socinian Controversy
Wilber force's View of Claristianity
Willouglaby's (Lady) Diary
Wilson's Lames of the Bible
Wisdom of Johason's Ramliler, cte.
Woodward's Scrubons and Essays -
-
- 30

RURAL SPORTS.

Pages
Blainc's Dletionary ofSports - - $\quad 6$
Fphemera on Angling
Hawbuck Grange -
-
Hawbuck Grange -
llawker's Instructinns to Sportsmen
llawker'slustructionsto Sportsmen $\quad-13$
Jones's Norway Salmon Fisher - 16
l.oudon's (Mrs.) Lady's Country Companion 18

Pocket and the Stud
Stable Talli and Table Talk

THE SCIENCES IN CENERAL, AND MATHEMATICS.

Baker's Railway Engincering -
Bakewell's Intruduction to (ieology
Brande's Dictionary of Science, ete.
Brewster's Optics

- 5

Conversations on Mincralogy

- 17

Donoran's Chemisery
lirrey on the Sream Fingine - - - 11
liosbroke on the Arts of the Ancients - 17
Gower's Sricutific Phenomena - - 12
Herscliel's Natural Plillosoply - - 17 Astronomy
Holland's Manufactures in Metal - - 17
Humboldt's Cosmos
Hunt's Rescarches on Licht - - - 15
Kater and fardner's Mechanies - - 17
Lardner's Cabinct Cyclopredia - 17
$\begin{array}{lll}\text { " Hydrostatics and Pncamatics - } & 17 \\ \text { ") and Walker's Electicity } & -17 \\ \text { " } & \text { Arithmetic - } & - \\ \text { Geonery }\end{array}$
", Geometry - - - - 17
Low's Chemistry
Narcet's Conversations ou the Sciences
Matencoi Oir Phrsical Phenomena -
Alemuirs of the fienogrical Survey --21
$-\quad 22$
Moseley's Practical Mechanics

- 22

Owcin's Enginecring and Arclitecture
Peschel's Physies
Phillips's PilicozoicFossilsof Cornwall, etc, af
(1) Minertogy, by Prof, Miller
" Treatisc on Geology - -
Portloch's Geology of Londonderry
Powell's Natural Philosophy

- $\quad 17$

Ritchic (Robert) on Railwnys
Topham's Agricultural Chemistry . -

TRAVELS.

Allan's Mediterrancan
Borror's Campaign in Algerin -
Costello's (Miss) North Wales
Coulter's Califormia, cte. Pacific
De Śrrelecti's New South WFales - - 9
Dunlop's Central America
Erman's Travels through Siberia
Gardiner's Sights in ltaly
Harris's Highlands of Athiopia
Jones's Norwhy Guide
Kin's Holydis: in Roune
Laing's Tourin Sweden
Mackay's linglishl Lakes
Marryat's Bornco
Mitehell's Expedition into Australis
Parrot's Ascent of Mount Ararat
Schom hurgk's Barbados
Schopenhauer's Pictures of Travel -
Senward's Narrative of his Shipwreck
Tischendorff's Trarels in the East -
Von Orlich's Trarels in ludia
Wilson's'Travels in the Holy Land
Wilson's Travels in the Holy Land $\quad=32$

VETERINARY MEDICINE

Miles On the Horse's loot
Pocket nud the situd
Stable Talk and Table Tak
Thomson on Fattening Cattle
Winter On the Horse Cattle
29
$-\quad 30$

NEW WORKS and NEW EDITIONS

PUBLISHED BY

Messrs. LONGMAN, BROWN, GREEN, and LONGMANS.

ACTON (MISS).-MODERN COOKERY,

In all its Branches, reanced to a System of Easy Practice. For the use of Private Families. In a Series of practical Receipts, all of which have been strictly tested, nud are given with the most minnte exactucss. By Eliza Acton. New Edition, to which are added, Directions for Carviny. Foolscap 3vo. with Plates and Woodcuts, 7 s. 6d. cloth.
"The whole of Miss Acton's recipes 'uith a fou trithing eaceptions, whieh are sernpulously specifich, are eonfined to such as may be perfectly depended on, from having been proved beneathour uwn roof, and under our own personnl insp cetion.' We add, moreover, that the recipes are all reasonable, and uever in any instance extravagant. They do not bid us snerifice ten paunds of excellent ment, that me mayget a eouple of guarts of gravy from it; nor do they deal with butter and eggs us if they cost nothing. Mivs Acton's book is a good book in every way; there is right-mindedness in every page of it, as well as thoronghk knowledge and experience of the snlijects she handles."-Mcdical Gazette.

ABERCLOMIBIE.-ABERCROMBIE'S PRACTICAL GARDENER, AND IMIPROVED SYSTEM OF MODERN HORTICULTURE, alphabetically arranged. New Edition, withan fatroductory 'Treatise on Vegetable Physiology' and Plates by W. Salisbury. l2mo. 6s. boards.

ABERCROMBIE AND MAIN. - THE PRACTICAL GARDENER'S COM-
PANION; Or, Horticultural Catendar: to which is added, the Garden-Sred and llant Estimate. Edited, from a MS. of J.abercrombie, by J. Mian. New Eilition. 32mo. 2 s . (idd. sewed.
ALLAN (J. M.)-A PICTORIAL TOUR IN THE MEDITERRANEAN; Comprising Malta, Dahatia, Turkey, Asia Minor, Grecian Archipelago, Erypt, Nubia, Greece, Sicily, Italy, and Spain. J. Il. Allan. New Edition. 1mperial ito. With upwards of 40 lithographed Drawings, and 70 Wood Engravings, 31. 3s. cloth.

AMY HERBERT.

By a Lady. Eilited by the Rev. William Sewell, B.D. of Excter College, Oxford. New Euition. 2 vols.foolseap 8vo. 9s. eloth.

ANDERSEN,-THE TRUE STORY OF MY LIFE;

A Sketeh. By" Hans Christian Andersen, nuthor of "The Shocs of Fortunc," "The Nightiugale," "O. T.," "Ouly a Fildder," "The Improvisature," ete. Translated by Mary 110witt. Fep. Svo. 5s. cloth.

ARTISAN CLUB (TIIE),-A TREATISE ON THE STEAM-ENGINE.
In its application to Mines, Mills, Stemm Nuvigation, and Railways, By the Artisan Club. Edited by Joha Bournc, C.E. New Edition, fo. with 30 Steel Plates, ete., and about 350 Wood Engravings, 27 s. cloth.

BAKIUR.-RAILWAY ENGINEERING;
Containing the most approved Methouls of Laying out Railway Curves, and of setting out the Cuttings, Embnkments, and Tunnels of Railwass: with a Gencral und two Auxiliary'Tables, for the Calculation of Earthworks of Railways, Canals, etc. Also, the Inrestigatiom of the Formula for the Superclevation of the exterior Rail in Curves. By T. Baker, Surveyor and Civil Engineer. Svo. 5s. cloth.

BAKEWELL,-AN INTRODUCTION TO GEOLOGY.

Intended to convey Practical hinowlenge of the Sclence, and comprising the most important recent Discoverics. By Robert Bakewell. Fifth Edition, 8vo. with Flates and Woodcuts, 21s. cloth.

BALL.-AN ACCOUNT OF THE CULTIVATION AND MANUFACTURE

 OF TEA IN CHINA: derived from Personal Obscrvation during an Official Residence in that Comitry of upwarils of Twenty Years; and illustrated by the best Authorities, Chinese as well as Europenn. With some Remarks no the Experiments now making for the lutroduction of the Culture of the Tea Tree in other parts of the World. By S. Ball, Esp. Iate Inspeetor of Teas to the East Iudia Company iu China. Sro. with Plates and Woodcuts, 14s. cloth.
BANFIELD AND WELD.-THE STATISTICAL COMPANION;

Fxhibiting the most interesing Facts in Moral and Intellectual, Vital, Fconomienl, and politicnl sitetisties, at home antlahrond. Compiled from Official and other anthentic Sourees, by T. C. Banficld, Statistical Clerk to the Council of Fdueation; aud C. R. Weld, Assistant Secretary to the Royal Society. Foolscap 8ro. 5s. cloth.

BARRETT.-A SYNOPSIS OF CRITICISMS

Upon those Passages of the Old Testament in which Modern Commentators have differed from the Authorized Version: together with an Explanation of various Difficulties in the Hebrew and English Texts. By the Rev. Richard A. Ki. Barrett, M.A. Fellow of King's College, Cambridge. Vols.1. nud II. Svo, 28s. each cloth; or in 4 Half-vols. 14s. cach. Also, Half-vol. V. Its.

BAYLDON. - THE ART OF VALUING RENTS AND TILLAGES,

And the Tenant's llight of Entering and Quitting Farms, explained hy severnl Specimens of Valuations; and Remarks on the Cultivation pursued on Soils in different Situations. Adapted to the Use of Landlords, Land-Agents, Appraisers, Farmers, and Tenants. By J. S. Bayldon. New Edition, corrected and revised by John Donaldson. Svo. 10s. 6d. eloth.

BAYLIS.-THE ARITHMETIC OF ANNUITIES AND LIFE ASSURANCE; Or, Compound Juterest simplified. Explaining the Valne of Anmities, certain or eontingent on One or Two Lives, and the Values of Assurances in Single amb Amual Payments; and comprelienting Leascs, Pensious, Frecholds, and Reversionary Sums, ete. By Edward Baylis. 8vo. 5s. cluth.

BEDFORD CORRESPONDENCE. - CORRESPONDENCE OF JOHN, FOURTH DUKE OF 13EDFURD, selected from thic Originals at Wobura Abbey, (1722-70). With Introductions by Lord John' Russell. 3 vols. Svo. tss. eloth.
** Frol. I. (1742-48), 18s.; Frol. II. (1/49-60), 17s.; Íol. ITI. (1761-70), 15 s .

BLACK PRINCE.-A RECORD OF THE BLACK PRINCE;

Being some of the most striking Passages of his Life-in the Words of his Chronielers, selected more especially from the records of his cmmemporary. Froissart, in the quaint and spirited translation made by Lord Berncrs for King Ifenry Vlll. Post svo., printed in black letter, embellished with liluminated Borlers and Niniatures, and bonnl in imitative earving.
[In the press.

BLACK.-A PRACTICAL TREATISE ON BREWING.

Based on Chemical and kconomical Principles: with Formulie for Public Brewers, and Instructions for Private Fiamilies. By William Black. Third Enlition, revised and corrected, with considerable Additions. Svo. 10s.6d.cloth.-Also,
SUPPLEMENT, of REMARKS on BAVARIAN BEER, cte. Sro. As. od. sewed.

BLAINE,-AN ENCYCLOPFDIA OF RURAL SPORTS ;

Or, a complete Account, Historical, Practical, and Deseriptive, of Hunting, Shonting, Fisning, Rncing, and other lield Sports and Athletic immennents of the present day. By Delabere P. Blaine, Esy., author of "Canine l'athology;" ctc. With nearly Gu" Engratings on Wood, by R. Branston, from Drawings ly Alken, T. Landscer, Dickes, ete. Svo. 50s. cloth.

BLAIR'S CHRONOLOGICAL AND HISTORICAL TABLES,

l'rom the Creationto the present Time: with Additions and Corrections from the most authen tic Writers; including the Computation of st. Paul, ats connecting the Period from the Fxode to the Temple. Under the revision of sir Henry Ellis, K.II., Prineipal Librarian of the British Muscum. Imperial Svo, 31s.6d. half-bound morocco.

BLESSINGTON.-FUGITIVE FANCIES.

By the Countess of Blessington. Feap. Svo.
[In the press.

BLOOMFIELT.-THE HISTORY OF THE PELOPONNESIAN WAR.

By Thucydides. A New Recension of the Text, with a carefully amended Punetuation; and copious Notes, Critical, Plilological, and Explanatory, almost entirely original, but partly selected and arranged from the best lixpositors: accompanied with finll Indexes. Illustrated by Maps and Plans. By the Rev.S.T. Bloomfich, D.D.F.S.A. 2 vols. Svo. 3Ss. eloth.

BLOOMFIELD.-THE HISTORY OF THE PELOPONNESIAN WAR.

By Thucydides. Translated iutu Fuglish, and aceompanied with very eopious Notes, Philological and Exphatory, Historical and Geographical. By the Rev.S. 'T. Bloomfeh, D.D. F.S.A. 3 vols. Svo. with Maps and Plates, $\because l$. $5 s$. boards.

BLOOMFIELD.-THE GREEK TESTAMENT:

With copions Finglish Notes, Critical, Philological, nad Explanatory. Formed for the use of adranced Students of Divinity and Candidates for Holy Orders. By the Rev. S. T. Bloomfid, D.D. F.S.A. New Etiition. 2: Pols. 8vo. with a Mlap of Palestine, HUs. cloth.

BLOOMFIELD. - THE GREEK TESTAMENT FOR COLLEGES AND SCHOOLS ; with shorter English Notes, Critienl, Plilulugical, and Explantory. Dy the Rev. S. 'T. Bloomfield, D.D. New Edition, eularged, with a New Map and un Index. Foolscap Svo. 10s. 6d. cluth.

BLOOMFIELD.--GREEK AND ENGLISH LEXICON TO THE NEW TESTAMENT: especially adapted to the use of Colleges, and the lligher Classes in Public Schools; but alsointended as a convenient Mamal for Biblical Students in general. By Dr. Bloomfich. New Editim, improved. Foolscap Svo. 10s. Gd. cloth.

BORRER.-NARRATIVE OF A CAMPAIGN WITH A FRENCH COLUMN,

 under Marcichal Bugcaud, directed against the Kabiles of Algeria: topeller with an Aecomnt of the Adventares of M. Suchet in searel of the Camp of the Emir Ahd-el-Nader. By Dawson Borrer, \&.R. (i.S. Membre Correspoulant de la Socicte Oricutale is laris, athor of "A Journey from Naples to Jerusalem." P'ost Svo.[Niearly ready.
BOSANQUET--CHRONOLOGY OF THE TIMES OF DANIEL, EZRA, AND NEIIEMAAH, considered with the view of correcting an Firror of Thirty-threc Years in the received Chronology between the Capture of Jerusalem be Nebnehadnezzar and the Birth of Christ. Leading to an Fixplanation of the Prophecy of the Seventy Weeks, the Recovery of the lost Era of the Jubilec, and the Rectification of several important Dates in Scripture Chronology. By J. Whatmin Bosimquet, Eisi. Part I. Svo. Ss.6id. cloth.

BRANDE,--A DICTIONARY OF SCIENCE, LITERATURE, AND ART;

Comprising the History, Description, and Scicntife l'rineiples of every Branch of Human Knowledge ; with the Derivation and Definition of all the Terms in general use. Edited by W.'T. Brande, k.IR.S.L.and E.; assisted by Dr.J. Cauvin. Svo. with Wroodcuts, 31. cloth.

BUDGE (J.)-THE PRACTICAL MINER'S CUIDE.

Comprising a Set of Trigonometrieal Tables adapted to shl the purposes of Oblique or Dingonal, Vertical, Hurizontal, and Traverse Dialling ; with their application to the Dial, Exercise of Drifts, Lodes, Slides, Levelling, Inaccessible Distances, Heights, etc. By J. Budge. New Edition, enlarged. Svo. with Portrait, 12s.cloth,

BULL.-HINTS TO MOTHERS,

For the Managenent of llealth during the Period of Pregnancy and in the Lying-in Room; with an Exposurc of Popular E,rrors inconnexion with those subjects, ly Thonas Bull, M.D. New Edition, revised and considerably enharged. Foulscap Svo. $\overline{\text { s }}$. eloth.

BULL. - THE MATERNAL MANAGEMENT OF CHILDREN,

In IIF.ATMI and DISE.ASE. By Thomas Bull. M.1). Physician Acconchcur to the Finsbury Midwifery Institution, ete. New Edition, revised ind cularged. F'oulscap Svo. Es. CIoth.

BUNSEN. - THE CONSTITUTION OF THE CHURCH OF THE FUTURE. A practical Explanation of the Correspondence with the lipht Won. William Giadstone, on the German Church, Episcopary, mid Jernsalem. With a Prefnce, Notes, and the eomplete Correspondence. By the Chevalier C. C. J. IBunsen, Pli,D., D.C.L. Translated under the superintendence of and with additions by the Anthor. Pust Svo. 9s. Gul. cloth,

BUNSEN.-EGYPT'S PLACE IN UNIVERSAL HISTORY:

An Historical Investimation, in lïve Books. ByC.C.J. Bunsen, D. Ph, and D.C.L. Translated from the German, hy C. If. Cottrell, Fisq. M.A. Vol. I containing the lïrst Buok, or Sourees and Primeval Facts of Egyptian Ilistory: with an Exyptian Grammar and Dictionary, and a complete list of Hicrorlypheal Signs: an Appendix of Antharities, embrncing the complete Text of Manctho and Eratosthencs, Sgyptiaca from Pliny. Strabo, ete. ; and Plates representing the Egyptian Divinitics. Svo. with uumerous llustrations, Ess. cloth.

BURDER.-ORIENTAL CUSTOMS,

Applied to the lllustration of the Saered Scriptures. By Dr. Samuel Burder. New Edition, with Additions. Foolseap Svo. Ss. Eid. cloth.

[^0]BUTLER.-AN ATLAS OF ANCIENT GEOGRAPHY.
Consisting of Twenty-three coloured Maps: with an Index of all the Names of Places, referring to the Latitudes and Longitudes. By the late Dr. Butter, Bishop of Lichfield. New Edition, corrected. Svo. 12s. half-bound.

BUTLER.-A GENERAL ATLAS OF MODERN AND ANCIENT GEOGRAPHY.
Consisting of Forty-five coloured Maps, and copic us Indiees referring to the Latitudes and Longitudes. By the late Dr. Butler, Bishop of Lichfeld. New Edition, from an eutirely new and corrected set of l'lates. fio. 2ts. half-b :und.

CABINET LAWYER (THE).

A Popular Digest of the Laws of England, Civil and Criminal; with a Dictionary of Law Terms, Maxims, Statutes, and Judicial Antiquities; Correct Tables of Assessed Taxes, Stamp Dutics, Excise Licences, and Post-Horse 1)uties; Post.Office Regulations, and Prison Discipline. Fonrtecuth Fdition, enlarged, and corrected throughont, with the Legal Decisions and Statutes to Michachmas 'Term, 10 and 11 Vietoria. Feap. Svo. 10s.6d. cloth.

CALLCOTT.--HOME AMONG STRANGERS:
A Tale. By Maria IIutchins Callcott. 2 vols. feap. Svo. 98. eloth.
CALLCOTT.-A SCRIPTURE HERBAL:
With upwards of 120 Wood Engravings. By Larly Callcott. Square crown Sro, 17.58. cloth.
CAREY.-THE PAST, THE PRESENT, AND THE FUTURE.
ByI.C.Carcy, author of "The Principles of Political Economy," ete. Svo. 108. 6d. cloth.
CARTOONS.-THE PRIZE CARTOONS EXHIBITED IN WESTMINSTER HALL, Published under the Sanction and Patronage of Her Majesty's Commissioners on the Fine Arts. Eleven large folio Engratings, in in neat एortfolio, 51.58. ; Droofs before letters, 81.58.

CATLOW.-POPULAR CONCHOLOGY;

Or, the Shell Cabinetarranged: being an Introduction to the modern System of Conchology; with insketele of the Natural History of the Anmals, an acconmt of the Formation of the Shells, andacomplete bescriptive List of the Families and Genera. By Agues Catlow. Foolscap Sro. with 312 Woodeuts, lUs. 6d. cloth.

CILALENOR.-WALTER GRAY,

A Ballad, and other Poems. By Mary Chalenor. 2d Edition, with Additions, including the Author's loctical Remains. Feap. Sru.bs. eloth.

THE CLOSING SCENE;

Or. Christianity mad lufdelity contrasted in the Last Ilours of Remarkable Persons. Bry the Author of "The Bishon's Danghter," "Self-Eacrifice," "The Life-Book of a Labourer," etc. Feap. Svo. 68. cloth.

COCKS (C.- - SORDEAUX, ITS WINES, AND THE CLARET COUNTRY.
By C. Cocks, B.L.. Profeanor of the Living Languages in the Royal Colleges of France; Translator of the Works of Miehelet, Mignet, and Quinct. Post Svo. Ss. 6d. cloth.

COLLEGIAN'S GUIDE (THE);

Or, Recollections of College Drys: setting forth the Adsantages and Templations of a University Fducation. By the Rev. James Pycroft, M.A. Post Sro. 10s. 6d.eloth.

COLLIER (J. PAYNE.)-A BOOK OF ROXBURGHE BALLADS.
Edited by John Payac Collier, Esq. Fcap. 4to, with Woodeuts, 2ls, boards; morocco, 33 s.
COLTON-LACON; OR, MANY THINGS IN FEW WORDS.
By the Rev. C.C. Colton. New Edition, Sro.12s.cloth.

CONVERSATIONS ON BOTANY.

New Edition, improved. Foolscap Svo.with 22 Plates, 78.6 . cloth; with coloured Plates, 12 s.

CONVERSATIONS ON MINERALOGY.

With Plates, engraved ly Mr. and Mrs. Lowry, from Original Drawings. Third Edition, enlarged. 2 vols. foulscap 8 vo. 14s. cloth.

CONYBEARE AND IIOWSON.-THE LIFE AND LETTERS OF ST. PAUL; comprising a complete Biography of the Apostle, and a Paraphrastic Translation of his Epistles inserted in Chronological order. Edited by the Rev. W. J. Conybeare, M.A. late Fellow of Trinity College, Cambridge; and the Rev.J. S. Howson, N.A. Primeipal of the Collegiate Institution, Liverpool. 4to, richly illustrated by Maps, Views, Engravings of Coins, ete.
[ln the press.
COOPER (THE REV. E.)-PRACTICAL AND FAMILIAR SERMONS, Designed for ParochiaI and Domestic Instruction. By the Rer. Edward Cooper. New Editions. 7 vols. 12 mo . 1 l . 183 . boards.

COOPER (TIIE REV. E.)-SERMONS,
Chiefly designed toclucidate someof the leating Doctrines of the Gospel. By the Rev. Edivard Couper. New Edition. 2 vols. I\%mo. IUy. boarels.

COPLAND.-A DICTIONARY OF PRACTICAL MEDICINE;

Comprising General Pathology, the Nature and Treatment of Disenses, Morbid Structures, and the Disorders especianly incidental to Climates, to Sex, and to the difterent Epochs of Life, with numerous approved Formnlie of the Medicines recommended. By James Copland, M.D., ctc.etc. Vols.1. and II., Byo. 3l, cloth; and Parts X. to XIII. 49. 6d. each.

COQUEREL--CHRISTIANITY;
Its perfect adaptation to the Mental, Moral, and Spiritual Nature of Man. By Athanase Corfuerel, one of the Pastors of the French I'rotestant Churchin Paris. Translated by the Rev. D. Davison, M.A. Withun Introductory Notice of the State of the Protestant Church of Firnce, written by the Author for the Finglish Edition. Pust Svo. 12s. eloth.

COSTELLO (MISS).-THE ROSE GARDEN OF PERSIA.
A Scries of Tramslations from the Persian Pocts. By Louisa Stuart Costello, author of "Specimens of the Early Poetry of lirnuce," etc. Long Svo. with 12 Illuminated Titles, and Borders printed in Colours, 18s, boards; or 31 s .6 d . morocco.

COSTELLO (MISS)-FALLS, LAKES, AND MOUNTAINS OF NORTH WALES; being a Pictorial Tour through the most interesting, parts of the Country. By Louisa Stuart Costello, author of "The Rose Garden of Persia," cte. Profusely illustrated with Views, from Original Sketches by D. H. M•Kewan, engraved on wood, and lithographed, by T. and E. Gilks. Square Svo. with Map, Its. eloth.
COULTER.-ADVENTURES ON THE WESTERN COAST OF SOUTH AMFRICA AND IN'TAE INTPRIOR OF CALIFORNIA. Ineluding a Narrative of Incidents at the $\mathfrak{k i u g s m i l l}$ Islands, New Ireland, New Britain, New (iuinca, and other Ishands in the Pacific Ocean. With an Accome of the Natural Prodnctions, and the Manners and Customs, in Peace nud War, of the various Savure Tribes visited. By Johu Coulter, M.D. author of "Adventures in the I'ncific." 2 vols. post 8vo.16s. cloth.

COUITER.-ADVENTURES IN THE PACIFIC;

With Observations on the Natural Productions, Maners and Customs of the Natives of the various Ishands; Remarks on the Missionarics, British and other Residents, etc. By John Coulter, M.D. Post Svo. is Gd. cluth.

COULTON.-AN INQUIRY INTO THE AUTHORSHIP OF THE LETTERS

 OF JUNIUS, By Davil Trevena Coulton, 4to.[In Nuvember.
CRESY (E.) - AN ENCYCLOPFEDIA OF CIVIL ENGINEERING, HISTORICAL, THEORETICAL, aud IRACTICAI. By Fdward Cresy, F.S.A. C.E. Illustrated by upwards of'Three 'lhousand Engrarings on Wood, explanatory of the Principles, Mrwhisery, and Constructions which come under the Direction of the Civil Engineer. One large Volume Svo. upwards of 1,600 pages, $3 l$. 138. $6 d$. cloth.

10

CROCKER'S ELEMENTS OF LAND SURVEYING.

Fifth Edition, corrected throughour, and considerably improved and modernised, by T. G. Bunt, Land Surveyor, Bristol. To which are added, TABLES OF SIX-FIGURE LOGARITHMS, ete., superiutended by Richard Farley, of the Nautical Ahuanae Establishment. Post 8vo. 128. cloth.

D'AGINCOURT.-THE HISTORY OF ART,
Bylts Monoments, from its Decline in the Fourth Century to its Restoration in the Sixteenth. Translated from the French of Scroux D'Agincourt, by Owen Jones, architect. With 3,335 Subjects, engraved on 328 Plates. Vol. I. Architecture, 7 ís plates: vol. 11. Sculpture, 51 plates; vol. 111 . Painting, 204 plates. 3 rols. royal folio, $5 l .5 s$. sewed.
DALE (THE REV. THOMAS). - THE DOMESTIC LITURCY AND liamily Chaplain, in Two Parts: the lirst Part being Church Services adapted for Domestie Use, with Prayers for every Diy of the Week, selected exclusively from the Book of Common Prayer. Part II. comprising an appropriate Sermon for every Sunday in the Year. By the Rev. Thomas Dale, M.A. Vicar of St. Pancras. Post Ato. 218. cloth: or, bound by Hayday, 31s. 6d. calf lettered; 5its. morocco.

DAVY (SIR HUMPIRY),-ELEMENTS OF ACRICULTURAL CHEMISTRY in a Course of Lectures. By Sir Humphry Davy. With Notes by Dr. Johu Navy. New Edition. 8vo. with 10 Plates, 1 ̈s. cloth.

DE JAENISCII AND WALKER.-DE JAENISCH'S CHESS PRECEPTOR: A New Analysis of the Openings of Games. By C. F. De Jacnisch, of St. Petersburgh. Translated from the French, with copious Notes, bi G. Walker, author of "Chess Studies," and various other Works on the Game of Chess. Bro. 15s. cluth.

DE LA BECHE. - REPORT ON THE GEOLOCY OF CORNWALL,DEVON, AND WESTSOMERSET. By Hemry T. De la Beche, F.R.S. etc., Director of the Ordance Geological Survey. Published by Order of the Lords Counhissioners of H. M. Treasurs. Svo. with Maps, Woodeuts, and 12 large Plates, 148.cloth.
DE LA GRAVIERE.-SKETCHES OF THE LAST NAVAL WAR.
Translated from the Frenclı of captnin E. Jurien de la Graviere, with an Introduction, and Fxplanatory Notes. Ly the Hon. Captain Plankett, R. N゙., nuthor of "The Past aud Future of the British Navy." 2 vols. post Soo. with Plans, 18s. cloth.

DE STRZELECKI (P.E.)-PHYSICAL DESCRIPTION OF NEW SOUTH WALES AND VAN DIEMAN'S LAND. Accompanied by Geological Map, Sections, and Diagraus, and Figures of the Urganic Remains. By P. Fi. De Straclecki. Svo. with coloured Map and munerous Plates, 24s. cloth.

DIBDIN (THE REV. T. F.)-THE SUNDAY LIBRARY:
Containing nearly Onc hundred Sermons by eminent Divines. With Notes, etc. by the Rev.T.F.Dibdin, D.D. 6 rols. foolscap Svo. with 6 Portraits, 30s. cloth; ncatly halfobound in morocco, with gilt edges, $2 / 2.123 .6 d$.

DISCIPLINE.

By the Author of "Letters to mr Unknown Friends," "Twelve licars Ago," and "Some Passages from Modern History." 18mo. 2s. cloth.

DOUBLEDAY AND IIEWITSON'S BUTTERFLIES. - THE GENERA OF DIURNAL LEPIDOPTERA ; comprising their Generic Characters-a Notice of the Ilabits and Transformations-and a Catalogne of the Species of each Geuus. By Edward Double day, Esc. F.L.S.ete., Assistant in the Zoological Department of the British Muscum. Imperial 4to. uniform with Gray and Mitchell's Ornithology; illustrated with $\overline{3}$ coloured Plates, by W. C. Hewitson, Esq. Author of "British Oology."
** Publishing in Monthly Parts, 5s. ench; ench Part consisting of two colonred Plates, with accompanying Letter-press. To be completed in not excecding 40 Parts, 2 of uhich are now ready.

DRESDEN GALLERY.-THE MOST CELEBRATED PICTURES OF THE ROYAL GALLERY at DRESDEN. drawn on Stone, from the Originals, by Franz Hanfstnengel : with Descriptire nud Biographical Notices, in French and German. Nos. I. to L.ll., imperial folio, each containing 3 Plates with accompanying Letter-press, priee 20s. to Subscribers; to Non-subseribers, 30 s. Single Plates, 12 s. Cicli.
** To be completed in 8 more numbers, price 20s. cach, to Subscribers; Nos. LI. to LK. containing each 4 Plates and Letterpress.

DUNLOP.-TRAVELS IN CENTRAL AMERICA.

With a Journal of nearly Tluree Years' Residence in the Country. To which arc added, a Sketch of the History of the Republic, and an Account of its Climate, Productions, Commerce, etc. By Robert Glasgow Dunlop, Esq. Post Sro. With Map, 10s. Gd. cloth.

DUNLOP (JOHN).--THE HISTORY OF FICTION:

Being a Critical dccount of the wost celcbrated Prosc Works of Fiction, from the earliest Greek Romances to the Novels of the Present dgc. By John Dunlop. New Editiou, completc in One Volume. Mcdium Svo. 15s. cloth.

EASTLAKE.-MATERIALS FOR A HISTORY OF OIL PAINTING.

By Charles Lock Eastlake, Esq. R.A.F.R.S.F.S.A. Secretary to the Royal Commission for Promoting the Fine Arts in conncxion with the rebuilding of the llouses of Parliament, etc. Svo. lés. cloth.
ECCLESTON (JAMES).-AN INTRODUCTION TO ENGLISH ANTIQUITIES.
Intended as a Companion to the History of England. By James Eecleston, B.A. Wead Master of Sutton Coldficld Gramar School. Svo. with iumerous Emgravings on Wood, $\because 18$. cloth.

ELLIOTSON.-HUMAN PHYSIOLOGY:

With which is incorporated much of the Elementary Part of the "Institutiones Physiologica"" of J. F. Blumenbach, Professor in the University of Gotturen. By Joln Elliotson, M.D. Cautab. F.R.S. Fifth Edition, Svo. with numerous Woodeuts, 2l. 2s. cloth.

THE ENGLISHMAN'S GREEK CONCORDANCE OF THE NEW TESTA-

MENT; being an attempt at a Vcrbal Comnexion between the Greek and the Fnglish Texts; includiug a Contordance to the Proper Nanes, with Indexes, Greck-Eurlish and Englislı-Greek. 2d Editiou, carefully reviscd, with a new Index, Greck and English. Royal sro. t2s.
THE ENGLISHMAN'S HEBREW AND CHALDEE CONCORDANCE OF THE OLD TESTAMENT; being an attempt at a Verbal Commexion between the Origimal and the English Translitions: wifh Indeses, a bist of the Proper Names and their oceur-

EPHEMERA.-A HAND-BOOK OF ANGLING;

Teaching Fly Fishing, Trolling, Bottom Fishing, and Salmon Fishing. With the Natural History of liver lish, and the best Modes of Catcling them. Bye Ephemera (of Bell's Life in London). New Edition, Foolscap Svo, with Wood Engravings, 9s. cloth.

ERIIAN.-TRAVELS IN SIBERIA:

Inchading Excursions Northwards, down the Obi, to the Polar Circle, and Southwards, to the Clinese Frontier. By Adnlph Erman. Translated by W. D. Cooley, Esq. author of "The History of Maritime and lnland Discovery;" translator and editor of Dr. Parrot's "Jouruey to Ararat," cte. ¿avols. Svo. with Map,'3ls. 6d. cloth.

EVANS.-THE SUGAR PLANTER'S MANUAL;
Being a Treatise on the Art of obtaining Sugar from the Sugar Canc. By W.J. Evans, M.D. 8vo. 93. cloth.

FAREY.-TREATISE ON THE STEAM-ENGINE,

llistorical, Practical, and Deseriptive. By John Farey, Enginecr. 4to. illustrated by numerous Woodcuts, and 25 Copper-plates, 51.5 s in bourds.

FIELD.-PRISON DISCIPLINE ;

And the Adwatages of the Separate Sostem of Imprisoument: with a detailed Account of the Discipline now pursued in the New Comnty Gad at Reading. By the Rev. J. Field, M.A. Chaplain. New Edition. 2 vols. Svo. 20.s.eloth.

FLOWERS AND THEIR KINDRED THOUGHTS;

A Series of Stanzas-Gn Hope, Inwoecnce, Modesty, Childhood, Humility, Joy, Love, Constancy, Fascination, Timidity, Finc Taste, Thonghts, Recollection, and Fricndship. By Mary Anuc Bacon. Hustrated by the Snowdrop. Primrose, Violet, Harebell and Pimperncl, Lily of the Valley, llawthorn, Rose, Houcysuckle, Caruation, Couvolvulus, Fuchsia, Pausy, Forget-me-not, and Holly ; designed and printed in Colours by Owen Jones. Imperial Svo. 31s.6d. clegautly bound.

FORSTER (REV. C.)-THE HISTORICAL GEOGRAPHY OF ARABIA; Or, the Patriarchal Evidences of Revealed Religion. A Memoir, with Illustrative Maps and an Appendix, conetining Trauslations, with an Alphabet and Glossary of the Hamyaritic Inseriptions recenty diseovered in Halramant. By the Rev. Charles Forster, B.1)., Rector of Stisted, Essex, author of "M1ahometanism Unveiled." 2 vols. Sro. 3us. cloth.

FORSTER (REV. C.)-THE LIFE OF JOHN JEBB, D.D. F.R.S.
Late Bishop of Limerick. With a Selectinn from his Letters. By the Rev. Charles Forster, B.D., Rector of Stisted, Essex, and one of the Six Preachers in the Cathedrat of Clirist, Canterbury; formerly Domestic Chaplain to the Bishop. Ners Edition. Svo. with Portrait, ete. 16s. cloth.

12 NEW WORKS AND NEW EDITIONS

FOSTER.-THE HAND-BOOK OF EUROPEAN LITERATURE.

 By Mrs. Foster. Foolscap Svo. [1n the press.
FRESENIUS. - A MANUAL OF AGRICULTURAL CHEMISTRY.

By Dr. C. R. Frescuius, Professor of Chemistry and Natural Philosophy, Wiesbaden; late Assistant in the Laboratory of Giessen. Translated from the German.
[In the press.
FROM OXFORD TO ROME: AND, HOW IT FARED WITH SOME WHO Lately Made The JOURNE,Y. By a Companion Traveller. N'ew Edition, revised and corrected. Fcp. Svo. with Frontispiece, 6s, cloth.

GARDINER.-SIGHTS IN ITALY:

With some Account of the Present Stite of Music and the Sister Arts in that Country. By William Gardiner, author of "Sacred Melodies," etc.; Member of the Acadeny of St. Cecilia, Rome; and of the Class of Fine Arts of the lustitutllistorique of Frauce. Svo. with engraved Music, 16s. eloth.

GERTRUDE.

A Talc. By the author of "Amy Herbert." Edited by the Rer. Willian Scwell, B.D., of Exeter Collegre, Oxford. New Edition, 2 vols. foolscapi Svo. 9s. cloth.

GIBBON.-HISTORY OF THE DECLINE AND FALL OF THE ROMAN EMPIRE. A new Edition, in One Volume; with an Account of the Author's Life and Writings, by Alexander Chalmers, Esq.F.A.S. Svo. with Portrait, ISs.cloth.
** An Edition in 8 vols. 8vo. 60s. boards.

GOLDSMITH-THE POETICAL WORKS OF OLIVER GOLDSMITH.

Illustrated by Wood Engravings, from Designs by Memhers of the Etching Club. Edited by Bolton Corncy, Esq. Square crown Svo., uniform with "Thomson's Scasons," 21s. cloth; or 36s. bound in morocco, by llayday.
GOWER.-THE SCIENTIFIC PHENOMENA OF DOMESTIC LIFE FAMILIARLY EXPLAINED. By Charles Foote Gower. New Edition. Foolscap Svo. with Eugraviugs ou Woodi, 5s. cloth.
GRAHAM.-ENGLISH; OR, THE ART OF COMPOSITION
explained in a Series of Instructions and Examples. By G.F.Grahan. New Edition, revised and improved. Fuolscap Svo. bs. cloth.

GRANT (MRS.)-LETTERS FROM THE MOUNTAINS.
Being the Correspondence with her Friends, between the years $17 / 3$ and 1803. By Mrs. Grant, of Laggan. Gth Edition. Edited, with Notes and Additions, by her Son, J. P. Grant, Esq. 2 vols. post 8 vo. 21 s. cloth.

GRANT (MRS., OF LAGGAN). - MEMOIR AND CORRESPONDENCE of the late Mrs. Grant, of Laggan, author of "Letters from the Mountains," etc. Fidited by her Son, J. P. Graut, lisq. New Edition. 3 vols. post Svo. Purtrait, 1\%. 11s.6d.cloth.
GRAY (TIIOMAS).-GRAY'S ELEGY,
Written in a Country Churchyard. Huminated in the Missal style. By Owen Jones, Architcet. Imp. Svo.31s. 6d. elegantly bound.
GRAY AND MITCIIELL'S ORNITHOLOGY.-THE GENERA OF BIRDS;
Comprising their Generic Clinracters, a Notice of the Habits of ench Genus, and an extensive List of Species, referred to theirseveral Genera. By George Robert Gray, Acad. Imp. Gcorg. Florent. Soe. Corresp. Senior Assistant of the Zoological Department, British Muscum: and author of the "List of the Genera of Birds," ete. Imperial fto. illustrated with 350 Plates, by David W'illiau Mitchell, B.A.
*** In conrse of publieation in Monthly Parts, 10s. 6d. each; each Part consisting of Four coloured plates end Threr plain, with Lether-press. The Work will nut eacecad Monthly Purts, of which is have ajpearci.

Order 1.--Accipitres has been completed, and may be had separately. Imperial Sro. with 15 coloured and 12 plain Plates, 21.8 s. bonids.
GRIMIBLOT (P.)-LETTERS OF WILLIAM III. AND LOUIS XIV. AND OF THEIR MINISTERS. Hustrating the Domestic and Fureign Policy of England during the period which followed the Revolution of I68s. Fixtracted from the Archives of France aud Eughand, and from Family Papers. Edited by P. Grimblot. 2 vols. Svo. Jos. elotli.

* Amongst otherimportant and interesting suljeets, this uork containsthe whole of the diplumatic eorrespondence relative to the Spanish suecession, ete. (1697-1702).

GWILT.-AN ENCYCLOPEDIA OF ARCHITECTURE;

Historical, Theoretical, and Practical. 13y Joseph Gwilt, Esq., F.S.A. Illustrated with uprards of 1,000 Engrarings on Wood, from Designs by J.S. Gwilt. Sro. 21. I2s. ©d. cluth.

IIALL.-MIDSUMMER EVE:

A Fairy Tale of Love. By Mrs. S. C. Ilall. Square erown Sro. with nearly 300 Wood Engravings, 218 . cloth, gilt edges.

* The Illustrations from Designs by D. Maclise, C. Stanfield, T. Creswick, E. M. Ward, A. Elnore, W. E. Frost, J. N. Paton, F. (rondall, J. Laudseer, F. H. Wehuert, R. Huskissun, F. W. Tonıtm, K. Meaduws, F. W. Fairhole, J. Franklin, J. H. Heir, F. W. Halme, J. Lecurieux, and I '. R, Macquoid; engraued by Green, Dalziel, Bustin, Linton, elc.

HALL'S (SIDNEY) GENERAL LARGE LIBRARY ATLAS OF FIFTY-
THREF, MAPS (size 20 in . hy 76 in.) , with the Divisions and Boundaries carcfully coloured; and an Alphabetical Index of all the Names contained in the Maps, with thelr Latitude and Longitude. An entlrely New Fidition, corrected througbout from the best and most recent Anthoritics; with all the Railways laid down, and many of the Maps redrawn and re-engraved.
** Publishing in Monthly Parts, of which 11 have appeared. To be completed in It Parts, price 6s. euch.

IIALSTED.-LIFE AND TIMES OF RICHARD THE THIRD,

as Duke of Gloueester and King of England: in which all the Charges against him are carcfully iuvestigated and compared with the Statements of contemporary Authorities. By Caroline A. Halsted. avols. Svo. with Portrait and other Illustrations, Il. IOs. cloth.

ILARRIS.-THE HIGHLANDS OF FETHIOPIA;

Being the Account of Fighteen Months' IResidence of a British Embassy to the Christinn Court of Shoa. By Major Sir WaC. Ilarris, author of "Wild Sports in Southern Africa," ctc. New Edition. 3 vols. Svo. with Mapand Illustrations, 2l. E's.cloth.

HARRISON.-ON THE RISE, PROGRESS, AND PRESENT STRUCTURE OF CHE E.VGliSH LANGUAGE. By the Rev. M. IIarrison, M.A., late Fellow of Queen's College, Oxford. Pust bvo.
[In the press.

HAWBUCK GRANGE;

Or, the Sporting Adventures of Thomax Scott, Esq; By the Author of " Handley Cross ; or the Spa Hint," "Jorrochs' Jauuts and Jollities," etc. Sro. with eight Illustrations, by Phiz, Ï̈s. cloth.

IIAWKER.-INSTRUCTIONS TO YOUNG SPORTSMEN

In all that relates to Guns and Shooting. By Lieut. Col. P. Hawker. gthedition, corrected, enlarged, anl improved, with Eiglity-five Plates and Woodeuts, by Adard and Branstun, from Drawings by C. Varley, Dicks, etc. Svo. 21s. eloth.

HAYDON.-THE AUTOBIOGRAPHY AND JOURNALS OF THE LATE

 B. R. HAYDON, Historical Painter.[In preparation.

IIAYDON (B. R.)-LECTURES ON PAINTING AND DESIGN,

Delivered at the London Institution, the lloyal Institution, Abbermarle Strect, to the University of Oxford, cte. By: B. 1R. IIaydon, IIistorical l'ainter. 2 vols. Svo. with I'rotraits of the suthor and Sir Darid Wilkic, and numerous other Illustrations, 24s. eloth.

HINTS ON ETIQUETTE AND THE USAGES OF SOCIETY:
With a Glance at Bad Inahits. By Aywyós. "Manmersmake the Man." NewEdition, revised (with additions) by a Lady of Rank. Foolseap Svo. 2s.6d. eloth.

HISTORICAL CHARADES.

By the Author of "Letters from Mndras." Foolscap Sro. 5s. eloth.

HISTORICAL PICTURES OF THE MIDDLE AGES,

In Black and White. Made on the spot, from Records in the Arelives of Switzerland. By a W'andering Artist. 2 vols. pust Svo. ISs. cloth.

IIOARE.-A DESCRIPTIVE ACCOUNT OF A NEW METHOD OF PLAN'IING ANI MANAGING TIIE ROOI'S OF GRAPE VINES. Br Clement Huare, a uthor of "A 'reatise on the Cultivation of the Grape Vinc on Open Wialls." I2mo.5s. el.

HOARE-A PRACTICAL TREATISE ON THE CULTIVATION OF THE grape vine on open Walls. By Clement Huare. New Edition. Svo. 7s. Gd. cloth.

HOBBES.-THE COMPLETE WORKS OF THOMAS HOBBES,

Of Mahmesbury; now first collected, and edited by Sir William Molesworth, Bart. 16 rols. 8vo. Sl. cloth.
** Separctcly, the English Works, in 11 vols. 57.10s.; the Latin Works, in 5 vols. 2l. 108.

IIOLLAND.-MEDICAL NOTES AND REFLECTIONS.

By Itenry Iollant, M.i).F.R.S. ete. Fellow of the Royal College of Physicians, Plysician Extraordinary to the Queen, and Physicianin Ordinary to His RoyalHighness PrinceAlbert. New Edition. Svo. 18s.cloth.

HOOK (DR. W. F.)-THE LAST DAYS OF OUR LORD'S MINISTRY; A Course of Lectures on the prineipal Events of Passion Week. By. Walter Farquatiar llood, D.D., Vicar of Leeds, Prebendary of Lincoln, and Chaplain in Ordiuary to the Queen. New Edition. Foolseap Svo. 6s. cloth.

HOOKER.-KEW GARDENS ;

Or a Popular Guide to the Royal Botanic Gardens of Kiew. By Sir foilliam Jackson Hooker, K.H.D.C.L.F.R.A. \&L.S. ett. ete. Director. New Edition. 16 mo . with numerous Whod Engraviogs, 6d. sewed.

HOOKER.-THE BRITISH FLORA.

Comprising the Phanoganous or Flowering Plants, and the Ferns. By Sir Willian Jackson Hooker, KiH. LL.D. F.R.A. and L.S. cte.cte.ctc. New Edition, with Additions nnd Corrections; and 173 Figures, illustrative of the Umbelliferous Plants, the Composite Plants, the Grasses, and the Ferns. Vol.1. Svo., with 12 Plates, l-4s. plain; with the l'lates coloured, 248.cloth.

Vol. ll.in Two Parts, comprising the Cryptogania and the Funci, completing the British Flora, aud forming Vol. V., Farts 1 and 2, of Smith's E゙vglish Flora, 24 . boards.

HORNE (THE REV. T. H.) - AN INTRODUCTION TO THE CRITICAL STUDY AND KNOWLEDGE OF TIIE HOLY SCRIPTURES. By the Rev. Thomas Hartwell Horne, B.D. of St. John's College, Cambridge. New Edition, revised and corrected. 5 rols. Svo. with Maps and Fac-similes, 3l. 3s. cloth; or $5 l$. bound in calf by Hayday.

HORNE (THE REV. T. H.)-A COMPENDIOUS INTRODUCTION TO THE STUDY OF THE BIBLE. By the Rev. Thomas Hartwell Horne, B.D. of St. John's College, Canbridge. Being an, Analysis of his "Introduction to the Critical Study and Knowledge of the Holy Scriptures." New Edition. 1"mo. with Maps and Eugraviugs, 9s. buards.

HOWITT, (MARY).-BALLADS AND OTHER POEMS.

By Mary Howitt. Square crown Sro, with a Portrait from a Picture by Miss Gillies, beautifully engraved by W. 11. Egleton, 18s. cloth; morocco, 3is. (bound by Ilayday).

HOWITT.-THE CHILDREN'S YEAR.

By Mary Howitt. With Four Illustrations, engrated by John Absolon, from Original Designs by Anna Mary Howitt. Square 16mo. 5s. cloth.

LIOWIT'T.-THE BOY'S COUNTRY BOOK:

Being the real life of a Country Boy, written by Himself; exhibiting all the Amusements, lleasures, and Pursuits of Children in the Country. Edited by William Ilowitt, author of "The Rural Life of Fingland," ete. New Edition. Jicap. 8vo. with 40 Woodcuts, tis. cloth.

IIOWITT.-VISITS TO REMARKABLE PLACES;

Old Halls, Batcle-Fields, and Scenes illustrative of Striking Passages in English History and loctry. By William Ilowitt. New Edition. Medium Svo. with 40 Illustratious, 2ls. cloth.
SECOND SERIFS, ChIeffr in the Countics of DURHAM mnd NORTHUMBERLAND, with a Stroll along the BORDER. Medium Svo. with upwards of 40 highly-Ginished Woodcuts, from
Drawings made on the spot, 21 . cloth.

IIOWITT.-THE RURAL LIFE OF ENGLAND.

By Willian Howitt. New Edition, corrected and revlsed. Medium Svo. with Engravings on Wood by Bewick and Williams, uniform with "Visits to Remarkable Places," 21s. cloth.
HOWITT.-THE RURAL AND DOMESTIC LIFE OF GERMANY:
With Characteristle Sketches of its chief Cities and Scencry. Collected in a General Tour, and durint a Residence in that Country in the Years 1840-42. By William Howitt, anthor of "The Rural Life of England," etc. Medium Svo., with above 50 Illustratious, 2ls. cloth.

HIOWITT.-THE STUDENT-LIFE OF GERMANY.

From the Unpullished MS. of Dr. Cornclius. By William Howitt. Svo, with 24 Wood Engravings, and 7 Stcel Plates, 2Is. cloth.

IIOWITT.-COLONISATION AND CHRISTIANITY:

A Popular History of the Treatment of the Natives, in all their Colonies, by the Europeaus. By William Howitt. Post Svo. 10s.6d. cloth.

IIUDSON.-PLAIN DIRECTIONS FOR MAKING WILLS

In conformity with the Law, and partienlarly with reference to the Act 7 Win. IV. and IVict. c. - 6 . To which is added, a clear Fixposition of the Law relating to the Distrihution of Personal Fstate inche case oflintestacy, with two Fornis of Wilts, and innch useful Information, etc. By J. C. Hudsun, Esq. New Editiou, corrected. Fcap. Svo. is. 6d. cloth.

HUDSON.-THE EXECUTOR'S GUIDE.

By J.C. Hudson, F.sq., of the Legacy Duty Office, Loudon: author of "Plain Directions for Making Wills'," aud 'SThe Parent's Hand-Book." New Edition. Foolscap 8vo. ̄s.cloth.
**The abuve two works may be had in One volume, price ?s. eloth.

IIUMBOLDT (BARON).-COSMOS:

A Sketeln of a Physieal Description of the Universe. Translated, with the Author's sanction and co-operation, nuder the superintendence of Licutcnant-Colonel Fdward Sabine, F.R.S. For. Sec. R.S. N゙cw Edition. Vols.I. and If. post Svo. 12s. each, cloth.
"Je vous antorise, Monsient, de vous servir eutonte ncension de la declaratiou, gute la belle traduction du Culonel Sabiue, enriche de r"ctificatians et de notes trìs-précienses. at qui ont toute mou approbation, est la seule par laquelle j'ai vivement desire voir introduit mou ouvrage daus la litteruture de votre pays."-Baron II umboldt to Mr. Murray.
IIUME.-THE LEARNED SOCIETIES AND PRINTING CLUBS OF THE UNITED KINGDOM ; being an Aceount of their respective Orivin, History, Objects, and Constitution: full detalls respecting Membership, Fees, their published Works and Transactions, Notices of their Periods and Places of Miceting, etc. With a general Introductinn, And a Classifed Index. Compiled from Oflicial Documents, by the Rev. A. Hume, Ll.D., F.S.A. Post Sro. 8s.6d. cloth.

IIUN'T.-RESEARCHES ON LIGHT:

An Examination of all the Phenomena connected with the Chemical and Molecular Changes produced by the lulluence of the Solar Rays; embracing all the known Photographie Proecsses, and new Discoverics in the Art. By Robert Hunt, Keeper of Mining Records, Muscum of Economic Coology. Svo. with Plate and Woodeuts, IUs. 6 d. cloth.

JAMES.-A HISTORY OF THE LIFE OF EDWARD THE BLACK PRINCE,

 and of rarious Events connected therewith, whieh oceurred during the Reign of Edward III, King of England. By G. P. R. James, Esq. New Editiou. 2 vols.foolseap Svo. with Map, $15 s$.
JAMESON.-SACRED AND LEGENDARY ART.

By Mrs. Jameson, 2 vols. square crown Svo., illustrated by numerous Wroodeuts, with a a few Etchings by the Author.
[Nearly ready.
Vol. 1. contains Legends of the Angels and Archangets, the Erangelists, the Apostles, the Doctors of the Church, nud Mary Maydalene.
Vol. II. coutains Legends of the Patron Saints, the Virgin Patronesses, the Greek and Latin Martgrs, the Bishops and Confessors, the Hermits, aud the Warrior Saints of Christendom.

JEBB (BISIIOP) AND KNOX (ALEXANDER).-THIRTY YEARS' CORRFSSPONDENCE between John Jebb, 1.D.F.R.S., Bishop of Limeriek, Ardfert, Aghadoe, and Alexauder Kinox, Rsf. M.R.I.A. Fdited by the Rew. Charles Forster, B.D. Rector of Stisted, formerly Domestic Chaplain to Bishop Jebb. New Edition. 2 vols. Bro. 2Ss. cluth.

JEBB.-A LITERAL TRANSLATION OF THE BOOK OF PSALMS;

lutended to illustrate their Poetical and Moral Structure. To whichare added, Dissertations on the word "Selah," and on the Authorship, Order, 'Titles, and Poetical Features of the Psulus. By the Rev. Johu Jebb, A.M., Rector of Peterstow. 2 vols. Svo. 218. eloth.

JEFFIEY (LORD).-CONTRIBUTIONS TO THE EDINBURGH REVIEW. By lirancin Jeffrey, now one of the Judges in the Court of Scssionin Scotland. New Edit. $\%$ vols. $8 v o .42 \mathrm{~s}$. clotb.
JOIINSON.-THE WISDOM OF THE RAMBLER, ADVENTURER, AND 11)LER. Consisting of 110 of the best Essays. By Samucl Johnson, LL.D. Foolscap Sro. 7s. cloth.

JOIINSON.-THE FARMER'S ENCYCLOPFDIA,

And DICTIONARY of RURAl, AFFAIRS: cmbracing all the recent Discoverics in Agricultural Chemistry; adapted to the compreheusion of unscientific Readers. $13 y$ Cuthbert W. Johnson, Esq., F.R.S. Barrister-at-Law, Editor of the "Farmers" Almauach," cte. Svo. witb Wood Engraviugs, 21. 108. cloth.

JONES'S GUIDE TO NORWAY, AND SALMON-FISHER'S POCKET COMPANION; founded on Experience collected in the Country. Fdited by Frederic Tolfrey, Esq., author of "The Sportsman in France," and "The sportsman in Canada." Foolscap 8ro. with Frontispiece and Vignette Title, aud Fingraviags of the proper Flies, beautifully coloured, in exact imitation of the origiaals, liss. cloth.

KINDERSLEY. - THE VERY JOYOUS, PLEASANT, AND REFRESHING HISTORY of the Feats, Exploits, Triumphs, and Achievements of the Good linight, without Fear aud without Reproach, the gentle Lord De Bnyard. Set forth in English by Edward Cockburn Kindersley, Esq. Square post Sro. with Ornamental lleadings, and Frontis piece by E. H. Wehnert, $93,6 d$, cloth.

KIP.-THE CHRISTMAS HOLYDAYS IN ROME.

By the Rev. W. Ingraham Kip, M.A. Edited by the Rev. W. Sewell, B.D. Fellow and I'utor of Excter College, Oxfurd. Foolscap Svo. 5s. cloth.

KIRBY AND SPENCE.-AN INTRODUCTION TO ENTOMOLOGY;
Or, Elements of the Natural History of inscets: comprising an account of noxions and useful Insects, of their Metamorphoses, Food, Stratagems, Hrbitations, Societics, Motions, Noises, Hybernation, linstinct, ete. By W. Kirhy, M.A. F.R.S. \& L.S. Rector of Barham; and W. Spence, Esq., F.R.S. \&L.S. New Edition, enlarged. a vols. Sro. 3ls. 6d.clotb.

KNOX (ALEXANDER). - REMAINS OF ALEXANDER KNOX, ESQ. Of Dublin, M.R.I.A.; containing Essays, chicfly explanatory, of Christian Doctriuc; and Confidentin Letters, with Private Papers, illnstrative of the If riter's Character, Seutiments, and Life. New Edition. 4 rols. Sro. $2 l . S$. cloth.

LAING.-THE CHRONICLE OF THE KINGS OF NORWAY,

From the Earliest Period of the History of the Northern Sea Kings to the Middle of the Twelfth Century: commonly called the fieimskringla. Translated from the lechandie of Snorro Sturleson, with Notes, and a l'reliminary Discourse, by Samuel Laing, Esq. 3 rols Svo. 36 s. clotb.

LAING.-A TOUR IN SWEDEN

In Ix.3S; comprising Obscrvations on the Mornl, Political, and Economical State of the Swedish Nation. By Samuel Laing, Esq. Svo. 12s. cloth.

IANE (R. I.)-LIFE AT THE WATER CURE:

Or, a Month at Malvern. A Diary of Facts and Fnncies. To which is ndded the Sequel. By Richard J. Lane, A.R.A. Lithographer in Ordinary to Her Majesty and His Royal Migb ness Prince Albert. D'ost Svo. with many lllustrations, 148. cloth.
L. E. L.-THE POETICAL WORKS OF LETITIA ELIZABETH LANDON. New F.dition. 4 rols. foolseap 8ro. with Illustrations by Howard, cte. 2Ss. cloth; or bound in morocco, with gilt cdges, 2l. 48.

The following Works separately:-
The MMPROVISATRICE - $108.6 d$.
The GOLDDEN VIOLET - . . 10s. 6 a^{2}.
The VENETIAN BRACELET - 108. $6 d$.
The TROUBADOUR
10s. $6 d$.

LARDNER'S CABINET CYCLOPEDIA;

Being a Series of Original Works on History, Biography, Nabural Philosophy, Natural History, Liternture, the S'iences, Arts, and Manufnctures. By Bishop 'Thirlwall,' Sir James Machintosh, Sir John Herschel, Sir Walter Scott, Thomas Moore, Robert Southey, and other Eminent Writers. Conducted and edited by Dr. Lardner.

The Series complete in One Hundred and Thirty-three Volumes, 39l. 18s. The Works separasely, 6s. per volume.

The Series comprises:-

1. Bell's History of Russia
2. Bell's Lives of British Poets
3. Brewster's Treatise on Optics
4. Cooley's History of Maritiue and Imland Discovery
5. Crowe's History of France
6. De Mlorgan's Treatise on Pro-
babilities • • \cdot
3 vols. 18 s. 2 vols. 12s. 1 vol. Gs.

3 vols. 1ss. 3 vols. 18 s. Italian Republics
8. De Sismondi's Fall of the Loman Empire
9. Donuran's'Treatise on Chemlsiry.
10. Donovan's Domestic Economy, 2 vols,
11. Dunham's History of Spain and Portugal
12. Dunham's History of Denmark, Swedell, aud Norway
13. Dunham's History ef Poland
14. Dunham's listory of the Gernanic Empire
15. Dunham's History of Europe during the Middle Ages.
16. Dunham's Lives of British 1) ramatists
17. Dunlam's Lives of Early Writers of Great Britain
18. Fergus's History of the United States
19. Fosbroke's Grecian and Roman Antiquities
20. Forster's Lives of the Statesmen of the Commonwealth
21. Forster, Mackintosh, and Courtenay's Lives of British Statesmen
22. Gley's Lives of Military Commanders \square rattan's History of the Netherlands

- rol. 6s.

24. Henslow's Treatise on Botany
l sol. 6s.
25. Herschel's Treatise oll As. tronomy

1 rol. 6s.
26. Herschel's Preliminary Disconrse on the Study of Natural Philosophy .
2\%. 1listory of llome
1 vol. Gis.

- 2 vols. 12 s

23. History of Switzerland . . 1 vol. 6s.
24. Holland's Treatise on the Manufactures in Metal
25. James's Lives of Forcign Statesmen.

3 vols. 188
31. Kater and Larduen's 'Trentise on Mechanics
© vols. 30 s.
1 rol. 6 堅 6
32. Keightley's Outlines of History 1 vol. 68.
33. Lardner's Treatise on Arithmetic

1 vol. 6s.
34. Lardner's'Treat.onGeometry 1 rol. 6s.
35. Lardner's Treatise on Heat . 1 vol. 6s.
36. Larduer's Treatise on Hydrostaties and Pueumaties . 1 vol. 68.
37. Lardner and Walker's Electricity and Magnetisin . 2 vols. 12 s.
3S. Mackintosh, Wallace, and Bell's History of England, 10 vols. 60 s.
39. Montronery and Shelley's Lives of Italian, Spanish, and Portuguese Authors.

3 vols. 188.
40. Muore's History of Ireland. 4 rols. 24s.
41. Nicolas's Chronology of History

1 vol. 6 s.
42. Phillips's Treat, on Geology 2 vols. 128.
43. Powell's llistory of Natural Philosophy

1 vol. 6s.
44. Porter's Treatise on the Manufacture of Silk.

1 rol. 63
45. Porter's Treatise on the Mannfacture of Porcelain and Giass

1 vol. 6s.
46. Roscue's Lives of British Lawyers

1 rol. Gs.
47. Scott's History of Scolland. 2vols. 12s.
48. Shelley's Lives of Firench Authors

2 vols. liss.
49. Shuckard and Swainson'a Treatise on lusects. .
50. Southey's Lives of British Admirals

1 vol. 68.
5 vols. 30 s.
2 vols. 12s.
2 vols. 12s
1 vol. 6s.
coursc on Natural 11 istory, and Classificution of Animals

1 vol. 68.
55. Swninson's Habits and Instincts of Animals .
56. Swainson's Quadrupeds
57. Swainson's Birds
r rol. 6s 1 vol. 6s.
2 vols, 12s.
5S. Swrinson's Fish, Reptiles, cte.

2 vols. 12s.
59. Swainson's Shells and Shellfish

1 vol. 6s
60. Swanson's Animals in Menageries

1 vol. 6\%.
61. Swainson's 'Taxidermy and Bibliograply

1 rol. 6s.
62. Thirlwall's llistory of Grecee S vols. ASs.

18

 NEW WORKS AND NEW EDITIONS
LANETON PARSONACE:

A Tale for Children, on the practical use of a portion of the Chureh Caterchism. Br the anthor of "Amy Herbert," and "Gertrude." Fidited by the Rev. W. Sewell, B.D. New Edition. Parts I. and II. feap. Svo. 5s. each, cloth.

LATHAM.-ON DISEASES OF THE HEART.

Lectures on Subjeets comecterl with Clinical Medicine ; comprising Discases of the Heart. By P. M. Lntham, M.D. Physician Extraordinaty to the Quecti ; nua late Physiciau to St. Bartholomew's Hospital. Ňew Edition, こ̌ rols. 12mo. 16s. clotl.

LEE.-TAXIDERMY;

Or, the Art of Collecting, Freparing, and Mounting Ohjects of Naturallistory. For the use of Musenms and Travellers. By Mrs.R.Lee. New Edition, improved; with an account of a Visit to Walton Hall, and Mr. Waterton's Method of Preserving Animals. Fcap. 8vo. With Woodents, 78.

LEE.-ELEMENTS OF NATURAL HISTORY,

For the Use of Schools and Young Persons: comprising the Principles of Classification, interspersed with anusiny and instructive Aeconnts of the most remarkable Auimals. By Mrs. R. Lee. 12mo. with 55 Woodeuts, 7s. 6d. bound.
LEMPRIERE.--A CLASSICAL DICTIONARY;
Containing a copions Account of all the Proper Names mentioned in Ancient Authors ; with the Value of Coins, Weights, and Measures, used amongst the Greeks and Romens; and a Chronological Table. By T. Lemprière, D.D. New Edition, correeted. Sro. 9s. eloth.

LESLIE (C.R.)-MEMOIRS OF THE LIFE OF JOHN CONSTABLE, ESQ. R. A. Composed chiefly of his Letters. By C. I. Leslic, R.A. Second Fdition, with further Extracts from his Correspundence. Small fo. with two Portraits (one from a new Sketch, by Mr. Leslie,) and a plate of "Spring," engraved by Lucas, 21s. cloth.

LETTERS TO MY UNKNOWN FRIENDS.

By a Lady. New Edition. Foolseap Sro. 68. 6d. eloth.

LINDLEY.-AN INTRODUCTION TO BOTANY.

By Prof.J. Lindler, Plı.D.F.R.S. L.s.etc. New Edition, with Corrections and considerable Alditions. Svo. with Six Plates and numerous Woodeuts, ISs. cloth.

LINIDLEY.-A SYNOPSIS OF THE BRITISH FLORA,
Arranged aecording to the Natural Orders. By Professor John Lindler, Ph. J., F.R.S.gete. New Edition, with numerous Additions and improvements. 12mo. iUs. 6d. cloth.

LINDLEY.-THE THEORY OF HORTICULTURE;

Or, an Attempt to Fxplnin the Prineipal Operations of Gardening upon Playsiological Principles. By John Lindley, Ph.D. F.R.S. Svo, with Illustrations on Wood, lës. cloth.

LINDLEY.-CUIDE TO THE ORCHARD AND KITCHEN GARDEN;

Or, an Aceount of the most valuable Fruits and Vegetables rultivated in Great Britain : with Kalendars of the Work required in the Orehard and Kitehen (iarden during every Month iu the Year. By George Lindley, C.M.II.S. Edited by Professor Liudley. Svo. IGs. boards.

LINWOOD (W.)-ANTHOLOCIA OXONIENSIS ;

Sive, Florilegiume lusibus pocticis diversorum Oxoniensium Greceis et Jatinis decerptum. Curante Guliehmo Liuwood, M.A. AEdis Christi Alummo. Sro. 14s. cloth.

LOUDON (MRS.) - THE AMATEUR GARDENER'S CALENDAR;
ISeing a Monthly Gnide, as to what should he aroided as well as what should be done in a Garden in each Month : with plain Rules how to do what is requisite; Directions for laying ont and planting Kitchen and Flower Garclens, Pleasure Grounds, and Shrmberies; and a short account, in cach Month, of the Quadrupeds, Birds, and Inscets, then most injurious to Gardens. By Mirs. Loudon. IGmo. with numerous Wood Engravings, is. 6d. eloth.

LOUDON (MLRS.)-THE LADY'S COUNTRY COMPANION;
Or, How to Enjoy a Country Life Rationally: By Mrs. Loudon, author of "Gardcuing for Ladics,"ete. New Edition. lionlscap Sro., with I'late and Woodeuts, 7s. 6d. cloth.

1,OUDON (J. C.)-SELF.INSTRUCTION FOR YOUNC GARDENERS,
Foresters, Bailiffs, Land sitwards, and Farmers; in Arithmetic, Book-kecping, Geometry, Mensuration, Practieal Trigonometry, Mechanics, Land-Surveyine, Levelling, Planing and Dapping, Architectural Drawing, and Isometrical Projection and Perspective; with Examples shewing their applications in Horticultural and Agricultural Purposes. By the lateJ. C. Loudon, F.L.S. H.S.ete. With a Portrat of Mr. Loudon, and a Memoir by Mrs. Loudon. Svo. with Wood Engravings, 7s. 6d. cloth.

LOUDON.-AN ENCYCLOP AEDIA OF TREES AND SHRUBS;

Being the "Arhoretumet Frutiectun Britannicm" abridged : containing the Hardy Trees and Shrmbs of Great Britain, Native and loreign, scientifeally and popularly deseribed: with their Propayation, Culture, and Usesin the Aris. By J. C. Loudon, K.L.S. etc. Svo. with upwards of 2,000 ling rusings on Wood, 2l. 101s. cloth.
A New Edition of the 1 risinal Work, in 8 vols. 8 vo. with above 400 octavo Plates of Trees, and upwards of 2,200 Wootcuts, $10 l$. cloth.

LOUDON.-AN ENCYCLOPAEDIA OF GARDENING;

Presenting in one systematic view, the llistory and Present State of Gardening in all Countries, and its Theory and Practice in Great Britain: with the Management of the Kitehern (iarden, the Flower Garden, Layink-out Grounds, ete. By J. C. Loudon, F.L.S.ete. A new Edition. Svo. with nearly l, 0eiu Engravings on Wood, i̇l. 10s. cloth.

LOUDON.-AN ENCYCLOP EDIA OF AGRICULTURE;

Comprising the Theoryand Practice of the Valuation, Transfer, Laying-out, Improvement and Management of Sanded Proferty, the of the cultivation and economy of the Auimal and Vegetable Productions of Agriculture, including all the latest improvements. By J. C. l.oudon, F.l.G.Z. and H.S. etc. Fifth Fidition. Svo. with upwards of 1,1U0 Engravings on Wood, by Branston, 2l. 10s. cloth.-The Supplement, separately, 5s. sewed.

LOUDON.-AN ENCYCLOPAEDIA OF PLANTS;

Including all the Plants which are now fonme in, or have been introducedinto, Great Britain giving their Natural llistory, aecompanied by such Descriptions, Engraved Figures, and Elementary Details, as mare enable a begimer, who is a mere English reader, to discover the name of every Plant which he may find in flower, and aequire all the information respecting it which is usefuland interesting. By J. C. Dondon, J.L.S.S., ete. The Specifie Characters by an Fmincut Botanist ; the 1)rawing by J. D. C. Sowerby, F.I,.S. A aew Edition, with new Supplement and a new Index. Svo. with nearly 10,000 Wood Engravings, 73s. 6d. cloth

LOUDON. - AN ENCYCLOPAEDIA OF COTTAGE, FARM, AND VILLA ARCIITECTUHE and l:URNITURE. Contuining Designs for Cottages, Villas, I arm Houces, Farmeries, Conntry lnns, Public IInuses, Parochial schonls, etc.; with the reqnisite Fittines-ap, lixthres, and Furniture, and appropriate Oftices, Gardens, and Garden Secnery each Design accompanied by dnalytical and Critieal Remarks. ByJ. C. Loulon, F.L.S cte. New Felition, Ellited by Mrs. Loudon. 8vo. with more than2,000 Engravings on Woud, 63s. cloth.-The Supplement, separately, Svo. 7s. 6d. sewed.

LOUDON.-HORTUS BRITANNICUS:

A Catalogne of all the llants indigenous to or introduced into Britain. New Fdition, with a supplement, prepared, under the direction of J. C. Loudon, by W. H. Baxter, and revised by George Don, 1.L.S. Svo. 31 s .6 d . cloth.

LOUDON.-THE SUBURBAN GARDENER AND VILLA COMPANION:

Comprising the Choice of a Villa or Suburban Residence, or of a Situation ou which to form one; the Arrangement and Furnishing of the Jouse; and the Laying-out, P!ating, and general Blanagement of the Garden and Ground ; the whole adapted for Grounds from one perch to fifty ucres and npwards in extent; intended for the instruction of those who know little of Garfening or Rural diffairs, and more partienlarly for the use of Ladies. By J. C. Loudon, f.L.S., ett. Svo. with above $300 \mathrm{WO}^{2}$ od Fingravings, 20 s . cloth.

LOUDON.-HORTUS LIGNOSUS LONDINENSIS;

Or, a Catalogue of all the ligneous Plants cultivuted in the neighbourhood of London. To which are added their usnal i'rices in Nurseries. ByJ. C. Loudon, F.L.S. ete. 8vo. 7s. 6d.

LOW.-ON LANDED PRCPERTY, AND THE ECONOMY OF ESTATES:

Comprehending the Relations between Landlord and Tenant, and the Principles and Forms of Leases; of liarm Buidings, Enclosures, Urains, Embankments, Roads, nud other Rural Works, Mherals, and Woods. By Davill Low, lisq. F.R.s.E. etc., author of "Elements of Practical igriculture," cte. Sro. with numerous Wood Engravings, シls. cloth.

LOW.-AN INQUIRY INTO THE NATURE OF THE SIMPLE BODIES OF CHEMIS'RBY. By 1\%. Law, F.R.S.E. I'rofeswrof Agriculture in the University of Edinburgh; author of "Rifements of Practical Agricnlture," "A Treatise on Landed l'roperty and the f:concuny of Fistates," "A Treatise on the Breeds of the British Domestiented dinuals,", "The Breeds of the Domesticated Animals of (ireat Britain llustrated and Deseribed." al Edition, chlarged and improved. Svo.9s. cloth.

LOIV.--ON THE DOMESTICATED ANIMALS OF GREAT BRITAIN,

Comprehending the Natural and Economical Ilistory of the Species and Breedis; Illustrations of the Properties of External Form; and Observations on the Principles and Practice of Breeding. By David Jow, Esg., F.R.S.E., Professor of Agricultnre in the University of Eidinburgh, ete:; nuthor of "Elements of Practicaldgriculture," etc. Svo. with Engravings on Wood, シ̌s. cloth.

20

 NEW WOORKS AND NEW EDITIONSLOW. -THE BREEDS OF THE DOMESTICATED ANIMALS OF CREAT BRITAIN described. By David Low, Fisq. F.R.S.E., Professor of Agriculture in the University of Edinburgh, etc. The Plates from drawings by W. Nicholson, R.S.A., reduced from a Scrics of Oil Paintings, caecuted for the Agricultural Muscum of the University of Edinburgh, by W. shicls, R.S.A. - vols, atlas quarto, with $\overline{6}$ Plates of Animals, beautifully coloured after Nature, 161. 168, half-bound in norocio.

Orin four separate portions, as follow:-

The Ox. I Vol. With 22 Plates, price 61. 168. fid. half-bound moroceo.

The SIIFF.P. I Vol. With 21 Plates, price 61.16s.6d. half-bound morocco.

The HORSE. I Vol. With 8 Plates, price 31. half-bound moroceo.

The HOG. I Vol. With 5 Plates, price 2l. 28. hulf bound morocco.

LOW.-ELEMENTS OF PRACTICAL ACRICULTURE;

Comprehending the Cultivation of Plants, the Ilusbandry of the Domestic Animals, and the Economy of the Farm. By David Low, Fisq.F.R.S.E., Professor of Agriculture in the University of Filinburgh. New Edition. Sro. With an entirely new sct of above 200 Woodcutr, 21 . cloth.

MACAULAY.-CRITICAL AND HISTORICAL ESSAYS CONTRIBUTED TO THE Filinburgh RFVIEW. By the Right Hon. Thomas Babington Macaulay, M.P. New Elition. 3vols. 8 vo. 36 s.cleth.

MACAULAY.-THE HISTORY OF ENCLAND.

From the Accession of James II. By Thomas Babington Macaulay. Vols. I. and II. Bro.
[In the press.

MACAULAY.-LAYS OF ANCIENT ROME.

With "Irry" and"The Armadn." By the Right Izonoralle Thomas Babington Macaulay, M.P. New Edition. 1Gmo.4s. Gd. cloth; morocco, 10s. fid. (by Hayday).

MACAULAY.-MR. MACAULAY'S LAYS OF ANCIENT ROME.

A New Edition. With numerous Illustrations, Original and from the Antique, drawn on Wood by George Sclarf, jun.; and eugraved by Samuel Williams. Fep. 4to. 21s. boards; morocco, 42s. (bound by Hayday).
MACKAY (CHARLES)--THE SCENERY AND POETRY OF THE ENCLISH LAKES: n Summer Ranble. By Charles Mackay, Eiq. LL.D. author of "Legends of the Isles," "The salamandrine," "The Thames and its Tributaries," cte. Sro. with beautiful Wood Engravings from Original Sketches, Is. cloth.

MACKINTOSH (SIR JAMES).-THE LIFE OF SIR THOMAS MORE. By the Right Hon. Sir James Machintosh. Reprinted from the Cabinet Cyclopadia. Foolseap Svo. with Portrait, 5s. cloth; or bound in vellum, 8s.

MACKINTOSH'S (SIR JAMES) MISCELLANEOUS WORKS;

Ineluding his Contributions to The KDINBURGH REVIEN. Edited by Robert James Mackintosh, Esq. 3 vols. Sro. 42s. cloth.

M'CULLOCH.-A DICTIONARY, GEOGRAPHICAL, STATISTICAL, AND HISTORICAL, of the various Countries, Places, and Principal Naturalobjectsin the World. By J.R. M'Culloch, Esq. A new Edition. 2vols. Sro. with Six latge Maps, 4l. cloth.

* * The new Articlea are printed separately as a Supplement to the former Editian. They comprise a full account of the present state of the L'nited Kingdon, the Oregon Territury, etc. Svo. js. sewed.

M'CULLOCII.-A DICTIONARY, PRACTICAL, THEORETICAL, AND HSTORICAL, OF COMMERCE, AND COMMERCIAL NAVIGATION. BV J. R M'Culloch, Esq. A New Edition, corrected, enlarged, and improved. Svo. with Maps and Plans, 50 s . cloth ; or 556 . strongly lalf-bound in russia.
A SUPPLENEN'T to the Editions published in IS 44 and 1846 may be had separately, price 4s. $6 d^{2} .8 \mathrm{cwcd}$.

M'CULLOCH.-A TREATISE ON THE SUCCESSION TO PROPERTY VACANT BY DEATH: including laquirics into the latluence of Primogeniture, Eutails, the Law of Compulsory Partition, Foundations, cte over the Public Interests. By J. R. M'Culloch, Esq. Sro. Gs. Gd. eloth.

M'CULLOCII (I. R.)-AN ACCOUNT, DESCRIPTIVE, AND STATISTICAL, of the BRITISH EMPIRF; exhilitingits Extent, Physical Caparitics, Population, Industry, and Civil and Religious Iastitutions: ByJ. R. MiCulloch, Esq. Bd Edition, corrected, eularged, and greatly improved. 2 thick vols. Svo. 42s. cloth.

M'CULLOCH-THE LITERATURE OF POLITICAL ECONOMY;

Being a Classified Catalogne of the principal Works in the different departments of Political Economy, interspersed with Historical, Critical, and Biographical Notices. By J. K. M'Culloch, Esq. Bro. lfr. cloth.

M'CULLOCII.-A TREATISE ON THE PRINCIPLES AND PRACTICAL influence of taxation and the funding system. by J. R. M.Culloch, Esq. Sro. 10s. cloth.

MADAME DE MALCUET:

A Tille of 1820. 3 vols. piost Svo. 31 s . 6d. boards.
"One of the mast fascinating productions of the present day. The story is well told; and the incidents are all grouped tugether with the shill of a painter nud the hand of a master. Frin works of Gction have nppenred at any time, nuid fewer still in more recet of days, which will bear any comparison reith this, in all the essential attributes of a good novel." - Observer.

MAITLAND (DR. CHARLES). - THE CHURCH IN THE CATACOMBS:

A Description of the Primitive Chureh of Rome, illustrated by its Sepulchral Remmins. By Charles Maitland, M.D. New Edition, revised. Svo. with Huncrous Engravings on Wood. Jis. cloth.

MARCET.-CONVERSATIONS ON CHEMISTRY;

In which the Elements of that Science are familiarly Explnined and Illustrnted by Experiments. By Mrs. Marcet. New Fdition, corrected. 2 rols. foolscap Svo. Ifs. cloth.

MARCET.-CONVERSATIONS ON NATURAL PHILOSOPHY;

In which the Flements of that science nre familiarly explained, and adapted to the comprehension of Young Persons. By Mrs. Marcet. New Edition, enlarged and corrected. Feap. 8vo. with 3:3 Plates, 10 s. $6 d$. cloth.

MARCET.-CONVERSATIONS ON POLITICAL ECONOMY;

In which the Flements of that Science are fnmiliarly explaincd. By Mrs. Marcet. New Edition, revised and enlaryed. Foolscap Svo. is. 6d. cloth.

MARCET.-CONVERSATIONS ON VECETABLE PHYSIOLOGY;

Comprehending the Elements of Botany, with their application to Agriculture. By Mrs. Marct. New Edition. Foolscap Svo. with Four llates, 9s. cloth.

MARCET.-CONVERSATIONS ON LAND AND WATER.

By Mrs. Marcet. New Edition revised and corrected. Vioolscap Svo. with coloured Map shewing the comparative Altitude of Mountains, is. 6 d . cloth.

MARGARET PERCIVAL. "s

By the Author of "Any lierbert." Edited by the Rer. W. Sewell, B.D., Fellow and Tutor of Exeter College, Oxford. New Edition. 2 vols. foolseap Svo. 12s. cloth. .

MARRYAT.-BORNEO AND THE EAST INDIAN ARCHIPELAGO.
By Francis S. Marrynt, late Midshipman of H.M.S. Snmarang, Surveying Vessel, With many Drawings of Costume and Scenery, from Oricinal Slectehes made on the spot by Mr. Marrynt. Imperinl Bro, with numerous Lithographic Plates nud Wood Engravings, 31s.6d. cloth.

MARRYAT (CAPT.)-MASTERMAN READY;
Or, the Wreck of the Pacific. Written for Yonny Peoplc. Br Captain Marryat, C.B. author of "Peter Simple," ete. 3 vols. feap. Bro. with numerous Engrnvings on 11 ood, ¿22s. Gd. cloth.
MAIRRYAT.-THE PRIVATEER'S-MAN ONE HUNDRED YEARS AGO.
By Captain F. Marryat, C.B.author of "Peter Simple," "Masterman Ready," cte. 2vols. fcap. Svo. 12's. cloth.
MARRYAT.-THE MISSION;
Or, Scenes in Africa. Written for Young People. By Captain Marryat. C.B., author of "Peter Simple,""Masterman Ready,"etc. 2 rols. fcap.Svo. I2s. cloch.
MARRYAT.-THE SETTLERS IN CANADA.
Written for Young Peoplc. By Captain Marryat, C.B. author of "Peter Simple,"
"Masterman Ready," etc. New Edition. Feap. Svo. with twe Illustrations, is . Gd. cloth.
MATTEUCCI.-LECTURES ON THE PHYSICAL PHCENOMENA OF LIVING BEINGS. By Signor Carlo Matteucei, Professor of the University of Pisa. Translated under the superintendence of J. Percira, M.D. F.R.S. Vice-President of the Royal Mcdical and Chirurgical Society. 12mo.9s. cloth.

MAUNDER.-THE TREASURY OF KNOWLEDGE,

And LIBRARY of REFERFNCE: a pmpular Compeudium of Universal Innowledge. By Samuel Mander. New Edition, revised throughout and enlarged. Foolscap ovo. 10 s. cloth ; bound in roun, I2s.
**The principal contents of the present new and shorouglidy revised edition of "The Trea sury of K"nowledge," are-a new and enlarged E'raglish liclicuary, with "Grammar, Verbal Distinctions, and Exercises; "now UniversalGazetteer; a comprudiaus Classical Dictionary; an Analysis of History and Chronolugy; a Dictionary of Law Terms; a new Synopsis of the British Pecerage; and various usejul fabnlar Addenda.

MIAUNDER.-THE SCIENTIFIC AND LITERARY TREASURY:

A New and Popular Encyclopadia of Science and the Belles Lettres; including all Branches of Science, and every Subject comected with Literature and Art. The whole written in a familiar style, adaptec to the comprehension of anl persons desirous of acenuing information on the subjects comprised in the work, and also adnpted for a Manual of convenient Reference to the more instrueted. By Samuel Manuder. New Eidition. F゙cap. Svo. Us. eloth; bound in roan, $12 s$.

MAUNDER.-THE BIOCRAPHICAL TREASURY:

Consisting of Memoirs, Sketelses, and brief Notices of aborc 12,000 Fminent Persons of all Ages and Nations, from the Earliest Period of History; forming a new and complete Dictionary of Universal Biograplyy. By Samuel Mander. New Edition, revised throughout; with a copious Supplement. Foolscap Svo. I0s. cloth; bound in roan, 12s.

MAUNDER. - THE TREASURY OF HISTORY;

Comprising a General Introluctory Outlinc of Universal History, Ancicnt and Modern, and a Scries of separate Histories of every principal Nation that exists; developing their lise, Progress, and Present Condition, the Moral and Social Character of their respective Inhabitants, their Religion, Manners, and Customs, etc. etc. By samuel Maunder. New Edit. Fcap.Svo.10s. cloth; bound in roan, 12 s.

MAUNDER.-THE TREASURY OF NATURAL HISTORY;

Or, a Popular Dictionary of Animatce Nature: in whiclı Zonlogical Claracteristies that distinguish the diferent Classes, Genera, and speeics are combined with a varicty of interest ine Information illustrative of the Hahits, Instinets, and fieneral Economy of the Anmal Kingdom. To which are added, a Syllahus of Practical Taxidermy, and a Glossarial Appendix. Embellished with Nine Ilundred Engravings on Whod, from Irawings made expressly for this Work. By Sauuel Maunder. liey. Svo. with 90 Woodeuts, 10 . cloth; bound in roan, 12δ.

MEMOIRS OF THE GEOLOCICAL SURVEY OF CREAT BRITAIN,

And of the Mlusenm of Reonomie Geology in London. Published be order of the lords Commissioners of Her Majesty's Treasury. Vol. 1. Roval svo. with Whodeuts and glplates, (seven coloured), 2ls. cloth; and Vol. It, in two thiek Parts, with 63 Plates (threc coloured) and numerous Woodcuts, 42s. cloth, or, scparately, 2ls. each I'art.

MILES (W.)-THE HORSE'S FOOT,

And llow to Keep it Sound. By William Miles, Fsq. New Edition, with an Appendix on Shoeing in General, and Hunters in Particular. Imperial Swo. with Engravings, 9s. cloth. The Appendix separately, price $2 s .6 d$.

* * Four casts or models of shors may be had, displaying the different kinds of Sharing, price 3s. cach; or 10s, bid. the set.-N". 1. shod for (ienernt f'urposes,-Niu. 2. Shod for Huntirg.-No. 3. Shod with Leather.-No. 4. Foot prepared for shocing.

MILNER (REV.J. AND I.) - THE HISTORY OF THE CHURCH OF

CIIRIST. Br the Rev. Joseph Miluer, A.M. With Alditions and Corrcetions by the late Rev. Isame Mihucr, D.1. F.R.S. A New Fdition, revised, withadditional Notes, hy the Ref. Thomas Grantham, B.D., Chaplain to the Bishop of kildare. 4 vols. Svo. Sìs. eloth.

MIRACLES OF OUR SAVIOUR.

With rich and appropriate Borders of Original Design, a scrics of llhuminated Figures of the Apostles from the Oll Masters, six Illnminated Miniatures, and other Embellishments. By the Illmminator of the "l'arahles." Square feap. 8vo. in massive carved covers, 21s. ; or bound in morocco, in the missal style, 31 s.

MITCIIELL.-JOURNAL OF AN EXPEDITION INTO THE INTERIOR OF

TROPICAL, AUSTRA1AA, in Senrch of a Ronte from Syducy to the Gulf of Carpentaria. By licnt. Colonel Sir T'. L. Mitehell, Kint. D.C.l. Surveyor (ieneral of New South Whles, and late elective Member of the Legislative Conncil of that Colony. Sro. with Maps, Views, and Engravings of Objects of Natural History, 21s. cloth.

MOHAN LAL. - LIFE OF THE AMIR DOST MOHAMMED KHAN OF liabUL: whth his Politienl Proceedings towards the Fnglisl, lussian, nad Persian Governments, including the Victory and Disasters of the British Army in Afyhanistan. By Mohan Lal, Esq., Kinight of the Persian Order of the Lion and sun; lately attached to the Mission in kabul. 2 yols. Svo, with numerous portraits, 30s. cloth.

MONTGOMERY'S (JAMES) POETICAL WORKS.

New and ouly complete Fdition. With some additional Poems, and Antohographical Prefaces. Collected and edited by Mr. Montgomery. 4 vols. foolscap Soo. whth l'ortrait, and seven other Plates, 20 s. cloth; bound in moroceo, 16 . 1 (is.

MOORE'S POETICAL WORKS;
Containing the Author's reecnt Introduction and Notes. Complete in one volume, uniform with Lord Byron's Poems. Medium Svo. with Portrait and Vignette, 16. 1s. cloth; or 42s. bound in morocco, by Haydny.
** Also, an Edition in 10 vols. foolscap 8vo. with Portrait, and 19 Platcs, 2l.108. cloth; moroceo, 41. 10s.

IIOORE'S LALLA ROOKH. AN ORIENTAL ROMANCE.

New Edition. Medium Svo. illustrated with I'3 fine Engravings, 2ls. cloth; moroceo, 35 s.; with India Proof Plates, 42s. cloth.

MOORE'S LALLA ROOKH. AN ORIENTAL ROMANCE.
New Fdition. Foolscap 8vo. with \& Plates, by Westall, 10s. Gd. cloth; or 14s. bound in moroceo.

MOORE'S IRISH MELODIES.

lllustrated by D. Maclise, R.A. Imp. Sro. with 161 Desicus, engraved on Stel, 3l.3s. boards; or 41.14s. 6d. bound in morroceo, by 11 ayday. Proof Impressions (ouly 200 copies printed, of which a few remain), 61. Gs. boards.
** India Proofs before letters of the 161 Desirms, on Quarter Colombicr, in Portfolio (only 25 copiesprinted, of which a few remain), 311.10 s.
India Pronfs before letters of the 51 large Designs, on Quarter Colombier, in Portfolio (ouly 25 copies printed, of which a fiw remain), 1Sl. 1ss.

MOORE'S IRISH MELODIES.

New Edition. licap. 8vo. with Vignette Title, 10s. eloth; bound in morocco, 13s.6d.

MOORE.-THE POWER OF THE SOUL OVER THE BODY,

Considered in relation to llealth and Morals. By George Moore, M.D. Member of the Royal College of Plysicians, London, etc. New Edition. Post 8vo. is.6d. cloth.

MOORE-THE USE OF THE BODY IN RELATION TO THE MIND.

By George Noore, M.D. Member of the Royal College of Physieians, London, ete. New Edition. Post Svo. 3s. eloth.

MOORE.-MAN AND HIS MOTIVES.

By George Moore, M.D. Member of the Royal College of Physicians, London, cte.; nuthor of "The Power of the Soul over the Body," and "The Use of the Body in relation to the Mind." Post Sro. 8s. eloth.

MORAL OF FLOWERS (THE).

New Edition. Lloyal Svo. with at beautifully coloured Engravlngs, 16. 10s.half-bound.

MOSELEX.-ILLUSTRATIONS OF PRACTICAL MECHANICS.

By the lRev. II. Moseley, M.A., Professor of Natural Philosophy and Astronomy in ling's College, London: author of "The Alechanical Principles of Engineering und Arehitecture." New Edition. F'eap.Svo. with Woodeuts, 8s. cloth.

MOSELEY. - THE MECHANICAL PRINCIPLES OF ENGINEERING AND

ARCIlTECTURF. By the Rev. II. Moseley, M.A.F.R.S., Professor of Natural Philosophy and Astronomy in fing's Collexe, London; and anthor of "Hlustrations of l'ractical Mechanics,'ete. Svo. with Woodcuts and Diagrams, 11.4s eloth.

MOSIIEIM'S ECCLESIASTICAL HISTORY,

Ancient and Modern. Translated, with copions Notes, by James Murdock, D.D. New Edition, revised, and continued, by the Rev. Henry Soames, M.A. 4 vols. Svo. 48s. cloth.

MURRAY.-AN ENCYCLOPAEDIA OF CEOGRAPHY;

comprising a complete Description of the Farth: exhibiting its Relation to the Hearenly Bodies, its Physical Structure, the Natural History of each Country, and the ladustry, Commerce, Political lnstitutions, and Civil and Social State of all Nations. By Hugh Murray, I.R.S.E. New Edition. 870. with 82 Maps, aud upwards of 1,000 other Wood Engravings, 3l. cloth.

NECKER DE SAUSSURE-PROGRESSIVE EDUCATION;

Or, Considerations on the Course of Life. Translated and Abridged from the French of Madame Necker De Saussure, by Miss llolland. 3 rols. foolscap 8vo. 19s. 6d. cloth.
**Separately-vols. I. and II. I2s.; vol. I1I. 7s. 6d.
OWEN. - LECTURES ON THE COMPARATIVE ANATOMY AND PHYSIOLOGY OF THE INVERTEBRATF, ANIMALS, delivered at the Royal College of Surgeons in 18i3. By Richard Owen, F.R.S. 11 unterian Professor to the College. Froin Notes taken by Willinm White Cooper, M.R.C.S. and revised by Professor Owen. With Glossary ant lidex. 8ro. with nearly 140 Woodents, 14s, cloth.

OWEN.-LECTURES ON THE COMPARATIVE ANATOMY AND

 PHYSIOLOGY of the VERTJBRATE ANIMALS, delivered at the Royal Collere of Surgeons in 1844 and 1846 . By Richard Owen, F.lR.S. Huntcrian I'rofessor to the College. In 2 vols. Vol.I. 8vo. with numerous Woodcuts, 14s. cloth.
PARABLES OF OUR LORD.

Richly Illmminated with approprinte Borders, printed in Colours, and in I3lack and Gold ; with a Design from one of the early German engravers. Square foolscap Svo., uniform in size with the "Sermon on the Mount," 218., in a massive carred biading ; morocco, 30s., bound by Hayday.

PARKES.-DOMESTIC DUTIES ;

Or, Instructions to Young Married Ladies on the Management of their Ilouseholds and the Regulation of their Condact in the various Relations and Duties of Marricd Life. By Mrs. W. Parkes. New Edition. Foolscap Svo. 9s. cloth.

PARNELL-A TREATISE ON ROADS,

Wherein the Principles on which Roads should be made are explained and illustrated by the Plans, Specifieations, and Cuntracts, mule use of by Thomas Telford, Esq., on the liolyheal Roid. By the Rt. Hon. Sir Henry Parnell, Bart. New Edition, cularged. Bro. with Ninc Plates, 21s. cloth.

PARROT.-THE ASCENT OF MOUNT ARARAT.

$13 y$ Dr. Friedrich Parrot, I'rofessor of Natural Philosophy in the University of Dorpat, Russian Imperial Councillor of State, cte. Translated and Fidited by W. D. Cooley, F.sq. author of the "History of Maritime and Inland Discorcry," ctc. Sro. with a Map by Arrowsmith, and Woodcuts, 14s. cloth.

PEREIRA.-A TREATISE ON FOOD AND DIET:

With Observations on the Dictetical Regimen suited fur Disordered States of the Digestire Organs ; and ant Account of the Dictaries of some of the principal Metropolitan and other Fstablishments for Paupers, L, unatics, Criminals, Children, the Sick, etc. By Jon. Percira, M.J. F.R.S., author of "Elenents of Matcria Mcdica." Sro. IGs. cloth.

PERICLES:

A Tale of Atheas in the S3d Olympias. By the Author of "A Brief Sketel of Greck Plilosophy." 2 vols. post 8 ro. 18s. cloth.

PESCHEL (C. F.-ELEMENTS OF PHYSICS,

By C. 1. Feschel, Prineipal of the Roral Military College, Dresden, etc.etc. Translated flom the German, with Notes, by E. W゙est. 3 rols. fcap. Svo. with Woodeuts, 21 s, cloth.

$$
\text { Scparately }\left\{\begin{array}{c}
\text { Part I. The Physics of Ponderable Bodies. Fcap. Bvo. is. } 6 d . \text { eloth. } \\
\text { Part 1I. Imponderable Bodics (Light, Heat, Magnetism, Electricity, } \\
\text { ind Electro-Dynamics). 2vols. fcap. Svo. I3s. 6d. cloth. }
\end{array}\right.
$$

PIIILLIPS.-FICURES \& DESCRIPTIONS OF THE PALAEOZOIC FOSSILS OF

 CORNWALL, DEVON, and WEST SOMFRSF:T; observed in the course of the Ordnance Geological Survey of that District. By John phillips, F.R.S. F.G.S. ete. Published by Order of the Lords Commissioners of H. M. Treasury. Sro. With Gu Plates, comprising very numerous Figures, 9s. cloth.
PIIILLIPS.-AN ELEMENTARY INTRODUCTION TO MINERALOGY;

Comprising a Notlee of the Characters, Propertics, and Chemical Constitution of Minerals: with Aceounts af the Places and Circumstances in which they are found. By William Phillips, F.L.S. M.G.S.etc. A New Edition, enrrected, cularged, and improved, by W. H. Miller, M.A. F.R S. I'rofessor of Mineralogy in the Unircrsity of Cambridge. syo. with unmerous Wood Engravings.
[1n the press.

PITMAN (THE REV. T. R.)-SERMONS

On the principal Subjects couprised in the Book of Psalms, nbridged from Eminent Divincs of the Establlshed Church. By the Rev. J. R. Pitman, A.M. Domestic Chaplain to Her Royal Highacss the Duchess of Rent. Svo. 14s, cluth.

PLUNKETT.-THE PAST AND FUTURE OF THE BRITISH NAVY

By Captain the Hon. F. Plunkett, R.N. 2d Edition, corrected and enlarged; with Notes, and New Information commulicated by several Othicers of Distiuction. Post 8vo. Ss. Gd. cloth.

THE POCKET AND THE STUD;
Or, How to procure and keep Horses, with some regard to obtaining the Auimal required, and to keping him without emptying the Pocket. Being the result of many years' expericnee of "Harry Hieover." loolscap 3vo. with a Portrait of "Oue of the Studl", from a sketch by "Harry Hicover."
[Nंearly ready.
POETS' PLEASAUNCE (THE);
Or, Garlen of all Sorts of Pleasant Flowers, which our Pleasant Poets have in Past Time (for Pastime) Planted. By Eden Warwiek. Square crown Svo. with Twenty-nine Oruamental Borders composed of Flowers and Insects, engraved on Wood, 30s. hoards; or 45 s. bound in moroceo, by Hayday.

PORTLOCK. - REPORT ON THE GEOLOGY OF THE COUNTY OF LONDONDFRRY, and of Parts of Tyrone nind Fermanagh, examined and described under the Authority of the Master-General and Board of Orduance. By J. E. Portlock, l..R.S.etc. 8 yo. with 48 Plates, 24s. cloth.

PYCLROFT.-A COURSE OF ENGLISH READING;

Adapted to every Taste and Capacity. With Ancedotes of Men of Genius. Br the Rev. James Pyeroft, B.A., author of "Greek Grammar Practice," and "Latin Graumar Practice ;" Editor of "Virgil, with Marginal References." Foolscap Svo. 6s. 6d. cloth.
RANKE (PROFESSOR), -RANKE'S HISTORY OF THE REFORMATION. Translated hy Sarah Anstin, translator of Ranke's "History of the l'opes." Vols. I. and II. Svo. 30s.; Vol. 111. 18s. cloth.

READER (TIIOMAS).-TIME TABLES.

On a New and Simplified Plan; to facilitate the Operation of Discounting Bills, and the Calculation of Interest on Banking and Current Acenunts, ete.: shewing, withont calculation, the Number of Days fromevery Day iu the Year to any other Day, for any Period not excecding 365 Days. By Thomas Reader. Post 8ro. Ihs. cloth, or 17s. ealf lettered.

REID (DR.)-ILLUSTRATIONS OF THE THEORY AND PRACTICE OF VFNTHATION: with Remarks on Warmine, Exelusive Lighting, and the Commmication of Sound. By D. B. Rein, M.D.F.R.S.F.etc. 8ro. with Engravings on llood, IGs. cloth.

RENAUD.-MATUTINA:

Morning Readings, chictly Practical, selected and origimal. Adapted to the use of the Yoonger Members of the Church of England. By the Rev. George Reunud, M.A. late Fellow of C. C. C. Oxford. Feap. Svo. 5s. cloth.
REPTON.-THE LANDSCAPE GARDENING \& LANDSCAPE ARCHITECTURE of the late Humphrey lepton, Esq. - being his entire Works on these subjects. A New Edition, with an Ilistorical and scicutific Introduction, a systematic Analysis, a Biographical Notice, Notes, and a copious Alphabetical Index. By J. C. Loudon, F.L.S., ete. Sro. with a Portrait and upwards of 250 Fagravings, 30s. cloth; with coloured Plates, 31. 6s. cloth.

REST IN THE CHURCH.

By the Author of "From Oxford to Rome: and, How it Farcd with Some who Iately made the Journey." New Edition. Fcap. 8ro. 6 s. $6 d$, clotb.
RICII.--AN ILLUSTRATED COMPANION TO THE LATIN DICTIONARY;
Being a Dietionary of all the Words respecting Visible Objects connceted with the Arts, Seience, and Every-day Life of the Ancients. Ihnstrated by about Two Thonsand Engravings on Wood, from the Antique. By Anthony Rich, jun. B.A. Inte of Cnios College, Cambridse; and one of the contributors to Dr. Smith's "Dictionary of Greck and Roman Antiquitics." Pust Svo. With 2,000 Woodeuts, 1Ss. cloth.

26 NEW WORKS AND NEW EDITIONS

RICHTER.-LEVANA; OR, THE DOCTRINE OF EDUCATION.

'Translated from the German of Jean Paul Fr. Ricliter. Post Svo. 10s.6\%. cloth.
RIDDLE.-A COMPLETE ENGLISH-LATIN AND LATIN-ENGLISH DICTlONARY, from the best sources, chielly Geriuan. By the Rev. J. E. Riddle, M.A. Nev Edition. Svo. 3Is. Gd. cloth.
** Separately-The English-Latin Dictionary, 10s.6d.; the Latin-English Dictionary, 21 s.

RIDDLE.-A DIAMOND LATIN-ENGLISH DICTIONARY.

A Gnide to the Menning, Quality, and right Aecentuation of Latin Classica! Wrords. By the Rev. J. E. Riddle, M.A. New Editiou. Royal 32mo. 4 s. bound.

RIDDLE.-LETTERS FROM AN ABSENT CODFATHER;

Or, a Compendium of Religious Instruction for Young Persons. By the Rev.J. Es. Riddle, M.A. Foolscap 8vo.68. cloth.

RIDDLE.-ECCLESIASTICAL CHRONOLOGY;

Or, Aumals of the Christian Church, from its Foundation to the present Time. Containing a View of Gencral Church LIistory, and the Course of Secular Fivents; the Limits of the Church and its Relations to the State; Controversies; Sects and Partics: Rites, Lnstitutions, and Discipline; Feclesiasticnl Writers, ete. By the Rer.J.E.Ridde, M.A. Svo. 15s. cloth.

IITTCHIE (ROBERT.)-RAILWAYS: THEIR RISE AND PROGRESS, AND CONSTRUCTION, with Remarks on Railway Aceid ents, and lroposals for their Prevention. By Robert Ritchie, Esq., F.R.S., 今. A., Civil Engmeer, Associate of the Institutiou of Civil Engiuecrs, ete. Feap. 8vo, with Woodeuts and Diagrams, 9s, eloth.

RIVERS.-THE ROSE AMATEUR'S CUIDE:

Containing ample Descriptions of nll the fine leading varicties of Roses, regularly classed in their respective Families; their History and Mode of Culture. By T. Rivers, Jun. Fourth Edition, corrected and improved. Foolscap Svo. 68. eloth.

ROBINSON.-THE WHOLE ART OF MAKING BRITISH WINES, CORDIALS, AND LIQUFURS, IN THE GREATEST PERFFCTHON; AS ALSO STRONG AND CORDIAI. WATERS. To which is added, a Collection of Valuable Recipes for Brewing Fine and Strong Ales, and Niscellaneous Artieles conuected with the Practice. By James Robiuson. Feap. 8vo.6s. cloth.

IROBINSON (JAMES). - THE WHOLE ART OF CURING, PICKLINC, and SMOKING MEAT and FISH, both in the British nud Foreign Modes. With may useful Miscellancons Recipes, and full Directions for the Construction of an Economical Drying-Chimncy and Apparatus, on an entirely new Plau. By James Robiuson, Eighteen Years in Practicnl Curer. Fcap. Svo. 4s, Gd. cloth.

ROGERS.-THE VEGETABLE CULTIVATOR:

Containing a plain and nceurate bescription of all the different Species of Culinary Vegetables, with the most approved Method of Cultivating them by Natural and Artificial Means, and the hest Modes of Cooking them. By John Rogers, author of "The liruit Cultivator." New Edition. Foolscap Sro. 7s. cloth.

ROGET.-THE ECONOMIC CHESS-BOARD :

Being a Chess-Board, provided with a complete set of Chess-Men, for playing Games in carriages, or out of doors, nud for folding up. and carrying in the poeket, without dis turbing the Gane. Invented by P. M. Roget, M.D. and registered according to Act of Parliament. New Edition. In a neat feap. Svo. case, price 2s. $6 d$.

ROWTON.-THE FEMALE POETS OF GREAT BRITAIN,
Chronologically arramed: with copious selections, and Critical hemarks. By Frederic Rowton, author of "The Debater," etc. Square erown Svo. 14s. cloth.

ROWTON (F.)-THE DEBATER;

Being a Scries of complete Debates, Outlines of Debates, and Questions for Discussion. With ample references to the best sources of information upon each particular topic. By lirederic Rowton, Lecturer ou General Literature. Foolscap 8vo. 6s.cloth.
SANDBY.-MESMERISM AND ITS OPPONENTS.
By George Sandby, M.A. Vicar of Flixton, Suffolk. Second Fidition, considerably enlarged ; With natintroductory Chapter on the Hostility of Scicutitic and Medical Men to Mesuerism. 16 mo . s . eloth; or in two larts, 2s. each, sewed.

SANDFORD (REV. JOHN).-PAROCHIALIA,
or Church, School, and Parish. By the Rev. John Sandford, B.D. Viear of Danehurch, Chaphan to the Lord Bishop of Worcester, Hon. Canon of Worcester, and Rural Dean, Svo. with numerous W'oodeuts, 16 s . eloth.

SANDFORD. - WOMAN IN HER SOCIAL AND DOMESTIC CHARACTER.
By Mrs.Jolin Sandford. 6th Edition. Foolscap Svo.6s.cloth.
SANDFURD.-FEMALE IMPROVEMENT.
By Mrs.Jolu Sandford. New Edition. Foolscap Sro.78. eloth.

SCHOMIBURGK.-THE HISTORY OF BARBADOS:-

Comprising a Geographical and Statistical Description of the Island; a Sketch of the Historical Events since the Settement; and an Account of its Geology and Natural l'roductions. By Sir Robert li. Schomburgk, Pli.D. K.K.E. ete. Rojal 8vo. with Chart, Views, aud Engravings, 31s.6d. cloth.

SCLIOMBURGK. - A TOPOGRAPHICAL MAP OF THE ISLAND OF BARBaDOS, based upon Mayo's Original survey in 1721, and corrected to the year 1846. By Sir labert H. Schomburgk, Fh.D. Li.R.E. Engraved by Arrowsmith, on 2 large sheets, 21s. coloured.
SCIIOPENHIUER, - YOUTHFUL LIFE AND PICTURES OF TRAVEL:
Being the Autobiography of Madame Schopenhaucr. Translated from the Geruau. 2 vols. foolscap Svo. 12s. boards.
SEAWARD.-SIR EDWARD SEAWARD'S NARRATIVE OF HIS SHIPWRECK,
and consequent Discovery of ecrtain 1slands in the Caribbean Sca: with a Detail of many cxtraordinary and highly finteresting Events in his Life, from 1733 to 1749, as written iu his own Diary. Edited by Miss Jine l'orter. New Editiou. 2 vols. post Svo. 2ै1s. cloth.

SELECT WORKS OF THE BRITISH POETS:

From Chancer to Withers. With Biowraphical Sketches, by R.Southey, LL.D. Medium 8 vo. 30 s . cluth; or, with gilt edgres, 31s. Gd.

SELECT WORKS OF THE BRITISH POETS:

From Ben Jonson to Coleridge. With Biographical and Critical Prefaces by Dr. Aikin. A New Elition, with additional Selections, from more receut locts, by Lucy Aikiu. Medium Svo. 18s. cloth.
** The peculiar feature of these two works is, that the Poems included are printed cntire without mutilation or abridgment.

THE SERMON ON THE MOUNT.

1ntended as a Birthday-Present, or Gift-Book for all Scasons. Printed in Gold and Colours, in the Missal Style; with Ornanental Borders by Owen Jones, Arehitect, and an llluminated lirontispicee by W. Boxall, Esq. A new edition. Foulseap 4 to. in a rich brocaded silk cover, 21s.; or bound in morocco, by Hayday, tōs.

SHAKSPEARE, BY BOWDLER.

THE FAMHAY SHAKSPEALK, in which nothing is added to the Original Text; but those Words and Expressions are omitted which canot with propricty be read aloud. By T. Bowdler, E゙sq. F.ll.S. New Edition. Svo. with 3l; Illustrations after Smirke, ete., 218. cloth; or, without 1llustrations, 8 vols, 8 vo .41 .14 s . $6 d$. boards.

SHORT WHIST:

1ts Rise, Progress, and Laws; with the recent Decisions of the Clubs, and Observations to makeanyone a Whist llayer. Contaning also the laws of liquet, Cassino. Eearte, Cribbuge, Backeamon. By atajor is***New Edition. Towhichare added, Preceptsfor Tyros. By Mrs. B *** Foolscap Svo.3s. clnth, gilt edges.

THE COOD SHUNAMMITE

From the Scriptures-2 lings, chap. IV. S to 37. With Six Original Designs by A. Klem, and an Ormamental Border to cach page, in the Missal style, by L. Gruner. Printed in Colours and Gold. Square fenp. Svo. nuiform in size with "Miracles of our Lord," 21s. in massive carved covers ; or 30s, bound in moroceo, in the Missal style.

SINCLAIR.-THE BUSINESS OF LIFE.

By Catherine Sinclair, author of "The lourncy of Lite," "Jane Bonscric," "Modern Accomplishnents," "Modern Socicty," ctc. 2 vols. feap, Svo. 10s. cloth.
"The book, without being of a direclly devotional character, or belonging to the claes of light reading, combines seyeral of the best quatitirs of both, and makes genernl literature and chtertaining anecdnte zerne as handmaids to religions instruction. We have scen many pumpous treatises containing not half the talent or a tithe of the linoteledge compressed into these unpretending lithle volumes."-Britannia,

SINCLAIIR.-THE JOURNEY OF LIFE.

By Catherine Sinclair, author of "The Business of Life," "Modern Socicty," "Jane Bonveric,' etc. New Edition, corrccted and enlarged. I'cap. 8ro.5s. cloth.

SINNETT.-BY-WAYS OF HISTORY, FROM THE TWELFTH TO THE Sixteenth centuly. By Mrs. Percy Simett. 2 rols, post sro. 188. eloth.

THE SKETCHES;

ThrecTales. By the Authors of "Amy IIcrhert," "The King's Mcsscngers," aud "Hawkstone." New Edition. Ficap. Svo. with six Plates, 8s. cloth.

SMITII-SACRED ANNALS:

Or, Rescarches into the llistory and Religion of Mankind, from the Creation of the World to the Death of lsaac: delluced from the Writings of Moses mad other Inspired Authors, copionsly illustrated and confrmed by the ancicit Records, Trallitions, and Mythology of the Heathen Work. By George Smith, F.S.A.etc. author of "The Religiou of Ancient Britain," cte, Crown 8vo.108, cloth.

SMITII (GEORGE). - THE RELICION OF ANCIENT BRITAIN HISTORICALLY CONSIDERED: Or, a Succinct Acconnt of the sercral Religious Systems which have obtained in this Istand from the Earlicst Times to the Norman Conquest: including an Investigation into the Early Progress of Errorin the Clirlstian Church, the Introdnction of the Gospel into Britan, and the State of Religion in Eugland till Popery hud gaiued the Ascendaucy. By Gcorgc Smith, F.A.S. Ncw Edition. Sro. T8.6d.cloth.

SMITH (GEORGE).-PERILOUS TIMES:

Or, the Agressions of Anti-Cliristian Error on Scriptural Christianity: consideredin refcrence to the Dangers and Duties of Protestants. By Gcorge Smith, F.A.S. Mcmber of the Royal Asiatic Society, and of the Royal Society of Literature. Foolscap Sro. G8. cloth.

SMITI (JAMES). - THE VOYAGE AND SHIPWRECK OF SAINT PAUL:

with Disscrtations on the Sources of the Writings of St. Luke, and the Ships and Narigation of the Antients. By James Smith, Esq. of Jordanhill, F.ll.S. cte. Sro. With illustrative Views, Charts, and Woodcuts, 14s. cloth.

SMITH.-AN INTRODUCTION TO THE STUDY OF BOTANY.

By Sir J. E. Smith, late President of the Limmean Socicty. 7th Fdition, corrected; in which thie object of Smith's "Grammar of Botany" is combined with that of the "Introduction." By Sir William Jackson Hooker, K.H. LL.D. ctc. Svo. with 36 Stcel Plates, 16s. cloth; with colourcd Plates, 2l.128.6d. cloth.

SMITH.-COMPENDIUM OF THE ENGLISH FLORA.

By Sir J. E. Smith. New Edition, with Additions and Correctious. By Sir W.J.Hooker. limo. 7s. fid. cloth.
THE SAME IN LATIN. New Edition. I2mo. is. $6 d$.

SMIITH. -THE ENCLISH FLORA.

By Sir Jamcs Fdward Smith, M.D. F.R.S., late President of the Linuæan Socicty, etc. 6 vols. Svo, 3l.12s. boards.
SMITH (SYONEY).-SERMONS PREACHED AT ST. PAUL'S CATHEDRAL, the Founding Hospitni, and sereral Churches in London; together with others addressed to a Country Comprepation, By thelate Rev. Syduey Sinith, Canon Residentiary of St. Paul's Cathedral, Svo. lizs. cloth.

SIIITII. - THE WORKS OF THE REV. SYDNEY SMITH.

New Edition, with Additious. 3 vols. $8 v o$. with Portrait, 36 . cloth.
SOAMES.-THE LATIN CHURCH DURING ANGLO-SAXON TIMES.
By the Rer. IIcury Soames, M.A., Editor of "Moshcin's linstitutcs of Eeclesiastical
History." Svo. 1ts, cloth.

SOME PASSAGES FROM MODERN HISTORY.

13y the Author of "Letters to My Unknown Friends," and "Twelve Ycar go." Foolscap
Svo. 6s. 6d, cloth.

SOPHOCLES, BY LINWOOD.

SOPHOCLIS TRAGCEDIA SUPERSTITES. Recensuit, et breviadnotationc instruxit Galicimus Lin wood, A.M. Adis Christlapud Oxonienses Alumnus. Sro. 16s. cloth.

SOUTHEY (ROBERT). - THE LATE MR. SOUTHEY'S COMMONPlaCE BOOK; comprising his Readings and Collectionsin llistory, Biograply, Mancres nud Literature, Voyages and Travels, ette. ete.
[In ilvepress.
SOUTHEY (ROBERT).-THE DOCTOR, ETC.
By the late Roliert Southey. A New Edition, complete in One Volume. Edited by the Author's Son-in-Law, the Rev. John Wood Warter. Square crown Svo., with Cortrait, Viguette Tille-page, and Bust of tbe Author, 2ld. cloth.

SOUTHEY. - THE LIFE OF WESLEY,

And Rise and Prugress of Methodism. By Robert Southey, Esq. LL.D. New Edition, with Notes by the late Snmucl Taylor Coleridre, Esf., and Remarks on the Life and Character of Jolin Wesley, by the lite Alexabder Kinox, Esq. Edited hy the Rev. Charles Cuthbert Southey, A.M. Curate of Cockermouth. 2 vols. $8 v 0$. with two Portruits, 11.88. cloth.

SOUTIIEY'S (ROBERT) COMPLETE POETICAL WORKS:

Containing all the Author's last Introductions and Notes. Complete in One Volunc, 248. 6d., with Portrsit and Yignette, uniform with Byron's and Moore's Poetical Works. Medium8vo. 21s. cloth; or tiss. bound in moroceo, by Haydny.
Also, an Edition in 10 vols. foolseap 8vo. with Portrait and 19 Plates, $2 l$. 10s.; morocco, 4l. 10 s.
SPIRIT OF THE WOODS (THE).
By the Author of "7he Moral of Flowers." New F.dition. Royal 8vo. Wlth 23 beautifully coloured Enyravings of the lorest Trees of Great Britain, 1l, 11s.6d.clotb.

Stable Talk and table talk; OR, spectacles for younc SPORTSNEN. By Harry Hieorer. 2 vols. Svo. with Portrait, E4s. clotb.

STEEL'S SHIPMASTER'S ASSISTANT.
Compiled forthe use of Merehants. Owners and Masters of Ships, Officers of Customs, and all lersons connected with Shipping no Commeree ; cnutaniny the Law and Local Regula. tions affecting the Ownership, Charge, and Management of Ships and their Cargoes; tosether with Notices of other Matters, and all neecesary Information for Mariners. New Iidition, rewritten throughout. Kdited by Graham Willmore, Esq. M.A. Burrister-at-law ; George Ctements, of the Customs, London, and Willinm Tate, author of "'he Modern Cambist." Svo.28n. eloth; or 39s. bound.

STEPIEN. - THE HISTORY OF THE CHURCH OF SCOTLAND,

From the Reformation to the Present 'Time. By Thomas Stephen, anthor uf "The Bonk of the Constitutinn," "Spirit of the Chureh of Rome," ctc. 4 vols, Svo. with ${ }^{2} 4$ highly-liuished Pertraits, engrared on Steel, 3is.cluth.

STEPHENS. - A MANUAL OF BRITISH COLEOPTERA ;
Or, BEETLFES: containing \& Deseription of all the Species of Beetles hitherto ascertained to iuhabit Great Britain and lreland, ete. By J. F. Stephens, FiL.L.S. Post Svo. lis.eloth.

STEWART.-THE MEANS OF FACILITATING THE TRANSFER OF LAND: In Three Lectules. By Jmues Stewart, Esfl, of Lincoln's Inm, Barrister. Svo. 5s.eloth.

THE SUITOR'S INSTRUCTOR IN THE PRACTICE OF THE COUNTY COURTS : containing all the Infnrmation aceessary fur Conducting or Defendine a Suit ; the Fees paynble oncach Step; Defintions of the Legal Terms used an the Proceedings; an Abstract nt the Act of Parlinment; the Rules of Practice, cte, ete, Also a District Directory, giving the Names of all tbe Strects (and the number of Houses in cach Street) which form the Bundaries of the Metrupolitan Districts; made from an aetmal l'erambubution around each: and a List of the Country Districts. By a County Court Assistant Clerk. 12 mo .4 s .6 d . cloth.
SUMMERLY.-THE SEA AND THE RAILWAY:
Their new llelations set forth in a Jamt along the Manchester, Sheffield, and lineolushire Railway to Grimsby Docks, by Felix Smmerty. With Woodeuts by C, W. Cofe, A.k.A.: D. Cox, juu.; T. Creswick, A.R.A.; and R. liedgrave, A.ll.A. [Nearly ready.

SYMONDS.-THE LAW RELATING TO MERCHANT SEAMEN,
Arranged chichy for the use nf Masters and Officers in the Merchant Service. With an Appendix, containing the Act 7 \& S Vie. c. 112: the Reculatinus under which Lascars may he employed; and some forms of Proceedings before Magistrates. 13y E. W. Symonds, Fsti. Chief Clerk of the Thames Police Court. Third Edition. 12mo. 5s. cloth.

TATE.-THE CONTINUOUS HISTORY OF THE LIFE AND WRITINGS OF ST, PAUL. on the basis of the Acts; with Interealary Matter of Sarred Narrative, supplied from the Epistles, and clucidated in necasional Dissertations: with the Iforac Panlime of Dr, Palcy, in a more correct edition, subjoined. By James Tate, M.A. 8ro. Map, B3s. cloth.

TAYLER (REV. CHARLES B.)-MARGARET;
Or, the Pearl. By the Rev. Charles 13. Tayler, M.d. Rector of St. Peter's, Chester, author of "Lady Nary; or, Not of the World;" etc. New Edition. Foolscap Svo. 68. cloth.
TAYLER (REV.CHARLES B.) - LADY MARY; OR, NOT OF THE WORLD. By the Req. Charles B. Tayler, liector of St. Peter's, Chester; author of "Margarct, or the Pcarl,' ctc. New Edition. Foolscap Svo. witl a lirontispiece engraved by J. Absolon,
Gs. 6 d. cloth.

TAYLOR.-LOYOLA AND JESUITISM.

Bylsanc Taylor. Post 8vo.
[In the Autumn.
TAYLOR (JEREMY)-BISHOP JEREMY TAYLOR'S ENTIRE WORKS:
With the life of Rishop lleber. Revised and corrected by the Rev. Charles Page Eden, Fellow of Oriel Collcge, Oxford. Vol. II. (the first in the order of pulblication) contains the life of Christ; Vol. Ill. the IInly Jiving and Dying ; Vol. IV. a Course of Sermons for all the Sundays of thic Year. Svo. 10s. fid. each, cloils.
** To le completed in Ten Valumes, price I0s. 6d. each. Vol. V. comtaining the Episcopacy, etc. is nearly ready.

THIRLWALL.-THE HISTORY OF CREECE.

By the Right Rev. the Lord Bishop of St. Havid's. A new Edition, reviscd; with Notes. Vols.I. to $1 V$. demy Svo. with Maps, 12s. each cloth. To be completcdin S volumes.
[Vol. V. is nearly ready.
** Also, an Edition in S vols.fcap. Svo. with Vignette Titles, 2l. 8s. cloth.

THOMSON'S SEASONS.

Fdited, with Notes, Philosophical, Classichl, Historical, and Biograplical, by Anthony-Todd Thomson, AI.D. F.L.S., Professor of Bateria Medica and "Hherapeutics, and of Furensic Medicine, in University College, London, ctc. Fcap. Sru. 78. Cd. cloth.
THOMSON'S SEASONS.
Edited by Bolton Corney, Fsq. Illustrated with Seventy-seven Designs drawn on Wuod by the Members of the Etching Clnh. Eneraved by Thompson and other eminent Engravers. Squarc crown Svo. uniform with "Goldsmith's Pocms," "ls. cloth; bound iu morocco, by
Hayday, 368.
THOMSON-EXPERIMENTAL RESEARCHES ON THE FOOD OF ANIMALS, AND THE FATTENING OF CATTLLF: with Remarks on the Food of Man. By Robert Dundas Thomson, M.D. of the University of Glasgow. Fcap. Svo. 5s. cloth.
"The question of the origin of the fat of animals appears to be completely resolved by
these beautiful and elaborate eaperiments."-Baron Licbirs. these beautiful and elaborute experiments."-Baron Licbig.

THOMSON (JOIIN).-TABLES OF INTEREST.

At Threc, lour, Four-and-a-half, and Five per Cent., from Onc Pound to Ten Thonsand, and from One to Three lfundred and Sixty-five Days, in a regular progression of Simele Drys: with Interest at all the above Rates, from Onic to Twelve Nonths, and from One to Ten Years. Also, Tahlesshewing the Fxchange on Bills, ete.cte.etc. By JohnThomson, Accountant. New Edition. limo. Ss, bound.

TIIOMSON,-THE DOMESTIC MANACEMENT OF THE SICK ROOM,

Ncecssary, in Aill of Medical Treatment, for the Curc of Diseascs. By Anthony Todd Thomson, M.D.1.L.S.ctc. New Edition. Post Svo. 10s. Gd. cloth.

TISCIIENDORFF.-TRAVELS IN THE EAST.

By Constantine Tischendorff, Editor of the "Codex F,phrämiRescriptus," "Codex FridericoAngustanus," cte. Translated from the German by W. E. Shuckard. I6mo. Gs. Gd. cloth.

TOMLINE (BISIIOP).-AN INTRODUCTION TO THE STUDY OF THE BIBLE:

 l3cing the First Volume of the Elements of Christian Thcology ; containing Proofs of the Authenticity and luspiration of the Holy Scriptures; a Summary of the History of the Jews ; an Account of the Jewisla Sects; and a brief Statement of the Contents of the several books of the Ohd Testancht. By the late George Tomline, D.D.F.IR.S. New Edition. Foolscap Svo.$5 s$. Gd. eloth.

TOOKE. - THE HISTORY OF PRICES;

Withreference to the Causes of their principal Variations, from 1702 to the Present Time. Preceded by a sketch of the History of the Corn Tradc in the last Two Centuries. By
Thomas "Tooke, Esq. F.R.S. 3 vols. Svo. $2 l$. Ss. cloth.

TOOKE.-THE HISTORY OF PRICES,

And of the State of the Circulation, from 1839 to 184%, inclusive: with a Gencral Revicur
 being a contimation of "The History of I'rices from 1792 to IS 39 ." By Thomas Tooke, lisq.
F.ß.S. Svo. I8s. cloth.

TOPHAM.-CHEMISTRY MADE EASY,

For the Use of Agriculturists. 13y John 'Topham, A.M. Rector of St. Audrew, St. Mary Witton, and St. Nichulas, Droitwich. New Edition. 16mo. Is. sewed.

TOWNSEND (CHARLES).-THE LIVES OF TWELVE EMINENT JUDCES OF THE BAST AND OF THE PRESENT CENTURY. By W. Charles Townsend, Esq., A.M. Recorder of Macclesficld, author of "Memoirs of the Ilouse of Commons." "vols". Svo. 28s. cloth.

TURNER.-THE SACRED HISTORY OF THE WORLD,

Attempted to be Philosophically considered, in a series of Letter's to a Son. By Sharon Turner, F.S.A. and R.A.S.L. Eighth Edition, edited by the Rev. Sydaey Turner. 3 vols, post Sru. 31s, 6d.cloth.

TURNER.-THE HISTORY OF ENGLAND,

From the Earliest Period to the Death of Elizabeth. By SharonTurner, Esq. ${ }^{18}$.A.S.R.A.S.L. New Editions. 12 vols. Svo. Sl. 3s. eloth; or, separately-
THE HISTORY of the ANGGLO-SAXONS. 3 vols. $8 v o .2 l .5 s$.
THE HISTORY of FNGLAND during the MIDDLE AGES. 5 rols. 870.3 .
THE HISTORY of the REIGN OF HENRX VIII. 2 vols. Sro. 26s.
THERELGNS Of EDWARD V1., MARY, and ELIZABETII. 2 vols. Svo. 3is.
TURTON'S (DR.) MANUAL OF THE LAND AND FRESHWATER SHELLS OF TIIE BRITISH ISLANDS. A new Fdition, thoronghly revised, with Additious. By John Edward (iray. Post Svo. with Woodents, and 12 coloured Plates, liss cloth.

TWELVE YEARS ACO:
A Tale. By the Author of "Letters to My Unknown Friends." Foolseap 8vo. 68. 6d, eloth.
TWISS.-ON THE RELATIONS OF THE DUCHIES OF SCHLESWIC AND HOLSTEIN TO THE CROWN゙ OF DFNMARK AND THF: GERMANIC CUNFEDERA. TION, and on the Treaty-Engagements of the Great Europen Powers in refercnce thereto. By Travers Twiss, D.C.L. F.R.S., Fellow of University College, Oxford, and Advocate in Hoctors Commons. Sro. 6s. Gd. cloth.

TTWISS.-VIEW OF THE PROGRESS OF POLITICAL ECONOMY IN EUROPE SINCF TIIE SIXTEENTH CENTURY; being a Course of Leetures delivered hefore the University of Oxford, in Michaclmas Term 1846, and Lent Term 1847. By Travers Twiss, D.C.L. F.1R.S. Professor of Pulitical Economy, and lellow of Uaiversity College, Oxford. Sro. 10s. Gd. cloth.

URE, -DICTIONARY OF ARTS, MANUFACTURES, AND MINES:
Contanink a clear Exposition of their Principles nad Practice. By Andrew Ure, M.D. F.R.S. M.G.S. M.A.S. Lomd.; M. Acal. N.S. Philad.; S. Plt.Soc. N. Germ. Ilanov.; Mullii, ete.ctc. 3d Edition, corrected. Svo. with 1,240 Woodeuts, 50 s, eloth.

By the same Author,
SUPPLEMENT OF RECENT IMPROVEMENTS. 2dEdition. S\%o. 14s. eloth.
VON ORLICI (CAPT.)-TRAVELS IN INDIA,
And the adjacent Contries, in 1812 and 1813. By Cnpt. Lenpold Von Orlich. Translated from the German by H. Fivans hluyd, Esa. \because vols. Svo. with coloured Frontispieces, and numerous lllustrations on Wood, $2 \overline{2 g}$. cloth.

WALFORD (J. E.)-THE LAWS OF THE CUSTOMS,
Compiled by Direction of the Lords Commissioners of Her atajesty"s Treasury, and published under the Sanction of the Commissioners of Ifer Majesty's Cuistoms; with Notes and a Gencral tudex. Edited by J. G. Walford, lisq. Solicitor for the Customs. Priated for Iter Majesty's Stationery Oltice, and published by Authority. Svo. 10s. Gd. cloth.
WALKER.-ELEMENTA LITURCICA ;
Or, the Churchnan's Primer, for the Scholastic Study of the Book of Common Prayer. Br G. A. Walker, A.M., of Christ College, Camhridge. New Edition, entircly rearranged and considerably enlarged. Feap. Svo. 48. 6d. cloth,

WALKER (GEO.)-CHESS STUDIES:

Comprising 1, Mn Games actually Played during the last Ilalf Century: presenting a unipne Collection of Classical and Brilliant Specimens of Chess Skill in every stage of the Game, and furming au Encyelopedia of Referenee. By George Walker. Svo. IUs.6d.sewed.

WARDLAW.-DISCOURSES ON THE PRINCIPAL POINTS OF THE SOCINIAN CONTROVERSY - the Unity of God, and the Trinity of Persons inthe Godhead-the Supreme Divinity of Jesus Christ-the Dnctrine of the Atoncment, -the Christian Character, ete. By Ralph Wardlaw, D.D. New Edition. Sro. I5s.cloth.

WY ATERTON.-ESSAYS ON NATURAL HISTORY,

Chicfly Ornithology. By Charlcs Waterton, Esq., author of "Wanderings in South Anerica." With all Autobiography of the Author, and a Vicw of Walton Hall. New Eilition. Fuolscap 8vo.8s. cloth.
SECOND SFRIEG. With Continuation of Mr. Whterton'a Autoblography. Net Edition. licap. 8vo. with Vignctte by 'I'. Creswick, A.R.A. ©e.6d. cloth.

WEBSTER.-AN ENCYCLOPAEDIA OF DOMESTIC ECONOMY:

Comprising such sulijects as are most immediatcly conncted with Housckecping; as, The Construction of Domestic Fdifices, with the Modes of Warming, Ventilatince and Lighting them-A Description of the varions Articles of Finrniture, with the Nature of their Materinls-Dnties of Scrvants, cte.ete. By Thomas Webster, F.G.S., etc.ete.; assisted by the late Mrs. Parkes. Ncw Edition. 8vo. with nearly l,000 Woodcuts, 50s. cloth.

WESTWOOD (J.O.) - AN INTRODUCTION TO THE MODERN CLASSIFICATION OF INSF.CTS ; founded on the Natural Hahits and comparatirc Orcanisation of the different Familics. By J. O. Westwood, F.L.S. cte. 2 rols. Svo. with mumcrous Illustrations, 2\%. 78. cloth.
WILBERFORCE (W.) - A PRACTICAL VIEW OF THE PREVAILING RFLIGLOUS SYSTEMS OF PROFESSED CHRISTIANS, in the Hicher and Middle Classes in this Country, contrasted with Real Christianity. By William Witherforce, Esq. M.P. for the County of York. New Editions. Svo. 8s. boards. I2mo. 4s. 6d. cloth.

WILSON.-THE LANDS OF THE BIBLE VISITED AND DESCRIBED,

In an Extensive Journcy undertaken with special reference to the Promotion of Biblical Research and the Advancement of the Cause of Philanthropy. By John Wilson, D.D. F.R.S. Honorary Fresident of the Bombay Branch of the Royal Asiatic Socicty, ctc. 2 vols. Svo. with Maps and numerous lllustrations, 11. 16s. cloth.

WILLOUGHBY (LADY)-SO MUCH OF THE DIARY OF LADY WILLOUGHBY as relates to her Domestic History, and to the Fiventful Period of the reign of King Challes the First (1635 to 1648). Produced in the style of the period to which "The Diary" refers. New Edition. Square foulscup Svo. S8. boards; or 18s. bound in morocco (by Hayday).
WILLOUGHBY (LADY).-SOME FURTHER PORTIONS OF THE DIARY OF LADY WILLOUGHBY, which do relate to her Domestic llistorf, and to the Stirring Events of the hatter years of the reign of King Charles the First, the P'rotectorate, and the Restoration (1648 to 1663). New Edition. Square foolscap Svo. Ss.boards, noroceo, 18 s. (bound by Hayday).
WINTER (J. W.)-THE HORSE IN HEALTH AND DISEASE:
Or. Suggestions on his Natural aud Gencrul History, Varietics, Conformation, Paces, Age, snundress, Stabling, Condition. Training. and shocing. With a Digest of Vetcrinary Practice. By James W. Winter, M.R.C.V.S.L. Sro. 1Us. 6d. cloth.

WOOD - A PRACTICAL TREATISE ON RAILROADS,

And Interior Communication in General; contnining numerous Experiments on the Powers of the Improved Locomntive Engines, and Tables of the comparative Cost of Conveyance on Canals, Railways, and Turnpike Roads. By Nichotas Wood, Memb. Inst. Civ. Eng. etc. 3d Edition. Svo. with llates and Wondeuts, 3ls. Gd. cloth.

WOODWARD,-ESSAYS AND SERMONS.

By the Rev. Heury Wondward, M.A., formerly of Corpus Christi College, Oxford, Rector of Fethard, in the Diocese of Cashel. New Edition. 2 vols. fcap. Svo. 14s. cluth.

WOOIDWARD.-A SEQUEL TO THE SHUNAMMITE:
B, ing a scries of Reflections on 2 Kings ir. 17-35. By the Rev. Henry Woodward, M.A., Rector of Fethard, in the Diocesc of Cashel, and formerly of Corpus Christi College, Oxford. Fcap. 8vo. 6s. cloth.

ZUMPT (PROF.)-A CRAMMAR OF THE LATIN LANCUACE.

By C. G. Zumpt, Ph. D. Professor in the University, and Member of the lioyal Academe of Berlin. Translated from the 1 th Edition of the original, and adapted to the use of English Students, hy Leonhard Schmitz. Ph. 1)., Recter of the High School of Fdinliurgh; with nuucrous Additions and Corrctions by the Author. New Edition. Svo. 14s. cloth.
[Angust :11, 184S.

[^0]: BURNS.-THE PRINCIPLES OF CHRISTIAN PHILOSOPHY;
 Containing the Doctrines, Duties, Almonitions, and Cousolations of the Christian Religion. By John Burns, M.D.F.R.S. 6th Fidition. Foolseap 8ro. Gs. 6d. cloth.

 ## BURNS.-CHRISTIAN FRAGMENTS ;

 Or. Remarks on the Nature, Precepts, and Comforts of Religion. By John Burns, M.D. F.R.S. Foolscap 8vo. js. cloth.

 ## BUTLER.-A SKETCH OF MODERN AND ANCIENT GEOGRAPHY.

 By Sanuel Butter, D.1., Inte Lord Bishop of Lielffeld and Coventry; and formerly Head anster of Shrewsbury School. New Edition, revised by the Author's Sou. Svo. 9s. boards.

 ## BUTLER.-AN ATLAS OF MODERN GEOGRAPHY.

 Consisting of Twenty-three coloured Maps, from a New Set of Plates; with an Index of all the Names of llaces, referring to the Latitudes and Lonpitudes. By the late Dr. Butler, Bishop of Liclificld. Ncw Edition, corrected. 8vo.12s. half-bound.

