Molar Absorptivity

Determining molar absorptivity coefficients.

Suppose that we made a standard curve where the data obeys Beer's Law and fits a straight line. We should be able to calculate the molar absorptivity coefficient (ε).

Since $A=\varepsilon b c$ and the graph is of A vs $C(m M)$
$A=(\varepsilon b) \quad$ the slope is therefore equal to ($\varepsilon \mathrm{c})$. We get the slope from the $\mathrm{y}=\mathbf{0 . 4 0 0 x}$.
In the above: slope $=0.0400 \mathrm{mM}^{-1}=\varepsilon \mathrm{b} \quad$ where b is usually $1 \mathbf{c m}$ (the pathlength of a cuvette)
Therefore we can calculate the value of ε :
$\varepsilon \quad=($ slope $/ \mathbf{b})=\left(\mathbf{0 . 0 4 0 0} \mathrm{mM}^{-1} / \mathbf{1 c m}\right)=\mathbf{0 . 0 4 0 0} \mathrm{mM}^{-1} \mathbf{c m}^{-1}$ or $\mathbf{0 . 0 4 0 0} \frac{L}{\text { mmolescm }}$
ε is most often written in $\mathbf{M}^{-1} \mathbf{c m}^{-1}$
so $\varepsilon=0.0400 \frac{L}{\text { mmoles cm }} \times \frac{1000 \text { mmoles }}{\text { mole }}=40.0 \frac{L}{\text { moles cm }}=40.0 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$

Molar Absorptivity

two compounds absorbing at the same Wavelength.

Suppose we took a scan of a sample containing 10.0 mM Compound A (blue dots) and a scan of a sample containing 17.0 mM Compound A (red dots).

We can see that this compound has a maximum wavelength at 550 nm $\left(\lambda_{\max }\right)$. The higher the concentration, the greater the absorbance at 550 nm . It does not absorb light above 600 nm at either concentration.

$$
\begin{aligned}
& \left(\varepsilon_{\mathrm{A}, 550 \mathrm{~mm}}=0.0400 \mathrm{~L} \mathrm{mmoles}^{-1} \mathrm{~cm}^{-1}\right) \\
& \left(\varepsilon_{\mathrm{A}, 605 \mathrm{sm}}=0.000 \mathrm{~L} \mathrm{mmoles}^{-1} \mathrm{~cm}^{-1}\right)
\end{aligned}
$$

Suppose we took a scan of 10.0 mM Compound B (blue) and a scan of 15.0 mM Compound B (green).

We can see that Compound B has a maximum wavelength ($\lambda_{\max }$) of 605 nm . It does absorb light below 600 nm , in the range of Compound A . The higher the concentration, the greater the absorbance at 550 nm and 605 nm .

$$
\begin{aligned}
& \left(\varepsilon_{\mathrm{B}, 005 \mathrm{sm}}=0.0700 \mathrm{~L} \mathrm{mmoles}^{-1} \mathrm{~cm}^{-1}\right) \\
& \left(\varepsilon_{\mathrm{B}, 55 \mathrm{~mm}}=0.0110 \mathrm{~L} \mathrm{mmoles}^{-1} \mathrm{~cm}^{-1}\right)
\end{aligned}
$$

** note usually a scan would have a curved appearance, the above scans are made up numbers for demonstration.

What does $\varepsilon_{\mathrm{A}, 550 \mathrm{~nm}}$ mean?

What happens if we have a mix of $17.0 \mathrm{mM} A$ and $10.0 \mathrm{mM} B$ in the same cuvette? How do we calculate concentration of A and B using Beer's Law?

If we used the Absorbance at 605 nm and used Beer's Law to determine Compound B using $\left(\varepsilon_{\mathrm{B}, 60 \mathrm{~nm}}=\right.$ $0.0700 \mathrm{~L} \mathrm{mmoles}^{-1} \mathrm{~cm}^{-1}$)
$\mathrm{A}=\varepsilon \mathrm{bc}$
$0.700=\left(0.070 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1}\right) *(1 \mathrm{~cm}) *(\mathrm{c})$

$\mathrm{c}=10.00 \mathrm{mM}=10.0 \mathrm{mM}$

We could determine the concentration of B at 605 nm with $\varepsilon_{\mathrm{B}, 605 \mathrm{~nm}}$ alone because Compound A does not absorb at $605 \mathrm{~nm} .\left(\varepsilon_{\mathrm{A}, 605 \mathrm{~nm}}=0.000 \mathrm{~L} \mathrm{mmoles}^{-1} \mathrm{~cm}^{-1}\right)$

If we used the Absorbance at 550 nm and used Beer's Law to determine Compound A using ($\varepsilon_{\mathrm{A}, 55 \mathrm{~mm}}=$ $0.0400 \mathrm{~L} \mathrm{mmoles}^{-1} \mathrm{~cm}^{-1}$)
$\mathrm{A}=\varepsilon \mathrm{bc}$
$0.790=\left(0.040 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1}\right) *(1 \mathrm{~cm}) * \mathrm{c}$

$\mathrm{c}=19.75 \mathrm{mM}=19.8 \mathrm{mM}$
19.8 mM would be our answer which is close to the actual, but we have overestimated the real value of 17.0 mM . The reason is because Compound B also absorbs at this wavelength. $\left(\varepsilon_{\mathrm{B}, 550 \mathrm{~nm}}=0.0110\right.$ L mmoles ${ }^{-1} \mathrm{~cm}^{-1}$).

In reality you must add Beer's Law together for compound A and compound B at 550 nm .

$$
\begin{aligned}
\mathrm{A}_{550 \mathrm{~nm}} & =\varepsilon_{\mathrm{A}, 550 \mathrm{~nm}} \mathrm{bc}+\varepsilon_{\mathrm{B}, 550 \mathrm{~nm}} \mathrm{bc} \\
& =(0.0400 \mathrm{~L} \text { mmole } \\
& =0.680+0.110 \\
& =0.790
\end{aligned}
$$

So what should you do to calculate the concentrations of Compound A and B when they are mixed??

Let's Try an Unknown

At 550 nm the mixed sample absorbs at 0.510 . At 605 nm the mixed sample absorbs at 0.700 . Since Compound A does not absorb at $605 \mathrm{~nm}\left(\varepsilon_{\mathrm{A}, 005 \mathrm{~nm}}=0.000 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1}\right)$, we should determine B's concentration first.
$\mathrm{A}_{605 \mathrm{~nm}}=0.700 \quad=\varepsilon_{\mathrm{A}, 605 \mathrm{~nm}} \mathrm{bc}_{\mathrm{A}}+\varepsilon_{\mathrm{B}, 605 \mathrm{~nm}} \mathrm{bc}_{\mathrm{B}}$
$=0.700 \quad=\left(0.000 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}^{*} \mathrm{c}_{\mathrm{A}}\right)+\left(0.0700 \mathrm{~L}_{\mathrm{mmole}}{ }^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}^{*} * \mathrm{c}_{\mathrm{B}}\right)$
$=0.700 \quad=0+\left(0.0700 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}^{*} \mathrm{c}_{\mathrm{B}}\right)$
$=0.700 /\left(0.0700 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}\right)=\mathrm{c}_{\mathrm{B}}$
$c_{B}=10.0 \mathrm{mM}$ therefore concentration of Compound B is 10.0 mM

Compound A's concentration $\left(\mathrm{c}_{\mathrm{A}}\right)$ is a little more difficult to determine, but since we now know B's concentration $\left(\mathrm{c}_{\mathrm{B}}\right)$ to be 10.0 mM from the above calculation, we can determine A's next.

$$
\mathrm{A}_{550 \mathrm{~nm}}=0.510 \quad=\left(\varepsilon_{\mathrm{A}, 550 \mathrm{~nm}} * \mathrm{~b} * \mathrm{c}_{\mathrm{A}}\right)+\left(\varepsilon_{\mathrm{B}, 550 \mathrm{~nm}} * \mathrm{~b} * \mathrm{c}_{\mathrm{B}}\right)
$$

$$
=0.510 \quad=\left(0.0400 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}^{*} \mathrm{c}_{\mathrm{A}}\right)+\left(0.0110 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}^{*} 10.0 \mathrm{mM}\right)
$$

$$
=0.510 \quad=\left(0.0400 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}^{*} \mathrm{c}_{\mathrm{A}}\right)+(0.110)
$$

$$
=0.510-0.110=\left(0.0400 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}^{*} \mathrm{c}_{\mathrm{A}}\right)
$$

$$
=0.400 /\left(0.0400 \mathrm{~L} \mathrm{mmole}^{-1} \mathrm{~cm}^{-1} * 1 \mathrm{~cm}\right) \quad=\mathrm{c}_{\mathrm{A}}
$$

$\mathrm{C}_{\mathrm{A}}=10.0 \mathrm{mM}$ therefore concentration of Compound A is 10.0 mM .

Using multiple wavelengths in a Biochemical assay is fairly common.

\bullet An example of this is in determining the purity of DNA. Samples are measured at 260 nm and 280nm.

- Another example is the AlamarBlue assay which is used to determine cellular proliferation.

This takes measurements at 570 nm and 600 nm .

