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1. Introduction  

Logicism, as developed by Frege and Russell, is the thesis that pure mathematics is part of logic.1 

While the logicist thesis was a central doctrine in the philosophy of mathematics of the late 

nineteenth and early twentieth century, it did not present a uniform research project. Different 

scholars used the term “logicism” to describe different practices of reducing mathematical theories 

to higher-order logic or set theory.2 This holds true, in particular, of work by philosophers related 

to modern empiricism. Logicism presents one of the cornerstones of logical empiricism.3 At the 

same time, the views defended by Carnap, Hahn, and Hempel (among others) differ significantly 

from Frege’s and Russell’s original thesis.  

The present chapter will focus on several accounts of logicism developed in the main phase of 

logical empiricism between 1920 and 1940. The aim here is twofold. The first aim is to survey how 

Frege’s classical thesis was modified during the period in question. As we will show, this concerns 

not only a radically revised conception of the underlying logic, but also a new focus on non-

arithmetical mathematical theories to be reduced to logic. More specifically, philosophers such as 

Carnap aimed to formulate a generalized logicism valid for all branches of pure mathematics, 

including different theories of geometry, topology, and algebra. As we will see in section 3, his and 

 
1 This article presents an extended version of Schiemer, G., “Nonstandard logicism“, to appear in Uebel, 
T. (ed.), Handbook of Logical Empiricism, Routledge, (forthcoming). 
2 A more general study of the historical origins of logicism would have to consider also the “non-Fregean” 
line of early logicism, including the foundational work of Dedekind and Hilbert. See Reck’s chapter in the 
present volume as well as Sieg & Schlimm (2005) on Dedekind’s logicism. Compare Ferreirós (2009) on 
Hilbert’s early logicism. 
3 Compare, e.g., Goldfarb (1996), Friedman (1999), and Awodey & Carus (2007). 
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related accounts are best described as a form of conditional logicism based on an if-thenist 

reconstruction of mathematics.  

The second aim in this chapter is to clarify how the contributions to conditional logicism are related 

to other developments in the foundations of logic and mathematics at the time. One focus here will 

be Wittgenstein’s account of the tautological status of logic and the general significance of this 

view for the logical empiricists’ project. In particular, we will retrace how the shift from Frege’s 

and Russell’s “universalist” conception of logic to the view of logic as a system of tautologies led 

to a reformulation of the logicist thesis in work by Carnap. A second issue addressed here concerns 

Carnap’s continued attempts to reconcile classical logicism with a structuralist account of 

mathematical theories related to the rise of modern axiomatics. A third focus in section 4 will be 

on the question how the logicist thesis was reformulated in his subsequent work on the foundations 

of mathematics from the late 1930s (and thus after Gödel’s incompleteness results).  

 

2. Classical logicism and the type-theoretic tradition  

The history of classical logicism is well studied. The position is rooted in work on the foundations 

of mathematics in the nineteenth century, in particular, on the rigorization of number theory and 

analysis by Cantor, Weierstrass, and Dedekind (among others).4 Frege’s logicist project is often 

described as a direct continuation of this foundational work (see, e.g., Giaquinto (2002)). As is well 

known, Frege developed his program in several steps. He first introduced quantificational logic as 

the basis for the logicist reduction in his Begriffsschrift of 1879. Some years later, an informal 

characterization of the logicist thesis for arithmetic is outlined in Grundlagen der Arithmetik 

(1884). Based on a critical discussion of Mill’s and Kant’s respective views on the epistemological 

status of arithmetic, Frege presents here a new definition of the concept of natural numbers as well 

as the thesis that arithmetical notions are definable in pure higher-order logic. His main motivation 

for this reduction of arithmetic to logic is clearly an epistemological one: for Kant, all forms of 

mathematical knowledge, including arithmetic and geometry, consist of synthetic a priori truths 

 
4 Compare, in particular, Ferreirós (1999) and Grattan-Guiness (2000) for detailed historical studies of 
these developments.  
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and are thus grounded in pure intuition. Whereas Frege still upholds a version of this Kantian view 

in the case of geometry, his logicist reduction was to show, contra Kant, that the laws of arithmetic 

have an altogether different, namely purely analytic status.  

The technical details of the logicist program are eventually presented in Grundgesetze der 

Arithmetik (1893/1903). In particular, Frege introduces here a higher-order logic together with a 

naive set theory describing concept extensions. Frege’s central axiom on the logical behavior of 

such extensions of concepts is his notorious Basic Law V:  

𝑥"𝑃𝑥	 = 	 𝑥"𝑄𝑥	 ↔ 	∀𝑥(𝑃𝑥	 ↔ 	𝑄𝑥)	 

where ‘𝑃’ and ‘𝑄’ are second-order variables ranging over concepts and ‘𝑥"𝑃𝑥’ and ‘𝑥"𝑄𝑥’ are the 

extensions of concepts ‘𝑃’ and ‘𝑄’ respectively. This principle is essentially an axiom for 

unrestricted set abstraction: it states that any two concepts have same extension if they are 

equivalent. Together with the basic logical laws stated in the Begriffsschrift of 1879 as well as a 

rule of substitution (equivalent to a modern principle of second-order property comprehension), 

these axioms form Frege’s logical system.5  

Frege’s main objective in Grundgesetze is to present the technical details of  the logicist reduction 

of arithmetic first outlined in Grundlagen. Specifically, based on his explicit definitions of the 

natural numbers and the successor relation between numbers, it is shown how one can derive each 

axiom of the Dedekind-Peano axiom system from his system of basic logical laws. Unfortunately, 

as Russell first pointed out in 1902, Frege’s naive theory of classes based on Basic Law V turned 

out to be inconsistent. In particular, Russell’s famous paradox follows from the following instance 

of naive comprehension:  

∃𝑧∀𝑥	(𝑥 ∈ 𝑧	 ↔ 	𝑥 ∉ 𝑥)  

which stipulates the existence of a set that contains as members all sets that do not contain 

themselves as members.  

Contributions to logicism after the discovery of Russell’s and related paradoxes were usually based 

 
5 See, in particular, Heck (2012) for a detailed presentation of Frege’s logical system. 
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on the logical theory of types, a logical system first introduced in Appendix B of Russell’s 

Principles of Mathematics (1903) and then developed systematically in Russell’s & Whitehead’s 

landmark Principia Mathematica (1910-1913). The type theory presented in the three volumes is 

a higher-order logic describing a rich universe that is stratified into distinct types of objects. 

Moreover, the logical system presents an intensional logic given that each type is further ramified 

into different orders, where the order of an object is determined by the kind of formula defining it.6 

Now, Russell’s and Whitehead’s system of ramified type theory was simplified significantly in 

subsequent work by Carnap, Tarski, Ramsey, and Gödel (among many others). The simplification 

meant primarily that the original predicativist approach of partitioning type domains into objects 

of different orders was eventually dropped. Consequently, Russell’s “primacy of intensions” was 

given up in favor of purely extensional account of logic. 

A second, equally important modification of Russell’s original framework concerned the proper 

formalization of type-theoretic logic: for instance, the clear distinction between the syntax and the 

semantics of the logic, i.e. between the grammatical rules for a type-theoretic language on the one 

hand and its semantic interpretation on the other hand. While the specific interpretation of type 

theoretic languages varied from author to author, the general picture emerging in the late 1920s 

and early 1930s is that of type theory as a formal set theory, that is, a theory describing a rich 

universe of sets. Thus, far from being an ontologically neutral theory like first-order logic (as later 

suggested by Quine), type theory was conceived as a strong logic that describes a rich ontology of 

sets.7 

Simple type theory was arguably the standard logical system in the main period of logical 

empiricism. As Ferreirós put it, before the consolidation of first-order logic, and “as late as 1930 

type theory was still regarded by mathematical logicians as the most important and natural system 

of logic.” (Ferreirós 1999, p. 445). In cases where the logical principles of this system (in addition 

to the standard laws of propositional logic) were explicitly discussed, these usually include an 

axiom scheme for typed comprehension: 

 
6 Compare, e.g., Giaquinto (2002), Ferreirós (1999), and Schiemer (forthcoming). 
7 There are other modifications of type theory in the 1930s not discussed here, for instance, the extension 
of (finite) type theory to theories of transfinite types. See again Ferreirós (1999) for further details. 



 5 

∃𝑥!"#∀𝑥!(𝑥!"#(𝑥!) 	↔ 	𝜑(𝑥!)) 

for formulae not containing 𝑥!"#	free, for all types 𝑖 ∈ 𝜔.8 Informally speaking, the axiom states 

that every well-formed formula with variable 𝑥! 	determines a property or set of the objects the 

formula is true of. The second principle usually mentioned (by Tarski, Gödel, and others) is an 

axiom scheme of extensionality: 

∀𝑥!(𝑥!"#(𝑥!) 	↔ 	𝑦!"#(𝑥!)) 	→ 	𝑥!"# 	= 	 𝑦
!"# 

This axiom scheme states that properties or sets of a given type 𝑖 + 1 are identical if co-extensional. 

In Russell’s & Whitehead’s original presentation of ramified type theory in Principia Mathematica, 

three other axioms were taken to belong to the logical theory: a multiplicative axiom equivalent to 

the axiom of choice in set theory; an axiom of infinity; and the axiom of reducibility. 

How can the logicist project of representing arithmetic in logic be developed in simple type theory? 

One way to specify the reduction relation is in terms of the formal notion of interpretability.9 The 

interpretation of one theory into another is based on the notion of translation of one formal language 
into another formal language, usually defined as follows:  

Definition 1 A translation 𝜏 of a language 𝐿𝑆	into a language 𝐿𝑇 consists of (i) an 𝐿𝑇-formula 

𝛿(𝑥) and (ii) formulas 𝜑𝑅𝑖(𝑥1, . . . 𝑥𝑛) (for each primitive 𝑛-ary predicate 𝑅𝑖 in the language 𝐿𝑆) 

such that:  

1. (𝑅𝑖𝑥1…𝑥𝑛)
𝜏	 = 𝜑𝑅𝑖(𝑥1,… 𝑥𝑛) 

2. (𝑥 = 𝑦)𝜏
	
= (𝑥 = 𝑦)  

3. (¬𝜑)𝜏
	
= 	¬𝜑𝜏 

4. (𝜑 ∧ 𝜓)𝜏
	
= 𝜑𝜏 ∧ 𝜓𝜏

	
 

5. (∀𝑥𝜑)𝜏
	
= 	∀𝑥(𝛿(𝑥) → 𝜑𝜏) 

 
8 See, e.g. Gödel (1931). 
9 See, e.g., Burgess (2005), Walsh (2014), and Schiemer (forthcoming). As we will see in the next two 
chapters, this approach to treat the logicist thesis as an interpretability result is closely connected to 
Carnap’s account of logicism. 
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The formula 𝛿(𝑥)	presents a ‘domain formula’ in language 𝐿𝑇 for the variables occurring in 𝐿𝑆-

formulas. Formulas 𝜑𝑅𝑖(𝑥1, . . . , 𝑥𝑛) provide ‘interpretations’, within the language 𝐿𝑇, of the non-

logical terminology of the primitive terms of 𝐿𝑆. Given this notion of a translation, one can then 

define the notion of an interpretation as follows:  

Definition 2 A translation 𝜏 is an interpretation of theory 𝑆 in theory 𝑇 if for every formula 𝜑 such 

that 𝑆 ⊢ 𝜑, we have 𝑇 ⊢ 𝜑𝜏.  

Frege’s project of reducing arithmetic to higher-order logic is often described in the literature as 

an interpretability result of this form. Roughly speaking, it expresses the fact that (second-order) 

Dedekind-Peano arithmetic is interpretable in logical type theory. In particular, one can show that 

all arithmetical statements can be translated into logical statements  based on the Frege’s definitions 

of the primitive vocabulary ‘0’,‘successor’, and ‘being a natural number’ of Peano arithmetic. The 

translation of arithmetical statements into purely logical ones gives an interpretation in the above 

sense: for any statement in the language of Peano arithmetic, in symbols 𝜑 ∈ 	𝐿𝑃𝐴, if	𝑃𝐴 ⊢ 𝜑 

holds, we can show that 𝑇𝑇 ⊢ [𝜑(0, 𝑠, 𝑁)]𝜏 also holds.10 Arithmetic is thus reducible to type theory 

(possibly including Russell’s axioms of choice and infinity) if the former is interpretable in the 

latter.11  

 

3. Logical empiricism and conditional logicism  

Logical empiricism in the 1920s and 1930s was strongly shaped by debates on the epistemological 

status of mathematics and by logicism in particular. Kant’s traditional conception of mathematical 

principles as synthetic apriori truths was generally considered to be incompatible with a purely 

empiricist account of scientific knowledge. Logicism, in turn, provided twentieth-century 

empiricists with an alternative picture of the nature of mathematics which does not conflict with 

their general philosophical view. Compare Carnap in his “Intellectual Autobiography” on the 

general significance of the logicist thesis for the philosophers of the Vienna Circle:  

 
10 Compare again Burgess (2005, pp. 50-51). 
11 We will return to a slightly different notion of interpretability in section 5. 
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But to the members of the Circle there did not seem to be a fundamental difference between elementary 

logic and higher logic, including mathematics. Thus we arrived at the conception that all valid statements 

of mathematics are analytic in the specific sense that they hold in all possible cases and therefore do not 

have any factual content. What was important in this conception from our point of view was the fact that it 

became possible for the first time to combine the basic tenet of empiricism with a satisfactory explanation 

of the nature of logic and mathematics. (Carnap 1963, p. 46) 

Frege’s logicism thus provided the logical empiricists with a strategy to establish the purely 

analytic status of mathematical knowledge. Nevertheless, the above passage already indicates that 

the understanding of Carnap and others was in several ways different from the classical program 

outlined above.  

To characterize the logical empiricists’ account of logicism, two aspects should be mentioned here. 

First, given the discussion in the previous section, it is not surprising that the standard logical 

system used by philosophers working in Vienna at the time was also a version of Russell’s and 

Whitehead’s type-theoretic logic of Principia Mathematica. Carnap’s work from the 1920s and 

early 1930s contains important contributions to the simplification of type theory. In fact, his Abriss 

der Logistik (1929) can be viewed as one of the first textbooks of modern logic where a purely 

extensional version of type theory is presented in full detail. A second figure to mention in this 

respect is Hans Hahn, then head of mathematics department at the University of Vienna and one 

of the founders of the Vienna Circle. Like Carnap, Hahn was also an active proponent of Russell’s 

type-theoretic logic.12  

The second point to mention here is that the very understanding of logic changed radically in the 

period in question, mainly in reaction to Wittgenstein’s Tractatus Logico-Philosophicus (1922). 

Wittgenstein’s new conception of logic (already mentioned by Carnap in the passage above) can 

be characterized roughly as follows: logical laws are tautological in nature, that is, statements 

without factual content. Tautologies do not express facts about the world, but are statements true 

simply in virtue of their logical form. In Wittgenstein’s own words:  

The propositions of logic are tautologies. Therefore, the propositions of logic say nothing. (They are the 

 
12 Hahn taught a seminar on the logic of Principia Mathematica in Vienna in 1924/1925. See Uebel 
(2005) for a detailed study of Hahn’s work on logic and philosophy of mathematics.  
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analytic propositions.) All theories that make a proposition of logic appear to have content are false. (1922, 

6.1-6.111)  

Philosophers such as Schlick, Carnap, and Hahn fully embraced Wittgenstein’s new account of 

logic in their work from the 1920s and early 1930s.13 How did this fact impact on their view of 

logicism? In several published texts from the time, logicism is officially described in the classical 

Fregean sense. Compare, for instance, Carnap’s presentation of the thesis in his paper “Die 

Mathematik als Zweig der Logik”:  

The basic idea of logicism can be formulated as [the claim that] mathematics is a branch of logic. That 

means: there are no specifically mathematical, extra-logical basic concepts and basic propositions. The 

concepts of mathematics can be derived from the logical concepts, i.e., from concepts which are 

indispensable for the development of logic even in the ordinary, non-mathematical sense; the propositions 

of mathematics form a part of the logical propositions. (Carnap 1930a, p. 298)  

The general description of the program given here sounds very similar to Frege’s original position. 

However, Carnap’s account of the status of logical principles as tautologies clearly differs from 

Frege’s and Russell’s respective views. 

This fact is particularly interesting given that both Hahn and Carnap were aware that the attempt 

to extend the tautological character of elementary (i.e. propositional) logic to higher mathematics 

was in itself deeply problematic.14 Moreover, Wittgenstein himself not only rejected the logicist 

thesis in the Tractatus, there is also strong textual evidence that he did not take a higher-order 

system such as type theory to be properly logical in nature. For instance, he is clear on the point 

that Russell’s “existential” axioms of infinity, choice, and reducibility as well as set theory more 

generally should not be seen as a part of logic (see, in particular, his 5.535, 6.031, and 6.1232 in 

 
13 Compare again Carnap in his autobiography on the significance of the Tractatus for his own work: “The 
most important insight I gained from his work was the conception that the truth of logical statements is 
based only on their logical structure and on the meaning of the terms. Logical statements are true under all 
conceivable circumstances; thus their truth is independent of the contingent facts of the world. On the other 
hand, it follows that these statements do not say anything about the world and thus have no factual content.” 
(Carnap 1963, p. 25)  

14 Tarski, in his logical work from the 1930s, was also critical of the logical positivists’ use of the notion 
of tautology. See, for instance, his article “On the concept of logical consequence” of 1936: “(…) the 
concept of tautology (i.e. of a statement which ‘says nothing about reality’), a concept which to me 
personally seems rather vague, but which has been of fundamental importance for the philosophical 
discussions of L. Wittgenstein and the whole Vienna Circle.” (Tarski 1983, pp. 419-420).     
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the Tractatus).15  

One approach adopted by logical empiricists to defend type-theoretic logicism against this 

objection consists in a form of logical if-thenism. Roughly speaking, if-thenism is based on the 

reformulation of the theorems of a given mathematical theory as universally quantified conditional 

statements. Such statements contain a ramsified version of the relevant axioms in the antecedent 

and the ramsified theorem in the consequent. The general approach goes back to Russell and was 

first formulated systematically in Principia Mathematica. Compare Russell and Whitehead on the 

axiom of choice in volume I of the book: 

We have not assumed its truth in the general [non-finite] case where it cannot be proved, but have included 

it in the hypotheses of all propositions which depend upon it. (Russell and Whitehead 1910-13, Vol.1, p. 

504)  

More generally, in his Introduction to Mathematical Philosophy, Russell famously claims that the 

if-thenist manoeuvre must be applied to any axiom which is problematic from a logical point of 

view:  

(...) no principle of logic can assert “existence” except under a hypothesis (...) Propositions of this form, 

when they occur in logic, will have to occur as hypotheses or consequences of hypotheses, not as complete 

asserted propositions (...). (Russell 1919, p. 204)  

The original motivation for the if-thenist reconstruction was thus to find a way of reducing 

mathematics to logic in a way in which one does not have to assert the logical truth of Russell’s 

problematic axioms. The resulting conditional logicism was also embraced by several logical 

empiricists in order to address the problem of the non-tautological character of these axioms. In  

Carnap’s Abriss, following a discussion of the status of the axiom of choice, he holds that:  

If the axiom is not taken as a basic principle, these theorems can be formulated only as conditional 

propositions, as implications whose implicans is the axiom of choice. (Carnap 1929, §24b)  

 
15 A similar view is also expressed in Carnap’s work. For instance, in his Abriss der Logistik, he holds that: 
“The axiom of choice should not be included among the basic principles of logic, since its admissibility has 
been problematic. This is connected with its character as an existential assertion. However, the axiom is 
required in the proofs of certain theorems of set theory on transfinite powers (infinite cardinal numbers). 
(Carnap 1929, §24b) A similar verdict is adopted in the case of the axiom of infinity. 
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This Russellian approach is presented more explicitly in Carnap’s “The logicist foundations of 

mathematics”:  

[Russell] (...) transformed a mathematical sentence, say S, the proof of which required the axiom of infinity, 

I, or the axiom of choice, C, into a conditional sentence; hence S is taken to assert not S, but I ⊃ S or C ⊃ S, 

respectively. This conditional sentence is then derivable from the axioms of logic. (Carnap 1931, pp. 96)  

Interestingly, if-thenism was adopted by Carnap not only as a way to deal with the non-tautological 

character of several existential axioms of type theory. It was also used as a way to formulate a 

logicist thesis for non-arithmetical branches of pure mathematics. This is true, in particular, of 

Carnap’s attempts from the 1920s to reconcile classical logicism with the structural approach 

underlying modern Hilbertian axiomatics.16 Consider, for instance, Carnap’s early monograph Der 

Raum of 1922. Carnap distinguishes between three concepts of spaces in the book, namely between 

formal, intuitive, and physical space. Formal space, i.e. the subject matter of pure geometry in the 

sense studied also by Russell, is described here as an abstract “relational system” that can be 

specified in two ways. The first one is in terms of an axiom system in the style of Hilbert. Compare 

Carnap on this account of axiomatic geometry as a “pure theory of relations or order theory”:  

The object of this discipline is not space, i.e., the system of points, lines, and planes determined by 

geometrical axioms (...), but a “relational or structural system” determined by the formal axioms. As this 

represents the formal design of the spatial system, and turns into the spatial system again when spatial 

elements are substituted for indeterminate relata, it too will be called “space”: “formal space”. (Carnap 

1922, p. 8)  

An axiomatic theory does not describe a particular and independently accessible domain but rather 

an abstract structure shared by all systems that satisfy its axioms.  

The second approach discussed in the book is more closely connected to the logicist approach. This 

is the idea to explicitly define a geometrical space in purely logical terms or based on a “logical 

construction”. A formal space, according to Carnap, is what is definable in higher-order logic:  

 
16 Carnap’s approach is again strongly influenced by Russell’s preceding work on an if-thenist 
reconstruction of geometrical theorems first presented in Principles of Mathematics (1903). See, in 
particular, Musgrave (1977) and Gandon (2012) for further details of Russell’s position. 
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The construction of formal space can also be undertaken by a different path, however, not just by the above 

way of setting up certain axioms about classes and relations: by deriving (ordered) series and, as a special 

case, continuous series from formal logic, the general theory of classes and relations. (Carnap 1922, p. 8)  

Thus, Carnap envisages two distinct but equivalent approaches to characterize the subject matter 

of theories of pure geometry, namely (i) in terms of implicit definitions through an axiom system 

and (ii) in terms of explicit constructions in a logical system. This duality of methods clearly 

reflects Carnap’s above mentioned attempt to synthesize a Fregean (or Russellian) foundational 

stance with Hilbert’s modern axiomatic approach (see, in particular, Awodey & Carus (2001) and 

Reck (2004)).  

It should be noted here that the logical background system used for such constructions in geometry 

was not yet made precise in 1922. Nevertheless, the two approaches to study pure mathematics are 

still present in Carnap’s later work on “general axiomatics” from the late 1920s. Here, the 

formalization of mathematical theories is expressed in a fully specified logical type theory. For 

instance, Carnap gives a type-theoretic formalization of several axiomatic theories in his Abriss 

der Logistik. He argues here that there are two ways in which axiom systems can be understood, 

namely as fully interpreted or as schematic. In the first case, mathematical primitives should be 

treated as non-logical constants with a fixed semantic interpretation. In the second reading, 

axiomatic theories are to be treated as formal (in roughly the modern sense of the term). Its 

primitive terms are thus non-interpreted and can be expressed by higher-order variables. More 

specifically, according to Carnap, axiom systems can be formalized in the language of simple type 

theory in the following way: the primitive terms of a theory are expressed as variables (of a given 

arity and type). The axioms, axiom systems and theorems, in turn, are expressed as sentential 

functions.  

Given this approach, Carnap argues that an axiomatic theory gives an explicit definition of a higher-

level concept, the “Explizitbegriff” of an axiom system. Put in modern terms, this is simply the 

class of models satisfying the theory. In Carnap’s own terms:  

For instance, if 𝑥, 𝑦, . . . 𝛼, 𝛽, . . . 𝑃, 𝑄, . ..	are the primitive variables of the AS and if we name the conjunction 

of axioms (that is a propositional function) 𝐴𝑆(𝑥, 𝑦, . . . 𝛼, 𝛽, . . . 𝑃, 𝑄, . . . ), then the definition of the explicit 

concept of this AS is:  
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𝑥/, 𝑦/, . . . 𝛼/, 𝛽0, . . . 𝑃1, 𝑄1, . . . {𝐴𝑆(𝑥, 𝑦, . . . 𝛼, 𝛽, . . . 𝑃, 𝑄, . . . )}	(Carnap 1929, p. 72)17 

Two comments are in order here. First, Carnap’s idea to describe the content of an axiom system 

in terms of an explicit concept (or rather its extension) is clearly motivated by Frege’s critical 

analysis of Hilbert’s axiomatics. Frege, in his correspondence with Hilbert and in subsequent 

writings, famously argued that an axiom system cannot be understood as an implicit definition of 

first-level concepts, but rather as an explicit definition of second-level or higher-level concepts. 

Precisely this idea, with which Carnap was well acquainted with from his time as a student of 

Frege’s lectures in Jena, is presented in Abriss in the framework of a type-theoretic logic.18  

Secondly, Carnap’s formalization of axiomatic theories gives rise to an alternative, weakened form 

of the logicist thesis. In particular, given the ramsification of theories, the explicit concept 

corresponding to any axiom system is clearly a logical concept  since it can be expressed in purely 

logical terms. It follows from this that any theory reconstructed in this way turns out to be logical 

in character. Compare again Carnap on this point:  

(...) the explicit concept of a geometrical AS, e.g. an AS of projective geometry presents the logical concept 

of the relevant type of space (e.g. the concept “projective space”). In this sense geometry can also be 

represented as a branch of logistic itself (as arithmetic) instead of being a case of application of logistics to 

a nonlogical domain. (Carnap 1929, p. 72)  

In a related paper titled “Proper and improper concepts” (1927), Carnap further discusses how his 

understanding of mathematical theories is related to the conditional logicism described above. 

Given that the mathematical primitives of a theory are not defined explicitly, but only implicitly 

through an axiom system, they refer to so-called ‘improper’ concepts and should therefore be 

 
17 Carnap discusses a number of mathematical axiom systems in his book to illustrate this account. His 
examples include formalizations of different projective geometries, of set theory, of Peano arithmetic, as 
well as of Hausdorff’s topological neighborhood axioms. 

18 Compare, e.g., Carnap’s notes based on Frege’s lecture “Logic in mathematics” of 1914, in particular 
(Awodey & Reck 2014, pp.164-166). Carnap has also read and commented on Frege’s two articles titled 
“The foundations of geometry” (1903) in which the understanding of axiom systems as definitions of 
second-level concepts is developed in closer detail. This can be seen from two shorthand notes with 
comments on Frege’s papers written by Carnap in 1921 and documented in Carnap’s Nachlass (ASP/RC 
081-28-01).  

 



 13 

symbolized by (free) variables. Mathematical axioms and theorems containing them are hence open 

formulas and not statements. However, again following Russell in this respect, Carnap argues that 

the real content of a theorem can be expressed in terms a quantified conditional statement that 

contains the ‘explicit concept’ of an axiom system in antecedent:  

Are the propositions of (Peano) arithmetic or (Hilbert) geometry then not sentences? After all, they contain 

symbols for improper concepts, thus variables. As they stand, indeed, they are not sentences, but rather 

functional expressions. But they serve as very effective abbreviations for proper sentences on the basis of 

an implicit convention. A sentence-like expression of this kind, in which variable symbols of a given AS 

occur, is to be taken as short for the sentence that looks like this (...): first comes a universal prefix containing 

all the variables of the AS and which applies to the entire implication, then comes the symbol for the logical 

product of the axioms of the AS as antecedent, and finally comes the sentence-like expression at issue as 

the consequent. The variables thus occur here only as apparent variables. (Carnap 1927, p. 371) 

The “implicit convention” described here is precisely the if-thenist translation of mathematical 

statements indicated above. Theorems of mathematical theories such as Peano arithmetic or 

Hilbert’s Euclidean geometry can thus be translated into purely logical statements of the following 

form:  

∀𝑥, 𝑦, . . . 𝛼, 𝛽, . . . 𝑃, 𝑄, . . . [𝐴𝑆(𝑥, 𝑦, . . . 𝛼, 𝛽, . . . 𝑃, 𝑄, . . . ) 	→ 	𝜑(𝑥, 𝑦, . . . 𝛼, 𝛽, . . . 𝑃, 𝑄, . . . )]	 

The variables 𝑥, 𝑦, . . . 𝛼, 𝛽, . . . 𝑃, 𝑄, . .. present the “primitive signs” of the theory in question, AS 

presents the conjunction of the universally ramsified axioms, and φ the ramsified theorem 

considered.19  

 

19 Interestingly, the same if-thenist reconstruction of mathematics is also present in philosophical writings 
of other logical empiricists. Compare, for instance, Hahn (1930) on a general “logization of geometry”: 
“Every theorem of geometry thus appears as a (tautological) implication 𝑃 → 𝑄 whose antecendent is the 
logical product of the axioms and whose consequent 𝑄 is the theorem in question. The axioms no longer 
appear here as self-evident but non-provable truths, but as stipulations from which one can deduce: the 
primitive concepts no longer appear as elements that cannot be further reduced by definition, but are 
immediately perceivable trough intuition, but rather as logical variables. Given that every single axiom is 
a relation between the variables representing the primitive concepts, it follows that geometry appears as a 
special chapter of the theory of relations, as an investigation of certain special relational systems.” (Hahn 
1930, p. 44) A similar discussion of this form of if-thenist reconstruction of mathematical theories is 
discussed in Hempel’s classic article “On the nature of mathematical truth” from 1945. 
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Generally speaking, there are two important reasons for Carnap and other logical empiricists to 

adopt this form of if-thenism. The first one is to express in purely logical terms the structural 

character of axiomatic theories.  As is well known, the development of modern axiomatics brought 

with it a model-theoretic conception of theories: axioms and mathematical theorems deducible 

from them are not merely true in an intended interpretation, but they hold in any model or structure 

that satisfies the primitive structural properties expressed in the axioms. Moreover, from a 

mathematical point of view, neither one of these structures is preferable to another one. This model-

theoretic generality (i.e. the generalization over all possible interpretations of a theory) is certainly 

characteristic of modern axiomatic mathematics. In Carnap’s work, it is expressed logically in 

terms of the symbolic representation of primitive mathematical signs in terms of variables.  

Carnap’s second motivation for his if-thenism was to develop an alternative to classical (i.e. 

arithmetical) logicism. This is established by the fact that a mathematical statement can always be 

translated into a purely logical statement by the methods of universal ramsification and 

conditionalization.20 Generally speaking, we can understand this approach to reduce mathematical 

theories (including non-arithmetical ones) to a logical system as a kind of “if-thenist logicism”. 

The position is aptly characterized by Musgrave in terms of two conditions:  

(1*) All mathematical statements can be translated into purely logical ones, namely as quantified conditional 

statements with a conjunction of ‘mathematical axioms’ as antecedent and a ‘mathematical theorem’ as 

consequent.  

(2*) All true mathematical statements can be deduced from logical axioms. (Musgrave 1977, pp. 117-118)  

Taken for itself, the first condition expresses a kind of “language logicism” in the sense that all 

“mathematical sentences can be paraphrased in such a way that they contain no non-logical 

vocabulary”  (Rayo 2005). Notice that this form of the logicist reduction can also be expressed in 

terms of the notion of translation presented in section 2. Thus, condition (1*) suggests a syntactic 

 
20 Consider another example given in Carnap’s Abriss, namely Hausdorff’s theory of topological spaces. As 
he shows, any theorem of that theory is thus best translated into purely logical statements of the form 
∀𝑋(ℎ𝑎𝑢𝑠𝑑(𝑋) → 𝜑(𝑋)) (where ℎ𝑎𝑢𝑠𝑑(𝑋)	presents the logical product of the topological neighborhood 
axioms). Since both concept ℎ𝑎𝑢𝑠𝑑 and the statement 𝜑 are universally ramsified here, the conditional 
statement is a purely logical statement in the language of type theory.  
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translation 𝜏 that maps each theorem 𝜑 of a mathematical theory 𝐴 expressible in a mathematical 

language 𝐿 (with a given mathematical signature 𝑅P⃗ ) to purely logical statement of the form:  

[𝜑(𝑅P⃗ )]𝜏
	
= 	∀�⃗�(𝐴(�⃗�) → 𝜑(�⃗�))	

The translation [𝜑]𝜏 presents the universal ramsification, i.e. the result of uniformly substituting 

variables of the appropriate type for all non-logical primitives in conditional formula (𝐴 → 𝜑).  

Now, conditional logicism is usually considered to be a stronger thesis than language logicism. As 

pointed out by Musgrave and others, it is accompanied by a second thesis, namely that all 

mathematical statements so reconstructed are derivable within the logical system. This can be 

viewed as a form of “consequence logicism” (Rayo (2005)). Thesis (2*) thus states that the if-

thenist translation is also theorem-preserving, i.e. that [𝜑]𝜏 is provable from the logical axioms if 

𝜑 is deducible from theory 𝐴. The translation τ thus forms an interpretation of a mathematical 

theory 𝐴 in type theory 𝑇𝑇 in the sense specified in section 2: for every 𝜑 such that 𝐴 ⊢ 𝜑, we have 

𝑇𝑇 ⊢ 𝜑𝜏.  

Returning to Carnap’s work: while a clear exposition of condition (2∗) is missing in his published 

work from the time, one can find indirect textual evidence in related unpublished work that he 

understood the logicist thesis precisely in this form of conditional logicism. In particular, Carnap’s 

Untersuchungen manuscript (Carnap 2000) contains his most systematic discussion of the modern 

axiomatic method. Carnap presents here a general method of formalizing axiomatic theories as well 

as several metatheoretical concepts in a logical “basic system” (“Grunddisziplin”). What is relevant 

in the present context is that the manuscript contains also a version of if-thenism in the above sense. 

More specifically, the notions of theorems (“Lehrsätze”) and of “logical consequence” are 

introduced here in the following way: a sentence g is a consequence of an axiom system f if the 

purely logical statement ∀𝑋(𝑓(𝑋) → 𝑔(𝑋)) holds in the type-theoretic basic system. Logical 

consequence is thus specified here in terms of the material conditional, or more precisely, in terms 

of a quantified conditional statement expressible in the purely logical language of the basic system. 

Notice that this logical reconstruction clearly suggests the kind of conditional logicism specified 

above. Not only are mathematical theorems expressible in purely logical terms. These logical 

translations should also be valid in the underlying logical system. This latter condition is clearly a 

version of condition (2*) stated above.  
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It is a matter of scholarly debate how the primitive notion of truth in the basic (type-theoretic) 

system was understood by Carnap anno 1928. One understanding explicitly mentioned by him in 

a related paper refers to Wittgenstein’s notion of a tautology:  

(…) ‘consequence’ of f, if f generally implies g: ∀𝑅(𝑓𝑅 → 𝑔𝑅), abbreviated: 𝑓	 → 	𝑔. The consequence is, 

as is the AS, not a sentence, but a propositional function; only the associated implication f → g is a sentence, 

namely a purely logical sentence, thus a tautology, since no nonlogical constants occur. (Carnap 1930b, p. 

304)  

As we saw above, it is notoriously unclear how Wittgenstein’s notion of a tautological truth can be 

extended to apply also to statements of logical type theory. A second, more promising approach is 

to interpret the notion of “holding in type theory” purely syntactically, namely as being derivable 

from the logical axioms of the logical system. There is again indirect textual evidence for such as 

reading as well. In particular, after presenting his notion of logical consequence in (Carnap 2000), 

Carnap goes on to argue that the notion of logical consequence should not be conflated with 

Hilbert’s notion of “derivability in a formal system”. More specifically, Carnap holds that while “g 

follows from f ” and “g is derivable from f in the basic system” are not identical, they are equivalent 

notions (Carnap 2000, p. 92). Now, in light of the incompleteness of higher-order logic, Carnap’s 

argument and the intended equivalence result turned out to be false. However, his discussion is 

based on a correct version of the deduction theorem for such systems which is also relevant in the 

present context. In his own terminology, if a proposition 𝑔 can be formally deduced from the axiom 

system 𝑓, then the statement ∀𝑋(𝑓𝑋 → 𝑔𝑋) is deducible from the principle of type theory, and 

conversely.  

This result allowed Carnap to assume a version of “consequence logicism” that is comparable to 

the standard logicist thesis that all arithmetical theorems are deducible from purely logical ones. 

At the same time, this account is certainly weaker than Frege’s original logicism. There are two 

central differences: first, consequence logicism does not require the logicist definitions of the 

primitive terms of a mathematical theory in a pure higher-order language. As Carnap pointed out 

in his Abriss, the only thing that is explicitly defined by an axiomatic theory is a higher-level 

property, namely the property (or class) of its models. Second, what is also missing in the account 

is the requirement that mathematical axioms can be derived from purely logical principles. In 

contrast, what the present account of conditional logicism effectively shows is that all proofs of 
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theorems can be expressed in a type-theoretic framework. Thus, for any mathematical theory 𝑆 and 

every statement 𝜑 in the language 𝐿𝑆, the following equivalence can be established:  

𝑇𝑇 ∪ {𝑆} ⊢ 𝜑	 ⇔ 	𝑇𝑇 ⊢ ∀�⃗�(𝑆(�⃗�) → 𝜑(�⃗�))	

Thus, for every theorem 𝜑 of theory 𝑆, the universal ramsification of the conditional statement 

(𝑆 → 𝜑) can be derived from the logical principles alone. 

 

4. The logicist thesis and semantic interpretability 

While classical logicism lost much of its popularity as a foundational approach in the 1930s (mainly 

as a consequence of Gödel incompleteness results), it remained an important topic in subsequent 

work by philosophers affiliated with logical empiricism. This is true, in particular, of Carnap’s 

contributions from the late 1930s.21 His monograph Foundations of Logic and Mathematics (1939) 

contains a detailed discussion of the logicist reduction of mathematics to higher-order logic. The 

book is particularly interesting since it marks the starting point of Carnap’s work on formal 

semantics, eventually culminating in three Series in Semantics volumes published in the course of 

the 1940s. What is characteristic of Carnap’s account in 1939 is that the purely syntactic approach 

of Logical Syntax of Language (1934) is complemented by a semantic analysis of the languages of 

logic and mathematics (as well as of theoretical languages used in the physical sciences). 

Specifically, the scope of the metatheoretic study of mathematical languages is extended here from 

a pure “syntax theory” (as developed in detail in Logical Syntax) to a systematic exposition of 

different semantic systems used for the interpretation of such languages. Consequently, Carnap’s 

central notion of analyticity (or 𝐿-truth) is defined now in a semantic way, based on the notion of 

truth relative to a semantic system.22  

It is against the background of this new framework that the logicist thesis is addressed again by 

 
21 See, in particular, Bohnert (1975) for a detailed study of the different forms of logicism defended by 
Carnap throughout his intellectual career. 
22 Very roughly, a statement of a given semantical system 𝑆 is logically true (or 𝐿-true) if its truth can be 
determined solely on the basis of the semantical rules of S. See Carnap (1939, §1.7). Compare also 
Koellner (unpublished) for more detailed discussions of Carnap’s book. 
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Carnap, now in a decidedly semantic form. Sections 16 and 17 of the book deal with so-called 

“Non-logical Calculi (Axiom systems)”, i.e. mathematical theories presented in axiomatic form. As 

Carnap argues, such theories usually consist of two parts, namely a logical calculus and a ‘specific’ 

mathematical calculus. The logical calculus presented here is a higher-order logic similar to the 

system of simple type theory discussed above. An example of an ‘elementary’ mathematical 

calculus that Carnap discusses is a version of second-order Peano arithmetic with a full induction 

(henceforth PA). As he points out, this theory has an intended or “customary” mathematical 

interpretation, which he describes as follows:  

The customary interpretation of the Peano system may first be formulated in this way: ‘𝑏’ designates the 

cardinal number 0; if ‘…’ designates a cardinal number 𝑛, then ‘…´’designates the next one, i.e., 𝑛 + 1; 

‘𝑁’ designates the class of finite cardinal numbers. Hence in this interpretation the system concerns the 

progression of finite cardinal numbers, ordered according to magnitude. (Carnap 1939, p. 40)  

Carnap’s central contribution in the section is to show how Peano arithmetic can be reduced to the 

higher-order logic in a roughly Fregean sense. Interestingly, the logicist reduction is described here 

as an interpretability result (in the technical sense of the term) that is comparable to the kind of 

type-theoretic logicism outlined in section 2. However, in Carnap’s Foundations, the notion of 

interpretability is not merely understood syntactically, i.e. in terms of the notion of formal 

provability, but also semantically, in terms of the construction of an interpretation (understood as 

a semantic system) based on the “translation” of the arithmetical calculus in the higher logical 

calculus.  

The notion of a translation between calculi presented in Carnap (1939) corresponds roughly to the 

modern definition of the interpretation of a theory into another one specified above (see ibid., p. 

40). As we saw, the latter notion is based on a translation function between the formulas of two 

formal languages that preserves their logical structure as well as the theorems of the interpreted 

theory. Interestingly, Carnap argues that such a theorem-preserving (in his terminology, a 𝐶-true) 

translation of this form also allows one to construct new ‘interpretations’ for the calculi in question. 

Compare his description of this translation-based method of model construction:  

If we have an interpretation	𝐼!, for the calculus 𝐾!, then the translation of 𝐾" into 𝐾! determines in 

connection with 𝐼! an interpretation 𝐼" for 𝐾". 𝐼" may be called a secondary interpretation. If the translation 
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is 𝐶-true and the (primary) interpretation 𝐼! is true, 𝐼" is also true. (ibid, p. 40)23  

Paraphrased in modern terms, Carnap’s idea seems to be roughly this: an interpretation (in the 

modern sense of the term) of theory 𝑇 in theory 𝑆 based on a translation of language 𝐿$ in language 

𝐿% allows one to construct a model of 𝑇 based on a given model of 𝑆. More specifically, one can 

say that an 𝐿$-structure 𝑀 is interpretable in a 𝐿%-structure 𝑁 in this sense if 𝑀	is definable (in the 

model-theoretic sense) in 𝑁, that is, if the domain, the relations, functions, and distinguished 

individuals of 𝑀 are definable in 𝑁.24  

Given this general method of model construction, Carnap shows how it can be applied to the 

program of reducing the arithmetic to higher-order logic. The logicist reduction is presented here 

in terms of the construction of a purely logical interpretation of PA based on the translation of the 

language of PA into a pure higher-order calculus. Compare again Carnap on this approach:  

We shall now state rules of translation for the Peano system into the higher functional calculus and thereby 

give a secondary interpretation for that system. The logical basic calculus is translated into itself; thus we 

have to state the correlation only for the specific primitive signs. As correlates for ‘𝑏’, ‘´’, ‘𝑁’, we take ‘0’, 

‘+’, ‘finite cardinal number’, for any variable, a variable of two levels higher. (ibid., pp. 40-41)  

The translation mentioned above is based on the well-known logicist definitions of the primitive 

arithmetical vocabulary in purely logical terms. These bridge definitions allow one to represent the 

axioms of arithmetic as purely logical statements. Moreover, as Carnap shows, the same syntactic 

translation also allows one to construct a purely logical version of the ‘customary interpretation’ 

of PA as a subsystem of the standard or “normal interpretation” of the logical calculus. Given this 

genuinely semantic approach of reinterpreting arithmetic in a ‘secondary’, purely logical 

interpretation, Carnap then specifies the logicist thesis in the following way:  

If we assume that the normal interpretation of the logical calculus is true, the given secondary interpretation 

for the Peano system is shown to be true by showing that the correlates of the axioms are 𝐶-true. And it can 

 
23 To say that a translation is 𝐶-true means for Carnap that the translation determines an interpretation (in 
the modern sense of the term) of 𝐾" in 𝐾!. See ibid, p. 40. 

24 See, e.g., Walsh (2014) for a more detailed discussion of the notion of semantic interpretability.  
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indeed be shown that the sentences P1-5 are provable in the higher functional calculus, provided suitable 

rules of transformation are established. As the normal interpretation of the logical calculus is logical and 𝐿-

true, the given interpretation of the Peano system is also logical and 𝐿-true. (ibid, p. 41)  

Carnap’s line of reasoning can be recast in modern terms as follows: A mathematical theory can 

be shown to be reducible to logic if it is true in a purely logical model. Given that the higher-order 

logical calculus (henceforth HOC) is true in the intended logical universe, say 𝑉, and that there 

exists an interpretation of PA into HOC that allows the construction of a logical model 𝑀 of PA as 

a model interpretable in 𝑉, it follows that PA is reducible to logic. More generally, what is shown 

here is an interpretability argument of the following form: if a mathematical theory 𝑇 is 

interpretable in HOC, then the underlying translation function allows one to construct a model of 

𝑇 within the intended universe of HOC. Since this universe is purely logical and theory 𝑇 is 

interpretable in HOC, it follows that 𝑇 also has a purely logical interpretation.  

Given Carnap’s arithmetical logicism in Foundations of 1939, two further points of commentary 

should be made here. First, his technical presentation of the thesis obviously differs in several 

respects from the classical thesis of Frege and Russell. In particular, Carnap explicitly describes 

the logicist reduction of arithmetic to higher-order logic (or type theory) as an interpretability 

result, based on the notion of a theorem-preserving translation of one calculus into another one. 

Moreover, as we saw, his account is decidedly semantic in nature: as he points out, the 

interpretation of one axiomatic theory in another one is complemented by an additional semantic 

constraint, namely the fact that this interpretation also gives a uniform way to construct a model of 

the interpreted theory. Thus, according to this particular logicist thesis, a theory like PA is reducible 

to a logical theory such as HOC if (i) PA is interpretable in HOC and (ii) the standard model of PA 

is semantically interpretable in the logical universe of HOC.25  

This form of ‘interpretational’ logicism clearly echos Carnap’s general focus on axiomatic 

mathematics and can thus be traced back to his work on general axiomatics from the 1920s. In fact, 

one can identify a similar (however less explicit) form of interpretational logicism in his pre-

semantical work from the time. For instance, in the discussion on the foundations of mathematics 

 
25 Compare again Walsh (2014) for a more systematic discussion of arithmetical logicism and different 
version of interpretability.  
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at the famous Königsberg meeting in 1930, based on his talk on the logicist foundations of 

mathematics, Carnap gives the following well-known remark on the “logical analysis of the 

formalistic system(s)”:  

(1) For every mathematical sign one or more interpretations are found, and in fact purely logical 

interpretations.   

(2) If the axiom system is consistent, then upon replacing each mathematical sign by its logical 

interpretation (or one of its various interpretations), every mathematical formula becomes a 

tautology.   

(3) If the axiom system is complete (...), then the interpretation is unique; every sign has exactly one 

interpretation, and with that the formalist construction is transformed into a logicist one. (Hahn and 

al. 1931, pp. 143-144)   

This characterization of the logicist thesis based on the interpretation of axiomatically defined 

primitive terms already anticipates Carnap’s position in Foundations of 1939. The basic idea 

already expressed in 1930 is that a mathematical theory, presented in axiomatic form, can be 

described as a branch of logic if one can construct a “purely logical interpretation” of it.  

The second point to mention here concerns the scope of Carnap’s logicism. While his discussion 

in Foundations is restricted primarily to the case of elementary arithmetic, he makes clear in later 

sections of the book that all other theories of pure mathematics can also be reduced to higher-order 

logic. In particular, he explicitly mentions in §18 that different “higher mathematical calculi”, e.g. 

that of real analysis, can be reduced to Peano arithmetic and hence also to the logical calculus in 

question.26 In §21, Carnap turns to a detailed discussion of “geometrical calculi and their 

interpretations”. Geometrical theories are usually presented in axiomatic form according to him. 

While the customary interpretation of such systems is “descriptive” and thus empirical, Carnap 

points out that also purely logical interpretations can be constructed for them, based on the 

translation of geometrical terms into terms of real analysis. Given that real analysis can be reduced 

to arithmetic and thus to logic in the sense outlined above, it follows that a purely “logico-

mathematical interpretation” can be given for geometry as well. Compare Carnap on this point:  

Of especial importance for the development of geometry in the past few centuries has been a certain 

 
26 It should be noted here that Carnap’s claim that real analysis can also be reduced to type-theoretic logic 
is contentious and currently under discussion. I would like to thank a reviewer for emphasizing this point.  
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translation of the geometrical calculus into the mathematical calculus. This leads, in combination with the 

customary interpretation of the mathematical calculus, to a logical interpretation of the geometrical calculus. 

The translation was found by Descartes and is known as analytic geometry or geometry of coordinates. ‘𝑃!’ 

(or, in ordinary formulation, ‘point’) is translated into ‘ordered triple of real numbers’; ‘𝑃#’ (‘plane’) into 

‘class of ordered triples of real numbers fulfilling a linear equation’, etc. The axioms, translated in this way, 

become 𝐶-true sentences of the mathematical calculus; hence the translation is 𝐶-true. On the basis of the 

customary interpretation of the mathematical calculus, the axioms and theorems of geometry become 𝐿-true 

propositions. (ibid, pp. 53-54) 

Thus, as was originally shown in Hilbert’s Grundlagen der Geometrie (1899), axiomatic Euclidean 

geometry can be interpreted in a purely analytic model. Given that analysis can be reduced to logic, 

it follows that a purely “logico-mathematical interpretation” can be given for geometry as well.  

These remarks clearly show that Carnap’s approach in Foundations is closely connected to his pre-

Syntax work on logicism and general axiomatics. Specifically, his version of the logicist thesis 

given in 1939 corresponds closely to classical type-theoretic logicism, complemented by a 

semantic claim, namely, that the logicist translation of the language of arithmetic into a purely 

logical language also allows one to construct a purely logical model of PA. Now, one can view the 

semantic version of his interpretational logicism as Carnap’s most systematic attempt to ‘reconcile’ 

the traditional logicist thesis with formalism or with the axiomatic approach in mathematics. At the 

same time, it is also evident that he upheld a more deflationist account of logicism in 1939 (that is 

also in spirit with his scattered remarks on the topic in his Logical Syntax of 1934). In particular, 

in §20 of the book, he argues that the former controversy between the foundational doctrines 

logicism and formalism “has at present lost much of its former appearance of importance” (ibid., 

p. 49). This is mainly due to the fact that both the axiomatic and the logicist approach are 

compatible with each other and should thus no longer be subject to philosophical dispute.  

 

5. Conclusion  

This article showed that Frege’s classical logicism was subject to a number of transformations in 

the work of logical empiricists throughout the 1920s and 1930s. The focus here was on three 

contributions. Based on a brief account of the development of the classical type-theoretic logicism, 
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we first surveyed how the logicist thesis was understood by Carnap in the course of the 1920s. As 

we saw, his contributions to the reduction of mathematics to logic were strongly influenced by 

Wittgenstein’s Tractatus-view of the tautological nature of logical truths. This new conception of 

logic, paired with a sustained critique of the existential and thus non-logical character of the type-

theoretic axioms of choice, infinity, and reducibility, led Carnap and others to develop a version of 

‘conditional’ logicism, first outlined in Russell’s and Whitehead’s Principia Mathematica.  

The second development analyzed in the article concerns the application of conditional logicism 

to non-arithmetical fields of mathematics. Carnap, in his work on general axiomatics, presented a 

precise account of a generalized logicist thesis based on two steps: (i) the type-theoretic 

formalization of axiomatic theories of different branches of mathematics and (ii) an if-thenist 

reconstruction of mathematical theorems. Concerning the latter, he argued that all theorems can be 

translated into quantified conditional statements where the mathematical primitives are substituted 

by variables of the correct type. As we saw, Carnap’s if-thenism can also be viewed as a form of 

conditional logicism that aims to reconcile Frege’s original thesis with a structuralist account of 

modern axiomatics.27  

Finally, we surveyed how logicism was further developed in Carnap’s work from the 1930s, that 

is, after his involvement in the Vienna Circle. Our focus here was on his re-adoption of classical 

logicism in Foundations of Logic and Mathematics, the first book belonging to his post-syntactic 

or semantic period. As we saw, Carnap  explicitly formulated the reduction of arithmetic to higher-

order logic in terms of an interpretability result in this book. Classical arithmetical logicism is 

usually expressed in terms of the syntactic interpretability of arithmetic in higher-order logic. 

However, as Carnap first showed in 1939, it can also be recast as a genuinely semantic result: 

arithmetic is reducible to logic if the standard model of the natural number can be constructed 

within the type theoretic universe. 
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preceding views on logicism and axiomatics from the 1890s. See Ferreirós (2009) on Hilbert’s early 
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