ENEE626: Error-Correcting Codes

Instructor: Alexander Barg
Notes by: Randolph Baden
Lecture 21 (11/19/05): Error probability of decoding for a linear code with known weight distribution

Error probability of decoding

Let $C[n, k, d]$ be a binary linear code which can correct up to $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ errors.
Let \mathbf{c} be the transmitted vector. Recall from Theorem 3.5 that the set of correctable errors for a linear code does not depend on the vector being transmitted. Therefore, without loss of generality we will assume that $\mathbf{c}=0$.

Error Events for a $B S C(p)$ with received vector $\mathbf{r}=\mathbf{c}+\mathbf{e}$:

1. If $\mathrm{wt}(\mathbf{e}) \leq t$, then \mathbf{r} is always decoded correctly. The probability $\operatorname{Pr}[\mathrm{wt}(\mathbf{e}) \leq t]$ equals

$$
P_{\text {corr }}(C)=\sum_{i=0}^{t}\binom{n}{i} p^{i}(1-p)^{n-i}
$$

Figure 1: $P(\mathrm{wt}(\mathbf{r})=e \mid \mathbf{c}=\mathbf{0})=p^{e}(1-p)^{n-e}$ on a $B S C(p)$
2. If $\mathrm{wt}(e)>t$ then two situations are possible, as shown in Figure 2.
(a) $\nexists \mathbf{c} \in C$ with $d(\mathbf{c}, \mathbf{r}) \leq t$. In this case there is no decoding result - this is an erasure.
(b) $\exists \mathbf{c} \in C$ with $d(\mathbf{c}, \mathbf{r}) \leq t$. \mathbf{c} is the decoding output - this is a decoding error/miscorrection.

Letting $P_{e}(C)$ be the probability that the decoding result is a miscorrection and $P_{x}(C)$ be the probability that the decoding result is an erasure, we see that:

$$
P_{e}(C)+P_{x}(C)=1-P_{\text {corr }}(C)=\sum_{i=t+1}^{n}\binom{n}{i} p^{i}(1-p)^{n-i} .
$$

Since erasures are not as serious as miscorrections in some cases, we would like to separate the erasure and miscorrection probabilities.

Let $\left\{A_{0}=1, A_{d}, A_{d+1}, \ldots, A_{n}\right\}$ be the weight distribution of C, where $A_{i}=|\{\mathbf{c} \in C, \operatorname{wt}(\mathbf{c})=i\}|$.
We would like to find $P_{e}(C)$, given by

$$
P_{e}(C)=\sum_{w=d}^{n} \sum_{\substack{\mathbf{c} \in C \\ \operatorname{wt}(\mathbf{c})=w}} \sum_{e=w-t}^{w+t} \mathbf{P}\left(S_{e}(\mathbf{0}) \cap B_{t}(\mathbf{c})\right)
$$

where $S_{e}(0)$ is the sphere of radius t around $\mathbf{0}$ and $B_{t}(\mathbf{c})$ is the ball of radius t around a codevector \mathbf{c} such that $\mathrm{wt}(\mathbf{c})=w$.

Computing $\left|S_{e}(\mathbf{0}) \cap B_{t}(\mathbf{c})\right|$ can be visualized as follows:

Figure 2: Evaluating $d(\mathbf{c}, \mathbf{e})$
Then we have that $\left|S_{e}(\mathbf{0}) \cap B_{t}(\mathbf{c})\right|=|\{\mathbf{e}: d(\mathbf{e}, \mathbf{c}) \leq t\}|=\binom{w}{i}\binom{n-w}{\mathbf{e}-i}$.
From the figure we see $t \geq w-i+e-i=w+e-2 i$, so $i \geq\left\lceil\frac{w+e-t}{2}\right\rceil$
This gives us the following theorem for computing the probability of miscorrection for the code C :
Theorem:

$$
P_{e}(C)=\sum_{w=d}^{n} A_{w} \sum_{e=w-t}^{w+t} p^{e}(1-p)^{n-e} \sum_{i=\left\lceil\frac{w+e-t}{2}\right\rceil}^{w}\binom{w}{i}\binom{n-w}{e-i}
$$

