ENEE626: Error-Correcting Codes	
Instructor: Alexander Barg	Notes by: Randolph Baden
Lecture 21 (11/19/05): Error probability of decoding for a linear code	
with known weight distribution	http://www.ece.umd.edu/~abarg/626
Error probability of decoding	

Let C[n, k, d] be a binary linear code which can correct up to $t = \lfloor \frac{d-1}{2} \rfloor$ errors. Let **c** be the transmitted vector. Recall from Theorem 3.5 that the set of correctable errors for a linear code does not depend on the vector being transmitted. Therefore, without loss of generality we will assume that **c** = 0.

Error Events for a BSC(p) *with received vector* $\mathbf{r} = \mathbf{c} + \mathbf{e}$ *:*

1. If $wt(\mathbf{e}) \leq t$, then **r** is always decoded correctly. The probability $Pr[wt(\mathbf{e}) \leq t]$ equals

$$P_{\rm corr}(C) = \sum_{i=0}^{t} \binom{n}{i} p^{i} (1-p)^{n-i}$$

Figure 1: $P(wt(\mathbf{r}) = e | \mathbf{c} = \mathbf{0}) = p^e (1 - p)^{n-e}$ on a BSC(p)

- 2. If wt(e) > t then two situations are possible, as shown in Figure 2.
 - (a) $\not\exists \mathbf{c} \in C$ with $d(\mathbf{c}, \mathbf{r}) \leq t$. In this case there is no decoding result this is an erasure.
 - (b) $\exists \mathbf{c} \in C$ with $d(\mathbf{c}, \mathbf{r}) \leq t$. \mathbf{c} is the decoding output this is a decoding error/miscorrection.

Letting $P_e(C)$ be the probability that the decoding result is a miscorrection and $P_x(C)$ be the probability that the decoding result is an erasure, we see that:

$$P_e(C) + P_x(C) = 1 - P_{\text{corr}}(C) = \sum_{i=t+1}^n \binom{n}{i} p^i (1-p)^{n-i}.$$

Since erasures are not as serious as miscorrections in some cases, we would like to separate the erasure and miscorrection probabilities.

Let $\{A_0 = 1, A_d, A_{d+1}, ..., A_n\}$ be the weight distribution of C, where $A_i = |\{\mathbf{c} \in C, wt(\mathbf{c}) = i\}|$. We would like to find $P_e(C)$, given by

$$P_e(C) = \sum_{w=d}^n \sum_{\substack{\mathbf{c} \in C \\ \mathrm{wt}(\mathbf{c}) = w}} \sum_{e=w-t}^{w+t} \mathbf{P}(S_e(\mathbf{0}) \cap B_t(\mathbf{c}))$$

where $S_e(0)$ is the sphere of radius t around 0 and $B_t(\mathbf{c})$ is the ball of radius t around a codevector \mathbf{c} such that $wt(\mathbf{c}) = w$.

Computing $|S_e(\mathbf{0}) \cap B_t(\mathbf{c})|$ can be visualized as follows:

Figure 2: Evaluating $d(\mathbf{c}, \mathbf{e})$

Then we have that $|S_e(\mathbf{0}) \cap B_t(\mathbf{c})| = |\{\mathbf{e} : d(\mathbf{e}, \mathbf{c}) \le t\}| = {w \choose i} {n-w \choose \mathbf{e}-i}$. From the figure we see $t \ge w - i + e - i = w + e - 2i$, so $i \ge \lceil \frac{w+e-t}{2} \rceil$

This gives us the following theorem for computing the probability of miscorrection for the code C: **Theorem:**

$$P_e(C) = \sum_{w=d}^{n} A_w \sum_{e=w-t}^{w+t} p^e (1-p)^{n-e} \sum_{i=\lceil \frac{w+e-t}{2} \rceil}^{w} {\binom{w}{i} \binom{n-w}{e-i}}$$