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Nowhere Dense Classes of Graphs

Definition [Něseťril, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there
exists k such C that does not contain the
r -subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as:
bounded degree, bounded treewidth, planarity,
excluding a minor, ...

Figure: The 2-subdivided K4.

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let C be a monotone class of graphs. If C is nowhere dense, then FO model checking
on C can be done in time f (φ, ε) · n1+ε for every ε > 0. Otherwise it is AW[∗]-hard.
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FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions =̂ coloring + interpreting + taking an induced subgraph

Tφ

φ(x , y) := Red(x) ∧ Red(y) ∧ dist(x , y) = 3
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Structural Sparsity and Monadic Stability

Definition

A class C is structurally nowhere dense, if there exists a transduction T and a nowhere
dense class D such that C ⊆ T (D).

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.
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ai ∼ bj ⇔ i ≤ j

Definition

A class is monadically NIP, if it does not transduce the class of all graphs.
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Uniform Quasi-Flatness

G

Uniform Quasi-Flatness (a.k.a. uniform quasi-wideness; slightly informal)

A class C is uniformly quasi-flat if for every radius r , in every large set A we find a still
large set B that is r -independent after removing a set S of constantly many vertices.

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-flat if and only if it is nowhere dense.
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Uniform Quasi-Flatness

r < 1
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Uniform Quasi-Flatness

r < 4
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Uniform Quasi-Flatness
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Flips

Theorem [Něseťril, Ossona de Mendez, 2011]

A class C is uniformly quasi-flat if and only if it is nowhere dense.

Question: Can we find a similar combinatorial characterization for monadic stability?

Denote by G ⊕ (P,Q) the graph obtained from G by complementing edges between
pairs of vertices from P × Q.
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Flip-Flatness
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Flip-Flatness

Definition (slightly informal)

A class C is uniformly quasi-flat if for every radius r , in every large set A we find a still
large set B that is r -independent after removing constantly many vertices.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk]

A class C is flip-flat if and only if it is monadically stable.

Moreover we can compute suitable flips in cubic time and |B| ≥ |A|δ.
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A class C is flip-flat if and only if it is monadically stable.

Moreover we can compute suitable flips in cubic time and |B| ≥ |A|δ.

10 / 16



Flip-Flatness

Definition (slightly informal) [Gajarský, Kreutzer]
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Monadic Stability ⇒ Flip-Flatness: r = 1

We prove flip-flatness by induction on r . For r = 1 we use Ramsey’s theorem.

Case 1: A contains a large independent set.

AB

→ B is distance-1 independent without performing any flips.

Case 2: B contains a large clique.

AB

→ flip (B,B). This is the same as complementing the edges in B.
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Indiscernibles
Every long sequence of vertices contains a still long subsequence that is indiscernible.
In a monadically NIP class every vertex is connected to an indiscernible sequence in
one of the following patterns:

monadically NIP

homogenous single exception single alternation

[Blumensath, 2011], [Dreier, Mählmann, Toruńczyk, Siebertz]
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Monadic Stability ⇒ Flip-Flatness: r = 2

deg 0 deg 1 deg |A| − 1 deg |A|

A
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Monadic Stability ⇒ Flip-Flatness: r = 2
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Monadic Stability ⇒ Flip-Flatness: r ≥ 3

If C is monadically NIP, then every large sequence of disjoint r -balls contains a large
subsequence that can be colored by a bounded number of colors such that the
neighborhood of every vertex is described by two colors as follows:

r r r r r

?

v

If C is monadically stable, then every vertex is described by a single color.
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Flip-Flatness ⇒ Monadic Stability

Proof by contradiction. Assume C is flip-flat but not monadically stable.

We find a long sequence A that is totally ordered by some formula σ.

We use flip-flatness and flip a large subsequence B far apart.

B is still totally ordered by some new formulas σ′ and for distinct b1, b2 ∈ B we have

σ′(b1, b2) ↔ ¬σ′(b2, b1).

By Gaifman Locality there must be distinct b1, b2 ∈ B with

σ′(b1, b2) ↔ σ′(b2, b1).

Contradiction!
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Summary

Definition

A class is monadically stable if it does not transduce
the class of all half graphs using FO logic.

This includes all nowhere dense classes but is not limited to sparse classes.

Definition (slightly informal) [Gajarský, Kreutzer]

A class C is flip-flat if for every radius r , in every large set A we find a still large set B
that is r -independent after performing a constant number of flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk]

A class C is flip-flat if and only if it is monadically stable.

This is the first combinatorial characterization of monadic stability.

We also obtain first insights into monadically NIP classes.
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