

FEATURES	
ALDS Technology	~
SPV Technology	~
CET Technology	~
Butyl Suspension	~
Polypro/Carbon cone	~
Cone in 1 piece	~
Sealed Compatible	~
Vented Compatible	V
Stitched Cone/suspension	V
Interlaced Tinsel Leads	V
MTX basket	V
Aluminium basket	V
StreetWires connectors	V
X-max (1 way)	26mm
Power handling	12/10

The edge of insanity? Or mere genius?

The Mtx Jackhammer, 160 kilos of unrelenting brute force, driven beyond the limits of comprehension does approach the edge of insanity. Hot on the heels of the Jackhammer are the Thunder T9500 Woofer Series.

The T9500 Series are meticulously designed woofers cultivating 35 years of proven technologies, innovation and manufacturing experience delivering superior power handling, performance and style you demand from Mtx.

Available in 3 sizes (25, 30 & 38cm) with power handling up to 2000W, the T9500

Series incorporate industry leading features such 26mm one way X-max, more than twice standard woofers of today. 220°C aluminum flat wound ribbon wire on 10cm black anodized aluminum formers combined with three premium strength magnets providing the ultimate in precision, sonic accuracy and performance. Mere genius? We think so!

S		Size	Ω	MAX Power	RMS Power	Sensiti- vity	Xmax	Fs	Magnet	Response	Depth
		25cm		1500W	750W	85,9dB	26mm	39,4Hz	5550 gr	39-150Hz	23,6cm
	T9510-44	25cm	$4\Omega+4\Omega$	1500W	750W	87,5dB	26mm	41,1Hz	5550 gr	41-150Hz	23,6cm
5	T9512-04	30cm	4Ω	2000W	1000W	87,4dB	26mm	34,3Hz	7400 gr	34-150Hz	24,7cm
2	T9512-44	30cm	$4\Omega+4\Omega$	2000W	1000W	91,0dB	26mm	36,4Hz	7400 gr	36-150Hz	24,7cm
	T9515-04	38cm	4Ω	2000W	1000W	90,4dB	26mm	30,6Hz	7400 gr	30-150Hz	27,3cm
V.	T9515-44	38cm	$4\Omega+4\Omega$	2000W	1000W	93,8dB	26mm	31,9Hz	7400 gr	31-150Hz	27,3cm

¥		Size	Ω	Power	Power	Dimensions
M	T9510A	25cm	4Ω	1500W	750W	37x51x47cm
5	T9510D	25cm	2Ω	1500W	750W	37x51x47cm
7	T9512A	30cm	4Ω	2000W	1000W	41x59x47cm
M	T9512D	30cm	2Ω	2000W	1000W	40x59x47cm
Е	T9515A	38cm	4Ω	2000W	1000W	45x64x50cm
Б.	T9515D	38cm	2Ω	2000W	1000W	45x64x50cm
Ü	T9510x2D	2x25cm	2Ω	3000W	1500W	37x84x50cm
Z	T9512x2D	2x30cm	2Ω	4000W	2000W	40x90x50cm
П	T9515x2D	2x38cm	2Ω	4000W	2000W	45x103x54cm

FEATURES	
ALDS Technology	~
SPV Technology	~
CET Technology	~
Butyl Suspension	~
Polypro/Carbon cone	~
Cone in 1 piece	~
Sealed Compatible	~
Vented Compatible	~
Stitched Cone/suspension	~
Interlaced Tinsel Leads	~
MTX basket	~
Aluminium basket	~
StreetWires connectors	~
X-max (1 way)	22mm
Power handling	10/10

7) 	Size	Ω	MAX Power	RMS Power	Sensi- tivity	Xmax	Fs	Magnet	Response	Depth
T8510-04	25 cm	4Ω	1000W	500W	86,9dB	22mm	41,4Hz	4080 gr	41-150Hz	18,8cm
T8510-44	25 cm	$4\Omega+4\Omega$	1000W	500W	90,4dB	22mm	44,8Hz	4080 gr	44-150Hz	18,8cm
T8512-04	30 cm	4Ω	1000W	500W	89,8dB	22mm	36,3Hz	4540 gr	36-150Hz	19,7cm
T8512-44	30 cm	$4\Omega+4\Omega$	1000W	500W	92,3dB	22mm	38,8Hz	4540 gr	38-150Hz	19,7cm
T8515-04	38 cm	4Ω	1200W	600W	92,0dB	22mm	35,4Hz	5000 gr	35-150Hz	22,7cm
78515-44	38 cm	$4\Omega+4\Omega$	1200W	600W	93,5dB	22mm	32,0Hz	5000 gr	32-150 Hz	22,7cm

The limits of imagination!

The 8500 series woofers set a new standard. When it comes to construction it doesn't get more intimidating. When it comes to performance, it becomes fearless. The 8500's are a must to experience and comprehend the volume levels and amount of energy it can produce. The 8500's basket is built like a tank making it impossible to buckle under pressure regardless how powerful the amp it's connected to. The magnet assembly is so massive one often wonders if it's larger than the actual cone on the 10 inch. The Xmax reaches 22mm one- way (44mm total) making the T8500 a force to be reckoned with. Once we make something bullet proof, there's no going back.

The T8500's are a nightmare for our competitors.

Y.		Size	Ω	MAX Power	RMS Power	Dimensions
A	SLH-T8510A	25cm	4Ω	1000W	500W	37x51x47cm
	SLH-T8510D	25cm	2Ω	1000W	500W	37x51x47cm
3	SLH-T8512A	30cm	4Ω	1000W	500W	41x59x47cm
Ų,	SLH-T8512D	30cm	2Ω	1000W	500W	41x59x47cm
ä	SLH-T8515A	38cm	4Ω	1200W	600W	45x64x50cm
	SLH-T8515D	38cm	2Ω	1200W	600W	45x64x50cm
П	SLH-T8510x2A	2x25cm	4Ω	2000W	1000W	37x84x50cm
	SLH-T8510x2D	2x25cm	2Ω	2000W	1000W	37x84x50cm
Z	SLH-T8512x2A	2x30cm	4Ω	2000W	1000W	40x90x50cm
"	SLH-T8512x2D	2x30cm	2Ω	2000W	1000W	40x90x50cm

5500

FEATURES	
ALDS Technology	~
SPV Technology	~
CET Technology	~
Butyl Suspension	~
Polypro/Carbon cone	~
Cone in 1 piece	~
Sealed Compatible	~
Vented Compatible	~
Stitched Cone/suspension	~
Interlaced Tinsel Leads	~
MTX basket	~
Aluminium basket	~
StreetWires connectors	
X-max (1 way)	17mm
Power handling	9/10

S		Size	Ω	Max Power	RMS Power	Sensiti- vity	Xmax	Fs	Magnet	Response	Depth
		25cm		W008	400W	88,5dB	17mm	47,0Hz	2650 gr	47-150Hz	17,0cm
	T7510-44	25cm	$4\Omega+4\Omega$	W008	400W	90,6dB	17mm	46,5Hz	2650 gr	46-150Hz	17,0cm
5	T7512-04	30cm	4Ω	800W	400W	89,4dB	17mm	45,2Hz	2650 gr	45-150Hz	18,3cm
7	T7512-44	30cm	$4\Omega+4\Omega$	W008	400W	92,1dB	17mm	40,3Hz	2650 gr	40-150Hz	18,3cm
5	T7515-04	38cm	4Ω	800W	400W	91,9dB	17mm	28,6Hz	3690 gr	28-150Hz	20,7cm
V.	T7515-44	38cm	4Ω+4Ω	800W	400W	95,0dB	17mm	31,3Hz	3690 gr	31-150Hz	20,7cm

The really serious stuff starts here! We're not talking about subwoofers anymore, we're talking SuperWoofers. Take note of the die-cast aluminum basket and you realize you're in for something incredible. The cone excursion is exceptional. All our best technologies are incorporated into the 7500's such as: ALDS keeping the voice coil in the gap, SPV cooling and CET for longer life of the rubber surround and suspension. We've promised the world the best products and we're delivering on that promise spec by spec !

¥		Size	Ω	Max Power	RMS Power	Dimensions
7	SLH-T7510A	25cm	4Ω	800W	400W	35x49x39cm
	SLH-T7510D	25cm	2Ω	800W	400W	35x49x39cm
3	SLH-T7512A	30cm	4Ω	800W	400W	36x56x41cm
W	SLH-T7512D	30cm	2Ω	800W	400W	36x56x41cm
Ä	SLH-T7510x2A	2x25cm	4Ω	1600W	800W	45x77x35cm
3	SLH-T7510x2D	2x25cm	2Ω	1600W	800W	45x77x35cm
Д	SLH-T7512x2A	2x30cm	4Ω	1600W	800W	44x87x36cm
_	SLH-T7512x2D	2x30cm	2Ω	1600W	800W	44x87x36cm
Z	SLH-T7510x3A	3x25cm	4Ω	2400W	1200W	39x89x41cm
"	SLH-T7510x3D	3x25cm	2Ω	2400W	1200W	39x89x41cm

FEATURES	
ALDS Technology	~
SPV Technology	~
CET Technology	
Butyl Suspension	~
Polypro/Carbon cone	~
Cone in 1 piece	~
Sealed Compatible	~
Vented Compatible	~
Stitched Cone/suspension	~
Interlaced Tinsel Leads	~
MTX basket	~
Aluminium basket	
StreetWires connectors	
X-max (1 way)	14mm
Power handling	8/10

8	Size		Max Power	RMS Power	Sensitiv-	Xmax	Fs	Magnet	Response	Depth
# T5508-04	20 cm	4Ω	400W	200W	88,8dB	14mm	41,1Hz	1150 gr	41-150Hz	12,6cm
T5508-44	20 cm	$4\Omega+4\Omega$	400W	200W	91,4dB	14mm	42,3Hz	1150 gr	42-150Hz	12,6cm
T5510-0 4	25 cm	4Ω	600W	300W	88,2dB	14mm	35,3Hz	1700 gr	35-150Hz	15,6cm
T5510-44	25 cm	$4\Omega+4\Omega$	600W	300W	90,9dB	14mm	35,6Hz	1700 gr	35-150Hz	15,6cm
5 T5512-04	30 cm	4Ω	600W	300W	89,8dB	14mm	29,2Hz	1980 gr	29-150Hz	16,9cm
T5512-44	30 cm	$4\Omega+4\Omega$	600W	300W	92,9dB	14mm	29,9Hz	1980 gr	29-150Hz	16,9cm
■ T5515-04	38 cm	4Ω	600W	300W	90,8dB	14mm	21,3Hz	2300 gr	21-150Hz	19,2cm
75515-44	38 cm	$4\Omega+4\Omega$	600W	300W	93,6dB	14mm	21,7Hz	2300 gr	21-150Hz	19,2cm

The evolution of the 5500 is truly worth talking about. The magnetic assembly is twice the size of its predecessor while the fit and finish is magnificent. The cone is made of carbon-reinforced polypropylene covered in aluminum deposition. It's one-piece design, adds rigidity and eliminates dust cap issues. The Xmax on the 5500 travels: 14mm one-way utilizing an oversize cooling system (SPV) and technologies like ALDS for adder leilability. The tinsel leads are spider-woven allowing for extreme excursions without the risk of over stretching. The 5500 series is further proof our engineers weren't slacking off or sacrificing quality when it comes down to getting heavy on bass.

Y		Size	Ω	Max Power	RMS Power	Dimensions
,	SLH-T5510A	25cm	4Ω	600W	300W	35x49x39cm
Ė	SLH-T5510D	25cm	2Ω	600W	300W	35x49x39cm
E	SLH-T5512A	30cm	4Ω	600W	300W	36x56x41cm
Ų,	SLH-T5512D	30cm	2Ω	600W	300W	36x56x41cm
ä	SLH-T5510x2A	2x25cm	4Ω	1200W	600W	45x77x35cm
2	SLH-T5510x2D	2x25cm	2Ω	1200W	600W	45x77x35cm
Τ	SLH-T5512x2A	2x30cm	4Ω	1200W	600W	44x87x36cm
	SLH-T5512x2D	2x30cm	2Ω	1200W	600W	44x87x36cm
Z	SLH-T5510x3A	3x25cm	4Ω	1800W	900W	39x89x41cm
"	SLH-T5510x3D	3x25cm	2Ω	1800W	900W	39x89x41cm

FEATURES	
ALDS Technology	~
SPV Technology	~
CET Technology	
Butyl Suspension	
Polypro/Carbon cone	~
Cone in 1 piece	~
Sealed Compatible	~
Vented Compatible	~
Stitched Cone/suspension	~
Interlaced Tinsel Leads	V
MTX basket	~
Aluminium basket	
StreetWires connectors	
X-max (1 way)	9,4mm
Power handling	7/10

V.		Size	Ω	Max Power	RMS Power	Sensitiv- ity	Xmax	Fs	Magnet	Response	Depth
ä	T4508-04	20 cm	4Ω	200W	100W	85,6dB	5,4mm	39,8Hz	450gr	39-150Hz	9,1cm
Ē	T4510-04	25 cm	4Ω	450W	225W	87,6dB	9,4mm	35,4Hz	850gr	35-150Hz	12,2cm
E	T4510-44	25 cm	$4\Omega+4\Omega$	450W	225W	90,4dB	9,4mm	39,1Hz	850gr	39-150Hz	12,2cm
3	T4512-04	30 cm	4Ω	450W	225W	89,8dB	9,4mm	29,9Hz	1000gr	29-150Hz	13,5cm
4	T4512-44	30 cm	$4\Omega+4\Omega$	450W	225W	92,1dB	9,4mm	29,2Hz	1000gr	29-150Hz	13,5cm
Ē	T4515-04	38 cm	4Ω	500W	250W	89,3dB	9,4mm	22,6Hz	1417gr	22-150Hz	16,8cm
V	T4515-44	38 cm	$4\Omega+4\Omega$	500W	250W	91,4dB	9,4mm	24,5Hz	1417gr	21-150Hz	16,8cm

The Thunder4500 subs provide you with bass that goes way beyond the price you paid for it. Pair them up with one of our Thunder amplifiers and these woofers pump out as much volume as you can handle.

T4500s come in 38cm, 30cm, 25cm and 20cm and feature Asymmetrical Linear Drive System, Spider Plateau Venting technology, tinsel leads woven into the spider and mated to heavy duty chrome push speaker terminals. Plus we've added a 220°C copper voice coil wound on an Apical voice coil former for extremely reliable, high power handling. The strontium ferrite magnet yields a highly efficient speaker meaning it makes better use of your amplifier power.

Ų		Size	Ω	Max Power	RMS Power	Built in amp	EBC Remote	Dimensions
h	SLH-T4510A	25cm	4Ω	450 W	225 W			35x49x39cm
•	SLH-T4512A	30cm	4Ω	450 W	225 W			36x56x41cm
H	SLH-T4515A	38cm	4Ω	450 W	225 W			42x59x47cm
7	SLH-T4510x2A	2x25cm	4Ω	900 W	450 W			45x77x35cm
V	SLH-T4512x2A	2x30cm	4Ω	900 W	450 W			44x87x36cm
E	SLH-T4510x3A	3x25cm	4Ω	1350 W	675 W			39x89x41cm
i	SLH-T4510-200	25cm				200W	Yes	35x49x39cm
Ē	SLH-T4512-200	30cm		1500		200W	Yes	36x56x41cm
4	SLH-T4510x2-200	2x25cm				200W	Yes	45x77x35cm
7	SLH-T4512x2-200	2x30cm				200W	Yes	44x87x36cm
•	SLH-T4510x3-200	3x25cm		4600	200	200W	Yes	39x89x41cm

FFRS	XT10-04	Size	Ω						Response			
3	XT10-04	25 cm	4Ω	750W	250W	89,7dB	9,5mm	39,0Hz	32-200Hz	12,4cm		
3	XT12-04	30 cm	4Ω	750W	250W	91,4dB	9,5mm	33,0Hz	33-200Hz	13,9cm		
0	XT12-04 XT12-44	30 cm	$4\Omega+4\Omega$	750W	250W	92,8dB	9,5mm	34,5Hz	34-200Hz	13,9cm		

FEATURES	
ALDS Technology	~
SPV Technology	~
CET Technology	
Butyl Suspension	~
Rubber Gasket	~
Polypro/Alu cone	~
Magnet Cover	~
Cone in 1 piece	~
Sealed Compatible	~
Vented Compatible	~
Stitched Cone/suspension	
Interlaced Tinsel Leads	~
MTX basket	~
Aluminium basket	
StreetWires connectors	
X-max (1 way)	9,4mm
Power handling	7,5/10

XThunder subs, Bass from a new level!

Xtreme powerhandling up to 750W Max. Unbelievable Xcursion 9,4mm one way. Xclusive technologies like ALDS, SPV and spider with interlaced tinsel leads.

XTHUNDER subwoofers feature the "X" from Xtreme, Xcitement, Xclusive, Xtraordanary... XThunder subs set a new standard for subwoofers : Level X!

SPEAKER TECHNOLOGIES

ALDS Technology

(Asymmetrical Linear Drive System) = flat progressive spider + extended pole piece

suh I

piece, creates a more symmetrical magnetic flux in the gap. This means higher efficiency and larger

linear excursion. The extended pole piece also acts as a guide, when the cone moves beyond maximum excursion (you know, after a big bass kick). The voice coil can't pop out of the gap. You'll save your

With this technology, MTX

gives you Dr. Jekyll and Mr. Hyde! The progressive spider gives you lots of detail at low volume (good music) and full control at high volume (Booooom). As the excursion increases, the spider is stiffer and stiffer. The progressive spider is the opposite of a standard spider. But in the car audio environnement, that's what we need : details at low volume and power handling at high volume...

SPV Technology (Spider Plateau Venting)

FORCED AIR COOLING OF THE VOICE COIL Spider Plateau Venting is characterized by vented aluminium grills. These grills surround the voice coil between the motor structure and the spider, the area of the woofer that gets the hottest. Air is directed in and out of this key area allowing the woofer to handle lots of power while keeping the voice coil cool. Cool air is

CET TECHNOLOGY

(Congruent Edge Technology)

The Nitrile Butadiene Rubber surround and the gasket are made in one piece. The one piece design of the NBR surround and gasket gives the following advantages:

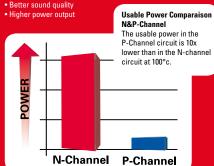
- . The surround will not tear
- . Maximum surface to glue the sur-
- round to the basket · At maximum excursion the sur-
- round will not deform
- · Very flexible surround • Extremely resistant to the
- effects of UV rays. Looks great

Are you ready for the future in car audio? After years of continuous evolution, the MTX amplifier range has been completely transformed. The amount and level of new technologies, of ingenuity, of power and design is lightyears ahead. Even the engineers from NASA are speechless!

No other brand in the industry has the freedom to do something as radical as this. The first eye grabber is the new design of the amplifiers. A technical quest: the amp is now wrapped in a heat sink made entirely out of aluminium. All of the connections are newly located on one side of the amp for wiring ease, while all adjustments are made from the top of the amp. making tweaking and tuning easier than before (especially considering the number of new features on the amps). If you take a look at the chart you'll notice the impressive number of adjustments: 12-18-24dB/ oct. active crossovers, adjustable subsonic filter, parametric or quasi-parametric equalizer, separate gain adjustments, colour control...it's a busy place. A massive amount of new technology and innovation has been incorporated into the new range. And everything is under control. The new ventilation system is thermal regulated and allows for great installation flexibility. No matter what position, the amp will always be kept cool. EBC bass remote control now comes stock. The evolution in the power-rating department will still all power hunger with the biggest amp capable of delivering 3.000W "CEA" RMS... there are going to be some very hot voice coils around this year. And for the artistically inclined, there is the PRIZM EFX. The MTX engineers are helping us to reach the rainbow at the touch of a button. The two 4 channel amps will offer a world premier, breaking all the rules in amplifier functionality and use. On the matter of sound quality, these are the best amps MTX has ever come out with.

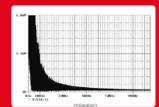
	Channel Class	Power 1Ω CEA	Power 2Ω CEA	Power 4Ω CEA	Bridged Power CEA	Low-pass x-over	High-pass x-over	Subsonic filter	X-over Frequency	EBC	EQ	Prizm EFX	High Level
TA92001	1-D	1x3000W	1x2000W	1x1000W		24dB/oct		20 to 50Hz	40-200Hz	Yes	Yes	Yes	Yes
TA81001	1-D	1x1500W	1x1000W	1x500W		24dB/oct		20 to 50Hz	40-200Hz	Yes	Yes	Yes	Yes
TA7801	1-D	1x1200W	1x800W	1x400W		24dB/oct		30Hz	40-200Hz	Yes	Yes	Yes	Yes
TA5601	1-D		1x600W	1x300W		24dB/oct		30Hz	40-200Hz	Yes	Yes	Yes	Yes
TA4501	1-D		1x500W	1x250W		24dB/oct			40-200Hz	Yes	Yes	Yes	Yes
TA3401	1-D		1x400W	1x200W		24dB/oct			40-200Hz	Yes	Yes	Yes	Yes
TA2301	1-D		1x300W	1x150W		24dB/oct			80 or 120Hz	Yes	Yes	Yes	Yes
TA91002	2-AB	2x750W	2x500W	2x250W	1x1500W	24dB/oct	24dB/oct	30Hz	40-350Hz	Yes	Yes	Yes	Yes
TA8502	2-AB	2x375W	2x250W	2x125W	1x750W	24dB/oct	24dB/oct	30Hz	40-350Hz	Yes	Yes	Yes	Yes
TA7402	2-AB	2x300W	2x200W	2x100W	1x600W	24dB/oct	12dB/oct		40-350Hz	Yes	Yes	Yes	Yes
TA5302	2-AB		2x150W	2x75W	1x300W	24dB/oct	12dB/oct		40-350Hz	Yes	Yes	Yes	Yes
TA4252	2-AB		2x125W	2x63W	1x250W	24dB/oct	12dB/oct		85Hz	Yes	Yes	Yes	Yes
TA3202	2-AB		2x100W	2x50W	1x200W	24dB/oct	12dB/oct		85Hz			Yes	Yes
TA7804	4-AB	4x200W	4x200W	4x100W	2x400W	24dB/oct	12dB/oct		40-350Hz	Yes	Yes	Yes	Yes
TA5604	4-AB	4x150W	4x150W	4x75W	2x300W	24dB/oct	12dB/oct		40-350Hz	Yes	Yes	Yes	Yes
TA3404	4-AB	4x100W	4x100W	4x50W	2x200W	24dB/oct	12dB/oct		40-350Hz	Yes		Yes	Yes

CEA2006 power You're finally going to be able to make heads and tails out of the often-exaggerated specs from set of parameters agreed upon by the CEA board and this logo will attest to this.


other brands in the industry. MTX has been at the forefront of leading the industry towards an agreed upon set of guidelines to measure actual power outputs of car hifi amplifiers. An independent laboratory selected by the CEA (Consumer Electronics Association) will be responsible for conducting the strict allocation of norms to those brands that choose to have their amplifier specifications measured and made public in this manner. All measuring will follow a rigorous

THUNDER

Pure N-Channel Design


PURE N-CHANNEL V-FET FINAL STAGE

- N&P Circuits are using the same type Mosfets
- No variations between the output transistors in the final stage Higher efficiency
- · Higher linearity, lower distortion
- Shorter signal path

Adaptive ClassD Technology

This technology changes the power supply switching frequency with increasing output power to avoid interference due to the Class D technology. The principle is to separate the sound from radio interference as much as possible.


With the Adaptive ClassD tech. radio interference is minimized to zero. Sound quality is maximized

Without the Adaptive ClassD Tech. radio interferences are easely audible. Sound quality decreases

"XTC" Cooling Technology

How long do you think it takes for the average car hifi amp to warm up and reach its peak in musicality? Some take up to 30 minutes and that's too long. With the new cooling system "XTC" from Xtant Technology Cooling the aluminium heat sink inside the new MTX 2005 amplifiers is reduced in size to allow for a quicker rise in temperature. Then, silent fans regulate the temperature accordingly to within a couple of degrees. The air intake is located at the top of the amp. Fresh air is then propelled through thin, sandwiched layers of aluminium upon which all the MOS-FETS are fastened thus optimizing the thermal effect. It is amazingly efficient and easy to control. The transformers as well as the class-D output filter are located at the other end of the sandwiched layers meaning they too are exposed to this air-cooling. The new amps are designed both for cold climate areas where you want the heat sink and the transistors to heat up quickly and for warmer climates where keeping them from overheating are the prime concern.

"Prizm EFX" Technology

All the new MTX amps are equipped with it. With one turn of a screw, this new technology allows the user to adjust the colour illumination of the control panel on the amplifier. Virtually all colours are available thus allowing you to match the rest of the colour schemes in the installation or the car. If you have difficulty choosing one colour, position the Prizm EFX on stroboscopic. All the colours in the rainbow are displayed to the beat of the music. Too cool, If you still can't decide then simply put it on red: the colour of MTX.

4 to 1 - 1st time in the world

They never stop. We're talking about the engineers at MTX. For the first time, a 4-channel amplifier can transform itself into a Mono Block. Yes, you read it correctly, a real Mono Block, It can also first become a 3 and 2 channel amplifier. But a 4-channel amp that can convert itself into a Mono Block has never been done before. Thank you, gentlemen in the R&D department. This marvellous ingenuity will allow the user to modify his system design as often as he chooses, regardless how demanding the configuration. Simply amazing

Like never before Retro is Cool! Old Skool is Hot!

TC4001

TC3001

TC4002

TC3002

TC2002

TC6004

TC4004 4-AB

1-D

1-D

2-AB

2-AB

2-AB

4-AB

1x400W

1x300W

2x200W

2x150W

2x100W

4x150W

4x100w

1x200W

1x150W

2x100W

2x75W

2x50W

4x75W

4x50W

1x400W

1x300W

1x200W

2x300W

2x200W

24dB/oct Subsonic 40 to 200Hz

24dB/oct

12dB/oct

12dB/oct

12dB/oct

12dB/oct

12dB/oct

Subsonic 40 to 200Hz

12dB/oct 30 to 300Hz

Yes

Yes

Yes

Yes

Yes Yes

Yes

Yes Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Back to the roots or should it be back to the future, classic amps addapted to meet new standards. TC originally stands for Classic Thunder.

TC amps are loaded with: 12dB/oct variable Hi pass and 24dB/oct variable Low pass x-overs, Switchable Subsonic filter (on Class D amps), Thunder EΩ and each amp comes standard with an External Bass Control (EBC). The power ratings on these amps will literally blow you through your roof and set you on a Car audio orbit around the globe with ratings from 300W to 2400W Total Output Power. MTX Thunder TC, Thunder with a past.

MIX

TC6001

CLASS O ALITE

The "X" in Xthunder amplifiers

"X"clusive 100% full aluminium design with high quality BTR connection terminals. "X"traordinary cool chrome logo in the middle of the amp with red indication LED. "X" treme power over 3500W for the X3000D CEA2006 certified from the fully Wosfet designed power supply and finalstage using IRF highest quality Mosfets. "X" cessive onboard X-over adjustable from 40Hz to 8000Hz on the Class AB models and a variable Subsonic filter on the Class D models. "X" ternal Bass control

(EBC) is incorporated with each Class D amp. "X" otic and normal head units can all be connected to these amps either via the RCA connec"X"ions with a sensitivity of 200mV to 5V or via the High level inputs....But what about the sound? Well lets just say it is... "X" quisite!
With a XXXXXXX rating MTX XThunder amplifiers are not suited for kids who need parental guidance. XThunder ampli-

fiers stand for Xtreme Xcitement in Car Audio.

·	Channel		CEA Power	r @14,4 vo	lts		X-over		X-over	EBC	High
	Class	1Ω	2Ω	4Ω	Bridged 4Ω	Low-pass	High-pass	Band-pass	frequency	Remote	level
X3000D	1-D	1x3000W	1x2000W	1x1000W		24dB/oct	subsonic		40 to 200Hz	Yes	Yes
X1000D	1-D		1x1000W	1x600W		24dB/oct	subsonic		40 to 200Hz	Yes	Yes
X500D	1-D		1x500W	1x350W		24dB/oct	subsonic		40 to 200Hz	Yes	Yes
X702	2-AB		2x105W	2x70W	1x210W	24dB/oct	12dB/oct	Yes	40 to 8000Hz		Yes
X502	2-AB		2x90W	2x50W	1x180W	24dB/oct	12dB/oct	Yes	40 to 8000Hz	-	Yes
X704	4-AB	-	4x105W	4x70W	2x210W	24dB/oct	12dB/oct	Yes	40 to 8000Hz		Yes
X504	4-AB		4x80W	4x50W	2x160W	24dB/oct	12dB/oct	Yes	40 to 8000Hz		Yes

WE HIGH-END COMPONENTS

Welcome to the top of the MTX THUNDER speaker range!

Thunder Axe High End Component systems have a larger X max than all other competitors.

Featuring glass fiber woofer cones with aluminum deposition and a 25mm Teteron® tweeter. Thunder Axe High End Components were designed for superior imaging, detail, sound quality, and dynamic range. The specifically designed crossover distributes frequencies properly to maximize the musical performance of each driver. Engineered with superior components, the 2-way, bi-ampable, 18dB/octave crossover network is designed for accurate imaging and sound quality. They have been optimized for off-axis or on-axis listening and include a 5 level tunable tweeter network for optimum imaging regardless of tweeter placement or positioning. In addition, the woofer has a 0°, 30°, and 60° off-axis compensation. Said Dan Roemer, VP of Acoustical Engineering, "These components are the best speakers MTX has ever released". These are speakers with the versatility, performance, and reliability that separate the best speakers from those that are just average. Any true audiophile will appreciate these products." With the addition of the Thunder Axe High-End Component line, MTX offers high performance, installation-friendly solutions. Whether you are upgrading from factory speakers or you are an audiophile looking to build the ultimate mobile sound stage, Thunder Axe High-End Components deliver the ultimate in sound quality and placement.

	Size	Туре	Ω	Peak Power	RMS Power	Sensitivity 2V 1m	Response	Grills
TXC6.1	16,5cm	Compo 2 way	4Ω	300W	150W	91dB	43-25kHz	Yes
TXC6.0	16,5cm	Kick Woofer	4Ω	300W	150W	91dB	43-250Hz	Yes
TXC5.1	13cm	Compo 2 way	4Ω	250W	125W	90dB	45-25kHz	Yes
TXC4.1	10cm	Compo 2 way	4Ω	200W	100W	88dB	50-25kHz	Yes
TXC.1	25mm	Tweeter	4Ω	150W	75W	91dB	3,5-25kHz	Yes

You can't have THUNDER without the LIGHTNING!

The new standard for musical pleasure towards a caraudio excellence.

Now has the lightning added with a striking new look in the form of a MTX designed new grille.

THS seperates and THX axials are specifically developed for the european market featuring:

- An original MTX designed strong steel Euro DIN basket. Means it looks great and fits all cars.
- A very strong motor structure to have optimum control and to maximize the powerhandling, up to 320W for the THX693, protected by a rubber magnet cover with embossed MTX logo's.
- An injected polypropylene cone with aluminium finnish mostly found on speakers costing up to 3x more. It sounds breath taking and looks awesome.
- A rubber surround ensures a very flexible yet UV resistant and durable suspension.
- 2,5cm diameter High temperature aluminium voice coil to maximize powerhandling.
- THX axials have tweeters with MTX original special designed face plates to have the best sound dispersion possible.
- THX502 tweeter can even be turned 360 degrees. On the THX603 and THX653 an extra supertweeter is added to create a 3-way speaker.
- The THX693 has a special designed mid adjacent to the tweeter to create a crystal clear sounding 6"x9" 3-way speaker.
- THS separates use a 19mm Silk dome tweeter and High Quality x-over with tweeter protection circuit.
- THS mids have a CNC machined Solid aluminium phase plug to get exactly the right shaped phase plug, crucial for the overall sound of the speaker.
- So put some Thunder in these speakers by teaming them up with an MTX amplifier and you will be Thunderstruck after an encounter with the new THS separates or THX axials from MTX!

	Size	Туре	Ω	Peak Power	RMS Power	Sensitivity 2V 1m	Response	Grills
THX693	15x23cm	Coax 3 way	4Ω	320W	80W	93,0dB	38-22000Hz	Yes
THX653	16,5cm	Coax 3 way	4Ω	260W	65W	92,0dB	60-22000Hz	Yes
THX603	16cm	Coax 3 way	4Ω	260W	65W	92,0dB	57-22000Hz	Yes
THX502	13cm	Coax 2 way	4Ω	220W	55W	91,5dB	65-22000Hz	Yes
THX402	10cm	Coax 2 way	4Ω	180W	45W	90,5dB	75-22000Hz	Yes
THS652	16,5cm	Compo 2 way	4Ω	260W	65W	92,0dB	60-25000Hz	Yes
THS602	16cm	Compo 2 way	4Ω	260W	65W	92,0dB	57-25000Hz	Yes
THS502	13cm	Compo 2 way	4Ω	220W	55W	91,5dB	65-25000Hz	Yes
THS19T	19mm	Tweeter	4Ω	260W	65W	92,0dB	2,5-25kHz	Yes

RoadThunder loaded enclosures

THUNDER from a different level, rated X!

XThunder axials are the new standard for musical pleasure from factory locations.

With special MTX designed speaker grills and all mounting materials included, specificaly developed for the european market featuring:

- · An original MTX basket. A MTX designed strong steel Euro DIN basket. Means it looks great and fits all cars.
- · Oversized Aimant. A very strong motor structure to have optimum control and to maximize the powerhandling, up to 320W for the XT693.
- · Injected polypropylene cone with rubber surround.
- The rubber surround ensures a very flexible yet UV resistant and durable suspension.
- · An injected polypropylene cone is mostly found on speakers costing up to 3x more. The sound is incredible coming
- from this cone. · High temperature aluminium
- voice coil with kapton former.
- . To maximize the powerhan-

All XT models have tweeters with MTX original special designed face plates to have the best sound dispersion possible. The XT603, XT653 and XT573 an extra supertweeter is added to create a 3-way speaker. The XT693 and XT803 have a special designed midrange next to the tweeter to form superb sounding 6"x9" and 8" 3-way speakers

		with the less true RoadThe RoadThe deep a	ese e unksp hunde hunde nd lou	dou esigned nclosures ck of the ace as po r subwoo ur subwoo du bass. F	uild by Med with subwoofe they soul also look up as le as possivith grey comply great subwofe the subw	designed and MTX and loa- RoadThunder rrs. Not only do nd great, they great and take sis trunkspace sible. Finished very durable carpet that liments the looks of the woofers like: red basket, the kk mica filled ilypropylene ne with the X AUDIO logo middle and the fred stitching. riangle shape atch perfectly t taking up as sisigned for the res that these so will deliver der loaded en- 2 25 and 30cm,	
		Size	Ω	Peak Power	RMS Power	Dimensions	
	RT10A	25cm	4Ω	400 W	200 W	31x30x40cm	
	RT12A	30cm	4Ω			36x40x46cm	
	RT12x2A		4Ω			36x77x45cm	
AMPLIFIED ROAD THUNDER	KIIUX3A	3XZ5CM	4Ω	1200 VV	buu vv	34x89x37cm	

	Size	Туре	Ω	Peak Power	RMS Power	Sensitivity	Response	Grills
XT803	20cm	Coax 3 way	4Ω	320W	80W	93,5dB	38-22000Hz	Yes
XT693	15x23cm	Coax 3 way	4Ω	320W	80W	93,0dB	36-22000Hz	Yes
XT573	13x18cm	Coax 3 way	4Ω	260W	65W	92,5dB	49-22000Hz	Yes
XT653	16,5cm	Coax 3 way	4Ω	260W	65W	92,0dB	55-22000Hz	Yes
XT603	16cm	Coax 3 way	4Ω	260W	65W	92,0dB	52-22000Hz	Yes
XT502	13cm	Coax 2 way	4Ω	220W	55W	91,5dB	60-22000Hz	Yes
XT402	10cm	Coax 2 way	4Ω	180W	45W	90,5dB	70-22000Hz	Yes

Loyd Evey founded MTX, in 1971 - 35 years of experience!

MTX is an american company

MTX took 21 innovation

awards

MTX took 118 **AutoSound GrandPrix** awards

HISTORY

AUDIO

MTX invented

The 1st MTX CarAudio subwoofer in 1981 presented at the CES in Chicago. Ref : 10-NU & 8-NU !

The 1st CarAudio

The 1st CarAudio classD amp in 1997. 8 generations followed !!

The 1st CarAudio enclosure in 1984. The enclosure stands on the hood!

The 1st CarAudio full range High-End Hifi classD amp in 2003

JackHammer to celebrate 35 years of high performance subwoofers! (2005)

The 1st SledgeHammer slot ported enclosure in 2003. Today, there are 48 SledgeHammers in the MTX range!

MTX is the leader brand of Mitek Corporation. Mitek Brands in Car Audio

Mitek Brands in Home&Pro Audio

MTX took more than 1000 records or 1st places in SQ, SQL or SPL competitions

AMPLIFIER SUBWOOFER(S)

MATCH MTX SUBWOOFERS WITH RECOMMANDED AMPLIFIERS FOR THE BEST PERFORMANCE

	XT10-04	XT12-04	XT12-44	T4510-04 T4510-44	T4512-04	T4512-44	T4515-04	T4515-44	T5510-04	T5510-44	T5512-04	T5515-04	T5515-44	T7510-04	T7510-44	T7512-04	T7512-44	T7515-44	T8510-04	T8510-44	T8512-04	T8512-44	T8515-44	T9510-04	T9510-44	T9512-04	19512-44 T9515-04	T9515-44	$ \begin{array}{c} \text{Cone Sub on one 2ch.} \\ \text{1sub} \\ \text{amp bridged @4} \\ \end{array} \\ \begin{array}{c} \text{1sub} \\ \text{20 cmf} \\ \text{1sub} \\ \text{20 cmf} \\ \text{30 cmf}$
FA92001																			4sub:	S	4subs	4sı	ıbs		2	subs	2sul	bs	40
TA81001			4					4					Ш	ш					2sub:	5	2subs	2sı	ıbs	2subs	Z77 COIII	subs 20	conf 2sul	Z11 COIII	40 2
TA7801								_					Ш	2subs		2subs	2sı		2sub:	S 2Subs 2Ω conf	2subs 2	conf 2su	ibs 2subs 2Ω conf	_	1sub 2Ω conf	2Ω	sub conf	1sub 2Ω conf	
TA5601									2subs		subs	2sul		2subs		2subs	2sı	ıbs	-	1cub		cub	1cub						Two 4Ω subs on one 2 subs Two 4Ω subs on
TA4501			-1						2subs		subs	2sul		Н	1suh		1suh	1 suh	4	1sub 2Ω conf 1sub 2Ω conf	20	sub 2 conf sub 2 conf	1sub 2Ω conf 1sub 2Ω conf					-	classD amp @2Ω one 2ch. amp @2
.,,,,,,,,	2subs			2subs	2subs		2subs	-1	2subs	_	subs 1s	2sul		Н	1sub 2Ω conf 1sub 2Ω conf	2	1sub Ω conf 1sub Ω conf	1sub 2Ω con 1sub 2Ω con	nf	2Ω conf	20	conf	2Ω conf	-					2Ω
TA2301	2subs	2subs		2subs	2subs		2subs	-1	2	1sub Ω conf	2Ω	conf	1sub 2Ω conf		2Ω conf	2	Ω conf	2Ω coi	ıf										
FA91002								_					Ш						Ш	2subs 8Ω conf	2 80	subs 2 conf	2subs 8Ω conf	2subs	2subs 8Ω conf	sub 2:	conf 1su	b 2subs 8Ω conf	711
TA8502		80	subs ! conf					4						ш					1sub		1sub	1s	ıb	1sub		sub 20	conf 1su	b 1sub 2Ω conf	$\frac{2subs}{80 conf}$ Two dual 4Ω sub (8Ω) on one 2ch. amp $@4\Omega$
TA7402		80	subs I conf					_					ш	1sub		1sub	1s	ub	1sub	1sub 2Ω conf	1sub 20	sub conf	ub 1sub 2Ω conf	_	1sub 2Ω conf	1 2Ω	sub conf	1sub 2Ω conf	•
TA5302			_					-	1sub		sub	1su		1sub		1sub	1s	np	-					-					4Ω
TA4252	1sub		-1					-1	1sub	_	sub	1su	_	L					-					-					
TA3202	1sub	1sub	4	1sub	1sub	_	1sub	-	1sub	1:	sub	1su	b	_					٠.			_		ь.			_		
TC8001														2subs		2subs	2sı	ıbs	2sub:	s	2subs	2sı			1sub 2Ω conf	1 20	sub conf	1sub 2Ω conf	$\frac{2subs}{20 \ conf}$ Two dual 4Ω sub (2Ω) on one classD amp $@1\Omega$
TC6001								_	2subs	2 s	subs	2sul	s	2subs		2subs	2sı		J.,	1sub 2Ω conf	1 20	sub 2 conf sub 2 conf	1sub 2Ω conf						•
TC4001	2subs	2subs		2subs	2subs		2subs	4	2subs		subs	2sul		_	1sub 2Ω conf	2	1sub Ω conf	1sub 2Ω coi	ıf	1sub 2Ω conf	20	sub 2 conf	1sub 2Ω conf	L					
TC3001	2subs	2subs		2subs	2subs		2subs	_	2	1sub Ω conf	1s 2Ω	conf	1sub 2Ω conf	_	1sub 2Ω conf	2	1sub Ω conf	1sub 2Ω co	ıf					ш				ш	
TC4002		2	subs ! conf	2subs 8Ω con		2subs 8Ω conf	2	2subs Ω conf	8	2subs Ω conf	2si 8Ω	ubs conf	2subs 8Ω conf	1sub		1sub	1s	ub	1sub	П	1sub	1s	ıb	г			Т		Θ
TC3002								П	1sub	1	sub	1su		1sub		1sub	1s	ub	Ш										4subs Four 4Ω subs on one classD amp @1Ω
TC2002	1sub	1sub		1sub	1sub		1sub		1sub	1:	sub	1su	b	П															
X3000D																			4sub:		4subs	451	bs	2subs	2	subs	2sul	hs	
X1000D		4	subs ! conf	4subs 8Ω cor		4subs 8Ω conf		4subs Ω conf						2subs		2subs	2sı	ıbs	2sub:		2subs	2sı		Estib	1sub 2Ω conf		sub conf	1sub 2Ω conf	411 411 411 411
	2subs			811 con 2subs	2subs		2subs		2subs	2 s	subs	2sul	s		1sub 2Ω conf	2	1sub Ω conf	1sub 2Ω co	,f	1sub 2Ω conf		sub 2 conf	1sub 2Ω conf		Z11 COUL	20	CUIII	Zii com	4subs $_{\Omega 1}$ Four dual 4Ω subs (8Ω) on one classD amp @ 2Ω
								-							Z17 COIII	Z	75. COIII	217 001		Z17 CUIII	Δ	COIII	ZIZ CON	-					
X702 X502	1sub 1sub		-1	1sub 1sub	1sub		1sub		1sub	1:	sub	1su		<u> </u>															

AMPLIFIER ENCLOSURE(S)

MATCH MTX ENCLOSURES WITH RECOMMANDED AMPLIFIERS FOR THE BEST PERFORMANCE

	RT10A	RT12A RT12x2A	RT10x3A	SLH-T4510A	SLH-T4512A	SLH-T4515A	SLH-T4510x2A SI H-T4512x2A	SLH-T4510x3A	SLH-T5510A	SLH-T5510D	SLH-T5512A	SLH-T5512D	SLH-T5510x2A SLH-T5510x2D	SLH-T5512x2A	SLH-T5512x2D	SLH-T5510x3A	SLH-T5510x3D	SLH-T7510A	SLH-T7510D	SLH-T7512A	SLH-T7512D	SLH-T7510x2A	SLH-T7510x2D	SLH-T7512x2A	SLH-T7512x2D	SLH-T7510x3A	SLH-T7510x3D	SLH-T8510A	SLH-T8510D	SLH-T8512A	SLH-T8512D	SLH-T8515A	SLH-T8515D	SLH-T8510x2A	SLH-T8510x2D	SLH-T8512x2A	SLH-T8512x2D	SLH-T9510A	SLH-T9510D	SLH-T9512A	SLH-T9512D	SLH-T9515A	SLH-T9515D	SLH-T9510x2D	SLH-T9512x2D
A92001																																													
A81001									Ш																			_										L						_	
A7801			ш																									_										_							
A5601			ш	Ш					_			_							_	_	_							L										L						_	_
A4501				ш	_													_										Ь.				_						L							
A3401			ш	-		_												-									_	Н										Н					_	_	-
A2301		-	_		_	_		4			-4	-	-					ь.	-								_	_		_				_				ь							
A91002						Т			П			\Box		Т	Т	П		П	Т		Т							г							Г			г					П		
A8502																																													
A7402																																													
A5302			Ш	Ш																																		L							
A4252			ш							Ш																												L							
A3202			ш			_			ᆫ	ш				Ш	Ш	ш		ш	_		Ш							_										ш							\perp
C8001			П									Т	$\overline{}$	Т	Т			П	т	Т	Т			г				_								г		г							П
C6001																																													
C4001																																													
C3001																																													
C4002																																													
C3002				Н																							-	Н										М							-
C2002			\Box								_							П									-	Н										Н						-	-
																												-										H							
3000D																-			-									Н	-			-							-						
1000D																						_						<u> </u>																	
500D									L																			L										-							
702																			Т		П																								
502																																													

Mitek Europe