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Abstract 

A square matrix A is transposable if P(RA) = (RA^ for some permutation matrices P and R,  and 
symmetrizable if ( S A ) ~  = SA for some permutation matrix S. In this paper we find necessary and sufficient 
conditions on a permutation matrix P so that A is always symmetrizable if P(RA)  = (RAY for some 
permutation matrix R. 

1980 Mathematics subject classification (Amer. Math. Soc.) : 05 B 20,05 C 25,05 C 50. 

1. Introduction 

A square matrix A is transposable if QAR = AT for some permutation matrices Q 
and R, and symmetrizable if (SA)' = SA for some permutation matrix S. 

Clearly all symmetrizable matrices are transposable, since (SA^ = SA implies 
SAS =AT. In this paper we determine sufficient conditions for a transposable 
matrix to be symmetrizable, and prove that these conditions, in a weaker sense to be 
described, are also necessary. 

Of particular interest are the binary matrices A, especially when A is the incidence 
matrix of a symmetric balanced incomplete block design (SBIBD). In this case if A is 
transposable then the SBIBD corresponding to A is self-dual, or equivalently the 
SBIBD admits a correlation. If A is a symmetrizable then the SBIBD is self-polar, or 
equivalently admits a correlation of order 2, a polarity. Definitions of the above 
terms can be found in Dembowski (1968). 

Self-polar designs are of interest since one can obtain a graph from these designs 
by taking a symmetric form of the incidence matrix and interpreting it as the 
adjacency matrix of a graph. These graphs may contain loops. If the parameters of 
the self-polar SBIBD are ( u ,  k,  A) then we call the graph a ( u ,  k, /.)-graph. Such a graph 
is a k-regular graph on v vertices with the property that any two vertices have 
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precisely A common neighbours. Note that a loop adds 1 to the degree of a vertex. 
Those (v ,  k ,  ,?)-graphs which are loopless have been studied by Ahrens and Szekeres 
(1969), Bose and Shrikhande (1970), Rudvalis (1971) and Wallis (1969) among 
others. 

We will assume throughout that all our matrices have order n x n. 

2. The main theorem 

If Q A R  = AT for permutation matrices Q and R,  then P(RA) = (RAlT, where 
P = QRT. Define T ( P )  to be the set of all matrices A such that P(RA) = (RAlT for 
some permutation matrix R. 

Let A = (a,) and B = (b,,) be n x n matrices. Write A < B if a ,  = ay whenever 
bij = bk.. Under the order < , the maximal elements of T ( P )  will be called P-maximal. 
These matrices play a central role, as indicated in our first lemma. 

LEMMA 2.1. I f  any P-maximal matrix is symmetrizable, then every matrix in T ( P )  is 
symmetrizable. 

We can now state our main result. 

THEOREM 2.2. Consider the standard cyclic decomposition of the permutation 
corresponding to the permutation matrix P. let a,, a-,, ..., a. be the lengths of the even 
cycles and let b , ,  by ,  ..., b, be the lengths of the odd cycles. Then every member of T ( P )  is 
symmetrizable i f  and only i f  one of the following conditions is satisfied. 

(1) r = 0. 
(2 )  r = I and (a,, b,) = 1 for 1 < i < s. 
( 3 )  r = 2, (al,a,) = 2 and (a, ,  bi) = (a,, bi) = 1 for 1 < i < s. 

We will prove Theorem 2.2 by translating the problem into one which concerns 
the automorphism of a graph. Each n x n matrix A = (a,,) is associated with a graph 
G(A). The vertices of G(A) are the elements of the set Vl u V,, where 
V, = { r l ,  r2, ..., rn} and V2 = [ e l ,  c,, ..., en}. The edges of G(A)  are the elements of 
Vl x V,, with each edge (r,, c j )  labelled (coloured) with the entry a,,. Thus G(A) is a 
complete bipartite edge-coloured graph. 

For any n x n permutation matrix S, define n(S) to be the permutation of Vl u V, 
which permutes V, according to S and fixes each element of V-,. Let T be the 
permutation ( r ,  ci)(r2 c,) ... ( r  c,,). The various properties of A that we have 
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considered have simple interpretations in terms of the structure of G(A), as we now 
/' 

describe 

( 1 )  A is symmetric if and only if T is an automorphism of G(A). 
(2 )  A e T(P) if and only if ^R} ̂ ?} !:no' ' is an automorphism of G(A),  for some 

R. 
(3) A is P-maximal if, for some R, the edge colours of G(A) correspond exactly to 

the orbits of V, x V2 induced by n(R) n{P)7n{R)-l. 
(4)  A is symmetrizable if and only if n ( S ) ~ n ( S ) l  is an automorphism of G(A), for 

some S. 

It is not hard to see that (2)  and (4 )  imply the following two correspondences. 

(1) A is transposable if and only if there is an automorphism of G(A) which swaps 
the sets V, and V,. 

(2)  A is symmetrizable if and only if there is an automorphism of G(A) of order 
two which swaps V, and V2. 

In view of this translation, and of Lemma 2.1, we can restate Theorem 2.3 as 
follows. Suppose that for some R, n(R) n(P) w ( R )  ' is an automorphism of G(A) and 
induces orbits of V, x V2 corresponding exactly to the edge colouring of G(A). Then 
G(A) has an automorphism of order two interchanging V, and V2 if and only if P 
satisfies one of the conditions of Theorem 2.3. 

By Lemma 2.1, we may assume that n(R) is the identity. Write a = n(P) in terms of 
its elementary cycles as a = a, a2 ... a,, where 1 = r + s .  Then on has the cycle 
decomposition ore = af a; ... a* where each elementary cycle a* has twice the length 
of the corresponding a,. Let Gi(A) be the subgraph of G(A) induced by the vertices in 
the cycle a*. If the order of Gi(A) is 2ni, then the automorphism group of Gi(A) is 
clearly the dihedral group of order 4ni, in its standard representation of degree 2ni. 

We will label the vertices of G(A) with pairs ( i ,  j), so that a* is 

and 

for 1 < i < 1. Thus ( i ,  j) is in V, if,/" is even and in V2 ifj  is odd. For each i, the second 
elements of the pairs (i, j)  are considered modulo In,. 

Any automorphism of order two of G(A) which interchanges Vl and V2 can be 
written as 6 = ,5', ?Â¥ ... P,, where /Ii is an order two automorphism of Gi(A). The 
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possibilities for B, can be enumerated as follows. 

Type I. /Ii,,,, maps (i, j ) to (i, 4m + 1 -7) for 1 < j a$ 2n,. 

Type 11. p i m  maps ( i ,  j )  to (i,4m - 1 -j) for 1 < j < 2ni. 

Type 111. (for ni odd) vi maps (i, j) to (i, ni +j) for 1 < j < 2n2 

It is easily seen that if ni is odd, A i m  = p i m +  n,- and vi = (a*)"'. 

We now consider the edges between Gi(A) and G(A) and seek pi and / ?  such that 
preserves the colours of these edges. Note firstly that the edge (i, ul)(j, v J  has 

the same colour as (i,u-,)(j, u2) if and only if there is an integer t such that 
u2 = u1 + t (mod 2ni) and v2 = v i  + t (mod 2nj). 

There are six cases to consider. We will examine the first case in detail, and then 
state the conclusion for the other five. 

Case (a). /?, of type I, ft, of type 11. 

Suppose pi = A,,^ and /?, = p,,.  Then pi/?, maps the edge (i, u)(j, v )  to the edge 
(i, 4x + 1 - u) (j,  4y - 1 - u). These two edges have the same colour if and only if there 
is an integer t such that 

and 

In order for t to exist for any u and v of the opposite parity, it is necessary and 
sufficient that (ni, n,) < 2. If u and v have the same parity, there is no edge (i, u) ( j ,  v). 

Case (b). /?, of type I, ft, of type 111 (n, odd). 

Case (c). Pi of type 11, 4 of type 111 (nj odd). 

Case (d). of type I, 4 of type I. 

Case (e). f i  of type 11, /?, of type 11. 

In each of the cases above, analysis similar to that used in Case (a) shows that it is 
necessary and sufficient that (n,, nj) = 1. 

Case (f). [Ii of type 111, 6 of type 111 (n, and n, both odd). 

Since vi = (a*)"' and (a,*)2n' = 1, we see that vi vj = (a,* Consequently \ v, 
will always preserve the colour of the edges between Gi(A) and G,(A). 

In summary, it is necessary that (ni, n,) s$ 2, unless n, and n, are both odd. Now 
suppose that nl,n2, ..., ttr are even, and n,+ ,, nr+2, ..., n, are odd. 

(a) If r = 0, we can use pi = vi for 1 < i G 1. 
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(b) If r = 1, we must have (n,, n,) = 1  for 2  < i s$ I. In that case we can use 
& = A i o  and Pi = vifor 2 <  i < 1. 

(c) If r = 2, we must have (n,, n2) = 2, and (n,, n,) = (n2, n,) = 1  for 3 s$ i < 1. In 
that case we can use /?, = iio, & = p Z o  and pi = v i  for 3 < i < 1. 

(d) If r 2 3, we must have (n,, n,) = (n,, n3) = (n2, n3) = 2. However one of and 
By must be oftype I and the other of type 11. Similarly, one of 8, and /L must be 
of type I and the other of type 11. Therefore 3, and /L must be both of type I or 
both of type 11, neither of which cases is allowed. 

This completes the proof of Theorem 2.2. 

3. Final remarks 

With the results of Section 2 we have a tool which can be used in certain 
circumstances to prove that a self-dual SBIBD is polar, given a correlation between 
the SBIBD and its dual. Since the binary matrices of order greater than three cannot 
be P-maximal for any P, no similar negative proof is possible. 

It would be interesting to obtain classes of matrices for which transposability is 
sufficient to imply symmetrizability. This is not always true for binary matrices, as is 
shown by Everett and Metropolis (1972) with an example of order 16. A smaller 
example is shown in Figure 1. 

At present the authors do not know of any self-dual SBIBD whose incidence 
matrix is not symmetrizable. 

- - 
1 1 0 0 1 1 1 0 1 0 0 1  

1 1 1 0 0 1 1 1 0 1 0 0  

1 1 1 1 0 0 0 1 1 0 1 0  

0 1 1 1 1 0 0 0 1 1 0 1  

0 0 1 1 1 1 1 0 0 1 1 0  

1 0 0 1 1 1 0 1 0 0 1 1  

1 0 0 1 0 1 1 0 0 0 0 1  

1 1 0 0 1 0 1 1 0 0 0 0  

0 1 1 0 0 1 0 1 1 0 0 0  

1 0 1 1 0 0 0 0 1 1 0 0  

0 1 0 1 1 0 0 0 0 1 1 0  

0 0 1 0 1 1 0 0 0 0 1 1  
FIGURE 1. 
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