
18-859E INFORMATION FLOW IN NETWORKS HARDWARE IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS 1

Hardware Implementation of Artificial Neural
Networks

Mats Forssell

Abstract—Artificial Neural Networks (ANNs) have long been
used to solve complex machine learning problems (“deep learn-
ing”). The inherent distributed component of ANNs in both
memory and computation means that implementing them directly
in hardware can allow large gains when scaling the newtork
sizes, since the von Neuman bottleneck (computations limited by
memory access time) does not have to distributed architectures.
Therefore both analog and digital circuits have been used to
implement these circuits without the use of a general purpose
CPU architecture. Promising results have been obtained for
various circuit architectures, with commercial applications close
by. Challenges remain in the scaling of these networks, since the
number of synapses grows quadratically, making wiring difficult.
Novel devices, in particular different memristor-like devices, can
be used to more efficiently design and fabricate ANNs, although
the reliability of the fabrication remains to be demonstrated.

Index Terms—Aritifical Neural Network, Neuromorphic Com-
puting, Memristor

I. INTRODUCTION

ARTIFICIAL Neural Networks (ANNs) are a powerful
paradigm in machine learning inspired by the com-

putation and communication capabilities of the brain. As
such they have been the basis for many powerful algorithms
with applications in pattern recognition, memory, mapping,
etc. . . Recently there has been a large push toward a hardware
implementation of these networks in order to overcome the
calculation complexity of software implementations: the power
budget of the human brain is around 15W, and its computation
capabilities range in the 1017 FLOPS1 [1], far better than the
best supercomputers. This has lead to an entire new class
of circutis, dubbed “neuromorphic circuits”, which closer
emulate the behavior of neurons: high network connectivity,
simple base processing element, and distributed memory and
computation. It is important to keep in mind that the purpose
of these circuits is not to accurately reproduce the processing
performed in the brain; rather, they are inspired by the brain
and emulate some charcteristics of brain processing, but do so
using very different elements.

A. Types of Artificial Neural Networks

From a structural perspective, ANNs can be divided into
two main categories, feed-forward networks, in which the
computation is performed in a layer-by-layer fashion from the
input to the output of the network; and recurrent networks
which have an interconnected network structure including
cycles. The main application of the former class of networks is
supervised classification performed by a perceptron algorithm.

1In a manner of speaking. Of course direct comparison with CPU processig
power is not really meaningful.

Fig. 1. Symbolic representation of a neuron-synapse model. Inputs from
neighboring neurons are summed using the synaptic weights, and a nonlinear
activation function then determines the output of the neuron [4].

The latter class of networks is more diverse and applications
include self-organizing maps, associative memory (Hopfield
netowork), Boltzmann networks, etc. . . [2] Finally, artificial
neurons can also be used to implement digital-like logic using
spikes, and therefore reproduce a universal Turing machine
[3].

B. General Structure of ANNs

Although the final application may differ, the two compo-
nents of ANNs remain the same: in analogy with biological
systems, they are referred to as neurons and synapses, and cor-
respond to the vertices and the edges of the graph respectively.
The neuron-synapse model is shown in Fig. 1. The challenges
in hardware implementation of the ANN are:

1) Synapse

• Network wiring: Number of synapses scales qudrat-
ically with the number of neurons

• Synaptic weight: Weights have to be defined with
high precision in order to ensure proper convergence
of the algorithms

• Learning: synaptic weights have to be updateable
2) Neuron

• Neuron state: Summation of weighed input must be
performed

• Activation function: Highly nonlinear function cal-
culation

As ANNs scale in size the number of synapses grows quadrat-
ically for fully connected networks, which quickly becomes
impractical to wire. Today’s integrated circuit fabrication tech-
niques are essentially stacked 2D structures, further limiting



18-859E INFORMATION FLOW IN NETWORKS HARDWARE IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS 2

the possibility of full interconnection. Therefore most imple-
mentations limit the wiring to some neighborhood of each
neuron.

C. Learning Rules

The general operation of most ANNs involves a learning
stage and a recall stage. During the learning stage the weights
of the network are adjusted to fit the application at hand. In the
case of the perceptron, this involves using the backpropagation
algorithm on a classified training set; in the case of associative
memory this involves setting the weights to ensure the desired
memories act as local attractors. During the recall stage, new
inputs are introduced and the network is left to equilibrate
(single-pass feed-forward for the perceptron and evolution to
equilibrium for associative memory for example). While the
recall stage is always performed on the physical network itself,
the learning stage can be performed in advance. There are three
training strategies:

1) Off-chip learning involves performing the learning stage
on a simulated network in software. This allows the
training claculations to be performed faster and more
accurately than could be done using the hardware net-
work. However, manufacturing variation of the hardware
is not taken into account.

2) Chip-in-the-loop learning involves both the hardware
network and an external software computation. It relies
on software to perform the learning algorithm but uses
the hardware network to perform the computations. In
the case of the backpropagation algorithm for example,
the forward pass is performed by the network while
the weight updates are performed in software. The
precision of the calculations is therefore not limited by
the hardware capabilities, while the actual behavior of
the network is still taken into account.

3) On-chip learning Uses only the hardware chip to per-
form the learning. While slower and less precise in the
weight calculations than the other two methods, this
technique does not involve external manipulation in the
learning stage. This makes it more realistic for embed-
ded hardware, and networks designed with this approach
in mind will be able to update their learning over time.
However the design is inherently more complicated and
less flexible, since the algorithm performing the learning
has to be implemented in hardware.

II. CMOS IMPLEMENTATION

A. Digital Circuitry

ANNs can be implemented using CMOS digital circuits
[5]–[8], which have the advantage of being easy to design
and build. They rely on existing logic elements and can
take full advantage of decades of advances in digital circuits.
Synaptic weights can be implemented using digital memory
cells, or even latches. The number of bits used to store the
synaptic weights is critical to the accuracy of the algorithm,
especially in the learning phase [2]. Although this can be
mitigated in some cases by using off-chip learning (meaning
the algorithm used to set the weights occurs on an external

software having comparatively high precision, and the final
result is then quantized to the chip precision), having an
efficient implementation of the synaptic weights is important.
The neuron state summation can be easily implemented as
well using common multipliers and adder stages. However for
large numbers of incoming neurons, the total number of these
elements can grow to be non-negligible.

The activation function is typically more complicated to im-
plement given that it has to be highly nonlinear by definition.
While a single threshold function can easily be implemented,
its capabilities are rather limited. On the other hand, a more
complex activation function, such as a sigmoid function,
requires look-up tables; these slow down the computations
considerably and require significant power and area if a good
precision is desired.

Although adapting CMOS digital logic for ANNs leads
to fairly simple designs, the result is inherently not power
and area optimized. However, another advantage of a CMOS
implementation is that it can easily be integrated alongside the
standard circuitry, which can even be fabricated using the same
CMOS process. Recent applications have been demonstrated,
such as the Synapse chip by IBM [8] (Fig. 2) or the Zeroth
processor by Qualcomm [9].

Figure 2 shows the structure of the IBM Synapse chip.
Computations are performed on a local core, but spikes can be
targetted to any neuron on the chip. In order to lower power
consumption, event-driven communication is used, meaning
that only spikes are communicated; this results in active power
proportional to spiking activity. However a global synchroniza-
tion clock has to be maintained throughout the chip; the global
clock rate is 1 kHz (about equivalent to the “clock rate” of the
brain) Each core requires 1.2 million transistors, equivalent to
less than 20 transistors per synapse.

B. Analog Circuitry

In general, integrated circuit design is much more compli-
cated in the case of analog circuits compared to digital circuits,
especially when scaling to large number of gates. This is no
different in the case of ANN circuits: while analog design
can lead to more power and area efficient circuits [10], [11]
(which is not typically the case for traditional ICs, where the
footprint of the analog portion is dominating), their design
cannot be automated to the same extent as that of digital
circuits. Because it is inherently more difficult to scale the
design of analog circuits, general-purpose circuits are more
difficult to achieve; however for a given application, analog
circuits can be significantly more efficient than their digital
counterparts.

The synaptic weight can be implemented by storing a digital
weight, as is done for the digital synapse. Performing the
computation, will then require ADC/DAC elements. Not only
can this introduce an undesirable delay in computation, the
power and area scaling will also be dependent on the precision
given to the synaptic weights. The alternative is to store the
weights using analog elements, such as resistors or capacitors,
which can be done directly if the weights are to be fixed by
design. Other methods exist to store digitally programmable



18-859E INFORMATION FLOW IN NETWORKS HARDWARE IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS 3

(a)

(b)

Fig. 2. Functional circuit showing (a) one neuromorphic core and (b) a
multiple-core connection of IBM’s Synpase chip. The core has 256 fully
connected neurons, and the chip consists of an array of 64x64 fully connected
cores [8].

weights using reconfigurable analog elements [10] more effi-
ciently than storing the weights in digital memory. This will
still require ADC/DACs for the learning step (i.e. updating the
weights).

Summation of the neuron inputs is usually not an issue in
an analog circuit, since the neuron input and outputs will
be represented as either currents or voltages. Currents are
summed by joining the branches in parallel, while voltages
are summed by joining them in series; in both cases, no extra
element is required to perform the computation. An alternative
is the class of oscillatory neural networks, which use phase to
represent the neuron state [12]. In this case, a phase-locked-
loop (PLL) is required to sum the neuron inputs.

The activation function is usually implemented using an
amplifier, which presents strong nonlinearity in saturation
regime. Essentially arbitrary activation functions can be built
using relatively simple circuits.

The manufacturing variations inherent to anaolg circuits
limits the achievable accuracy of analog ANNs. This means
that in order to achieve a certain level of precision, circuits
must be made large enough to limit the effect of manufacturing

tolerance. However neural networks implementing associative
memory are known for their fault tolerance, meaning they can
allow some variation in the basic circuit elements.

III. POST-CMOS IMPLEMENTATION

Implementing ANNs using CMOS processes in both digital
and analog case suffers from significant drawbacks, especially
when one attempts to scale the networks to large numbers of
neurons and synapses. As was already explained, the number
of synapses required soon makes the circuit wiring impossible,
especially for complete graphs (of which the Hopfield network
is an example). There are however several promising novel
devices which might enable easier implementation of the
neural network synapse.

Chief among these is the memristor, long-anticipated fourth
circuit element [13], [14] which is currently approaching com-
mercial feasibility. A simplified view of the memristor consists
of seeing it as a two-port programmable resistance. It is clear
then that if we use resistance to encode synaptic weights,
the memristor will enable an efficient programmable analog
synapse without requiring heavy additional digital circuitry
[15].

Over the past few years, several types of memristive-like
devices have appeared, such as oxide thin-film, spin transfer
torque, phase change materials, or optically gated field effect
transistors. Better yet, the memristive effect in many of these
devices occurs at the nanoscale, which is promising with
regards to area scaling. The challenge of these devices is the
reliability in their fabrication, and integrationg with standard
CMOS manufacturing process

RRAM

Resistive Random Acess Memory (RRAM) is the name
given to the non-volatile memory application of the memristor.
It is the most product-ready of all the novel ANN devices,
with commercial applications to be launched within the year.
RRAMS are implemented using thin-film oxide structures
which change their resistance after the application of a tempo-
rary voltage; the switching energy is only a few pJ. Moreover,
spike-timing dependent plasticity, a well knwon feature of the
brain (Hebb’s law), can be implemented using RRAMs [16],
creating an inherent memory/synapse link. Weight updating
happens automatically in the network, with only one transistor
and one memristor required at every synapse; this is one of
the most compact possible implementations for ANNs.

IV. LOGIC CIRCUITS

The neuron-synapse pair is the basic element of Artificial
Neural Networks. However in some applications, the neuron
can be implemented in a stand-alone fashion and used as the
basic building block of logic circuits. In this case it is also
called neuristor, since it replaces the transistor used in tradi-
tional CMOS circuits. The logic circuits can be implemented
using spiking devices [3], or oscillatory devices [17] (Fig. 3).

Universal Turing machines can be constructed based on
the gates in Fig. 3. Therefore neuromorphic hardware can



18-859E INFORMATION FLOW IN NETWORKS HARDWARE IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS 4

(a)

(b)

(c)

(d)

Fig. 3. Neuristor implementation and basic logic gates. (a) Spiking neuristor
design based on memristor circuit, (b) AND logic gate, (c) NOT logic gate.
The assertion is required to ensure timing of spikes. (d) Oscillatory NAND
gate based on magnetic logic gate.

be used to perform general computations, without requiring
an additional CMOS logic layer. The ANNs based on spikes
or oscillations could be directly integrated with these neuro-
morphic logic circuits, without requiring a costly transcription
of instructions from standard CMOS logic (TTL) into the
neuromorphic ANN.

V. CONCLUSION

Hardware implementation of ANNs has been succesfully
achieved using either analog or digital neuron-synapse circuits.
Future devices can make the ANN design and fabrication
more efficient. The full power of hardware ANNs has not
been seen yet, but with the coming release of commercial
chips implementing arbitrary neural networks, more efficient
algorithms will no doubt be realized in those domains where
neural networks are known to dramatically improve perfor-
mance (pattern recognition, associative memory, etc. . . ).

REFERENCES

[1] A. H. Marblestone, B. M. Zamft, Y. G. Maguire, M. G. Shapiro, T. R.
Cybulski, J. I. Glaser, D. Amodei, P. B. Stranges, R. Kalhor, D. A.
Dalrymple et al., “Physical principles for scalable neural recording,”
Frontiers in Computational Neuroscience, vol. 7, 2013.

[2] P. Moerland and E. Fiesler, “Neural network adaptations to hardware
implementations,” Handbook of Neural Computation, vol. 1, p. 2, 1997.

[3] M. D. Pickett and R. S. Williams, “Phase transitions enable computa-
tional universality in neuristor-based cellular automata,” Nanotechnol-
ogy, vol. 24, no. 38, p. 384002, 2013.

[4] V. Calayir, T. Jackson, A. Tazzoli, G. Piazza, and L. Pileggi, “Neurocom-
puting and associative memories based on ovenized aluminum nitride
resonators,” in Neural Networks (IJCNN), The 2013 International Joint
Conference on. IEEE, 2013, pp. 1–8.

[5] R. C. Frye, E. A. Rietman, and C. C. Wong, “Back-propagation learning
and nonidealities in analog neural network hardware,” Neural Networks,
IEEE Transactions on, vol. 2, no. 1, pp. 110–117, 1991.

[6] S. Jung and S. S. Kim, “Hardware implementation of a real-time neural
network controller with a dsp and an fpga for nonlinear systems,”
Industrial Electronics, IEEE Transactions on, vol. 54, no. 1, pp. 265–
271, 2007.

[7] H. Hikawa, “{FPGA} implementation of self organizing map
with digital phase locked loops,” Neural Networks, vol. 18, no.
56, pp. 514 – 522, 2005, {IJCNN} 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0893608005001103

[8] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura, B. Brezzo,
I. Vo, S. K. Esser, R. Appuswamy, B. Taba, A. Amir, M. D. Flickner,
W. P. Risk, R. Manohar, and D. S. Modha, “A million spiking-neuron
integrated circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, 2014. [Online]. Available:
http://www.sciencemag.org/content/345/6197/668.abstract

[9] V. Aparin and J. A. Levin, “Methods and systems for cmos implemen-
tation of neuron synapse,” Apr. 8 2014, uS Patent 8,694,452.

[10] P. W. Hollis and J. J. Paulos, “Artificial neural networks using mos
analog multipliers,” Solid-State Circuits, IEEE Journal of, vol. 25, no. 3,
pp. 849–855, 1990.

[11] G. Indiveri and T. K. Horiuchi, “Frontiers in neuromorphic engineering,”
Frontiers in Neuroscience, vol. 5, 2011.

[12] F. C. Hoppensteadt and E. M. Izhikevich, “Pattern recognition via syn-
chronization in phase-locked loop neural networks,” IEEE Transactions
on Neural Networks, vol. 11, no. 3, pp. 734–738, 2000.

[13] L. O. Chua, “Memristor-the missing circuit element,” Circuit Theory,
IEEE Transactions on, vol. 18, no. 5, pp. 507–519, 1971.

[14] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The
missing memristor found,” Nature, vol. 453, no. 7191, pp. 80–83, 2008.

[15] Y. V. Pershin and M. Di Ventra, “Experimental demonstration of
associative memory with memristive neural networks,” Neural Networks,
vol. 23, no. 7, pp. 881–886, 2010.

[16] S. Ambrogio, S. Balatti, F. Nardi, S. Facchinetti, and D. Ielmini, “Spike-
timing dependent plasticity in a transistor-selected resistive switching
memory,” Nanotechnology, vol. 24, no. 38, p. 384012, 2013.

[17] V. Calayir and L. Pileggi, “Fully-digital oscillatory associative memories
enabled by non-volatile logic,” in Neural Networks (IJCNN), The 2013
International Joint Conference on. IEEE, 2013, pp. 1–6.


