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Abstract. The paper considers Banach algebras with properties A or
B, introduced recently in [1]. The class of Banach algebras satisfying
any of these two properties is quite large; in particular it includes C∗-
algebras and group algebras on locally compact groups. Our first main
result states that a continuous orthogonally additive n-homogeneous
polynomial on a commutative Banach algebra with property A and hav-
ing a bounded approximate identity is of a standard form. The other
main results describe Banach algebras A with property B and having
a bounded approximate identity which admit nonzero continuous sym-
metric orthosymmetric n-linear maps from An into C.

1. Introduction

The basic purpose of this paper is to show that the pattern established
in [1], based on the so-called properties A and B, provides a way to treat
two seemingly quite different classes of maps, namely orthogonally additive
polynomials and orthosymmetric maps.

We say that a complex Banach algebra A has property B if every contin-
uous bilinear map f : A × A → X, where X is an arbitrary Banach space,
with the property that for all x, y ∈ A,

xy = 0 =⇒ f(x, y) = 0,

necessarily satisfies

f(xy, z) = f(x, yz) for all x, y, z ∈ A.

The definition of property A is slightly more technical and will be recalled
in the next section, but only for the case needed; i.e., for commutative
algebras. The point of the paper [1] is that every (not necessarily commu-
tative) Banach algebra with property A has also property B, and that the
class of Banach algebras with property A (and hence also that of algebras
with property B) is fairly large, it includes for example C∗-algebras, group
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algebras on arbitrary locally compact groups, Banach algebras generated
by idempotents, topologically simple Banach algebras containing nontrivial
idempotents, etc. These assertions have turned out to be, sometimes rather
unexpectedly, applicable to a variety of topics, see for example [1, 2, 3, 7, 13].
The present paper continues this line of investigation by presenting new ap-
plications.

Let A be a commutative Banach algebra. A map P : A → C is said to
be orthogonally additive if P (x + y) = P (x) + P (y) whenever x, y ∈ A are
such that xy = 0. We will be interested in the case where P is a continuous
n-homogeneous polynomial; i.e., P is of the form P (x) = ϕ(x, . . . , x), x ∈ A,
for some continuous n-linear map ϕ : An → C. Orthogonally additive poly-
nomials have been widely discussed in the context of Banach lattices (see [10]
and the references therein). However, we were primarily motivated by the
results stating that every continuous orthogonally additive n-homogeneous
polynomial P from A into C can be represented in the form P (x) = ω(xn),
x ∈ A, for some ω ∈ A∗ in the case where A is a commutative C∗-algebra
[5, 8, 12] or A is the Fourier algebra A(G) of a locally compact group G
having an abelian subgroup of finite index [4] (some restriction on G is in-
evitable). In Section 2 we will show, by making use of the result from [4],
that the same representation theorem holds if A is a commutative Banach
algebra with property A and having a bounded approximate identity (re-
call that C∗-algebras and group algebras on locally compact groups have
approximate bounded identities).

Now let A be a not necessarily commutative Banach algebra. A continu-
ous multilinear map ϕ : An → C is said to be orthosymmetric if ϕ(x1, . . . , xn) =
0 whenever xixj = xjxi = 0 for some 1 ≤ i < j ≤ n. This notion has
also origin in lattice theory [6], and may be considered as a variation of
the notion of orthogonally additive polynomials (cf. [4, Lemma 2.3]). If
A is commutative, then a simple example of an orthosymmetric map is
ϕ(x1, . . . , xn) = ω(x1 · · ·xn) where ω ∈ A∗. Note that this map is sym-
metric. A natural problem in certain situations is actually to show that
orthosymmetric maps are necessarily symmetric (cf. [6]). In Section 3 we
will consider symmetric orthosymmetric maps in Banach algebras with prop-
erty B (and having a bounded approximate identity) and show that their
existence for n ≥ 3 has an effect on the structure of the algebra. More pre-
cisely, the existence of a nonzero symmetric orthosymmetric map for n = 3
turns out to be equivalent to the existence of a “trace-like” map on the
algebra, and for n ≥ 4 to the existence of a multiplicative functional.

2. Orthogonal additivity in commutative Banach algebras
with property A

Let X and Y be Banach spaces. A map P : X → Y is said to be a
continuous n-homogeneous polynomial if there exists a continuous n-linear
map ϕ : Xn → Y such that P (x) = ϕ(x, . . . , x) for each x ∈ X. Such a map
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ϕ is unique if it is required to be symmetric. In this case it can be obtained
through the polarization formula:

ϕ(x1, . . . , xn) =
1

n!2n

∑
εi=±1

ε1 · · · εnP (ε1x1 + · · ·+ εnxn).

We are interested in the situation where X = A is a commutative Banach
algebra, Y = C, and P is orthogonally additive. Let us first recall some
definitions and fix the notation.

Let A be a commutative Banach algebra. Suppose that A is faithful ;
i.e., for every x ∈ A, xA = {0} implies x = 0. A multiplier on A is a
linear map L : A → A such that L(xy) = L(x)y for all x, y ∈ A. Such a
map is necessarily continuous and the set M(A) of all multipliers on A is
a unital closed subalgebra of B(A), the Banach algebra of all continuous
linear operators on A. Further, the map x 7→ Lx continuously embeds the
algebra A into the algebra M(A), where Lx(y) = xy for all x, y ∈ A. Note
that A can be therefore thought of as an ideal of M(A). An invertible
element u ∈ M(A) is said to be doubly power-bounded if supk∈Z ‖uk‖ <∞.
Let D(A) stands for the linear span of all doubly power-bounded elements
in M(A). Since the set of doubly power-bounded elements is closed under
multiplication, D(A) is in fact equal to the algebra generated by all doubly
power-bounded elements in M(A).

Lemma 2.1. Let A be a faithful commutative Banach algebra. Let P : A→
C be a continuous orthogonally additive n-homogeneous polynomial, and let
ϕ : An → C be the symmetric n-linear map associated with P . Then

(1) ϕ(xy1, . . . , xyn−1, xyn) = ϕ(x, . . . , x, xy1 · · · yn),

for all x ∈ A and y1, . . . , yn ∈ D(A)
so
.

Proof. We temporarily fix x ∈ A and doubly power-bounded elements y1,. . . ,
yn in M(A).

Let T be the circle group and let A(Tn) stand for the Fourier algebra on
Tn. Then A(Tn) consists of the functions f ∈ C(Tn) such that

‖f‖A(Tn) =
∑
k∈Zn

∣∣∣f̂(k)
∣∣∣ <∞.

Here, f̂(k) stands for the kth Fourier coefficient of f . For every f ∈ A(Tn)
we can define f(y1, . . . , yn) ∈M(A) by

f(y1, . . . , yn) =
∑
k∈Zn

f̂(k)yk11 · · · y
kn
n .

Furthermore,

‖f(y1, . . . , yn)‖ ≤
∑
k∈Zn

∣∣∣f̂(k)
∣∣∣ ‖yk11 ‖ . . . ‖y

kn
n ‖ ≤ C1 · · ·Cn‖f‖A(Tn),

where Ci = supk∈Z ‖yki ‖ for each i ∈ {1, . . . , n}. Hence, the map f 7→
f(y1, . . . , yn) gives a continuous homomorphism from A(Tn) into M(A).
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We now define Q : A(Tn) → C by Q(f) = P (xf(y1, . . . , yn)) for each
f ∈ A(Tn). It is easily seen that Q is a continuous orthogonally additive
n-homogeneous polynomial on A(Tn). By [4, Corollary 2.6] there exists
ξ ∈ A(Tn)∗ such that Q(f) = ξ(fn) for each f ∈ A(Tn). The polarization
formula then yields

(2) ϕ
(
xf1(y1, . . . , yn), . . . , xfn(y1, . . . , yn)

)
= ξ(f1 · · · fn)

for all f1, . . . , fn ∈ A(Tn). Let f0, f1, . . . , fn ∈ A(Tn) be defined by f0(u1, . . . , un) =
1 and fi(u1, . . . , un) = ui for all (u1, . . . , un) ∈ Tn and i ∈ {1, . . . , n}. On
account of (2), we have

ϕ(xy1, . . . , xyn) = ϕ
(
xf1(y1, . . . , yn), . . . , xfn(y1, . . . , yn)

)
= ξ(f1 · · · fn)

= ξ
(
f0

n−1· · · f0(f1 · · · fn)
)

= ϕ
(
xf0(y1, . . . , yn), . . . , xf0((y1, . . . , yn), x(f1 · · · fn)(y1, . . . , yn)

)
= ϕ(x, . . . , x, xy1 · · · yn),

which proves (1) in the case where y1, . . . , yn are doubly power-bounded el-
ements inM(A). By linearity, (1) holds for all y1, . . . , yn ∈ D(A). The sep-
arate continuity of the n-linear functionals (y1, . . . , yn) 7→ ϕ(xy1, . . . , xyn)
and (y1, . . . , yn) 7→ ϕ(x, . . . , x, xy1 · · · yn) with respect to the strong operator

topology onM(A) now implies that (1) holds for all y1,. . . , yn ∈ D(A)
so

, as
required. �

A commutative Banach algebra A is said to have property A if it is con-

tained in the closure, D(A)
so

, of D(A) in M(A) with respect to the strong
operator topology; i.e., for every x ∈ A there exists a net (uλ)λ∈Λ in D(A)
such that limλ∈Λ uλy = xy with respect to the norm for each y ∈ A. For
examples of algebras with property A we refer the reader to [1, Sections 1.2
and 1.3].

Theorem 2.2. Let A be a commutative Banach algebra with property A
and having a bounded approximate identity. Let P : A→ C be a continuous
orthogonally additive n-homogeneous polynomial. Then there exists ω ∈ A∗
such that P (x) = ω(xn) for each x ∈ A.

Proof. Let ϕ : An → C be the symmetric n-linear map associated with P .
Let (ρλ)λ∈Λ be an approximate identity of A of bound C. Since A has
property A, Lemma 2.1 yields

ϕ (ρλy1, . . . , ρλyn−1, ρλyn) = ϕ (ρλ, . . . , ρλ, ρλy1 · · · yn)

for all y1,. . . , yn ∈ A and λ ∈ Λ. Consequently,

ϕ (y1, . . . , yn) = lim
λ∈Λ

ϕ (ρλy1, . . . , ρλyn−1, ρλyn)

= lim
λ∈Λ

ϕ (ρλ, . . . , ρλ, ρλy1 · · · yn)
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for all y1,. . . , yn ∈ A. By Cohen’s factorization theorem, each y ∈ A
can be written in the form y = y1 · · · yn with y1,. . . , yn ∈ A. Hence the
net

(
ϕ(ρλ, . . . , ρλ, ρλy)

)
λ∈Λ

is convergent. We may define a linear func-

tional ω on A by ω(y) = limλ∈Λ ϕ(ρλ, . . . , ρλ, ρλy) for each y ∈ A. Since
|ϕ(ρλ, . . . , ρλ, ρλy)| ≤ ‖ϕ‖Cn‖y‖ for all y ∈ A and λ ∈ Λ, it follows that
|ω(y)| ≤ ‖ϕ‖Cn‖y‖ for each y ∈ A, which implies that ω is continuous.
Further ϕ(y1, . . . , yn) = ω(y1 · · · yn) for all y1,. . . , yn ∈ A. In particular,
P (x) = ω(xn) for each x ∈ A. �

Remark 2.3. It seems plausible that Theorem 2.2 remains true if one replaces
A with B in the statement. Unfortunately we are unable to show that this is
true in general. To give some indication of plausibility, we now give a proof
for the special case where n ≤ 3 and A is unital.

Thus, let P be a continuous orthogonally additive n-homogeneous poly-
nomial, n ≤ 3, and let ϕ be the symmetric n-linear map associated with P .
We must show that P (x) = ω(xn), x ∈ A, for some ω ∈ A∗. There is nothing
to prove if n = 1. If n = 2, then the polarization formula immediately shows
that ϕ satisfies the condition that xy = 0 implies ϕ(x, y) = 0. Since A has
property B it follows that P (x) = ϕ(x, x) = ϕ(1, x2) for every x ∈ A, which
is the desired conclusion. Now let n = 3. From

2ϕ(x, y, z) = ϕ(x+ z, y, x+ z)− ϕ(x, y, x)− ϕ(z, y, z)

we easily infer that xy = zy = 0 implies ϕ(x, y, z) = 0 (cf. [4, Lemma 2.3]).
Pick u, v ∈ A such that uv = 0. The map ψ1 : A2 → C, ψ1(x, y) =
ϕ(u, vx, y), x, y ∈ A, satisfies the condition that xy = 0 implies ψ1(x, y) = 0.
Therefore ψ1(xy, z) = ψ1(x, yz) for all x, y, z in A. In particular, ψ1(y, z) =
ψ1(1, yz). This means that the map ψ2 : A2 → C defined by ψ2(u, v) =
ϕ(u, vy, z) − ϕ(u, v, yz), where y, z ∈ A are fixed (but arbitrary) elements
in A, satisfies uv = 0 implies ψ2(u, v) = 0. Hence ψ2(uw, v) = ψ2(u,wv) for
all u, v, w ∈ A; i.e.,

ϕ(uw, vy, z)− ϕ(uw, v, yz) = ϕ(u,wvy, z)− ϕ(u,wv, yz)

for all u, w, v, y, z ∈ A. Setting u = v = 1 and w = y = z, and using
the symmetry of ϕ we get ϕ(w,w,w) = ϕ(w, 1, w2). On the other hand,
setting u = z = 1 and w = v = y we infer 2ϕ(w, 1, w2) = ϕ(w,w,w) +
ϕ(1, w3, 1). Comparing both relations we arrive at the desired conclusion
P (w) = ϕ(w,w,w) = ϕ(1, w3, 1).

3. Orthosymmetric maps in Banach algebras with property B

In this section we study a symmetric orthosymmetric n-linear map ϕ : An →
C in a Banach algebra A with property B. First we will describe the form
of ϕ, and then discuss conditions under which such a map exists.

For x, y ∈ A we write x ◦ y = xy + yx and [x, y] = xy − yx. We remark
that

(x ◦ y) ◦ z − (x ◦ z) ◦ y = [[z, y], x].
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By A ◦ A we denote the linear span of all x ◦ y, x, y ∈ A. Similarly we
introduce [A,A], [[A,A], A], etc. The ideal of A generated by the set S will
be denoted by Id(S).

Theorem 3.1. Let A be a Banach algebra with property B and having a
bounded approximate identity. If ϕ : An → C, n ≥ 2, is a continuous sym-
metric orthosymmetric n-linear map, then there exists ω ∈ A∗ such that

(3) ϕ (x1, . . . , xn) = ω
(
(. . . ((x1 ◦ x2) ◦ x3) . . . ) ◦ xn

)
for all x1,. . . , xn ∈ A.

Proof. We proceed by induction on n. For n = 2 the result is basically
already known. More precisely, [2, Theorem 1.2] covers the case where A
is a C∗-algebra, but fortunately the same proof works for Banach algebras
with property B and having a bounded approximate identity. Therefore we
present only the basic idea of the proof, and refer to [2] for details. For
any pair of elements u, v ∈ A such that uv = 0 define a bilinear map
ψ1 : A2 → C by ψ1(x, y) = ϕ(vx, yu). Clearly, xy = 0 implies ψ1(x, y) = 0
and so ψ1(xz, y) = ψ1(x, zy) for all x, y, z ∈ A. That is to say, the bilinear
map ψ2(u, v) = ϕ(vxz, yu)−ϕ(vx, zyu) has the property that uv = 0 implies
ψ2(u, v) = 0. Using property B one then obtains a functional equation for
ϕ involving six elements from which the desired conclusion; i.e., ϕ(x1, x2) =
ω(x1 ◦ x2) for some ω ∈ A∗, can be derived by making use of a bounded
approximate identity.

Thus, let n > 2 and assume that the theorem holds for a smaller number
of variables. Note that by fixing any z ∈ A, the induction hypothesis can
be applied to the map (x1, . . . , xn−1) 7→ ϕ(x1, . . . , xn−1, z). Thus, for each
z ∈ A there exists ψ( · , z) ∈ A∗ such that

ϕ (x1, . . . , xn−1, z) = ψ
(
(. . . ((x1 ◦ x2) ◦ x3) . . . ) ◦ xn−1, z

)
for all x1,. . . , xn−1 ∈ A. Let (ρλ)λ∈Λ be an approximate identity of A of
bound C. We now observe that

ψ(x, z) =
1

2n−2
lim

λn−2∈Λ
. . . lim

λ1∈Λ
ψ
(
(. . . (x ◦ ρλ1) . . . ) ◦ ρλn−2 , z

)
=

1

2n−2
lim

λn−2∈Λ
. . . lim

λ1∈Λ
ϕ
(
x, ρλ1 , . . . , ρλn−2 , z

)
,

which clearly shows that ψ is a symmetric orthosymmetric bilinear map on
A. Further, since |ϕ(x, ρλ1 , . . . , ρλn−2 , z)| ≤ Cn−2‖ϕ‖‖x‖‖z‖ for all x, z ∈ A
and λ ∈ Λ, it follows that |ψ(x, z)| ≤ Cn−2‖ϕ‖‖x‖‖z‖ for all x, z ∈ A and,
consequently, ψ is continuous. From what has already been proved it may
be concluded that there exists ω ∈ A∗ such that ψ(x, z) = ω(x ◦ z) for all
x, z ∈ A. We thus get

ϕ (x1, . . . , xn−1, xn) = ψ
(
(. . . ((x1 ◦ x2) ◦ x3) . . . ) ◦ xn−1, xn

)
= ω

(
(. . . ((x1 ◦ x2) ◦ x3) . . . ) ◦ xn−1) ◦ xn

)
for all x1,. . . , xn−1, xn ∈ A, as required. �
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Remark 3.2. IfA is commutative then ϕ gets a simpler form: ϕ(x1, . . . , xn) =
ω′(x1 . . . xn) where ω′ = 2n−1ω ∈ A∗.

For n = 2 Theorem 3.1 tells us that ϕ arises from the Jordan product
◦ and a continuous linear functional, and this is all that can be said. The
problem is of a different nature if n ≥ 3. Moreover, the n = 3 case is different
from the n ≥ 4 case. We first treat the former.

Theorem 3.3. Let A be a Banach algebra with property B and having a
bounded approximate identity. Then there exists a nonzero continuous sym-
metric orthosymmetric 3-linear map ϕ : A3 → C if and only if [A,A] 6= A.

Proof. Suppose there exists a nonzero continuous symmetric orthosymmetric
3-linear map ϕ : A3 → C. Theorem 3.1 tells us that there is ω ∈ A∗ such
that ϕ(x, y, z) = ω((x ◦ y) ◦ z) for all x, y, z ∈ A. Since ϕ is symmetric it
follows that ω((x ◦ y) ◦ z) = ω((x ◦ z) ◦ y) for all x, y, z ∈ A. Note that this
can be rewritten as

(4) ω ([[z, y], x]) = 0 for all x, y, z ∈ A.

Now if [A,A] was equal to A, then [[A,A], A] would also be equal to A, and
hence ω(u) would be 0 for every u ∈ A as ω is continuous. However, this is
impossible for ϕ 6= 0.

To prove the converse, assume that [A,A] 6= A. Let ω ∈ A∗ be such that
ω 6= 0 and ω vanishes on all commutators. Define ϕ : A3 → C by

(5) ϕ(x, y, z) = ω(xyz + zyx).

Since ω([A,A]) = 0, we have

ϕ(x, y, z) = ω ((xy)z + z(yx)) = ω(zxy + yxz),

and similarly

ϕ(x, y, z) = ω(xzy + yzx).

Hence we see that ϕ is symmetric and orthosymmetric. Let (ρλ)λ∈Λ be a
bounded approximate identity of A. From

lim
λ2∈Λ

lim
λ1∈Λ

ϕ (x, ρλ1 , ρλ2) = lim
λ2∈Λ

lim
λ1∈Λ

ω (xρλ2ρλ1 + ρλ1ρλ2x) = 2ω(x)

we see that ϕ 6= 0. �

Remark 3.4. Assume the conditions of Theorem 3.3 and add the assumption
that [[A,A], A] = [A,A]. Then it can be concluded that ϕ is necessarily of
the form (5) where ω ∈ A∗ is such that ω([A,A]) = 0. Indeed, from (3)
and (4) we see that there exists ω′ ∈ A∗ such that ϕ(x, y, z) = ω′(xyz +
zyx + yxz + zxy), x, y, z ∈ A, and ω′ vanishes on commutators. Since
ω′((yx)z) = ω′(z(yx)) and ω′(z(xy)) = ω′((xy)z) it follows that ϕ(x, y, z) =
2ω′(xyz + zyx). Thus we take ω = 2ω′.

The simplest example of an algebra satisfying the conditions of Remark 3.4
is the matrix algebra Mn = Mn(C). Since every linear functional on Mn
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that vanishes on commutators is a scalar multiple of the trace, the following
corollary holds.

Corollary 3.5. If ϕ : M3
n → C is a symmetric orthosymmetric 3-linear

map, then there exists α ∈ C such that ϕ(x, y, z) = αtr(xyz + zyx) for all
x, y, z ∈Mn.

It remains to consider the case where n ≥ 4. For this purpose, we recall
that a Banach algebra A is said to have the weakly Wiener property if
spectral analysis holds for A; i.e., each proper closed ideal of A is contained
in a primitive ideal.

Example 3.6. We list some examples of algebras having the weakly Wiener
property.

(1) If A is a unital Banach algebra, then every proper ideal of A is of
course contained in a maximal ideal of A, and so A has the weakly
Wiener property.

(2) Every C∗-algebra has the weakly Wiener property [11, Theorem 11.5.4(e)].
(3) A locally compact group G is weakly Wiener if the group algebra

L1(G) has the weakly Wiener property. For examples of this class
of groups we refer the reader to [11, Section 12.6.36]. Among them
are the locally compact abelian groups and the compact groups.

(4) By [9, Proposition 4.1.24], a regular Banach function algebra A has
the weakly Wiener property if and only if the set of all f ∈ A such
that the support of f is compact is dense in A.

Theorem 3.7. Let A be a Banach algebra with property B, having a bounded
approximate identity and the weakly Wiener property. If n ≥ 4, then there
exists a nonzero continuous symmetric orthosymmetric n-linear map ϕ : An →
C if and only if Id([A,A]) 6= A.

Proof. To prove the “only if” part it suffices to treat the case where n = 4.
Namely, if n ≥ 5 then by fixing a5,. . . , an and considering (x1, x2, x3, x4) 7→
ϕ(x1, x2, x3, x4, a5, . . . , an) we arrive at the n = 4 case. Thus, let ϕ : A4 →
C be a nonzero continuous symmetric orthosymmetric 4-linear map. By
Theorem 3.1 there exists ω ∈ A∗ such that

(6) ϕ(x, y, z, w) = ω(((x ◦ z) ◦ y) ◦ w)

for all x, y, z, w ∈ A. Using the symmetry of ϕ we obtain

ω(((x ◦ z) ◦ y) ◦ w) = ω(((x ◦ y) ◦ z) ◦ w),

which shows that

(7) [[y, z], x] ◦ w ∈ kerω

for all x, y, z, w ∈ A. Let (ρλ)λ∈Λ be a bounded approximate identity of A.
By (7), we have [[y, z], x] ◦ ρλ ∈ kerω for all x, y, z ∈ A and λ ∈ Λ. Taking
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the limit we get [[A,A], A] ⊆ kerω, and so in particular [[[y, z], x], w] ∈ kerω.
Together with (7) this gives

A[[A,A], A] + [[A,A], A]A ⊆ kerω.

Moreover, since

u[[x, y], z]w = u[[x, y], zw]− uz[[x, y], w]

this implies that kerω contains Id([[A,A], A]). As ω 6= 0 by (6), I =

Id([[A,A], A]) is a proper closed ideal of A. Then I is contained in a prim-
itive ideal P of A. The quotient Banach algebra B = A/P is therefore
primitive and satisfies [[B,B], B] = {0}. In other words, every commutator
in B lies in the center Z of B. Thus, [s, t]s = [s, ts] ∈ Z for any s, t ∈ B,
and so in particular [[s, t]s, t] = 0. Since [s, t] ∈ Z, this can be written
as [s, t]2 = 0. However, the center of a primitive Banach algebra is either
zero or is isomorphic to C and therefore cannot contain nonzero nilpotent
elements. Thus [s, t] = 0 for all s, t ∈ B; i.e., B is commutative. That is, P

contains [A,A], and hence also Id([A,A]). Accordingly, Id([A,A]) 6= A.

Conversely, assume that Id([A,A]) 6= A. Let P be a primitive ideal of

A containing Id([A,A]). Then A/P is a commutative primitive Banach
algebra, and as such isomorphic to C. The quotient homomorphism θ : A→
A/P can be therefore identified by a multiplicative functional. The map
ϕ(x1, . . . , xn) = θ(x1 . . . xn) is clearly symmetric and orthosymmetric, and
is not zero. �

Remark 3.8. Note that the condition that Id([A,A]) 6= A is equivalent to the
existence of a multiplicative linear functional on A. On the other hand, the
condition from Theorem 3.3 that [A,A] 6= A is equivalent to the existence of
a nonzero continuous linear functional τ on A that satisfies τ(xy) = τ(yx)
for all x, y ∈ A.
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[7] M. Brešar, Š. Špenko, Determining elements in Banach algebras through spectral
properties, J. Math. Anal. Appl. 393 (2012), 144–150.

[8] D. Carando, S. Lassalle, I. Zalduendo, Orthogonally additive polynomials over C(K)
are measures — a short proof, Integral Equations Operator Theory 56 (2006), 597–
602.



10 J. ALAMINOS, M. BREŠAR, Š. ŠPENKO, AND A. R. VILLENA
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