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Why Jordan algebras?

One of reasons is because

65 = 5 · 13 = 5 · (14− 1)
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Some other reasons: applications of Jordan algebras

I Origins in Quantum mechanics (27-dimensional Albert’s
exceptional algebra)

I Non-associative algebras (Zelmanov’s theory)

I Self-dual homogeneous cones (Vinberg’s and Koecher’s theory)

I Lie algebras (Lie algebra functor, Exceptional Lie algebras,
Freudental’s magic square)

I Non-linear PDE’s (integrable hierarchies, Generalized KdV
equation, regularity of Hessian equations, higherdimensional minimal
surface equation)

I Extremal black hole, supergravity

I Operator theory (JB-algebras)

I Differential geometry (symmetric spaces, projective geometry,
isoparametric hypersurfaces)

I Statistics (Wishart distributions on Hermitian matrices and on
Euclidean Jordan algebras)
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Origins in Quantum mechanics: The Jordan program

Kevin McCrimmon, Taste of Jordan algebras, 2004:

I am unable to prove Jordan algebras were known to
Archimedes, or that a complete theory has been found in the
unpublished papers of Gauss. Their first appearance in recorded
history seems to be in the early 1930’s when the theory bursts
forth full-grown from the mind, not of Zeus, but of

Pascual Jordan John von Neumann Eugene Wigner
in their 1934 paper on an algebraic generalization of the
quantum mechanical formalism.

September 13, 2011 Jordan algebras Mittag-Leffler Institution



Introduction The Jordan program The Albert algebra h3(O) JA in Analysis and PDE’s Minimal cones

The Jordan program

The usual matrix operations are not ‘observable’.

Matrix operations:

λx multiplication by a C-scalar
x+ y addition
xy multiplication of matrices
x∗ complex conjugate

Observable operations:

αx multiplication by a R-scalar
x+ y addition
xk powers of matrices
x identity map

The matrix interpretation was philosophically unsatisfactory because
it derived the observable algebraic structure from an unobservable
one.
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The Jordan program

In 1932 Jordan proposed a program to discover a new algebraic setting for
quantum mechanics:

I it would be freed from dependence on an invisible but all-determining
metaphysical matrix structure,

I yet would enjoy all the same algebraic benefits as the highly successful
Copenhagen model;

I to capture intrinsic algebraic properties of Hermitian matrices, and
then to see what other possible non-matrix systems satisfied these
axioms.

Jordan multiplication
By linearizing the quadratic squaring operation, to replace the usual matrix
multiplication by the anticommutator product (called also the Jordan
product)

x • y =
1

2
(xy + yx);
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The Jordan program

A Jordan algebra J (over F) is vector space defined equipped with a
bilinear product • : J × J → J satisfying the

x • y = y • x Commutativity

x2 • (x • x) = x • (x2 • y) the Jordan identity

In other words, the multiplication operator Lxy = x • y satisfies

[Lx, Lx2 ] = 0.

The Jordan quest: Can quantum theory be based on the commutative and
non-associative product x • y = 1

2
(xy + yx) alone, or do we need the

associative product xy somewhere in the background?

A positivity condition (comes from Artin-Schreier theory): an algebra is
called formally real if

x2
1 + . . .+ x2

k = 0 ⇒ x1 = . . . = xk = 0. (1)
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The Jordan program: Special algebras

“Jordanization”:
Given an associative algebra A with product xy, the linear space A
(denoted A+) with the Jordan product

x • y =
1

2
(xy + yx)

becomes a Jordan algebra. Such a Jordan algebra is called special.

Compare with the Lie algebra construction from an associative algebra A:
the skew-symmetric product is defined by

[x, y] =
1

2
(xy − yx)

such that (A, [ ]) becomes a Lie algebra.

Observe that all Lie algebras are special.
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The Jordan program: Special algebras

The classical (associative) division algebras:

I the reals F1 = R,

I the complexes F2 = C
I the quaternions F4 = H.

Two basic examples of Jordan algebras builded of Fd:

I M(n,Fd), n× n matrices over Fd,

I a Jordan subalgebra of M(n,Fd) consisting of hermitian
matrices:

hn(Fd) = {x ∈M(n,Fd) : xt = x}
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Classification of formally real Jordan algebras

P. Jordan, J. von Neumann, E. Wigner, On an algebraic generalization of
the quantum mechanical formalism, Annals of Math., 1934

Any (finite-dimensional) formally real Jordan algebra is a direct sum of the
following simple ones:

I Three ‘invited guests’ (special algebras). . .

hn(R);

hn(C);

hn(H);

I . . . and two new structures which met the Jordan axioms but were not
themselves hermitian matrices:

Jn(|x|2), the spin factors (not to be confused with spinors);

h3(O), hermitian matrices of size 3× 3 over the octonions O,

(also known as the Albert algebra)
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More about the spin-factor Jn(Q)

Definition of Jn(Q)

Given a non-degenerate quadratic form Q, one defines a multiplication on
1R ⊕ Rn by making the distinguished element 1 acting as unit, and the
product of two vectors v, w ∈ Rn to be given by

(x0, x) • (y0, y) = (x0y0 +Q(x, y), x0y + y0x), 1 = (1, 0).

I If Q is positive definite then Jn(Q) is formally real

I Jn(Q) can be realized as a certain subspace of h2n(R) ⇒ is special

I The hermitian 2× 2 matrices are actually a spin factors:

h2(Fd) = J1+d(−|x|2), d = 1, 2, 4, 8.

Though Jordan algebras were invented to study quantum mechanics, the
spin factors are also deeply related to special relativity.
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The exceptional Albert algebra h3(O)

Hermitian matrices over octonions:

I For n = 2, h2(O) ∼= J9(−|x|2), hence special.

I For n ≥ 4, hn(O) is not a Jordan algebra at all.

I For n = 3:

h3(O) = the 27-dim space of matrices

 t1 z3 z2

z3 t2 z1

z2 z1 t3

 , ti ∈ R, zi ∈ O

Adrian Albert (1934)

h3(O) is an exceptional Jordan algebra, i.e. it cannot be imbedded in any
associative algebra.

But this lone exceptional algebra h3(O) was too tiny to provide a home for
quantum mechanics, and too isolated to give a clue as to the possible
existence of infinite-dimensional exceptional algebras.
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The exceptional Albert algebra h3(O)

In 1979, Efim Zelmanov (a Fields medal, 1994)
quashed all remaining hopes for such an exceptional
systems. He showed that even in infinite dimensions
there are no simple exceptional Jordan algebras
other than Albert algebras.

. . . and there is no new thing under the sun especially in the way of
exceptional Jordan algebras; unto mortals the Albert algebra alone is
given.

(McCrimmon, Taste of Jordan algebras, 2004)
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The exceptional Lie algebras, h3(O), and triality
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The exceptional Lie algebras, h3(O), and triality

The five exceptional Lie algebras and groups G2, F4, E6, E7 and E8

appeared mysteriously in the nineteenth-century Cartan-Killing
classification and were originally defined in terms of multiplication
tables.

In 1930s – ’50s N. Jacobson, C. Chevalley, R.D. Schafer, J. Tits,
H. Freudenthal, E. Vinberg obtained in an intrinsic coordinate-free
representations using the Albert algebra and octonions.

I G2 is the the automorphism group of O;

I F4 is the automorphism group of h3(O);

I E6 is the isotopy group of h3(O);

I E7 is the superstructure Lie algebra of h3(O);

I E8 is connected to h3(O) in a more complicated manner.
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The exceptional Lie algebras, h3(O), and triality

The Freudenthal-Tits-Vinberg magic square (a symmetric version)

R C H O
R so(3) su(3) sp(3) F4

C su(3) su(3)⊕ su(3) su(6) E6

H sp(3) su(6) so(12) E7

O F4 E6 E7 E8

answer to the question how to construct explicitly these representations
(“the exceptional Lie groups all exist because of the octonions”).
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The exceptional Lie algebras, h3(O), and triality

Main ingredients: Triality and Tits-Kantor-Koecher construction.

Duality. If dimV1 = dimV2 <∞ then there exists a nondegenerate
bilinear form

φ : V1 × V2 → R.

Triality comes from Èlie Cartan’s investigations (1925) of a trilateral
symmetry in the Lie group D4. Algebraically, for real vector spaces V1, V2,
V3, triality is a nondegenerate trilinear form

ψ : V1 × V2 × V3 → R.

Triality comes from division algebras and exist only if

dimV1 = dimV2 = dimV3 = d, d ∈ {1, 2, 4, 8},

Specifically, if V is a division algebra then by dualizing and identifying
V ∼= V ∗ one gets

multiplication : V × V → V = V ∗.
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The exceptional Lie algebras, h3(O), and triality

The Tits-Kantor-Koecher construction

In the matrix algebra Mn(R),

xy =
1

2
(xy − yx) +

1

2
(xy + yx) ≡ [x, y] + x • y,

i.e. the first term leads to the Lie algebra gl(n,R), and the second term to
the Jordan algebra M+

n (R).

The TKK construction allows one to construct a Lie algebra from a
Jordan algebra, introduced by Tits (1962), Kantor (1964), and Koecher
(1967).

Triple products and systems:

[x, y, z] = [[x, y, ]z]], for a Lie algebra

(x, y, z) = (x • y) • z + x • (y • z)− y • (x • z) for a Jordan algebra
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The exceptional Lie algebras, h3(O), and triality

If g = g−1 ⊕ g0 ⊕ g1 is a graded Lie algebra with involution τ : g1 → g−1

then it gives rise to a triple Jordan system J = g−1 via

(x, y, z) = [[x, τ(y)], z].

Conversely, given a Jordan triple system J one can construct a graded Lie
algebra g =

⊕1
i=−1 gi with g−1 = J .

The TKK construction is a powerfull instrument that allows one to transfer
results in the Lie algebras theory to the theory of Jordan algebras, and vice
versa.
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Jordan algebras and symmetric cones
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Self-dual homogeneous cones

V = Rn equipped with the scalar product 〈x, y〉;
Ω ⊂ V is an open convex cone;
Ω∗ = {y ∈ V : 〈x, y〉 > 0, ∀x ∈ Ω \ 0} is the open dual cone
G(Ω) = {g ∈ GL(V ) : gΩ = Ω} is the automorphism group of Ω

Definition

Ω is called homogeneous if G(V ) acts on it transitively, and Ω is called
symmetric if Ω is homogeneous and self-dual (Ω = Ω∗);

Examples:

I The Lorentz cone Λn = {x ∈ Rn+1 : x2
0 − x2

1 − . . .− x2
n > 0, x0 > 0}.

I The cone of positive definite symmetric matrices.
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Self-dual homogeneous cones

Example (the Lorentz cone Λn)

Λn = {x ∈ V : m(x, x) > 0, x0 > 0},
where m(x, y) = x0y0 −

∑n
i=1 xiyi is the Minkowski scalar product on V .

One can show that the group

G = R+ × SO0(1, n) = dilatations× rotations

acts transitively on Λn and by using Schwarz’s inequality derive that Λn is
self-dual. If one defines a multiplication on V by

x • y = (〈x, y〉, x0ȳ + y0x̄), x̄ = (x1, . . . , xn),

then
x•2 = x • x = (x2

0 + |x̄|2, 2x0x̄).

and
m(x•2, x•2) = (x2

0 + |x̄|2)2 − (2x0x̄)2 = (x2
0 − |x̄|2)2 > 0

readily implies that

Λn = V •2 := {x•2 : x ∈ V }.
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Self-dual homogeneous cones

M. Koecher (1957), Rothhaus (1960), E. Vinberg (1963):
Given a symmetric cone Ω, one can naturally induce on V a structure of
formally real Jordan algebra with identity 1 ∈ Ω such that

closure(Ω) = V •2 := {x•2 : x ∈ V }.

Koecher-Vinberg theory

The self-dual cones with homogeneous interior in real Hilbert spaces of
finite dimension are precisely (up to linear equivalence) the cones of squares
in formally real Jordan algebras

The correspondence:

I The Lorentz cone

I Positive definite symmetric
matrices in Rn

I The spin-factor Jn−1(|x2|)
I hn(R)
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Self-dual homogeneous cones

Recent applications in:

I Tube domains over symmetric cones (Bergman kernel, Hardy
spaces, special functions);

I Wishart distributions on Hermitian matrices and on Euclidean
Jordan algebras;

I Scorza and Severi varieties, prehomogeneous vector spaces
(F. Zak, P. Etingof, D.Kazhdan, P.-E. Chaput)

I The geometry of Maxwell-Einstein supergravity (M. Gűnaydin,
G. Sierra, P. Townsend, M. Duff, etc)
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Jordan algebras and non-linear PDE’s
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Jordan algebras and integrable systems

A prototypical example is the Korteweg-de Vries equation

ut = uxxx − 6uux.

V. Sokolov and V. Drinfel’d (1986) studied the integrability of the
system

uix = λiju
j
xxx + aijku

jukx, i, j, k = 1, . . . , N, aijk = aikj

in context of Kac-Moody algebras.

C. Athorne and A. Fordy (1987), associated a similar class of
generalized KdV and MKdV equations, and the associated Miura
transformations to (Hermitian) symmetric spaces.

S. Svinolupov and V. Sokolov in 1990’s established the integrability of

wix = wjxxx − 6aijkw
jwkx, aijk = aikj (2)

by means of Jordan algebras (Jordan triple systems).

Integrability question: How to determine akjk such that (2) possesses
higher symmetries or conservation laws?
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Jordan algebras and integrable systems

Svinolupov’s approach. The system

wix = wjxxx − 6aijkw
jwkx, w : Rx × Rt → Rn (2)

is called a generalization of the scalar KdV equation if aijk = aikj and (2) it
possesses generalized symmetries and local conservation laws.

I Associate to (2) the N -dimensional commutative algebra J with
structural constants aijk, i.e. the multiplication in J is defined by

ej • ek = ek • ej = aijkei,

where ei is some basis in J , and set W = eiw
i ∈ J . (The

multiplication law is actually independent of the choice of basis ei and
reduces to an equivalent system).

I (2) becomes a differential equation in the algebra J :

Wt = Wxxx − 6W •Wx
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Jordan algebras and integrable systems

The existence of local conservation laws or generalized symmetries of (2)
implies rather restrictive conditions on the algebra J . In fact, one has

Svinolupov, 1991

I System (2) possesses nondegenerate generalized symmetries or
conservation laws if and only if the corresponding commutative
algebra J is a Jordan algebra.

I The system (2) splits into a sum of two systems if and only if J is
reducible.

Example. If J = J1(|x|2) is a spin-factor then one obtains the Jordan
KdV-system

ut= uxxx − 3(u2 + v2)x

vt= vxxx − 6(uv)x
(3)
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Jordan algebras and integrable systems

It is well-known that

wt= wxxx − 6wwx, the scalar KdV

ut= uxxx − 6u2ux, the scalar mKdV
(4)

are related by the Miura transformation w = ux + u2

The generalized Miura transformation (Svinolupov, 1991)

The system
Wt = Wxxx − 6W •Wx, α ∈ R, W ∈ J, (5)

admits a (generalized Miura) substitution

W = Ux + U•2

and the modified system related to (5) by the generalized Miura
transformation is

Ut = Uxxx − 6(U•2 • Ux).
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Singular solutions of fully-nonlinear PDE’s

We consider the Dirichlet problem

F (D2u) = 0, in Ω

u = φ on ∂Ω

where F is Lipschitz, defined on an open subset of n× n symmetric
matrices.

(For instance, Monge-Ampère, Pucci, Bellman equations.)

Basic question: is the viscosity solution of the Dirichlet problem going to
be C2?
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Singular solutions of fully-nonlinear PDE’s

I Evans, Crandall, Lions, Jensen, Ishii: If Ω ⊂ Rn is bounded with
C1-boundary, φ continuous on ∂Ω, F uniformly elliptic operator then
the Dirichlet problem

F (D2u) = 0, in Ω

u = φ on ∂Ω

has a unique viscosity solution u ∈ C(Ω);

I Krylov, Safonov, Trudinger, Caffarelli, early 80’s: the solution is
always C1,ε

I Nirenberg, 50’s: if n = 2 then u is classical (C2) solution

I Nadirashvili, Vlǎduţ, 2007: if n = 12 then there are solutions which
are not C2
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In 2005–2011, N. Nadirashvili and S. Vlǎduţ constructed (uniformly
elliptic) Hessian equations with F (S) being smooth, homogeneous,
depending only on the eigenvalues of S, and such that they have singular
C1,δ-solutions (not C1,δ+ε).

The function

u(x) =
Re z1z2z3

|x| , x = (z1, z2, z3),

where zi ∈ Fd, d = 4, 8 (quaternions, octonions), is a viscosity solution of a
fully nonlinear uniformly elliptic equation.

In fact, the numerator is the generic determinant of a generic diagonal free
element in the Jordan algebra h3(Fd),

Re v1v2v3 =
1

2
det

 0 z3 z2

z3 0 z1

z2 z1 0
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Cubic minimal cones

In 1969, E. Bombieri, E. De Giorgi and E. Giusti found the first
non-affine entire solution of the minimal surface equation

(1 + |Du|2)∆u− 1

2
Du · (D|Du|2) = 0, x ∈ R8.

The construction heavily depends on certain properties of the quadratic
minimal (Clifford–Simons) cones over Sp−1 × Sq−1.

A search and characterization of cubic and higher order minimal cones is a
long-standing problem. Algebraically, this reduces to finding homogeneous
solutions of

|Du|2∆u− 1

2
Du · (D|Du|2) ≡ 0 mod u.

I H.B. Lawson, R.Osserman, W. Hsiang, early 70’s: examples of
cones of deg = 3, 4, 6 sporadically distributed in Rn.

I L.Simon, B. Solomon, 80’s: construction of higherdimensional
minimal graphs based on isoparametric hypersurfaces in Sn;
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Cubic minimal cones

V.T. [2010], we obtained a particular classification of cubic minimal cones
in the case

|Du|2∆u− 1

2
Du · (D|Du|2) = λ|x|2 · u2

Some known examples (d = 1, 2, 4, 8):

I Four Cartan’s isoparametric cubics in n = 5, 8, 14 and 26, based on
h3(Fd):

u = detX, X ∈ h3(Fd), trX = 0.

I Lawson cubic (an instance of a Clifford type eigencubic)

u = Re(z2w̄), z, w ∈ C

I ‘Mutates’

u = Re z1z2z3 ≡ detX, X ∈ h3(Fd), diagonal(X) = 0,

where zi ∈ Fd.
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Cubic minimal cones

Two key ingredients: the cubic trace identity

tr(Hessu)3 = αu,

and The eiconal cubic theorem, V.T. (2011), preprint
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Cubic minimal cones

The eiconal cubic theorem provides a generalization of an È. Cartan result
on isoparametric eigencubics.

Recall that a submanifold of the Euclidean sphere Sn−1 ⊂ Rn is called
isoparametric if it has constant principal curvatures. A celebrated result
due to H.F. Münzner (1987) asserts that any isoparametric hypersurface is
algebraic and its defining polynomial u is homogeneous of degree
g = 1, 2, 3, 4 or 6, where g is the number of distinct principal curvatures.

In the late 1930-s, Élie Cartan classified isoparametric hypersurfaces with
g = 3 different principal curvatures and proved that any such a
hypersurface is a level set of a harmonic cubic polynomial solution of (6).
Moreover, Cartan showed that there are exactly four (congruence classes
of) such solutions, expressed in terms of Jordan algebras as

u(x) =
√

2 · detx, x ∈ h3(Fd), trx = 0 d = 1, 2, 4, 8.

If u is supposed to be an arbitrary cubic polynomial then there is exactly
one additional infinite family of solutions (V.T., Proc. Amer. Math. Soc.,
2010).
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Cubic minimal cones

The eiconal cubic theorem, V.T., 2011, preprint

There is a natural one-to-one correspondence between the isomorphism
classes of formally real Jordan algebras of rank 3 and the congruence classes
cubic solutions of the eiconal equation

|∇u|2 = 9|x|4, x ∈ Rn. (6)

Namely, any solution of (6) is given by by

u =
√

2 detX, X ∈ J0
u,

where J = Ju is a Jordan algebra of rank 3, and J0
u = {X ∈ J : trX = 0}.
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Cubic minimal cones

The Jordan structure can be described explicitly as follows.

Let u be a cubic polynomial solution of

|∇u|2 = 9|x|4, x ∈ Rn.
Define a multiplication on Jf = R ⊕ Rn by

(x0, x) • (y0, y) = (x0y0 + 〈x, y〉, x0y + y0x+
1

6
√

2
Hessx(f)y). (7)

Then (Jf , •) is a formally real Jordan algebra of rank 3 with the unit
element c = (1, 0) and the following holds:

(a) any element X = (x0, x) ∈ Jf satisfies the (minimal) cubic relation

X3 − T (X)X2 + S(X)X −N(X)c = 0,

(b) the cubic eiconal f is recovered from the generic norm by

f(x) =
√

2 det(i(x)) (8)

where i(x) = (0, x) : Rn → J0
f = {trX = 0} is the standard

embedding.

(c) if f1 and f2 are two congruent cubic solutions then the Jordan
algebras J1 and J2 are isomorphic.
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According to the mentioned above classification of P. Jordan, von Neumann
and E. Wigner, any formally real Jordan algebra is a direct sum of simple
ones, and the only simple formally real Jordan algebras are

1 rank m = 1: the field of reals F1 = R;

2 rank m = 2: the spin factors Jn(|x|2), n ≥ 2;

3 rank m = 3: the Hermitian algebras h3(Fd), d = 1, 2, 4, and,
additionally, the Albert exceptional algebra H3(F8);

4 rank m ≥ 4: the Hermitian algebras hm(Fd), d = 1, 2, 4.

This yields the complete list of all (isomorphic classes of) formally real rank
3 Jordan algebras:

(i) h3(Fd), d = 1, 2, 4, 8;

(ii) the reduced spin algebra R ⊕ Jn, n ≥ 2;

(iii) the reduced algebra F3
1 = R ⊕ R ⊕ R with the coordinate-wise

multiplication.
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More explicitly: the only (cubic) solutions of

|∇u|2 = 9|x|4, x ∈ Rn,

are:

I The Cartan polynomials

√
3

2
· det

 x3d+1 − x3d+2√
3

z3 z2

z3 −x3d+1 − x3d+2√
3

z1

z2 z1
2x3d+2√

3


I or reducible cubics

rn(x) = x3
n − 3xn(x2

1 + . . . x2
n−1), x ∈ Rn, n ≥ 2.
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Thank you!
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