Exercise 5.16

(a) For the arithmetically increasing 10-year life annuity-due on (50), we can write the present value random variable of the benefits as

$$
Y=(I \ddot{a})_{\overline{K+1}} I(K \leq 9)+(I \ddot{a})_{\overline{10}} I(K>9),
$$

where K is the curtate future lifetime of (50) with probability mass

$$
\operatorname{Pr}[K=k]={ }_{k} p_{50} q_{50+k} .
$$

The following R code calculates the expected value and variance of Y based on the Standard Ultimate Survival Model with $i=5 \%$:
\# arithmetically increasing 1,2,..., 10
A <- . 00022
B <- $2.7 * 10^{\wedge}(-6)$
c <- 1.124
surv <- function(x) \{
$\left.\exp \left(-A * x-\left(B *\left(c^{\wedge} x-1\right) / \log (c)\right)\right)\right\}$
$\mathrm{x}<-50: 59$
$\mathrm{px}<-\operatorname{surv}(\mathrm{x}+1) / \operatorname{surv}(\mathrm{x})$
qx <- 1-px
int <- . 05
v <- 1/(1+int)
vcum <- v^(0: (length(x)-1))
bena <- 1:10
\# check if consistent with the current payment technique
\# EY <- sum(bena*vcum*cumprod(c(1,px[-length(px)])))
y <- cumsum(bena*vcum)
prob <- cumprod(c(1,px[-length(px)]))*qx
prob[length(prob)] <- 1 - sum(prob[-length(prob)])
EY <- sum(y*prob)
EY2 <- sum(y^2 * prob)
VarY <- EY2 - EY^2
This produces the results:
> EY
[1] 40.95364
> VarY
[1] 11.0571
(b) For the geometrically increasing 10-year life annuity-due on (50), first we note that the present value random variable for $K=0,1, \ldots, 9$

$$
Y=\sum_{j=0}^{K} \frac{(1.03)^{j}}{(1.05)^{j+1}}=\frac{1}{1.03} \sum_{j=0}^{K} \frac{1}{(1.05 / 1.03)^{j+1}}=\frac{1}{1.03} \ddot{a}_{K+1}^{*},
$$

where $\ddot{a} \frac{*}{K+1}$ is an annuity-due evaluated at interest rate (1.05/1.03) - 1. Therefore,

$$
Y=11.03 \ddot{a} \frac{*}{K+1} I(K \leq 9)+11.03 \ddot{a} \frac{*}{10} I(K \geq 10)
$$

where K is the curtate future lifetime of (50) with probability mass

$$
\operatorname{Pr}[K=k]={ }_{k} p_{50} q_{50+k} .
$$

The following R code calculates the expected value and variance of Y based on the Standard Ultimate Survival Model with $i=5 \%$:

```
# geometrically increasing 1, 1.03, 1.03^2, ...
beng <- (1.03)^(0:(length(x)-1))
# check if consistent with the current payment technique
# EY <- sum(beng*vcum*cumprod(c(1,px[-length(px)])))
y <- cumsum(beng*vcum)
EY <- sum(y*prob)
EY2 <- sum(y^2 * prob)
VarY <- EY2 - EY^2
```

This produces the results:
> EY
[1] 9.121096
> VarY
[1] 0.3296498

