
Introduction Move semantics Perfect Forwarding

r-value references

P. Ronchese
Dipartimento di Fisica e Astronomia “G.Galilei”

Università di Padova

“Object oriented programming and C++” course

Object oriented programming and C++ r-value references - 1

Introduction Move semantics Perfect Forwarding

“l-value” and “r-value” early definition

C
“l-value”: an expression that may appear on the left
(or on the right) hand side of an assignment
“r-value”: an expression that may appear only on the right
hand side of an assignment

int a=12; // "a": lvalue, "12": rvalue
int b=a; // "a": lvalue,

// may appear on the right
int c=a*b; // "a*b": rvalue (on the right)
c*b=15; // WRONG! "c*b": rvalue,

// cannot appear on the left

Object oriented programming and C++ r-value references - 2

Introduction Move semantics Perfect Forwarding

C++: new situations

References introduce some complication:
The call of a function returning by value gives a r-value
The call of a function returning by reference gives a l-value

int vFunc(); // return by value
int& rFunc(); // return by reference
...
int a=vFunc();// vFunc(): rvalue
rFunc()=43; // rFunc(): lvalue
vFunc()=57; // WRONG! vFunc(): rvalue,

// cannot appear on the left

Object oriented programming and C++ r-value references - 3

Introduction Move semantics Perfect Forwarding

“l-value” and “r-value” redefinition

C++98/03
“l-value”: an expression that refers to a memory location so
that the address of that memory location can be taken via
the & operator
“r-value”: an expression that’s not a l-value

int vFunc(); // return by value
int& rFunc(); // return by reference
...
int* p=&rFunc();// rFunc(): lvalue,

// address can be taken
int* q=&vFunc();// WRONG! vFunc(): rvalue,

// address cannot be taken
int& r= vFunc();// WRONG! vFunc(): rvalue,

// reference cannot be taken

Object oriented programming and C++ r-value references - 4

Introduction Move semantics Perfect Forwarding

l-value references

Reference binding to values

l-value reference:
can bind to l-values
cannot bind to r-values

l-value reference to const can bind to l-values and r-values

void f(int& i); // called with non-const
// lvalues only

void g(const int& i); // called with
// lvalues or rvalues

int a=12;
f(a); // OK "a": lvalue
f(12);// WRONG! "12": rvalue
g(a); // OK "a": lvalue
g(12);// OK "12": rvalue

Object oriented programming and C++ r-value references - 5

Introduction Move semantics Perfect Forwarding

r-value references

C++11 only
r-value references give a solution to two issues:

move semantics
perfect forwarding

r-values references can be declared with a &&

void f(X& x); // called with non-const
// lvalues only

void f(const X& x); // called with
// lvalues or rvalues

void f(X&& x); // called with rvalues

Object oriented programming and C++ r-value references - 6

Introduction Move semantics Perfect Forwarding

r-value references are r-values?

r-value references without a name are r-values,
otherwise they’re l-values.

void g(X&& x) {
f(x); // argument of f has a name

} // -> l-value -> call f(X& x)

X&& g();
...
f(g()); // argument of f has no name

// -> r-value -> call f(X&& x)

Object oriented programming and C++ r-value references - 7

Introduction Move semantics Perfect Forwarding

Moving objects

An object is “moved” when the resurces it owns are simply
taken by another object, or swapped, without being copied.

Move semantics allow performance gain in several situations:
moving from objects just before their end-of-life:

temporary objects
objects in std::vector to reallocate

object swap (e.g. in sorting)

Object oriented programming and C++ r-value references - 8

Introduction Move semantics Perfect Forwarding

Expressions classification

l-value: an expression that refers to a memory location
x-value: an object near the end of its lifetime (“eXpiring”)
gl-value: an l-value or an x-value (“Generalized”)
r-value: an x-value or a value that is not associated with

an object
pr-value: an r-value that is not an x-value (“Pure”)

Object oriented programming and C++ r-value references - 9

Introduction Move semantics Perfect Forwarding

Expressions classification

l-value: an expression that refers to a memory location
x-value: an object near the end of its lifetime (“eXpiring”)
gl-value: an l-value or an x-value (“Generalized”)
r-value: an x-value or a value that is not associated with

an object
pr-value: an r-value that is not an x-value (“Pure”)

has identity
cannot be moved

Object oriented programming and C++ r-value references - 10

Introduction Move semantics Perfect Forwarding

Expressions classification

l-value: an expression that refers to a memory location
x-value: an object near the end of its lifetime (“eXpiring”)
gl-value: an l-value or an x-value (“Generalized”)
r-value: an x-value or a value that is not associated with

an object
pr-value: an r-value that is not an x-value (“Pure”)

has identity
can be moved

Object oriented programming and C++ r-value references - 11

Introduction Move semantics Perfect Forwarding

Expressions classification

l-value: an expression that refers to a memory location
x-value: an object near the end of its lifetime (“eXpiring”)
gl-value: an l-value or an x-value (“Generalized”)
r-value: an x-value or a value that is not associated with

an object
pr-value: an r-value that is not an x-value (“Pure”)

has no identity
can be moved

Object oriented programming and C++ r-value references - 12

Introduction Move semantics Perfect Forwarding

Move semantics

“move” constructor and assignment:
constructor and assignment operators

with a r-value reference argument

class X {
...
X(X&& x) noexcept;
const X& operator=(X&& x) noexcept;
...

};

Object lifetime
The objects owned by x are not deleted until the instance
of X move-created or move-assigned from x is deleted:

be careful with destructor side effects!

Move constructor and assignment are used in STL containers
only when declared noexcept.

Object oriented programming and C++ r-value references - 13

Introduction Move semantics Perfect Forwarding

Force move semantics

Object swap
Object swap is usually done by round-copying objects through

a temporary; usual assignment involves l-values.
Move assignment can be forced transforming l-values to

r-values by std::move (in <utility>).

template<class T>
void swap(T& l,T& r) {
T tmp(std::move(l));
l = std::move(r);
r = std::move(tmp);

}

Simply declaring the arguments as r-value reference
template<class T> void swap(T&& l,T&& r)

is not sufficient.

Object oriented programming and C++ r-value references - 14

Introduction Move semantics Perfect Forwarding

Forwarding (a.k.a. “universal”) references

Template/auto types
Variables or parameters with type T&& where T is a

deduced type are called “forwarding references”.
They were originally called “universal references” by S.Meyers.

The actual type depends on a set of rules.

Type deduction for template parameters being
universal references:

l-values of type T are deduced to be of type T&.
r-values of type T are deduced to be of type T.

Reference-collapsing rules:
A rv-reference to a rv-reference becomes a rv-reference.
Any other reference to reference becomes a lv-reference.

Object oriented programming and C++ r-value references - 15

Introduction Move semantics Perfect Forwarding

Perfect forwarding

Function parameters forwarding

Function call inside another function,
passing as parameters (part of) the parameters

of the enclosing function, with exactly the same meaning

template<class T>
void wrap(T&& x) {
...
func(std::forward<T>(x));
...
return;

}

Object oriented programming and C++ r-value references - 16

	Introduction
	

	Move semantics
	

	Perfect Forwarding
	

