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“l-value” and “r-value” early definition

C
“l-value”: an expression that may appear on the left
(or on the right) hand side of an assignment
“r-value”: an expression that may appear only on the right
hand side of an assignment

int a=12; // "a": lvalue, "12": rvalue
int b=a; // "a": lvalue,

// may appear on the right
int c=a*b; // "a*b": rvalue (on the right)
c*b=15; // WRONG! "c*b": rvalue,

// cannot appear on the left
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C++: new situations

References introduce some complication:
The call of a function returning by value gives a r-value
The call of a function returning by reference gives a l-value

int vFunc(); // return by value
int& rFunc(); // return by reference
...
int a=vFunc();// vFunc(): rvalue
rFunc()=43; // rFunc(): lvalue
vFunc()=57; // WRONG! vFunc(): rvalue,

// cannot appear on the left
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“l-value” and “r-value” redefinition

C++98/03
“l-value”: an expression that refers to a memory location so
that the address of that memory location can be taken via
the & operator
“r-value”: an expression that’s not a l-value

int vFunc(); // return by value
int& rFunc(); // return by reference
...
int* p=&rFunc();// rFunc(): lvalue,

// address can be taken
int* q=&vFunc();// WRONG! vFunc(): rvalue,

// address cannot be taken
int& r= vFunc();// WRONG! vFunc(): rvalue,

// reference cannot be taken
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l-value references

Reference binding to values

l-value reference:
can bind to l-values
cannot bind to r-values

l-value reference to const can bind to l-values and r-values

void f( int& i); // called with non-const
// lvalues only

void g(const int& i); // called with
// lvalues or rvalues

int a=12;
f(a); // OK "a": lvalue
f(12);// WRONG! "12": rvalue
g(a); // OK "a": lvalue
g(12);// OK "12": rvalue
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r-value references

C++11 only
r-value references give a solution to two issues:

move semantics
perfect forwarding

r-values references can be declared with a &&

void f( X& x); // called with non-const
// lvalues only

void f(const X& x); // called with
// lvalues or rvalues

void f( X&& x); // called with rvalues
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r-value references are r-values?

r-value references without a name are r-values,
otherwise they’re l-values.

void g(X&& x) {
f(x); // argument of f has a name

} // -> l-value -> call f(X& x)

X&& g();
...
f(g()); // argument of f has no name

// -> r-value -> call f(X&& x)
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Moving objects

An object is “moved” when the resurces it owns are simply
taken by another object, or swapped, without being copied.

Move semantics allow performance gain in several situations:
moving from objects just before their end-of-life:

temporary objects
objects in std::vector to reallocate

object swap (e.g. in sorting)
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Expressions classification

l-value: an expression that refers to a memory location
x-value: an object near the end of its lifetime (“eXpiring”)
gl-value: an l-value or an x-value (“Generalized”)
r-value: an x-value or a value that is not associated with

an object
pr-value: an r-value that is not an x-value (“Pure”)
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Expressions classification

l-value: an expression that refers to a memory location
x-value: an object near the end of its lifetime (“eXpiring”)
gl-value: an l-value or an x-value (“Generalized”)
r-value: an x-value or a value that is not associated with

an object
pr-value: an r-value that is not an x-value (“Pure”)

has no identity
can be moved
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Move semantics

“move” constructor and assignment:
constructor and assignment operators

with a r-value reference argument

class X {
...
X(X&& x) noexcept;
const X& operator=(X&& x) noexcept;
...

};

Object lifetime
The objects owned by x are not deleted until the instance
of X move-created or move-assigned from x is deleted:

be careful with destructor side effects!

Move constructor and assignment are used in STL containers
only when declared noexcept.
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Force move semantics

Object swap
Object swap is usually done by round-copying objects through

a temporary; usual assignment involves l-values.
Move assignment can be forced transforming l-values to

r-values by std::move ( in <utility> ).

template<class T>
void swap(T& l,T& r) {
T tmp(std::move(l));
l = std::move(r);
r = std::move(tmp);

}

Simply declaring the arguments as r-value reference
template<class T> void swap(T&& l,T&& r)

is not sufficient.
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Forwarding (a.k.a. “universal”) references

Template/auto types
Variables or parameters with type T&& where T is a

deduced type are called “forwarding references”.
They were originally called “universal references” by S.Meyers.

The actual type depends on a set of rules.

Type deduction for template parameters being
universal references:

l-values of type T are deduced to be of type T&.
r-values of type T are deduced to be of type T.

Reference-collapsing rules:
A rv-reference to a rv-reference becomes a rv-reference.
Any other reference to reference becomes a lv-reference.
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Perfect forwarding

Function parameters forwarding

Function call inside another function,
passing as parameters (part of) the parameters

of the enclosing function, with exactly the same meaning

template<class T>
void wrap( T&& x ) {
...
func( std::forward<T>( x ) );
...
return;

}
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