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1 INTRODUCTION

The persistent development of new and faster computer hardware, has in general eased the
complicated two- and three dimensional analysis of stresses and strains in structures. This
development is especially noticeably when it comes to cases where the load is gradually in-
creased towards failure or in combined deformation and flow problems. Today, many of these
problems are solved using various finite element computer softwares, capable of handling both
geometric and material non-linearities. The latter is especially important in soil mechanics
and soil-structure interaction problems. Despite the fact that several conceptual models, de-
scribing the non-linear and irreversible behaviour of soil, have been developed over the last
three decades few of them are accessible in commercial finite element programs.

In the present study the Single Hardening Model, that is a time independent elastoplastic
constitutive model, developed by Lade and Kim (Kim & Lade 1988, Lade & Kim 1988a, Lade
& Kim 19888) is implemented as a user defined material module, UMAT, in the commercial
finite element program, ABAQUS. The advantages of the Single Hardening Model lie in its
ability to predict elastic and plastic displacements during loading for various materials such
as sand, clay and concrete.

1.1 Seope of work

This work was initially based on an incomplete version of the UMAT, received from Dr. P.V.
Lade. Initially ABAQUS was run with this version, which however revealed that a number
of revisions were necessary. Consequently, a new and revised UMAT, denoted SHM-module
(Single Hardening Model), has been designed and coded.

The SHM-module handles the compatibility requirement, which is the core in elastoplas-
tic modelling, in a more consistent and up-to-date way. The present module provides the
opportunity of fulfilling the continuity requirements by various methods. These methods are
described and their capabilities are demonstrated in this report. Further, the elastic part of
the model has been updated and the behaviour in the softening regime can now be controlled
by the user. The feasibility of the SHM-module is demonstrated by several examples including
single element analysis for prediczion of triaxial behaviour and multiple-element analysis for
determination of bearing capacity and settlements in combined deformation and flow prob-
lems. Model parameters used for the simulations are all derived from conventional triaxial
test performed on Eastern Scheldt Sand (Jakobsen & Praastrup 1998). An evaluation of the
models capabilities to predict the true material behaviour is found to be beyond the scope of
the present work, hence, no comparisons with test results are performed.

1.2 Report outline

The above mentioned topics are treated separately in the report and it is the idea that the
user should be able to use the report as a work of reference. A brief outline of the chapters is
given below.

Chapter 2 contains the definition of the commonly used stress and strain quantities.

Chapter 3 presents the governing elastic and plastic stress-strain relations for the
Single Hardening Model incorporated in the original version of the UMAT.
The elastic behaviour is prescribed by Hooke’s law and a pressure dependent
function for the elastic coefficients. The framework for plastic behaviour con-
sisting of a failure criterion, a yield criterion, a nonassociated flow rule and
work hardening or softening law is described in detail.

Chapter 4 explains the working principles of elastoplastic models and deals with
the updating of stresses and the hardening parameter. The integration scheme,
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used for updating of stresses and the hardening parameter, in the original
UMAT is presented and commented on.

Chapter 5 adds an updated elastic model and rfadef:m_es_ the soil bf:hav;our in il;l;el
softening regime. Problems discovell'ed during 1mt1val runs with the ongmal
UMAT are addressed and corrected in t}le new version. Ijurthermore, se;fetrh
changes have been made to the numerical schemes for improvement of the

computational efficiency of the SHM-module.

Chapter 6 gives a description of the SHM-modules compahb}hty w1t(-.ih FIAB(;]ASJUS‘;
This includes specification of material and model propertl.es, predefined inp
and output variables, initialization of state dependent variables etc.

ns the documentation of the SHM-modules ability to functmr?.

forming numerous single element analyses of '.EI‘I-

d extension regimes, following

Chapter 7 contal
The SHM is validated by per ;
axial and true triaxial tests in the compression an

various stress paths.

The work is further documented in appendix A and B, c_ontaining thf? complete
SHM-module source code for 2D modelling and matching flow chart.

AGEP R0201
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2 DEFINITIONS

Finite element analyses within the field of geotechnical engineering serve a twofold purpose.
Calculation of settlements due to a given external force or determination of complete perfor-
mance curves as the force is gradually increased towards failure. In both cases the foundation
performance is evaluated on the basis of directional displacements and external forces. In
most finite element formulations the displacements are the primary variables of the problem
and the requested results are directly obtained. This view holds for users who are only inter-
ested in the global solution to the problem. When a single element is considered it gets more
complicated as the displacements may lead to deformation of the element, and this in turn to
internal forces. The magnitude of the internal forces will essentially depend on the relation
between material properties and the deformation of the element. A description of the material
response based on a relation between deformations and internal forces is, however, meaning-
less as such a description would depend on the size and geometry of the considered element.
Instead the material behaviour must be described by robust and versatile relations between
relative quantities as stresses and strains. The stress and strain quantities used throughout
this report are defined in advance in order to avoid misunderstandings and repetitions. The
description is mainly based on Spencer (1980), Crisfield (1991) and ABAQUS (1993).

2.1 Stresses

When describing the forces acting in the interior of an element it is, from an engineering
point of view, obvious to use the Cauchy or true stress measure. This measure is physically
easy to interpret, as it simply expresses the ratio between current force and current area. For
porous materials in which the pores are interconnected the pressure of the fluid can affect the
behaviour of the material greatly. As frictional materials deform and fail in response to normal
effective stresses the pore pressure should be deducted. Stresses, which cause compression,
are regarded positive and hence the principle of effective stresses can be expressed as:

o'=0g—ul (2.1)
The stresses, o, and the identity I, are both symmetric second order tensors, whereas the pore
pressure, u, is a scalar:

011 012 013 1 00
O=|0n On O |; I=(010 (2.2)
031 Oz2 Os3 001

The principle of effective stresses is adopted throughout the report and o generally refers to
the effective stress state. The stresses are due to symmetry occasionally presented on vector
form:

T
o :[011 Oz O3 Oy O3 012 (2.3)

In geotechnical engineering it is common to relate the material response to the pressure or the
mean normal effective stress:
1

p=gtr (o) (2.4)

In connection with triaxial tests the term ‘triaxial stress difference’ is used for identification
of the scalar difference between major and miner principal stresses:

g=0,—03 (2.5)
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4 APPLICATION OF THE SINGLE HARDENING MODEL

For isotropic material models it is common to use the three independent Cauchy stress invari-
ants of the stress tensor:

L =tr(o)=23p (2.6)
Be f% [(ex ()" - tr (0] @7
A (28)

The deviatoric stress tensor appears from a decomposition of the symmetric stress tensor and
expresses the deviation from the isotropic mean stress:

o1 —p J12 713
2.9
s=o—pl= gy Oxp—p On (2.9)
031 J32 O3z — P

The influence of the deviatoric stresses is often expressed in term cf the second deviatoric
invariant, defined as:

Jy = %saT = %If + 1y (2.10)
2.2 Deformations and strains _ .

Determination of displacements throughout the history of loading is as <.:1escr‘1k.>ed earherr the
analysts primary objective. The geometric configuration of the problerr} is imt@lly descrlbfsd
by the initial position vector X defined at discrete material points. During Joad.mg a material
particle will move from its initial position X to a mew position x. By assuming mass con-
servation there will always be a one-to-one correspondence between X and X.. Hen-:je, it is
possible to describe the ‘mapping' by the deformation gradient tensor F. That is, havmg two
neighbouring particles in the initial configuration, located at X and at X + dX the distance

in the current configuration is given by:

i (2.11)
%

If there is no motion, then x = X and F = I. The deformation gradient tensor is not itself
a suitable measure of deformation as it makes no distinction between rigid body motionsl and
material straining. The latter is, however, deeisive {or the description of material behaviour.
The deformation can instead be described by a pure body rotation, followed by pure stretch of
three orthogonal directions or vice versa. This is the so-called polar decomposition theorem:

dx = FdX; F=

F=VR (2.12)

where V is the symmetric left stretch tensor and R is an orthogonal r(?tation tenso.r: To be
able to evaluate the straining of the material the stretch tensor must be isolated. This is most
easily done by defining the strain tensor B and utilising the properties of V and R:

B =FFT = VRRTV = VV (2.13)

The principal stretches or stretch ratios ¥ — A% and hence A; — A can be obtained along with
the current principal directions n;, n, and ny by solving the eigenvalue problem:

[B-»1]n=0 (2.14)

JAKOBSEN AGEP R0201
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For principal stretches of unity no straining occurs. The left stretch tensor, which defines the
straining in the current configuration, is given by:

A 000
V=q| 0 % 0 |4 q = [ny, g, ng] (2.15)
0 0

The stretch itself can be seen as a measure of deformation or ‘strain’. It is, however, desirable
to use a strain measure that produces zero strain when only rigid body motions oceur. This
requirement can be satisfied by several different strain measures that are all functions of the
stretch. These functions must, however, be differential so that the strain increases or decreases
monotonically with the stretch, and defines a unique value of strain for a given stretch.

Obviously, many strain functions are possible and the choice is merely a matter of con-
venience and appropiateness. However, the strain function cannot be chosen arbitrarily as
the stress and strain measures according to Malvern (1969) must be work conjugated and
refer to the same configuration (reference or current) when constitutive relations are investi-
gated. The most simple and widely used strain measure is the linear engineering strain. This
measure is only useful when both strains and motions are small as products of displacement
derivatives are neglected (Spencer 1980). Hence, a distinction between reference and current
configuration becomes arbitrary and all stress and strain measures are work conjugated in this
case. In situations where the strains are actually small, but large motions occur the finite
and non-linear Green’s strain may be used. The Green’s strain is computationally attractive
as it can be deduced directly from the deformation gradient tensor without having to solve
for principal stretches and directions (Spencer 1980, Crisfield 1991, Krenk 1993). The use of
the Green's strain is nevertheless impeded by its work conjugated stress measure, the second
Piola-Kirchoff stresses (Crisfield 1991, Krenk 1993).

When dealing with plastic materials the small strain assumption is violated and both of
the above strain measures become inappropriate. Consequently, the finite and non-linear
logarithmic or natural strain measure is adopted. The use of the natural strain measure
is from a computational point of view troublesome as it cannot be expressed in terms of
the deformation gradient tensor. Instead the strain is calculated from to the stretch tensor
and principal stretches and directions must be determined. The increment in natural strain,
kowever, has the advantage of being work conjugated with the Cauchy stress measure (Crisfield
1991, ABAQUS 1995). The natural strain tensor is defined as:

Enn €12 €13
E=| Egy E3p E93 | = —In (\‘r) (216)
€31 E32 £33

Due to symmetry only six of the nine strain components are independent. The independent
components are more conveniently arranged on vector form:

g = [ €1l €22 £33 €23 E31 2 ] (2.17)
The principal strains are directly obtained from the principal stretch:
v
e=[e e &) =-l(A) (2.18)

The definition implies that strain is positive in compression and corresponds to the sign con-
vention usually adopted in geomechanics. The computations are, furthermore, complicated by

AGEP R0201 JAKOBSEN



6 APPLICATION OF THE SINGLE HARDENING MODEL

the fact that the principal directions generally change as the deformation takes place and it '?s
seldom possible to calculate the total strain directly (Malvern 1969, A.B_AQUS 1995). This
obstacle is evaded by using an incremental form of the polar decomposition theorem:

AF = AVAR (2.19)
Thus, all quantities obtained from the previous increments are rotated to the current con-
figuration and passed into the user defined material module together with the current strain

increment:

Ae =—-In(AV) (2.20)
It is essential that the increments are small as AR represents the average rotation over the
increment. This requirement is, however, in accordance with the principles oflrate dependent
material modelling. Since the natural strain measure is consistently a@opted in A.BAQFJS all
user defined strain dependent material parameters should be detgrmmed on th1§ bam_s. 'In
geotechnical engineering the material behaviour is commonly studied by performing triaxial
and true triaxial tests. If these tests are performed under conditions that ensure a homo.gen.ous
strain state during loading the total strain definition in 2.16 can be applied as the principal
stretch directions remain unchanged throughout the test. It is, furtherm()re{ common to refer
to the volumetric strain defined as the sum of the principal strains. An investigation of how. the
application of the natural strain measure affects the analysis and prediction of the behaviour
of geomaterials can be found in Praastrup, Jakobsen & Tbsen (1999).

JAKOBSEN AGEP R0201
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3 THE SINGLE HARDENING MODEL

The Single Hardening Model has been developed with the purpose of forming a model that is
applicable for various frictional materials, such as sand, clay and concrete. The background
for the model is a thorough investigation of data from experiments performed on various
frictional materials. Thus, results from conventional triaxial tests as well as true triaxial tests
have been put into use, in order te be able to provide a precise material description. Besides
experimental observations the model is based on the concepts from incremental elastoplastic
theory.

The Single Hardening Model belongs to a category of relatively simple models where time
dependent and anisotropic behaviour are not incorporated. This means that the model is in-
capable of capturing phenomena like creep, swelling and material or stress induced anisotropy.
Acceptance of these limitations, however, makes the model more applicable to the practical
geotechnical engineer as it can be calibrated from a limited number of conventional triaxial
compression tests. Moreover, the simplifications facilitate the implementation of the model as
it becomes possible to express the governing functions by use of stress invariants.

The present chapter describes the framework of the Single Hardening Model (Lade 1977,
Kim & Lade 1988, Lade & Kim 1988a, Lade & Kim 19888). It has been tried to follow a
logical developmental sequence by describing the governing functions in the following order:
Elastic deformations, failure criterion, plastic potential function, yield criterion and work
hardening and softening laws. The distinction between plastic potential function and yield
criterion imply the use of a so-called non-associated flow rule. The graphical presentation of
the different functions is generally based on parameters determined from conventional triaxial
compression tests on Eastern Scheldt Sand (Jakobsen & Praastrup 1998)

3.1 Elastic deformations

Upon unloading and reloading of a material recoverable elastic strains are produced. The
elastic strains are calculated from an isotropic hypoelastic model where the elastic material
coefficients depend on the current state of stress. Thus, the elastic strain must be expressed
on an incremental form:

de® = Cldor (3.1)

in which C is the stress dependent isotropic elastic tangential stiffness tensor derived from
Hooke'’s extended law.

1 —v —-» 0 0 0
-v 1 —v 0 0 0
1| —-v —v 1 0 0 ]
sz ik
El 0 0 0 204w 0 0 52)
0 0 o0 1] 2(1+v) 0
0O 0 0 0 0 2(1+v)

Poisson’s ratio v is assumed to be constant, whereas Young’s modulus is assumed to vary with
the minor principal effective stress as proposed by Janbu (1963):

The dimensionless parameters K and n are determined from unloading and reloading branches
performed in triaxial tests at varying confining pressure normalized with the atmospherie
pressure p,.
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8 APPLICATION OF THE SINGLE HARDENING MODEL

3.2  Failure criterion

The failure criterion bounds a domain of possible stress states and simply prescribes the
maximum load that the material can withstand. Experimental results from triaxial and true
triaxial tests on frictional materials show that the shear strength increases with increasing
mean normal stress.

Ly [1)"‘
=(=-27|— (3.4)
L (I:i Pa
The parameter 7, determines the opening angle in the triaxial plane (cf. Figure 3.1b) and is
comparable to the effective friction angle of the material, whereas m determines the curvature
of the failure surface in planes containing the hydrostatic axes (HA). An example of traces

and cross sections of the failure criterion in the CO-plane (Praastrup, Ibsen & Lade 1999) and
the triaxial plane is given in Figure 3.1.

o o, [kPa]

i
(1,,0,8) 2000 —
1/a=10 m=t )\, 2000 ? m=1
x T,=10000 /\ | il
o m,=1000 /X 2 N=i000
e M,=100 / 1500 - - M=
& T=10 A =10

I 1
1500 2000
V2o, [kPa]

0 : J
(0,1,9) (0,0,1,) 0 500 1006

(2) (v}

Figure 3.1: Characteristics of the failure criterion in stress space. (a) Contours in the CO-
plane. (b) Traces in the triazial plane.

The figure shows that the cross-sectional shape of the failure criteria in the CO-plane changes
from circular to triangular with smoothly rounded edges for increasing values of n; and constant
values of m and [;. The traces of the failure criterion in the triaxial plane reveal that the
formulation is not valid for materials with tensile strength as all the traces tend towards the
origin.

However, it is possible to include the effect of a materials tensile strength by a simple
translation of the co-crdinate system along the hydrostatic axis.

o, = o+ ap,I (3.5)
The parameter a, which reflects the tensile strength of the material is simply added to the
normal stresses before substitution in equation 3.4. The three material parameters may be

determined from triaxial or true triaxial tests.

JAKOBSEN AGEP R0201
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3.8 Flow rule and plastic potential function

The determination of the plastic deformations, within the domain of possible stress states, is
based on a so-called flow rule. The flow rule is a stress path independent function that defines
the magnitude and direction of the plastic strain increment de? as the material is subjected
to further plastic loading:

a
de? = d)\p£ (3.6)

The derivative of the plastic potential function g at the current state of stress o determines
the direction of plastic strain increment and d),, is a proportionality factor that determines the
magnitude of the plastic strain increment. The determination of d), is described in Section
4.1. In cases where the plastic potential and yield function differ, the material is said to follow
a non-associated flow rule. The plastic potential function is defined in terms of the stress
invariants:

B 2 ) ( Il)”
— = I el 3.7
¢ (% L L \p, @7)

The dimensionless material parameters 1y, 4> and u are obtained from laboratory tests, such
as triaxial compression tests. The parameter 1y is a weighting factor that controls the two
invariant term’s influence on the shape of the plastic potential function in the octahedral
plane. 9, can therefore only be experimentally determined from true triaxial test. However,
test results indicate that 1, and the curvature parameter m for the failure criterion are related
(Kim & Lade 1988):

i = 0.00155m %7 (3.8)

The parameters 1, and i control the intersection with the hydrostatic axis and the curvature
of the meridians, respectively. A family of plastic potential surfaces for Eastern Scheldt Sand
is shown in Figure 3.2. It appears that the contours of the plastic potential function in the
triaxial plane are similar. However, in the CO-plane the contours change shape from circular
to triangular as the function value, g, increases.

3.4 VYield criterion

The stress space is, by the elastoplastic theory, divided into a purely elastic domain and a
domain in which the material exhibits elastic as well as plastic deformations. The transition
between the domains is described by a yield criterion, that defines a closed surface in stress
space:

f (O’, W;J) B f, (O’) - f” (Wp) <0 (39)

The yield function f' is sclely dependent on the current state of stress, whereas the work
hardening or softening term given by f“ is stress path dependent as it depends on the total
plastic work. If the current stress state lies on the yield surface, i.e. the stress state fulfills
the condition f' = f", a change in stresses leads to either elastic or elastoplastic deformations.
The loading conditions are formally written:

9F\T < 0 elastic unloading
(—) do § = 0 neutral loading (3.10)

do 2
> ( elastoplastic loading
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o, o, [kPa]
(1,,0,0} £
L/p=1 ! 8009 % g=10
e g=5 ]l ® g=5
& g=2 o g=2
A g=1 o0 & g=1i
e g=05
o g=0.25 o -
o g=01
‘l\‘
\
S, Ty 0
T ] R e i T i
(0:.1,,0) (U’U’I‘J\ a 200 400 600 800
V205 [kPa/
{a) (b}

Figure 3.2: Characteristics of the plastic potential function in stress space. (a) Contours in the
CO-plane. (b) Contours in the triazial plane. (m = 0.2879, 2 = —3.1540 and pu = 2.0611)

where 8f /8o is the outward normal to the current yield surface. If the stress increment leads
to a stress state located inside the yield surface f’ < f” only elastic deformations will occur.
The condition where df equals zero is termed neutral loading as the new stress state remains
on the yield surface, but only elastic deformations will be produced. If the stress increment
on the other hand points in the outward direction of the vield surface it corresponds to a state
of elastoplastic loading.

In case of elastoplastic loading the size of the yield surface changes, i.e. the yield surface
expands during hardening and contracts during softening. To avoid inconsistency it is required
that the new stress point is located on the current yield surface. Consistency is ensured by
fulfillment of the following condition:

ar\" | @

df = (B—i) + 5[/%de (3.11)
3.4.1 Yield function
The yield function is expressed in terms of stress invariants:

B\ o\
b— lahot 2k ) L) 0
f (11]3 Iz) (pa) € (3.12)

The parameters ¢ and h are material constants of which the former is given by Equation 3.8.
q is a variable, that depends on a material constant o and the stress level S:

aS

= 1-(1—a)S 3]
The stress level evolves from zero at the hydrostatic axis to unity at failure:
1 (13 I )”‘
S=—|F-27| (= 3.14
i (13 ) (Pn ( )
JAKOBSEN AGEP R0201
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3.4.2 Hardening law

Frictional materials generally harden as a consequence of generated plastic strains. By adopt-
ing the plastic work, which includes the effect of both plastic volumetric and shear strains, as
a state parameter it becomes possible to use a single function for description of the materials
hardening behaviour.

The used hardening law is based on observations made from isotropic compression tests:

’_ (%)5 (%)% (3.15)

in which
C
D= @y 9
and
p
=P 3.17
A= (3.17)

7y and h are identical to the parameters determined for the yield function, whereas C and p
must be determined from an isotropic compression test. The plastic work W), is determined
and continuously updated whenever plastic deformations occur.

W, = [ ode? (3.18)

A family of isotropic yield surfaces for Eastern Scheldt Sand that fulfill the yield criterion is
shown in Figure 3.3.

o, o, [kPa]
(1,,0,8) -
1,/p,=8 ! 800 o W, /p,=0.001
o W, /p,=0.001 lo W.is—0.002
o W, /p=0.002 o W /5,=0.006
o W, /v,=0.006 600+ x W, /p,=0.01
% W,/0,=0.026 // |
. 400+
v
200-| / ‘
] //}
E 7 S 0"—’“—?—7} [ S —
(©.1,0) (©.0.1,) 0 200 400 600 800
VZo, [kPa]
(o) ()

Figure 3.3: Characteristics of the yield function in stress space. (a) Contours in the CO-plane.
(b) Contours in the triazial plane. (m = 0.2879, 5, = 70.19, C = 1.2748 - 10~*, p = 1.6078,
h =0.6166 and o = 0.5525)

The contours in the triaxial plane, corresponding to constant plastic work, are seen to maintain
their shape and merely expand as the plastic work increases. In the CO-plane the contours

evolve from circular to triangular as the plastic work and stress level increase.
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12 APPLICATION OF THE SINGLE HARDENING MODEL

3.4.3 Softening law

As the stress level reaches unity the material fails to withstand the load and starts to soften.
Little information is available about the softening behaviour and for simplicity an isotropic
softening law is applied. The softening law is described by an exponential decay function using
the plastic work as a state parameter:

= AR (3.19)
in which
A= frePu " (3.20)
and
B= r?ff)% (3.21)
Pa S=1

A and B are both positive constants derived from the slope of the hardening curve at failure.
The formulation implies that the initial slope of the softening is identical to the slope of the
hardening curve at failure, but with the sign reversed. Thus, the model prescribes an abrupt
transition from hardening to softening as failure is reached and the yield surface starts to
diminish.

3.5 Summaery

The governing functions of the Single Hardening Model have been presented and the material
variables identified. The material variables will depend on the specific material and must be
calibrated to triaxial or true triaxial tests in accordance with the principles outlined in Lade
(1977), Kim & Lade (1988), Lade & Kim (1988a) and Lade & Kim (1988b). The governing
functions and the corresponding material variables are listed below:

Elastic properties: K, n, v

Failure criterion: m, m;, a

Plastic potential function: ¥y, is, i
Yield function: k,

Hardening and softening laws: C, p

JAKOBSEN AGEF R0201
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4 IMPLEMENTATION OF THE SINGLE HARDENING MODEL

As described previously the solution of non-linear finite element problems nsually consists
of a series of load steps, each involving iterations to establish equilibrium between internal
and external forces at the new load level. This global iteration process is entirely handled
by the finite element program e.g. ABAQUS. However, the evaluation of the internal forces
and displacements, used in the global iterations, is dependent on the applied stress-strain
relation. The purpose of the user material module, which include the Single Hardening Model,
is therefore twofold. Firstly, it must provide an update of stresses for evaluation of internal
forces and secondly, a material stiffness for establishment of the global tangent stiffness matrix
used for equilibrium iterations and estimation of the corresponding displacement field.

As ABAQUS uses a Gauss integration scheme to establish the tangent stiffness matrix
for each element it is only necessary to consider a single material point within an element.
Whenever a new estimate of updated stresses and material stiffness is needed the user material
module is called once for each Gauss point. The determination of the updated quantities will
essentially depend on the imposed strain increment, but as the material behaviour is of the
path-dependent type knowledge of the stress and strain history is also required. The present
chapter contains the derivation of the material stiffness, also known as the elastoplastic stiffness
matrix, and the method for updating of stress used in the original version of the UMAT. The
derived set of formulas presume the use of a work hardening material model, as the Single
Hardening Model, but is applicable to nonlinear stress-strain relations in general.

4.1 Derivation of the elastoplastic stiffness matriz

The relations for the Single Hardening Model described in the previous chapter treat elastic
and plastic strains separately. Practical computations with finite elements are, however, based
on total strain increments and a relation between stress increments and total strain increment
is therefore needed. The incremental stress-strain relation is derived on a general form (Chen
& Mizuno 1990, Krenk 1993) and the Single Hardening Model is finally implemented (Lade &
Nelson 1984).

4.1.1 General stress strain relation
The total strain increment is composed of an elastic and a plastic contribution:
de = de® + def (4.1)

The plastic strain increment de? is determined by the non-associated flow rule in (3.8). As
the stress increment is common for both the elastic and plastic strain increment the general
incremental stress-strain relation can be written as:
o
do = Cde® = C (de — de?) = C (ds = d,\,,a—g) (4.2)
The proportionality factor, dA;, is unknown and it must be expressed by use of the consistency
condition given by (3.13). The consistency condition is on a more general form given by:

T i
df = (g%) do + (gé) dk =10 (4.3)

where & is a hardening paramefer, that somehow depends upon the plastic strains through
dAp:

8 T
df = (%) do — Hd), =0 (4.4)
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14 APPLICATION OF THE SINGLE HARDENING MODEL

with the hardening modulus, H, defined as:

_(or\T dr
H¥—(5;) o (4.5)

The hardening modulus has the dimension of stress and solely describes the effect of hardening.
The value of the hardening modulus lies in the range 0 < H < oo, where the lower limit
corresponds to a perfect plastic material or state of failure and the upper limit corresponds to
a state of vanishing plastic strain, i.e. purely elastic behaviour.

The proportionality factor, d),, can be directly obtained from 4.2 and 4.4. However, to
avoid dividing with the hardening modulus, which eventually will be zero, 4.2 is first multiplied
by df /0o and the sum of the two equations gives:

o(z)

(%) c(%)+#

dhp = de (4.6)

By inserting 4.6 and 3.8 into the incremental stress-strain relation in 4.2 enables the stress
increment to be expressed in terms of the total strain increment:

() (%) ¢

(%) c()+H

do=[C— de = (C — CF) de = C*¥de {4.7)

P is the so-called elastoplastic stiffness matrix. If the material point is in the elastic domain
the plastic stiffness matrix, C¥, vanishes and C? and C becomes identical. It is noted that
for non-associated flow C? is asymmetric.

412 Elastoplastic stiffness matrix for the Single Hardening Model

The elastoplastic stiffness matrix for the Single Hardening Model can be established from the
expression in 4.7. The elastic stiffness matrix is identical to the one given in Section 3.1,
whereas the derivatives of the plastic potential function and yield function must be derived
for establishment of the plastic constitutive matrix.

Derivatives of the plastic potential function
The plastic potential function, g, is given by (3.7). As the plastic potential function is expressed

in terms of stress invariants the chain rule must be applied:

09 _ 998l 030k 090k o~

foe 8, 00 0l 00 08I 00 ’
in which

2y 1y ( +3)E—( +2)I—‘+“—¢2) {l“ (4.9)

B = T R TR Y T A :

aq If' [1 £

===l 4.

3, I \p [35)

3_!}' I? Il)#

O ek [h2E 4.11

8I3 wl ]::]2 Do { )
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and the derivatives of the stress invariants with respect to stresses are:

1
1
o6 1
8o |0 (4.12)
Q
0
[ = (022 + 033)
— (o33 + o11)
_‘9& _ — {01 + 022)
do 2023 (4.13)
203,
L 2012
[ 022033 — 033
o330 — 05
% i 011022 — 0‘122
do | 2(o1908 — o11693) (4.14)
2 (023012 — 02203;)
| 2 (031023 — o33013)

De iatives Of the yl‘glde wction
he 1d functi 5 f’, give ¥ ( ) ) y
€. ction is given b he chain rule
y 3.12 Us ng he derivatives of he yield

af _of _orohL  of'onL  of ol

80~ o 8l 00 ' I, 00 | 9L 5o (4.15)

in which the deriv.ativ.es of the stress invariants, 91, /8¢, 81,/80 and oI /0o, are given b
4.12-4.14. The derivatives of f’ with respect to the stress invariants are: , .

af _ (3+h 8¢\, L (L\"

o= (5 a) i) e
o 4 (ﬁ *

0, B \p) © (4.17)
%t ’g],_:u‘) 1_13 ﬁ : ¢

a, ‘o "'El\p.) © (4.18)

It is recalled that thg exponent g varies with the actual stress level as defined by (3.13) and
(3.14). Thus, the derivatives of g with respect to the stress invariants are:

9g _ a mSm 317 (L\"

o m(l-(1-a)8°\ L I \m (4.19)

9 _ o B (L\"

s p-(1-a)5)P T \p, (4.20)
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16 APPLICATION OF THE SINGLE HARDENING MODEL

Hardening modulus

The hardening modulus defined in 4.5 depends on the adopted hardening law. For the Single
Hardening Model, which is of the work hardening type, the hardening modulus can be rewritten
using the definition of plastic work and the flow rule. The hardening modulus is given by:

1 of

H=———dW, 4.21
dx, oW, F (4-21)
The increment of plastic work, dW,, is derived from (3.6) and (3.18):
T
8y
dW, = dX, (%) o (4.22)

Substitution of 4.22 in 4.21 leads to the final formulation of the hardening modulus for work
hardening:

90 o 6—f,ug (4.23)
oW, 0o OW,

The latter formulation appears by use of Euler's theorem for a homogeneous function g of
order p. The derivative of the yield function with respect to the plastic work depends on the
stress history. The derivative is given for both the hardening and softening laws in (3.15) and
(3.19), respectively.

H=

i 1 W:T_1 hardenin,
aaf _ ggf T & (4.24)
W, » —A4BB3l  softening

Pa

4.2 Updating of stresses and hardening parameler

The objective is to determine the updated state of stress and hardening parameter as a total
strain increment is imposed. A common used integration scheme for elastoplastic stress-strain
relations is the forward Euler scheme, which is also used in the original version of the UMAT.
In the following it is presumed that the initial state of stress is located on a yield surface and
that the next stress increment causes elastoplastic deformations.

4.2.1 Forward Euler schemes
In the forward Euler schemes the stresses are updated by replacing the infinitesimal elasto-
plastic stress-strain relation in 4.7 by a finite incremental relation:

Ag = C7 (o, ko) Ae (4.25)

where the elastoplastic comstitutive matrix is evaluated at the initial state of stress. As the
elastoplastic constitutive matrix depends on the stress and strain history this linear approx-
imation is only accurate for very small strain increments. The method may be refined by a
piecewise linear integration where the strain increment is subdivided into smaller subincre-
ments (Zienkiewicz & Taylor 1991, Sloan 1987, Crisfield 1991, Chen & Mizuno 1990):

de = ATAe = A (4.26)
m

where AT is a dimensionless time step of fixed size and the finite stress increment is determined
as the sum of the m stress subincrements, do;, each evaluated as a forward Euler step:

oy = CP (o + Agy_y, ko + Aky_y) 8 (4.27)
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Ok = X (00 + Aoy, ko + Ariy, de) (o9 + Ady ) % (4.28)
d(op+ Ao;_y) ’
where
i1
Ao =) do; (4.29)
=1
1—1
Akiy =3 6k (4.30)
=1

The given change to the hardening parameter is valid for work hardening and is computed by
use of 4.6 and 4.23, with derivatives evaluated at the stress state (o + Aey_1). The forward
Euler scheme has, as illustrated in Figure 4.1, the advantage of being straight forward and
easy to implement compared with cther schemes .

. A
Initial state oy, kg, Ag, b = i
m

Strain increments 1 = 1,2, ....,m
60',: = CEP (0'1‘_1,.'6,'_1)55

dg

Ot = Oy (o1, K1, 0€) 0y

80’1..]
G; = 01 +50’g
Ki = Ki_1 + 0K;

Stop strain subincrementation when i =m

Final state o5, k;, C%F (o, &;)

Figure 4.1: Subincremental forward Euler scheme.

However, the yield criterion is not necessarily fulfilled and the stress increments tend to drift
away from the yield surface, i.e. f(o¢+ Ao, ko+ Ak) # 0. Even though the subdivision
may reduce the yield surface drift the procedure may lead to unacceptable results as the error
accumulates during subsequent load steps (e.g Potts & Gens 1985, Sloan 1987, Crisfield 1991,
Krenk 1993). Moreover, the subincremental form, which was used in the original UMAT, has
the disadvantage that it uses subincrements of equal size. This turns out to be computationally
inefficient as the number of subincrements must be determined by trial an error so that the
maximum error is within some close tolerance. The problem is discussed further in Chapter
5.
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18 APPLICATION OF THE SINGLE HARDENING MODEL

5 IMPROVEMENT OF THE SHM-MODULE

Initially ABAQUS was run with the original version of the user material module and this re-
vealed that a number of revisions were necessary. The problems discovered were mainly related
to the handling of elastic stress increments, but also the general procedure for elastoplastic
stress updating were defective. The problems solved are listed below:

1. Improper handling of the transition from the purely elastic to the elastoplastic region.

2. Incorrect back-scaling of elastic trial stresses when these are located outside the positive
octant of stress space.

3. Lack of fulfillment of the consistency condition in both the hardening and softening
regime.

Besides the numerical improvement the SHM-modules prediction capabilities are enhanced by
implementation of an alternative variation of Young’s modulus and the possibility to control
the material degradation in the softening regime. The numerical performance is furthermore
improved by implementation of faster and more accurate integrations schemes and the use of
the consistent tangent stiffness matrix instead of the normal elastoplastic constitutive matrix.
Finally, the new SHM-module is capable of handling the effect of preshearing on the material
strength.

5.1  Additional model features

5.1.1 Alternative variation of Young's modulus

Alternatively a more recent and reasonable relation proposed by Lade & Nelson (1987), that
includes the effects of both mean effective stress and deviator stress can be used:

n A
N Iy 1+v\ Jy
E = Mp, KPH) +6 (1 72:/) = (5.1)

The dimensionless material parameters M and A can be determined from unloading and
reloading branches performed in triaxial tests.

5.1.2 Alteration of softening law parameters

Comparison of the Single Hardening Model with laboratory results indicates that the model
generally exaggerates the material degradation after peak failure. It appeared from Section
3.4.3 that the model presumes that the slope of the hardening and softening curves are nu-
merically identical at failure. A possible way to control the strength degradation is simply by
changing the initial slope of the softening curve. In practice this is done by introduction of
the softening parameter b that reduces the exponent B in 3.21:

" 1
B=bd(%)ﬁ (5.2)
Pa S5=1

The parameter b is greater than or equal to zero, where the lower limit corresponds to that of
a perfect plastic material.
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5.2 Initial intersection of the yield surface
It has so far been presumed that the initial stress point is located on the yield surface and that
any change in stresses would cause further elastoplastic loading. However, if a stress point
changes from an elastic to an elastoplastic state, as it occurs for presheared or overconsolidated
materials it is necessary to determine the portion of the stress increment that causes purely
elastic deformations (see Figure 5.1).

Thus, the initial state of stress o, lies within the yield surface corresponding to:

f(a'aa ECJ =fu<0 (53)

where the hardening parameter x remains constant as only elastic deformations occur. The
elastic stress increment is calculated using Hooke’s law:

Aeg® = C(o,) Ae (5.4)

If the stress point changes from an elastic to an elastoplastic state the elastic trial stress
o, + Ac® may violate the yield criterion:

floo+Ac k)= flok)=f, >0 (5.5)

It is therefore necessary to determine a scalar o corresponding to the portion of the stress
increment that lies within the yield surface so that the stress state o, fulfills the yield criterion:

fle.+alet k)= flo,x)=f.=0 O<a<l (5.6)

Explicit expressions for the scalar o can be derived only for simple types of vield functions.
A first estimate may be determined by a simple linear interpolation in f (Sloan 1987, Chen
& Mizuno 1990):

A= fa (5.7)

The yield function is, however, highly nonlinear and the scalar estimate determined by 5.7
will generally not salisfy the yield criterion:

flo+ apAe®, k) = f(og,k) = f1#0 (5.8)

A more accurate estimate for & may be obtained by a Taylor series expansion around o, +
Aot

TP | 6:9)

(soisey) Lo

& f=fo.,x) =0

Figure 5.1: Intersection of the yield surface.
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20 APPLICATION OF THE SINGLE HARDENING MODEL

The original UMAT uses this estimate of the scalar o to determine the elastic portion of the
stress increment. As for the forward Euler integration scheme this approach will be accurate for
small strain increments only. In order to avoid any initial yield surface drift in the integration
schemes and enhance the stress-strain relations prediction capabilities it is advisable to apply
an iterative scheme (Sloan 1987). Using the Newton-Raphson technique, for example, & and
a are updated as outlined in Figure 5.2, The iterative procedure is started by assuming
oy = o, and using a; from equation 5.7. The procedure is terminated when the stress norm
[loi — &1l / |lovii]] is less than a specified tolerance. The obtained elastic stress increment
aAg® corresponds to a elastic strain increment of a/Ae and the strain increment used in the
integration of the elastoplastic stress-strain relation equals (1 — o) Ae.

Initial state o, K

If f(o0, k) >0

B
fb'_fa.

Tterations i = 1,2, ..., imax

Qg =

O; = 041 +L‘t-,;_1AO'e
o =y + AO{"

f (U'i, &)

A i —
) A

Stop iteration when ||o; — o, 1| /o] S €

Final state o, = 03,0, = o

Figure 5.2: Initial intersection of the yield surface.

5.2.1 Handling the effect of preshearing on the material strength

The numerical problems that occur for presheared or over consolidated materials are generally
handled by applying the procedure outlined in the previous section. However, in special cases
the current yield surface, that indicates a previously experienced load level, extends beyond
the failure criterion and actually strengthens the material. Thus, the material should not
reach a state of failure until the yield surface is reached. This is numerically accomplished by
calculating the intersection of the yield surface and subsequently by performing a check for
failure. The stress level relative to failure, as defined by 3.14, will in such cases exceed unity,
but is for consistency put equal to unity.

4.8 Back-scaling of elastic triol stresses
As a consequence of the fact that the Single Hardening Model is developed for frictional mate-

rials, only stress combinations in the pressure octant of stress space are allowed. This implies
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that if the elastic trial stresses correspond to one (or more) negative or zero principal stresses,
the stresses must be scaled back into the pressure octant, in order to facilitate the calculation
of the elastoplastic stress-strain response. In the original version this back-scaling could re-
sult in a change of direction for the elastic stress increment, whereby erroneous results were
produced. The scaling procedure has therefore been modified, so that the original direction
is maintained. The problem most likely occurs for large strain increments and near failure in
the extension region.

5.4 Correction for yield surface drift

When using explicit integrations schemes, as the forward Euler scheme presented in Section
4.2.1, for updating of stresses the stress state predicted at the end of the elastoplastic increment
of loading may not lie on the current yield surface and the consistency condition is violated.
The error will essentially depend on the size of the strain increment and number of subdivisions,
but as the error is cumulative it is important to ensure that the stresses are corrected back to
the yield surface during each increment of loading.

A methed proposed by Potts & Gens (1985), that accounts for the changes in elastic strains
which accompany any stress correction, is applied. The problem is illustrated schematically in
Figure 5.3 where the material is subjected to loading which causes elastoplastic deformation.

f=(<:u,1cﬁ) =5

Figure 5.3: Illustration and correction of yield surfece drift. (a) Initial estimate on updeted
hardening parameter and stresses causing yield surface drift. (b) Corrected values of hardening
parameter and stresses located on the yield surface.

The material is at the initial state of stress o, located on the yield surface f (oa, ) = 0.
Further loading involves elastoplastic deformation and a change in stresses as determined by
the integrations schemes. This new stress state o}, will due to the tendency for yield surface
drift not necessarily be located on the new yield surface f (o, ;) = 0 and the objective is
therefore to correct the stresses so that the yield criterion is fulfilled. During the correction
process the total strain increment will remain constant which implies that any elastic strain
change must be balanced by an equal and opposite change in plastic strain. These changes
will affect the stresses and hardening parameter as well, wherefore the new and updated
elastoplastic stress state is denoted o and «,.

The requirement of an unaltered total strain increment throughout the correction process
can be formulated as:

de? = —de® = —C' (o, — o) (5.10)

The plastic strain increment is, moreover, proportional to the gradient of the plastic potential:

der = g2 (5.11)
do
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22 APPLICATION OF THE SINGLE HARDENING MODEL

where 3 is a scalar quantity. The corrected stress state is obtained by substituting equation
5.11 into equation 5.10 and solving for o,:

8y
o 12
o, =gy — fC o (5.12)

The change in plastic strains will also affect the hardening parameter:
e =ty + Ak (5.13)
where Ak for work hardening is given by:
ag\"
Ax=g[2% 5.14
w52 o (5:14)
The corrected stress state must satisfy the yield criterion:

Flosr) =1 (oq, - ﬁcé%gb,m +4 (%) a,,) =0 (5.15)

A first order estimate of the scalar @ can be obtained by a Taylor series expansion around ay:

S— Bf(crb,ma) — (5.16)
() © (&) - (35) (&) o

The above procedure may be of sufficient accuracy if the loading increment is small. How-
ever, it must in general be checked that the corrected stress state fulfills the yield criterion
f (oe, ) = 0 to some close tolerance. Otherwise an iterative procedure as outlined in Figure
5.4 must be applied. The iterative procedure is started by assuming o = & and K = .

5.5 Stress updating

In the original UMAT a simple forward Euler scheme was used for updating of the stresses
and the hardening parameter. The forward Euler scheme is, however, only accurate for small
strain increments. Alternatively, it is possible to refine the scheme by subdividing the strain
increment into a fixed number of subincrements. This approach will essentially improve the
accuracy, but turns out to be computationally expensive (Sloan 1987). In order to improve
the accuracy and the computational efficiency of the SHM-module two new schemes have been
investigated and implemented.

The most widely used integration schemes used for elastoplastic stress-strain relations are
of the backward and forward Euler type. The backward Euler scheme is an elastic predictor
and plastic corrector type of method and is attractive because it does not require the initial
intersection of the yield surface to be computed if the stress point passes from an elastic to an
elastoplastic state. The plastic correction is obtained by solving a small system of nonlinear
equations (Crisfield 1991, Krenk 1993) by an iterative procedure, which ensures that the
consistency condition may be satisfied within a specified tolerance. The approach, however, has
some major disadvantages. The establishment of the system of equations becomes laborious
for more advanced models and convergence is not necessarily guaranteed. Furthermore many
soil models have a separate failure criterion and the numerical handling may be obstructed
near failure as the elastic trial stress intersects the failure criterion. Alternatively integration
schemes of the forward Euler or Runge-Kutta type, that uses an explicit formulation, can be
used. This type of schemes have the disadvantage that the initial intersection with the yield
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Initial state oy, kg

If |f (o0, m0)| > €

lterations i = 1,2, ..., fmax

Bii= » f(o'i—l,ﬁ?i—l)
i T
(s5) C(8%) - (325) o (@)
=0, — 5“_1cagil
Ay = B0 afi]

Ki = Ki—1 + Akioy
Stop iteration when |f (oi, k)| <

Final stote o, = 0, ke = Ky

Figure 5.4: Correction for yield surface drift.

surface must be computed if a stress point passes from an elastic to an elastoplastic state
and they do not necessarily ensure that the consistency condition is fulfilled. The validity of
this type of methods can, however, be enhanced and the disadvantages are balanced by their
robustness.

On this basis it is found advisable to focus on two explicit integration schemes. This includes
a refined subincremental version of the forward Euler scheme with active error control and an
enhanced Runge-Kutta scheme.

The methods are applicable to nonlinear stress-strain relations in general, but the stress-
strain relations given by the Single Hardening Model are applied as far as possible. The section
is concluded by an example where the capabilities of the different methods are studied.

5.5.1 Modified forward Euler scheme with error control

In crder to reduce the yield surface drift and computational costs of the forward Euler scheme a
modified Euler scheme with active error control can be used (Sloan 1987, Sloan & Booker 1992).
Instead of using a fixed number of subincrements of equal size, the size of the subincrements is
varied throughout the integration process. Hence, the size of each subincrement is determined
so that the new stress state fulfills the yield criterion to some close tolerance and only the
absolutely necessary number of subdivisions are applied.

The modified scheme uses a pair of first and second order Euler formulas to estimate
the error produced by the standard forward Euler scheme at the end of a strain increment,
de = AT Ae. The first estimate of the updated stresses and the work hardening parameter at
the end of the strain increment is given by:

o= ay+da’ (5.17)
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K= Ko + &K (5.18)
where
bo’ = C%? (aq, k¢) 0 (5.19)
S e B9 Tt e S (5.20)
dog
A more accurate estimate of the updated stress state may be found by:
~ Lise i
trfcrngi(ﬁa' + 0o ) (5.21)
P e s 3
k=m+; (86" +65") (5.22)
where
Sotl = (0'0 + 8o’ kg + 65") de (5.23)
dg

86T =8, (o0 + da”, g + 0 8) (0 + 60" (5.24)

a (D‘ 0+ do! )
The method is seen to employ two evaluations of the elastoplastic constitutive matrix in each
subincrement. The difference between the stress states given by 5.17 and 5.21 can be seen as
an estimate of the local error in o

bd M g—a= % (60'” - 501) (5.25)

This error estimate serves as a guide for selecting the size of the next time step, AT, when
integrating over the total strain increment Ae. That is, the relative error for a subincrement
is defined by the stress norm:

(5.26)

and the size of each step is continually adjusted until £ is less than some specified tolerance,
€.

The integration is started by choosing a value of the dimensionless time step AT and
computing de, &, k, &, &, 6o’ 11 and £ using 5.17-5.26. I £ < ¢ the new and updated stresses
and hardening parameters are taken as & and &, otherwise it is necessary to reduce AT and
repeat the calculation. The size of the next dimensionless time step is generally given by local
extrapolation:

AT = qAT (5.27)
where
ngg(f)% (5.28)
I 4

The exponent 1/2 relates to the local truncation error O (AT?) of the first order formulae,
whereas the factor of 0.9 is introduced to reduce the number of subincrements that are likely
to be rejected during the integration process. The size of the new increment is furthermore
constrained as g must lie within the interval:

0.01<g<?2 (5.29)

The modified Euler scheme with active error control is summarized in Figure 5.5.
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Initial state og, kp, Ag,dep = Ae,g=1
Strain increments i = 1,2, ....,n
i1
fe; = min |gbe;_y, Ae — 3 de;
j=1
Do
bol = CP (041, ki 1) 0&;
Skl = 8y (o1, Kic1, 0E:) UFI%
60’51 = (0’;71 i 50’{, K1+ 6&;’) 5&‘@
dwl" = 6Xy (01 + 60, i1 + Ok] de;) (o1 + 6of) T
i vl -1 i fvi—1 73 i =1 i 6(0}'-1 +‘56{)
o syt " i
by~ 5 (501 — 60,-)
By i (60 + bl
= i71+6 o; + O’,—)
1
fi= kit (8l +6x1")
et
L= "
(Il
%
if & > € then g = max {0.9 (é) 50.01} . be; = gle;
Until £; < ¢
1
i {0 9 (f o
g=min |09 =1} ,
3
n
Stop strain incrementation when Y deg; = Ae
i=1
Final state &, ki, CF (&4, &)
Figure 5.5: Modified Euler scheme with active error control.
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5.5.2 The Runge-Kutta-Dormand-Prince scheme with error contrel

Variations of the Runge-Kutta scheme is widely used for integration purposes. The classical
Runge-Kutta scheme uses a fourth order integration scheme with only one strain increment
for stress updating. Several higher order schemes with subincrementation have been proposed
(e-g. England 1969, Fehlberg 1970, Dormand & Prince 1980, Sloan & Booker 1992). The
Runge-Kutta scheme modified by Dormand & Prince (1980) is used in the following. The
scheme uses a pair of fourth and fifth order formulas, where the coefficients have been chosen
to estimate and control the error as accurately as possible, to estimate the new updated
stresses and work hardening parameter:

31 190, gy 145, 351, 1 4 i
c=0y+ 54060 + 29750 & ﬁéa + ﬁ&r + EJO’ (5.30)
31 ., 190 ,; 145, 3581 1
= i g 2ok + kYT :
K=fg+ 5405f~: + 7970% IOSM + 525" + 500" (5.31)
X 19, 1000, ,; 125 ., 814 5 .y
_ 19 - ot g 32
6 =o0p+ 21600 + 207960' 21650 £ 8850 + T (5.32)
19 1000 125 81 5
A= e en sl DA% gy o Ol T B o g ;
R =Ky + T + 507 216515 + 8855 1 56(55 (5.33)
where
do! = O (U’n, Ku) oe (534)
okl = 83 5e) o0 22 5.3
K =0 (o0, Ko, 5)506_0__0' (5.35)
b’ = (cr’, m") ée (5.36)
ak’l =8 (crf & 56) oja—g (5.37)
PAT T 8o’ '
i 1o g
o =op+ 550’
1
K,I = Kp + gé‘ﬁl"
s’ = Cor (a”,fc”) de (5.38)
2]
6x"TT = 83, (0'”7 n”,és) o-”a;f,f (5.39)
3 9
I S, de
ol =ogp+ 4050' + 4050'
3 9
& =y + 21-565' + EMH
sa'" = C? (o, k") de (5.40)
dg
55"V =, (a1, 61, 86) o111 (5.41)
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i ey %501 _ %JJH + g&,—’”

& = gy + %&c{ - 1%5&” + gﬁm‘r”

sa¥ =C% (UW: n”’) e (5.42)

5kY =63, (a’”", T 55) UW% (5.43)

oV =y + ,2?2_25.:’ - ;—?Ja'” + %{50’]” + %&TIV

&Y =+ %6.@" - ;—?6!{”4' gi—géfi”‘r-k %an

so¥! =% (¥, k") oe (5.44)

YT = dAp (O’V, &, 6&‘) O'V% (5.45)
Vo %Jai + gc?cr” = %50’”1 = %60’”’ + %ﬂav

K =g— %5# + gafc” = gg—,?,amf” - %M" + 1585955‘,

Even though the integration process requires six evaluations of the elastoplastic constitutive
matrix, the scheme rapidly becomes competitive with the modified Euler scheme as the error
tolerance is tightened. As for the modified Euler scheme the estimated relative error can be
expressed as:

5=”1;fﬂ (5.46)

As the local truncation error in the fourth order formulae is O (AT®) the exponent in 5.28 is
replaced by 1/5 and the factor that controls the size of the next dimensionless time step is
instead given by:

1

a=09(5)’ (547

but the constraints in 5.29 still apply. The Runge-Kutta-Dormand-Prince scheme with active
error control is summarized in Figure 5.6.
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Initial state o, kg, A€, deg = Ag, g =1

Strain increments i = 1,2, ...,n

g4
d&; = min {qJe,I,As -3 de_.,}

i=1

Do
Stress increments m = I,11, ..., VI
S = C% (o), k1) b

dg
do" L

= 8 (o1 6], B} o7

Stop stress incrementation when § = VI

145 351

81 190 gV By, L,
m 54050 ki 297‘5 - g%t + g3 T 5t
31 190 351 1
R o SR g gy SIS sy
fi = Kio o+ pn0m; + 5o ws§ * 307 T3
gy 1000 oI 125 v § v _‘5
Ll 2166 +agtT 3100 tggdov +agdot

N 1000 125
Rp = 1 + 5 _5 IL’ 5 IV 5 V 76K'VI
-1t o6 T ogre T oo™ Tas 56
|6 — o]
[l&]]

&=

1

if & > ethen ¢ = max |:0,9 (é) ’ ,0.01} ; 08y = gde;

Until & < €

(i)

n
Stop strain incrementation when Z de; = Ae
i=1

g = min

Final state &;, k;, C? (64, ;)

Figure 5.6: Runge-Kutta-Dormand-Prince scheme with error control.
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5.5.3 Evaluation of integration schemes

The effectiveness of the integration schemes presented in Sections 4.2.1, 5.5.1 and 5.5.2 is
examined in the following. A single material point undergoing a constant volume compres-
sion is considered. The compression is started from an anisotropic stress state of of =
[ 450 400 400 0 0 0 ). The resulting stress path is somewhat simple as it does not in-
volve any rotation of principal axes, but even a relatively small strain increment will never-
theless lead to a considerable change in the principal stresses. The simulation is conducted by
imposing a number of strain increments of equal size Ae” =107 [5 —2.5 —25 0 0 0]
and using the three integration schemes for determination of the corresponding change in
stresses. The resulting stress path and development in hardening parameter, shown in Figure
5.7, is composed of 40 sequential strain increments of equal size. All the shown simulations
are performed without correction for yield surface drift. The material parameters used are
identical to those used for the examples in Chapters 7 and 8.

As seen in graph a and ¢ the modified Euler and Runge-Kutta-Dormand-Prince integration
schemes yield similar results, whereas the forward Euler integration scheme deviates visibly
for decreasing values of o3. This deviation becomes less distinct on the linear part of the
stress path, but the forward Euler scheme generally overestimates the final stress state con-
siderably. The applicability of the forward Euler scheme, however, improves as the number
of subincrements in the integration process are increased. Hence, the discrepancy is more or
less reduced by a factor of two as the number of subincrements in the integration process are
doubled. Similar observations hold for the development in the hardening parameter, W, as
indicated in Figure 5.7b.

The observations above illustrate the effect of rate dependent material behaviour and a reduc-
tion of the strain increment, Ae, may:

1. Change the appearance of the stress path for all the methods and lead to results that
are in better agreement with the ‘correct’ solution.

2. Reduce the discrepancy between the integration schemes.

3. Decrease in computational efficiency.

The choice of the strain increment will, therefore, essentially depend on the required accuracy
of the global sclution and the purpose of the integration schemes is merely to provide an
accurate stress update for a given strain increment. As already seen, it is possible to obtain
similar results using the three different schemes, but so far no attempt was made to evaluate
their computational efficiency. The computational cost is strongly related to the evaluation
of the elastoplastic constitutive matrix and as described in Sections 4.2.1-5.5.2 the forward
Euler, modified Euler and the Runge-Kutta-Dormand-Prince schemes require one, two and
six evaluations per subincrement, respectively. The computational costs are evaluated by
performing a number of runs, where the updated stresses must lie within scme tolerance, e,
of a reference state. Since no analytical solution is available for integrating the relations of
the Single Hardening Model exactly, the reference stresses are computed by using the Rung-
Kutta-Dormand-Prince scheme with 250 subincrements of equal size. The error in each strain
increment for the different schemes can then be expressed as:

B = o= ol (5.48)
’ [loresll

and the average and maximum error along the stress path are given by:

i 40
Ea.ﬂg 40 z E (649)
AGEP R0201 JAKOBSEN



30 APPLICATION OF THE SINGLE HARDENING MODEL
o, [kPa] W, [kPa]
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Figure 5.7: Various integration schemes used for determination of constant volume stress path.
(o) Stress path in o3 — oy diagram. (b) Development of the hardening parameter, Wy, with the
major prineipal strain. (c) Segment of stress path.

Bz = e E; (5.50)
The maximum number of subincrements within a single strain increment and the accumulated
relative CPU time required for fulfillment of a given error tolerance along the stress path in
Figure 5.7 are listed in Table 5.1. The CPU time is a measure of the computational costs
due to the application of the user defined material module. For the forward Euler scheme
the number of subincrements is adjusted until the average error equals the specified tolerance.
The modified Euler and Runge-Kutta-Dormand-Prince schemes use the specified tolerance for
adjustment of the size of the subincrements. The simulations have been performed with and
without correction for yield surface drift.

As indicated in Table 5.1, the simulations reveal that the two higher order schemes have
normalized errors that are substantially less than unity and are largely unaffected by correction
for yield surface. However, the correction for yield surface drift becomes very important when
using the forward Euler scheme as it reduces the maximum and average error in stresses with
at least 70%. Moreover, if the subdivision of the strain inerement is insufficient the correction
for yield surface drift tends to diminish the overestimation of the final stress state shown in
Figure 5.7.

As expected the forward Euler scheme shows a more or less proportional growth in the
maximum number of subincrements and relative CPU time with the tightening of the error
tolerance. For the modified Euler scheme the maximum number of subincrements and relative
CPU time grows slightly with the reduction of the error tolerance, whereas the Runge-Kutta-
Dormand-Prince scheme is barely affected. For all the schemes the first few increments (where
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the stress path is changing direction) are decisive for the maximum number of subincrements
needed for fulfillment of a given error tolerance. Thus, for the two higher order schemes only
a few of the imposed strain increments are subjected to subincrementalization.

The Runge-Kutta-Dormand-Prince integration scheme is in general found to be superior to
both the modified Euler and the forward Euler schemes in terms of accuracy and computational
costs as the error tolerance is tightened. Even the modified Euler scheme is only competitive
for large error tolerances.
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6 COMMUNICATION WITH ABAQUS

1
= ; i e The finite element program ABAQUS provides an interface, whereby any constitutive relation
g HJ = can be added to the material library. To ensure proper functioning ABAQUS defines an
g . interface containing a list of formal arguments for use with user defined material modules
Y Ly o {ABAQUS 1995). The subroutine containing the constitutive relation (SHM-module) must,
?J T % — i as already outlined in Chapter 4 and 5, provide information about the material behaviour at
-% w the end of each strain increment. The subroutine is called by ABAQUS at each Gauss point
T o for calculation or updating of:
& sl e |o
'J; - 2 - 1. Stresses
*E 2. Consistent tangent stiffness matrix
g 9
g') ? g =) ) 3. History information, i.e. values of path dependent parameters.
=
é An introduction to the ABAQUS interface, the used syntax and some remarks on the call of
“f T user defined material modules are given in the following.
2 2 29 2 & dé‘ —
N . ° & 6.1 ABAQUS interface
E ; “ 8 é The communication with ABAQUS is accomplished by use of a predefined interface written
R - in FORTRAN 77 code:
gy TR |2 & |=H
2g ! 5 B SUBROUTINE UMAT(STRESS ,STATEV,DDSDDE, SSE,SPD,SCD,
s £ 1RPL , DDSDDT , DRPLDE , DRPLDT,
§‘ Lo Gl Bl 2| 5 8 2STRAN,DSTRAN, TIME,DTIME, TEMP,DTEMP, PREDEF , DPRED , CMNAME,,
g = g & g B, g ‘§ g 3NDI,NSHR,NTENS,NSTATV,PROPS , NPROPS , COORDS , DROT , PNEWDT,
% w ‘S“ 4_.'3] 4CELENT ,DFGRDO,DFGRD1, NOEL ,NPT,LAYER,KSPT ,KSTEP ,KINC)
S P .
o s228lag8E&E CHARACTER+8 CNAME
Sl I 2l=geg|g 8 DIMENSION STRESS(NTENS),STATEV(NSTATV),
3 " - 1DDSDDE(NTENS , NTENS} ,
= T P O e - - 2DDSDDT (NTENS) , DRPLDE (NTENS) ,
SE /2§ EEg 2 3STRAN (NTENS) ,DSTRAN(NTENS} , TIME(2) ,PREDEF (1) ,DPRED(1)
v-;‘) =y £ E £ 3 1}
g LTETET e APROPS (NPROPS) , COURDS (3) ,DROT (3, 3) ,DFGRDO (3, 3) , DFGRD1 (3, 3)
0 E @
= “J; w6 5| sme B las S ; B For temperature and time independent relations the user coding must calculate and update
kS = g i é = 5 g = the variables STRESS, DDSDDE and STATEV. A description of all the variables can be found
£ w k= § in the ABAQUS manual (ABAQUS 1995), whereas only the variables used in the present
g = subroutine are described.
] el —_ — —| s B
JEieEINETIS IR
B o | R Eeie s SR ¢ The main input variables are:
5 § &
2 7:3 © Sle ole o "; ';g STRESS  Stress state
2 T = ;_, a3 é = ; = g DSTRAN Total strain increment
B % >R PROPS Material and model properties
e E a, a NPROPS Number of material and model properties
2 Ela | % £ STATEV  State variables
& 2 | = & NSTATV  Number of state variables
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The main output variables are:

STRESS  Updated stresses

DDSDDE Consistent tangent stiffness matrix at the current state of stress

STATEV  Updated value of state variables
It should be noticed that the sequence of stress and strain differ from the convention normally
used in continuum mechanics as the shear components are interchanged (see Chapter 2). The

stresses and the total strain increment are given on vector form:

T =
o *[0'11 Tp 033 J12 013 023] (6.1)

AeT=[Aen Aoy ey Aep Aeyy Acy | (6.2)

The material properties and various model control parameters are given by the property array,
which is composed as follows:

PROPS(1) Parameter a of failure criterion
PROPS(2) Parameter m of failure criterion
PROPS(3)  Parameter m; of failure criterion

PROPS(4) Parameter K or M for variation of Youngs Modulus
PROPS(5) Parameter n or A for variation of Youngs Modulus
PROPS(6) Parameter v Poisson’s ratio
PROPS(7)  Parameter 2; of plastic potential function
PROPS(8) Parameter u of plastic potential function
PROPS(9) Parameter C of work hardening law
PROPS(10) Parameter p of work hardening law
PROPS(11) Parameter A of yield function
PROPS(12) Parameter a of yield function
PROPS(13) Parameter, p,, atmospheric pressure
PROPS(14) Integration scheme:
(1) Modified Euler scheme
(2) Runge-Kutta-Dormand-Prince scheme
(3) Forward Euler scheme
PROPS(15) Parameter for integration scheme:
Stress tolerance for the Runge-Kutta-Dormand-Prince and modified
Euler schemes
Number of subdivisions in the forward Euler scheme
PROPS(16) Variation of Youngs modulus
(1) Relation defined by Janbu (1963)
(2) Relation defined by Lade & Nelson (1987)
PROPS(17) Correction for yield surface drift
(0) Deactivated
(1) Activated
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PROPS(18) Tolerance on yield ecriterion
PROPS(19) Maximum number of iterations allowed for fulfillment yield criterion
PROPS(20) Initial slope of softening branch

A number of state variables are used for storage of the materials local stress-strain history.
The state variable array is composed as follows:

STATEV(1) Current value of yield function, [’ (o)
STATEV(2) Current yield surface, i.e. value of hardening or softening law, f" (W)
STATEV(3) Plastic work

STATEV(4) Flag indicating failure

STATEV(5) Value of softening parameter, A, determined at failure

STATEV(6) Value of softening parameter, B, determined at failure
(7)

STATEV Current stress level relative to failure, S.

6.2 Syntaz for call of the SHM-module

When using the SHM-module it is necessary to define an element set that uses the specific
material definition. Furthermore, the number of material and model properties, NPROPS,
and the number of state variables, NSTATV, must be defined together with the material and
model properties. An example of a material definition in an ABAQUS input file is given below:

*S0LID SECTION,ELSET=SOIL,MATERIAL=SAND
MATERTAL , NAME=SAND
USER MATERTAL ,UNSYMM,CONSTANTS=20
0.,0.2879,70.19,477.65,0.4142,0.20,-3.1375,1.9862,
0.00013101,1.6188,0.6400,0.5548,101.4,3.,100,2.,
1.,1.D-4,200.,1.D0
DEPVAR
7,
USER SUBROUTINE, INPUT=shm3d.for

6.8 Initialization of state variabics
For use with geomaterials the ABAQUS input file is composed of at least six parts:

1. Initial geometry of the problem

2. Type of elements used to approximate the displacement field

3. Specification of material model properties

4. Boundary conditions, i.e. prescribed displacements and pore pressure
5. User defined geostatic stress field

6. Load steps, i.e. loads and prescribed displacements

On execution of the ABAQUS job it is initially checked that the user defined geostatic stress
field is in equilibrium. Thus, the material module is called once for each material point
for establishment of the global stiffness matrix and correction of the stresses. However, the
state variables, STATEV, are initially set to zero by ABAQUS and are not in accordance
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with the geostatic stress state. When the SHM-module is entered for the very first time the
state variables must be initialized. This includes STATEV(1), STATEV(2), STATEV(3) and
STATEV(T7) of which the first three must be greater than zero (see page 35). The remaining
three state varaibles are presumed to be zero as failure is not allowed at the initial state of
stress.

6.4 Routine call with zero strain increment

At the beginning of each new load increment ABAQUS calls the SHM-module at each mate-
rial point with a zero strain increment for establishment of an estimate of the global stiffness
matrix. ABAQUS uses the estimated stiffness to come up with a first guess on the correspond-
ing displacernent field and hence a new strain increment. The SHM-module recognizes being
called with a zero strain increment and interpret this as a request for the current tangent
stiffness only. In the present situation the direction of the next load increment is unknown
and in order to avoid a gross exaggeration of the displacement field in case of unloading the
maximum stiffness is returned.
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7 VERIFICATION OF THE SHM-MODULES BY SINGLE ELEMENT TESTS

The SHM-modules ability to function is documented by performing numerous single element
analyses. The validation of the 2 and 3D versions is performed by simulation of triaxial and
true triaxial, respectively. The simulations are performed in both the compression and exten-
sion regime, following various stress paths. As these types of tests imply homogeneous stress
and strain states, i.e. the stresses and strains attain constant values at all Gauss points, the
simulations may seem superficial. Nevertheless, these simple tests makes it easy to interpret
and validate the results. All simulations are performed with the basic material parameters
listed in Table 7.1. The parameters are derived from conventional triaxial compression tests
on Eastern Scheldt Sand (Jakobsen & Praastrup 1998).

Table 7.1: Material porameters used for testing of the SHM-module.

Parameter Value ABAQUS variable
Failure criterion
a 0 PROPS(1)
m 0.2879 PROPS(2)
T 70.19 PROPS(3)
Elastic parameters

Mt 458.45 PROPS(4)
Af 0.4142 PROPS(5)
v 0.20 PROPS(6)

Plastic potential function
TS -3.1540 PROPS(T)
I 2.0611 PROPS(8)

Work hardening law

1.2748-10-1 PROPS(9)

P 1.6078 PROPS(10)
Yield function
o 0.6166 PROPS(11)
h 0.5525 PROPS(12)
Softening law

b 0.5 PROPS(20)

Notes: | Variation of Youngs modulus as defined by Lade & Nelson (1987)
1 This parameter is varied from zero to unity in Section 7.1.1

7.1 Triazial tests

All the triaxial simulations are performed with a 4 node axisymmetric element - element type
CAX4. During all simulations the nodes along the vertical symmetry line are fixed in the
radial direction, whereas the bottem nodes are fixed in the vertical direction. A sketch of the
used element and the principal directions are shown in Figure 7.1.
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1

2,3

Figure 7.1: Used element and definition of principal directions.

The conditions of the remaining two boundaries are given during the respective load steps.
The following simulations are performed for validation of the SHM-module:

e Variation of softening parameter

e Intersection of yield surface

e Back-scaling of elastic trial stresses

e Strengthening of a material due to preshearing

7.1.1 Variation of softening parameter
The effect of the softening parameter, b, is illustrated by simulation of several conventional
drained triaxial compression tests. Fach simulation consist of three load steps:

Load step 1: Establishment of an initial isotropic stress field of 20kPa
Load step 2: Isotropic consolidation from 20 to 160k Pa
Load step 3: Drained compression at a constant confining pressure of 160kPa

The simulations are performed with values of b equal to 0, 0.25, 0.5 and 1. The first corresponds
to a perfectly plastic material behaviour at failure, whereas the remaining three correspond to
various degrees of strength degradation after peak failure. The results of the four simulations
are given in Figure 7.2.

As shown in the figure the value of b affects both the deviator stress and volumetric strain
after peak failure. Thus, both the deviator stress and the rate of dilation decreases more
rapidly as b increases. Whereas the effect on the stress-strain curves is distinct the effect on
the volumetric behaviour is less pronounced.

The effect of b is most easily perceived by considering the value of the vield function, which
is shown in Figure 7.2c. The expansion of the yield surfaces during hardening is seen to be
identical for the four simulations, but as failure is reached, and the softening regime is entered,
the curves starts to deviate as the yield surfaces diminish at different rates. However, in case
of no softening (b = 0) the rate of dilation and plastic work rate remains constant throughout
the simulation. As the softening parameter is increased the rate of dilation and plastic work
rate decreases (see Figure 7.2d).
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Figure 7.2: Effect of the softening parameter b on the material degradation after peak failure.
(a) Stress-strain curves. (b) Volumetiric stroin versus total azial strain. (c) Size of yield
surface and plastic work versus total azial strain. (d) Magnification of post peak behaviour.

7.1.2 Intersection of yield surface

The numerical procedure which deals with the intersection of a yield surface when a stress
point changes from an elastic to an elastoplastic state is evaluated by simulation of a triaxial
compression test with constant axial stress.

Load step 1: Establishment of an initial isotropic stress field of 20k Pa
Load step 2: Isotropic consolidation from 20 to 500k Pa

Load step 3: Drained compression at a constant axial pressure of 500kPa

When load step 3 is started the material is subjected to an elastic loading. The material will
exhibit elastic behaviour as it passes through elastic stress space until it intersects the current
yield surface corresponding to the isotropic stress state applied in load step 2. The material
then subsequently yields throughout the simulation. The model behaviour is shown in Figure
7.3, where the yield surface corresponding to the isotropic load step is indicated by f7.

The stress-strain curve in Figure 7.3a shows a pronounced change of stiffness when the yield
surface is crossed. The stress level at which the stiffness change occurs corresponds accurately
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Figure 7.3: Intersection of yield surface. (o) Stress-strain curve. (b) Stress path. (c) Value of
yield criterion. (d) Size of yield surface and value of yield function.

to the point of intersection between the stress path and the yield surface shown in 7.3b. The
change in material stiffness is in 7.3c detected by the yield criterion, i.e. the condition f < 0
corresponds to elastic loading.

The abruptness with which the stiffness change occurs will essentially depend on the size
of the strain inecrement. The models handling of the initial elastic unloading and subsequent
elastoplastic loading is further illustrated in Figure 7.3d. During the isotropic loading step
the values of the yield function and the hardening law are identical, i.e. the vield criterion
is fulfilled. During load step 3 the yield function initially decreases as the elastic region
is entered. As the stress point moves along the prescribed stress path and approaches the
current yield surface the yield function increases, leading to a fulfillment of the yield criterion
at the intersection point (closed circle) and the material subsequently vields throughout the
simulation. However, as finite strain increments are used the current yield surface is intersected
during an increment. The intersection is as outlined in Section 5.2 handled by performing a
split into elastic and elastoplastic strain increments, but as only the final state is returned
(open circle) the intersection point may not appear from the output. The intersection point
can only be obtained from the output by reducing the size of the strain increment until the
open and closed circles coincide.
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7.1.3 Back-scaling of elastic trial stresses

The risk of attaining zero or negative elastic trial stresses is naturally greatest if one of the
principal stresses at the initial stress state are close to zero. The back-scaling procedure is
therefore verified by simulation of a triaxial extension test where the axial stress attains quite
small values. The simulation is composed of the following three load steps.

Load step 1: Establishment of an initial isotropic stress field of 20kPa
Load step 2: Isotropic compression from 20 to 160kPa
Load step 3: Drained extension at a constant axial pressure of 160kPa

The result of the simulation is shown in figure 7.4, The material will as shown in Figure
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Figure 7.4: Simulation of eztension test. (a) Stress-strain curve. (b) Stress path. (¢) Value of
yield criterion. (d) Size of yield surface and value of yield function.

7.4b,c and d exhibit elastic behaviour at the start of load step 3. Thus, the yield surface,
denoted f7, is initially expanded due to the isotropic compression in load step 2. The yield
surface maintains its size until it is intersected in the extension regime. The intersection and
fulfillment of the yield criterion is as above-mentioned affected by the size of the imposed
strain increment.
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These considerations comply with the observed stress-strain behaviour shown in Figure
7.4a. During the elastoplastic loading the elastic trial stresses are repeatedly located outside
the positive octant of stress space. The trial stresses are, however, scaled back properly and
the thecretically calculated failure stresses are captured by the simulation.

7.1.4 Strengthening of a material due to preshearing

The problem of handling the increase in material strength due to preshearing is comparable
with handling the intersection of the current yield surface. However, in the present case the
current yield surface extends beyond the failure criterion and it must be ensured that failure
is not detected before yielding occurs. The models capability to handle this effect is tested by
simulation of a triaxial compression test, following a multi-leg stress path. The simulation is
composed of the load steps given below:

Load step 1: Establishment of an initial isotropic stress field of 20kPa

Load step 2: Isotropic consolidation from 20 to 840k Pa

Load step 3: Anisotropic consolidation by application of an axial stress of 2400k Pa

Load step 4: Unloading to an isotropic stress of 640k Pa

Load step 5: Reduction of confining pressure to 160kPa

Load step 6: Conventional drained compression at a constant confining pressure of 160kPa

The preshearing performed during load step 1-3 results, as shown in Figure 7.5b, in a consid-
erable expansion of the yield surface. The value of the yield function subsequently decreases
during the elastic unloading and attains its minimum value at the end of load step 5 (see
Figure 7.5d.) In load step 6 the yield function increases during the elastic reloading until
the current yield surface, which is located above the original failure criterion, is reached and
failure is finally detected. The original and the new state of failure are marked by open and
closed circles, respectively. The strengthening due to preshearing is distinct and the strength
is increased from 592k Pa to 912k Pa corresponding to an increase in the effective friction angle
from 40.4° to 47.8°.

The yield surface due to the preshearing has as shown in Figure 7.5b a characteristic bulge.
The bulge occurs as the stress level, S, is restricted to values between zero and unity. Thus, a
value of unity is obtained as the original failure criterion is fulfilled and the stress level remains
constant upon further loading. This affects the value of the yield function greatly as the rate
at which the the yield function changes with respect to stresses decreases (see Figure 7.5d).

JAKOBSEN AGEP R0201

APPLICATION OF THE SINGLE HARDENING MODEL 43

q [kPaf qggz;u]
2000 - S
(a] () Failure o
. 1 :
1500 - 1500+
1000 r\ 1000 T
500 — 500 e
U= =t = 0 \ T . Ao i
g 2 4 [ & 10 a 500 ;
e, (%] p' [kPa)
P £ H
= 100 —
-80 (e) a0 (d)
] 53 ? £
®’; /
r
40 5U-| ! /r
' el
- i x -
fem
[4 — 77T 0= T T : T - 15,[}0
0 2 4 & 8 10 g 500 1000 ¢
»’ [kPa/

Figure 7.5: Strengthening of material due to preshearing. (a) Stress-strain curve. (b) Stress
path. (c) Value of yield criterion. (d) Value of yield function.

7.2 True triazial tests
All the true triaxial simulations are performed with a 8 node continuum element - element

type C3D8. During all simulations the bottom nodes of the cube are fixed in the vert‘ical
direction. A sketch of the used element and the numbering of the three principal directions
are shown in Figure 7.6.

The conditions of the remaining five boundaries are given during the respective load steps.
The following simulations are performed for validation of the 3D version of the SHM-module:

e Conventional triaxial compression test

e Anisotropic consolidation and plain strain compression test
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Figure 7.6: Used element and definition of principal directions.

7.2.1 Conventional triaxial compression test
To validate the 3D version of the SHM-module a conventional triaxial compression test similar
to the one in Section 7.1.1 is performed. Hence, the simulation consist of three load steps:

Load step 1: Establishment of an initial isotropic stress field of 20k Pa
Load step 2: Isotropic consolidation from 20 to 160kPa
Load step 3: Drained compression at a constant confining pressure of 160kPa

The results of the true triaxial compression simulation, using the full 3D formulaticn are shown
in Figure 7.7. The results are seen to be identical to the results from the conventional triaxial
simulation based on axisymmetrical conditions given in Figure 7.2.

7.2.2 Anisotropic consolidation and plain strain compression
The use of the 3D version of the SHM-module is further illustrated by simulation of a true
triaxial test, in which an anisotropic consolidation is followed by a plain strain compression.

Load step 1: Establishment of an initial isctropic stress field of 20kPa
Load step 2: Isotropic consolidation from 20 to 160kPa

Load step 3: Anisotropic consolidation
Direction 1: 160 to 480kPa
Direction 2: 160 to 240kPa
Direction 3: 160kPa

Load step 4: Plain strain compression
Direction 2: Fixed boundaries

Direction 3: Constant axial stress of 160kPa

The development in directional stresses and strains, plastic work ete. are shown in Figure
7.8. The stress-strain curves in Figure 7.8a shows how the imposed plain strain condition in
direction 2 leads to an increase in stresses in both direction 1 and 2. The stresses subsequently
decreases as failure is reached and the softening regime is entered. The corresponding stress
path and volumetric strain curve are shown if Figure 7.8b and d. The material strength
expressed in terms of the maximum stress difference, g, is as expected substantially higher
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strain. (c) Size of yield surface and plastic work versus total azial strain. (d) Magnification

of post peak behaviour.

than for the conventional triaxial test and the volume expansion is correspondingly reduced

(see Figure 7.7).

The simulation is Tamerically straight forward as the material at all times s subjected to
elastoplastic loading and the change from anisotropic consolidation to plain strain compression

is hardly noticeable.
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8§ CONCLUSIONS

The present work explains the working priciples of elastoplastic models and in particular
addresses the problems involved in the implementation of the advanced Single Hardening
constitutive model. The shortcommings of an earlier version of the user defined material
module, UMAT, for the commercial finite element program ABAQUS are pinpointed.

The calculation strategy for a recoded version of the user defined material module, denoted
the SHM-module, is presented and discussed, including the initial intersection of the yield
surface, the techniques for updating of the stresses and hardening modulus, and correction for
possible yield surface drift. Several integrations schemes are implemented in the module and
their capabilities in relation to the Single Hardening constitutive model are evaluated. The
forward Euler, modified Euler and Runge-Kutta-Dormand-Prince integration schemes have
been compared in view of error tolerances and computational efficiency. The modified Euler
and the Runge-Kutta-Dormand-Prince schemes, which includes active error control, posses the
advantage of allowing greater strain increments to be imposed as subincrementalization auto-
matically is performed if needed for fulfillment of a specific error tolerance. The traditional
forward Euler schemes is, due to the principle of a fixed number of subincrements, not compet-
itive with the higher order schemes, because too many subincrements are needed in order to
obtain the required accuracy. However, the capability of the forward Euler scheme can be im-
proved by adopting an iterative scheme correcting for a possible yiled surface drift. It is found
that the most advantageous integration scheme for the model is the Runge-Kutta-Dormand-
Prince integration scheme as it is superior in terms of both accuracy and computational costs.
Eventually the SHM-modules ability to function is documented by performing numerous single
element analyses.

8.1  Further improvements

The evaluation of the integration schemes illustrated how the use of finite strain increments
affected the updating of stresses. It turned out that the application of integration schemes
subdividing the originally imposed strain increment led to improved accuracy. The explanation
of this improvement follows directly from the basis on which the elastoplastic stress-strain
relation is derived. Thus, the relation is based on the assumption of infinitesimal increments
in stresses and strains for which reason the path dependency of the elastoplastic tangent
stiffness matrix becomes immaterial.

Both the original and the current versions of the user defined material modules returns
the elastoplastic tangent stiffness evaluated from information at the end of the finite strain
increment. However, to improve the overall rate of convergence of the overall equilibrium
iterations the material or so-called consistent tangent stiffness matrix should be used (Simo
& Taylor 1985, Crisfield 1991). Hence, the user defined material module should return a
material stiffness consistent with the integration scheme used by ABAQUS for calculation of
the non-linear finite strain increment.
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A FLOW CHART FOR THE SHM-MODULES

The implementation of the user defined material module must ensure that ABAQUS recieves
updated stresses, state variables and elastoplatic tangent stiffness that comply with the im-
posed strain increment.

The implementation of the SEM-module is based on the techniques described in Chapter
4 and 5. The description has to a great extent been related to the Single Hardening Model.
However, the algorithms used for detection of intersection of the yield surface, correction for
vield surface drift and the various methods for updating of stresses and hardening parameters
haven been described in a more general manner. As the Single Hardening Model is of the
work hardening type the term maximum plastic work is used in the following for description
of the material hardening.

The code for the SHM-module follows the flow chart in Figure A.1 and A.2. The calculation
strategy is explained in the following.

The initial state of stress, oy, the maximum plastic work, W, and the imposed strain
increment, Ae are used to calculate a stress increment assuming the strain increment to be
entirely elastic (Step 1). The assumed elastic state of stress, o, is used for caleulation of
f'(oe), being the value of the yizld function corresponding to the new state of stress, and
compared with the current yield function f"(1¥,) calculated from the current maximum
plastic work (Step 2). If the difference is less than or equal to zero, f = f'(oe) — f""(Wpo) <0,
then the new state of stress is located inside the yield surface and the imposed strain increment
is indeed truly elastic. Hence, the calculation for the strain increment is completed and the
SHM-module returns with the new state of stress o, and the elastic tangent stiffness, C' (Step
3a).
If on the other hand f = f'{o.) — f"(Wy,o) > 0 then the new stress state is outside
the current yield surface and a portion of the strain increment is plastic. In this case it is
determined whether the initial state of stress, o is located inside or on the current yield
surface. The initial stress state is used for calculation of f'(e) and compared with the
previously calculated f”(Wpo) (Step 3b). If f = f'(eg) — f"(Wpe) = 0, then the initial stress
state is located on the yield surface and the elastic loading ratio, e is equal to zero (Step 4a).

If f = f'loo) — f"(Wpp) < 0 then the stress state is initially located inside the yield
surface (Step 3b) and it it necessary to determine the elastic portion of the strain increment,
expressed by the elastic loading ratio o (Step 4b). Having determined the elastic loading
ratio the stress state located on the yield surface, o, and the remaining portion of the total
strain increment are determined (Step 5) and used to update the stresses and the maximum
plastic work (Step 6) by one of the three implemented integration schemes. 1: Forward Buler
scheme with subincrementation, 2: Modified Euler scheme with error control or 3: Runge-
Kutta-Dormand-Prince scheme with error control.

The updated stresses and maximum plastic work, &; and W, ;, are used to calculate updated
values for f'(o;) and f"(W,;) (Step 7). If the consistency condition is fulfilled to some close
tolerance, |f'(e) — f"(W;)| < e, the SHM-module returns with the current updated stresses,
o, hardening parameter, Wy ; and elastoplastic tangent stiffness, C® (Step 8a). Otherwise
the newly updated stresses and hardnig parameters must be corrected for yield surface drift
and the SHM-module finally returns with corrected stresses, o, hardening parameter, W,
and elasteoplastic tangent stiffness, C (Step 8b).
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Given: g, W00
6] Calculation of elastic stress
increment o,
Continued
@ Check for violation of the consistency
condition, i.c. calculate yield criterion, Update stresses and hardning parameters using:
f’(ac)—f”(W','G)
(6) 1: Forward Euler scheme with subincrementation.
2: Modified Euler scheme with error control.
3: Runge-Kutta-Dormand-Prince scheme with error control
Plo)-(W_ )< 0
| X
: Check if updated stress state
fulfills the consistency condition.
0]
vield
Return with updated gﬁ;%iitef?;x?f;qwa;ue of yiel
(3a) stresses, o, and elastic No o 2 i i
stiffness C.
No———
|
Determine elastic
4 o
(4a) a=0 (4b) e——— I
l——Yes
Correct for yield surface drift so:
i Return with current updated IP(G'-}—P(WP-'~)| mE
! stresses, hardning parameter .
Calculate stress state at crossing of | (8a) and elastoplastic stiffness: (8b) :f'etdmfl with corrtect.ed ;tr;ass‘ltZS.
yield surface and remaining strain o, ’w»i’ Cq’(“.swp_g) ar -nhlgtgi;ffsarfme cer and elasto-
(5) increment. for elasto-plastic loading: ‘ Plﬂﬁw C ¢ W
G, = o, + 0o, O Wi m(Q.- p,u)
Ae = (1-0)Ae
Contintia Figure A.2: Flow chart for the SHM-module.
Figure A.1: Flow chart for the SHM-module.
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B SOURCE CODE FOR THE 2D SHM-MODULE

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE, SSE, SPD, SCD,
1RPL,DDSDDT, DRPLDE, DRPLDT,

2STRAN,DSTRAN, TIME, DTIME, TEMP,DTEMP , PREDEF , DPRED , CMNAME,,
3NDI ,NSHR,NTENS,NSTATV,PROPS, NPROPS , COORDS , DROT , PNEWDT,
4CELENT,DFGRDO,DFGRD1 ,NOEL , NPT, LAYER ,KSPT,KSTEP,KINC)

IMPLICIT NONE

INTEGER NPROPS,NSTATV,KSTEP,KINC,NOEL,NPT,NTENS,NDI,NSHR,
1LAYER,KSPT

CEARACTER*8 CMNAME

REAL*8 STRESS(NTENS),STATEV(NSTATV) ,DDSDDE(NTENS,NTENS),
18SE, SPD, SCD, RPL, DDSDDT (NTENS) , DRPLDE (NTENS) ,PRPLDT,

2STRAN (NTENS) ,DSTRAN (NTENS) , TIME(2) ,DTIME, TEMP ,DTEMP,

3PREDEF ,DPRED, PROPS (NPROPS) , COORDS (3) ,DROT(3,3) ,PNEWDT, CELENT,
4DFGRDO(3,3) ,DFGRD1(3,3)

The following predefined ABAQUS variables are used
i: dinput o: output dio: din- and output

DDSDDE: Stiffness matrix (o)
| DSTRAN: Total strain increment (i)
| KING: Load increment (i)
KSTEP: Load step (i)
NPROPS: Number of user defined properties (i)
NTENS: Number of stress and strain components (i)
NDI: Number of directional stress and strain components (i)
i KOEL: Element (i)
| NPT: Integration point (i)
‘ NSHR: Number of shear stress and strain components (i)
e NSTATV: Number of state dependent variables (i)
PROPS: Material and/or user defined properties (i)

(1) Parameter a of failure criterion

(2) Parameter m of failure criterion

(3) Parameter eta of failure criterion

(4) Parameter K or M for variation of Youngs Modulus
(5) Parameter n or lambda for variation of Youngs Modulus
(6) Parameter nu, Poisson’s ratio

(7) Parameter psi2 of plastic potential functiom

(8) Parameter mu of plastic potential function

(8) Parameter C of work hardening law

(10) Parameter p of work hardening law

(11) Parameter h of yield function

(12) Parameter alpha of yield function

(13) Parameter, pa, athmosperic pressure

(14) User defined integration scheme

(14.1) Modified Euler (ME)

(14.2) Runge-XKutta-Dormand-Prince (RKDP)

(14.3) Forward Enler scheme (FE)

(15) Integration scheme parameter

(15.1) Stress tolerance for ME and RKDP

o000 o00O0000000000a000 0000000000000
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c (15.2) Number of subdivisions for FE ¢ T Counter for loop over stress and strain arrays
c (18) Variation of Youngs modulus cM Number of subdivisions in forward Euler integration scheme
c (18.1) Relation given by Janbu C METHOD: Selector for integration scheme
C (16.2) Relation given by Lade and Nelson ¢ Modified Euler with error comtrol
c (17) Activate correction for yield surface drift C 2) Runge-Kutta-Dormand-Prince with error control
¢ (17.0) No c 3) Forward Euler with or without subincrements
¢ (17.1) Yes C CE: Elastic constitutive matrix
¢ (18) Tolerance for yield surface drift | ¢ CP: Plastic constitutive matrix
c (19) Maximum number of iteratioms | C DF: Derivative of yield function
c (20) Initial slope of softening curve | C DFDW: Derivative of hardening function
C STATEV: Initial and final state dependent variables (io) C DG: Derivative of plastic potential function
C (1) Current value of yield function ¢ DINVAR: Derivative of stress invariants
i (2) Current value of hardening/softening function C DUMMY: Dummy variable
o (3) Current value of plastic work C DESTRESS: Elastic stress increment
C (4) Failure flag C DEPS: Strain increment ) ]
(4] (5) Parameter for softening function, A C EF: Value of yield function based on the.elasﬁlc trial stress
c (6) Parameter for softening function, B C EINVAR: Stress invariants based on the elastl-.c trial stress
c (7} Stress level relative to the failure function C ES: Stress level based on the elastic trial stress
C STRESS: Initial and final state of stress (io) | ¢ ESTRESS: Elastic trial stress )
| C FTOL: Tolerance for yield surface drift
| C G: Value of plastic potential surface
C Function declarations ] C INVAR: Stress invariants
REAL*8 CHECKSTRESS,FAILURE,NORM,YIELD,DHARD,DSOFT,POT | ¢ NSTRESS: New stress state )
C CHECKSTRESS: Check for negative or zero principal stresses ‘ ¢ RATID: Ratio of strain increment causing purely elastic deformations
| C DHARD: Calculate erivative of hardening function 1 c or for reduction of elastic trial stress ) )
I C DSOFT: Calculate derivative of softening function 1 C REDUCTION: Number of corrections to size of substeps in the integration schemes
C FAILURE: Calculate stress level relative to failure | ¢ RDEPS: Elastoplastic strain increment (RDEPS=DEPS for RATIO=1}
C NORM: Calculate vector norm j C STOL: Stress tolerance used with the modified Euler and the
C POT: Calculate value of plastic peotential function , o] Runge-Kutta-Dormand-Prince integration schemes
C YIELD: Calculate value of yield function C TEMPSTRESS: Temporary stres vector used for establishment of the

material stiffness matrix .
TEMPSTATEV: Temporary state dependent variable vector used for establishment

C Definition of variables defined within the subroutine ¢ of the material stiffness matrix
_ INTEGER ACTIVEDRIFT,EP,I,IMAX,INTSTEP,ITRD,ITRI,J,M,METHOD,
F I 1REDUCTION I
; : REAL*B CE(4,4),CP(4,4) ,DESTRESS(4) , ¢ Initialise user variables
1DEPS(4) ,DF (4) ,DFDW,DG(4) ,DINVAR(4,3) , DUMMY, METHOD=IDNINT (PROPS (14))
| 2EF ,EINVAR(4) ,ES,ESTRESS(4) ,FTOL,G, INVAR(4) , ISTATEV(7) ,NSTRESS(4) : IF (METHOD.LT.3) THEN
| 3RATIO, STOL, TEMPSTRESS (4) , TEMPSTATEV (7) F STOL=PROPS (15)
i ELSE
i M=IDNINT(PROPS(15))
i END IF
C ACTIVEDRIFT: Flag for correction for yield surface drift ! ACTIVEDRIFT=IDNINT (PROPS(17))
; (0) Dif | FTOL=FROPS(18)
t (1) On | TMAX=IDNINT (PROPS(19))
EP: Flag for elastic or elastoplastic loading C Change sign on stresses and strains

(0) Elastic
(1) Elastoplastic

DO I=1,4
NSTRESS(I)=-STRESS(T)

QOO OoOaanoaaa

!

NI Counter for loop over stress and strain arrays ! DEPS(I)=-DSTRAN{I)

IMAX: Maximum number of iterations allowed for correction of yield i' END DD

surface drift and initial intersection of the yield surface I C Check for plane stress condition

INTSTEP: Number of substep used in integration scheme I IF (NDI.EQ.2) THEN ,

ITRD: Iterations performed for correction for yield surface drift i WRITE (¥, %) 7 sk srkkkrirnnsrers ABAQUS RUN IS TERMINATED’,

ITRI: Iterations performed for determination of yield surface intersection i 1 sekkoksokk ok kR ok kR )
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WRITE(*,*)’A plane stress condition is not possible’ DO I=1,4
STOP DEPS (I)=(1-RATIO)*DEPS(I)
L) END DO
C Add true cohesion (shift co-ordinat system) DO I=1,NSTATV
IF (PROPS(1).GT.0) THEN ISTATEV(I1)=STATEV(I)
DO I=1,3 END DO
NSTRESS (1)=NSTRESS (I)+PROPS (1) *PROPS (13) INTSTEP=0
END D0 REDUCTION=0
END IF IF (METHOD.EQ.1) THEN
CALL INVARIANTS(INVAR,NSTRESS) CALL MEULER(NSTRESS,STATEV,ISTATEV,DEPS,PROPS,STOL,INTSTEP,
C Check for zero strain increment. If zero return with elastic stiffness 1 REDUCTION,NSTATV,NPROPS)
IF (NORM(DEPS,4,1.D0).EQ.0) THEN ELSE IF (METHOD.EQ.2) THEN
CALL ELASTIC(DDSDDE,INVAR,PROPS,NPROPS) CALL RKDP (NSTRESS,STATEV,ISTATEV,DEPS,PROPS,STOL, INTSTEP,
RETURN 1 REDUCTION,NSTATV, NPROPS)
END IF ELSE IF (METHOD.EQ.3) THEN
C Check whether state dependent variables have been initialised CALL FEULER(NSTRESS,STATEV,DEPS,PROPS M, NSTATV,NPROPS)
IF (STATEV(2).EQ.0) THEN END IF
CALL INITIALISE(STATEV,INVAR,PROPS,NSTATV,NPROPS) IF (ACTIVEDRIFT.EQ.1) THEN ‘
e C The finite incremental form will generally cause yield surface drift and
CALL ELASTIC(DDSDDE,TNVAR,PROPS,NPROPS) ¢ compatibility iterations are required
C Perform elastic shooting TF ((ABS(STATEV(1)-STATEV(2))).GT.FTOL) THEN
DO T=1,4 CALL TNVARIANTS(INVAR,NSTRESS)
DESTRESS (I)=0 CALL ELASTIC(CE,INVAR,PROPS,NPROPS)
DO J=1,4 ITRD=0
DESTRESS (I)=DESTRESS (I)+DDSDDE (I, J) *DEPS(J) CALL DRIFT(NSTRESS,STATEV,CE,PROPS,FTOL,IMAX,TITRD,
END DO 1 NSTATV,NPROPS)
e IF (ITRD.GE.IMAX) CALL DUMP(STATEV,NSTATV,2,STRESS,NOEL,
C Check that all principal stresses are positive 1 NPT,KSTEP,KINC)
RATI0=CHECKSTRESS (NSTRESS,DESTRESS) END IF
DO I=1,4 END IF
ESTRESS (I)=NSTRESS (I)+RATIO*DESTRESS (I) :
END DO ¢ Calculate elastoplastic constitutive matrix
CALL INVARIANTS(EINVAR,ESTRESS)
ES=FAILURE (EINVAR,PROPS, NPROPS) J CALL INVARIANTS(INVAR,NSTRESS)
EF=YIELD(EINVAR,PROPS,ES, NPROPS) 1 CALL DINVARIANTS (DINVAR,NSTRESS)
IF ((EF-STATEV(2)).LT.-FTOL) THEN | G=POT (INVAR,PROPS,NPROPS)
Do I=1,4 l CALL DYIELD(DF,INVAR,DINVAR,PROPS,STATEV(7),STATEV(1) ,NPROPS)
NSTRESS (I)=ESTRESS(I) } CALL DPOT(DG,INVAR,DINVAR,PROPS,NPROPS)
END DO i IF (STATEV(4).EQ.0) THEN
STATEV (1)=EF | DFDW=DHARD (STATEV (3) ,PROPS,NPROPS)
STATEV(7)=ES | ELSE
EP=0 | DFDW=DSOFT(STATEV (5) ,STATEV(6) ,STATEV(3) ,PROPS(13))
ELSE | END IF
€ Check if the yield surface is crossed during loading |
i CALL ELASTIC(CE,INVAR,PROPS,NPROPS)
ITRI=0 | CALL PLASTIC(CP,DUMMY,CE,DF,DG,G,DFDW,PROPS(8),DEPS)
RATI0=0.D0 |
IF ((EF-STATEV(1)).GT.FTOL) THEN | DO I=1,4
CALL INTERSECTION(NSTRESS,RATI0,STATEV,DESTRESS, ‘ Do J=1,4
1 EF,PROPS,FTOL, IMAX, ITRT,NSTATV,NPROPS) DDSDDE(T,J)=CE(I,J)~-CP(I,J)
IF (ITRI.GE.IMAX) CALL DUMP(STATEV,NSTATV,1,NSTRESS,NOEL, END DO
1 NPT,KSTEP,KINC) END DD
END IF | END IF
JAKOBSEN
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60 APPLICATION OF THE SINGLE HARDENING MODEL
C Subtract an eventual added true cohesion (return to original co-ordinat system)
IF (PROPS(1}.GT.0) THEN
DO I=1,3
NSTRESS (1) =NSTRESS (I)-PROPS (1) *PROPS(13)
END DO
END IF
C Change sign on stresses and strains
D0 I=1,4
STRESS (I)=-NSTRESS (I)
END DO
END

C SUBROUTINE INVARIANTS(inv,s)

C Calculate stress invariants

Cc

C INPUT

C s: Stresses [s11 822 s33 s512]

c

C OUTPUT

C dinv: Stress invariants [I1 I2 I3 J2]
c

SUBROUTINE INVARIANTS(inv,s)

Define primary variables
IMPLICIT NONE
REAL*8 s{4),inv(4)
inv(1)=s(1)+s{2)+s(3)
inv(2)=s(4) **2.D0-(s(1)*s(2)+5(2) *s(3)+s (1) *s(3))
inv(3)=s(1)*s(2)*s(3)~s(3)*s(4)**2.D0
inv(4)=((s(1)-s(2))**2.D0+(s(2)-5(3) ) **2.D0+(s(3) -5 (1) ) #*2.D0) /6
1+5(4)*x2,D0
END

(>}

C SUBROUTINE DINVARIANTS(dinv,s)

C Calculate derivatives of stress invariants with respect to stresses.
c

C INPUT

Cc s: Stresses [s11 s22 533 s12]

C

C CUTPUT

C dinv: Derivative of stress invariants [dT1 dI2 dI3]

C

SUBROUTINE DINVARIANTS(dinv,s)
Define primary variables
IMPLICIT NONE
REAL*8 dinv(4,3),s(4)
C Calculate derivative of the first stress invariant

(o]
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dinv(1,1)=1.D0
dinv(2,1)=1.D0
dinv(3,1)=1.D0
dinv(4,1)=0.D0

€ Calculate derivative of the second stress invariant
dinv(1,2)=-(s(2)+s(3))
dinv(2,2)=-(s(3)+s(1))
dinv(3,2)=-(s(1)+s(2))
dinv(4,2)=2.D0xs(4)

C Calculate derivative of the third stress invariant
dinv(1,3)=s(2)*s(3)
dinv(2,3)=5(3)*s(1)
dinv(3,3)=s(1)*s(2)-(s(4)**2.D0)
dinv(4,3)=-2.D0*s(3)*s(4)

END
C SUBROUTINE INITIALISE(svar,invar,mat,nsv,np)
C Initialise state dependent variables. The material point is initially located
C on a yield surface, wherefore the value of the stress term and hardening term
C in the yield criterion are equal
c
C INPUT
C dinvar: Stress invariants
C mat: Material properties
C ap: Number of user defined properties
C nsv: Number of state dependent variables
c
C OUTPUT
C svar: State dependent variables corresponding to the initial stress state
4] (1) value of yield function
c (2) Value of hardening function
c (3) Plastic work
c (7) Stress level relative to failure
c

SUBROUTINE INITIALISE(svar,inv,mat,nsv,np)
C Define primary variables
IMPLICIT NONE
INTEGER nsv,np
REAL#8 svar(nsv),inv(4),mat(np)
C Define secondary variables
REAL*8 psil,rho,d
C Function declarations
REAL*8 FAILURE,YIELD
C Call failure function for initial value of stress level
svar(7)=FAILURE(inv,mat,np)
C Call yield function for initial value
svar (1)=YIELD(inv,mat,svar(7) ,np)
svar (2)=svar(1)
C Calculate dependent material parameters for determination of equivalent plastic
C work
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62 APPLICATION OF THE SINGLE HARDENING MODEL

Psil=0.00155D0*mat (2)**(~1.27D0)
tho=mat (10)/mat (11)
d=mat (9)/(27*psil+3)**rho

C Calculate equivalent plastic work
svar(3)=mat (13) *d*svar (2) #*rho
END

¢ FUNCTION HARD (wp,mat,np)

C Calculate the value of the hardening function for the current state of stress
C (Lade 1984, Lade & Kim 1988).

C

C INPUT

C wp: Plastic work

C mat(2): Curvature parameter for failure criteria

C mat(9): Coefficient for determination of plastic work

C mat(10):Exponent for determination of plastic work

C mat(12):Hardening parameter

C mat(13):Athmospheric pressure

¢ np: Number of user defined properties

c

C OUTPUT

C HARD: Value of the hardening function

c

C REFERENCES

C P.V. Lade (1984) "Failure criterion for friction materials", In Mechanics of
C Engineering Materials, C.S. Desai & R.H. Gallagher (eds), Wiley.

¢ M.K. Kim & P.V. Lade (1988) "Single hardening constitutive model for frictional
&) materials IT. Yield criterion and plastic work contours", Computers and

4 Geotechnics, (6), pp. 13-29. ¢

FUNCTION HARD(wp,mat,np)

C Define primary variables
IMPLICIT NONE
INTEGER np
REAL*8 wp,mat (np) ,HARD

C Define secondary variables
REAL*8 psii,rho,d

C Calculate dependent parameters
psil=0.00156D0*mat (2)**(~1.727D0)
Tho=mat (10) /mat (11)
d=mat (9) /(27 .D0*psi1+3.D0) **rho

C Calculate value of hardening function
HARD=(1.DO/d)**(I.DO/rhc)*(up/mat(ls))**(i.DO/rho)
END
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¢ FUNCTION DHARD(wp,mat,np) . . .
¢ Calculate the derivative of the hardening function with respect te plastic work

C at the current state of stress

C

¢ INPUT

C  wp: Plastic work .

¢ mat(2): Curvature parameter for failure criteria
¢ mat(9): Coefficient for determination of plastic work
¢ mat(10):Exponent for determination of plastic work
¢ mat(12):Hardening parameter

¢ mat(13):Athmospheric pressure

C mnp: Number of user defined properties

c

C OUTPUT .

C DHARD: Derivative of the hardening function

c

C REFERENCES . ) .
¢ P.V. Lade (1984) "Failure criterion for friction materials", In Mechanics of

c Engineering Materials, C.S. Desai & R.H. Gallagher (eds), Wiley. ot
¢ M.K. Kim & P.V. Lade (1988) "Single hardening constitutive model for frictiona
c materials II. Yield criterion and plastic work contours", Computers and

C Geotechnics, (6), pp. 13-29. ¢C

FUNCTION DHARD(wp,mat,np)

C Define primary variables
IMPLICIT NONE
INTEGER np
REAL*8 wp,mat (np) ,DHARD

C Define secondary variables
REAL*8 psil,rho,d

C Calcunlate dependent parameters
psi1=0.00155D0*mat (2)#* (~1.27D0)
rho=mat (10) /mat (11)
d=mat (9) /(27 .D0*psil+3.D0) **rho

¢ Calculate derivative of the hardening function
DHARD=(1.D0/ (rhox(d*mat (13))#*(1.D0/rho) ) ) *wp**(1.D0/rho-1)

END

C FUNCTION SOFT(a,b,wp,pa)
C Calculate the vz;lue of the softening function for the current state of stress

¢ after failure (Lade & Kim 1988).

c
C INPUT )
c a: Coefficient for softening function
C b: Exponent for softening function
¢ wp: Plastic work
¢ pa: Athmospheric pressure
C
C OUTPUT
JAKOBSEN
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C SOFT: Value of the softening function
c
¢ REFERENCES
¢ M.K. Kim & P.V. Lade (1988) "si
. ingle hardenin ituti i
¢ DRCERIARE T, THEES Eutp g constitutive model for frictional

TaiEs
c Geotechnics, (6), pp. 13-29. ¢ plastic work contours", Computers and

FUNCTION SOFT(a,b,wp,pa)
¢ Define primary variables
IMPLICIT NONE
REAL*8 a,b,wp,pa,SOFT
C Calculate value of softening function
SOFT=a+DEXP (~b* (wp/pa))
END

¢ FUNCTION DSOFT(a,b,wp,pa)

C Calculate the derivative of the s i
oftenin, i
¢ (Lade & Kim 1988) . g function at the current state of stress

C

¢ INPUT

c a: Coefficient for softening function

¢ b: Exponent for softening function

¢ wp: Plastic work

¢ pa: Athnospheric pressure

c

¢ OUTPUT

¢ DSOFT: Value of the deri i i

g vative of the softening function

C REFERENCES

¢ M.K. Kim & P.V. i

g Mterial:aIdIe (;98183 "Single hardening constitutive model for frictional
» Yield criterion and pl i

. dhotechmics, 1), g5 iogn & plastic work contours", Computers and

FUNCTION DSOFT(a,b,wp,pa)
C Define primary variables
IMPLICIT NONE
REAL*8 a,b,wp,pa,DSOFT
¢ Calculate value of the derivative
of the sof i i
DSOFT=-a*b/pa*DEXP (-b* (wp/pa)) AREIR ThaER
END

¢ FUNCTION FAILURE(inv,mat,np)
¢ Calculate the stress level relative to the failur i
¢ state of stress (Lade 1984). SR
C The stress level equals unity and =z i

€ ero at
b isteeieasion failure and at the hydrostatic axis,
C
C INPUT
¢ inv: Stress invariants [T1 I2 I3 J2 53]

terion for the current
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mat(2): Curvature parameter for failure criteria

P.V. Lade (1984) "Failure criterion for friction materials", In Mechanics of
Engineering Materials, C.S. Desai & R.H. Gallagher (eds), Wiley.

C

¢ mat(3): Maximum function value of failure criterion
¢ mat(13): Athmospheric pressure

C np: Number of user defined properties
c

Cc OUTPUT

c s Stress level relative to failure
H

¢ REFERENCES

c

C

C

FUNCTION FATILURE(inv,mat,n)
¢ Define primary variables
IMPLICIT NONE
INTEGER n
REAL*8 inv(4),mat(n),FAILURE
C Calculate stress level relative to failure
FATLURE=( (inv(1)*#3.D0/inv(3)-27.D0)=(inv(1) /mat (13))*+mat (2))
1/mat (3)
C The stress level must lie within the limits O-1
IF (FAILURE.GT.1) THEN
FAILURE=1.D0
ELSE IF (FAILURE.LT.0) THEN
FAILURE=0.DO
END IF
END

C FUNCTION YIELD(inv,mat,s)
¢ Calculate the value of the yield function for the current state of stress

C (Lade 1984, Lade & Kim 1988).
c

a
=
=
o
5

inv: Stress invariants [I1 I2 I3 J2]

mat(2): Curvature parameter for failure criteria
mat(3): Maximum function value of failure criterion
mat(11) :Curvature of the yield criterion

mat (12) :Hardening parameter

mat (13) : Athmospheric pressure

Stress level relative to failure

Number of user defined properties

s:
np:

QUTPUT
YIELD: Value of the yield functiomn

REFERENCES
P.V. Lade (1984) "Failure criterion for friction materials", In Mechanics of

Engineering Materials, C.S. Desai & R.H. Gallagher (eds), Wiley.
M.K. Kim & P.V. Lade (1988} "Single hardening constitutive model for frictional
materials II. Yield criterion and plastic work contours", Computers and

C
C
c
c
C
C
C
C
c
c
C
C
c
c
C
C
C
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[+ Geotechnics, (6), pp. 13-28. ¢

FUNCTION YIELD(inv,mat,s,np)
C Define primary variables
IMPLICIT NONE
INTEGER np
REAL*8 inv(4),s,mat(np),YIELD
C Define secondary variables
REAL*8 g,psil
C Calculate dependent parameter
q=mat (12) *s/(1.D0~(1.D0-mat (12)) *s)
psil=0.00155D0*mat (2) #*(-1.27D0)
C Calculate value of yield function
YIELD=(psil*inv(1)*%3.D0/inv(3)-inv(1)#*2.D0/inv(2))* (inv(1)/
1mat (13))*#mat (11} *DEXP(q)
END

C SUBROUTINE DYIELD(df,inv,dinv,mat,s,f,np)

C Calculate the derivative of the yield function at the current state of stress.
C (Lade 1984, Lade & Kim 1988).

c

C INPUT

inv: Stress invariants [I1 I2 I3 J2]

dinv: Derivatives of stress invariants [dI1 dI2 dI3]
mat(2): Curvature parameter for failure criteria
mat(3): Maximum function value of failure criterion
mat(11) :Curvature of the yield criterion

mat (12) : Hardening parameter

mat(13) : Athmospheric pressure

8: Stress level relative to failure

£ Value of yield function

op: Number of user defined properties

QUTPUT

a
=

Derivative of the yield function

REFERENCES
P.V. lade (1984) "Failure criteriom for friction materials", In Mechanics of
Engineering Materials, C.S. Desai & R.H. Gallagher (eds), Wiley.
M.K. Kim & P.V. Lade (1988) "Single hardening constitutive model for frictional
materials IT. Yield criterion and plastic work contours"”, Computers and
Geotechnics, (6), pp. 13-29. C

o000 oo0a000a000aaaan

SUBROUTINE DYIELD(df,inv,dinv,mat,s,f,np)
C Define primary variables

IMPLICIT NONE

INTEGER np

REAL*8 inv(4),dinv(4,3),mat(np),s,f,df(4)
C Define secondary variables

INTEGER i
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REAL*8 q,psil,dqdIl,dqdI3,dfdI1,dfdI2,dfdI3

C Calculate dependent parameters
gq=mat(12)*s/(1.D0-(1.D0-mat (12)) *s)
psii=0.00155D0*mat (2) **(~1.27DC)

C Derivative of the exponent g with respect to the first stress invariant
dqul:mat(lZ)/(mat(S}*(l.DO—(i.DO—mat(lZ))*s)**E.DO)*(mat(Z)ts*
1mat (3)/inv(1)+(3.D0*inv (1) *#+2.D0/inv(3))*(inv (1) /mat(13))**mat (2))

C Derivative of the exponent g with respect to the third stress invariant
dqd13=-mat(12)/(mat(S)*(l.DO'(i.DOfmat(lZ))*s)*#2.D0)*inv(1)*t3.DO
1/inv(3) **2,D0*(inv(1}/mat (13))**mat (2)

C Derivative of the yield function with respect to the first stress invariant
dfdI1=((3.D0+mat (11))/inv(1)+dqdI1)*f+inv(1}/inv(2)*(inv(1)/
imat (13))#*mat (11)*DEXP(q)

C Derivative of the yield function with respect to the second stress invariant
AfdT2=inv (1) **2.D0/inv (2)**2.D0*(inv(1)/mat (13))**mat (11)*DEXF (q)

C Derivative of the yield function with respect to the third stress invariant
dfdI3=f+dqdI3-psil*inv(1)**3.D0/inv(3)**2.D0* (inv(1) /mat (13))
1#**mat (11) «DEXP(q)

C The derivative of the yield function with respect to stress is obtained by use

C of the chain rule
DO i=1,4

df (i)=dfdIi*dinv(i,1)+dfdI2*dinv(i,2)+dfdT3*dinv(i,3)
END DO
END

C SUBRDUTINE ELASTIC(C,inv,mat,np)

C Calculate the isotropic elastic stiffness matrix for the current state of stress

¢ (Janmbu 1963, Lade & Nelson 1988).

c

C INPUT

inv: Stress invariants [I1 I2 I3 J2]

mat(4): Curvature parameter for variation of Youngs modulus

mat(5): Coefficient for variation of youngs modulus

mat(6): Poissons ratio

mat (13) : Athmosperic pressure: mat(13)

mat (16) : User parameter determining the variation of Youngs moduls
(1) Variation given by Janbu (1963)
(2) Variation given by Lade & Nelson (1987)

np: Number of user definesd properties
DUTPUT

C: Isotropic elastic stiffness matrix
REFERENCES

Janbu, N. (1963) "Soil compressibility as determined by odeometer and triaxial
tests" in Proceedings of Zuropean Conference on Soil Mechanics and
Foundation Engineering, Vol. 1, Wiesbaden, pp. 19-25.

Lade, P.V. & R.B. Nelson (1987) "Modelling the elastic behaviour of granular
materials",International Journal for Numerical and Analytical Methods in
Geomechanics, 11, pp. 521-542.

OO0 aaaa
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SUBROUTINE ELASTIC(C, inv,mat,np)
C Define primary variables
IMPLICIT NONE
INTEGER mp
REAL*8 inv(4),mat(np),C(4,4)
C Define secondary variables
INTEGER 1i,]j
REAL*8 E,R,lambda,mu,ps(3)
C Calculate Young’s modulus at current state of stress
IF (mat(16).EQ.1) THEN
CALL PRINCE(ps,inv)
E=mat (4)*mat (13)* (ps (3) /mat (13) ) **mat (5)
ELSE
R=6.D0*(1.D0+mat (6))/(1.D0-2.D0%mat (6))
E=mat (4) ¥mat (13)*((inv(1) /mat (13))*+2.D0+R*inv (4) /mat (13) #*
1 2.D0)**mat(5)
END IF
C Calculate Lames constants
lambda=E/(3.D0*(1.D0~2.D0%mat (6)))
mu=E/(2.D0*(1.D0+mat (6)))
C Assemble elastic stiffness matrix
DO i=1,4
Do j=1,4
IF (i.EQ.j) THEN
IF (i.LE.3) THEN
C(i,i)=lambda+2.D0*mu
ELSE
C(i,i)=mu
END IF
ELSE IF ((i.LE.3).AND.(j.LE.3)) THEN
C(i,j)=lambda
ELSE
€(i,j)=0.00
END IF
END DO
END DO
END

C SUBROUTINE PRINCE(ps,inv)
C Calculate principal stresses

c

C INPUT

C inv: Stress invariants [I1 I2 I3 J2]
C

C OUTPUT

C ps: Principal stresses

C

SUBROUTINE PRINCE(ps,inv)
C Define primary variables
IMPLICIT NONE

JAKOBSEN
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REAL*8 inv(4),ps(3)
C Define secondary variables
REAL#*8 PI,y(3),z(2),alpha
INTEGER j
PI=4%DATAN(1.0D0)
z(1)=-(inv(1)**2.D0)/3.D0-inv(2)
z(2)=-2.D0* (inv(1)**3.D0) /27 .D0-inv (1) *#inv(2) /3.D0-inv(3)
IF (z(1).GE.0) THEN
D0 j=1,3
y(j)=0.D0
END DD
ELSE
alpha=(-z(2)/2.D0)/{(DSQRT((-z(1)/3.D0)**3.D0))
IF(alpha.GT.1.D0) alpha=1.DO
IF(alpha.LT.-1.D0) alpha=-1.D0
alpha=DACOS(alpha)
y(1)=2.D0*(DSQRT(-z (1) /3.D0) }*DCOS (alpha/3.D0)
y(2)=-2.D0*(DSQRT (-z(1)/3.D0) ) *DCOS ( (alpha+PI)/3.D0)
y(3)=-2.D0*(DSQRT (-z (1) /3.D0)) *DCOS ((alpha-PI)/3.D0)
END IF
ps(1)=y(1)+inv(1)/3.D0
ps(2)=y(2)+inv(1)/3.D0
ps(3)=y(3)+inv(1)/3.D0
END

FUNCTION CHECKSTRESS(s0,dse)

Check for negative or zero principal stresses. If all principal stresses are
greater than zero the elastic trial stress is accepted. Otherwise, perform
backscaling of stresses into the positive octant.

s0: Initial stress state
dse: Elastic stress increment due to elastic shooting

OUTPUT

C

g

c

c

c

C INPUT
[

[

c

c

C minratioRatio of elastic stress increment
c

FUNCTION CHECKSTRESS(sO,dse)
C Define primary variables
IMPLICIT NONE
REAL*8 s0(4),dse(4),CHECKSTRESS
C Define secondary varaibles
INTEGER i
REAL*B se(4),ps(3),pse(3),inv(4),ratio,minpse,minratio
C Calculate principal stresses for initial state of stress
CALL INVARIANTS(inv,s0)
CALL PRINCE(ps,inv)
€ Calculate principal stresses for stress state obtained by elastic shooting
DO i=1,4
se(i)=s0(i)+dse(i)

AGEP R0201 JAKOBSEN
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END DO
CALL INVARIANTS(inv,se)
CALL PRINCE(pse,inv)
C Chec}.s for negative principal stresses
minpse=1
DO i=1,3
EN;FDD(pse(:L) -LT.minpse) minpse=pse(i)
IF (minpse.GT.0) THEN

C Al principal stresses are positi A
i £ A . i s
gitive Exit with minratioc equal to unity
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REAL*8 psil

C Calculate dependent material parameter
psil=0.00165D0*mat (2)**(~1.27D0)

¢ Calculate value of the plastic potential function
POT=(psil*inv(1)**3.D0/inv(3) —inv(1)**2,D0/inv(2)+mat (7)) * (inv(1)
1/mat (13))**mat (8)
END

¢ SUBROUTINE DPOT(dg,inv,dinv,mat,np)

ELS
mE_:inratio=1 C Calculate the derivative of the plastic potemtial function
Sl g INPUT
:;tz?z:f;){éngéggsgééi . c . | c ix.nr: Strtf:ss :.'.nva_ria_nts [11 ;2 ISIJQ 53]
1 Mt petin -AND. (ratio.GT.0)) | ¢ dinv: Derivatives of stress 1nva_F1ants [(?Il e.iI2 dI3]
END DO ! ¢ mat(2): Curvature parameter for fa].lwilre crltez?la ‘ . -
CHECKSTRESS=0.9999+minratio | § g ¢ mat(7): Plastic potential functions 1:}tersect1?n with tI}e hydrostatic axis
END TF ! caleback stresses to the first octant | ¢ mat(8): Curvature parameter for plastic potential functien
END | ¢ mat(13):Athmespheric pressure
| C np: Number of user defined properties
c
| ¢ OUTPUT
C FUNCTION POT(inv,mat,np) { c dg: Derivative of the plastic potential function
C Calculate the value of the plastic potential function f ¢
C stress (Lade ; or the current state of / C REFERENCES
¢ b L I ¢ P.V. Lade (1984) "Failure criterion for friction materials”, In Mechanice of
¢ INPUT ! a Engineering Materials, C.S. Desai k& R.H. Gallagher (eds), Wiley.
g ;Z:égy. (S:tress invariants [I1 I2 I3 J2 53] i ¢ MK Kim_& P.V. Lallde F1988) “S%ngl: han:.hanlilng;cccmstitut:'ur:1 rélodzl ;;r fric(n;nnal
: Curvature parameter for failure criteria E [ materials I. Plastic potential function", Computers and Geotechnics, f
g z:z E;; zl]:‘s,:ic potential functions intersection with the hydrostatic axis i g B HOUEA:
G ure parameter for plastic potential function |
C  mat(13):Athmospheric pressure
g e Huzher of user defined properties i SUBROUTTNE DPOT(dg,inv,dinv,mat,np)
¢ OUTPUT j ¢ Define primary variables
g BQT: Value of the plastic potential function i ENM!;;(I;:;T]];DNE
C REFERENCES | REAL*8 dg(4),inv(4),dinv(4,3) ,mat(np)
s 2 C Define secondary variables
o, e (1080 au citrin o sriceon seriair, Iy i o | L
C M.X. Kin & P.V. Lade (195‘;5)'"51;;3111& R.H. Gallagher (eds), Wiley. , REAL#8 psil,dgdll,dgdl2,dgdI3
¢ HALEFNTE T Pagiie patentiaf :“:d;l?lening constitutive model for frictional i C Calculate dependent material parameter
C PP. 307-324. ion", Computers and Geotechnics, (§), psii=0.00155D0+mat(2) wx(~1.27D0)
G C Derivative of the potential function with respect to the first stress invariant
dngl=(p5i1*(mat(8)+3.DO)*inv(l)**?.DO/in\r(S)—(mat(8}+2.DO)*imr(i)
| 1/inv(2)+mat (8)+mat (7) /inv (1)) (inv(1)/mat (13)) x+mat (&)
FUNCTION POT (inv,mat,np) ! C Derivative of the potential function with respect to the second stress invariant
C Define primary variables ‘ dgd.I2=inv(1)**2.DD/inv(z)**2.DO*(inv(i)/mat(13))*mat(8)
IMPLICIT NONE ¢ Derivative of the potential function with respect to the third stress invariant
INTEGER np dgd13=—psi1*'1nv(i)**3.D0/inv(3)**2.1)0*(inv(i)/mat(la))**mat(ﬂ)
REAL*B POT,inv(4) ,mat(np) C The derivative of the potential function with respect to stress is obtained by
C Define secondary variables ¢ use of the chain rule
DD i=1,4
JAKOBSEN
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dg (4)=dgdT1*dinv (i o
g 0 dnv(d,1)+dgdI2=dinv (i,2) +dgdI3+dinv (i,3)

END

C SUBROUTINE PLASTIC(Cp,dl,Ce,df.dg,g,dfw,mu deps)
,

C Calculate the plastic stiffness matrix and the plastic proportionality factor

c

C INPUT

C Ce: Elastic constitutive matrix

g gf: ger?vat?ve of yield function with respect to stresses

; g. erivative of Fhe plastic potential function with respect to stresses
g: Value of plastic potential function

C ¥ i i

¢ df? Der1vat1v§ of har@enlng or softening law with respect to plastic work
mu: Exponent in plastic potential function

C deps: Strain increment

¢

C OUTPUT

C Cp: Plastic constitutive matrix

c dl: Plastic proportionality factor

c

SUBROUTINE PLASTIC(Cp,dl,Ce,df,dg,g,dfw,mu deps)
C Define primary variables ’
IMPLICIT NGNE
REAL*8 Cp(4,4),d1,Ce(4,4),df
C Define secondary variabies : (4),dg(4),g’dfu'mu’dep5(4)
INTEGER 1i,j
REAL*8 H,Cedg(4),Cedf(4),df
C Calculate hardeiing modulu; Pede, AfGedeps. Cedeps(4)
H=dfwxmu*g
C Calculate tensor product (Ce)(dg)
DO i=1,4
Cedg(i)=0.D0
END DO
DO i=1,4
DO j=1,4
Cedg(i)=Cedg(i)+Ce(i,j)*dg(j)
END DO
END DO
€ Calculate scalar (df)(Ce)(dg)
dfCedg=0.D0
DO i=1,4
dfCedg=dfCedg+Cedg(i)*df (i)
END DO
C Calculate tensor product (Ce)(df)
DO i=1,4
Cedf (1)=0.D0
END DO
DO i=1,4
D0 j=1,4
Cedf (1)=Cedf (i)+Ce (i, j)*df (j)

JAKOBSEN
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END DO
END DO
C Assemble the plastic constitutive matrix
DO i=1,4
D0 j=1,4
Cp(i,j)=Cedg(i)*Cedf (j)/(dfCedg+H)
END DO
END DO
¢ Calculate tensor product (Ce)(deps)
DO i=1,4
Cedeps(i)=0.D0
END DO
D0 i=1,4
D0 j=1,4
Cedeps (i)=Cedeps (i)+Ce (i, j)*deps (j)
END DO
END DO
¢ Calculate scalar (df)(Ce)(deps)
dfCedeps=0.D0
DO i=1,4
dfCedeps=dfCedeps+Cedeps (i) *df (i)
END DO
¢ Calculate plastic proportionality factor
d1=DMAX1(0.DO,dfCedeps/ (dfCedg+H))
END

C SUBROUTINE INTERSECTIDN(S,alpha,svar,dse,fe,mat,tol,im,i,np, nsv)
C Determine ratio of strain increment causing purely elastic deformations,
¢ whenever the current yield surface is crossed during loading (Sloan 1987,
C Chen & Mizuno 1990, Jakobsen 2001).
c
C INPUT
svar: State dependent variables
(1) Current value of yield function
(2) Current value of hardening or softeming function
(7) Stress level relative to failure
Initial stress state

2]

dse: Elastic stress increment due to elastic shooting
fe: Value of yield function after elastic shooting (initial value)
mat: Material properties
tol: Tolerance
Maximum iterations allowed
np: Number of user defined properties
nsv: Number of state dependent variables

OUTPUT:

Final stress state

alpha: Ratio of strain increment causing purely elastic deformation

svar: Updated values of state dependent variables
(1): Final value of yield function (this should equal svar(2))
(7): Final stress level

Iterations performed

conoocoaccaooonoooaoo0aoaaan
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REFERENCES :

Sloan, S.W. (1987) "Substepping schemes for the numerical integration of
elastoplastic stress-strain relations", International Journal for Numerical
methods in Engineering, 24, pp. 893-911.

Chen, W.F. & E. Mizuno (1990) "Non-linear Analysis in Soil Mechanics"
Elsevier, New York. ’
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SUBROUTINE INTERSECTIDN(S,alpha,svar,dse,fe,mat,tol,im,i,np nsv)
C Define primary variables ]
IMPLICIT NONE
INTEGER nsv,np,im,i
REAL*8 s(4),alpha,svar(nsv),s0(4),dse(4),fe,mat(np),tol
C Define secondary variables
INTEGER j
REAL*8 inv(4),dinv(4,3),dfds(4),dalpha,error,rho,psii,d,
ldfdse,FATLURE, YIELD,HARD
C Calculate first estimate of elastic strain increment
alpha=-(svar(1)-svar(2))/(fe-svar(1))
C Perform compatibility check for first estimat
D0 j=1,4
s0(j)=s(j)
s(j)=s0(j)+alpha*dse(j)
END DO
CALL INVARIANTS (inv,s)
svar(7)=FAILURE(inv,mat,np)
svar (1)=YIELD(inv,mat,svar(7) ,np)
error=svar(1l)-svar(2)
C Compatibility not obtained, perform iterations
i=0
DO WHILE ((abs(error).GT.tol).AND.(i.LT.im))
i=i+1
C Calculate derivatives of stress invariants
CALL DINVARTANTS(dinv,s)
C Calculate derivatives of the yield function with respect to stresses
CALL DYIELD(dfds,inv,dinv,mat,svar(?),svar(i),np)
C Calculate vector product dfds dse
dfdse=0.D0
DO j=1,4
dfdse=dfdse+dfds (j)*dse(j)
END DO
dalpha=-error/dfdse
alpha=alpha+dalpha
C Calculate updated stresses and perform tolerance check
D0 j=1,4
s(j)=s0(j)+alpha*dse(j)
END DO
CALL INVARIANTS(inv,s)
svar (7)=FAILURE(inv,mat,np)
svar(1)=YIELD(inv,mat,svar(7),np)
error=svar(1)-svar(2)
END DO
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¢ Check for failure, this could be the effect of preshearing
IF ((svar(7).EQ.1.D0).AND. (IDNINT (svar(4)).EQ.0)) THEN
svar (2)=HARD(svar(3) ,mat,np)
svar(4)=1.D0
psi1=0.00155D0*mat(2)**(-1.27D0)
rho=mat (10) /mat (11)
d=mat (9) /(27 .DO+psil+3)**rho
svar (6)=mat (20) /Tho*{1.D0/d)%*(1.D0/rho)* (svar(3) /mat (13))
1 #x(1.D0/Tho-1.D0)#*1.D0/svar(2)
svar(5)=svar (2) *DEXP(svar (6)*svar(3) /mat (13))
END IF
END

¢ SUBROUTINE DRIFT(s,svar,C,mat,tol,im,i,nsv,np)
C Correction for yield surface drift. The function uses the correction method
C given by Potts & Gens (1985), which is further described in Jakobsen (2001).

[

Initial stress state

svar: Initial value of state dependent variables
(1) Initial value of yield function

(2) Initial value of hardening function
(3) Initial plastic work

(4) Failure indicator

(5-6) Parameters for softening law

(7) Initial stress level

o
—
w3
5

C: Elastic constitutive matrix

mat : Material properties

tol: Tolerance

im: Maximum number of iterations

np: Number of user defined properties

nsv: Number of state dependent variables
OUTPUT

8: Final stress state

svar: Updated state dependent variables
(1) Final value of yield function
(2) Final value of hardening function
(3) Final plastic work
(7) Final stress level
A Iterations performed

REFERENCES :
Potts, D.M. & A. Gems (1985) "A critical assessement of methods of correcting

for drift from the yield surface in elasto-plastic finite element analysis",
International Journal for Numerical an Analytical Methods in Geomechanics, 9,

E‘JOODC'}OE‘]OODOOOOOOOQOGOOOOOQOOOQDO

pp. 149-159.
Jakobsen, K.P (2001) "Application of the Single Hardening model in ABAQUS"
AGEPQO0C
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SUBRGUTINE DRIFT(s,svar,C,mat,tel,in,1,nsv,ap) 1 .AND.(cEtiaik ﬁ%igﬁ?"
C Define primary variables ‘ betal=(beta

IMPLICIT NONE cutback=1

INTEGER nsv,np,i,im

ELSEIF (cutback.EQ.1) THEN
=(betal+beta?)/2.D0
REAL*8 s(4),sva_r(nsv),mat(np),tol,c(4,4) heat=(pota
C Define secondary variables EHD 12 and plastic work
INTEGER j,r,cuthack € Update Stroe;ifs P
REAL#8 inv(4),dinv(4,3),ds(4),dfds(4) ,dgds(4) ,dfdy, betal, ;‘;P‘_(i -
1be§a2 ,errori, eJ.rrorZ,dwp, Cdg(4),dfCdg, sdg,depsp(4) dJs (j,)z-betal*cdg(j)
C Function declarations (')—3(')+ds(j)
REAL*8 FAILURE,YIELD,SOFT,HARD,DHARD , DSOFT 2L
C Initialise local variables

depsp(j)=betal*dgds(j)
= j)*depsp(j)
i=0 dv.g:D dwp+s (j)*depsp(]
cutback=0 END
errori=0.DQ

svar (3)=svar(3)+dwp
¢ Perform compatibility check
CALL INVARIANTS(inv,s)
svar(7)=FAILURE(inv,mat,np)
svar(1)=YIELD(inv,mat,svar(7),np)
IF (IDNINT(EvaI(é)}.GT.O) THEN 1)
svar(2)=SDFT (svar(5) ,svar (6),svar(3) ,mat(

error2=0.D0
CALL INVARIANTS (inv,s)
errori=svar(i)-svar(2)
DO WHILE ((abs(error1).GT.tol) .AND.(i.LE.im))
i=i+1
C Calculate derivatives of stress invariants
] CALL DINVARIANTS(dinv,s)

ELSE
avar (2)=HARD (svar(3) ,mat ,np)
j ¢ Galeulate derivatives of yield and plastic povential function with respect to EKD IF
3 C stresses

| CALL DYIELD(dfds,inv,dinv,mat,svar(7) ,svar (1) ,np)
! CALL DPOT (dgds,inv,dinv,mat,np)
C Calculate derivative of hardening or softening law
IF (IDNINT(svar(4)).GT.0) THEN

beta2=betal
error2=errorl
errori=svar(1)-svar(2)

END DO
END
dfdv=DSOFT (svar(5) ,svar(6),svar(3) ,mat(13))
ELSE
dfdw=DHARD (svar(3) ,mat ,np) ] )
B > C SUBROUTINE MEULER(s,svar,isvs's\r,deps,mat,tol,r,qéiszéiuiave O
€ Calculate vector product (s dgds) C Update stresses by the modified Euler scheme wi o Falbn 0209
Clmae C by Sloan (1987). The scheme is furthermore describe
=q . y i
DO j=1,4 ‘ G
sdg=sdg+s(j)*dgds(j) C INPUT .
END DD c st Initial stress state )
ijables
C Calculate tensor product (C dgds) o isvar: Initial values of state dependent var
D0 j=1,4 ¢ deps: Strain increment
Cdg(3)=0.D0 g fabs Material properties
DO r=1,4 C  tol: Toleraace iables
Cdg(j)=Cdg(j)+C(j,r)*dgds(r) & e Number of state degendent yaria
END DO ¢ np: Number of user defined properties
END DO c
€ Caleculate vector product (dfds Cdg) ¢ OUTPUT
dfCdg=0.D0 ¢ s Final stress state )
DO j=1,4 ¢ svar: Updated values of state dependent vi;zables
. an
dfCdg=diCdg+dfds(j)*Cdg(j) ¢ r: Number of substeps used for integrati 2
END DO ¢ 5 Fumber of corrections to the substep s
C Calculate correction factor C
betal=error1/(dfCdgrdfdwrsdg) C REFERENCES ical integration of
2 i for the numerica g .
C Reduction of correction factor due to lack of convergence ¢ Sloan, S.W. (1887) ‘Substepp:‘mg s;h:?ezsnorzntemational Journal for Numerical
IF (((abs{error2)-abs(errori)).LT.0) -AND. ((abs(error2)).GT.0) c elastoplastic stress-strain relations",
JAKOBSEN
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c methods in Engineering, 24, pp. 893-9i1
C Jakobsen, K.P (2001) "Appli i in i
: ety pplication of the Single Hardening model in ABAQUS"
c

SUBROUTINE MEULER (s,svar,isvar,deps,mat,tol,r j,nsv,np)
C Define primary variables ’ SR
IMPLICIT NONE
INTEGER nsv,np,rT,j
REAL*B s(4),s0(4),svar i
C Define secondary variableénsw,lsvar(usv} ARERE G e
INTEGER p,t
REAL*8 q,dds(4,2),ddwp(2), sumddeps(4) ,ddeps(4) ,error
1inv(4),dinv(4,3) ,df (4),dg(4) ,g,dfdw,mindeps,resdeps (;)
2d1,s1(4) ,ddepsp(4) ,dwp,ddds(4) ,psil,rho,d, ’
3Cp(4,4),Ce(4,4)
C Function declarations
REAL*8 NORM,POT,YIELD,FAILURE,SOFT,HARD,DHARD,DSOFT
C Initialise local variables
=0
=0
q=1.0D0
DO p=1,4
D0 t=1,2
dds(p,t)=0.D0
END DO
s0(p)=s(p)
sumddeps (p)=0.D0
ddeps (p)=deps(p)
resdeps (p)=deps (p)
END DO
error=1
DO WHILE (NORM(resdeps,4,1.0D0).GT.0)
r=r+1
C Determined size of next strain increment
mindeps=NORM(ddeps,4,q)
IF (NORM(resdeps,4,1.0D0).LT.mindeps) THEN
D0 p=1,4
ddeps(p)=resdeps(p)
END DO
ELSE
DO p=1,4
ddeps(p)=g*ddeps{p)
END DO
END IF
DO WHILE (error.GT.tol)
DO p=1,nsv
svar (p)=isvar(p)
END DO
g Calculate first estimate of stress increment
C First calculate derivatives of yi i i i
¢ S R SeeiE el functionyleld and plastic potential function

{
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CALL INVARIANTS(inv,s0)
CALL DINVARIANTS(dinv,s0)
CALL DYIELD(df,inv,dinv,mat,svar(7),svar(1),np)
CALL DPOT{dg,inv,dinv,mat,np)
g=POT (inv,mat ,np)
C Calculate derivative of hardening or softening law
IF (IDNINT(svar(4)).EQ.0) THEN
dfdw=DHARD (svar (3) ,mat,np)
ELSE
dfdw=DSOFT(svar(5) ,svar(6) ,svar(3),mat(13))
END IF
CALL ELASTIC(Ce,inv,mat,np)
CALL PLASTIC(Cp,dl,Ce,df,dg,g,dfdw,mat(a),ddeps}
¢ Calculate first estimate of stress increment, plastic strain and plastic work
ddwp(1)=0.0D0
D0 p=1,4
dds (p,1)=0.D0
DO t=1,4
dds(p,1)=dds(p.1)+(Ce(p,t)-Cp(p,t))*ddeps(t)
END DO
ddepsp (p)=dl*dg(p)
ddwp (1)=ddwp(1)+s0(p) *ddepsp(p)
s1(p)=s0(p)+dds(p,1)
END DO
C Update state variables due to first estimate of stress increment
CALL INVARIANTS(inv,si}
svar(7)=FAILURE(inv,mat,np)
svar(1)=YIELD(inv,mat,svar(7),np)
C Calculate second estimate of stress increment
C First calculate derivatives of yield and plastic potential function
CALL DINVARIANTS(dinv,sl)
CALL DYIELD(df,inv,dinv,mat,svar(7),svar(1) ,np)
CALL DPOT(dg,inv,dinv,nat ,np)
g=POT (inv,mat ,np)
¢ Calculate derivative of hardening or softening law
IF (IDNINT(svar(4)).EQ.0) THEN
dfdw=DHARD ( (svar (3)+ddwp(1)) ,mat,np)
ELSE
d4fdw=DSOFT (svar(5) ,svar(6), (svar(3)+ddwp(1)) ,mat (13))
END IF
CALL ELASTIC(Ce,inv,mat,np)
CALL PLASTIC(Cp,dl,Ce,df ,dg,g,dfdw,mat(8) ,ddeps)
ddwp(2)=0.0D0
DO p=1,4
dds (p,2)=0.D0
DO t=1,4
dds(p,2)}=dds (p,2)+(Ce(p,t)—Cp(p,t))*ddeps(t)
END DD
ddepsp (p)=dl*dg(p)
ddwp (2) =ddwp (2) +s1 (p) *ddepsp(p)
5(p)=80(p)+0.5+(dds(p,1)+dds(p,2))
END DO
dwp=0. 5% (ddwp (1) +ddwp(2))
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svar(3)=svar(3)+dvp
DO p=1,4 C mat: Material properties
ddds (p)=dds(p,2)-dds(p,1) C tol:  Tolerance
END DO C nev: Number of state dependent variables
error=NORM(ddds,4,0.5D0) /NORM(s,4,1.0D0) C np: Number of user defined properties
IF (error.GT.tol) THEN i c
g;D”Ai‘l((O-QDG*DSQHT(tolferror)),o, oS | ¢ OUTPUT
p=1,4 i ¢ & Final stress state
ddeps (p)=ddeps (p) *q i ¢ svar: Updated values of state dependent variables
END DO I ¢ r: Number of substeps used for integration
j=j+i { [T Number of corrections to the substep size
ELSE c
C Perform failure check and updat ; C REFERENCES
CALL INVAEIAN‘I‘S(iE;va,S state variables due to updated stresses ¢ Dormand, J.R. & P.J. Prince (1980) "A family of embedded Runge-Kutta formulae",
svar (7)=FAILURE (inv,mat,np) | c Journal of Computer Applied Mathematics, 6, pp. 18-26.
svar (1)=YIELD(inv,mat,svar(7) p) | C Sloan, S.W. & J.R. Booker (1992) "Integration of Tresca amd Mohr-Coulocmb
IF ((svar(7).EQ.1.D0) .AND.(IDI:FINT{SVH(:;}) c constitutive relations in plane strain elastoplasticity", International
svar (2)=HARD(svar (3} ,mat ,np) BR8N ¢ Journal for Numerical Methods in Engineering, 33, pp. 163-196.
svar(4)=1 ’ C Jakobsen, K.P (2001) "Application of the Single Hardening model in ABAQUS"
psi1=0.00155D0+*mat (2) +*(~1,27D0) ¢ AGEP0000
rho=mat (10) /mat (11) c
d=mat (9) /(27 .DO*psil+3.D0)**rho
5 svar(6)=mat (20) /rho*(1.D0/d)} ##(1.D0/Tho) *(svar(3) SUBROUTINE RKDP(s,svar,isvar,deps,mat,tol,r,j,nsv,np)
/mat(13))#*(1.D0/rho-1.D0)#1.D0/svar(2) C Define primary variables
svar(5)=svar (2) *DEXP (svar (6)*svar(3) /mat (13)) IMPLICIT NONE
END IF ;
END IF INTEGER nsv,np,r,]J
END DO : REAL#8 s(4),s0(4),svar(nsv),isvar(nsv),deps(4),mat(np),tol
=DM C Define secondary variables
:;mlfi (0.9D0*DSQRT (tol/error) ,2.D0) INTEGER i,p,t
evpisiigh REAL#8 ddeps(4) ,ddepsp(4) ,sunddeps (4) ,resdeps (4),minddeps,q,
s B ‘ 1s1(4) ,52(4),ds(4,6) ,dds(4) ,swei (4) ,inv(4) ,dinv(4,3) ,error,
b )fPS(P)‘S‘”“‘dePE (p)+ddeps (p) 2ddwp (6) ,dwp, wpwei,psil,rho,d,dss(4),
T g "EEP)_ 3df(4) ,dg(4),g,dfdw,Cp(4,4),Ce (4,4) ,dl,coef(6),coefl(6),coef2(6)
END ;SU e p)idepﬂp)isumdde}’s(?) i C Function declarations
END DO REAL*B NORM,POT,YIELD,FAILURE,SOFT,HARD,DHARD,DSOFT
1 Initiali I 1 iabl
IF (IDNINT(svar(4)}.EQ.0) THEN & m:ghse ocal variables
svar (2)=HARD (svar(3) ,mat,np) ‘ i
ELSE | J=
| =1.0D0
o q=1-
e o ()=80FT(svar (5) ,svar (), svar (3), mat (1)) DO p=1,4
F
END DO t=1,6
ds(p,t)=0.D0
END DO
s0(p)=s(p)
: [SIgi:SUTINE RKDP(s,svar,i.3va_r,deps,mat’tol,rlj ,n8v,1p) | sumddeps (p)=0 (D(})
e stresses by the Runge-Kutta-Dormand-Prince 1 i ddeps (p)=deps (p
. integration sch |
C Prince 1980, Sloan & Booker 1992). The scheme is fﬂrtﬁzrmore dzsziéb(gu%mﬂd k resdeps (p)=deps(p)
C Jakecbsen (2001) ibed 1in END DD
¢ error=1
¢ INPUT DO WHILE (NORM(resdeps,4,1.0D0).GT.0)
C s: Initial stress state r=r+1
g di:;:r: ;tnitial values of state dependent varibles C Determined size c;fM(llc{a;t s:rai)n increment
: rain increment minddeps=N0 eps,4,q
IF (NORM(resdeps,4,1.0D0).LT.minddeps) THEN
JAKOBSEN .
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DO p=1,4
ddeps (p)=resdeps (p)
END DO
ELSE
DO p=1,4
ddeps (p)=q*ddeps (p)
END DO
END IF
DO WHILE (error.GT.tol)
DO p=1,nsv
svar(p)=isvar(p)
END DO

DO i=1,6

IF (i.EQ.1) THEN
DO p=1,6
coef (p)=0.D0
END DO
ELSEIF (i.EQ.2) THEN
coef (1)=1.D0/5.D0
coef (2)=0.D0
coef (3)=0.D0
coef (4)=0.D0
coef (5)=0.D0
coef (6)=0.D0
| ELSEIF (i.EQ.3) THEN
b coef (1)=3.D0/40.D0
| coef (2)=9.D0/40.D0
o coef(3)=0.D0
coef (4)=0.D0
coef (5)=0.D0
coef (6)=0.D0
ELSEIF (i.EQ.4) THEN
coef(1)=3.D0/10.D0
coef(2)=-9.D0/10.D0
coef (3)=6.D0/5.D0
coef (4)=0.D0
coef (5)=0.D0
coef (6)=0.D0
ELSEIF (i.EQ.5) THEN

APPLICATION OF THE SINGLE HARDENING MODEL

C Calculate estimates of stress increments 1-6

C First establish coefficient vectors depending on the stress increment

coef (1)=226.D0/729.D0
coef (2)=-25.D0/27.D0
coef (3)=880.D0/729.D0
coef(4)=55.D0/729.D0
coef (5)=0.D0
coef (6)=0.D0

ELSEIF (i.EQ.6) THEN
coef(1)=-181.D0/270.D0
coef (2)=5.D0/2.D0
coef (3)=-266.D0/297.D0
coef (4)=-91.D0/27.D0
coef (5)=189.D0/55.D0

AGEP R0201
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coef (6)=0.D0
END IF
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C Calculate stress increments and temporary weighted update of stresses and plastic

C work

DO p=1,4
swei(p)=s0(p)
DO t=1,6

swei(p)=swei(p)+ds(p,t)*coef(t)

END DO

END DO

vpwei=svar(3)

DO p=1,6
wpwei=wpwei+ddwp(p)*coef (p)

END DO

C Calculate stress invariants and derivatives of stress invariants

CALL INVARIANTS(inv,swei)
CALL DINVARIANTS(dinv,swei)

C Calculate values of yield and plastic potential functions
svar(7)=FAILURE(inv,mat ,np)
svar (1)=YIELD(inv,mat,svar(7),np)
g=POT(inv,mat ,np)

¢ Calculate derivatives of yield, plastic potential and hardening functions

CALL DYIELD(df,inv,dinv,mat,svar(7),svar{1),np)
CALL DPOT(dg,inv,dinv,mat,np)
IF (IDNINT(svar(4)).EQ.0) THEN
dfdw=DHARD (wpwel,mat,np)
ELSE
dfdw=DSOFT (svar(5)},svar(6) ,wpwei,mat (13))
END IF
CALL ELASTIC(Ce,inv,mat,np)
CALL PLASTIC(Cp,dl,Cs,df,dg,g,dfdw,mat(8),ddeps)
ddwp{i)=0.D0
DO p=1,4
ds(p,i)=0.D0
D0 t=1,4
ds(p,i}=ds(p,i)+(Ce(p,t)-Cp(p,t)) *ddeps(t)
END DO
ddepsp(p)=dl*dg(p)
ddwp(i)=ddwp(i)+swvei (p)*ddepsp(p)
END DO
END DO
C Weights for first and second estimate of stresses
coef1(1)=31.D0/540.D0
coef1(2)=0.D0
coef1(3)=190.D0/297.D0
coefl(4)=-145.D0/108.D0
coefl(5)=361.D0/220.D0
coef1(6)=1.D0/20.D0
coef2(1)=19.D0/216.D0
coef2(2)=0.D0
coef2(3)=1000.D0/2079.D0
coef2(4)=-125.D0/216.D0
coef2(5)=81.D0/88.D0
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84 APPLICATION OF THE SINGLE HARDENING MODEL

coef2(6)=5.D0/56.D0
C First and second estimate of stresses and plastic work
dup=0.D0
DO p=1,4
s1(p)=s0(p)
s2(p)=s0(p)
DD t=1,6
s1(p)=s1(p)+ds(p,t)*coefl(t)
52(p)=s2(p)+ds(p,t)*coef2(t)
END DO
dds(p)=s2(p)-si(p)
END DO
D0 p=1,6
dwp=dwp+ddwp (p) *coef2 (p)
END DO
svar(3)=svar(3)+dwp
error=NORM(dds,4,1.D0) /NORM(s2,4,1.D0)
IF (error.GT.tol) THEN
q=DMAX1((0.9D0* (tol/error)*=(1.D0/5.00)),0.01D0)
DO p=1,4
ddeps(p)=ddeps(p) xq
END DO
j=j+1
ELSE
C Perform failure check and update state variables due to updated stresses
C and plastic work.
CALL INVARIANTS(inv,s2)
svar(7)=FAILURE(inv,mat,np)
svar(1)=YIELD(inv,mat,svar(?),np)
IF ((svar(?).EQ.i.DO).AND.(IDNINT(svar(4}).EQ.O)) THEN
svar (2)=HARD (svar (3) ,mat,np)
svar(4)=1
Ppsil=0.00155D0*mat (2) **(-1.27D0)
rho=mat (10) /mat (11)
d=mat(9) /(27 .D0*psii+3.D0)**rho
svar (6)=mat (20} /rho*(1.D0/d)**(1.D0/rho) *(svar(3)
1 /mat (13))**(1.D0/Tho-1.D0) *1.D0/svar(2)
svar (5)=svar (2) *DEXP (svar (6) *svar (3) /mat (13))
END TF
END IF
END DD
q=DMIN1(O.QDO*(tolferror)**(i.DOIS.DO),2.D0)
error=1
CALL INVARIANTS(inv,s0)
CALL DINVARIANTS(dinv,s0)
CALL DPOT(dg,inv,dinv,mat,np)
D0 p=1,4
dss(p)=s2(p)-s0(p)
sumddeps (p)}=sumddeps (p)+ddeps (p)
s80(p)=s2(p)
resdeps (p)=deps (p)-sumddeps (p)
END DO
END DO
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IF (IDNINT(svar(4)).EQ.0) THEN
svar (2)=HARD(svar(3) ,mat,np)
ELSE
svar (2)=80FT (svar (5) ,svar(6) ,svar(3),mat(13))
END IF
DO p=t,4
s(p)=s2(p)
END DO
END

C SUBROUTINE FEULER(s,svar,deps,mat,m,nsv,np)
C Update stresses by the forward Euler scheme (Sloan 1987, Chen & Mizuno 1990,
C Jakobsen 2001)

c
C INPUT
sz Initial stress state
svar: Initial values of state dependent varibles
dl: Plastic multiplier
deps: Strain increment
mat: Material properties
m: Number of subincrements
nsv: Number of state dependent variables
np: Number of user defined properties
QUTPUT
s: Final stress state

svar: Updated values of state dependent variables

REFERENCES

Sloan, S.W. (1987) "Substepping schemes for the numerical integration of
elastoplastic stress-strain relations", International Journal for Numerical
methods in Engineering, 24, pp. 893-911.

Chen, W.F. & E. Mizuno (1990) "Non-linear Analysis in Soil Mechanics",
Elsevier, New York.

Jakobsen, K.P (2001) "Application of the Single Hardening model in ABAQUS"
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SUBROUTINE FEULER(s,svar,deps,mat,m,nsv,np)
C Define primary variables

TMPLICIT NONE

INTEGER nsv,np,m

REAL*8 s(4),svar(nsv),mat(np),deps(4),dl
C Function declarations

REAL*8 POT,YIELD,FAILURE,SOFT,HARD,DHARD,DSOFT
C Define secondary variables

INTEGER i,p,t

REAL#8 ddeps(4),ddepsp(4),

1s0(4) ,ds(4),inv(4),dinv (4,3},

2df(4) ,dg(4) ,g,dfdw,Ce(4,4),Cp(4,4),

3ddwp,psil,rho,d
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C Calculate size of subincrements
DO p=1,4
ddeps (p)=deps (p) /DFLOAT (m)
END DO
CALL INVARIANTS(inv,s)
CALL ELASTIC(Ce,inv,mat,np)
C Perform m subincrements
DO i=1,m
C Define initial stress state for current substep
DO p=1,4
s0(p)=s(p)
END DO
C Calculate stress invariants and derivative of stress invariants
CALL INVARIANTS(inv,s0)
CALL DINVARTANTS(dinv,s0)
C Calculate derivatives of yield and palstic potential functions
CALL DYIELD(df,inv,dinv,mat,svar(7),svar(1),np)
CALL DPOT(dg,inv,dinv,mat,np)
C Calculate value of potential fumction
g=POT (inv,mat ,np)
C Calculate derivative of hardening or softening function
IF (IDNINT(svar(4)).EQ.0) THEN
dfdw=DHARD(svar (3) ,mat ,np)
ELSE
dfdw=DS0FT (svar(5),svar(6) ,svar(3),mat(13))
END IF
C CALL ELASTIC(Ce,inv,mat,np)
CALL PLASTIC(Cp,dl,Ce,df,dg,g,dfdw,mat(8),ddeps)
ddwp=0.D0
DO p=1,4
ds(p)=0.D0
DO t=1,4
ds(p)=ds(p)+(Ce(p,t)-Cp(p,t))*ddeps(t)
END DO
s(p)=s0(p)+ds(p)
ddepsp(p)=dl*dg(p)
ddwp=ddwp+s0(p) *ddepsp (p)
END DO
svar (3)=svar (3)+ddwp
C Perform failure check and update state variables
CALL INVARIANTS(inv,s)
svar (7)=FAILURE(inv,mat,np)
svar(1)=YIELD(inv,mat,svar(7),np)
IF ((svar(7).EQ.1.D0).AND.(IDNINT(svar(4)).EQ.0)) THEN
svar (2)=HARD(svar(3) ,mat,np)
svar(4)=1.D0
psil=0.00155D0%mat (2) **{-1.27D0)
rho=mat (10) /mat (11)
d=mat (9) /(27 .DO*psi1+3.D0)**rho
svar (6)=mat (20) /rho*(1.D0/d) **(1.D0/rho) * (svar(3) /mat (13))

1 *%(1.D0/Trho-1.D0)*1.D0/svar(2)
svar (5)=svar (2) *DEXP(svar(6) *svar(3) /mat(13))
END IF
JAKOBSEN AGEP R0201

.

APPLICATION OF THE SINGLE HARDENING MODEL 87

END DO
IF (IDNINT(svar(4)).EQ.D) THEN
svar (2}=HARD(svar (3) ,mat,np)
ELSE
svar(2)=30FT(svar(5) ,svar(6),svar(3) ,mat (13))
END IF
END

C FUNCTION NORM(vec,n,q)
C Calculate the norm of a vector

c

C INPUT

c vec: Vector

c n: Number of elements in vector
cC q: Scalar multiplier

c

C OUTPUT

C NORM: Norm of vector

Cc

FUNCTION NORM(vec,n,q)
C Define primary variables
IMPLICIT NONE
INTEGER n
REAL#8 vec(n),q,NORM
C Define secondary variables
INTEGER i
C Calculate length
NORM=0.0D0O
DO i=1,n
NORM=NORM+q**2.D0*vec (1) **2,D0
END DO
END

SUBROUTINE DUMP(svar,nsv,problem,s,el,gp,n,i)
Termination of ABAQUS in case of numerical problems

c
c
C
€ INPUT

C  svar: State dependent variables

C  nsv: Number of state dependent variables

C problem: Problem identifier

c (1) Problem encountered during intersection of yield surface

c (2) Problem encountered during correction for yield surface drift
c s Current stress state

C el Element number

¢ gp: Gauss point

c n Current load step

c i Increment in load step

c
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SUBROUTINE DUMP(svar,nsv,problem,s,el,gp,n,i)
C Define primary varlables
IMPLICIT NONE
INTEGER nsv,problem,el,gp,n,i
REAL*8 svar(nsv),s(4)
C Define secondary variables
INTEGER 5
DPEN(16,file=’shm2d.dmp’,status=’new’)
WRITE (%) ? sk foroordordkkx ABAQUS RUN IS TERMINATED °,
17 deskeokose e e ok sk e ok ook ok ok ok ok ok 7
IF (problem.EQ.1) THEN
WRITE(*,*)’Problem encountered during intersection of yield ’,
1 ’surface’
ELSE
WRITE(*,*)’Prcblems encountered during correction for yield ?,
1 ‘’surface drift’
END IF
WRITE(15,10) n
10 FORMAT(’ Load step: *,I2)
WRITE(15,20) i
20 FORMAT(’ Increment in load step: ’,I4)
WRITE(15,30) el
30 FORMAT(® Element number: *,I5)
WRITE(15,40) gp
40 FORMAT(’ Gauss point: *,I1)
WRITE(15,%) * ?
WRITE(15,#)’Current state of stress’
Do j=1,4
WRITE(15,50) j,s(j)
END DO
50 FORMAT(’ Stress component no. ',TI1,’:’,3D24.16)
WRITE(15,%) *
WRITE(15,*)’State dependent variables at current state of stress’
DO j=1,nsv
WRITE(15,60) j,svar(j)
END DO
60 FORMAT(’ State dependent variable no. °,I1,°:7,3D24.16)
CLOSE(15)
CALL XIT
END
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