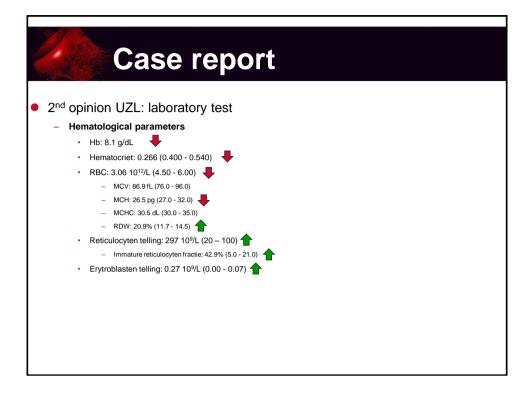
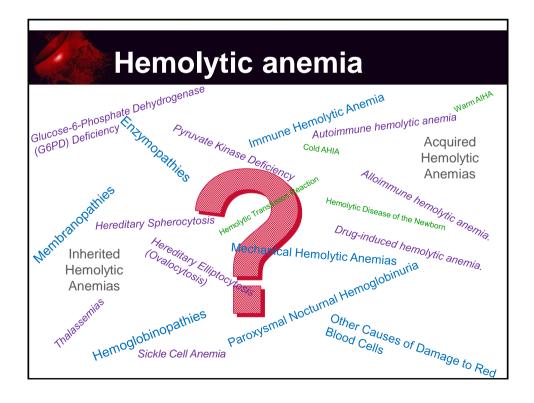
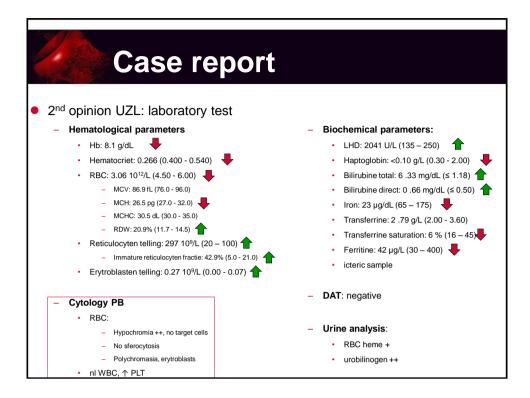
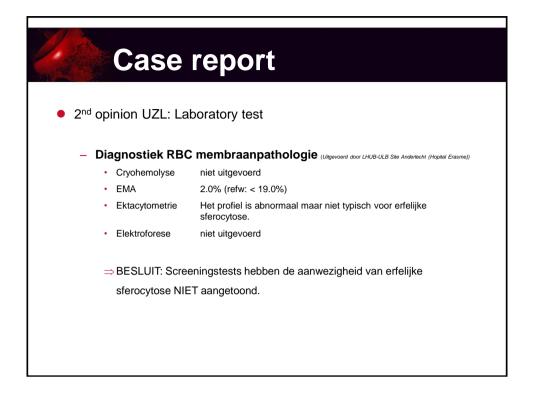

? Medical mystery ? A case report

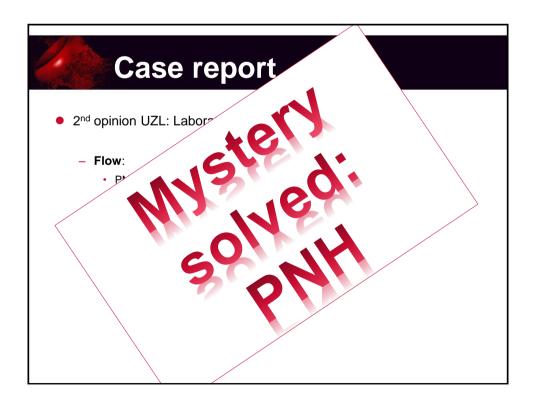

N. Boeckx, MD, PhD 03-10-2017

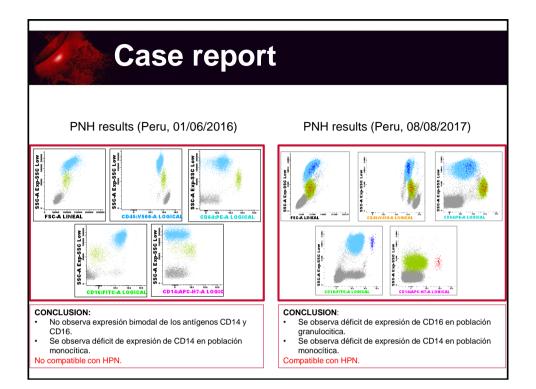


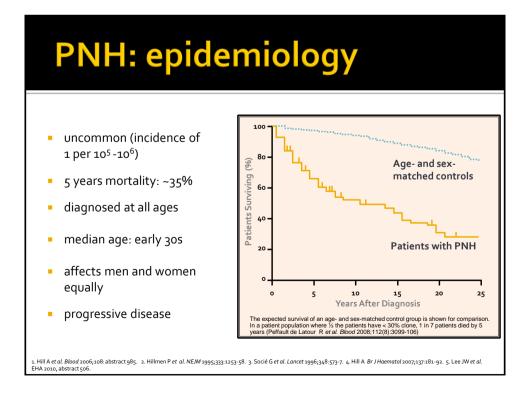

Case report

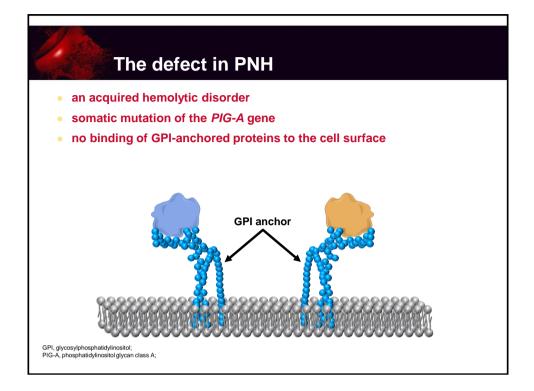
- Laboratory and other test (Peru):
 - Hemolysis parameters: positive (eg. LHD: increased +++)
 - Protein EF: normal
 - Cryoglobulins and cryo-agglutinins: negative
 - IgM, IgA, IgG: normal
 - ANF, ANCA, SSA (anti-Ro) and SSB (anti-1a), RF: negative
 - DAT: negative
 - Hb-electrophoresis: normal
 - Glucose-6-phosphatase: normal level
 - Osmotic fragility: decrease of osmotic fragility curve
 - HAM-test: negative
 - Flow PNH: negative
 - Gastroscopy: negative, no HP
 - APO spleen: congestion of red pulp

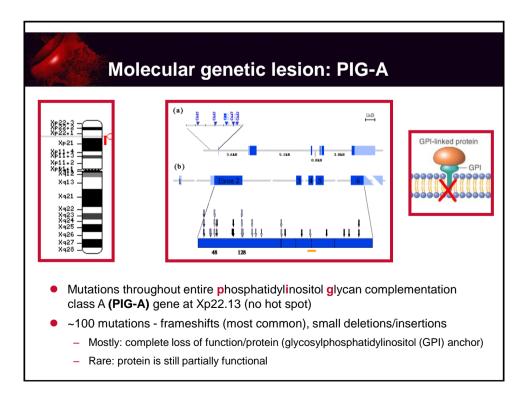

2nd opinion UZL (July 2017): anamnesis Continuously tired ('used to it because it lasts since 3 years'), fatigue ++ Continuous icterus Dark urine No abdominal or thoracal pain No increased frequency of infections (exception early 2017) No thrombosis in past

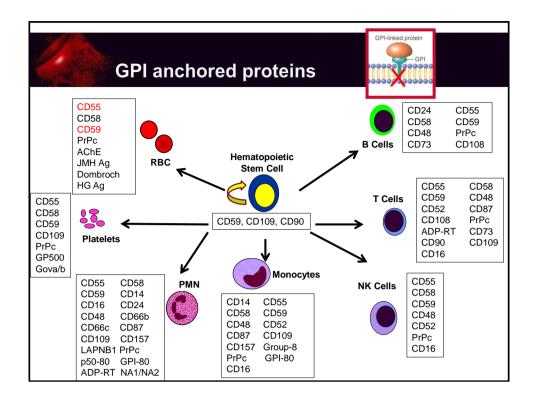


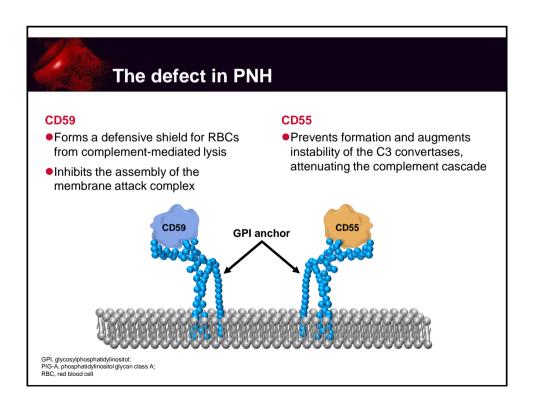


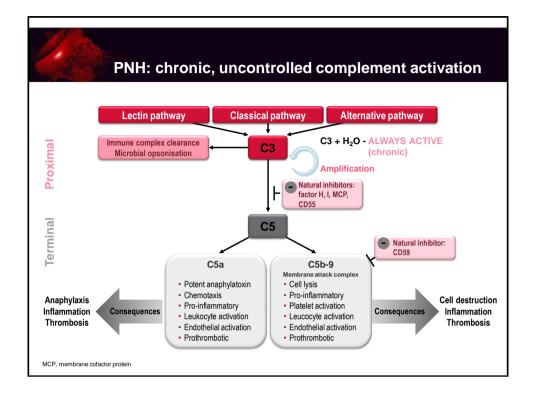


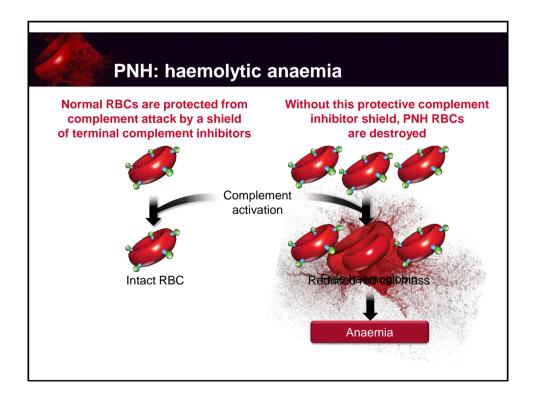


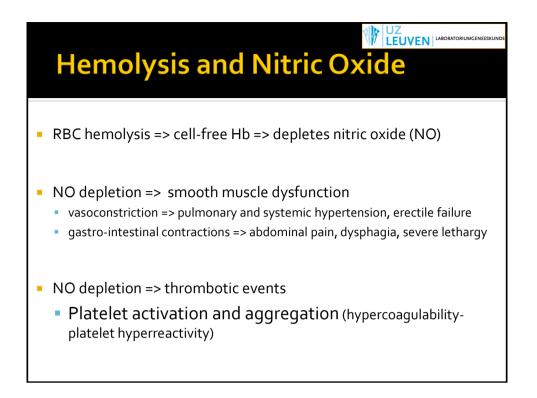


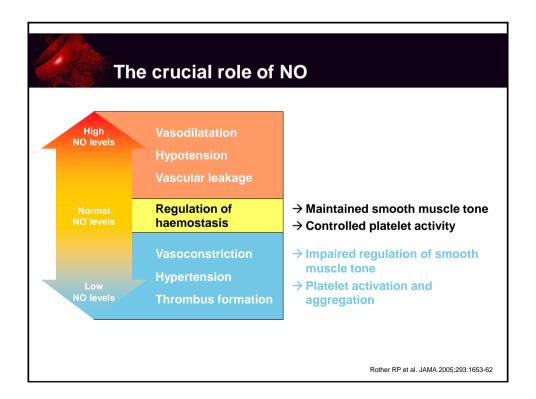


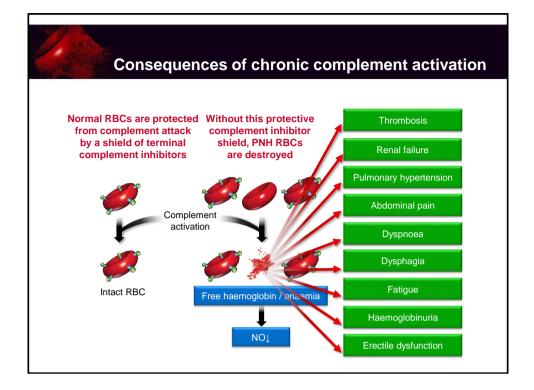


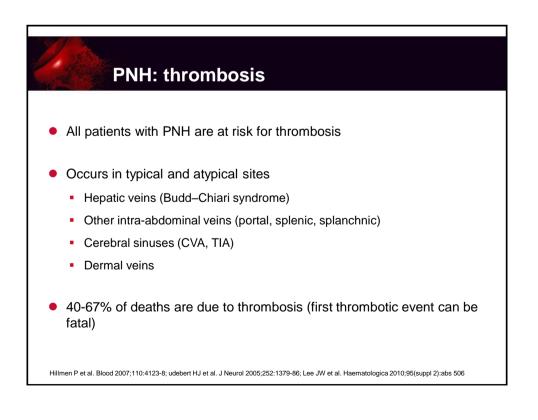


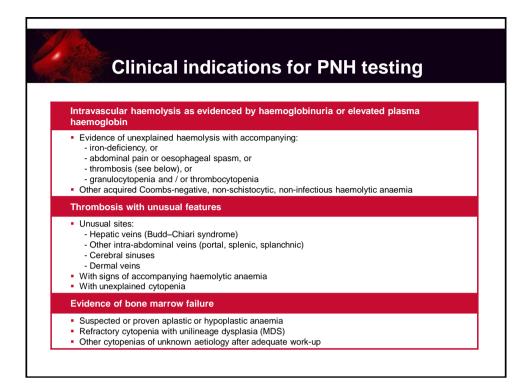


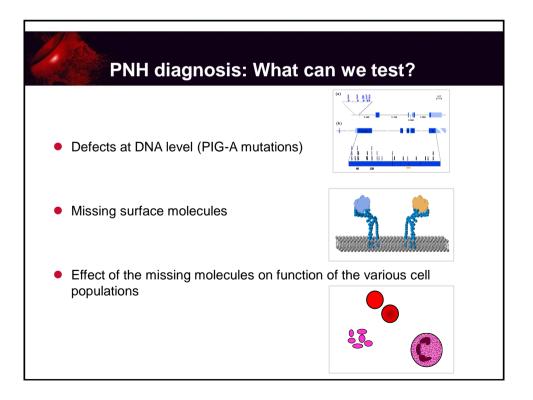


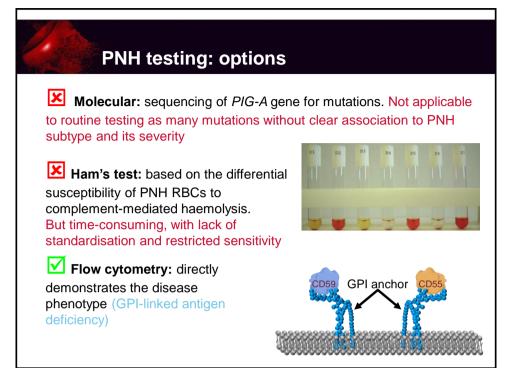


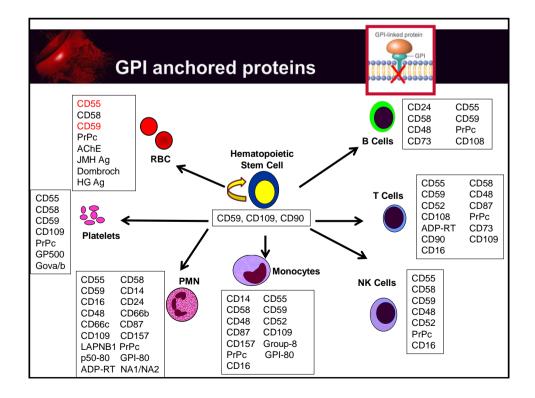






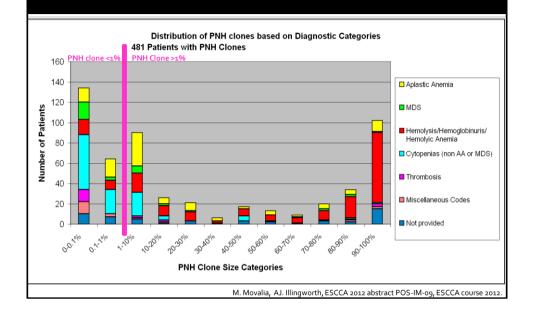





Clinic	cal indication	s for PNH tes	I testing in 25	
Table 1 Reasons for first-tim	e PNH testing in 323	risk per reason for screer unique patients with suf	ning is displaye	d for 267
unique patients Reason	N = 323 (% of total)	Reason	<i>N</i> = 25 (% of PNH patients)	Positive test screening group (%)
Iypoplastic/aplastic bone marr Iemolytic anemia DAT negative DAT not performed MDS Jytopenia Cytopenia with hemolysis Unexplained cytopenia 'hrombosis Venous Arterial Mixed arterial/venous ther clinical reasons	$\begin{array}{c} 0 \text{w} & \overbrace{22 (10\%)}^{32} \\ & \underbrace{82 (25\%)}_{42 (13\%)} \\ & \underbrace{30 (9.2\%)}_{10 (3.0\%)} \\ \hline \\ & \underbrace{21 (7\%)}_{60 (19\%)} \\ & \underbrace{51 (17\%)}_{55 (15\%)} \\ \hline \\ & \underbrace{55 (17\%)}_{51 (16\%)} \\ & \underbrace{51 (16\%)}_{2 (0.62\%)} \\ & \underbrace{13 (4\%)} \end{array}$	Hypoplastic/aplastic bone marrow Hemolytic anemia DAT negative DAT positive DAT not performed MDS Cytopenia Cytopenia with hemolysis Uncexplained cytopenia Thrombosis Venous Arterial Mixed arterial/venous	$\begin{array}{c} 15 \ (60\%) \\ 6 \ (24\%) \\ 4 \ (16\%) \\ 1 \ (4\%) \\ 1 \ (4\%) \\ 1 \ (4\%) \\ 2 \ (8\%) \\ 1 \ (4\%) \\ 1 \ (4\%) \\ 1 \ (4\%) \\ 1 \ (4\%) \\ 1 \ (4\%) \\ 1 \ (4\%) \\ 0 \ (0\%) \\ 0 \ (0\%) \end{array}$	5/32 (47) 6/82 (7% 4/42 (10) 1/30 (3% 1/10 (10) 1/21 (5% 2/60 (3% 1/5 (2%) 1/55 (2%) 1/55 (2%) 0/6 (0%) 0/2 (0%)
AT, Direct antiglobulin te: /ndrome.	56 (17%)	Other All reasons (overall) MDS, myelodysplastic sync test.	0 (0%) 25 (100%) Irome; DAT, di	0/13 (0% 25/267 (9% rect antiglobul

lassifica	tion	otc	linica	
assinca				

Category	Rate of vascular hemolysis	BM		
Classic PNH	Florid (LDH, often episodic macroscopic hemoglobinuria)	Cellular BM with erythroid hyperplasia, +/-normal morphology	Table 3. Clinica	N = 2 (% of patient
PNH in BM failure disorder	Mild (often minimal abnormal biochemical markers of hemolysis)	Evidence of concomitant BM failure syndrome (AA or low-risk MDS)	Classical PNH PNH in bone marrow disorders Subclinical PNH	6 (24 6 (24 13 (5)
Subclinical PNH	No clinical or biochemical signs of hemolysis	Evidence of concomitant BM failure syndrome (AA or low-risk MDS)	PNH, Paroxysmal	ier A, et al. IJ


Considerations for flow cytometric PNH testing

Sample source	PB (BM is not optimal)
Anticoagulant	EDTA (preferred), heparine or ACD
Sample volume	Minimum 1 ml; 3 ml is adequate for most testing, though more might be needed if WBC is very low
Maximum sample age	Up to 7 days for RBC; <48h for WBC
High-sensitivity analysis	0,01%; at least 250,000 events of specific cell type collected
"Guidelines for diagnosis and monitoring of PN	IH and related disorders by flow cytometry". M. Borowitz <i>et al.</i> , Cytometry Part B (clinical cytometry), 20:

Considerations for flow cytometric PNH testing

Sample source	PB (BM is not optimal)
Anticoagulant	EDTA (preferred), heparine or ACD
Sample volume	Minimum 1 ml; 3 ml is adequate for most testing, though more might be needed if WBC is very low
Maximum sample age	Up to 7 days for RBC; <48h for WBC
High-sensitivity analysis	0,01%; at least 250,000 events of specific cell type collected
"Guidelines for diagnosis and monitoring of P	NH and related disorders by flow cytometry". M. Borowitz <i>et al.</i> , Cytometry Part B (clinical cytometry), 201

Distribution of PNH WBC clone sizes

Follow-up of PNH+ patients

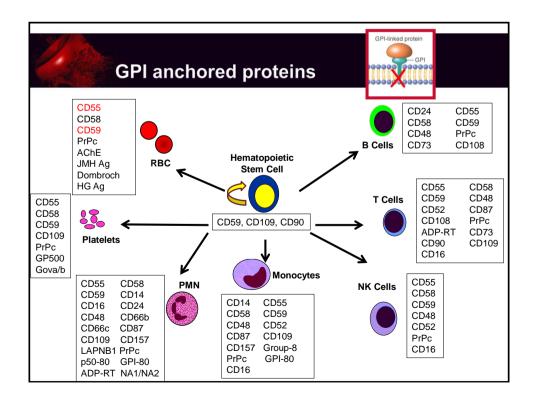
	<0.1%	0.1-1%	>1.0-10%	>10-100%
Increased	0	2 (16%)	9 (38%)	0
Decreased	0	2 (16%)	5 (21%)	1
No Change	33	8 (67%)	10 (41%)	43
Totals	33 (29%)	12 (11%)	24 (21%)	44 (39%)
Monitoring recommendations	6-12 m	3-6 m	3-6 m	as indicated
		M. Movalia, AJ. Illingv	vorth, ESCCA 2012 abstract I	POS-IM-09, ESCCA course 2012

113 patients with PNH clone

Follow-up of PNH+ patients

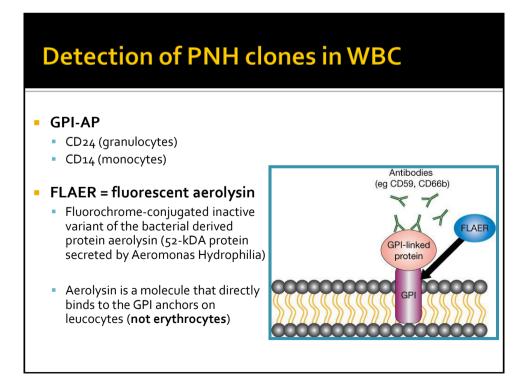
113 patients with PNH clone

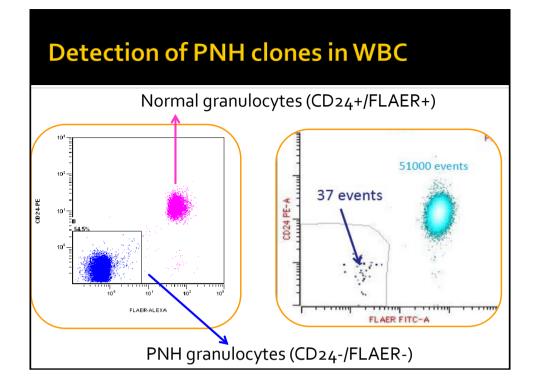
	<0.1%	0.1-1%	>1.0-10%	>10-100%
Increased	0	2 (16%)	⇒ 9 (38%) 🗖	> o
Decreased	0	2 (16%)	5 (21%)	1
No Change	33	8 (67%)	10 (41%)	43
Totals	33 (29%)	12 (11%)	24 (21%)	44 (39%)
Monitoring recommendations	6-12 m	3-6 m	3-6 m	as indicated
recommendations				
		M. Movalia, AJ. Illingv	vorth, ESCCA 2012 abstract P	OS-IM-09, ESCCA course 20

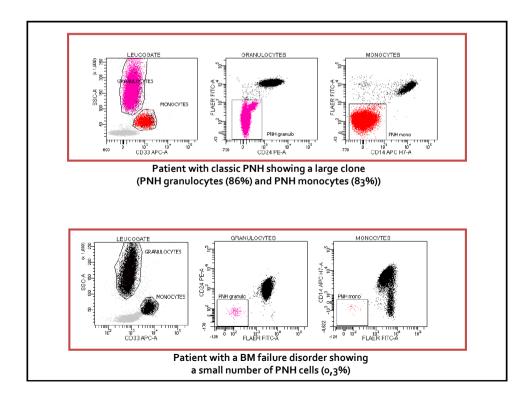

Follow-up of PNH+ patients

	<0.1%	0.1-1%	>1.0-10%	>10-100%
Increased	0	2 (16%)	⇒ 9 (38%) =	> о
Decreased	o <	– 2 (16%) 🔇		1
No Change	33	8 (67%)	10 (41%)	43
Totals	33 (29%)	12 (11%)	24 (21%)	44 (39%)
Monitoring recommendations	6-12 m	3-6 m	3-6 m	as indicated

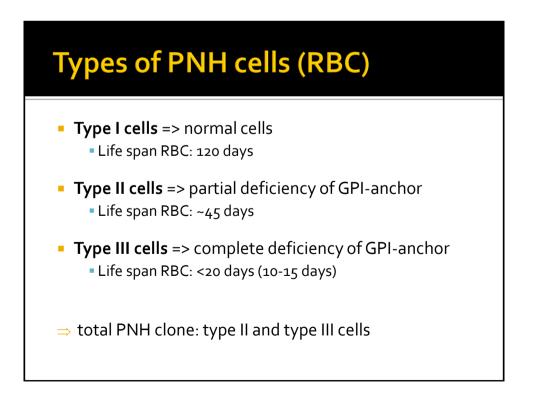
M. Movalia, AJ. Illingworth, ESCCA 2012 abstract POS-IM-09, ESCCA course 2012.

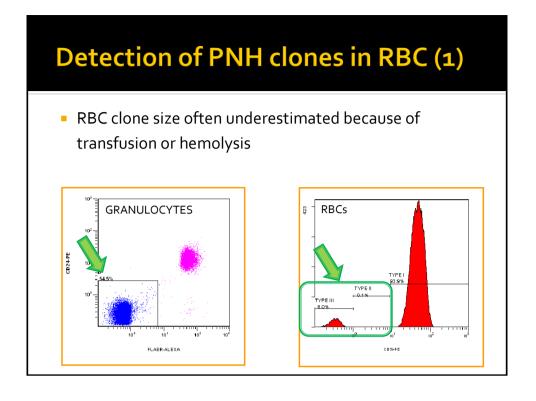

Considerations for flow cytometric PNH testing

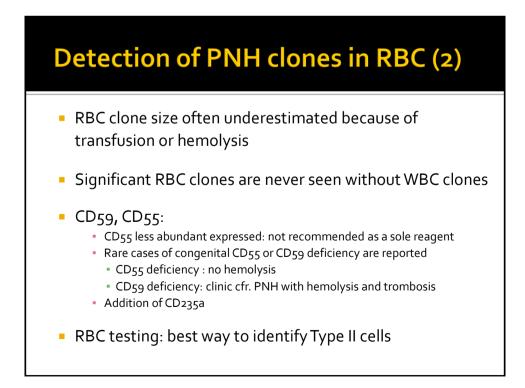

EDTA (preferred), heparine or ACD
Minimum 1 ml; 3 ml is adequate for most testing, though more might be needed if WBC is very low
Up to 7 days for RBC; <48h for WBC
1%; at least 5,000 events of specific cell type collected
0,01%; at least 250,000 events of specific cell type collected

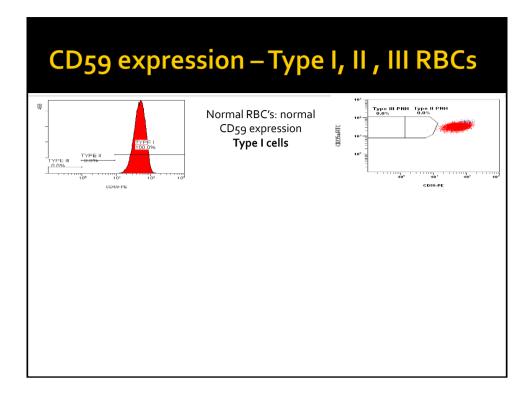


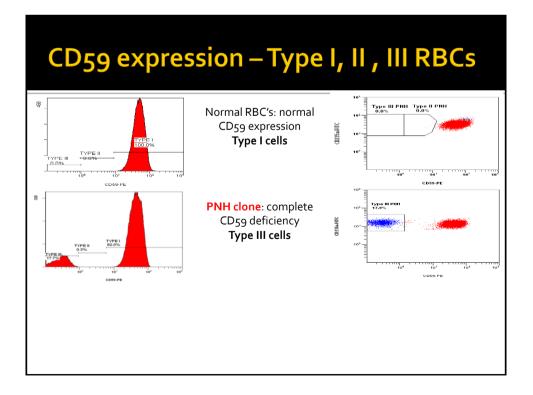
Considerations for flow cytometric PNH testing

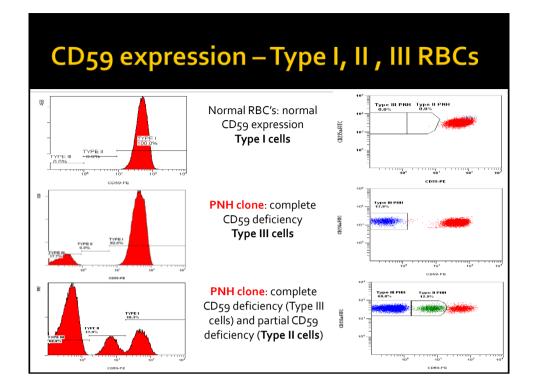

Sample source	PB (BM is not optimal)
Anticoagulant	EDTA (preferred), heparine or ACD
Sample volume	Minimum 1 ml; 3 ml is adequate for most testing, though more might be needed if WBC is very low
Maximum sample age	Up to 7 days for RBC; <48h for WBC
Routine analysis	1%; at least 5,000 events of specific cell type collected
	0,01%; at least 250,000 events of specific cell type collected
Cell populations analyzed	Granulocytes in all cases.
	Monocytes provide confirmatory information.
	monocytes provide commutery monification.
	No role for analysis of lymphocytes due to long life span.
	No role for analysis of lymphocytes due to long life span.

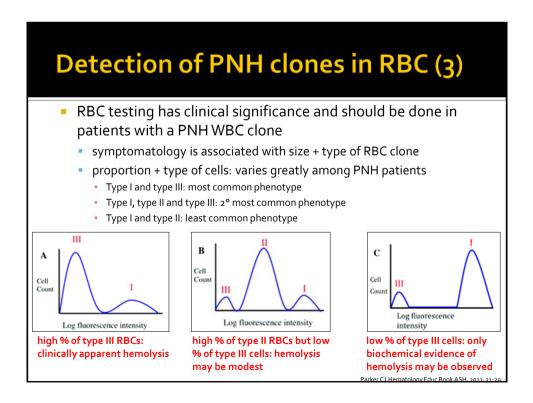


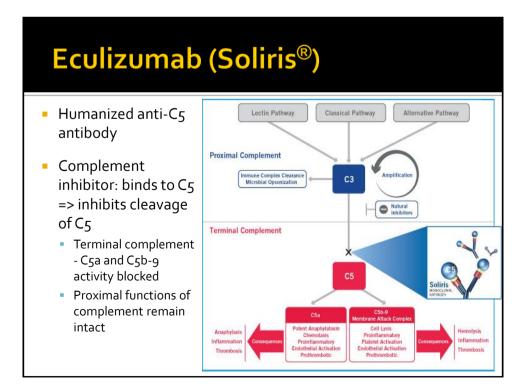





Class	sificati	ion o	of c	lini	cal	PNH
Category	Rate of vaso hemolysis	cular	BM			Flow cytometry
Classic PNH	_					Large population (>50%) GPI-anchor deficient
	Table 3. Clinical granulocyte close	one sizes		0		PMN
		N = 25 (% of total	PNH cl	one size 9	/o	
PNH in BM	Classification	patients)	Mean	Median	Range	% of GPI-anchor deficient
failure	Classical PNH	6 (24%)	55		1.7-95	PMNs is usually
disorder	PNH in bone marrow disorders	6 (24%)	44	34	0.3–98	relatively small (<10%)
Subclinical	Subclinical PNH	13 (52%)	12	3.2	<0.1-62	Small (<1%) population
PNH	PNH, Paroxysma	l nocturnal he	emoglob	inuria.		of GPI-anchor deficient PMN
		Mercier A, et al. IJLH,	2017, 3:329-36	5.		
						ematology ASH Education Book, 2011:2:

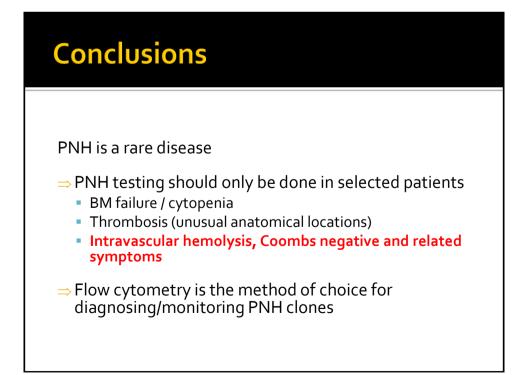






Treatment of PNH

- Hematopoietic SCTx
- Anti-complement therapy:
 - eculizimab
 - stabilization / improved hemoglobin levels
 - reduced transfusion requirements
 - reduced measures of hemolysis (eg, normalization of LDH)
 - improved quality of life
- Novel complement inhibitors in development / under study



Classification of clinical PNH

Category	Rate of vascular hemolysis	ВМ	Flow cytometry	Benefit from eculizumab
Classic PNH	Florid (LDH, often episodic macroscopic hemoglobinuria)	Cellular BM with erythroid hyperplasia, +/- normal morphology	Large population (>50%) GPI- anchor deficient PMN	Yes
PNH in BM failure disorder	Mild (often minimal abnormal biochemical markers of hemolysis)	Evidence of concomitant BM failure syndrome (AA or low-risk MDS)	% of GPI-anchor deficient PMNs is usually relatively small (<10%)	Typically no , but some patients (<10%) who have relatively large clones and clinically significant hemolysis, may benefit
Subclinical PNH	No clinical or biochemical signs of hemolysis	Evidence of concomitant BM failure syndrome (AA or low-risk MDS)	Small (<1%) population of GPI-anchor deficient PMN	Νο
			Parker CJ., Hematolog	y ASH Education Book, 2011:21-9.

PNH registry

- The aim of the PNH Registry is to collect data to characterise the progression of PNH as well as associated clinical outcomes, mortality and morbidity. Results from the PNH Registry will provide a better understanding of PNH and its real-world outcomes.
- Implemented in following countries: Argentina, Australia, Austria, Belgium, Canada, Colombia, Czech Republic, Denmark, Finland, France, ...
- Type of data :
 - demographics (age, gender)
 - medical history
 - flow cytometry results
 - symptomatology
 - treatment
 - clinical outcomes
 - safety events of interest
 - pregnancy

