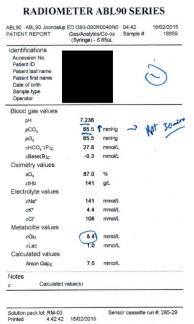

Step-by-step guide on how to read ABG/VBGs:

- 1. Learn the ranges ahead of time: very, very, useful
- **pH:** 7.35-7.45
- PaO₂: 80-100 mmHg
 - PaO₂ should be ~5x your FiO2, so at 21% oxygen (room air), PaO₂ should be ~100 mmHg
- PaCO₂: 35-45 mmHg
- HCO₃: 22-26 mmol/L
- Base excess: -2 to 2 ← not useful
- Anion gap: 8 ± 4 (i.e. 4-12, when not using K+)
- 2. Buy yourself time by confirming that you are in fact looking at an ABG and not a VBG and that it is for the correct patient
- 3. If it is an ABG check pO2 levels, do this first as it is the easiest to correct
 - a. Airway support
 - b. Supplemental O₂
- 4. Check the pH and compare it to the range, low = acidic, high = alkalotic
- 5. Check either CO₂ or HCO₃⁻, either one does not matter which is first

Increased CO_2 **OR** decreased $HCO_3 \rightarrow$ acidosis

Decreased CO₂ **OR** increased HCO₃ \rightarrow alkalosis



Compensation (general rules):

- **pH** ↓ (acidosis) + **HCO**₃ ↓ (metabolic) \rightarrow **CO**₂ will be **low** to compensate
- **pH** \downarrow (acidosis) + **CO**₂ ↑ (respiratory) → **HCO**₃ will be high to compensate

- **pH** \uparrow (alkalosis) + **HCO**₃ \uparrow (metabolic) → **CO**₂ will be high to compensate
- **pH** \uparrow (alkalosis) + **CO**₂ ↓ (respiratory) → **HCO**₃ will be **low** to compensate

i.e. the compensation will follow the change

e.g. for this ABG, we can see that:

- 1. O_2 is low, needs supplemental O_2
- 2. pH is decreased (acidosis)
- 3. pCO₂ is increased (respiratory)

4. HCO₃ is also increased (compensation)

This patient is in type II respiratory failure

Hypothetically, if we looked at HCO_3 first we would realise that an increased HCO_3 would not cause an acidosis, so it must be compensating.

Specific scenarios

Metabolic Acidosis

- 1. Check anion gap
 - Anion gap represents the total amount of unmeasured anions and is equal to ([Na⁺] + [K⁺]) ([Cl⁻] + [HCO₃⁻]) and usually has a range of 4 12 mmol/L (K⁺ is very rarely added as in practice offers little advantage)
 - b. It is a way of measuring the quantity of electrolytes/large proteins that do not appear on an ABG such as albumin and phosphate

Causes of high anion gap metabolic acidosis (HAGMA): Left total knee replacement – LTKR

- Lactate: sepsis, anaerobic metabolism
- Toxins: methanol, ethylene glycol, salicylates, isoniazid, iron
- Ketones elevated: DKA, alcoholic ketoacidosis, starvation (rare)
- Renal: uraemia/renal failure

Causes of normal anion gap metabolic acidosis (NAGMA): ABCD

- Addison's or low albumin
- Bicarbonate loss: vomiting, renal tubular acidosis (type 1,2, and 4), diarrhoea
- Chloride excess: excess saline
- Diuretics: acetazolamide

How to show-off on placement:

Winter's formula:

Used in metabolic acidosis to predict expected pCO_2 from the HCO_3^- to decide if it is a mixed metabolic disorder.

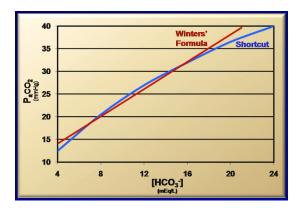
• i.e. are the patients working hard enough to blow off the excess CO₂ or are they experiencing respiratory failure as well?

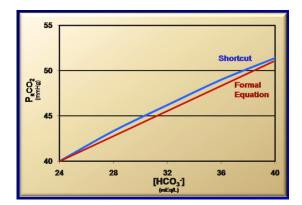
Expected
$$pCO_2 = (1.5 \times HCO_3^-) + 8 \pm 2 \, mmHg$$

Used to determine: is there adequate respiratory compensation?

Metabolic Alkalosis

Causes of metabolic alkalosis: caused by relative loss of H⁺ or potassium loss $\rightarrow \uparrow K^+/H^+$ anti-porter $\rightarrow \uparrow K^+ + \downarrow H^+$


- Diuretics: renal loss of K⁺ and H⁺
- Overdose of base: HCO₃⁻ given for TCA overdoses, antacids, laxatives
- **G**I loss: vomiting, NG tube aspiration
- Endocrine: Cushing's, steroids, hyperaldosteronism


Compensation formula, not as commonly used:

Expected
$$pCO_2 = (0.7 \times HCO_3^-) + 20 \, mmHg$$

Compensation pCO₂ shortcut for metabolic acidosis or alkalosis:

Shortcut (don't need to use the equations): $pCO_2 \approx$ the last two digits of the pH, e.g., if pH = 7.26, expected pCO_2 will be 26 mmHg, reasonable accuracy:

Respiratory Acidosis

Caused by the lungs not breathing off CO_2 and allowing accumulation of acid, so anything that causes decreased ventilation leads to respiratory acidosis.

- Central respiratory depression
- Drug depression of respiratory centre (e.g. by opiates, sedatives, anaesthetics)
- Neuromuscular disorders

- Lung or chest wall defects
- Airway obstruction
- Inadequate mechanical ventilation

Also occurs with increased catabolism (hypercatabolic disorders \rightarrow over-production of CO₂ or increased intake of CO₂)

Respiratory Alkalosis

Caused by breathing off too much CO₂ i.e. increased respiratory rate.

- Anxiety, panic attack
- Pain
- PE
- Pneumothorax
- latrogenic: mechanical ventilation
- Aspirin toxicity
- Fibrosis: increase RR to increase O₂, but side-effect is blowing off extra CO₂

The 1-2-3-4-5 rule

	HCO 3 (Baseline 24 mmol/L)		
Every 10 mmHg change in PaCO2 from <i>baseline</i> 40 mmHg	ACUTE	CHRONIC	
↑PaCO2	1	4	
↓PaCO2	2	5	

Unlike in CO_2 in metabolic acidosis/alkalosis: HCO_3 takes time to compensate, as the kidneys work slowly to retain HCO_3 .

To predict whether the respiratory condition is acute or chronic. For example, helpful in patients with ?COPD as you can work out if this is worse than their baseline or a chronic process.

Base excess

Not important

ABG Parameter			ABG result	Calculation and interpretation			
pH	>7.45	Alkalaemia		pH	pCO2	Interpretation	
	7.36-44	Normal					
	<7.35	Acidaemia	3	Ļ	↓	Metabolic acidosis	
pCO2	>45	High	3	↑	Î	Metabolic alkalosis	
	35-45	Normal		↑	1	Respiratory alkalosis	
	<35	Low		į	1	Respiratory acidosis	
HCO3	>26	High		Corrected standard AG for albumin			
	24+/- 2	Normal		Albumin + 1.5 x Phosphate			
	<22	Low	62	4			
AG	>16	High		Anion Gap calculation			
	12+/-4	Normal		$\{[Na+] - [Cl^+ HCO_3]\} = 12+/-4$			
	< 8	Low		Corrected Na+ for AG in hyperglycemia			
Glucose	>10	High		Corrected Na+ = Na + $\underline{Glucose - 5}$			
	< 2	Low			3		
Gap: Gap		AC - AC 12		Gap: Gap calculation for metabolic acidosis			
	$\frac{\Delta \text{ AG}}{\Delta \text{HCO}_3} = \frac{\text{AG} - 12}{24 - \text{HCO}_3}$			<0.4		Low or Normal AG metabolic acidosis	
				0.4-0.8	Norma	al + high AG metabolic is	
Lactate	<1.9	Normal		0.8-2.0	Pure h	igh metabolic acidosis	
	>2.0	High			Metab	olic acidosis with metabolic	
			5	>2.0	alkalo	sis/respiratory acidosis	
pO2	80-100	Normal		PAO2 = [713 x FiO2] – [pCO2 x 1.25]			
	< 80	Нурохіа		A-a gradient = $PAO2 - PaO2 = Age_{+4}$ 4			
	· ·		Compensation r	ules for			
	Metabolic acidosis			Metabolic alkalosis			
Expected PCO2	1.5 X [HCO3] + 8 (+/-2)		0.7 X [HCO3] + 20 (+/- 5)				
	Respiratory acidosis		Respiratory alkalosis				
	Acute		Chronic	A	Acute Chronic		
Expected HCO3	$24 + pCO2 - 40 X_1$ 24 +		24 + pCO2 - 40 x 4	24 - 40- pCO2 x2		$24 - 40 - pCO2 X_5$	