DEPARTMENT OF ENERGY.MINES AND RESOURCES MARINE SCIENCES BRANCH

MINISTERE DE L'ENERGIE DE MINES ET DES RESSOURCES DIRECTION DES SCIENCES DE LA MER
camaca
DFO - Library / MPO - Bibliothèque

10028216

ATLANTIC OCEANOGRAPHIC LABORATORY

BEDFORD INSTITUTE

LABORATOIRE OCEANOGRAPHIQUE DE L'ATLANTIQUE INSTITUT de BEDFORD

Dartmouth, Nova Scotia
Canada

PROGRAMMED BY

THE CANADIAN COMMITTEE OF OCEANOGRAPHY

58123

ATLANTIC OCEANOGRAPHIC LABORATORY
BEDFORD INSTITUTE, DARIMOUTH, N. S. - CANADA

This is a technical report to our Headquarters which has received only limited circulation. On citing this report in a bibliography, the title should be followed by the words "UNPUBLISHED MANUSCRIPT", in accordance with accepted bibliographic custom.

RECENT FORAMTMIFERA OF THE CONTINENTAL SHETF OFF EASTERN CANADA: A PRELTMINTARY REPORT

by

Kenneth Hooper

REPORT A.O.S.	70-3
JUNE	1970

ABSTRACT

Foraminifera of 40 bottom sediment samples collected from depths ranging from 5 to 457 metres between English Point, Quebec, and Flemish Cap, 360 miles east of Newfoundland were mechanically and faunally analysed. 318 species and varieties of Foraminifera were recognized.

Raw data of foraminiferal counts were processed by computer to produce data matrices, the elements of which express species as a percentage of the total foraminiferal fauna per sample (station). These data were used as input for a factor-vector analysis, the results of which indicated that seven benthonic foraminiferal assemblages exist in the region of the continental shelf off eastern Canada.

Inspection of depth data suggests that division into seven depthassemblages agrees well with oceanographic data on water-mass characteristics.

Faunal lists are given of (1) species characteristic of each assemblage, (2) assemblage-ubiquitous species and, (3) assemblage-indicator species.

NOTE: Appendices D, E, F and G which include the data matrices are not part of this report but may be obtained from the author.

RECEAT FORAMINIFERA OF THE CONTINENTAL SHELP OFP EASTERN CANADA: A PRELIMINARY REPORT

TNTRODUCTION

Previous work:

Published work (to 1965) on recent foraminifera off eastern Canada is sparse, and lacks comprehensiveness. Dawson (1860, 1870), Cushman (1918-31) and Whiteaves (1869, 1875) were the main contributors. Unpublished work, mostly in report form in the case of governmental institutions, and in the form of dissertations in the case of universities, deals mainly with littoral, sublittoral and inner shelf environments (Bertlett, 1962, 1963, 1964, 1965; Athearn, 1954; Sproule, 1962).

Present study:

The present study is an attempt to elucidate the broad picture of foraminiferal distribution over the continental shelf from a comparatively small number (40) of bottom sediment samples relative to the area covered (some $300,000 \mathrm{sq}$. miles). No claim is made for the randomess of the samples in a statistical sense. Indeed, they have been chosen from a larger number to represent as wide a range of depths and geographical positions as possible, in the expectation that the major marine environments of the region would thus be represented.

The bottom sediment samples were collected in May and June of the years 1959 and 1965 from stations between English Point, Quebec, in the west, Flemish Cap in the east, and the southern limit of the Grand Banks - the so-called Tail in the south (Figure 1). They were collected from depths between 5 and 457 metres using a short tube (Phleger) corer and a Dietz-LaFond grab, the choice depending upon the physical characteristics of the sediment; mud and clay commonly were collected by means of the short tube corer, silt and sand by means of the Dietz-LaFond grab.

The following abbreviations are used:
543 followed by station number refers to cruise number 43 of C.N.A.V. SACKVILLE in May, 1969.

S44 followed by station number refers to cruise number 44 of C.N.A.v. SACKVILLE in June, 1959.

An M followed by station number refers to a cruise of the longliner MARC ST. out of Fox River, P.Q., in June 1965. The letters S.I. followed by station number refers to the Sept Iles Bay samples collected on the same cruise. Table 1 is a table of cruise data compiled mostly from ship's log during the cruises.

All specimens of foraminifera obtained from the bottom samples are assumed to be modern forms, although not all samples were stained to show protoplasm. Samples of S43 and S44 were not injected with staining medium, but those of the M and S.I. series were. However, in this preliminary study, all have been processed by the computer program as if they had not been injected with staining solution. This is denoted on computer printout as TOIL MATRIX (for a matrix based on total populations).

CRUISE DATA
Table 1

			Lat.	10n	$\begin{aligned} & \stackrel{5}{0} \\ & \stackrel{4}{4} \\ & \stackrel{0}{2} \\ & \stackrel{5}{7} \\ & \stackrel{5}{4} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$				
1	Sackville 4	4317	$46^{\circ} 48^{\prime}$	$54^{\circ} 53^{\prime}$	237			M	-0.97
2	Sackville	43	$46^{\circ} 49^{\prime}$	$55^{\circ} 36^{\prime}$	237 74	X		$\mathrm{S}_{\mathrm{M}}^{\mathbf{M}}$	-1.03
3	n	19	$46^{\circ} 31^{\prime}$	$56^{\circ} 10^{\prime}$	135	x		S	-1.04
4	"	21	$45^{\circ} 58^{\prime}$	$57^{\circ} 08^{\prime}$	218		X	M	2.77
5	"	22	$45^{\circ} 46^{\prime}$	$57^{\circ} 30^{\prime}$	457		X	M	4.80
6	n	23	45 ${ }^{\circ} 3{ }^{\prime}$	$57^{\circ}{ }^{\circ} 5^{\prime}$	255		X	M	5.09
7	"	27	$46^{\circ} 37^{\prime}$	$58^{\circ} 30^{\prime}$	430		X	Clay	4.74
8	"	35	$47^{\circ} 06^{\prime}$	$59^{\circ} 59.5^{\prime}$	292		X	S-M	4.79
9	"	47	$44^{\circ} 11.5^{\circ}$	52° 45'	135	X		S	-
10	"	52	$45^{\circ} 39^{\prime}$	$50^{\circ} 30^{\prime}$	74	X		S	-
11	"	63	$42^{\circ} 51^{\prime}$	$49^{\circ} 57{ }^{\circ}$	164	X		S	2.48
12	"	64	$43^{\circ} 11^{\prime \prime}$	$50^{\circ} 12{ }^{\circ}$	65	X		S	1.70
13	"	65	$43^{\circ} \mathrm{O} 9^{\prime}$	50° 27'	58	X		S	1.29
14	"	82	$47^{\circ} 00^{\prime}$	$45^{\circ} 00^{\prime}$	164	X		M	3.02
15	Sackville 4	4416 B	47° 495 ${ }^{\circ}$	$64^{\circ} 56^{\prime}$	5	X		5	12.74
16	"	218	$47^{\circ} 54^{\prime}$	$65^{\circ} 18^{\prime}$	64	X		-	
17	"	27	470 ${ }^{\circ}$ 52'	$65^{\circ} 30^{\prime}$	62		X		-0.20
18	"	$28 C$	47° 48'	65° 402'	50		X	St.M	11.40
19	"	29	$47^{\circ} 54^{\prime}$	$65^{\circ} 36^{\prime}$	26		X		4.20
20	"	30	$47^{\circ} 5558^{\prime}$	$65^{\circ} 37.5^{\prime}$	38		$\underline{8}$	M-S	5.20
21	"	32A	$47^{\circ} 565^{\prime}$	$65^{\circ} 46^{\prime}$	34		X	M	-60
22	"	34	$47^{\circ} 58^{\prime}$	$65^{\circ} 54^{\circ}$	32		X	-	3.60
23	"	35	$47^{\circ} 58^{\prime}$	$66^{\circ} 04^{\circ}$	12		X	M	1.20
24	"	57A	$48^{\circ} 07^{\prime}$	$64^{\circ} 57^{\circ}$	82		X	St.M	-0.45
25	Marc	SI. 2	$50^{\circ} 125^{\prime}$	$66^{\circ}{ }^{\circ} 22^{\prime}$	7	X		M	-
26	"	SI. 6	$50^{\circ} 12^{\prime}$	$66^{\circ}{ }^{\circ} 29^{\prime}$,	12	X		M	-
27	"	SI. 9	$50^{\circ} 10^{\prime}$	$66^{\circ} 275{ }^{\prime}$	36	\mathbf{X}		M	-
28	- "	M. 13	$49^{\circ} 15^{\prime}$,	$63^{\circ} 52^{\prime}$	365	X		$\mathrm{M}^{\text {M }}$	4.31
29	"	M. 35	$49^{\circ} 515^{\prime}$	$65^{\circ} 26^{\prime}$	82	X		Clay	-
30	"	M. 37	$49^{\circ} 415^{\prime}$	$65^{\circ}{ }^{\circ} 25^{\prime}$	274	X		M	. 87
31	"	M. 43	$49^{\circ}{ }^{\circ} 16^{\prime}$	$65^{\circ} 19^{\prime}$	56	X		S	2.87
32	"	M. 47	$49^{\circ}{ }^{\circ} 22^{\prime}$	$66^{\circ} 12^{\prime}$	317	X		-	4.64
33	"	M. 53	$49^{\circ} \mathrm{O} 4^{\prime}$	66° 195'	250	X		M	4.71
34	"	M. 54B	$49^{\circ} \mathrm{F} 7^{\circ}$	$66^{\circ} \mathrm{O} 21^{\prime}$	222	X		-	3.47
35	"	M. 55A	$50^{\circ} \mathrm{O} 55^{\prime}$	$66^{\circ} 22^{\prime}$	142	X		M	1.77
36	"	M. 57C	$49^{\circ} 37^{\prime}$	$67^{\circ} 11{ }^{\prime}$	237	X		M	0.23 ?
37	"	M. 58	$49^{\circ}{ }^{\circ} 35^{\prime}$	$67^{\circ} 07{ }^{\circ}$	106	X		S-M	0.23
38	"	M-63	$49^{\circ} 1.2^{\prime}$	$66^{\circ}{ }^{\circ} 49^{\prime}$	274	X		M	4.68
39	"	M.64B	$49^{\circ} 09^{\circ}$	$6^{6} 6^{\circ} 42^{\prime}$	191	X		M	3.40
40	+	M.F	$49^{\circ} 24^{\circ}$	$64^{\circ} 31^{\prime}$	398	X		M	4.72

N.B. MARC series temperatures compiled from data supplied by Canadian Oceanographic Data Centre(Department of Energy, Mines and Resources).

PREPARATION OF SAMPLES FOR ANALYSIS

Laboratory procedures:

(a) General

The amount of sediment collected by the Dietz-LaFond-type grab varied considerably from station to station. The samples collected on cruises s43 and S44, in 1959, were either split into putative aliquot portions or not, according to the amount of material available. The top 6 cm only of the sediments collected by the short tube (Phleger-type) corer were used. On the cruise of the longliner MARC ST. the Phleger-type corer was irreparably damaged at the first station. As a consequence of this damage, all samples were taken by Dietz-LaFond grab. Great care was taken to ensure that the sample reached the laboatory without being inverted or contorted.

Supposed representative portions were taken of each sample by pressing a 3 -inch length of a cylindrical plastic core liner $1 \frac{1}{4}$ inches in diameter into the sediment sample from above, and recovering the top 6 cm of material. This sediment, with its overlying sea-water, had been preserved in alcohol and was subsequently stained with rose bengal. Normally, only one insertion of the cylindrical plastic liner was needed to extract sufficient sediment for particlesize analysis and faunal analysis.
(b) Grading of samples

Sediment samples of the 543 and 544 series were divided into six grades by washing through a nest of sieves, the size of mesh openings of which are as follows:

Grade 1, > 1190mu; Grade 2, > 590mu < 1190mu; Grade 3, > 297mu < 590mu; Grade 4, $>149 \mathrm{mu}<297 \mathrm{mu}$; Grade 5, > $62 \mathrm{mu}<149 \mathrm{mu}$; and Grade 6, < 62 mu .

In order not to damage the foraminifers 'Ro-tapping' was avoided. Instead, grains were assisted to pass through the sieves by a gentle water-jet. This procedure may introduce error into the mechanical analysis, but this error is not thought to be high. In any case, because the primary purpose of grading was to assist faunal analysis, it was decided to accept this risk of error in the mechanical analysis.

Dispersing agents were not used because it was suspected that they disintegrate some agglutinating foraminifers. However, in the pipette analysis of grade 6 (fine) material in the sedimentation colum, calcium oxalate was used as a dispersing agent. The fauna of grade 6 was not analysed.

Apart from the procedures outiined above the method is essentially that of Twenhofel and Tyler (1941, pp. 46-55) for the mechanical analysis of sediments. particle-size analysis was conducted for each sample. The weights of each grade obtained from sieve analysis were combined with those obtained from the sedimentation colum (pipette method). The weight percentage of the range was calculated for each class interval (grade). Cumulative weight percentages were also calculated. Details of the processing of these data are given in the section on particle-size analysis.

After the sediments were dried, each grade (except grade 6) was treated in the manner described in the next section for the separation of foraminifers from sediment. Grade 6 (fine material of particle size less than 62 mu) was not
analysed faunally because foraminifers and other organisms contained in it are too small for reliable specific identification using a stereomicroscope with a maximum magnification of approximately $\times 100$, and because early growth stages of many foraminifers are so similar as to be specifically indistinguishable. The drying of material before faunal analysis has the disadvantage that some agglutinating foraminifers may disintegrate.

The sediments collected in 1965 on the cruise of the MARC ST. were kept in the wet state throughout. After passing through grading sieves the material was stored in plastic vials. Any lost liquid was replaced, so that the foraminifers at no time were allowed to dry out.

These samples were not separated and concentrated by the bromoform method. Instead, the foraminifers were identified and counted under water. Such counting is very tedious where the ratio of foraminifers to mineral grains is low.
(c) Separation of foraminifers from sediment

The procedure described below was only carried out on samples of the S43 and 544 cruises. Foraminifers were separated from mineral grains by the use of the heavy liquid bromoform. The sediments were passed through a succession of heavy-liquid mixtures of decreasing density. Foraminifers and grains were separated according to whether their density was greater or less than that of the mixiure. Bromoform (S.G. $=2.88$) was diluted by the addition of alcohol to obtain solutions of various specific gravities. Solution 1 was adjusted to a specific gravity intermediate between calcite (S.G. = 2.72) and quartz (S.G. $=2.66$), solution 2 was adjusted to a specific gravity slightly below that of quartz and solution 3 was adjusted to a specific gravity of approximately 1.5 by the addition of alcohol.

The grains that sank in solution 1 commonly consisted of calcite and some heavier minerals, plus sone calcareous organic remains (i.e. pieces of shell) and some calcareous foraminifera. The floating portion was collectea in a separate beaker, filiered and placed in solution 2. This float usually contained light minerals, quartz grains, chitinous organisms, some arenaceous foraminifers and many foraminifers containing trapped air. The particles in solution 2 were treated in a manner similar to those in solution 1 . The heavy portion (S.G. about 2.66) sank and commonly contained quarta grains and some arenaceous foraminifers. The float from solution 2 contained the lighter grains, chitinous organisms and foraminifers containing trapped air. The float was then placed in solution 3 (S.G. approximately 1.5) and allowed to settle. Grains and some foraminifers sark in this solution. Most of the foraminifers containing trapped air floated, as did the chitinous organisms and the fragments of plant material. The main bulk of the fauna was found in this portion. The portions are called iractions.
(d) Identification and counting of foraminifers

In order to obtain a statistically valid sample, identification and counting of foraminifers in each sample fraction or split was continued until more than 300 specimens of the most abundant species had been counted. However, once a split portion had been selected it was counted in its entirety. If the count was less than 300 another portion was taken, and so on, until a total count of about 300 was reached. The weight of the sediment so analysed was noted. With samples of low foraminiferal number it was not always possible
to realize this ideal, and counting had to be stopped at a lower number.
The samples of the S43 and S44 series were divided into grades and, these in turn, were divided into fractions. When the number of foraminifers concentrated in the fraction was very high, the fraction was split into smaller portions by means of a simple splitting device capable of dividing the fraction into two approximately equal portions. The device consisted of a hopper into which the fraction was placed. The foraminifers were passed over four knife edges and sent down four alternating chutes into two boxes. The contents of one of the boxes were weighed (split weight) and the contained foraminifers were identified and counted. The MARC ST. samples, which were divided into grades, were treated differently as described below. For microscope work it was necessary to remove the alcohol - rose bengal solution, the colour of which gave a pink hue to all tests and the vapour of which can irritate the mucous membranes. This was done by filtration and dilution with distilled water.

Where the amount of material of a grade-size was small, all the contained foraminifers were identified and counted. In cases where a large quantity of material was present in the vial containing a grade, the contents were shaken and then allowed to settle. When all the material had settled a length of capillary tubing (bore diam. $=5 \mathrm{~mm}$) was inserted vertically into the sediment. With a finger tightly capping it, the tube was withdrawn and the contents were allowed to drain into a tray. It was sometimes necessary to repeat the process in order to obtain a statistically valid sample of foraminifers.

Evaluation of the staining technique presented problems. A specimen stained pink with rose bengal was recorded as living when collected only if its own protoplasm, as indicated by the shape and homogeneity of the stained mass, had taken the stain. Uneven, granular type staining was interpreted as due to foreign protoplasm, probably of algal or bacterial origin, that entered the test after death. Live protoplasm commonly contracts to a spherical globule within the test after contact with the fixing alcohol. However, it was not always easy to be sure of the nature of the stained protoplasm. In most instances the stained protoplasm could be seen within the test, but in other cases the test wall was not translucent enough and had to be broken. Thus, many tests were destroyed and counting was time-consuming.

After identification and counting of the foraminifers, the material comprising the fraction was weighed (fraction weight). The grade weight was also determined.

PARTICLE-SIZE ANALYSIS

Method of Moments:

A FORTRAN program was written for the method of moments, and textural parameters of sediment samples 1 to 40 were computed using an IBM 1620 computer.

Moment measures are obtained by summing the individual moments for each class interval. The measure obtained in this way is called a 'data moment' about the origin and is defined as,

$$
n_{k}=\frac{1}{N} \sum_{i=1}^{n} X_{i}^{k} f_{i}
$$

where X_{i} is the class mid-point of the i th class, f_{i} is the class frequency, and h is the number of classes.

Data moments yield less exact results than theoretical moments, but may approach them if the number of classes, h, is high.

The first moment about the origin of the distribution, n, is the arithmetic mean, M. The next three moments are computed about the mean, (Inman, 1951). They are given by

$$
\begin{aligned}
& m_{k}=\frac{1}{N} \sum_{i=1}^{h}\left(X_{i}-M\right)^{k} f_{i} \quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . . \\
& \text { Also, standara deviation is }
\end{aligned}
$$

Skewness is

$$
3_{3}=m_{3} / \sigma^{3} \quad \ldots . \ldots \ldots
$$

and kurtosis is

$$
B_{2}=m_{4} / \sigma^{4} \quad
$$

The FORIRAN program may be obtained from the author.
The results, expressed in phi units, are shown in Table 2. They are approximate, no correction having been made for class interval.

The values of mean grain diameter (in phi units) are also shown in column eleven of the re-ordered oblique projection matrix (Table 4, p. 20).

Relation of mean size of grains to depth:
Figure 2 shows mean diameters (in phi units) against depth in metres. The scatter of points indicates only a weak correlation of particle size with depth. However, a general trend of decreasing particle size with increasing depth of water is seen.

DATA MATRICES

During the course of identification and counting, forms were seen which were thought to be varieties of certain species. It was deemed desirable to distinguish these forms from those that were more characteristic of the species as described in the literature in order to facilitate later evaluation of their ecological significance, if any. They were therefore given a number and then treated as separate entities (species) by the computer. The factorvector analysis program does not recognize taxonomic or phylogenetic relationships.

The great amounts of data on grade weights, fraction weights, split weights and the foraminiferal counts amassed during the first stages of the study were, processed by Control Data G-20 computer using a program described by

Table 2

Particle Size Analysis of Sediments - Phi Units

Station Number	Mean	Standard Deviation	Skewness	Rurtosis
1	4.77	1.86	1.38	4.14
2	. 86	1.75	1.09	4.56
3	3.21	. 51	-1.41	8.64
4	6.01	1.79	-. 05	2.34
5	7.09	1.77	-. 14	2.98
6	5.97	1.32	. 01	2.33
7	4.31	2.17	-. 62	3.15
8	1.71	1.25	. 62	6.18
9	2.45	- . 61	-. 33	10.52
10	1.65	. 77	- . 58	5.07
11	1.82	. 92	- . 66	5.04
12	2.39	. 44	1.26	5.20
13	1.34	. 64	-. 26	3.54
14	2.46	1.65	. 21	4.03
15	1.76	. 67	. 62	3.42
16	6.29	1.89	. 43	3.16
17	5.17	1.30	- . 89	4.82
18	2.68	2.65	. 22	2.13
19	4.79	1.71	. 36	3.11
20	3.73	2.44	. 99	3.46
21	4.03	3.02	. 17	2.34
22	4.65	1.85	. 23	2.57
23	4.63	1.82	. 69	2.90
24	5.46	1.44	-. 42	3.62
25	4.00	1.73	1.32	5.66
26	4.93	1.97	. 95	3.84
27	4.37	1.79	1.00	4.69
28	6.41	2.39	-. 31	2.75
29	6.22	2.92	-. 39	2.30
30	5.53	3.10	-. 30	1.80
31	2.29	2.64	1.32	4.43
32	7.30	1.87	- . 26	2,93
33	6.68	1.97	. 15	2.79
34	3.82	3.00	. 55	2.31
35	5.45	2.09	. 56	3.47
36	6.70	2.07	-. 07	3.19
37	3.41	2.28	1.05	4.00
38	7.00	2.57	-. 60	3.00
39	6.20	2.60	. 09	2.00
40	7.56	1.95	- . 53	3.33

Figure 2 - The relation of mean size of grains to depth of occurrence of the faunal assemblages.
the present author at the International Planktonic Conference in Geneva, 1967. In the resulting data matrices (Appendices D - G) colums represent stations (samples).

The composition of the planktonic fauna, shown as percentage per species for each station, is given in Appendix D.

The percentage of foraminifera of all species per grade; the number of species in each class (porcellaneous, arenaceous, hyaline benthonic, planktonic) as a percentage of the total number of species; the foraminifera of each class as a percentage of the total benthonic foraminifera; and the foraminifera of each class as a percentage of the total foraminifera, are given for each station in Appendix B.

The number of benthonic foraminifers per species as a percentage of the total benthonic foxaminifera of each station, and the number of benthonic foraminifers per species as a percentage of the total foraminifera of each station are contained in two matrices in Appendices F and G.

FACTOR-VECTOR ANALYSIS

One of the data matrices, that which gives the number of benthonic specimens per species as a percentage of the total benthonic foraminiferal fauna per station, was punched on cards by the computer. These cards constitute the input for a factor-vector analysis program described by Manson and Imbrie (1964).

In order to accomodate the large number of species (318) in the present study, the program was modified so that it could be run in the $Q Q$ mode. The statements of Table 3 were substituted for the original ones. Statements 074 and 079 must of necessity be changed; statements 197, 198, 218, 345, 377A are preferable to those published. The IBM 7094 computer at the Institute of Computer Science, University of Toronto, was made available to carry out the program. The systems tape in use with this installation necessitated the omission of the A PLOT subroutine in order to free space in memory.

The results of the factor-vector analysis are given on the re-ordered oblique projection matrix (Table 4) the elements of which are a measure of faunal similarity. Each faunal sample is resolved into contributions of seven end-members. Samples $36,17,31,26,7,35$ and 12 each have 100 per cent of end-members A, B, C, D, E, F and G, respectively. These samples are referred to as end-member samples, or simply, end-members. In the matrix they are underlined. Maximum faunal similarity is represented by unity, while zero indicates that samples have nothing in common. In this study a coefficient of famal similarity greater than 0.69 is regarded as indicating a high degree of faunal similarity.

Based on available data the writer postulates that the most probable explanation of the distribution of benthonic foraminiferal faunal assemblages of the region relates them to their depth of occurrence. However, there are some samples which appear to be, anomalous if a depth-assemblage zonation is accepted. Most of the anomalies may be explained in terms of sediments which have been displaced downslope.

A sediment which has been displaced downslope may (I) lose some material, (2) gain some material, or (3) retain substantially the same composition. In the first and segond cases a lowering of the value of the coefficient of

MODIFYING STATEMENTS 2ℓ-MODE

```
21 DO 25 I = 1,100
    DO 25 J = 1,100
    SEG1 = SQRTF (ABSF((6.0*CMO*CM1)/(CM2*CP1*CP3)))
    SEG2 - SQRTF (ABSF((24.0*CMO*CM1*CM1)/(CM3*CM2*CP3*CP5)))
    A(I,12) = A(I,11)*SQRTF (ABSF (0.5+0.25*A(I,5)))
        IF'(NORMAT) 1290,1290,2371
2 3 7 1 ~ C O N T I N U E :
COVA }07
COVA }07
COVA }19
COvA 198
COvA 218
COVA }34
COVA377A
```

$\begin{array}{ll}\stackrel{H}{e} & 1 \\ \underset{\sigma}{*} & \vdots \\ \omega & 1\end{array}$

Table 4
QQ-Analysis of Eastern Canadian Shelf Forams by Hooper Geology-Carleton try 92 Mode M7-5 Trial Series MTX 3 Reordered Oblique Projection Matrix

Name	Index	$\begin{gathered} \text { M0057C } \\ 36 \\ \hline \end{gathered}$	$\begin{gathered} \text { S44027 } \\ 17 \end{gathered}$	$\begin{gathered} 400043 \\ \underline{31} \end{gathered}$	$\begin{gathered} \text { SI0006 } \\ 26 \end{gathered}$	$\begin{gathered} 543027 \\ 7 \end{gathered}$	$\begin{gathered} \text { M0055A } \\ 35 \\ \hline \end{gathered}$	$\begin{gathered} \text { S4 } 3064 \\ \underline{12} \end{gathered}$	Depth (M)	Mean, Ph1	
M0057C	36	1.00	0.00	0.00	0.00	0.00	0.00	0.00	237	6.7	
M00047	32	0.99	-0.01	0.08	0.01	0.09	-0.09	-0.22	317	7.2	
M00037	30	0.92	-0.01	0.10	-0.02	0.26	-0.07	-0.56	274	5.5	
*M00013	28	0.85	-0.01	0.27	-0.00	0.60	-0.08	-0.58	365	$6-41$	
M00053	33	0.73	-0.01	-0.23	-0.03	0.18	0.02	0.26	250	6.6	
M00035	29	0.69	-0.01	0.09	-0.01	0.37	-0.05	-0.18	166	6.2	
*S43019	3	0.59	0.41	0.33	0.35	-0.14	0.57	-0.41	135	$3.2{ }^{2}$	
S43017	1	0.58	0.06	0.53	0.15	-0.10	0.29	-0.55	237	4.7	1
*S4457A	24	0.51	0.51	0.36	0.48	-0.10	0.41	-0.50	82	5.43	上
M0054B	34	0.48	-0.01	-0.21	-0.06	0.01	0.21	0.46	222	3.8	\cdots
S44027	17	0.00	1.00	0.00	0.00	0.00	0.00	0.00	62	5.1	
S4432A	21	-0.04	0.99	-0.03	-0.17	0.02	-0.08	0.05	34	4.0	
S4428C	18	-0.04	0.98	-0.03	-0.17	0.02	-0.08	0.05	50	2.6	
S44035	23	-0.04	0.98	-0.03	-0.17	0.02	-0.08	0.05	12.5	4.6	
544034	22	-0.01	0.98	-0.01	-0.09	0.01	-0.03	0.01	32	4.6	
S44029	19	0.01	0.98	0.02	0.03	0.01	0.01	-0.01	26	4.7	
S4421B	16	0.05	0.86	0.09	0.28	-0.01	0.14	-0.06	64	6.2	
S44030	20	-0.01	0.78	0.11	-0.13	0.04	-0.01	-0.03	38	3.7	
M00043	31	0.00	0.00	1.00	0.00	0.00	0.00	0.00	56	2.2	
S43052	10	-0.42	0.01	0.90	-0.04	0.42	0.02	0.22	74	1.6	
543018	2	-0.20	-0.01	0.90	-0.02	0.04	-0.02	0.24	73	. 8	
*S43035	8	0.64	-0.01	0.65	0.04	0.29	-0.03	-0.26	292	1.74	
			$\begin{array}{ll} \star 1 & \mathrm{Di} \\ \star^{2} & \mathrm{Co} \\ { }^{2} 3 & \mathrm{Co} \\ { }^{4} & \mathrm{Di} \end{array}$	ced? go in lation ced?	could go emblage h this ff. 0.65	n assemb $6 ?$ na unce uld go	ge 5 in, coul assembl	$\begin{aligned} & \text { go in } 2, \\ & \text { e No. } 13 \end{aligned}$	6. Pro	$\begin{aligned} & \text { ly } 2 \\ & \text { (Cont.) } \end{aligned}$	

Table 4 (Cont.)
CQ-Analysis of Eastern Canadian Shelf Forams by Hooper Geology-Carleton try Q Q Mode M7-5 Trial Series MTX 3 Reordered Oblique Projection Matrix

Name	Index	$\begin{gathered} \text { M0057C } \\ 36 \end{gathered}$	$\begin{gathered} \mathrm{S} 44027 \\ \underline{17} \end{gathered}$	$\begin{gathered} \text { M00043 } \\ 31 \end{gathered}$	$\begin{gathered} \text { SI0006 } \\ \underline{26} \end{gathered}$	$\begin{gathered} 543027 \\ 7 \end{gathered}$	$\begin{gathered} \text { M0055A } \\ 35 \end{gathered}$	$\begin{gathered} 543064 \\ 12 \end{gathered}$	Depth (M)	Mean, Phi	
SI0006	26	0.00	0.00	0.00	1.00	0.00	0.00	0.00	12	4.9	
SI0009	$\overline{27}$	0.04	0.05	0.03	0.98	-0.03	0.22	-0.06	36	4.3	
SI0002	25	-0.07	-0.06	-0.07	0.70	0.04	-0.17	0.10	7	4.0	
543027	7	0.00	0.00	0.00	0.00	1.00	0.00	0.00	430	4.3	
543022	5	0.34	-0.01	-0.02	0.01	0.74	-0.08	-0.32	457	7.0	
M0000F	40	0.04	0.01	0.14	-0.04	0.72	0.36	0.10	398	7.5	
S43021	4	0.06	-0.01	-0.17	0.01	0.69	-0.02	0.43	218	6.0	1
*S4416B	15	-0.43	0.12	0.48	-0.05	0.58	0.06	0.12	5	1.75	\cdots
543023	6	0.15	-0.01	-0.04	0.04	0.53	-0.05	-0.17	255	5.9	ω
M0055A	35	0.00	0.00	0.00	0.00	0.00	1.00	0.00	142	5.4	
M00058	37	0.07	0.08	0.05	0.40	-0.07	0.98	-0.75	106	3.4	
M0064B	39	-0.04	-0.01	-0.05	-0.04	0.01	0.77	0.09	191	6.1	
* M00063	38	0.24	-0.01	-0.06	-0.06	0.06	0.76	-0.07	274.5	6.96	
S43064	12	0.00	0.00	0.00	0.00	0.00	0.00	1.00	65	2.3	
S43063	11	-0.01	-0.01	0.09	-0.01	-0.12	0.05	0.98	164	1.8	
S43065	13	-0.13	0.02	0.27	-0.02	0.06	0.01	0.93	58	1.3	
543047	9	0.07	0.01	0.12	0.01	-0.07	0.26	0.75	136	2.4	
543082	14	-0.05	-0.00	-0.14	0.01	-0.05	0.06	0.42	165	2.4	
*5 Probably statistically invalid. Only 14 specimens.											
gh Coefr. Displaced downsloper steep slop											

faunal similarity will result, when the sample is compared with the end-member of the depth-assemblage in which the sample originated in the first place. In the third case the coefficient of faunal similarity will remain unchanged, and it will normally be a 'high' value.

A very low coefficient of faunal similarity may indicate that the fauna is so unlike the end-member with which it is compared that a great deal of loss or gain on displacement may have occurred, or it may represent a quite distinct fauna. In the latter case a completely different facies to those now existing in the region, or a fauna of different age, may be indicated. These possibilities should be carefully considered if the sample has a low coefficient with respect to all other end-members and hence depth-assemblages in the region under study.

Samples of doubtful statistical validity may also produce anomalies. If the number of specimens counted is so low as to be statistically nonsignificant, then the number of species recorded is likely to be non-significant also, although the percentages will be quite high. In such cases, the sample studied is not representative of the fauna. Such a sample may have a moderate or even high coefficient of faunal similarity when compared with one or more end-member samples, and is not detectable as anomalous from the re-ordered oblique projection matrix. However, if also the sample has been grouped in an intermediate or deep water depth-assemblage, although it was, in fact, collected from shallow water, it is clearly suspect, as samples are not likely to be displaced upslope in nature.

In reading the re-ordered oblique projection matrix (Table 4) the following points should be borne in mind: (1) although the values are given to two decimal places only the first may be significant; (2) the first column (heading name) is the cruise number and station number of the sample; (3) the second column (heading 'index) is the sample number according to the sequence given in this study (see also cruise data - Table 1); (4) the seven subsequent columns are headed by their end-member samples; (5) the tenth column (heading 'depth' is the depth in metres at which the sample was found. These values, which are not part of the computer output, have been added to the matrix by hand; (6) the eleventh column (heading mean phil) is the average size of sedimentary grains in the sample expressed in phi units. These values, which are not part of the computer output, have been added to the matrix by hand; and (7) the elements of the matrix (column 3 to 9) are coefficients of faunal similarity.

There are seven groupings of samples in relation to end-members in the re-ordered oblique projection matrix. Each represents a benthonic foraminiferal assemblage. In each assemblage coefficients of faunal similarity 0.69 and greater are enclosed by a continuous line.

Assemblage No. 1, having special problems, will be considered as the last assemblage in this section.

Assemblage No. 2:
All samples have coefficients of faunal similarity higher than 0.69. Inspection of the list of depths of occurrence reveals a range from 12.5 to 64 metres. Mean grain size of sedimentary grains, in phi units, ranges from 2.6 to 6.2 , with an average value of 4.4 .

Assemblage No. 3:

Three samples have coefficients of faunal similarity above 0.69 . Sample 8 with a coefficient of 0.65 when compared with end-member sample 31 , has a moderate degree of faunal similarity. However, it also has a coefficient of 0.64 with respect to end-member sample 36 in assemblage 1. Its depth of occurrence at 292 m seems more appropriate to assemblage 1. Even so, it might be displaced downslope from assemable 3 which, on the basis of samples 31, 10 and 2 has a depth range of 56 to 74 m . The mean size of sedimentary grains ranges from 0.8 to 2.2 , with an average of 1.6 phi units. Sample 8 , with a mean grain size of 1.7 phi fits well in this assemblage.

Assemblage No. 4:

Three samples, all with high coefficients, have a depth range of 7 to 36 metres. Mean grain sizes range from 4 to 4.9 phi, with an average of 4.4.

Assemblage No. 5:

Four samples have high coefficients of faunal similarity. They range in depth from 218 to 457 m . Sample 6 has a moderate coefficient and a depth (255 m) which is within the range for this depth-assemblage. Sample 15 has a moderate coefficient with respect to end-member sample 7 , but it also has a moderate one with respect to end-member sample 31 , so that it would almost as well fit assemblage 3. Its depth of occurrence (5 m) seems more appropriate to assemblage 3 with which it also agrees in mean grain size. However, this sample is based on a count of only 14 specimens and cannot be regarded as statistically reliable. It is probably better to disregard it. Mean grain size ranges from 4.3 to 7.5 phi, with an average of 6.1 .

Assemblage No. 6:

All four samples in this assemblage have high coefficients of faunal similarity. The first three have a depth range from 106 to 191 m . Sample 38 with a depth of occurrence of 274.5 m is probably below the lower limit of the depth zone which this assemblage seems to characterize. This sample was recovered from near the foot of a slope, and displacement downslope seems a very reasonable explanation for its presence here. Mean grain size ranges from 3.4 to 6.9 phi with an average of 5.5

Assemblage No. 7:
Four samples have high coefficients. They range in depth from 58 to 164 m . Sample 14 has a moderate coefficient when compared with the end-member sample. It has no appreciable similarity to other end-members. It is therefore placed in this assemblage, extending the depth range by 1 m to 165 m . Mean grain size range is 1.3 to 2.4 phi, with an average of 2.0 .

Assemblage No. 1:
The first six samples have high coefficients when compared to endmember sample 36. Their depths of occurrence range from 166 to 3.65 m . Sample 28 with a depth of 365 m has a moderate coefficient of faunal similarity with respect to end-member sample 7 and could possibly fit in assemblage 5. Alternatively, it could have been displaced downslope -- it occurred in deep water (365 m) when compared with the other samples in depth-assemblage 1 . Its
mean grain size of 6.4 phi is appropriate to either assemblage 5 or assemblage 1. The mean grain size of assemblage 1 based on the first six samples ranges from 5.5 to 7.2 phi; the average is 6.4

Sample 3 has a moderate coefficient of faunal similarity when compared with end-member sample 36, and it has a comparable one with respect to endmember sample 35, suggesting it fits almost as well in depth-assemblage 6. on the basis of depth of occurrence (135 m) this alternative would be acceptable as it is within the depth range of that assemblage. The mean grain size of sample 3 is 3.2 phi, which is slightly outside the range of both assemblages, but it deviates less for assemblage 6 than it does for assemblage 1.

Sample l has a moderate coefficient when compared with end-member sample 36, as it has also when compared to end-member sample 31. Its depth (237 m) is more compatible with depth-assemblage 1 . The mean grain size (4.7 phi), however, is not compatible, and inclusion of the sample in the assemblage necessitates the extension of the range of mean grain size, which becomes from 4.7 to 7.2 phi, with an average of 6.2 .

Sample 24 has a moderate coefficient when compared with end-member sample 36 , but it also has similar coefficients when compared with end-member samples 17, 26 and 35. Of these latter possibilities, association with endmember sample 17 (assemblage 2) seems the most reasonable on the basis of the value of the coefficient (0.51), the depth of occurrence (82 m) and the mean grain size (5.4 phi), although this arrangement would necessitate extending the lower limit of depth for depth-assemblage 2 from 64 to 82 m .

Sample 34 has a moderate to low coefficient (0.48) of faunal similarity when compared with end-member sample 36 , and a similar value (0.46) when compared with end-member sample 12. However, its depth of occurrence is within the range of depth-assemblage 1 , while it is not within that of depthassemblage 7. Its mean grain size (3.8 phi) does not fit well into either assemblage.

DEPTH-ASSEMBLAGES

Seven depth-assemblages are indicated based on the interpretation of the re-ordered oblique projection matrix given above, and with samples 8 and 38 interpreted as displaced, sample 15 as statistically invalid, sample 3 transferred to assemblage 6, and sample 24 to assemblage 2. The depthassemblages may be classified in two groups according to grain size. Group 1, low mean diameter, 0.8 to 2.5 phi, includes assemblages 3 and 7, and group 2, high mean diameter, 2.5 to 7.5 phi, includes assemblages $1,2,4,5$ and 6 (Table 5).

THE RELATION OF DEPTH-ASSEMBLAGES TO WATER MASSES

The region is dominated by the cold Labrador Current as it floods the shelf and slope of eastern Canada, extending well over the Grand Banks. Incursions of warmer slope water sometimes modify the water masses, especially over the outer shelf and shelf edge. On occasion, frictionally induced eddies bring warm Gulf Stream water over the outer and inner shelf.

Table 5
Depth-Assemblages

Depthassemblage	Depth range metres	Zone	Mean grain size of the assemblage in phi units
No. 1	```827 135? 166 - 317 or 375?```	Deep	6.2 (approx.)
No. 2	12.5-64 or 82	Shallow	4.4
No. 3	56-74	Shallow	1.6
No. 4	$7-36$	Shallow	4.4
No. 5	218-457	Deep	6.1
No. 6	106-191	Intermediate	5.0 (approx.)
No. 7	58-165	Intermediate	2.0

Laurentian Channel slope in the NW. Gulf and south of Newfoundland

Chaleur Bay
NW. Gulf St. Lawrence and the Bank south of Newfoundland

St. Lawrence Channel
NW. Gulf of St. Lawrence
SE. Grand Banks and the edge of the shelf

Hachey (1961) has summarized the oceanography of the Gulf of St. Lawrence and the continental shelf. For the Nova Scotian sector of the shelf he recognizes three water-mass layers. The 'upper' layer is of variable thickness, but it has an average lower limit at approximately 85 metres. Inshore waters consist of this layer. The cold intermediate layer, which may be continuous with the internediate layer of Lauzier in the Gulf of St. Lawrence, has limits at approximately 50 and 160 metres. This layer determines the water characteristics on most of the offshore banks. The upper limit of the 'bottom' layer of relatively warmer water occurs at approximately 170 metres. This layer extends to the bottom on the shelf.

In the Gulf of St. Lawrence, Lauzier has recognized three water-mass layers (Hachey, 1961). The surface layer has an approximate lower limit of 70 metres. Wide variations of temperature and salinity are characteristic of it. Inshore waters consist of this layer. The cold intermediate layer ranges from approximately 70 to 160 metres. A relatively warmer deep layer is characteristic of the Laurentian Channel and its slopes. It ranges from approximately 180 metres to the bottom of the Channel (about 500 metres).

Bailey (1954) pointed out that at the confluence of the Labrador Current and the Gulf Stream in the area southwest of the Grand Banks, and to the westward, large scale mixing processes occur that provide a type of 'slope water' that largely contributes to the characteristic waters that are in contact with the continental shelf. In August, the surface layer over the Grand Banks has temperatures ranging from $13^{\circ} \mathrm{C}$, in the north, to $19^{\circ} \mathrm{C}$ at the the southern shelf edge. Salinities range from 31 to $33^{\circ} \%$. At 50 metres, the temperatures range from $-1^{\circ} \mathrm{C}$, in the north, to more than $10^{\circ} \mathrm{C}$ (with a very steep temperature gradient), near the southern shelf edge. At 100 metres temperatures range from $-1^{\circ} \mathrm{C}$, in the north, to more than $8^{\circ} \mathrm{C}$ at the southern shelf edge. Salinities range from 33.0 to $35.0^{\circ} \%$. At 100 metres the influence of bottom topography is most pronounced as the main banks are of depths less than 100 metres. Waters of oceanic origin underlie all coastal waters where there is sufficient depth.

The seven depth-assemblages suggested by the factor-vector analysis are correlated with the three water-mass layers of Lauzier for the Gulf of St. Lawrence and the three water-mass layers of Hachey for the Nova Scotian shelf. These latter layers may be extrapolated eastward where they are modified by slope water as indicated by Bailey (1954, and personal communication) for the Grand Banks.

Reference to figures 3 and 4 shows that three shallow depth-assemblages are found in Lauzier's and Hachey's surface layer. They are (a) depthassemblage 2 in the Chaleur Bay area and depth-assemblage 4 in the Sept-Iles area, both are in the northwest Gulf of St. Irawrence; and (b) depth-assemblage 3, mainly on the shelf, south of Newfoundland, but with one station (31) in the northwest Gulf of St. Lawrence.

Depth-assemblages 2 and 4 are shallow bay assemblages which are subjected to lower than normal marine salinities. Depth-assemblage 3 is slightly deeper and its environment is typically more saline.

Two intermediate depth-assemblages are found in Lauzier's and Hachey's intermediate water-mass layer. They are (a) depth-assemblage 6 in the northwest Gulf of St. Lawrence and (b) depth-assemblage 7 on the southeast banks (the Tail) and the shelf edge extending eastwards to Flemish Cap. The water-

Figure 4 - Diagramatic profile of depth-assemblages. Assemblages are indicated by numerals according to the text.
mass associated with this latter depth-assemblage is liable to mixing with slope water.

Two deep depth-assemblages are noted. They are found in the Deep Channel layer of Lauzier and the Bottom layer of Hachey. Depth-assemblage 1 is best represented in the northwest Gulf of st. Lawrence, but it extends south-eastward and is also found on the deeper parts of the shelf, south of Newfoundland.

Depth-assemblage 5 is characteristic of the Laurentian Channel south of Cabot Strait and Newfoundland. This assemblage,which tends to occur at greater depths than assemblage 1 is also represented at one station (40) in the Laurentian Channel in the northwest Gulf of St. Lawrence.

SPECIES COMPOSITION OF MICROFAUNAL ASSEMBLAGES

The species composition of the benthonic foraminiferal assemblages is given in Appendix A. In these faunal lists, which are printed by computer, official names are followed by the name of the original author and the year in which the species was erected. Unofficial names of possible varieties are in an abbreviated form that is intended as a guide, and they have no official status. Sample 8 is assigned to assemblage 1 from assemblage 3. This assignment, which is based on depth and coefficient of similarity, is very tentative.

ASSEMBLAGE-UBIQUITOUS SPECIES

Some forms are found in each and every sample of an assemblage. They are here called assemblage-ubiquitous species, because they are ubiquitous within the assemblage. They may also occur in other assemblages, and they may even be assemblage-ubiquitous for more than one assemblage. For example, Angulogerina fluens Todd, 1947, is ubiquitous in assemblages 1 and 3.

The species are given in Appendix B.

ASSEMBLAGE-INDICATOR SPECIES

They are here called indicator species. They are restricted to one assemblage. Their abundance is usually less than five per cent. Of these forms some are fully described in the literature and are identifiable. Each of these is given with author's name and date of the first description. They are the most useful as indicator species (Appendix C).

Other forms are of three kinds as follows (1) those that are thought to be new species, but that have not yet been described; (2) forms that might possibly be new species, but that are comparable to or have affinities with known species, and that may be merely variants of them, (these forms are less useful as indicator species): and (3) forms that are indeterminate. These have the least usefulness as indicators.

DISCUSSION

Sources of possible error:

The samples were collected by means of different instruments. Those collected by means of Dietz-Lafond grab possibly are more liable to inversion and distortion than those collected by means of Phleger type corer. In the MARC series special care was taken to ensure that inversion and distortion of sediment did not occur during shipment. In the $\mathbf{S 4 3}$ and 544 series no special precautions were taken.

Laboratory procedures produce error. For example, loss of material occurs during handling, weighing and transfer in the various stages of mechanical and faunal analysis. Checks were done from time to time on weighings and foraminiferal counts -- they always proved reproducible within a tolerance of three per cent. .

Samples of the 543 and 544 series were dried out, and some agglutinating foraminifers possibly were disintegrated as a result. Thus, these samples may be deficient in arenaceous forms when compared with those of the MACR series. It is, however, interesting to note that the factor-vector analysis distinguishes an arenaceous Chaleur Bay assemblage (dried out) and an arenaceous Sept-Iles Bay assemblage (not dried out).

Forty stations covering a region of 300,000 sq. miles may not constitute a sufficient number to give a statistically valid sampling of the assemblages present. However, this depends upon the degree of variation of the assemblages. If there is a large number of assemblages then 40 localities may not provide for adequate sampling. On the other hand, if the region is characterized by rather uniform conditions the number of assemblages is likely to be low, and 40 stations may represent an adequate sample. Future addition of data from more stations possibly will result in the removal of some assemblage-indicator species from the list.

The writer believes that this preliminary survey gives the broad picture of the distribution of the main benthonic foraminiferal depthassemblages of the region, and provides a framework into which undiscovered microfaunal assemblages might be expected to fit. More detailed sampling and more refined taxonomy probably will result in subdivision of the main depthassemblages described here. In particular, it is to be expected that the many bays and estuaries of the upper water-mass layer, with their wide variation of temperature, salinity and other factors, contain many different environments and will give rise to a corresponding diversity of benthonic foraminiferal assemblages.

ACRNOWLEDGENENTS

Financial assistance was provided by the National Research Council and the Department of Energy, Mines and Resources of Canada. Thanks are due to the Captains and crews of CNAV SACKVILLE and the MARC ST. for assistance in the collection of bottom samples, and to C.T. Schafer, G. Vilks, F.J.E. Wagner and B.R. Pelletier of the Atlantic Oceanographic Laboratory of the Bedford Institute for their critical reading of the manuscript. The sustained support of this project by B.R. Pelletier during times which were often difficult and trying is especially appreciated.

REXFERENCES

Athearn, W.D., 1954. Bottom sediments and foraminifera from Labrador. Tech. Rept. 54-42, Woods Hole Oceanogr. Inst. 16 pp.

Bailey, W.B., Templeman, W. and Hunt, R.P., 1954. The horizontal distribution of temperatures and salinities off the Canadian Atlantic Coast. Ms. Rept. No. 584, Fish. Res. Bd. Canada, Biol. St. Andrews, N.B., 23 pp .

Bartlett, G.A., 1962. M.Sc. Thesis, Carleton University, Ottawa, 262 pp.
, 1963. Preliminary study of foraminiferal distribution on the Atlantic Continental Shelf, southeastern Nova Scotia. B.I.O. Rept. 63-3, Bedford Inst. Oceanogr. II pp.
, 1964. Benthonic foraminiferal ecology in St. Margaret's Bay and Mahone Bay, southeast Nova Scotia. B.I.O. Rept. 64-8, Bedford Inst. Oceanogr. 159 pp.
, 1965. Preliminary investigation of benthonic foraminiferal ecology in Tracadie Bay, P.E.I. B.I.O. Rept. 65-3, Bedford Inst. Oceanogr. 57 pp.

Cushman, J.A., 1918-31. Foraminifera of the Atlantic Ocean. Pts. 1-8. 0.S. Nat. Mus. Bull. No. 104.

Dawson, G.M., 1870. On foraminifera from the Gulf and River St. Lawrence. Canadian Naturalist, New Series, vol. 5. pp. 172-179, 1 pl.
, 1860. Tertiary fossils from Labrador, Maine, etc., and remarks on the climate of Canada in the Newer Pliocene or Pleistocene Period. Canadian Naturalist, vol. 5, pp. 188-200.

Hachey, H.B., 1961. Oceanography and Canadian Atlantic waters, Fish. Res. Bd. Can. Bull. 134, 120 p.

Hooper, K., 1967. Processing foraminiferal data: a computor program. International Conference on Planktonic Microfossils. Geneva, Sept. Oct., 1967. Brill, Leiden.

Inman, D.L., 1951. Measures for describing the size distribution of sediments. Ref. 51-45, Submarine Geol. Rept. No. 15, Scripps Inst. Oceanogr., Univ. Cal.

Manson, V. and Imbrie, J., 1964. Fortran program for Factor and Vector analysis of geologic data using an IBM 7090 or 7094/1401 Computer System. Special Distribution Publication No. 13, State Geol. Surv. and Univ. Ransas, 47 pp.

Sproule, H., 1962. B.Sc. (Hons.), Thesis, Carleton University, Ottawa. 32 pp.
Twenhofel, W.H. and Tyler, S.A., 1941. Methods of study of sediments. McGrawHill, N.Y., 183 pp.

Whiteaves, J.F., 1869. On some results obtained by dredging in Gaspe and off Murray Bay. Can. Nat. and Quart. Journ. Sci. Sept.
1875. Notes on a deep sea dredging expedition round the Island of Anticosti in the Gulf of St. Lawrence. Ann. \& Mag. Nat. Hist. Nov.

APPENDIX A

THE FOLLOWING 142 Species dCcur in benthic foraminiferal assemblage i df the factor analysis in og-mode for mat

BENTHIC FORAMINIFERAL ASSEMBIAGE I FOR MET (CONTINUED]

	STATION NUMBERS	1	8	28	29	30	32	33	34	36
	DEPTH IN METERS	237	292	365	166	274	317	250	222	237
NO.	SPECIES NAME									
196	BUL JMINA SP. CF. B. MARGINATA		0.3							
197	CASSIDULINA SP. CF. C. NORCROSSI		0.3							
198	DISCORBIS SP. CF. D. CHASTFRI		1.3							
199	EPISTOMINFLLA SP.		0.3							
201	GLABRATELLA SP. CF. G* WRIGHIII		0.3							
212	GYROIDINA SP.			0.6						
420	PRRTEONINA SP.				R			0.6		
233	BOLIVINA PSEUDOPLICATA HERON-ALLEN + EARLAND 1930			0.3						
245	HYPERAMMINA SP.			R		O.A				
246	LENTICULINA SP.					0.1				
248	NONION IMMATURE			R	3.3					
262	BULIMINA ACULEATA AFF. B. marginata						3.5			
263	BOLIVINA SP. A						0.4			
264	BDL.IVINA SP. B						0.7			
265	NONION SP. OR ELPHIDIUM SP.				.	3.3	2.1			
266	REOPHAX PILULIFERA BRADY 1884							0.2	0.1	
267	NONIONELLA SP. CF. N. AURICULA AFF. NONION GRATELDUPI							0.2		
268	OOLINA SP. CF. O. LINEATA							0.2		
269	REOPHAX CURTUS AFF. R. SCORPIURUS								1.0	
270	ALVEOLOPHRAGMIUM SP.								1.0	
271	DOLINA SP.								R	
272	NONITINELLA AURICULA AFF. NONION GRATEECUPI			0.4	0.1				0.9	
273	PROTELPHIDIUM SP. CF. P. ORBICULARE								0.1	
274	ELPHIDIUM SP. CF. E. SUBARCTICUM								R	
275	TROCHAMMINELLA ATLANTICA PARKER 1952								0.2	
276	SILICOSIGMOILINA GROENLANDICA ICUSHMAN) 1933								R	
277	ANGULOGERINA SP. CF. A. ANGULOSA			0.3					0.1	
278	DOLINA LINEATA (UTLLIAMSDN) 1848				0.3				R	
280	TROCHAMMINA SP. CF, T. OUADRILOBA								1.1	
281	LAGENA SP. CF. L. GRacillima								0.3	
282	TROCHAMMINA SP. CF. T. SQUAMATA								0.1	
290	ROTALIDS				R					
295	BOLIVINA SP. CF. B. PUNCTATA			0.3						
296	LAGENA PARRI LOEBLICH + TAPPAN 1953 (R						
297	OOL INA LINEATOMPUNCTATA (HERON-ALLEN + EARLAND) 1922			R		0.8				
298	REOPHAX SP. CF. R. CURTUS			R						
299	OENTALINA PAUPERATA ORBIGNY 1846				R					
300	VALVULINA SP. CF. V. FUSCA				R					
301	RECTOGLANDULINA SP. CF. R. TORRIOA				0.1					
302	RECTOGLANDULINA ROTUNDATA (REUSSI 1850				0.1					
304	CASSIDULINA TERETIS AFF. C. LAEVIGATA				0.1					
305	TROCHAMMINA SP. CF. T. BULLATA				0.2					
306	BUCCELLA SP. CF. B. FRIGIDA				3.6					
312	CIBICIDES SP. A									0.6
313	CIBICIDES SP. 8									0.6
314	ELPHIDIUM SP. OR NONIONSP.									7.7

THE FOLLOWING 27 SPECIES OCCUR IN BENTHIC FORAMINIFERAL ASSEMBLAGE 2 DF THE FACTOR ANALYSIS IN OOOMODE FOR MET

THE FOLLOWING 118 SPECIES DCCUR IN BENTHIC FORAMINIFERAL ASSEMBLAGE 3 DF THE FACTOR ANALYSIS IN DO-MODE FOR MA7

BENTHIC FORAMINIFERAL ASSEMBLAGE 3 FOR M=7 (CONTINUEDI

THE FOLLOWING 115 SPECIES OCCUR IN BENTHIC FORAMINIFERAL ASSEMBLAGE 5 of THE factor analysis IN OO-MODE fiJR Ma7

	STATION NUMBERS	45		6	7	40
	DEPTH IN METERS	218	457	255	430	398
ND．	SPECIES NAME					
80	REOPHAX SCORPIURUS MONTFORT 1808					1.2
89	TROCHANMINA OCHRACEA（WILLIAMSON） 1858	R				
91	PROTEONINA ATLANTICA CUSHMAN 1944					3.7
96	ALVEOLOPHRAGMIUM CRASSIMARGO（NORMAN） 1892				R	
97	AMMDDISCUS SP． Cibicides Sp．Cfoc。 lobatulus					1.2
99		0.3				1.2
106	NON IONELLA SP．CF．N．AURICULA				1.1	
108	ELPHIDIDAE IMMATURE	1.2	1.3			
116	TROCHAMMINA SP。				0.1	2.5
119	ASTACOLUS SP．CF：A．HYALACRULUS	0.3				
120	ASTRONONION SPa	0.6				
121	BOLIVINA SUBAENARIENSIS CUSHMAN 1922	1.3	22.4	7.9	3.7	
122	BOLIVINA SUBSPINESCENS CUSHPAAN 1922	1.2	0.1			
123	BULIMINA ACULEATA ORBIGNY 1826	6.5	1.9	5.3	5.7	
124	BULIMINA MARGINATA ORBIGNY 1826	2.8	12.3	0.1	0.8	1.2
125	CASSIDULINA LAEVIGATA AFF．C．CARINATA	1.3				
126	FISSURINA SP．CF．Fo SEMIMARGINATA					1.2
127	TRITAXIS CONICA（PARKER＋JONES） 1865CIBICIDES SP．IMMATURE					1.2
128		3.9				
129	DISCORBIS CHASTERI（HERON－ALLEN＋EARLANO） 1913	R				
130	DENTALINA FROBISHERENSIS LOEBLICH＋TAPPAN 1953	0.1				
131	LEWTICULINA SP．CF．Lo GIBRADISCORAIS OBTUSA CUSHMAN 1931				0.1	
132		R				
133	EPONIDES PUSILLUS PARR 1950	1.4				
134	FISSURINA SP．	0.3				
135	GLOBOBULIMINA SP．CF．G．TURGIDA	0.3			1.0	
136	GLABRATELLA SP．CF．DISCORRIS CHASTERI	0.1				
137	GYROIDINA SP．CF．G．OUINOUELOBA	0.1				
138	LAGENA GRACILLIMA（SEGUENZA） 1862	R	0.1			
139	LAGENA GRACILIS WILLIAMSON 1848	R	0.2			
140	LAGENA HISPIDA REUSS 1863	R				
141	NONIONELLA TURGIDA（WILLIAMSON）1858	R				
142	OSANGULARIA SP。	R				
143	ODLINA HEXAGONA（WILLIAMSON）184B PARAFISSURINA TECTULOSTOMA LUERLICH＋TAPPAN 1953 PARAFISSURINA FOLLICULA LOFBLICH＋TAPPAN 1953	0.1				
144		0.1				1.2
145		0.1				
146	PNINAELLA PULCHELLA PARKER 1952 PULLENIA QUINQUELOBA（REUSS） 1851 SIPHOGENERINA ANNULATA BRADY 1884	R				
147		22.3		0.4	11.7	8.6
148		0.4				

BENTHIC FDRAMINIFERAL ASSEMBLAGE 5 FOR MET ICONTINUEDI

THE FOLLOWING 75 SPECIES OCCUR IN BENTHIC FORAMINIFERAL ASSEMBLAGE 6 OF THE FACTOR ANALYSIS IN QQ-MODE FOR MET

STATION NUMPERS		3	35	37	38	39
	DFPTH IN METERS	135	142	108	275	191
NO.	SPECIES NAME					
102	GLOMOSPIRA SP.	0.2				
103	HYPERAMMINA SUBNODOSA BRADY 1884	0.3				
104	MARSIPELLA ELONGATA (RHUMBLER) 1913	R				
105	NONION POMPILIOIDES (FICHTEL + MOLL) 1798	R				
106	NONIONELLA SP. CF. N. AURICULA	1.0			8.9	
107	NONIONIDAE IMMATURE	0.4				
108	ELPHIDIDAE IMMATURE	0.1				
109	PSAMMOSPHAERA SP.	0.6		0.2		
110	PYRGO SP. CF. P. ELONGATA	R				
111	ROBERTINA ARCTICA ORBIGNY 1846	R				
112	REOPHAX SUBFUSIFDRMIS EARLAND 1933	0.3				
113	ROTALIA SP.	1.4				
114	SPIRILINA SP.	0.1				
115	TROCHAMM INA SP. CF. T. OCHRACEA	0.9				
116	TROCHAMMINA SP.	0.3	15.5			
117	VIRGULINA SP. CF. Ve BRADYI	0.6				
118	WEBBINELLA SP.	2.2	14.1	2.5		
124	BULIMINA MARGINATA ORBIGNY 1826				6.7	
127	TRITAXIS CONICA (PARKER + JONES) 1865				1.5	
138	LAGENA GRACILLIMA (SEGUENZA) 1862			0.8		
180	TROCHAMMINA SP. CF. T. NANA					10.2
184	ALVEOLOPHRAGMIUM SUBGLOBOSUM (SARS) 1871					23.9
240	REOPHAX SP.		1.1			
245	HYPERAMMINA SP.					1.7
266	REOPHAX PILULIFERA BRADY 1884				0.8	
270	ALVEOLOPHRAGMIUM SP.			2.1		
275	TROCHAMMINELLA ATLANTICA PARKER 1952				18.6	
276	SILICOSIGMOILINA GROENLANDICA (CUSHMAN) 1933		0.7	0.8		
282	TROCHAMMINA SP. CF. T. SQUAMATA			0.8		
289	AMMODISCUS SP. CF. A. PLANUS			0.8	1.5	
298	REOPHAX SP. CF. R. CURTUS			0.3		
306	BUCCELLA SP. CF. B. FRIGIDA				1.5	
310	PROTEONINA DIFFLUGIFDRMIS (BRADY) 1879		3.9		0.8	
311	HYPERAMMINA SP. CF. H. SUBNODOSA		2.1			
316	HYPERAMMINA SP. A			0.5		
317	HYPERAMMINA SP. B			0.3		
318	DENDROPHRYA SP.			0.1		

		STATION NUMBERS		9	11	12	13	14
NO．	SPECIES NAME	OFPTH	N METERS	136	64	65	58	165
60	NONION LAERADORICUM（DAWSON） 1860			2.6				
62	NONIONELLA AURICULA HERON－ALLEN＋	EARLAND	1930					R
63	ODLINA COSTATA LOEBLICH＋TAPPAN	1953		0.1		0.2		
64	OOLINA MELO ORBIGNY 1839			0.1				R
67	PATELLINA CORRUGATA WILLIAMSON 18	58						R
69	PROTELPHIDIUA ORBICULARE（BRADY） 18	81		$4 \cdot 6$				
76	QUINOUELOCULINA SP．CFo De AKNERIANA							R
77	QUINQUELOCULINA STALKERI LOEBLICH	＋TAPPAN	1953	0.1			0.6	
79	REDPHAX CURTUS CUSHMAN 1920				1.0			
83	SACCAMM INA SP。					0.4		
89	TROCHAMMINA OCHRACEA（WILLIAMSON） 1	858				0.7	0.8	
91	PROTEONINA ATLANTICA CUSHMAN 1944			5.5			0.3	R
96	ALVEDL OPHRAGMIUPA CRASSIMARGO INORMA	N） 1892			0.5			
101	EGGERELLA ADVENA（CUSHMANI 1922				0.5	1.3	0.9	
108	ELPHIDIDAE IMMATURE							R
109	PSAMMOSPHAERA SP．				0.2	0.4	0.6	
116	TROCHAMMINA SP。							R
118	WEBBINELLA SP．							R
120	A STRONONION SP．			$2 \cdot 1$				
123	BULIMINA ACULEATA ORBIGNY 1826						0.3	
125	CASSIDULINA LAEVIGATA AFF，COCARI	ATA						0.1
133	EPONIDES PUSILLUS PARR 1950			0.4				20.3
141	NONIONELLA TURGIDA（WILLIABSON） 185							0.3
147	PULLENIA OUINQUELOBA（REUSS） 1851			0.4		0.4		3.4
152	A STACOLUS SP．							0.1
153	CIBICIDES SP．CF．Ca PSEUDOUNGERIAN	NUS				0.2		
166	ANGULOEERIMA ANG！ILOSA（WILLIAMSON）	1858		13.5	0.5			40.9
173	GAVELINOPSIS SPO NOV．							3.0
174	LAGENA SP。							R
178	TEXTULARIA SPo CFo To Torguata							R
186	VAGINULINA SPINIGERA BRADY 1881							R
188	CIBICIDES SP．CF．Co REFUL GENS					$5 \cdot 3$		
191	A STRONONION SPs CF．A，STELLATUM				1.0			
198	DISCORBIS SP CF＊Do CHASTERI					2.6	0.3	
202	GUTTUE INA DAWSONI CUSHMAN＋OZAHA	1930		0.2				
203	GUTTULINA LACTEA AFF．Gn PACIFICA			0.2			0.3	

	STATION NUMBERS	9	11	12	13	14
	DEPTH IN METERS	136	64	65	58	165
NO.	SPECIES NAME					
206	PSAMMOSPHAERA FUSCA SCHULZE 1875	3.4				
207	VIRGULINA FUSIFORMIS WILLIAMSON 1858	0.4				
209	TROCHAMMINA GLOBIGERINIFORMIS (PARKER + JONES) 1865	0.6				
210	OUINQUELOCULINA SP. CF. Q. SEMINULA	0.1				
211	RECURVOIDES SP.	0.1				
212	GYROIDINA SP.	0.3				
220	PROTEONINA SP。		0.5			
222	SCUTULORIS SP. NOV.				0.3	
225	CIBICIDES LOBATULUS AFF. C. PSEUDOUNGERIANA		5.1			
226	MARSIPELLA SP.		0.2			R
227	QUINDUELOCULINA SP. CF. O. PULCHELLA		0.2			
228	SCUTULURIS TEGMINIS LOEBLICH + TAPPAN 1953		1.4			
230	ROSALINA COLUMSIENSIS (CUSHMAN) 1925			0.7		
231	DISCORBIS SP. CF. D. BERTHELOTI			0.7		
232	ANGULOGERINA SP. CFa A. FLIJENS			0.9		
233	BOLIVINA PSEUDOPLICATA HERON-ALLEN + EARLAND 1930			0.4		
235	TROCHAMMINA CONICA EARLAND 1934			0.7		
236	ANGILIOGERINA ANGULOSA AFF. A. FLUENS				0.3	
237	ELPHIDIUM BARTLETT』 AFF. E. SUBARCTICIJM				3.3	
238	ELPHIDIUM SUBARCTICUM AFF. E. BARTLETTI				7.3	
239	OUINOUELOCULINA SEMINULA (LINNAEUS) 1767				2.5	
240	REOPHAX SP.				0.3	
242	8OLIVINA SP. CF. B. SPATHULATA					R
243	CASSIDULINA SP.					R
244	DENTALINA MELVILLENSIS LOFBLICH + TAPPAN 1953					R
245	HYPERAMMINA SP.					R
246	LENTICULINA SP.					R
247	LAGENA SP. CF. L. STELLIGERA					0.4
248	NONIDN IMMATURE			0.9		1.1
249	EPONIDES SP. A					R
250	EPINIDES SP. B					R
251	DISCOREIS SP. A				0.3	
252	DISCORBIS SP. B				0.3	
272	NONIONELLA AURICULA AFF. NONIUN GRATFLOIIPI	0.3				

APPENDIX B

ASSEMBLAGE-UBIQUITOUS SPECIES

THE FOLIOWING 3 SPECIES WERE FOUND TO BE UBIGUITOUS FOR ASSEMBLAGE 1 SPECIES NUMBER NAME

5 ANGULOGERINA FLUENS TODD 1947
10 BUCCEILA INUSITATA ANDERSEN 1952
12 CASSIDULINA ISLANDICA NORVANG 1945

THE FOLLOWING SPECIES WAS FOUND TO BE UBIQUITOUS FOR ASSEMBLAGE 2 SPECIES NUMBER NAME

34 EGGERELLA SCABRA (WILLIAMSON) 1858
the following 13 Species were found to be ubiquitous for assemblage 3 SPECIES NUMBER NAME

THE FOLLOWING 2 SPECIES WERE FOUND TO BE UBIQUITOUS FOR ASSEMBLAGE 4

SPECIES NUMBER NAME

101	EGGERELLA ADVENA (CUSHMAN) 1922
109 PSAMMOSPHAERA SP.	

APPENDIX B (Cont'd)

THE FOLLOWING 5 SPECIES RERE FOUND TO BE UBIGUITOUS FOR ASSEMBLAGE 5

SPECIES NUMBER NAME

9	BULIMINA EXILIS	BRADY	1884	
10	BUCCELIA			
60	NONIOSITATA	ANDERSEN	1952	
124	BULIMINA MARGINATAM	(DAWSON)	1860	
149	VIRGULINA COMPLANATA	ORIGNY	1826	
		EGGER	1893	

the foilohing 2 species were found to be ubiguitous for assemblage 6 SPECIES NUMBER NAME

1 ADERCOTRYMA GLOMERATA (BRADY) 1878
2 ALVEOLOPHRAGMIUM JEFFREYSI (WILLIAMSON) 1858

TEE FOLLOWING 4 SPECIES WERE FOUND TO BE UBIQUITOUS FOR ASSEMBLAGE 7 SPECIES NUMBER NAME

10	BUCCEILA INUSITPATA	andersen	1952
12	CASSIDOLINA ISLANDIC	ca norvang	1945
15	CIBICIDES LOBATUUUS	(WALKER	+ JACOB)
29	ELPEIDIUM CLAVATUM	Cushman	1930

APPENDIX C
ASSEMBLAGE-INDICATOR SPECIES

INDICATOR SPECIES FOR ASSEMBLAGE 1
23 PROTELPHIDIUM SP.
61 NONION SP. CF. N. POMPILIOIDES
167 BULIMINA SP. CF. B. EXILIS
168 BUCCEELA SP.
169 BULIMINA SP. CF. B. FUSIFORMIS
170 CASSIDULINA SP. CF. C. ISLANDICA
171
172
176
OOLINA SP. CF. O. CAUDIGERA
179 TROCHAMMINA LOBATA CUSHMAN
1944
TROCHAMMINA SQJAMATA JONES + PARKER 1860
TEXTULARIA SP.
ANOMALINA SP.
BULIMINA SP. CF. B. MARGINATA
CASSIDULINA SF. CF. C. NORCROSSI
EPISTOMINELLA SP.
GLABRATELLLA SP. CF. G. WRIGHTII
bULImINA ACULEATA AFF. B. MARGINATA
BOLIVINA SP. A
BOLIVINA SP. B
NONION OR ELPHIDIUM
NONIONELLA SP. CF. N. AURICULA AFF. NONION GRATELOUPI
REOPHAX CURTUS AFF. R. SCORPIURUS
OOLINA SP.
PROTELPHIDIUM SP. CF. P. ORBICULARE
ELPHIDIUM SP. CF. E. SUBARCTICUM
ANGULOGERINA SP. CF. A. ANGULOSA
TROCHAMMINA SP. CF. T. QUADRILOBA
LAGENA SP. CF. L. GRACILLIMA
BOLIVINA SP. CF. B. PUNCTATA
LAGENA PARRI LOEBLICH + TAPPAN 1953
DENTALINA PAUPERATA ORBIGNY 1846
VALVULINA SP. CF. V. FUSCA
RECTOGLANDULINA SP. CF. R. TORRIDA
RECTOGLANDULINA ROTUNDATA (REUSS) 1850
CASSIDULINA TERETIS AFF. C. LAEVIGATA
TROCHAMMINA SP. CF. T. BULLATA
CIBICIDES SP. A
CIBICIDES SP. B

APPENDIX C (Cont'd)

INDICATOR SPECIES FOR ASSEMBLAGE 2
253 REOPHAX FUSIFORMIS (WILLIAMSON) 1858
254 TROCHAMMINA SQUAMATA AFF. T. MACRESCENS
256 TROCHAMMINA SP. CF. T. ADAPERTA
257 GYROIDINA QUINQUELOBA UCHIO 1960
258 DISCORBIS SP. CF. PNINAELLA PULCHELIA
259 INCERTAE SEDIS LEPTODERMELLA

INDICATOR SPECIES FOR ASSEMBLAGE 3

```
ASTACOLUS HYALACRULUS LOEBLICH + TAPPAN 1953
DENTALINA BAGGI GALLOKAY + WISSLER 1927
GLABRATELLA WRIGHTII (BRADY) }188
GLOBULINA SP. CF. G. GLACLALIS
GUTHUULINA LACTEA (WALKER + JACOB) }279
GUTHULINN EARLANDI CUSHMAN + OZAWA 1930
LARYNGOSIGMA HYALASCIDIA LOEBLICH + TAPPAN 1953
LAMARCKINA HALIOITDEA (HERON-ALTEN + EARLAND) }191
NONION SCAPHUM (FICHTEL + MOLL) }179
POLYMORPHINA SP. NOV. AFFF. P. FLINTII
GUINQUALOCULINA ARCTICA CUSHMAN }193
QUINQUELOCULINA AGGLUTINATA CUSENANN }191
QUINQUELOCULINA NITIDA NORVANG }194
QUINQUELOCULINA SP. CF. Q. NORVANGI
ROBERTINOIDES CHARLOTIENSIS (CUSHMAN) }192
TRILOCULINA SP. CF. T. ANGULARIS
TRILOCULINA TRIHEDRA LOEBLICH + TAPPAN }195
TROCHAMMINA NANA (BRADY) 1881
CALCAREOUS INDETERMINATE
CONORBINA SP.
ELPHIDIELLA SP.
EPISTOMINELLA SP. CF. E. NARAENSIS
GUTTULINA LACTEA AFF. G. AUSTRIACA
HIPPOCREPINA SP. CF. H. INDIVISOR
OOLINA STRIATOPUNCTATA (PARKER + JONES) 1865
PLANORBULINA MEDITERRANENSIS ORBIGNY }182
QUINQUELOCULINA AKNERIANA ORBIGNY 1846
THOLOSINA BULLA (BRADY) 1881
TURRISPIRILLINA ARCTICA (CUSHMAN) }193
ELPHIDIUM SP. CF. E. EXCAVATUM
COLINA SQUAMOSA (MONTAGU) 1893
```


APPENDIX C (Cont'd)

INDICATOR SPECIES FOR ASSEMBLAGE 4
283 MILIAMMINA FUSCA (BRADY) 1870
284 PROIEONINA SP. CF. P. ATLANTICA
285 AMMOTIUM SP. CF. A. CASSIS
286 PROTEONINA SP. CF. P. DIFFLUGIFORMIS
287 PROTEONINA SP. CF. P. AMPULLACEA
288 WEBBINELLA SP. CF. W. HEMISPHAERICA
291 HYPERAMMINA FRAGMENTS
292 MILIAMMINA SP. CF. M. FUSCA
293 PROTEONINA FUSIFORMIS
294 AMMOSCALARIA SP. CF. A. TENUIMARGO
314 ELPHIDIUM OR NONION SP.
315 TEXTULARIA SP. CF. T. EARLANDI
316 HYPERAMMINA SP. A
317 HYPERAMMINA SP. B

INDICATOR SPECIES FOR ASSEMBLAGE 5
119 ASTACOLDS SP. CF. A. HYALACRULUS
126 FISSURINA SP. CF. F. SEMIMARGINATA
128 CIBICIDES SP. IMMATURE
129 DISCORBIS CHASTERI (HERON-ALLEN + EARLAND) 1913
131 LENTICULINA SP. CF. L. GIBBA
132 DISCORBIS OBTUSA CUSHMAN 1931
134 FISSURINA SP.
135 GLOBOBULIMINA SP. CF. G. TURGIDA
137 GYROIDINA SP. CF. G. QUINQUELOBA
139 LAGENA GRACILIS WILHLAMSON 1848
140 LAGENA HISPIDA REUSS 1863
142 OSANGULARIA SP.
143 OOLINA HEXAGONA (WILLIAMSON) 1848
144 PARAFISSURINA TECTULOSTOMA LOEBLICH + TAPPAN 1953
145 PARAFISSURINA FOLLICULA LOEBLICH + TAPPAN 1953
146 PNINAELLA PULCHELLA PARKER. 1952
148 SIPHOGENERINA ANNULATA BRADY 1884
150 VIRGULINA SP. CF. V. FUSIFORMIS
155 ELPHIDIUM SP. CF. E. BARTLETTI AFF. E. CLAVATOM
156 FISSORINA SP. CF. F. MARGINATA
157 FISSURINA LJCIDA (WILLIAMSON) 1848
158 GLOBOBULIMINA SP.
159 GLOBOBULIMINA TURGIDA (BAILLEY) 1851
160 LAGENA MOLLIS AFF. L. DISTOMA
161 LARYNGOSIGMA SP.
162 OOLINA SP. CF. O. HEXAGONA
163 PULLENIA SP. CF. P. QUINQUELOBA
164 PARAFISSURTNA SP.
165 RECTOGLANDULINA SP. CF. R. OCCIDENTALIS
185 RECTOGLANDULINA SP. CF. GLANDULINA LAEVIGATA

APPENDIX C (Cont'd)

187 BULIMINELLA CONVOUUTA (WILLIAMSON) 1858
189 LAGENA SP. CF. L. APIOPLEURA
190 LAGENA SP. CF. L. STRIATA
192 GYROIDINA UMBONATA (SILVESTRI) 1898
193 LAGENA SP. CF. L. SETIGERA
194 NONION SP. CF. N. ZAANDAMAE
200 LEPTODERMELLA SP.
208 CYCLAMMINA CANCELLLATA BRADY 1879
261 TROCEAMMTNA SP. CF. T. ATLANTICA
279 TROCHAMMINA QDADRILOBA HOGLIND 1948

INDICATOR SPECIES FOR ASSEMBLAGE 6
98 CAUSIA SP.
103 HYPERAMMINA SUBNODOSA BRADY 1884
104 MARSIPELLA ELONGATA (RHOMBLER) 1913
105 NONION POMPILIOIDES (RICHIEL + MOLL) 1798
107 NONIONIDAE IMMATURE
110 PYRGO SP. CF. P. ELONGATA
111 ROBERTINA ARCTICA ORBIGNY 1846
112 REOPHAX SUBFUSIFORMIS EARLAND 1933
113 ROTALIA SP.
114 SPIRILINA SP.
117 VIRGULINA SP. CF. V. BRADYI
311 HYPERAMMINA SP. CF. H. SUENODOSA
318 DENDROPHRYA SP.

```
                            -48 -
                    APPENDIX C (Cont'd)
INDICATOR SPECTES FOR ASSEMBLAGE 7
202 GUITULINA DAWSONI CUSHYMAN + OZAWA 1930
206 PSAMMOSPHAERA FUSCA SCHULZE 1875
207 VIRGULINA FUSIFORMIS WILLIAMSON 1858
209 TROCHAMMINA GLOBIGERINIFORMIS (PARRER + JONES) 1865
210 QUINQUELOCULINA SP. CF. Q. SEMINULA
225 CIBICIDES LOBATULDS AFF. C. PSEUDOUNGERIANA
226 MARSIPELLA SP.
227 QUINQUELOCULINA SP. CF. Q. PULCHELLA
2 2 8 ~ S C U T U L O R I S ~ T E G M I N I S ~ L O E B L I C H ~ + ~ T A P P A N ~ 1 9 5 3
230 ROSALINA COLUMBIENSIS (CUSEMAN) }192
231 DISCORBIS SP. CF. D. BERTHELOTI
232 ANGULOGERINA SP. CF. A. FLUENS
235 TROCHAMMINA CONICA EARLAND }193
236 ANGULOGERINA ANGULOSA AFF. A. FLUENS
237 ELPGIDIUM BARTLEITI AFF. E. SUBARCTICUM
238 ELPHIDIUM SUBARCTICUM AFE. E. BARTLETTT
239 QUINQUELOCULINA SEMINULA (LINNAEUS) 1767
242 BOLIVINA SP. CF. B. SPATHULATA
243 CASSIDULINA SP.
244 DENTALINA MELVILLENSIS LOEBLICH + TAPPAN }195
247 LAGENA SP. CF. L. STELLIGERA
249 EPONIDES SP. A
250 EPONIDES SP. B
251 DISCORBIS SP. A
252 DISCORBIS SP. B
```

