FISHERIES RESEARCH BOARD (1) CANADA

MANUSCRIPT REPORTS OF THE BIOLOGICAL STATIONS

No.
615

Title
Cisco analysis during the summer of 1956

Author

J. J. Keleher and E. Macklin

Biological Station, Winnipeg
September 22, 1956

INTRODUCTION

The cisco project is concerned with the description and identification of the ciscoes, Leucichthys spp., of Vestern Canada. During the summer of 1956 it was planned to investigate the morphometry of various samples of ciscoes previously collected and measured. The analysis would be similar to that made on the Lake Manitoba ciscoes (Keleher, .19562). Statistical computations were completed but unfortunately interpretation of the results and presentation in a manuscript was not possible. In order to have a somewhat detailed record of the work for later use and to place the information on file, this report has been prepared. The *various cisco populations (cf. Table I) are treated under their respective locality headings.

RESULTS

CHURCHILL RIVER

The ciscoes from Churchill River were caught in 4 different sizes of gill nets, with the majority of fish collected in nets of 3 inch stretched mesh (Table II). Some indication of net selectivity is seen from an examination of this Table. Gillnet selection appears to affect particular ages -- 6, 7, and 8 in the $1 \frac{1}{2}$ inch mesh, 2 and 3 in the 3 inch mesh. The actual size of fish selected by a particular mesh undoubtedly does not correspond to the averages listed in the Table because all sizes of nets were not fished during the same time period. Gill-net selection was not allowed for in the morphometric analysis because the number of fish from a known mesh was small. If a correction factor was developed, it could not be applied to the remainder of the data.

The sex condition of the ciscoes was as follows: 366 mature fish, 43 immature fish and 91 males of which there was doubt whether to classify as immature or mature. Their gonad, although of "mature" size, was of a reddish colour. It was suspected that they might be fish that would mature for the first time in the fall. To establish if the sex condition should be taken into account in the morphometric analysis, the individual variates for head length and the standard length were plotted with the immature fish, undecided males, and mature fish in different colours. Inspection of this regression suggested that the data could be analyzed without reference to the sex condition.

Analysis of covariance tests were performed to deteruine whether fish of different sexes and ages could be combined with respect to the average size of their body parts. Table III gives the results of these tasts. Table IV lists the calculated mean size of the body parts. Of the 16 measurements examined, the females probably differ fron the males only in having a greater body width. Four measurements differed between ages at the 1 per cent level of significance, but 4 per cent was the greatest ifference of the means of the significant tests (Table V).

The tests for differences between slopes were not significant at the 1 per cent level with the exception of body depth and body width.

Regression equations have been computed, and listed in Table VI. The statistics used to derive these equations and to compare this population with others are also shown in the Table. The averaco size of each part corresponding to three different
standard lengths is given in Table VII. Table VIII records the fiducial limits at the three different standard lengths for the average of the sample and for any individual fish.

Analysis of variance tests for 5 meristic counts were made. Tests between ages of female fish were not significant and in the tests between ages of males only the dorsal and anel rays were significant at the 5 per cent level. Tests between males and females regardless of age were not significant. Statistics of the meristic counts are given in Table IX.

LAKE MICHIGAN

During the Board's sponsored visit to the Great Lakes area in 1952, specimens collected from Lake Michigan and identified by Walter Koelz as Leucichthys artedii and I. nigrininnis, were measured at the Museum of Zoology, University of Michigan, Ann Arbor. Koelz' L. nigrioinnis sample was 51 fish, of which 48 were measured. His L. artedii sample was 265 fish, of which 206 were measured. From these samples the following morphometric information was obtained.

Variation between different size groups of L. artedii was examined which is a substitute for variation between ages. The data were divided into three arbitrary length groups irrespective of sex: less than 204 mm ., 204 to $224 \mathrm{~mm} ., 225 \mathrm{~mm}$. and larger. For the average size fifteen measurements were not significant but the caudal peduncle length was significant at the 5 per cent level. Differences in slope were noted in dorsal height and pectoral length (1 per cent level), maxillary and
anal base (5 per cent level). The tests for anal hoight and pelvic length would not "work" and no significant differences were found in the remaining measurements. It was considered that these three groups could be pooled without adversely affecting the value of the regression equations. This finding removes a personal opinion that some of the differences between Lake Michigan L. artedil and L. nigrininnis, as stated in Koelz' monograph (1929), were the result of dissimilar sized fish.

Regression equations and other data for the pooled data are given in Table X. Table XI records the mean size at 3 different standard lengths and Table XII lists the fiducial limits for these values.

Meristic counts of Koelz' Lake Michigan I. artedii sample were analysed. No significant differences were found between sexes but between length groups the gill-raker count and the branchiostega 1 count were significant at the 1 per cent level. The means are as follows: $<204 \mathrm{~mm}, \mathrm{G} . \mathrm{R}_{\mathbf{\prime}}=46.5, \mathrm{Br},=8.2 ; 204$ to 224 mm., G.R. $=48.3, \mathrm{Br}=8.6 ;>225 \mathrm{~mm} ., G . R_{*}=47.9, \mathrm{Br}=8.7 \cdot$ Statistics on the combined data are listed in Table XIII.

Due to a lack of an adequate number of specimens for Koelz' Leucichthvs nigripinnis sample no attempt was made to investigate differences in the measurements with respect to sex or size. The data were combined to give regression equations (Table XIV), average size at some standard lengths (Table XV) and fiducial limits (Table XVI).

Tests between sexes for the meristic counts of the preceding specimons were significant for dorsal rays (l per cent level) and anal rays (5 per cent level). The three remaining meristic counts were not significant.

The mean values were as follows: Males, D.R. $=10.5$, A.R. $=11.9 ;$ Females, D.R. $=10.0$ and A.R. 11.3 Statistics on the combined data are presented in Table XVII.

Koelz' Lake Michigan specimens of L_{2} artedii and $L_{\text {. }}$ nigrininnis were compared (Table XVIII). The samples differ significantly in the average size for 15 out of 16 measurements testai.

Graphs were prepared in an attempt to ascertain possible differences in measuring techniques between the writer and W. Koelz. Koelz' actual measurements were obtained by converting the ratios in his monograph. Ten L. nigripinnis and 22 L. artedii were available for a comparison with the writer's measurements. Unfortunately the results have not as yet been interpreted.

Specimens of Leucichthys artedii from Lake Michigan were secured by the U.S. Fish and Wildlife Service in 1952. These specimens came from Green Bay (cf. Kelchor, 1953). The total sample was 200 fish of which 8 specimens were 3 years old, 173 were 4 years old, and 19 were 5 years old. Consequently no tests were performed between ages and only between sexos in the age- 4 group. The results of these tests and a compartzon of the mean size of the body parts are given in Table XIX. No significant differences were noted in the tests for slope.

Despite the few instances of differences in the average size of the measurements, the data wore grouped without respect to sox or age, to yleld the regression equations listed in Table XX. Tables XXI and XXII record the calnrlated mean size of body parts and their fiducial limits.

Meristic counts were analyzed for differences between sexes at Age 4. No statistically significant results were obtained so that the data on both males and females were combined and tested between ages. All these tests were also not significant. Table XXIII shows the combined data.

LAKE HURON
Specimens of Leucichthys artedii from Lake Huron at South Bay were also measured. Data on a random sample of 272 fish from pound nets were analyzed. However, the preponderance of age 4 fish , $\mathrm{n}=188$, precluded tests being performed between ages and limited the tests between sexes to this one age group. Table XXIV reports on these results. The tests for slope were in no cases statistically different. The combined data were used to calculate the regression equations (Table XXV), calculated average size of body parts (Table XXVI)and their fiducial limits (Table XXVII).

Analysis of variance tests for the meristic counts between sexes of age 4 fish were not significant while between ages of combined sexes the only test with a statistically significant result was the gill-rakers. It, however, was at the 5 per cent level. Data on the meristic counts for this collection is given in Table XXVIII.

A comparison of the measurements of the F.R.E. L. artedif samoles from Lake Michigan and Lake Huron was made. The results are listed in Table XXIX.

The meristic counts of the 4 samples of Great Lakes ciscoes previously discussed were compared. Two counts, anal rays and branchiostegals, were not significant while of the others,
dorsal rays was significant at the 5 per cent level and gill-rakers and scales were significant at the 1 per cent level. A similar test was performed between these four samples and the total data from the 4 Manitoba samples. All the meristic counts were found to be highly significant. The means of the counts involved in this test are reported in Table XXX.

LAKE DAUPHIN
Because of the small number of specimens in each age group, only age 5 fish were used in the tests for differences in body parts between the sexes. With respect to average size, two measurements, snout and anal base, were significantly different at the 1 per cent level. Three measurements, head depth, caudal peduncle length, and pelvic length were significant at the 5 per cent level. Only one measurement was significantly different for slope -- snout at the 1 per cent level. However, the "anal base" test did not "work" for either average size or slope.

Table XXXI records the regression equations and other statistics while Table XXXII lists the calculated average size at 3 different standard lengths. Table XXXIII records the fiducial limits for body parts.

Meristic counts of the Lake Dauphin sample showed no significant differences between the sexes of age 5 fish or, after combining the sexes, between the ages 4 to 7 . The combined data are recorded in Table XXIV.

No examination of differences in body parts or counts
between sexes or ages was made for this sample. Various aspects of the combined data are listed in Tables XXXV to XXVIII.

LAKE WINNIPEG
Although a bimodality of gill-raker counts for the Lake Winnipeg ciscoes appears indicated, the "trough" of the distribution, when compared to that expected if each mode follows a normal curve, is too high (Keleher, 1956b). This suggests that a third group of ciscoes is present. To establish whether other "characters" agreed with this hypothesis, the relationship between gillraker groups and the body form of selected portions of the data was examined statistically.

Within the samples examined, ciscoes having a gill-raker count of from 33 to 43 were classified as Group I, counts of 4 to 53 were classified as Group II and counts of 55 to 67 were classified as Group III. Group I fish correspond to the nominal species I. zenithicus, Group 2 corresponds to one or two nominal species, and Group 3 corresponds to nominal L. nipigon.

Samples of the Lake Winnipeg data selected for analysis were the 1954 Bull Head collection, the 1950 Doghead collection and the 1947 Mukutawa River collection. The number of fish of each gill-raker group, subdivided into various categories, is listed in Table XXXIX. Of the ciscoes listed in the Table only the following were used for the analysis:

Bull Head - Spawning females
Doghead - Spawning males and females
Nukutawa R. - mature males and females
Analysis of covariance tests were performed to establish
if, within each sex, the various age groups could be combined. A listing of those body parts, which were significant for ofthor mean size or slope is given for the Bull Head sample in Table XL, for the Doghead sample in Table XLI, and for the Mukutawa River sample in Table XLII. Because the majority of the tests were not significant, the data were combined for the purpose of considering differences between the sexes.

The results of these tests, Table XLIII, showed that the sexes could be combined in the two samples considered.

Regression equations and other statistics for each gillraker group for the 3 samples are given in Tables XLIV to LII.

The calculated average size of the body parts at various standard lengths were computed. Table LIII records the Bull Head ciscoes while Tables LIV and LV record the Doghead and Mukutawa River ciscoes.

Analysis of covariance tests were used to discover if the average size and the slope of the data for each gill-raker group within any one sample were significantly different. The results are recorded in Table LVI.

This Table reveals that 71 per cent of the tests were significantly different for average size and 27 per cent were significantly different for slope. Regression graphs (not presented) for this portion of the data were prepared from the data shown previously in Tables LIII to LV. Half of the graphs displayed the relationship of the greatest average size of measurement associatcd with group III fish. Group I fish had the smallest average measurcments and group II had intermediate sized measurements. The other 50 per cent of the graphs revealed a variety of situations.

The results of the statistical enalysis suggest that the heterogeneity displayed by the gill-raker counts is matched by many other measurements which strengthens the reported taxonomic discreteness of the ciscoes. However, the variation of the measurements with locality further decreases their utility for identification purposes.

Because of the dependence of the slze of the body parts upon the growth rate of the fish, the average size at each agc for groups I, II and III from the three localities in Lake Winnipeg is listed in Table LVII.

Although contemplated, no analysis of the differencos in meristic counts between gill-raker groups is at present availablo. Table LVIII records the means for the data when combined with rospect to age and sex.

LAKE MANITOBA

Fiducial limits for the Lake Manitoba ciscoes (Kolehcr, 1956a) are recorded in Table LIX.

ALL SAMPIES

Fiducial limits for the slopes for the combined data from each locality have been calculated. Table LX lists them for the Great Lakes data and Table LXI for the Manitoba date.

LITERATURE CITED

Keleher, J.J. 1953. Growth of ciscoes, Leucichthys spp., collected from five different lakes. MS Rep. Biol. Sta., No. 557, 21 pp. 1956a. Morphometry of Lake Manitoba ciscoes, Leucichthys tullibee. MS Rep. Biol. Sta., No. 610, 29 pp. 1956b. Bull Head spawning study, 1954. App. 7, Rep. Summarizing Invest. Biol. Sta., Winnipeg to March 31, 1956.

Koelz, W. 1929. Coregonid fishes of the Great Lakos. Bull. U.S. Bur. Fish. Vol. XLIII, Part 1.

LIST OF TABIES

№. I II - IX

X - XIII
XIV - XVII
XVIII

XIX - XXIII
XXIV - XXVIII
XXIX

XXX

XXXI - XXXIV
XXXV - XXXVIII
XXXIX - LVIII
LIX
LX
LXI

Subject

Cisco collections.
Churchill River.
Koelz' Lake Michigan Leucichthys artedii.
Koelz' Lake Michigan Leucichthys nigripinnis.
Comparison between Koelz' Lake Michigan samples of Leucichthys artedii and Leucichthys nigripinnis.
F.R.B. Lake Michigan Leucichthys artedii.
F.R.B. Lake Huron Leucichthys artedii.

Comparison between F.R.B. samples of Leucichthys. artedii from Lakes Michigan and Huron.

Average count of meristic characters for cisco samples.

Lake Dauphin.
Rocky Lake.
Lake Winnipeg.
Lake Manitoba.
Fiducial limits for slope for Great Lakes samples.
Fiducial limits for slope for Manitoba ciscoes.

Abbreviations used in the tables

Body parts

HL - head length	BD - body depth
ID - head depth	BW - body width
EB - eye	DH - dorsal fin height
ST - snout	DB - dorsal fin base
WX - maxillary	$A H$ - anal fin height
IB - interorbital	$A B$ - anal fin base
$C L$ - caudal peduncle length	PT - pectoral fin length
$C D ~-~ c a u d a l ~ p e d u n c l e ~ d e p t h ~$	$P C ~-~ p e l v i c ~ f i n ~ l e n g t h ~$

Meristic counts
GR - gill-rakers
DR - dorsal rays
AR - anal rays

Others
C - count
M - males or mean (arithmetic $\begin{gathered}\text { average) }\end{gathered}$
f - frequency
n or \mathbb{N} - number of fish
St. L. - standard length
Sc - lateral line scales
Br - branchiostegals

F - females
S - sigma (sum of)

1 asterisk (k) denotes that the test exceeded the 5 per cent level.
2 asterisks (dati) denotes that the test exceeded the 1 per cent level. N.S. - denotes that the test did not exceed the 5 per cent level.

Table I. Cisco collections for which morphometric data are presented in this report.

Year Gollooted	Sample	$\begin{aligned} & \text { I. B. M. } \\ & \text { No. } \end{aligned}$	F.R.B.C. Teg Nos.	n
1953	Churohill River	18	2851-3352 ${ }^{\text {a }}$	500
1920	Koelz Lake Michigan L. nigrisinnis	73	***	48
1920	Koelz Lake Michigan L. artedii	74	**	206
1952	F.R.B. Lake Michigan I. artedil	75	$\begin{gathered} 2351-2550, \\ 2848^{\text {b }} \end{gathered}$	200
1952	F.R.B. Lake Huron L. artedif	76	5622-5921 ${ }^{\text {c }}$	294
1951	Lake Dauphin	02	5463-5560	98
1951	Rocky Lake	12	5051-5109	59
1947	Lake Winnipeg Nukutewa River	57	**	491
1950	Doghead	47	1350-1772 ${ }^{\text {d }}$	414
1954	Bull Heed	41	$\begin{aligned} & 3753-4108, \\ & 4177-4201^{6} \end{aligned}$	372

2682

```
a - Omit tag Nos. 2892, 2939.
b - " " 2356.
c - " " 5711-5715, 5726.
d - " " " 1368, 1430, 1481, 1507, 1582, 1670, 1671, 1677, 1704.
e - " " " 3842, 3987, 4061, 4062, 4066, 4070, 4072, 4073, 4093.
```

Table II．Statisticn for otanderd length of Churchill 脑ver aisooes．

$\begin{aligned} & 30 t \\ & 3250 \end{aligned}$	2	3.	4	$\begin{gathered} \hline \text { AGE } \\ 5 \\ \hline \end{gathered}$	6	7	8	Totnl
1雪mmah								
	2	1		3				1，260
8 Bx	335	166		759				2，260
$5 x^{2}$	56， 153	27，556		192，851				276，560
M	167.5	166.0		253.0				220.0
								77
sx_{8}	348 60,602	4，279	2，097	6,819 $1,792,479$	5,216 $1,434,760$	319 101,761		$18,978$
$8 x^{8}$	60，602	877， 209	491，017	$1,792,479$	$1,434,760$	101，761		$4,757,828$
W	174.0	209.0	233.0	262.3	274.5	319.0		246.5
n			5	［ $75, \begin{array}{r}57 \\ 706\end{array}$	［99， 849	－15，243		
8 X $3 \mathrm{X}^{2}$			1,330 354,336	15,706 $4,332,994$	29,842 $8,497,410$	15,243 $4,569,693$	$\begin{array}{r} 2,168 \\ 672,684 \end{array}$	64， 289 18，427，117
s X^{2} M			354,336 266.0	$4,332,994$ 275.5	$8,497,410$ 284.2	$4,569,693$ 298.9	$\begin{array}{r} 672,684 \\ 309.1 \end{array}$	$18,427, \frac{117}{285.7}$
E	－ 4	25	22	65	60	14	2	192
5 SX	r 668	5，131	4，972	17,213 $4,532,263$	16，745	$4,150$	648	$49,427$
$5 x^{2}$	11，624	1，064，577	1，130，006	$4,532,263$	4，694，981	$1,236,366$	$210,834$	$12,880,651$
H	167.0	205．2	226．0	263．3	279.1	296.4	324.0	257.4
A11 peshe日								
4	8	46	36	151	184	66	9	500
5 X	2，351	9，476	8，399	40，397	51，803	19，712	2，816	133，954
$5 \mathrm{X}^{2}$	128，379	$1,969,342$	1，975，359	10，850，587	14，627， 151	5，907，980	883,518	36，342， 156
M	168.9	206.0	233.3	267.5	281.5	298.7	312.9	267.9

Table III．Results of analysis of covariance tests for mean size of body parts of Churchill River ciscoes．

Category Body Part	Between Sexes		Between Ages 2 to 8		
	Age 5	Age 6	Males	Females	Both Sexes
HL	NS	NS	＊＊	＊	媇
HD	NS	NS	＊	＊	立
EE	NS	NS	＊	＊	边
ST	NS	NS	＊	＊	NS
wX	NS	NS	＊	\cdots	\％
IB	NS	NS	．	\cdots	直就
CL	NS	NS	＊	\cdots	4
CD	NS	\％	\cdots	\cdots	NS
BD	NS	＊	NS	NS	MS
EV	NS	建	㡎	NS	＊${ }_{\text {k }}^{\text {¢ }}$
DH	NS	NS	＊	\cdots	NS
DB	NS	NS	\cdots	\cdots	NS
AH	＊	NS	\cdots	\cdots	NS
AB	NS	NS	NS	NS	\％
PT	NS	NS	NS	NS	18
PC	NS	NS	＊	＊	is

Table IV. Calculated mean size in mm. of body parts of Churchill River ciscoes, at 268 mm . standard length except where noted.

[^0]Table V. Differences in calculated mean size of body parts of Churchill R. ciscoes. For calculated mean size see Table IV.

	GREALSST ACTUAL DIFF. (mm.)		GREATEST	AGS DIFT.
	Sex ${ }^{\text {a }}$	Age	Sex ${ }^{\text {a }}$	Age
HL	0.3	0.9	0.5	1.5
HD	0.3	0.8	0.8	2.1
EE	0.1	0.5	0.6	3.3
ST	0.1	0.3	0.6	3.9
MX	0.2	0.4	0.9	2.0
IB	0.1	0.6	0.7	4.0
CL	0.6	1.8	2.1	6.6
CD	0.4	0.5	1.9	2.4
BD	1.1	6.6	1.8	10.2
BV	0.7	1.3	2.0	3.9
DH	0.3	2.0	0.6	0.4
DB	0.2	0.4	0.6	1.2
AH	0.5	1.2	1.5	3.7
AB	0.3	2.8	0.9	9.0
PT	0.4	2.3	0.9	5.2
PC	0.7	1.6	1.6	3.7

${ }^{a_{G}}$ geatest actual diff. of either age 5 or 6 .

Table VI. Regression equations and other statistics for Churchill River ciscoes. $X=\log$ standard length and $Y=10 \mathrm{~g}$ part.

Log Body Part	N	SX	SY	$s x^{2}$	SXY	$5 Y^{2}$
$\mathrm{HL}=0.915 \times-0.4501$	500	1211.94	883.91	2939.3604	2144.1050	1564.1527
$H D=0.958 \times-0.7478$	499	1209.72	785.76	2934.4320	1906.5583	1239.0142
$\mathbb{E E}=0.706 \mathrm{X}-0.5332$	500	1211.94	589.07	2939.3604	1429.0807	695.0749
$S T=0.838 \mathrm{X}-0.8473$	"	"	591.95	"	1436.2934	702.2137
$N X=0.880 \mathrm{X}-0.8339$	"	"	649.53	"	1575.9352	845.3493
$I B=0.987 \mathrm{X}-1.2187$	"	"	586.85	"	1424.1949	690.7075
$C L=0.946 \mathrm{X}-0.8473$	"	"	722.83	"	1753.7222	1047.2079
$C D=0.908 \mathrm{x}-0.8948$	"	"	653.03	"	1584.4671	854.5989
$B D=0.992 \mathrm{X}-0.6431^{8}$	"	"	881.56	"	2138.6840	1556.6222
$"=1.106 x-0.9169^{\text {b }}$	-	-	-	-	-	-
$B W=1.242 \mathrm{X}-1.4974{ }^{\text {b }}$	500	1211.94	756.27	2939.3604	1835.2549	1146.7737
DH $=0.769 \mathrm{X}-0.1641$	499	1209.43	848.16	2933.0603	2057.0425	1442.8776
$D B=0.976 \mathrm{X}-0.8359$	500	1211.94	764.92	2939.3604	1855.7960	1172.2892
$A H=0.818 \mathrm{X}-0.4759$	499	1209.48	751.89	2933.3088	1823.8777	1134.4185
$A B=0.889 x-0.6865^{a}$	"	1209.45	732.39	2933.1603	1776.7742	1076.9501
$P T=0.876 x-0.4880$	500	1211.94	817.66	2939.3604	1983.4537	1338.6968
$\mathrm{PC}=0.828 \mathrm{X}-0.3753$	"	"	815.86	"	1979,0075	1332.6526

[^1]Table VII. Calculated average size in mm. of body parts for Churchill River ciscoes. ${ }^{8}$

Standard Length	200 mm .	250 mm .	300 mm .
HL	45.2	55.5	65.5
HD	28.6	35.4	42.2
ER	12.3	14.4	16.4
ST	12.0	14.5	16.9
MX	15.5	18.9	22.2
IB	11.3	14.1	16.8
CL	21.4	26.4	31.3
CD	15.6	19.2	22.6
$B D$ (males only)	43.6	54.4	65.2
$B D$ (females only)	42.5	54.4	66.5
BW (females only)	22.9	30.3	37.9
DH	40.6	47.8	55.4
DB	25.7	32.0	38.2
AH	25.5	30.6	35.5
$A B$ (meles only)	22.9	27.9	32.8
PT	33.7	41.0	48.1
PC	33.9	40.8	47.4

Males and females combined except where noted.

Table VIII. Lower and upper fiducial limits for body parts of Churchill River ciscoes.

Table IX. Statistics of meristic counts for Churchill River ciscoes.

	GR		Sc			DR	$\begin{aligned} & \hline A R \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Br} \\ \mathrm{f} \end{gathered}$
	c	f	c	f	-			
	39	4	*	2	\cdots	*	*	\cdots
	40	15	64	1	-
	41	33	65	1	.	1	1	*
	42	72	66	5	6	.	\cdots	1
	43	94	67	10	7	.	\cdots	3
	44	95	68	15	8	-	1	116
	45	101	69	28	9	4	\cdots	302
	46	43	70	41	10	121	20	77
	47	27	71	36	11	282	167	1
	48	14	72	57	12	89	247	-
	49	1	73	64	13	3	62	*
	50	1	74	50	14	.	2	-
	.	\cdots	75	50	..	\cdots	.	..
	..	-	76	34
	*	*	77	35
	-	\cdots	78	34	*
	.	\cdots	79	17
	-	.	80	12	-	.	.	.
	.	\cdots	81	3	..	*	.	..
	.	.	82	4	\cdots
	.	.	83	0
	**	\cdots	84	1	\cdots	*	\cdots	\cdots
n		500		498		499	499	500
Mean		43.8		73.5		10.9	11.7	8.9
SX		918		622		5,455	5,843	4,454
$s x^{2}$	962	604	2,698	916		59,869	68,709	39,890

Table X. Regression equations and other statistics for some of Koelz' Lake Michigan Leucichthys artedii specimens.

Log Body Part	N	8X	SY	$s x^{2}$	SXY	$s Y^{2}$
$H L=0.875 x-0.3353$	206	477.65	348.39	1108.8743	808.9918	590.2763
$H D=0.980 \times-0.7976$	205	475.39	302.37	1103.7667	702.5107	447.3425
$E \mathrm{EE}=0.637 \mathrm{X}-0.3596$	206	477.65	230.18	1108.8743	534.5774	257.9466
$S T=0.842 \mathrm{X}-0.8527$	205	475.26	225.36	1103.1622	523.5953	248.8556
$\mathrm{MX}=0.787 \mathrm{X}-0.6098$	203	470.65	246.63	1092.5321	572.8621	300.6089
$I B=1.087 \mathrm{X}-1.4386$	"	470.77	219.71	1093.0817	510.9732	239.5281
$C L=0.962 \times-0.8682$	206	477.65	280.66	1108.8743	652.0645	384.0268
$C D=1.082 \mathrm{X}-1.3047$	201	465.81	236.36	1080.8357	549.2036	279.7550
$B D=1.323 \mathrm{X}-1.4248$	188	436.65	309.83	1015.3949	721.2387	513.0917
$B W=1.286 \mathrm{X}-1.6348$	202	468.34	272.05	1087.1660	632.4399	368.9801
$\mathrm{DH}=0.795 \mathrm{x}-0.3064$	204	473.12	313.62	1098.5994	728.4116	483.1518
$D B=1.014 \mathrm{X}-1.0227$	206	477.65	273.68	1108.8743	635.9497	365.2392
$\mathrm{AH}=0.881 \mathrm{X}-0.6871$	202	468.28	273.75	1086.9026	635.7823	372.2983
$A B=0.895 \mathrm{X}-0.7451$	206	477.65	274.01	1108.8743	636.5544	365.8025
$P T=0.888 \times-0.5349$	"	"	313.96	"	729.1760	479.7098
$P C=0.867 \mathrm{X}-0.5027$	"	"	310.56	"	721.2646	469.3686

Table XI. Calculated average aize in mm. of body parts for Koelz' Lake Michigan Leucichthys ortedii specimens.

Standard Length	200 mm	250 mm .	300 mm .
HL	47.6	57.9	68.0
HD	28.7	35.7	42.7
KE	12.8	14.7	16.5
ST	12.2	14.7	17.1
MX	15.9	18.9	21.9
IB	11.6	14.7	17.9
CL	22.2	27.4	32.7
CD	15.3	19.5	23.7
BD	41.6	55.9	71.2
BII	21.1	28.1	35.5
DH	33.3	39.8	46.0
DB	20.4	25.6	30.8
AH	21.9	26.6	31.3
$A B$	20.6	25.2	29.6
PT	32.2	39.3	46.2
PC	31.1	37.7	44.2

Table XII. Lower and upper fiducial limits for body parts of Koelz' Lake Michigan Loucichthys artedii ciscoes.

St.L.	Mean Pert 200	mim. Ind. Part	Moan Part 250	mm. Ind. Part	300 Mean Part	Ind. Part
HL	47.4-47.8	44.9-50.5	57.6-58.2	$54.6-61.4$	67.4-68.6	64.1-72.2
HD	28.5-28.9	26.6-31.0	35.4-36.0	$33.0-38.6$	42.2-43.2	$39.5-46.2$
EE	12.7-12.9	11.1-14.7	14.5-14.9	12.8-16.9	16.1-16.9	14.3-19.0
ST	12.1-12.3	10.7-13.9	14.5-14.9	12.9-16.7	16.8-17.4	15.0-19.4
MX	15 -8-16.0	14.1-17.9	18.7-19.1	16.8-21.3	$21.5-22.3$	19.4-24.7
IB	11.5-31.7	10.2-13.2	14.5-14.9	12.9-16.7	17.6-18.3	15.7-20.4
CL	21.9-22.5	18.2-27.1	26.9-27.9	22.4-33.5	31.7-33.7	$26.7-40.0$
CD	15.1-15.5	13.0-17.9	19.1-19.1	16.6-22.9	23.1-24.4	20.2-27.8
BD	41.0-42.2	34.4-50.4	54.8-57.0	46.1-67.7	69.1-73.4	58.7-86.4
BW	20.8-21.4	17.1-26.0	27.5-28.7	$22.8-34.7$	$34.4-36.7$	28.7-43.9
DH	33.0-33.6	$29.3-37.8$	39.3-40.3	$35.0-45.2$	45.1-46.9	40.4-52.3
DB	$20.2-20.6$	17.4-23.9	25.2-26.0	$21.8-30.0$	30.1-31.6	26.2-36.2
AH	21.6-22.2	18.5-25.9	26.2-27.0	22.5-31.5	30.5-32.1	26.4-37.1
$A B$	20.4-20.8	17.6-24.2	24.8-25.6	$21.5-29.6$	28.9-30.3	25.2-34.8
PT	31.9-32.5	$28.5-36.4$	38.8-39.8	34.7-44.5	45.3-47.1	40.8-52.3
PC	30.8-31.4	27.4-35.3	37.2-38.2	$33.2-42.8$	43.4-45.1	$38.9-50.3$

Table XIII. Statiatics of meristic counts for Koelz' Lake Michigan Leucichthys artedii specimens.

	GR		Sc		c	DRf	$\begin{gathered} \mathrm{AR} \\ \mathrm{f} \end{gathered}$	Brf
	c	1	-	1				
	40	2	.	8	*	.	.	.
	41	2	63	1	\cdots
	42	6	64	0	\cdots	.	.	.
	43	10	65	5	\cdots	.	.	.
	44	19	66	3	.	.	2	1
	45	14	67	3	6	*	.	3
	46	21	68	4	7	-	\cdots	12
	47	29	69	3	8	5	\cdots	87
	48	24	70	8	9	38	2	88
	49	26	71	8	10	103	26	15
	50	19	72	12	11	54	76	.
	51	19	73	16	12	5	83	.
	52	8	74	12	13	1	17	..
	53	3	75	15	.	.	-	.
	54	2	76	19	-	*	\cdots	*
	55	1	77	21	..	.	\cdots	..
	..	*	78	11	*
	.	*	79	16
	*	\cdots	80	15
	*	.	81	7	*	.	.	.
	-	*	82	3	.	.	.	-
	*	-	83	7	.	.	*	-
	-	..	84	2
	*	**	85	4
	.	.	86	2
	\cdots	\cdots	87	1	-	-	*	-
n		206		198		206	204	205
Mean		47.2		75.7		10.1	11.4	8.5
Sx		722		983		2,079	2,331	1,740
sx ${ }^{2}$	462	824	1,13	223		21,121	26,783	14,892

Table XIV. Regression equations and other statistics for some of Koel' Lake Michigan Leucichthys nigripinnis specimens.

Table XV. Calculated average size in men. of body parts for Koelz' Lake Míchigen Leucichthys nigripinnis specimens.

St.L.	200 mm .	250 mm .	300 mm .
HL	51.5	61.8	71.8
HD	32.5	39.9	47.2
EE	14.0	15.5	16.9
ST	13.4	16.1	18.8
2 x	18.3	22.1	25.8
IB	11.1	14.5	18.0
CL	20.5	26.0	31.6
CD	16.1	20.7	25.4
BD	50.1	66.8	84.3
昭	24.5	31.1	37.9
DH	41.9	50.2	58.2
DB	22.8	28.7	34.5
AH	27.0	32.6	37.9
$A B$	24.1	28.5	32.7
PT	40.1	48.4	56.3
PC	37.6	46.0	54.1

Table XVI. Lower and upper fiducial limits for body parts of Koelz' Lake Michigan Leucichthys nigripinnis ciscoes.

St.L.	200 mm .		250 mm .		300 mm .	
	Moan Part	Ind. Part	Mean Part	Ind. Part	Mean Part	Ind. Pert
HL	50.3-52.7	48.1-55.2	61.2-62.4	57.9-66.0	70.6-73.0	67.1-76.7
HD	31.7-33.4	30.1-35.2	39.5-40.3	37.0-43.0	46.3-48.1	43.7-50.9
EE	13.4-14.5	12.5-15.6	15.3-15.7	13.9-17.3	16.4-17.4	15.1-18.8
ST	12.8-14.0	11.7-15.3	15.8-16.4	14.2-18.3	18.2-19.5	16.5-21.4
MX	17.6-18.9	16.5-20.2	21.8-22.4	20.0-24.4	25.2-26.5	23.3-28.5
IB	10.6-11.7	9.6-12.9	14.2-14.8	12.6-16.7	17.4-18.7	15. -20.8
CL	19.2-22.0	16.7-25.2	25.3-26.8	21.4-31.7	30.0-33.3	25.e-38.5
$C D$	15.2-17.1	13.6-19.1	20.2-21.2	17.6-24.4	24.4-26.5	21.5-30.7
BD	47.4-53.0	42.6-59.1	65.2-68.4	57.1-78.0	80.9-87.8	$71.9-98.3$
BW	22.9-26.2	19.9-30.1	30.3-32.0	25.6-37.9	36.0-39.9	$31.0-46.3$
DH	40.3-43.5	37.4-46.9	49.4-51.0	45.1-55.9	56.6-59.9	52.2-65.0
DB	21.8-23.9	19.9-26.2	28.1-29.2	25.1-32.7	33.4-35.7	30.2-39.5
AH	25.8-28.2	23.8-30.7	32.0-33.2	28.8-36.8	$36.7-39.2$	$33.5-43.0$
$A B$	22.9-25.3	20.8-27.9	27.9-29.1	24.7-32.8	31.4-33.9	28.3-37.7
PT	38.3-42.0	$35.0-46.0$	47.4-49.3	42.4-55.1	54.4-58.3	49.2-64.4
PC	36.4-38.9	$34.1-41.5$	45.3-46.6	41.9-50.5	52.8-55.4	49.2-59.6

Table XVII. Statistics for meristic counts for Koelz' Lake Michigan Leucichthys nigripinnis specimens.

	GR		Sc		c	ER	AR	Br
	a	1	c	1		f	P	1
	42	1	68	1	*	-	.	\cdots
	43	3	69	2
	44	3	70	3	7	.	.	3
	45	4	71	3	8	,	-	16
	46	5	72	2	9	5	.	29
	47	10	73	6	10	30	2	.
	48	7	74	2	11	11	21	.
	49	4	75	5	12	2	22	.
	50	7	76	7	13	.	2	..
	51	2	77	2	14	..	1	..
	52	2	78	5
	*	\cdots	79	5
		\cdots	80	4
	81	0
	.	\cdots	82	1	\cdots	-	.	.
n		48		48		48	48	48
Mean		47.3		75.1		10.2	11.6	8.5
SX		271				490	555	410
$5 x^{2}$	107 ,	731	271			5,024	6,443	3,520

Table XVIII．Results of analysis of covariance tests for body parts when comparing Koelz＇Lake Michigan Leucichthys artedii and Leucichthys nigripinnis specimens．

Body Part	Mean Size	Slope
HL	あ	NS
HD	苼	NS
EE	㙑	NS
ST	4ız	NS
mX	雜	NS
IB	NS	NS
CL	xix	MS
CD	4	NS
BD		新
BW	＊＊	NS
DH	姲	NS
DB	蚉	NS
AH	4ix	
AB	da	NS
PT		NS
PC	发发	＊ \mathbf{k}^{2}

Table XIX. Comparison between sexes of age 4 F.R.B. Lake Michigan Leucichthys artedif ciscoes.

[^2]Table XX. Regression equations and other atatistics for F.R.B. Lake Michigan Leucichthys artedii specimens.

Log Body Part	N	SX	SY	$s x^{2}$	SXY	SY ${ }^{2}$
$H L=0.702 \mathrm{x}+0.0639$	200	468.30	341.53	1096.6256	1799.7635	583.3001
$H D=0.692 \times-0.1436$	"	"	295.34	"	691.6086	436.2570
$\mathrm{EE}=0.311 \mathrm{X}+0.4360$	199	465.95	231.68	1091.1031	542.5002	269.8466
$S T=0.568 \times-0.1806$	200	468.30	229.89	1096.6256	538.3449	264.3839
$12 x=0.575 x-0.0914$	"	n	250.99	"	587.7513	315.0963
$I B=0.840 x-0.8858$	"	"	216.22	"	506.3641	233.9770
$C L=1.135 \mathrm{X}-1.3008$	"	"	271.36	"	635.5043	368.5428
$C D=0.723 x-0.5197$	"	"	234.64	"	549.4828	275.4392
$B D=0.967 \mathrm{X}-0.6202$	199	465.95	327.14	1091.1031	766.0821	538.0658
$B E=0.928 x-0.7857$	"	"	276.04	"	646.4297	383.2090
$D H=0.519 \mathrm{x}+0.3413$	"	465.97	309.76	1091.1967	725.3733	482.3086
$D B=0.787 \mathrm{X}-0.4910$	200	468.30	270.35	1096.6256	633.1041	365.6955
$A H=0.610 x-0.0320$	"	*	279.26	"	653.9490	390.1110
$A B=0.803 x-0.5142$	"	"	273.20	*	639.7791	373.4490
$P T=0.625 \mathrm{x}+0.0898$	"	"	310.65	${ }^{\prime \prime}$	727.4503	482.6919
$P C=0.439 \mathrm{X}+0.5048$	*	"	306.54	"	717.8078	469.9466

Table XXI. Calculated average size in mm, of body parts of F.R.B. Lake Michigan Leucichthys artodii specimens.

St.L.	200 mm .	250 mm .	300 mm .
HL	47.8	55.9	63.5
HD	28.1	32.8	37.2
ER	14.2	15.2	16.1
ST	13.4	15.2	16.8
M \times	17.0	19.4	21.5
IB	11.1	13.4	15.7
CL	20.5	26.4	32.4
$C D$	13.9	16.4	18.7
BD	40.3	50.0	59.6
BW	22.4	27.5	32.6
DH	34.3	38.5	42.4
DB	20.9	24.9	28.7
AH	23.5	27.0	30.1
$A B$	21.6	25.8	29.8
PT	33.7	38.8	43.4
PC	32.7	36.1	39.1

Tabla XXII. Lower and upper fiducial limits for body parts of F.R.B. Lake Michigan Leuciohthys artedii ciscoes.

St.L.	$\begin{aligned} & 200 \\ & \text { Noan Part } \\ & \hline \end{aligned}$	mis. Ind. Part	$\text { Wean Part } \begin{gathered} 250 \\ \hline \end{gathered}$	Ind. Part	$\begin{array}{r} 300 \\ \text { Wean Part } \\ \hline \end{array}$	min. Ind. Port
HL	47.4-48.2	45.0-50.7	55.3-56.5	52.6-59.3	61.9-65.1	$59.6-67.7$
HD	27.7-28.5	25.6-30.8	32.2-33.4	29.9-36.0	35.8-38.7	$33.7-41.1$
EE	14.0-14.4	12.8-15.8	14.9-15.5	13.7-16.9	15.4-16.8	14.4-18.0
ST	13.2-13.6	12.0-14.9	14.9-15.5	13.7-16.9	16.1-17.6	15.0-18.9
MX	16.8-17.3	15.6-18.7	19.0-19.7	17.7-21.3	20.7-22.4	19.5-23.8
I日	10.9-11.3	$9.8-12.6$	13.1-13.8	11.9-15.2	14.9-16.5	13.7-17.9
CL	20.0-20.9	17.5-23.9	25.6-27.1	22.5-30.8	30.3-34.6	27.4-38.4
CD	13.7-14.1	12.5-15.5	$160-16.7$	14.7-18.2	17.9-19.5	16.7-20.9
BD	39.5-41.1	35.1-46.2	48.7-51.3	43.5-57.4	52.2-63.2	51.4-69.1
BW	21.9-22.9	19.2-26.0	26.7-28.3	23.6-32.0	30.5-34.8	27.7-38.4
DH	33.8-34.9	30.7-38.3	37.7-39.3	34.5-43.1	40.4-44.4	37.6-47.7
DB	20.5-21.3	18.1-24.1	24.2-25.6	21.6-28.7	27.0-30.5	24.7-33.5
AH	23.1-24.0	20.8-26.6	26.3-27.6	23.8-30.5	28.6-31.8	26.4-34.4
$A B$	21.1-22.0	18.7-24.8	25.1-26.5	22.3-29.8	28.1-31.7	25.6-34.8
PT	33.2-34.3	29.9-38.0	37.9-39.7	34.4-43.7	41.3-45.7	$38 \cdot 2-49.4$
PC	32.3-33.2	29.6-36.2	35.4-36.8	$32.6-40.0$	$37.5-40.8$	35.1-43.6

Table XXIII. Statistics for meristic counts for F.R.B. Lake Michigan Leucicl thy artodii specimens.

Table XXIV. Comparison between sexes of age 4 of F.R.B. Leke Huron Leucichthys artedii ciscoes.

Body Part	Results of Covariance Tists	Mean Size ${ }^{\text {d }}$		Greatest	Groetest
		M	F	hctual Diff. mme	Percentage Diff. 표.
HL	NS	49.4	49.4	-	-
HD	NS	28.6	28.6	-	-
ES	NS	14.9	14.8	0.1	0.7
ST	NS	13.5	13.5	-	-
NX	NS	17.1	16.9	0.2	1.2
IB	NS	11.7	11.6	0.1	0.8
CL	NS	22.3	22.3	-	-
CD	NS	14.0	14.0	-	-
BD	NS	39.2	38.6	0.6	1.5
BW	NS	22.5	22.4	0.1	0.4
DH	NS	34.0	33.6	0.4	1.2
DB	NS	21.5	21.2	0.3	1.4
AH	NS	22.9	22.7	0.2	0.9
$A B$	NS	21.8	21.6	0.2	0.9
PT	4t	34.1	33.2	0.9	2.6
PC	42	32.3	31.5	0.8	2.5

${ }^{a}$ At 208 mm . standard length.

Table XXV. Regression equations and other statistios for F.R.B. Lake Furon Leucichthys artedif specimens.

Log Body Part	N	SX	SY	$5 X^{2}$	SXY	$5 Y^{2}$	
$H L=0.837 \mathrm{X}-0.2469$	272	630.89	460.89	1,463.4231	1,069.0995	781.0813	
$H D=0.853 \mathrm{X}-0.5220$	${ }^{\prime \prime}$	"	396.13	"	918.8937	577.0809	
$E E=0.704 X-0.4628$	*	"	318.27	"	738.2857	372.6161	
$S T=0.830 \mathrm{X}-0.7948$	"	"	307.45	"	713.2027	347.7395	
$\mathrm{MX}=0.737 \mathrm{X}-0.4782$	"	"	334.89	"	776.8384	412.6209	
$I B=0.992 \mathrm{X}-1.2361$	"	"	289.61	"	671.8409	308.6979	
$C L=0.981 \mathrm{X}-0.9263$	n	"	366.92	m	851.1562	495.4252	
$C D=1.103 \mathrm{X}-1.4113$	"	"	311.99	"	723.7618	358.2119	
$B D=0.914 X-0.5288$	"	"	432.78	"	1,003.9080	688.8426	
$E \\|=1.154 \mathrm{X}=1.3255$	"	*	367.50	"	852.5199	496.8948	
DFI $=0.749 \mathrm{X}-0.2077$	269	624.08	411.57	1,447.9522	954.9073	629.8883	
$D B=0.781 \mathrm{X}-0.4832$	272	630.89	361.31	1,463.4231	838.1228	480.2499	
$A Y^{\prime}:=0.929 \mathrm{X}=0.7957$	271	628.56	368.29	1,457.9942	854.3140	500.8051	
$A B=0.875 \mathrm{X}-0.6917$	"	"	362.55	"	840.9947	485.3493	
$P T=0.823 \mathrm{X}=0.3820$	272	630.89	415.31	1,463.4231	963.3776	634.3533	
$P C=0.768 \mathrm{X}-0.2767$	"	"	409.25	"	949.3159	615.9313	

Table XXVI. Caloulated average size in mm. of body parts of F.R.B. Lake Huron Leucichthys artedii speoimens.

St.L.	200 mm .	250 mm .	300 mm .
HL	47.8	57.6	67.0
HD	27.6	33.4	39.0
EE	14.4	16.8	19.1
ST	13.0	15.7	18.2
wx	16.5	19.5	22.3
IB	11.1	13.9	16.6
CL	21.4	26.7	31.9
CD	13.4	17.1	20.9
BD	37.5	46.0	54.5
EX	21.4	27.7	34.1
DH	32.8	38.8	44.4
DB	20.6	24.5	28.3
$\mathrm{AH}^{\text {H }}$	22.0	27.0	32.0
${ }^{\text {AB }}$	21.0	25.5	29.9
PT	32.5	39.0	45.4
PC	30.9	36.7	42.2

Table XXVII. Lower and upper fiducial limits for body parts of F.R.B. Lake Huron Leucichthys artedii ciscoes.

St.L.	Mean Part Ind. Part		$\begin{array}{r} 250 \\ \text { Moan Part } \end{array}$	Ind. Part	$\begin{array}{r} 300 \\ \text { Mean Part } \\ \hline \end{array}$	Ind. Pe
HL	47.5-48.0	44.8-50.9	56.7-58.5	53.9-61.5	65.0-69.2	62.5-72.0
HD	27.4-27.8	25.3-30.1	32.7-34.1	30.5-36.5	37.4-40.7	35.4-42.9
EE	14.2-14.5	12.9-16.0	16.4-17.3	15.0-18.8	18.1-20.1	16.9-21.6
ST	12.9-13.1	11.7-14.5	15.3-16.1	14.1-17.5	17.3-19.2	16.2-20.5
MX	16.3-16.7	14.4-18.9	18.8-20.1	16.9-22.4	20.8-23.8	19.1-25.9
IB	11.0-11.3	9.8-12.7	13.4-14.4	12.1-15.9	15.6-17.7	14.4-19.3
CL	21.1-21.7	18.2-25.2	25.6-27.8	22.5-31.6	29.5-34.5	26.6-38.2
CD	13.2-13.5	11.7-15.3	16.6-17.7	15.0-19.6	19.6-22.3	18.1-24.2
BD	37.2-37.9	33.6-41.9	44.8-47.3	41.1-51.5	51.5-57.3	48.2-61.4
BW	21.1-21.6	18.7-24.4	26.8-28.6	24.1-31.7	32.0-36.4	29.5-39.5
DH	32.5-33.1	29.5-36.4	37.7-39.9	34.8-43.2	42.0-47.0	39.5-50.0
DB	20.4-20.8	18.0-23.6	23.7-25.4	21.3-28.2	26.5-30.2	24.3-32.9
AH	21.7-22.2	19.3-25.0	26.2-27.9	23.7-30.8	30.1-34.1	27.8-36.9
$A B$	20.7-21.2	18.3-24.0	24.6-26.4	22.2-29.3	28.0-32.0	25.7-34.8
PT	32.2-32.8	29.1-36.2	38.0-40.1	34.9-43.7	43.0-47.8	40.2-51.2
PC	30.7-31.2	28.2-33.9	35.9-37.6	$33.4-40.3$	40.4-44.2	38.2-46.7

Table XXVIII. Statistics for meristic counts for F.R.B. Lake Huron Leucichthys artedil specimens.

	GR		Se			DR	AR	Br
	c	1	c	1	c	f	1	f
	**	1	69	1	*	*	*	\cdots
	41	3	70	3	.	*	.	.
	42	1	71	10
	43	4	72	18	-	\because	\cdots	*
	44	10	73	14	\cdots	1	1	*
	45	26	74	13	6	.	.	.
	46	41	75	18	7	.	..	15
	47	46	76	25	8	-	*	132
	48	47	77	18	9	33	-	110
	49	40	78	18	10	133	15	14
	50	34	79	22	11	98	124	1
	51	12	80	36	12	7	113	.
	52	7	81	20	13	.	19	.
	..	-	82	18	..	\cdots	.	-
	.	*	83	11	.	-	.	..
	.	\cdots	84	12	-	.	.	.
	.	\cdots	85	4
	.	\cdots	86	7	..	.	-*	..
	-	*	87	2	*
	.	*	88	1	*	.	.	.
	*	*	89	1	*	.	.	.
	*	*	90	*	*	*	.	.
n		271		272		271	271	272
Mean		47.6		78.1		10.3	11.5	8.5
		887		237		2,789	3,117	2,302
sx ${ }^{2}$	614,	051	1,662	741		28,839	35,987	19,614

Table XXIX．Results of analysis of covariance tests for body parts when comparing F．R．B．samples of Leucichthyg artedii from Lakes Michigan and Huron．

Body Part	Mean Size	Slope
HL	部	去
HD	NS	MS
EE	点建	新
ST	NS	淔
112	妥	NS
IB	NS	N3
CL	媛	NS
CD	を	这
BD	狺	NS
E異	lat	MS
DH	起	\＆
DB	NS	NS
AH	起	建发
AB	릴ㅊㄹ	NS
PT	衰建	发
PC	发年	NS

Table XXX. Average count of meristic characters for samples of ciscoes.

$\begin{aligned} & \text { I.B.M. } \\ & \text { No. } \end{aligned}$	Sample	GR	DR	AR	Br	Se
73	Koelz Lake Kichigan L. nigripinnis	47.3	10.2	11.6	8.5	75.1
74	Koelz Lake Kichigan L. artedii	47.4	10.1	11.4	8.5	75.7
75	F.R.B. Leke Michigan L. artedii	46.3	10.2	11.5	8.4	76.2
76	F.R.B. Lake Huron L. ortedis	47.6	10.3	11.5	8.5	78.1
01	Lake Manítoba	49.9	11.0	11.7	8.3	61.3
02	Lake Dauphin	54.0	11.3	12.1	8.2	62.6
12	Rocky Lake	45.3	11.3	12.6	8.4	68.9
18	Churchill River	43.8	10.9	11.7	8.9	73.5

Table XXXI. Regression equations and other statistics for Lake Deuphin ciscoes.

$\begin{aligned} & \hline \text { Log } \\ & \text { Body } \\ & \text { Part } \\ & \hline \end{aligned}$	N	sX	SY	$s x^{2}$	SXY	$s Y^{2}$
HL $=0.762 \mathrm{X}-0.0252$	98	233.79	175.67	557.8173	419.1453	314.9615
$H D=0.805 X-0.2970$	"	"	159.09	"	379.5955	258.3363
$\mathrm{EE}=0.365 \mathrm{X}+0.3297$	"	"	117.64	"	280.6744	141.2652
$S T=0.753 \mathrm{x}-0.6078^{\text {a }}$	"	"	116.04	"	276.8965	137.5054
$n=0.880 x-0.9297^{\text {b }}$						
$10 \mathrm{X}=0.720 \mathrm{X}-0.4150$	"	"	127.66	"	304.6084	166.3712
$I B=0.874 x-0.8729$	"	"	118.79	"	283.4612	144.1221
$C L=1.075 \times-1.2326$	"	"	130.53	"	311.4854	174.1925
$C D=0.887 \mathrm{X}-0.6939$	"	"	139.37	"	332.5582	198.3425
$B D=0.906 \mathrm{x}-0.2822$	"	"	184.16	"	439.4113	346.1972
$B W=1.164 \mathrm{X}-1.2097$	"	"	153.58	"	366.4812	240.8690
DH $=0.644 \mathrm{X}+0.2452$	46	109.71	81.93	261.6993	195.4295	145.9685
$D B=0.846 \mathrm{X}-0.4822$	98	233.79	150.53	557.8173	359.1781	231.3737
$A H=0.382 \mathrm{X}+0.65 .77$	22	52.51	34.97	125.3441	83.4717	55.6085
$A B=0.712 \mathrm{X}-0.1870$	98	233.79	148.13	557.8173	353.4412	223.9933
$P T=0.896 x-0.4477$	73	174.33	123.52	416.3723	295.0278	209.0928
$P C=0.786 \mathrm{x}-0.1654$	72	171.81	123.13	410.0447	293.8686	210.6455

[^3]bemales only.

Table XXXII. Calculated average size in mm, of body parts of Lake Dauphin ciscoes.

St.L.	200 mm .	250 mm .	300 mm .
HL	53.5	63.4	72.8
HD	35.9	43.0	49.8
EE	14.8	16.0	17.1
ST (Male)	13.3	15.8	18.1
" (Female)	12.7	15.5	18.2
MX	17.4	20.5	23.4
IB	13.7	16.7	19.6
CL	17.4	22.1	26.9
CD	22.2	27.1	31.9
BD	63.5	77.7	91.6
BV	29.4	38.2	47.2
DH	53.3	61.6	69.3
DB	29.1	35.2	41.1
AH	36.0	39.2	42.1
AB	28.3	33.1	37.7
PT	41.1	50.2	59.1
PC	44.0	52.4	60.5

Table XOXIII. Lower and upper fiducial limits for body parts of Lake Dauphin ciscoes.

St.L.	200 mm .		250 mm .		300 mm .	
	Mean Part	Ind. Part	Mean Part	Ind. Pert	Voan Part	Ind. Part
HL	52.6-54.4	50.5-56.6	63.0-63.8	60.0-67.0	71.5-74.2	68.8-77.2
HD	35.2-36.6	33.6-38.4	42.7-43.3	40.3-45.8	48.7-50.8	46.5-53.2
EE	14.4-15.2	13.4-16.3	15.9-16.2	14.6-17.6	16.6-17.7	15.6-18.9
ST(H)	12.8-13.9	12.0-14.8	15.5-16.0	14.4-17.3	17.3-18.9	16.3-20.1
ST(\bar{F})	12.2-13.3	11.4-14.3	15.3-15.8	13.9-17.3	17.4-19.1	16.2-20.5
vX	17.0-17.9	16.0-19.0	20.3-20.7	18.9-22.3	22.7-24.0	21.4-25.5
IB	13.3-14.3	12.1-15.6	16.5-16.9	14.8-18.8	18.8-20.4	17.3-22.2
CL	16.2-18.7	13.7-22.1	21.6-22.7	17.6-27.9	25.0-29.0	21.2-34.3
CD	21.4-23.1	19.5-25.3	26.8-27.5	24.0-30.8	30.6-33.2	28.0-36.3
BD	61.4-65.6	56.6-71.2	76.8-78.6	69.6-86.7	88.4-95.0	81.6-102.8
BW	28.3-30.6	25.9-33.5	37.6-38.7	33.7-43.2	45.3-49.1	41.4-53.7
DH	50.7-56.1	47.0-60.5	$60.5-62.7$	54.8-69.3	65.5-73.2	60.9-78.8
DB	27.9-30.4	25.1-33.8	34.6-35.7	$30.5-40.6$	39.2-43.0	35.4-47.7
AH	$31.8-40.8$	29.6-43.9	$37.8-40.7$	$33.5-46.0$	$37.0-47.9$	34.4-51.4
AB	27.4-29.2	25.5-31.4	32.8-33.5	$30.0-36.7$	$36.5-39.0$	33.9-41.9
PT	39.4-43.0	36.4-46.5	49.5-50.9	44.7-56.4	56.6-61.8	52.3-66.9
PC	42.3-45.7	39.3-49.2	51.7-53.1	47.1-58.3	58.1-63.0	54.0-67.7

Table XXXIV. Statistics for meristic counts for Lake Dauphin ciscoes.

	GR		Sc			DR	AR	Br
	-	1	c	1	c	1	1	1
	48	1	*	1	.	*	*	-
	49	3	56	2	*	*	*	*
	50	3	57	1	${ }^{*}$	*	**	*
	51	5	58	7	\cdots	*	\cdots	**
	52	13	59	5	\cdots	*	\cdots	.
	53	19	60	11	*	2	29	2
	54	14	61	10	7	\cdots	**	5
	55	12	62	10	8	*	*	64
	56	12	63	14	9	\cdots	\cdots	26
	57	7	64	10	10	4	*	1
	58	5	65	13	11	57	12	*
	59	3	66	8	12	34	43	\cdots
	60	1	67	2	13	1	17	\cdots
	\cdots	\cdots	68	1	-	**	\cdots	*
	\cdots	\cdots	69	\cdots	\cdots	*	*	\cdots
	*	*	70	1	*	*	\cdots	\cdots
	\cdots	\cdots	71	*	\cdots	\cdots	\cdots	*
	-	*	72	2	\cdots	*	*	\cdots
n		98		97		96	69	96
Mean		54.0		62.6		11.3	12.1	8.2
sx		297		071		1,088	${ }_{8}^{833}$	791
$5 \mathrm{x}^{2}$						12,362	10,085	6,547

Table XXXV. Regression equations and other statistics for Rocky Lake ciscoes.

Table XXXVI. Calculated average size in mem. of body parts of Rocky Lake ciscoes.

St.L.	200 mm .	250 mm .	300 mm .
HL	50.0	61.5	72.8
HD	34.1	42.8	51.6
ES	14.1	16.2	18.2
ST	12.4	15.2	17.9
10x	16.8	20.3	23.7
IB	12.7	16.0	19.3
CL	18.0	21.7	25.4
CD	19.4	24.7	29.9
BD	54.9	73.7	93.8
BW	26.0	35.4	45.6
DH	46.3	55.2	63.7
DB	28.7	35.2	41.5
AH	31.6	39.1	46.6
AB	26.8	32.4	37.9
PT	39.2	48.4	57.6
PC	40.1	48.6	56.9

Table XXXVII. Lower and upper fiducial limits for body parts of Rocky Lake oiscoes.

St.L.	$\begin{array}{r} 200 \\ \hline \text { Mean Part } \\ \hline \end{array}$	Ind. Part	Mean Part	Ind. Pert	$\begin{array}{r} 300 \\ \text { Mean Pert } \end{array}$	Ind. Part
HL	49.7-50.5	47.1-53.2	61.0-62.1	57.9-65.4	71.8-73.7	68.5-77.4
HD	33.6-34.6	30.4-38.3	42.1-43.6	38,1-48.1	50.4-52.8	45.8-58.0
EE	14.0-14.3	12.8-15.6	16.0-16.5	14.7-17.9	17.8-18.5	16.4-20.0
ST	12.2-12.6	11.1-13.9	15.0-15.5	13.6-17.0	17.5-18.4	16.0-20.1
12X	16.5-17.0	15.1-18.7	20.0-20.6	18.2-22.6	23.2-24.2	21.3-26.4
IB	12.5-12.9	11.2-14.5	15.7-16.3	14.0-18.2	18.8-19.8	16.9-22.0
CL	17.4-18.6	14.2-22.8	21.0-22.5	17.1-27.6	24.2-26.2	20.0-32.3
CD	19.1-19.8	16.8-22.6	24.1-25.2	21.2-28.6	29.1-30.9	25.8-34.8
BD	53.9-55.9	47.5-63.4	72.1-75.4	63.8-85.2	91.1-96.6	81.1-108.6
BW	25.5-26.6	22.0-30.8	34.5-36.3	30.0-41.9	44.0-47.1	38.5-54.0
DH	45.6-47.0	41.6-51.6	54.3-56.1	49.6-61.5	62.3-65.2	57.2-71.1
DB	28.2-29.2	25.2-32.7	34.5-35.9	30.9-40.1	40.4-42.6	36.4-47.4
AH	31.1-32.1	28.0-35.7	38.4-39.8	$34.6-44.2$	45.4-47.7	41.2-52.7
$A B$	26.1-27.5	21.9-32.7	31.4-33.4	26.5-39.6	36.4-39.4	30.9-46.4
PT	38.7-39.7	$35.9-42.8$	47.8-49.1	44.3-52.9	56.5-58.7	52.6-62.0
PO	39.6-40.6	$36.4-44.2$	47.9-49.4	44.1-53.6	55.8-58.1	51.6-62.8

Table XXXVIII. Statiatics for meriatic counta for Rocky Lake ciscoes.

	GR		Sc			DRf	$\begin{gathered} \text { AR } \\ f \\ \hline \end{gathered}$	Brf
	a	1	c	1	c			
	40	1	*	23	\cdots	\cdots	\cdots	\cdots
	41	2	59	1	*	*	*	\cdots
	42	4	60	2	*	\cdots	*	*
	43	1	61	*	*	*	\cdots	*
	44	8	62	3	\cdots	1	3	1
	45	9	63	\cdots	6	*	*	*
	46	18	6%	\cdots	7	\cdots	*	4
	47	13	65	1	8	*	*	27
	48	2	66	1	9	*	*	25
	49	1	67	2	10	4	*	2
	-	\cdots	68	2	11	32	4	*
	\cdots	*	69	5	12	22	22	.
	*	\cdots	70	1	13	\cdots	20	*
	**	\cdots	71	8	14	*	10	*
	*	*	72	4	\cdots	\cdots	\cdots	\cdots
	\cdots	**	73	2	\cdots	*	*	*
	.	\cdots	74	3	\cdots	*	\cdots	\cdots
	\cdots	\cdots	75	1	*	\cdots	*	\cdots
n		59		36		58	56	58
Mean		45.3		68.9		11.3	12.6	8.4
SX		674		480		655	708	489
$s x^{2}$						7,440	8,992	4,149

Table XXXIX. Number of ciscoes of various gill-raker groups for 3 samples from Lake Winnipeg.

Males				GR Sex Females			
GR Group	$\begin{aligned} & \text { Sex } \\ & \text { Condition } \\ & \hline \end{aligned}$	Age	n	GR Group	Sex Condition	Age	n
\bar{I}	Questionable	2	4	$\overline{-}$	$\begin{aligned} & \text { Ripe } \\ & \text { Spawning } \\ & \text { n } \end{aligned}$	3	1
		1	1			5	2
	"	2	39			2	2
	"	3	39		-	3	1
	"	4	5	"		4	9
	${ }_{\text {Ripe }}{ }^{\prime \prime}$	1	1	"		5	65
		2	3	"		6	41
	"	3	2		"	7	3
	$\operatorname{Spawning~}_{\mathrm{n}}$	5	9	$\underset{n}{\text { Spent }}$		2	2
		6	4			3	3
II	Questionable	1	2	II	Immature Spawning	3	1
		2	23			4	2
	"	3	15		"	5	12
	"	4	2		"	6	10
	Immature	3	2		"	7	1
	Ripe	2	1		Spent	2	2
					"	3	1
III	Spawning	5	2		"	4	1
				III	$\underset{n}{\text { Spauming }}$	2 4	1
					,	5	32
					"	6	22
Total			154				$\underline{218}$

Table XXXIX continued.

2. DOGHEAD

	Male				Femal		
GR	Sex			GR Group	Sox Condition	Age	n
Group	Condition	Age	n			080	-
I	Mature		1	I	Mature	3	3
1	Mature	1	1		"	3	1
	"	2	15		"	4	4 4
	"	3	39		"	5	26
	"		11		"	6	17
	Spawning	4	6		"	4	2
	"	5	20		Spent	4	1
	"	6	7				
	"	7	1	II	Mature	3	1
					Spawning	4	2
II	Mature	2	,		"	6	15 7
	"	3	12		"	6 7	1
	"	4	3		"	7	1
	"	5	1				
	Spawning	4	3	III	Spawning	4	52
	"	5	11			5	59
	"	6	11			6	5
	"	7	1		"	8	1
III		6	1				
	Spawning	4	3				
	"	5	41				
	"	6	18				
	"	7	2				
Total			211				203

3. MUKUTATIA RIVER

	Mal				Femalos		
GR	Sex						
Group	Condition	Age	n	Group	Condition	Age.	n
I	Inmature	3	5	I	Questionable	2	1
	"	4	13		"	3	1
	"	5	19		"	4	3
	"	6	3		"	5	1
	"	9	1		"	6	1
	Mature	2	3		Immature	3	1
	"	3	8		${ }^{\prime \prime}$	6	1
	"	4	7		Mature	2	2
	"	5	23		"	3	7
	"	6	26		"	4	7
	"	7	21		"	5	18
	"	8	3		"	6	35
	"	9	2		"	7	25
					"	8	7
II	Immature	3	1		Small eggs	.	1
	"	4	2		"	3	1
	\square	5	2		"	4	4
	"	7	1		"	5	17
	"	9	1		"	6	9
	Mature	3	1		"	7	8
	"	5	8		"	8	1
	"	6	14				
	"	7	5	II	Questionable	2	1
	"	8	9		Immature	5	1
	"	9	1		Mature	4	1
					"	5	4
III	Immature	4	3		"	6	13
	"	5	4		"	7	6
	"	6	3		"	8	7
	"	8	1		"	9	7
	Mature	*	1		"	10	2
	"	4	1		"	11	1
	"	5	7		Small eggs	4	2
	"	6	13			5	3
	"	7	9			6	2
	"	8	1			7	1
	"	9	1			8	1
				III	Questionable	4	1
					Maturo	4	1
					"	5	12
					"	6	20
					"	7	16
					Small ogge	4	4
						5	3
						6	2
						7	5
						8	1
			-				-
Total			223				$\underline{268}$

Table XL．Statistically aignificant results for body parts of tests between ages for spawning female ciscoes from Bull Head．

QR Group	Body Part	Mean Size	Slopo
I	EE	NS	立
	BD	＊	NS
II	CD	能	NS
	DH	\＆	4
	PC	4	NS
III	－	－	－

Table XLI．Statistically significant results for body parts of tests between ages for spawning Doghead ciscoes．

Sox
（R Group
Body Part
Maan Size
Slope
Males
I
HL DH
PT
新
NS

II PC NS
III
BT
\＆
NS

Females
I

HL	＊	NS
EE	4	＊
ST	4	NS
CD	NS	＊
AH	4	NS
PC	新	NS

II
III
HD
各
NS

Table XLII．Statistically significant results for body parts of tests between ages for Mukutawa River ciscoes．

Sex	GR Group	Body Part	Mean Size	Slope
Males	I	EIE	趍	NS
		BD	\％	NS
		PT	NS	4ix
	II	－	－	－
	III	DH	NS	站
Females	I	HL	NS	\％
		EE	NS	k
		MX	NS	＊
				d
	II	－	－	－
	III	HL	立	NS
		HD	发	NS
		IB	亲	NS
		BD	隹	NS
		BW	妾	NS
		AH	塊	NS
		PT	发立	NS
		PC	俍	NS

Table XIIII．Results of analysis of covariance tests between sexes for body parts of Lake Minnipeg ciscoes．

Sample	DOGITAD						MUKUTAWA RIVER					
GR Group	P		II		III		I		II		III	
Body Part	$\begin{aligned} & \text { Mean } \\ & \text { Size } 5 \\ & \hline \end{aligned}$	slope	$\begin{aligned} & \text { Mean } \\ & \text { Sizo S1 } \end{aligned}$	Slope	$\begin{aligned} & \text { Nean } \\ & \text { Size } \mathrm{S} \end{aligned}$	Slope	$\begin{aligned} & \text { Mean } \\ & \text { Size } \\ & \hline \end{aligned}$	Slope	$\begin{array}{r} \text { Nean } \\ \text { Size } \\ \hline \end{array}$	Slope	$\begin{aligned} & \text { Mean } \\ & \text { Size } \\ & \hline \end{aligned}$	Slope
HL	NS	NS	．	NS	＊	NS						
HD	＊	を ${ }_{\text {a }}$	＊	NS								
EE	NS	NS	N3	NS	NS	NS	\cdots	NS	\％	NS	NS	NS
ST	NS											
1 MX	NS											
IB	NS	NS	\＃	NS	NS	NS	tı	NS	NS	NS	NS	NS
CL	NS	NS	NS	NS	＊	NS	＊	NS	NS	\％	NS	NS
CD	讋	NS	13	NS	NS	M	NS	NS	NS	NS	NS	NS
BD	NS	NS	13	NS	NS	NS	NS	NS	＊	NS	NS	NS
BW	NS	NS	113	NS								
DH	NS	＊	NS	NS	．	NS	\＆	NS	NS	NS	NS	NS
DB	NS	NS	INS	NS	$\stackrel{1}{4}$	NS	NS	＊${ }^{\text {k }}$	NS	NS	NS	NS
AH	NS	NS	NS	NS	\＆	NS	\％	＊	NS	NS	NS	NS
${ }^{\text {AB }}$	\％	NS	NS	NS	te	NS	NS	MS	NS	NS	NS	NS
PT	NS	NS	NS	NS	\％	NS	趧	NS	NS	NS	NS	NS
PC	NS	NS	\％	NS	NS	NS	发	＊	NS	NS	NS	NS

Table XLIV. Regression equations and other statistics for spawning female. ciscoes of gill-raker group I from Bull Head.

Log Body Part	N	sX	SY	$8 \mathrm{x}^{2}$	SXY	$s Y^{2}$
$H L=0.855 \mathrm{X}-0.2555$	121	285.31	213.02	672.8399	502.3707	375.1134
$H D=0.980 \mathrm{X}-0.7442$	"	"	189.55	n	447.0422	297.0657
$E E=0.490 \mathrm{X}+0.0329$	"	"	143.79	"	339.0952	170.9397
$S T=0.833 \mathrm{X}-0.7840$	"	"	142.79	n	336.7709	168.6169
$\mathrm{MX}=0.827 \mathrm{X}-0.6260$	"	"	160.20	"	377.8219	212.2350
$T B=1.002 x-1.2329$	"	"	136.69	"	322.4040	154.5843
$C L=0.806 \mathrm{X}-0.6121$	"	"	155.90	"	367.6807	201.1444
$C D=0.891 \mathrm{X}-0.8044$	"	"	156.88	"	369.9998	203.5262
$B D=1.021 X-0.6125$	"	"	217.18	"	512.1960	390.0122
BW = $1.053 \mathrm{X}-1.0099$	"	"	178.23	"	420.3575	262.7851
$D H=0.713 \mathrm{x}+0.0290$	109	257.04	186.43	606.2356	439.6989	318.9685
$D B=0.776 x-0.3906$	120	282.95	172.69	667.2703	407.2645	248.7059
$A H=0.752 \mathrm{X}-0.2168$	107	252.14	166.41	594.2454	392.2047	258.9317
$A B=0.939 \mathrm{X}-0.7805$	121	285.31	173.47	672.8399	409.1226	248.8895
$P T=0.957 X-0.6007$	"	"	200.35	"	472.5056	331.8915
$P C=0.829 X-0.2972$	120	282.95	198.90	$667 \cdot 2703$	469.0707	329.7908

Table XLV. Regression equations and other atatistics for spawning female ciscoes of gill-raker group II from Bull Head.

Log Body Part	N	sX	8Y	$s x^{2}$	SXY	$s Y^{2}$
$H L=0.895 \mathrm{X}-0.3383$	25	58.98	44.33	139.1570	104.5935	78.6217
$H D=0.886 \mathrm{X}-0.5086$	"	"	39.54	"	93.2929	62.5532
$E E=0.272 \mathrm{X}+0.5503$	"	"	29.80	"	70.3073	35.5284
$S T=0.807 \mathrm{X}-0.7047$	"	"	29.98	"	70.7380	35.9846
$\mathbb{W}=0.482 \mathrm{X}+0.1965$	"	"	33.34	"	78.6612	44.4772
$I B=0.684 X-0.4505$	"	"	29.08	"	68.6133	33.8528
$C L=1.000 \mathrm{X}-1.0624$	"	"	32.42	"	76.4967	42.1208
$C D=0.474 x+0.1697$	"	"	32.20	"	75.9716	41.4824
$B D=0.395 \mathrm{x}+0.8697$	"	"	45.04	"	106.2629	81.1592
$B W=1.219 \mathrm{X}-1.3843$	*	"	37.29	"	87.9885	55.6647
$\mathrm{DH}=0.064 \mathrm{X}+1.5469$	23	54.23	39.05	127.8757	92.0738	66.3071
$D B=0.386 \mathrm{X}+0.5354$	25	58,98	36.15	139.1570	85.2895	52.2927
$A H=0.460 \mathrm{X}+0.4564$	22	51.89	33.91	122.4009	79.9865	52.2901
$A B=1.035 \mathrm{X}-1.0074$	25	58.98	35.86	139.1570	84.6127	51.4762
$P T=0.521 \mathrm{X}+0.4196$	24	56.58	39.55	133.3970	93.2441	65.1845
$P C=0.474 \mathrm{X}+0.5249$	25	58.98	41.08	139.1570	96.9213	67.5144

Table XLVI. Regression equations and other statistics for spawning female ciscoes of gill-raker group III from Bull Head.

Log Body Part	N	sx	SY	$s x^{2}$	SXY	$s Y^{2}$
$H L=0.663 \mathrm{X}+0.2321$	59	140.14	106.61	332.8886	253.2394	192.6595
$H D=0.546 \mathrm{X}+0.3243$	"	"	95.65	"	227.2043	155.0887
$E E=0.546 \mathrm{X}-0.0977$	"	"	70.75	"	168.0604	84.8749
$S T=0.698 \mathrm{X}-0.4323$	"	"	72.31	"	171.7689	88.6753
$\mathrm{MX}=0.795 \mathrm{X}-0.5356$	"	"	79.75	"	189.4428	107.8413
$I B=0.937 \mathrm{X}-1.0097$	"	"	71.74	"	170.4199	87.2884
$C L=0.941 \mathrm{X}-0.9195$	"	"	77.62	"	184.3865	102.2688
$C D=0.580 \mathrm{x}-0.0693$	"	"	77.16	"	183.2865	100.9470
$B D=0.673 x+0.2164$	"	"	107.08	n	254.3560	194.3990
$B W=1.073 \mathrm{X}-1.0100$	"	"	90,78	"	215.6476	139.7626
$D H=0.733 \mathrm{X}-0.0355$	43	102.18	73.34	242.8232	174.3586	125.2149
$D B=0.783 \mathrm{X}-0.3961$	58	137.74	81.88	327.1286	201.5909	124.2936
$A H=0.855 \times-0.4857$	53	125.88	81.78	298.9928	194.2488	126.2170
$A B=1.088 \mathrm{X}-1.1254$	59	140.14	85.07	332.8886	204.4604	125.6239
$P T=0.688 \mathrm{x}+0.0239$	"	"	97.82	"	232.3615	162.2092
$P C=0.630 \mathrm{X}+0.1504$	58	137.80	95.54	327.4130	227.0020	157.4028

Table XLVII. Regression equations and other statistics for spawning ciscoes of gill-raker group I from Doghead.

Log Body Part	N	sX	SY	$5 x^{2}$	SXY	$5 Y^{2}$
$H L=0.792 \mathrm{X}=0.1132$	84	197.43	146.86	464.2149	345.3190	256.8964
$H D=0.858 \times-0.4684$	"	"	130.05	"	305.8217	201.5185
$E E=0.617 \mathrm{X}-0.2806$	"	"	98.25	"	231.0361	115.0373
$S T=0.750 \mathrm{X}-0.5880$	"	"	98.68	"	232.0712	116.0724
$\mathbb{N X}=0.741 \mathrm{X}-0.4367$	"	"	109.61	"	257.7588	143.1759
$I B=0.871 \times-0.9302$	"	"	93.83	"	220.6941	105.0163
$C L=1 . C 27 X-1.0833$	"	"	111.77	"	262.8882	149.1415
$C D=0.926 \mathrm{X}-0.8855$	"	"	108.44	"	255.0430	140.1948
$B D=1.281 \mathrm{X}-1.2276$	"	"	149.80	"	352.3191	267.4904
$B W=1.356 \mathrm{X}-1.6782$	"	"	126.75	"	298.1571	191.6563
$D H=0.763 \mathrm{X}-0.1116$	57	134.00	95.86	315.1258	225.4377	161.3400
$D B=0.850 \mathrm{x}-0.5655$	84	197.43	120.31	464.2149	282.9278	172.5117
$A H=0.901 \times-0.5831$	59	138.46	90.35	325.0952	212.1758	138.5385
$A B=0.825 x-0.5028$	82	192.68	117.74	452.9324	276.8100	169.2398
$P T=0.760 \mathrm{X}-0.1592$	64	150.60	104.27	354.4952	245.4474	169.9905
$P C=0.784 \mathrm{X}-0.2053$	74	173.94	121.17	409.0282	284.95:3	198.5539

Table XLVIII. Regression equations and other statistics for spawning ciscoes of gill-raker group II from Doghead.

Log Body Part	N	SX	SY	$8 \mathrm{x}^{2}$	SXY	$s Y^{2}$
$H L=1.042 \mathrm{X}-0.6918$	51	121.30	91.11	288.5374	216.7340	162.8129
$H D=0.955 \mathrm{X}-0.6745$	"	"	81.44	"	193.7316	130.1112
$E E=0.641 \mathrm{x}-0.3440$	"	"	60.21	"	143.2269	71.1267
$S T=0.926 \mathrm{X}-0.9844$	"	"	62.12	"	147.7793	75.7234
$1 \times X=1.065 \mathrm{X}-1.1963$	"	"	68.17	"	162.1736	91.1737
IB $=1.145 \mathrm{X}-1.5384$	"	"	60.43	"	143.7672	71.6847
$C L=0.923 \mathrm{X}-0.8181$	"	"	70.24	"	167.0921	96.8754
$C D=0.629 \mathrm{X}-0.2831$	"	n	66.96	"	159.2810	87.9538
$B D=0.875 X-0.2807$	"	${ }^{\prime \prime}$	91.82	"	218.4171	165.3596
$B W=1.030 \mathrm{X}-0.9167$	"	"	78.19	"	186.0042	119.9523
$\mathrm{DH}=0.484 \mathrm{x}+0.5353$	27	64.33	45.59	153.2875	108.6298	77.0009
$D B=0.798 \mathrm{X}-0.4347$	51	121.30	74.63	288.5374	177.5292	109.2689
$A H=0.483 \mathrm{X}+0.3846$	33	78.63	50.67	187.3747	120.7429	77.8415
$A B=0.846 x-0.5405$	50	118.92	73.58	282.8730	175.0312	108.3538
$P T=0.474 \mathrm{x}+0.5134$	42	99.92	68.92	237.7372	163.9748	113.1202
$P C=0.537 X+0.3677$	44	104.66	72.38	248.9764	172.1809	119.0944

Table XLIX. Regression equations and other statistics for spawning ciscoes of gill-raker group III from Doghead.

Log Body Part	N	SX	SY	$s x^{2}$	SXY	$s Y^{2}$
HL $=0.891 \mathrm{X}-0.3200$	187	448.16	339.48	1,074.1786	813.7045	616.4334
$H D=0.890 x-0.5130$	"	"	302.94	"	726.1335	490.9672
$E E=0.565 \mathrm{X}-0.1613$	"	"	223.05	"	536.8838	266.2178
$S T=0.861 \times-0.8217$	"	"	232.21	"	556.6199	288.5575
$\mathrm{MX}=0.831 \mathrm{X}-0.6305$	"	"	254.53	"	610.1076	346.6191
$I B=0.991 \mathrm{X}-1.1467$	"	"	229.69	"	550.5971	282.3513
$C L=1.091 \mathrm{X}-1.2166$	"	"	251.44	"	626.7013	366.0048
$C D=0.754 x-0.4822$	"	"	247.74	"	593.8249	328.3668
$B D=0.968 x-0.5005$	"	"	340.23	"	815.5119	619.2337
$B W=0.884 \mathrm{X}-0.5730$	"	"	239.02	"	692.7723	446.9128
$D H=0.623 \mathrm{X}+0.2085$	116	278.28	197.56	667.6668	473.9911	336.6150
$D B=0.778 \mathrm{X}-0.3716$	185	443.36	276.19	1,062.6584	662.0003	412.5773
$A H=0.484 X+0.3986$	94	225.15	156.44	539.3445	350.7851	228.2132
$A B=0.872 \times-0.6007$	187	448.16	278.46	1,074.1786	667.4630	414.9182
$P T=0.802 \mathrm{X}-0.2647$	150	359.74	248.80	862.8526	596.7691	412.8330
$P C=0.825 \mathrm{X}-0.3203$	163	390.60	270.02	936.1202	647.1514	447.4690

Table L. Regression equations and other statistics for mature ciscoes of gill-rabar group I from Nukutawa River.

Table LI. Regression equations and other statistics for mature ciscoes of gill-raker group II from Nukutawa River.

Table LII. Regression equations and other statistics for mature ciscoes of gill-raker group III from Mukutawa River.

Log Body Part	N	SX	SY	$s x^{2}$	SXY	$s Y^{2}$
HL $=0.870$ X -0.2735	77	186.47	141.17	451.6269	341.4173	258.8783
$H D=1.011 \times-0.7757$	78	188.89	130.46	457.4833	315.9859	218.2918
$\mathrm{EE}=0.466 \mathrm{x}+0.0260$	"	"	90.0 .5	"	218.0966	104.0277
$S T=0.918 \mathrm{X}-0.9540$	"	"	98.99	*	239.7710	125.7303
$M X=0.892 \mathrm{X}=0.7660$	"	"	108.75	11	263.4050	151.7117
$I B=1.102 \mathrm{X}-1.4220$	"	"	97.24	*	235.5432	121.3468
$C L=0.848 \mathrm{X}-0.6727$	"	"	107.71	"	260.8841	149.0837
$C D=0.766 x-0.5019$	"	*	105.54	"	255.6246	142.9010
$B D=1.022 X-0.6263$	"	"	144.20	"	349.2602	266.6944
BV $=0.989 \mathrm{X}-0.8151$	"	"	123.24	"	298.5003	194.8688
$\mathrm{DH}=0.441 \mathrm{X}+0.6538$	77	186.45	132.56	451.5297	321.0086	228.2768
$D B=0.951 \chi-0.7718$	78	188.89	119.43	457.4833	289.2717	182.9995
$A H=0.565 \mathrm{X}+0.2022$	*	"	122.50	"	296.6851	192.4612
$A B=0.890 x-0.6354$	"	"	118.55	"	287.1373	180.3119
$P T=0.695 x-0.0064$	$1{ }^{17}$	"	130.78	"	316.7436	219.3666
$\mathrm{PC}=0.565 \mathrm{x}+0.3040$	"	"	130.44	"	315.9131	218.2244

Table LIII. Calculated average size in m. of body parts for three gill-raker groups of Bull Head ciscoes.

St.L.	200 mm.			250 mm.$$			300 mm.$$		
GR Group	I	II	III	I	II	III	I	II	III
HL	51.5	52.6	57.2	62.3	64.3	66.4	72.8	75.6	74.9
HD	32.4	33.9	38.1	40.3	41.3	43.0	48.2	48.5	47.5
EE	14.5	15.0	14.4	16.1	15.9	16.3	17.6	16.8	18.0
ST	13.6	14.2	14.9	16.4	17.0	17.4	19.0	19.7	19.8
MX	18.9	20.2	19.6	22.8	22.5	23.4	26.5	24.6	27.1
IB	11.8	13.3	14.0	14.8	15.5	17.3	17.8	17.5	20.5
CL	17.5	17.3	17.6	20.9	21.7	21.7	24.2	26.0	25.8
CD	17.6	18.2	18.4	21.5	20.2	20.9	25.3	22.1	23.3
BD	54.6	60.1	58.2	68.5	65.6	67.6	82.5	70.5	76.5
BW	25.9	26.3	28.8	32.7	34.6	36.6	39.7	43.2	44.5
DH	46.7	49.5	44.8	54.8	50.2	52.7	62.4	50.7	60.3
DB	24.8	26.5	25.4	29.5	23.9	30.3	34.0	31.0	35.0
AH	32.6	32.7	30.2	38.6	36.3	36.5	44.3	39.4	42.7
AB	24.0	23.7	23.9	29.6	29.8	30.5	35.1	36.0	37.1
PT	39.9	41.5	40.5	49.4	45.7	47.2	58.9	51.3	53.5
PC	40.8	41.3	39.8	49.1	45.9	45.8	57.1	50.0	51.4

Table LIV. Calculated average size in mm. of body parts for three gill-raker groups of Doghead ciscoes.

st.L.	200 mm .			250 mm .			300 mm .		
GR Group	I	II	III	I	II	III	I	II	III
HL	51.2	50.8	53.7	61.1	64.1	65.6	70.6	77.5	77.1
HD	32.1	33.3	34.3	38.8	41.3	41.8	45.4	49.1	49.2
EE	13.8	13.5	13.8	15.8	15.6	15.6	17.7	17.5	17.3
ST	13.7	14.0	14.4	16.2	17.2	17.5	18.6	20.4	20.5
12 X	18.6	18.0	19.1	21.9	22.8	23.0	25.0	27.7	26.8
IB	11.9	12.5	13.6	14.4	16.1	17.0	16.9	19.9	20.3
CL	19.0	20.2	19,7	24.0	24.8	25.1	28.9	29.4	30.6
CD	17.6	18.4	17.9	21.6	21.1	21.2	25.6	23.7	24.3
BD	52.5	54.0	53.3	69.9	65.7	66.2	88.2	77.1	79.0
B7\%	27.7	28.4	28.9	37.4	35.7	35.2	48.0	43.1	41.4
DH	44.1	44.6	43.9	52.2	49.6	50.4	60.0	54.2	56.5
DB	24.6	25.2	26.2	29.7	30.1	31.2	34.7	34.8	35.9
AH	30.9	31.3	32.5	37.8	34.9	36.2	44.5	38.1	39.6
AB	24.9	25.5	25.5	29.9	30.8	30.9	34.7	35.9	36.2
PT	38.9	40.2	38.1	46.0	44.7	45.5	52.9	48.7	52.7
PC	39.7	40.1	37.8	47.3	45.2	45.5	54.6	49.5	52.9

Table LV. Calculated average size in mm. of body parts for three gill-raker groups of Mukutaza River ciscoes.

St.L.	$200 \mathrm{mm}$			250 mm			300 mm.$$		
GR Group	I	II	III	I	II	III	I	II	III
HL	50.1	50.9	53.5	60.6	61.3	65.0	70.7	71.4	76.1
HD	33.3	34.6	35.5	41.0	42.7	44.5	48.7	50.5	53.5
ES	12.6	12.2	12.5	14.6	13.9	13.9	16.5	15.4	15.1
ST	14.2	14.0	14.4	16.5	16.4	17.7	18.7	18.7	20.9
IX	19.0	18.0	19.3	22.3	21.6	23.6	25.4	25.1	27.8
IB	11.3	12.2	13.0	14.1	15.6	16.6	16.9	19.0	20.3
CL	17.1	18.7	19.0	21.8	22.4	23.0	26.6	26.0	25.8
CD	17.7	17.3	18.2	21.9	22.8	21.6	26.0	28.5	24.9
BD	54.0	52.0	53.1	69.1	69.5	66.7	84.4	88.0	80.4
BM	28.3	27.4	28.9	38.0	36.6	36.0	48.2	46.4	43.1
DH	44.6	43.2	46.6	53.2	51.4	51.4	61.4	59.2	55.7
DB	24.7	25.0	26.1	31.2	32.6	32.3	37.9	40.7	38.4
AH	31.4	30.2	32.8	38.0	36.5	36.1	44.3	42.7	40.0
AB	24.9	24.8	25.9	30.8	31.1	31.5	36.6	37.5	37.1
PT	38.2	38.5	39.2	46.8	45.9	45.7	55.1	53.0	51.9
PC	39.6	38.4	40.2	47.6	45.9	45.6	55.4	53.1	50.5

Table LVI．Results of analysis of covariance tests between 3 gill－raker groups of ciscoes for body parts of Lake Winnipeg samples．

Body Pert	BULL HEAD		DOGHEAD		MUKUTAWA R．	
	Mean		Mean		Mean	
	Sizo	Slope	Sizo	Slope	Size	Slope
HL	4	NS	ầ	\＆	य̇खे	NS
HD	4at	如	A12	NS	ชิx	NS
EX	NS	NS	NS	NS	\＆${ }^{\text {x }}$	NS
ST	部	NS	能	NS	4it	NS
M	衰新	ES	（t）	\＆	x่x	NS
IB	de	NS	츷	NS	צ่x	NS
CL	NS	NS	＊	NS	NS	NS
CD	NS	\％	NS	tet	建	娃
BD	NS	立	新	婎	发	立
BW	立	NS	立良	这	tut	NS
DH	退安	＊	NS	NS	4रे	\％
DB	NS	NS	就	NS	xik	NS
${ }_{\text {AH }}$	य̇̀	NS	新	媛	d $\mathrm{k}_{\text {k }}$	NS
$A B$	NS	MS	＊	NS	NS	NS
PT	む ${ }^{\text {ct }}$	NS	NS	NS	新	NS
PC	NS	NS	效	NS	NS	NS

Teble LVII. Average size in me of Lake Winnipeg ciscoes.

Age	BULL PEAD			IOGFEAD						MUKUTAWA RIVER					
	I	II	III	I		II		III		I		II		III	
	F	F	F	M	F	M	F	M	F	M	F	M	F	H	F
2	180		244							136	116				
3	220				135					129	119				
4	229	218	232	216	192	218	224	243	241	184	173		234		215
5	229	227	237	217	230	242	240	245	249	230	218	235	239	255	258
6	230	232	241	233	239	243	246	248	254	238	247	273	276	265	271
7	224	236		230	240	241	233	262	268	251	252	308	287	270	268
8									280	274	264	304	325	276	
9										333			324		
10													332		

Table LVIII. Average count of meristio characters for Lake Winnipeg ciscoes.

GR Group	BULL HEAD			DOGHIEAD			MUKUTATM R.		
	I	II	III	I	II	III	I	II	III
DR	10.2	10.5	10.7	10.4	10.8	10.8	10.4	10.7	10.8
AR	11.8	11.8	12.1	11.8	12.2	12.1	11.8	11.8	12.2
Br	9.1	9.4	9.4	8.2	8.4	8.8	8.4	8.8	9.0
Sc	62.2	62.0	61.2	62.9	63.9	64.0	61.8	66.4	62.0

Table LXX. Lower and upper fiducial limits for body parts of Lake Manitoba ciscoes.

St.L.	200 mm .		250 mm .		300 mm .	
	Mean Part	Ind. Pert	Moan Part	Ind. Part	Moan Part	Ind. Pert
HL	49.7-50.5	47.1-53.2	61.0-62.1	57.9-65.4	71.8-73.7	68.5-77.4
HD	33.6-34.6	30.4-38.3	42.1-43.6	38.1-48.1	50.4-52.8	45.8-58.0
EE	14.0-14.3	12.8-15.6	16.0-16.5	14.7-17.9	17.8-18.5	16.4-20.0
ST	12.2-12.6	11.1-13.9	15.0-15.5	13.6-17.0	17.5-18.4	16.0-20.1
MX	16.5-17.0	15.1-18.7	20.0-20.6	18.2-22.6	23.2-24.2	21.3-26.4
IB	12.5-12.9	11.2-14.5	15.7-16.3	14.0-18.2	18.8-19.8	16.9-22.0
CL	17.4-18.6	14.2-22.8	21.0-22.5	17.1-27.6	24.2-26.6	20.0-32.3
CD	19.1-19.8	16.8-22.6	24.1-25.2	21.2-28.6	29.1-30.9	25.8-34.8
BD	53.9-55.9	47.5-63.4	72.1-75.4	$63.8-85.2$	91.1-96.6	81.1-1C8.6
EW	25.5-25.6	22.0-30.8	34.5-36.3	$30.0-41.9$	44.0-47.1	38.5-54.0
DH	45.6-47.0	41.6-51.6	54.3-56.1	49.6-61.5	62.3-65.2	57.2-71.1
DB	28.2-29.2	25.2-32.7	34.5-35.9	30.9-40.1	40.4-42.6	36.4-4?.4
AH	31.1-32.1	28.0-35.7	38.4-39.8	34.6-44.2	45.4-47.7	41.2-52.7
$A B$	26.1-27.5	21.9-32.7	31.4-33.4	26.5-39.6	36.4-39.4	30.9-46.4
PT	38.7-39.7	35.9-42.8	47.8-49.1	44.3-52.9	56.5-58.7	52.6-63.0
PC	$39.6-40.6$	36.4-44.2	47.9-49.4	44.1-53.6	55.8-58.1	51.6-62.8

Table LX. Fiducial limits for slope for Great Lakes samples.

Tsble LXI. Fiducial limits for slope for Manitobe ciscoes.

Body Part	Lake Man1tuba	Lake Dauphin	Rocky Lake	$\begin{aligned} & \text { Churehill } \\ & \text { River } \end{aligned}$
HLL	$0.732-0.834$	0.482-1.042	0.898-0.950	0.901-0.929
HD	0.741-0.863	$0.478-1.132$	0.968-1.070	0.940-0.976
ES	$0.411=0.561$	-0.102-0.832	0.573-0.659	$0.685-0.727$
5 T	$0.622-0.792$	-0.317-1.823(M)	$0.860-0.958$	$0.818-0.858$
		-0.096-1.856(F)		
MX	0.575-0.739	$0.300-1.140$	0.827-0.901	0.858-0.902
IB	0.799-0.977	$0.267-1.481$	0.970-1.084	0.965-1.009
CL	$0.716-1.056$	$-0.093-2.243$	0.744-0.952	$0.906=0.986$
CD	0.909-0.977	0.256-1.518	$1.000-1.130$	0.884-0.932
BD	$0.649-0.839$	$0.346-1.466$	1.259-1.385	0.911-1.073 (M)
				1.086-1.126(F)
BW	$0.904-1.122$	0.533-1.795	1.307-1.453	1.200-1.284(F)
DH	0.589-0.827	-0.585-1.873	0.734-0.842	0.747-0.791
DB	0.687-0.885	$0.122-1.570$	$0.856=0.970$	0.945-1.007
AH	0.663-0.921	-0.161-0.925	0.904-1.012	0.791-0.845
${ }^{\text {AB }}$	0.741-0.945	0.198-1.226	0.764-0.940	0.792-0.986 (x)
PT	0.709-0.929	$0.035-1.757$	0.905-0.991	$0.854-0.898$
PC	$0.713-0.869$	$0.059-1.513$	0.822-0.908	0.807-0.849

[^0]: ASexes combined except for $B D$ and $A B$ (males only) and BW and PT (females only). ${ }^{\mathrm{b}}$ Mean size at 282 mm . standard length.

[^1]: ${ }^{\text {a Males only }}$
 bemales only

[^2]: $a_{\text {at }} 219 \mathrm{~mm}$. standard length.

[^3]: ${ }^{\text {a Males only. }}$

