Part 5 – Midterm Review

Digital Design and Computer Architecture, 2nd

Edition

David Money Harris and Sarah L. Harris

Design a four-bit combinational circuit 2's complementer. (The output generates the 2's complement of the input binary number.) Show that the circuit can be constructed with exclusive-OR gates. Can you predict what the output functions are for a five-bit 2's complementer?

Design a four-bit combinational circuit 2's complementer. (The output generates the 2's complement of the input binary number.) Show that the circuit can be constructed with exclusive-OR gates. Can you predict what the output functions are for a five-bit 2's complementer?

1's complement: flip

2's complement: flip + 1

Design a four-bit combinational circuit 2's complementer. (The output generates the 2's complement of the input binary number.) Show that the circuit can be constructed with exclusive-OR gates. Can you predict what the output functions are for a five-bit 2's complementer?

a) truth table

Design a four-bit combinational circuit 2's complementer. (The output generates the 2's complement of the input binary number.) Show that the circuit can be constructed with exclusive-OR gates. Can you predict what the output functions are for a five-bit 2's complementer?

- a) truth table
- b) K-map
- c) solve K-map

Q1	ABCD	wxyz
	0000	
	0001	
	0010	
	0011	
	0100	
	0101	
	0110	
	0111	
	1000	
	1001	
	1010	
	1011	
	1100	
	1101	
	1110	
6	1111	

•	1	1	
L	Ł	Τ	

ABCD	wxyz
0000	0000
0001	1111
0010	1110
0011	1101
0100	1100
0101	1011
0110	10 10
0111	100 1
1000	1000
1001	0111
1010	0110
1011	0101
1100	0100
1101	0011
1110	0010
1111	0001

For a 5-bit 2's complementer with input E and output v:

$$v = E \oplus (A + B + C + D)$$

Construct a 4-bit BCD adder–subtractor circuit. Use the BCD adder and the 9's complementer. Use block diagrams for the components.

9's complement subtraction

Regular Subtraction

9's Complement Subtraction

Construct a 4-bit BCD adder–subtractor circuit. Use the BCD adder and the 9's complementer. Use block diagrams for the components.

Construct a 4-bit BCD adder–subtractor circuit. Use the BCD adder and the 9's complementer. Use block diagrams for the components.

Do we know a logic gate that outputs 1 only if its both inputs are the same?

Remember XOR is the Odd Function? What is an Odd Function?

Then how about **XNOR**?

$$x = (A_0 \oplus B_0)'(A_1 \oplus B_1)'(A_2 \oplus B_2)'(A_3 \oplus B_3)'$$

Construct a 5-to-32-line decoder with enable using four 3-to-8-line decoders with enable and a 2-to-4-line decoder with enable. Use block diagrams for the components.

Construct a 5-to-32-line decoder with enable using four 3-to-8-line decoders with enable and a 2-to-4-line decoder with enable. Use block diagrams for the components.

Construct a 4-to-16-line decoder with enable using five 2-to-4-line decoders with enable.

Construct a 4-to-16-line decoder with enable using five 2-to-4-line decoders with enable.

A combinational circuit is specified by the following three Boolean functions:

$$F_1(A, B, C) = \Sigma(1, 4, 6)$$

 $F_2(A, B, C) = \Sigma(3, 5)$
 $F_3(A, B, C) = \Sigma(2, 4, 6, 7)$

Implement the circuit with a decoder and NAND gates connected to the decoder outputs. Use a block diagram for the decoder. Minimize the number of inputs in the external gates.

$$F_1 = x'yz' + xz$$

$$F_2 = xy'z' + x'y$$

$$F_3 = x'y'z' + xy$$

Implement the functions with one decoder and OR gates

$$F_1 = x'yz' + xz$$

$$F_2 = xy'z' + x'y$$

$$F_3 = x'y'z' + xy$$

$$F_1 = x(y + y')z + x'yz' = xyx + xy'z + x'yz' = \Sigma(2, 5, 7)$$

$$F_2 = xy'z' + x'y = xy'z' + x'yz + x'yz' = \Sigma(2, 3, 4)$$

$$F_3 = x'y'z' + xy(z + z') = x'y'z' + xyz + xyz' = \Sigma(0, 6, 7)$$

Construct a 16x1 multiplexer with two 8x1 and one 2x1 multiplexers. Use block diagrams.

Construct a 16x1 multiplexer with two 8x1 and one 2x1 multiplexers. Use block diagrams.

a) How many inputs?b) How many selection lines?

Construct a 16x1 multiplexer with two 8x1 and one 2x1 multiplexers. Use block diagrams.

Implement the following Boolean function with a multiplexer

(a) $F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$

Implement the following Boolean function with a multiplexer

(a)
$$F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$$

Implement the following Boolean function with a multiplexer

(a)
$$F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$$

Inputs
<u>ABCD</u>
0000
000 1
001 0
001 1
010 0
010 1
011 0
011 1
$100 \ 0$
100 1
101 0
101 1
$110 \ 0$
110 1
111 0
111 1

Inputs <u>ABCD</u> 000 0 000 1 001 0 001 1	2 2 3 4 4 5 5 5 6 6 Mux input line (ABC)
000 0	0
000 1	0
001 0	1
001 1	1
010 0	2
010 1	2
011 0	3
011 1	3
100 0	4
100 1	4
101 0	5
101 1	5
1100	5 6 6 7
110 1	6
111 0	7
010 1 011 0 011 1 100 0 100 1 101 0 101 1 110 0 110 1 111 0 111 1	7

Inputs ABCD	Mux input line (ABC)	Value
0000	0	0
ABCD 000 0 000 1	0 0 1 1 2 2 3 3 4 4 4 5 5 6 6	0 1 2 3 4 5 6 7 8 9
$001\ 0$	1	2
001 1	1	3
$010 \ 0$	2	4
010.1	2	5
011 0	3	6
011 1	3	7
011 0 011 1 100 0	4	8
100.1	4	9
101 0	5	10
101 1	5	11 12
110 0	6	
110 1	6	13
111 0	7	14
111 1	7	15

	Mux input line (ABC)	•	
Inputs ABCD	Mux 1	Value	$F = \Sigma(0, 2, 5, 8, 10, 14)$
0000	0	0	$\int_{0}^{1} F = D'$
000 1	0	1	$\begin{bmatrix} 0 \end{bmatrix}^{T-D}$
001 0	1	2	1
001 1	1	3	0 F = D'
010 0	2	4	0_{F-D}
010 1	2	5	$\int_{1}^{0} F = D$
011 0	3	6	${0 \atop 0} F = 0$
011 1	3	7	0
100 0	4	8	$\frac{1}{2}F = D'$
100 1	4	9	$0^{T_1-D_1}$
101 0	5	10	$\frac{1}{2}F = D'$
101 1	5	11	0^{F-D}
1100	6	12	$_{0}^{0}F=0$
110 1	6	13	0
111 0	7	14	$\frac{1}{E-D'}$
111 1	7	15	$\int_{0}^{1} F = D'$

$F(A, B, C, D) = \Sigma(0, 2, 5, 8, 10, 14)$

Mux input line (ABC)	$F = \Sigma(0, 2, 5, 8, 10, 14)$
112 02	2(0, 2, 0, 0, 10, 17)
000 0 0 0	$1_{F=D'}$
000 1 0 1	0
001 0 1 2	$1 \atop {}_{0}F = D'$ $A \longrightarrow$
001 1 1 3	$ \begin{array}{ccc} & & & & A & \\ & & & & B & \\ & & & & B & \\ \end{array} $
010 0 2 4	$\begin{bmatrix} 0 \\ 1 \end{bmatrix} F = D \qquad C \longrightarrow$
010 1 2 5	$1^{T} - D$
011 0 3 6	$0_{F=0}$
011 1 3 7	$D \longrightarrow$
100 0 4 8	$\frac{1}{2}F = D'$
100 1 4 9	0
101 0 5 10	$\frac{1}{2}F = D'$
101 1 5 11	0^{F-D}
110 0 6 12	$^{0}F = 0$
110 1 6 13	0^{T_1-U}
111 0 7 14	1 _{E - D}
111 1 7 15	$0^{F} = D^{r}$

Inputs	
ABCD	L
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	
1111	

Inputs ABCD	F
0000	0
0001	1
0010	0
0011	1
0100	1
0101	0
0110	0
0111	0
1000	0
1001	0
1010	0
1011	1
1100	1
1101	1
1110	1
1111	1

Inputs ABCD	F	
0000	0	
0001	1 AB = 00)
0010	0 F = D	
0011	1	
0100	$\frac{1}{AB} = 01$	ı
0101	$ \begin{array}{ccc} 0 & AB = 01 \\ F = C'E \end{array} $	
0110	0	
0111	0 = (C - 1)	<i>- D)</i>
1000	0	
1001	0 AB = 10	
1010	$0 ext{ } F = CD$	
1011	1	
1100	1_{4D-11}	ı
1101	$ \begin{array}{ccc} AB &= 11 \\ 1 & F &= 1 \end{array} $	L
1110	1 F - I	
1111	1	

Inputs ABCD	F	
0000 0001 0010 0011 0100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
0101 0110 0111 1000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<u></u>
1001 1010 1011 1100	$ \begin{array}{cccc} 0 & AB = 10 \\ 0 & F = CD \end{array} $ $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	
1101 1110 1111	$ \begin{array}{ccc} 1 & AB = 11 \\ 1 & F = 1 \\ 1 & & & \\ \end{array} $	

Exercise 2.24 A circuit has four inputs and two outputs. The inputs, $A_{3:0}$, represent a number from 0 to 15. Output P should be TRUE if the number is prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output D should be TRUE if the number is divisible by 3. Give simplified Boolean equations for each output and sketch a circuit.

Exercise 2.24 A circuit has four inputs and two outputs. The inputs, $A_{3:0}$, represent a number from 0 to 15. Output P should be TRUE if the number is prime (0 and 1 are not prime, but 2, 3, 5, and so on, are prime). Output D should be TRUE if the number is divisible by 3. Give simplified Boolean equations for each output and sketch a circuit.

X	У	Z	input	F	F
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

X	У	Z	input	F	F
0	0	0	0		
0	0	1	0		
0	1	0	1		
0	1	1			
1	0	0	2		
1	0	1			
1	1	0	3		
1	1	1			

X	у	Z	input	F	F
0	0	0	0	-	
0	0	1	0	Z	
0	1	0	1	z'	
0	1	1			
1	0	0	2	0	
1	0	1			
1	1	0		1	
1	1	1	3		

X	у	Z	input	F	F
0	0	0)	-	0
0	0	1	0	Z	1
0	1	0	1	_ ,	1
0	1	1		z'	0
1	0	0	2	0	0
1	0	1			0
1	1	0		1	1
1	1	1	3		1

X	у	Z	input	F	F
0	0	0	0	_	0
0	0	1	0	Z	1
0	1	0	1	z'	1
0	1	1			0
1	0	0	2	0	0
1	0	1			0
1	1	0		1	1
1	1	1	3		1

У	Z	Х	input	F	F
0	0	0	0		
0	0	1	0		
0	1	0	4		
0	1	1	I		
1	0	0	2		
1	0	1	2		
1	1	0	2		
1	1	1	3		

у	Z	Х	input	F	F
0	0	0	0		0
0	0	1	0		0
0	1	0	1		1
0	1	1			0
1	0	0	2		1
1	0	1	2		1
1	1	0	2		0
1	1	1	3		1

Х	у	Z	input	F	F
0	0	0	0	-	0
0	0	1	U	Z	1
0	1	0	1	z'	1
0	1	1	1	Z	0
1	0	0	2	0	0
1	0	1		0	0
1	1	0	3	1	1
1	1	1	3	1	1

у	Z	Х	input	F	F
0	0	0	0		0
0	0	1	0	0	0
0	1	0	1	74	1
0	1	1	1	x'	0
1	0	0	2	>	1
1	0	1	2	1	1
1	1	0	3 x		0
1	1	1		X	1

Х	у	Z	input	F	F
0	0	0	0	Z	0
0	0	1	0		1
0	1	0	1	z'	1
0	1	1	1	2	0
1	0	0	2	0	0
1	0	1			0
1	1	0	3	1	1
1	1	1	3	1	1

Implement a full adder using two 4to1 multiplexers.

Α	В	С	Carry	
0	0	0	0)
0	0	1	0	U
0	1	0	0	С
0	1	1	1	C
1	0	0	0	С
1	0	1	1	C
1	1	0	1	1
1	1	1	1	1

а	b	С	Sum	
0	0	0	0	C
0	0	1	1	C
0	1	0	1	C'
0	1	1	0	
1	0	0	1	C'
1	0	1	0	
1	1	0	0	С
1	1	1	1	

