Part 5 - Midterm Review

Digital Design and Computer Architecture, $2^{\text {nd }}$ Edition David Money Harris and Sarah L. Harris

[^0]

\begin{abstract}

\begin{abstract}

\begin{abstract}

Abstract

-

\end{abstract}

\end{abstract}

\end{abstract}

Q1

complement of the input binary number.) Show that the circuit can be constructed with
exclusive-OR gates. Can you predict what the output functions are for a five-bit 2's com-
complement of the input binary number.) Show that the circuit can be constructed with
exclusive-OR gates. Can you predict what the output functions are for a five-bit 2's com-

2's complement: flip + 1

1's complement: flip

\section*{Design a four-bit combinational circuit 2's complementer. (The output generates the 2's

\qquad

> plementer? plementer? plementer? -} -}

Design a four－bit combinational circuit 2 ＇s complementer．（The output generates the 2 ＇s
complement of the input binary number．）Show that the circuit can be constructed with
exclusive－OR gates．Can you predict what the output functions are for a five－bit 2＇s com－
plementer？ Design a four－bit combinational circuit 2 ＇s complementer．（The output generates the 2 ＇s
complement of the input binary number．）Show that the circuit can be constructed with
exclusive－OR gates．Can you predict what the output functions are for a five－bit 2＇s com－
plementer？ Design a four－bit combinational circuit 2＇s complementer．（The output generates the 2 ＇s
complement of the input binary number．）Show that the circuit can be constructed with
exclusive－OR gates．Can you predict what the output functions are for a five－bit 2＇s com－
plementer？ plementer？

a）truth table
 \section*{\section*{\qquad

 －

 ．}}

相號號

4
 \section*{\section*{Q1}}
 \section*{\section*{Q1}}
\square \square \square

．

pie

$-1+2$
\square \square \square

Q1

Design a four－bit combinational circuit 2＇s complementer．（The output generates the 2＇s complement of the input binary number．）Show that the circuit can be constructed with exclusive－OR gates．Can you predict what the output functions are for a five－bit 2＇s com－ plementer？

\author{
\author{

a）truth table

 b）K－map

 c）solve K－map

 c）

 \square

 \author{[^1]}
}
}
.㢄號㢄
保號

\begin{abstract}

Abstract

都

\end{abstract}

 element of the input
live－OR gates．Can
ster？

\qquad
\qquad
\qquad

Q1. | ABCD | Wxyz |
| :---: | :--- |
| 0000 | |
| 0001 | |
| 0010 | |
| 0011 | |
| 0100 | |
| 0101 | |
| 0110 | |
| 0111 | |
| 1000 | |
| 1001 | |
| 1010 | |
| 1011 | |
| 1100 | 1101 |
| 111 | |

Q1.	
000	WXyz
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	
1101	
1110	

Q1 | ABCD | wxyz |
| :---: | :---: |
| 0000 | |
| 0001 | |
| 0010 | |
| 0011 | |
| 0100 | |
| 0101 | |
| 0110 | |
| 0111 | |
| | 1000 |
| 1001 | |
| 1010 | |
| 1011 | |
| 1100 | |
| | 1101 |
| 1110 | |
| | 1111 |

\square -

Q1. | ABCD | WXyz |
| :---: | :--- |
| 0000 | |
| 0001 | |
| 0010 | |
| 0011 | |
| 0100 | |
| 0101 | |
| 0110 | |
| 0111 | |
| 1000 | |
| 1001 | |
| 1010 | |
| 1011 | |
| 1100 | 1101 |
| 1110 | 1111 |

QBCD	Wxyz
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	
1100	1101
1110	111

(

Q1	ABCD	wxyz
0000		
0001		
0010		
0011		
0100		
0101		
0110		
0111		
	1000	
	1001	
	1010	
1011	1100	
	1101	1110
	1111	

ABCD	wxyz
0000	
0001	
0010	
0011	
0100	
0101	
0110	
0111	
1000	
1001	
1010	
1011	1100
1101	1110
1111	

Q1 \begin{tabular}{c}
ABCD

Q1 \& | ABCD | wxyz |
| :---: | :--- |
| 0000 | |
| 0001 | |
| 0010 | |
| 0011 | |
| 0100 | |
| 0101 | |
| 0110 | |
| 0111 | |
| | 1000 |
| 1001 | |
| 1010 | |
| | 1011 |
| 1100 | 1101 |
| | 1110 |
| | 1111 |

\end{tabular}

$\left.\begin{array}{cc}0000 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ 0110 \\ 0111 \\ 1000 \\ 1001 \\ 1010 \\ 1011 \\ 1100 \\ 1101 \\ 1111 \\ 110 \\ 110\end{array} \right\rvert\,$
$\left.\begin{array}{cc}0000 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ 0110 \\ 0111 \\ 1000 \\ 1001 \\ 1010 \\ 1011 \\ 1100 \\ 1101 \\ 1111 \\ 110 \\ 110\end{array} \right\rvert\,$
$\left.\begin{array}{cc}0000 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ 0110 \\ 0111 \\ 1000 \\ 1001 \\ 1010 \\ 1011 \\ 1100 \\ 1101 \\ 1111 \\ 110 \\ 110\end{array} \right\rvert\,$

$\left.\begin{array}{cc}0000 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ 0110 \\ 0111 \\ 1000 \\ 1001 \\ 1010 \\ 1011 \\ 1100 \\ 1101 \\ 1111 \\ 110 \\ 110\end{array} \right\rvert\,$

 Q1 \begin{tabular}{c|c}
ABCD \& wxyz

\hline 0000 \&

0001 \&

0010 \&

0011 \&

0100 \&

0101 \&

0110 \&

0111 \&

\& 1000

1001 \&

\& 1010

1011 \& 1100

1101 \&

\& 1110

\& 1111

 Q1

ABCD \& wxyz

\hline 0000 \&

0001 \&

0010 \&

0011 \&

0100 \&

0101 \&

0110 \&

0111 \&

\& 1000

1001 \&

\& 1010

1011 \& 1100

1101 \&

\& 1110

\& 1111

0000

\& 0001

\& 00101

\& 010101

\& 01101

\& 10101

\hline 1001
\end{tabular} 0000

0001
0010
0011
0100
0101
0110
0111
1000
1001 0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
\square

\square | 0000 | |
| :--- | :--- |
| | 0001 |
| | 0010 |
| | 0101 |
| | 01010 |
| | 01011 |
| | 1001 |

\square

$\begin{array}{ll}0000 \\ 0001 \\ 0010 \\ 0011 \\ 0100 \\ 0101 \\ 0110 \\ 0111 \\ 1000 \\ 1001 \\ 1010 \\ 1011 \\ 1100 \\ 1101 \\ 1110 \\ 1111 \\ & \\ 110\end{array}$
\square
\square
\square
\square101

ABCD	WXYZ	
0000	0000	
0001	1111	
0010	1110	
0011	1101	
0100	1100	
0101	1011	
0110	1010	
0111	1001	
	1000	1000
1001	0111	
1010	0110	
1011	0101	
1100	0100	
1101	0011	
110	0010	
11	0001	

ABCD	WXYZ	
0000	0000	
0001	1111	
0010	1110	
0011	1101	
0100	1100	
0101	1011	
0110	1010	
0111	1001	
	1000	1000
1001	0111	
1010	0110	
1011	0101	
1100	0100	
1101	0011	
110	0010	
11	0001	

ABCD	WXYZ	
0000	0000	
0001	1111	
0010	1110	
0011	1101	
0100	1100	
0101	1011	
0110	1010	
0111	1001	
	1000	1000
1001	0111	
1010	0110	
1011	0101	
1100	0100	
1101	0011	
110	0010	
11	0001	

ABCD	WXYZ	
0000	0000	
0001	1111	
0010	1110	
0011	1101	
0100	1100	
0101	1011	
0110	1010	
0111	1001	
	1000	1000
1001	0111	
1010	0110	
1011	0101	
1100	0100	
1101	0011	
110	0010	
11	0001	

QBCD	Wxyz	
0000	0000	
0001	1111	
0010	1110	
0011	1101	
0100	1100	
0101	1011	
0110	1010	
0111	1001	
	1000	1000
1001	0111	
	1010	0110
1011	0101	
	1100	0100
7	1101	0011
	1110	0010
	1111	0001

QBCD	Wxyz	
0000	0000	
0001	1111	
0010	1110	
0011	1101	
0100	1100	
0101	1011	
0110	1010	
0111	1001	
	1000	1000
1001	0111	
	1010	0110
1011	0101	
	1100	0100
7	1101	0011
	1110	0010
	1111	0001

Q1.

\square

\square
\square

 \square

\square

震

－

元

Q1．都

R

Q1

$$
y=C D^{\prime}+C^{\prime} D=C \oplus D
$$

.

Q1

Q

\qquad

```
者
```正
\[
\text { For a } 5-1
\] For a 5－bit 2＇s complementer with input \(E\) and output v：
\[
\mathrm{v}=\mathrm{E} \oplus(\mathrm{~A}+\mathrm{B}+\mathrm{C}+\mathrm{D})
\]
\[
<
\]

\[
\square
\]

 For a 5－bit 2＇s complementer with input \(E\) and output v ：
.
(2)
\(\qquad\)
.
I
-

.
\(\square\)

正
\(\qquad\)

> P-

都

（
.
[
.
.

\footnotetext{
\(\square\)
}

\begin{abstract}
\(\qquad\)
\end{abstract}

．

\begin{abstract}
\(\bigcirc\)

\footnotetext{
.
,
}
\(\qquad\)
\end{abstract}

\(\qquad\)
 \(\square\)
\(\square\)

Q2
Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
Col Q2
Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.

\section*{Q2} Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
. Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\(\qquad\) Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components. Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
11 Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components. Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\(\qquad\) Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components. Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components. Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\(\qquad\) Construct a 4-bit BCD Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\(\qquad\) Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.

\(\square\)
\(\square\)

\(\qquad\)

\begin{abstract}

\end{abstract}
[
E Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.

\section*{9's complement subtraction}

\section*{Regular Subtraction}
(a)

9's Complement Subtraction

(b)

28
\(-\frac{13}{15}\)

(c)
\[
\begin{array}{r}
18 \\
-\quad 24 \\
\hline-6
\end{array}
\]

18
+ 75 9' complement of 24
93 9's complement of result - (No carry indicates that the answer is negative and in complement form) \(\square\)
 （
 －教
（2）
都
正

BCD Adder (See Fig. 4.14)

 \(\square\)

Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\[
\begin{array}{ll}B_{3} B_{2} B_{1} B_{0} & \text { Mode }=0 \text { FOR Add } \\ \text { Mode }=1 \text { for Subtract }\end{array}
\]
Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\[
\begin{array}{ll}B_{3} B_{2} B_{1} B_{0} & \text { Mode }=0 \text { FOR Add } \\ \text { Mode }=1 \text { for Subtract }\end{array}
\]
Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\[
\begin{array}{ll}B_{3} B_{2} B_{1} B_{0} & \text { Mode }=0 \text { FOR Add } \\ \text { Mode }=1 \text { for Subtract }\end{array}
\]

Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\[
\begin{array}{ll}B_{3} B_{2} B_{1} B_{0} & \text { Mode }=0 \text { FOR Add } \\ \text { Mode }=1 \text { for Subtract }\end{array}
\]
Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\[
\begin{array}{ll}B_{3} B_{2} B_{1} B_{0} & \text { Mode }=0 \text { FOR Add } \\ \text { Mode }=1 \text { for Subtract }\end{array}
\]

Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\[
\begin{array}{ll}B_{3} B_{2} B_{1} B_{0} & \text { Mode }=0 \text { FOR Add } \\ \text { Mode }=1 \text { for Subtract }\end{array}
\]

.

Construct a 4-bit BCD adder-subtractor circuit. Use the BCD adder and the 9's
complementer. Use block diagrams for the components.
\[
\begin{array}{ll}B_{3} B_{2} B_{1} B_{0} & \text { Mode }=0 \text { FOR Add } \\ \text { Mode }=1 \text { for Subtract }\end{array}
\]
\(\qquad\)
\(\square\) \(\square\) \(\square\)

\section*{Q3}

\begin{abstract}
Design a combinational circuit that compares two 4－bit numbers to check if they are equal．The circuit output is equal to 1 if the two numbers are equal and 0 otherwise．
 numbers are equal and 0 otherwise．路
\[
0^{2}
\]
\end{abstract}

教 number

都
\(\square\)
 都 \(+\)

\(\square\)
\(\square\)

都

\(\square\) \(\mathbf{P}^{1}\)
.

\section*{Q3}

\begin{abstract}
Design a combinational circuit that compares two 4-bit numbers to check if they are equal. The circuit output is equal to 1 if the two numbers are equal and 0 otherwise. \(\square\)

\end{abstract} -

\(\qquad\)
 \(\square\) (

\author{
\section*{Do we know a logic gate that outputs 1 only if its both inputs are the same?
 }
}
only if both inputs are the same?

號

\begin{abstract}

\end{abstract}

\(\qquad\) 16
16

\section*{Q3}

\section*{Remember XOR is the Odd Function? What is an Odd Function?} -

\section*{}
Design a combinational circuit that compares two 4-bit numbers to check if they are equal. The circuit output is equal to 1 if the two numbers are equal and 0 otherwise.

\section*{Q3} Then how about XNOR？

\begin{abstract}
Design a combinational circuit that compares two 4－bit numbers to check if they are equal．The circuit output is equal to 1 if the two numbers are equal and 0 otherwise．

\(\square\)
\end{abstract} \(\square\)

Then how about XNOR？

號

 －

\section*{Qu \\ 3}

Design a combinational circuit that compares two 4-bit numbers to check if they are equal. The circuit output is equal to 1 if the two Design a combinational circuit that
check if they are equal. The circuit
numbers are equal and 0 otherwise.
(1)

\section*{ \\ \\ } \(\square\)

\begin{abstract}
\(\qquad\)正
\end{abstract}

\begin{abstract}

\end{abstract}
\[
x=\left(A_{0} \oplus B_{0}\right)^{\prime}\left(A_{1} \oplus B_{1}\right)^{\prime}\left(A_{2} \oplus B_{2}\right)^{\prime}\left(A_{3} \oplus B_{3}\right)^{\prime}
\]

 \(x=\left(A_{0} \oplus B_{0}\right)^{\prime}\left(A_{1} \oplus B_{1}\right)^{\prime}\left(A_{2} \oplus B_{2}\right)^{\prime}\left(A_{3} \oplus B_{3}\right)^{\prime}\)

\section*{Q4}

Construct a 5-to-32-line decoder with enable using four 3-to-8line decoders with enable and a 2-to-4-line decoder with enable. Use block diagrams for the components.

\[
\begin{aligned}
& \text { Q5 Construct a 4-to- 16-line decoder with enable } \\
& \text { line decoders with enable. }
\end{aligned}
\]

Construct a 4-to- 16-line decoder with enable using five 2-to-4-
line decoders Whinenale.
line decoders Whinenale.
line decoders with enable.
\(\qquad\)

lie cecocens Witnenale
line decoders with enable.
\(\qquad\)
line decoders with enable.
lie cecocens Witnenale E
lie decoders Whin enable.
line decoders with enable.
\(\square\)
\(\square\)
lie decoders Wrinenale
者
line decoders with enable.
(

Q5 Construct a 4-to-16-line decoder with enable using five 2-to-4line decoders with enable.

\section*{}

\section*{}

\section*{}

\section*{} -

5

A combinational circuit is specified by the following three Boolean functions： ．

\begin{abstract}
\(\qquad\)
\end{abstract}
A combinational circuit is specified by the following three Boolean functions:
\[
\begin{align*}
& F_{1}(A, B, C)=\Sigma(1,4,6) \\
& F_{2}(A, B, C)=\Sigma(3,5) \\
& F_{3}(A, B, C)=\Sigma(2,4,6,7)
\end{align*}
\]
\[
\rangle
\]
.
.

Implement the circuit with a decoder and NAND gates connected to the decoder （
）

\footnotetext{

}
with a decoder and NANI
\[
\begin{aligned}
& \text { outputs. Use a block diagram for the decoder. Minimize the number of inputs in the } \\
& \text { external }
\end{aligned}
\]

\footnotetext{

}
R
 Pa

\footnotetext{
－
}

.
.

\footnotetext{
．
}
\(\square\)

\(\square\)
\[
x_{2}^{2}
\]

\(\qquad\)
.
.
\(\qquad\) \(\square\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
路
路

\(\qquad\)
A combinational circuit is specified by the following three Boolean functions：
\[
F_{1}(A, B, C)=\Sigma(1,4,6)
\]

（
保
－
. \\ \section*{\section*{Q6}} \\ \section*{\section*{Q6}}

\footnotetext{
都
}
\(\square\)

\begin{abstract}
（
\end{abstract}

路 \(\square\)

\author{
路 \\ \(\qquad\)
}

\section*{Q6}

Q6
 A
X

\section*{Q6}

e
-

\(\square\)
.
\((\)
,

.

號
. 0
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\[
\text { Q7 } \quad \begin{align*}
& F_{1}=x^{\prime} y z^{\prime}+x z \\
& F_{2}=x y^{\prime} z^{\prime}+x^{\prime} y \\
& F_{3}=x^{\prime} y^{\prime} z^{\prime}+x y \tag{F}
\end{align*}
\]
f
.

Implement the functions with one decoder and OR gates

Implement the functions with one decoder and OR gates
 \(\square\)

\[
\pm
\]
-
\[
\square
\] \(\square\)
\(\square\)
.
正
.
\(\qquad\) \(\square\) \(\square\)
[

\begin{abstract}
（
\end{abstract}
\(\qquad\)
（
T
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
路

）
\(\square\)
都
－

—
都
Ta nd

\begin{abstract}
■
\end{abstract}
\(\square\)
\(\square\)
\(\square\)
\[
\begin{aligned}
& F_{1}=x^{\prime} y z^{\prime}+x z \\
& F_{2}=x y^{\prime} z^{\prime}+x^{\prime} y \\
& F_{3}=x^{\prime} y^{\prime} z^{\prime}+x y
\end{aligned}
\]

\section*{Q7}
\[
\begin{aligned}
& F_{1}=x\left(y+y^{\prime}\right) z+x^{\prime} y z^{\prime}=x y x+x y^{\prime} z+x^{\prime} y z^{\prime}=\Sigma(2,5,7) \\
& F_{2}=x y^{\prime} z^{\prime}+x^{\prime} y=x y^{\prime} z^{\prime}+x^{\prime} y z+x^{\prime} y z^{\prime}=\Sigma(2,3,4) \\
& F_{3}=x^{\prime} y^{\prime} z^{\prime}+x y\left(z+z^{\prime}\right)=x^{\prime} y^{\prime} z^{\prime}+x y z+x y z^{\prime}=\Sigma(0,6,7)
\end{aligned}
\]
\(\qquad\)

教
ex都
正

\(\qquad\)

\begin{abstract}
\(\qquad\)
\end{abstract}

\begin{abstract}

\end{abstract}

\(\qquad\)
multiplexers．Use block diagrams．
－
．
\(\qquad\)

I

\footnotetext{

}

\footnotetext{
\((\square)\)
}
\(\square\)
都

Construct a \(16 \times 1\) multiplexer with two \(8 \times 1\) and one \(2 \times 1\) Construct a \(16 \times 1\) multiplexer with two \(8 \times 1\) and one \(2 \times 1\)
multiplexers．Use block diagrams．
a）How many inputs？

\section*{b）How many selection lines？ \\ ？}

multiplexers．Use block
a）How many
b）How many

\section*{} 0 \(\square\)
.
\(\qquad\)

\(\qquad\)
都


```

* 

```
```

* 

```
```

* 

```
 cutup）

\title{
－
}

－
．
\(\square\)
都

.
\(\qquad\)

\begin{abstract}
\(\qquad\)
\(\qquad\)

\author{

}
\end{abstract}

2
\(\qquad\)
\(\qquad\)
\(\qquad\)

\begin{abstract}
\(\qquad\)
\end{abstract}

\(\square\) \(+\)

Implement the following Boolean function with a multiplexer

\section*{Q10 \\ Q}
（a）\(F(A, B, C, D)=\sum(0,2,5,8,10,14)\)
\(\qquad\) （a）\(F(A, B, C, D)=\sum(0,2,5,8,10,14)\) （a）\(F(A, B, C, D)=\sum(0,2,5,8,10,14)\)
\(\qquad\) －
\(\square\)號都

\section*{Q10}

 --- \(\qquad\)

\(\square\)

.

\section*{Q10}
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\square\)
T路 \(\square\) 號

\begin{abstract}
\begin{abstract}

\end{abstract} \(\bigcirc\)
\end{abstract}都 （ \(+\)

\(\square\)

號
）

\author{

}

\[
\text { Q10 } F(A, B, C, D)=\underset{\sim}{2}, ~(0,5,8,10,14)
\]
\(\square\) \(-2\) \(\square\)號 Qutan號

\begin{abstract}

\end{abstract}

\begin{tabular}{l}
\\
\hline
\end{tabular}

.

Q10 \begin{tabular}{l}
\(F(A, B, C, D)=\sum(0,2,5,8,10,14)\) \\
\hline
\end{tabular}

\section*{ \\ \\ \(F=\Sigma(0,2,5,8,10,14)\) \\ \(\quad F=\Sigma(0,2,5,8,10,14)\)}

\section*{Q10 \(F(A, B, C, D)=\Sigma(0,2,5,8,10,14)\)}

\begin{abstract}

\end{abstract}

(1)

Q11
Implement the following Boolean function with a \(4 \times 1\) multiplexer and
Q11 Implement the following Boolean function with a 4x 1 multiplexer and
external gates．\(F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14,15)\)

號

\[
F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14,15)
\]
\[
\Gamma 1(A, D, C, D)-2(1,5,4,11,12,15,14,15)
\]

external gates．\(F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)

external gates．\(F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)
external gates．\(\quad F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)
external gates．\(F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)
external gates．\(F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)
external gates．\(F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)

－
external gates．\(F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)

external gates．\(F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)
－
\(\qquad\)
external gates．\(\quad F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14\)

\footnotetext{
都
}

\[
4
\]
（

\(\square\)

> \(+\)

0
\(\square\)

\author{
, 15)
}

,


```

                    *
    ```
```

                    *
    ```
```

                    *
    ```
```

                    *
    ```

\(\square\)

路

\author{

}

\begin{abstract}

\end{abstract}
\(\square\)

Implement the following Boolean function with a 4 x 1 multiplexer and
external gates．\(\quad F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14,15)\)

Implement the following Boolean function with a 4 x 1 multiplexer and
external gates．\(\quad F_{1}(A, B, C, D)=\Sigma(1,3,4,11,12,13,14,15)\)
保

\(\square\)

\(\square\)
a
\(\square\)

\(\qquad\) （

（O and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output D should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit． （O and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output D should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit． sent a number trom 0 to 1 ．output \(P\) should be 1 KUE it the number ls prime
（0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output D should be
output and sketch a circuit． （0 and 1 are not prime，but \(2,3,5\), and so on，are prime）．Output D should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit． （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit．
 （0 and 1 are not prime，but \(2,3,5\), and so on，are prime）．Output D should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit． （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit．
 （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit． （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit． （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit． （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit． （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime \()\) ．Output D should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit．
 （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit．正

\(\qquad\)
.
正
\(\qquad\)
sent a number from 0 to 15 ．Output \(P\) should be TRUE if the number is prime \\ \section*{\section*{Q12 \\ \section*{\section*{Q12 \\ \\ \\ Q12}} \\ \\ \\ Q12}}
號
\(\qquad\)

 \((0\) and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each

sent a number from 0 to 15. Output \(\operatorname{should}\) be RuE if the number is prime

（0 and 1 are not prime，but \(2,3,5\), and so on，are prime）．Output \(D\) should be

TRUE if the number is divisible by 3. Give simplified Boolean equations for each
output and sketch a circuit． Q12 Exercise 2.24 A circuit has four inputs and two outputs．The inputs，\(A_{3: 0}\) ，repre－
sent a number from 0 to 15 ．Output \(P\) should be TRUE if the number is prime
（0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each

\[
0^{2}
\]
F （0 and 1 are not prime，but \(2,3,5\) ，and so on，are prime）．Output \(D\) should be
TRUE if the number is divisible by 3 ．Give simplified Boolean equations for each
output and sketch a circuit．

\section*{Exercise 2．24 A circuit has four inputs and two outputs．The inputs，\(A_{3: 0}\) ，repre－ \\ 路 \\ 路 \\ ？} \\ ？}

Exercise 2.24 A circuit has four inputs and two outputs. The inputs, \(A_{3: 0}\), represent a number from 0 to 15 . Output \(P\) should be TRUE if the number is prime (0 and 1 are not prime, but \(2,3,5\), and so on, are prime). Output \(D\) should be TRUE if the number is divisible by 3 . Give simplified Boolean equations for each output and sketch a circuit.
\(D \cdot \bar{A} \bar{B} C D+\bar{A} B C \bar{D}\)
\(+A B \bar{C} \bar{D}+A B C D\)
\(+A \bar{B} \bar{C} D\)
circuit on the right in order to obtain the same function in terms of \(x, y\) ，and號

 ．

Find the Boolean functions that need to be applied to the inputs of the \(z\) at the output of the circuit shown on the left． rathe output of the circuit shown on the left． 元

 at he output of the circuit shown on the

\(\qquad\) \(+\) （

\[
0
\]

 \(\qquad\)
 －

－

（
\(\square\)
，

，

電
 ，
（

\(\qquad\)

Find the Boolean functions that need to be applied to the inputs of the circuit on the right in order to obtain the same function in terms of \(x, y\) ，and \(z\) at the output of the circuit shown on the left．

\section*{Q13} athe output of the circuit shown on the ．號

號 zatheouphor he ria shownon helet．

\begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\) & \(y\) & \(z\) & input & \(F\) & \(F\) \\
\hline 0 & 0 & 0 & & & \\
\hline 0 & 0 & 1 & & & \\
\hline 0 & 1 & 0 & & & \\
\hline 0 & 1 & 1 & & & \\
\hline 1 & 0 & 0 & & & \\
\hline 1 & 0 & 1 & & & \\
\hline 1 & 1 & 0 & & & \\
\hline 1 & 1 & 1 & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}

> .
五

 and

Find the Boolean functions that need to be applied to the inputs of the circuit on the right in order to obtain the same function in terms of \(x, y\), and \(z\) at the output of the circuit shown on the left.

\begin{tabular}{|c|c|c|c|c|c|}
\hline\(x\) & \(y\) & \(z\) & input & \(F\) & \(F\) \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & \multirow{2}{*}{0} & & \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & & \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & & & \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{1}\) & & \\
\hline \(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & & & \\
\hline \(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & & & \\
\hline \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & & & \\
\hline \(\mathbf{1}\) & \(\mathbf{1}\) & & & & \\
\cline { 1 - 3 } 3 & & & & \\
\hline
\end{tabular} ather left

正

Q13
Find the Boolean functions that need to be applied to the inputs of the circuit on the right in order to obtain the same function in terms of \(x, y\), and \(z\) at the output of the circuit shown on the left.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{x}\) & \(\mathbf{y}\) & \(\mathbf{z}\) & input & \(\mathbf{F}\) & \(\mathbf{F}\) \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & \multirow{2}{*}{0} & \multirow{2}{*}{\(\mathbf{z}\)} & \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & & \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & \multirow{2}{*}{1} & \multirow{2}{*}{\(z^{\prime}\)} & \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{1}\) & & & \\
\hline \(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & \multirow{2}{*}{2} & \multirow{2}{*}{0} & \\
\hline \(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & & & \\
\hline \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & \multirow{2}{*}{3} & \multirow{2}{*}{1} & \\
\hline \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{1}\) & & & \\
\hline
\end{tabular}
 ather left
\(\qquad\) 都
 zont

Find the Boolean functions that need to be applied to the inputs of the circuit on the right in order to obtain the same function in terms of \(x, y\), and \(z\) at the output of the circuit shown on the left.

\section*{Q13}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{x}\) & \(\mathbf{y}\) & \(\mathbf{z}\) & input & \(\mathbf{F}\) & \(\mathbf{F}\) \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & \multirow{2}{*}{\(\mathbf{0}\)} & \multirow{2}{*}{\(\mathbf{z}\)} & 0 \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & & & \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \multirow{2}{*}{\(\mathbf{1}\)} & \multirow{2}{*}{\(\mathbf{z}\)} & 1 \\
\cline { 1 - 3 } & \(\mathbf{1}\) & \(\mathbf{1}\) & & & 0 \\
\hline \(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & \multirow{2}{*}{\(\mathbf{2}\)} & \multirow{2}{*}{0} & 0 \\
\hline \(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & & & 0 \\
\hline \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & \multirow{2}{*}{3} & \multirow{2}{*}{1} & 1 \\
\hline \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{1}\) & & & \\
\hline
\end{tabular} a the z at output of the circuit shown on the lef.

>
都

Find the Boolean functions that need to be applied to the inputs of the circuit on the right in order to obtain the same function in terms of \(x, y\), and \(z\) at the output of the circuit shown on the left. zatput of the circut shown on the
\[
z^{\prime}
\]

\begin{tabular}{|c|c|c|c|c|c|}
\hline x & y & \(z\) & input & F & F \\
\hline 0 & 0 & 0 & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{z} & 0 \\
\hline 0 & 0 & 1 & & & 1 \\
\hline 0 & 1 & 0 & \multirow{2}{*}{1} & \multirow{2}{*}{z'} & 1 \\
\hline 0 & 1 & 1 & & & 0 \\
\hline 1 & 0 & 0 & \multirow[b]{2}{*}{2} & \multirow[b]{2}{*}{0} & 0 \\
\hline 1 & 0 & 1 & & & 0 \\
\hline 1 & 1 & 0 & \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{1} & 1 \\
\hline 1 & 1 & 1 & & & 1 \\
\hline
\end{tabular}
\(\qquad\)
\(\qquad\)
\[
2
\]

Find the Boolean functions that need to be applied to the inputs of the circuit on the right in order to obtain the same function in terms of \(x, y\), and \(z\) at the output of the circuit shown on the left.
\begin{tabular}{|c|c|c|c|c|c|}
\hline y & \(z\) & x & input & F & F \\
\hline 0 & 0 & 0 & 0 & & \\
\hline 0 & 0 & 1 & & & \\
\hline 0 & 1 & 0 & & & \\
\hline 0 & 1 & 1 & 1 & & \\
\hline 1 & 0 & 0 & 2 & & \\
\hline 1 & 0 & 1 & 2 & & \\
\hline 1 & 1 & 0 & & & \\
\hline 1 & 1 & 1 & 3 & & \\
\hline
\end{tabular}
 -

Find the Boolean functions that need to be applied to the inputs of the circuit on the right in order to obtain the same function in terms of \(x, y\), and \(z\) at the output of the circuit shown on the left.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \(\mathbf{y}\) & \(\mathbf{z}\) & \(\mathbf{x}\) & input & \(\mathbf{F}\) & \(\mathbf{F}\) \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & \multirow{2}{*}{\(\mathbf{0}\)} & & 0 \\
\hline \(\mathbf{0}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & & & 0 \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & \multirow{2}{*}{\(\mathbf{1}\)} & & 1 \\
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{1}\) & & & 0 \\
\hline \(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{0}\) & \multirow{2}{*}{\(\mathbf{2}\)} & & 1 \\
\hline \(\mathbf{1}\) & \(\mathbf{0}\) & \(\mathbf{1}\) & & & 1 \\
\hline \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{0}\) & \multirow{2}{*}{3} & & 0 \\
\hline \(\mathbf{1}\) & \(\mathbf{1}\) & \(\mathbf{1}\) & & & \(\mathbf{1}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline x & y & \(z\) & input & F & F \\
\hline 0 & 0 & 0 & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{z} & 0 \\
\hline 0 & 0 & 1 & & & 1 \\
\hline 0 & 1 & 0 & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{\(z^{\prime}\)} & 1 \\
\hline 0 & 1 & 1 & & & 0 \\
\hline 1 & 0 & 0 & \multirow[t]{2}{*}{2} & \multirow[b]{2}{*}{0} & 0 \\
\hline 1 & 0 & 1 & & & 0 \\
\hline 1 & 1 & 0 & \multirow[b]{2}{*}{3} & \multirow[b]{2}{*}{1} & 1 \\
\hline 1 & 1 & 1 & & & 1 \\
\hline
\end{tabular}

Find the Boolean functions that need to be applied to the inputs of the circuit on the right in order to obtain the same function in terms of \(x, y\), and \(z\) at the output of the circuit shown on the left.

\begin{tabular}{|c|c|c|c|c|c|}
\hline y & z & x & input & F & F \\
\hline 0 & 0 & 0 & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{0} & 0 \\
\hline 0 & 0 & 1 & & & 0 \\
\hline 0 & 1 & 0 & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{X'} & 1 \\
\hline 0 & 1 & 1 & & & 0 \\
\hline 1 & 0 & 0 & \multirow{2}{*}{2} & \multirow[b]{2}{*}{1} & 1 \\
\hline 1 & 0 & 1 & & & 1 \\
\hline 1 & 1 & 0 & \multirow[b]{2}{*}{3} & \multirow[b]{2}{*}{X} & 0 \\
\hline 1 & 1 & 1 & & & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline x & y & \(z\) & input & F & F \\
\hline 0 & 0 & 0 & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{z} & 0 \\
\hline 0 & 0 & 1 & & & 1 \\
\hline 0 & 1 & 0 & \multirow[b]{2}{*}{1} & \multirow[b]{2}{*}{\(z^{\prime}\)} & 1 \\
\hline 0 & 1 & 1 & & & 0 \\
\hline 1 & 0 & 0 & \multirow[t]{2}{*}{2} & \multirow[b]{2}{*}{0} & 0 \\
\hline 1 & 0 & 1 & & & 0 \\
\hline 1 & 1 & 0 & \multirow[b]{2}{*}{3} & \multirow[b]{2}{*}{1} & 1 \\
\hline 1 & 1 & 1 & & & 1 \\
\hline
\end{tabular}

Implement a full adder using two 4to1
multiplexers．
Q14

\section*{Implement a full adder using two 4to1 \\ \(\qquad\) \\ \(1+2\) \\ \\ － \\ \\ ．}

正
Mupleiplexerse
－

\section*{}
 ．
Mupleiplexerse Implement

```

．

```
```

                    *
    ```

Mupleiplexerse
Mupleiplexerse
Mupleiplexerse
Muntipexers．

Mupleiplexerse
Mupleiplexerse
Mupleiplexerse
Mupleiplexerse
Mupleiplexerse
Mupleiplexerse

nưtiplexers．

正
nưtiplexers．

Mupleiplexerse

Muntipexers．
Muntipexers．
nưtiplexers．
nưtiplexers．
nưtiplexers．
正 －

nưtiplexers．
nưtiplexers．
nưtiplexers．
Muntipexers．
nưtiplexers．
正
nưtiplexers．
nưtiplexers．
Muntipexers．
Muntipexers．
Muntipexers．
Muntipexers．
Muntipexers．
nưtiplexers．
nưtiplexers．

正

20
－
－
nưtiplexers．
nưtiplexers．
nưtiplexers．
正

正

正
正
Muntipexers．
正

（
震

\(\square\)
－
－
，

Mưtiniexers．

Muttinexers．

\(\qquad\)
\(\qquad\)

nuutiniexers．
nuutiniexers．
nuutiniexers．
\begin{tabular}{l}
P \\
\hline
\end{tabular}

正
\(\square\)
\(\square\)
\(\qquad\)

Co
－
．

\begin{abstract}
\begin{abstract}
\begin{abstract}
\begin{abstract}
\begin{abstract}
\(\qquad\)
\end{abstract}
\end{abstract}
\end{abstract}
\end{abstract}
\end{abstract}
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\square\)

\author{

}
\(\square\)

（
正

電

－

\section*{B \\ }
\begin{tabular}{|ccc|cc|}
\hline\(A\) & \(B\) & \(C\) & Carry & \\
\hline 0 & 0 & 0 & 0 & \multirow{2}{*}{0} \\
0 & 0 & 1 & 0 & \\
\hline 0 & 1 & 0 & 0 & \multirow{2}{*}{\(C\)} \\
0 & 1 & 1 & 1 & \\
\hline 1 & 0 & 0 & 0 & \multirow{2}{*}{\(C\)} \\
1 & 0 & 1 & 1 & \\
\hline 1 & 1 & 0 & 1 & \multirow{2}{*}{1} \\
1 & 1 & 1 & 1 & \\
\hline
\end{tabular}

Cumbey
(1)

Q14
\begin{tabular}{|ccc|c|c|}
\hline\(a\) & \(b\) & \(c\) & Sum & \\
\hline 0 & 0 & 0 & 0 & \multirow{2}{*}{\(c\)} \\
0 & 0 & 1 & 1 & \\
\hline 0 & 1 & 0 & 1 & \multirow{2}{*}{\(c^{\prime}\)} \\
0 & 1 & 1 & 0 & \\
\hline 1 & 0 & 0 & 1 & \multirow{2}{*}{\(c^{\prime}\)} \\
1 & 0 & 1 & 0 & \\
\hline 1 & 1 & 0 & 0 & \multirow{2}{*}{\(c\)} \\
1 & 1 & 1 & 1 & \\
\hline
\end{tabular}

\section*{Cole \\ \\ (}

Q14.
\begin{tabular}{|cccc|c|c|}
\hline 0 & 0 & 0 & 0 & \multirow{2}{*}{\(C\)} \\
0 & 0 & 1 & 1 & \\
\hline 0 & 1 & 0 & 1 & \multirow{2}{*}{\(C^{\prime}\)} \\
0 & 1 & 1 & 0 & \\
\hline 1 & 0 & 0 & 1 & \multirow{2}{*}{\(C^{\prime}\)} \\
1 & 0 & 1 & 0 & \\
\hline 1 & 1 & 0 & 0 & \multirow{2}{*}{\(C\)} \\
1 & 1 & 1 & 1 & \\
\hline
\end{tabular}

(
.
都
路

c

.

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

```


[^0]:    
    

[^1]:    $\qquad$

