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Secure Triplet Loss: Achieving Cancelability and
Non-Linkability in End-to-End Deep Biometrics
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Abstract—Biometric systems store sensitive personal data that
need to be highly protected. However, state-of-the-art tem-
plate protection schemes generally consist of separate processes,
inspired by salting, hashing, or encryption, that limit the achiev-
able performance. Moreover, these are inadequate to protect
current state-of-the-art biometric models as they rely on end-to-
end deep learning methods. After proposing the Secure Triplet
Loss, focused on template cancelability, we now reformulate it
to address the problem of template linkability. Evaluated on bio-
metric verification with off-the-person electrocardiogram (ECG)
and unconstrained face images, the proposed method proves suc-
cessful in training secure biometric models from scratch and
adapting a pretrained model to make it secure. The results show
that this new formulation of the Secure Triplet Loss succeeds in
optimizing end-to-end deep biometric models to verify template
cancelability, non-linkability, and non-invertibility.

Index Terms—Biometrics, cancelability, deep learning, invert-
ibility, linkability, security, templates, triplet loss.

I. INTRODUCTION

TRADITIONAL authentication systems are becoming
obsolete as biometric recognition is widely adopted for

access control to data and belongings. Biometric systems
do not require the user to carry identity cards or remem-
ber passwords. Instead, they rely on personal characteristics
that are harder to lose, share, or discover than traditional
credentials [1], [2], [3].

However, it is easy to change our keys or passwords when a
traditional authentication system is compromised, but it is very
hard to change our compromised biometric characteristics. This
is the reason why it is paramount that biometric templates are
kept secure [2], [4]. This is not easily achievable since, unlike
password-based systems, biometric comparison is not binary
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and must also account for the natural intrasubject biometric
variability [4], [5].

While several methods have been proposed to protect bio-
metric templates, most require specific feature extraction or
additional processes based on salting, biohashing, or cryp-
tographic protection [4], [5]. Even those proposed for deep
learning biometric methods [6], [7] are integrated into end-to-
end models, thus creating hurdles that often limit the achievable
performance.

Considering this, in [8] we proposed the Secure Triplet Loss,
a reformulation of the well-known triplet loss that enables
training end-to-end deep learning models to obtain cance-
lable biometric templates. The proposed method allows taking
full advantage of the capabilities of end-to-end deep networks
while still ensuring the security of the stored biometric data.
This methodology was successful in promoting template can-
celability and retaining performance levels in ECG biometrics.
However, the results have shown that the main drawback
of the proposed training loss is failing to promote template
non-linkability.

Hence, this article presents an extension of the aforemen-
tioned work focused on tackling this problem. The proposed
Secure Triplet Loss is reformulated to include a component
that measures and actively promotes template non-linkability.
The contributions of this work relative to the prior research
in [8] are five-fold:

1) The previously proposed Secure Triplet Loss is reformu-
lated to promote template non-linkability, through a loss
component based on the Kullback-Leibler divergence or
distance statistics;

2) The evaluation of cancelability is enhanced to test more
thoroughly and objectively the proposed methodology
and state-of-the-art approaches;

3) Experiments were conducted anew to confirm the solid-
ity of the proposed method for biometric verification,
not only with ECG but also with face;

4) The proposed loss formulations are studied in two sce-
narios: (a) training a model “from scratch” (initialized
with random parameters), and (b) adapting an existing
end-to-end biometric model to make it secure (taking
advantage of pretrained weights and fine-tuning with the
proposed method);

5) The Secure Triplet Loss is compared with competitive
state-of-the-art approaches based on Bloom Filters [9]
and Homomorphic Encryption [10].

As the prior study in [8], this work includes an evaluation
of identity verification performance and the template security
properties of cancelability, non-linkability, non-invertibility,
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and secrecy leakage. For realistic results, we use the
off-the-person University of Toronto ECG (UofTDB) [11] and
the unconstrained YouTube Faces [12] databases, with disjoint
sets of identities for training and testing. The proposed Secure
Triplet Loss formulations are compared with the original triplet
loss in the same evaluation settings.

Besides this introduction, this article includes the
presentation of related concepts and prior art works, in
Section II; a detailed description of the original triplet loss and
the proposed secure formulations, in Section III; the details on
the conducted experiments, in Section IV; the results and their
discussion, in Section V; and the conclusions drawn from this
work, in Section VI. Code for this work is available online.1

II. BACKGROUND AND RELATED WORK

Beyond accounting for natural biometric characteristic vari-
ability, biometric data protection methods need to verify
template cancelability, non-invertibility, and non-linkability.
Cancelability (or revokability) means the templates can be
easily and effectively rendered useless if they become com-
promised, generally through the change of a personal key that
is bound with the template [13], [14].

Non-invertibility requires the transformation from biometric
samples to templates to be as close to irreversible as possible.
Thus, if the template is compromised, the original biometric
sample cannot be reliably recovered or approximated [4], [5].
Finally, template non-linkability means it is difficult to assess
if compromised templates from different biometric systems
belong to the same identity [9].

One of the first template protection methods was the fuzzy
commitment scheme proposed by Juels and Wattenberg [15],
using cryptography and error-correcting codes for template
cancelability. Later, Teoh et al. [16] proposed BioHashing, an
adaptation of the hashing process commonly applied to pass-
words to deal with fingerprint variability. A similar approach
has been proposed by Sutcu et al. [17].

More recently, Rathgeb et al. [18], [19] proposed the
Bloom filter approach for alignment-free template cancela-
bility and irreversibility. This approach was later adapted
by Gomez-Barrero et al. [9], [20] to ensure template non-
linkability, and by Drozdowski et al. [21] for higher compu-
tational efficiency. Raja et al. [22] proposed a highly efficient
method using neighborhood-preserving manifolds and hashing
for biometric template protection in smartphones.

Among cryptography-based methods, homomorphic encryp-
tion (HE) approaches are particularly promising as HE
allows arithmetic operations on the encrypted domain [23].
This allows the biometric comparison to be fully con-
ducted on the encrypted domain, ensuring data security [10].
Fully HE approaches, that allow for unlimited operations in
the encrypted domain, most notably include Gentry’s [24],
Brakerski’s [25], and Fan-Vercauteren’s [26] schemes.

HE has been successfully applied for biometric tem-
plate protection in face [10], [23], [27], signature [28], and
even multibiometric recognition [29]. However, with HE the

1SecureTL code repository. Available on:
https://github.com/jtrpinto/SecureTL.

protection of templates remains the responsibility of a sepa-
rate process that should, ideally, be harmoniously integrated
within the feature extraction algorithm.

Using deep learning, Pandey et al. [6] proposed a template
protection scheme that receives features from a convolutional
neural network (CNN), quantizes them, and applies hash-
ing to obtain exact comparison despite the variability. Later,
Talreja et al. [7] used forward error control (FEC) decoding
and hashing to protect biometric features extracted by deep
neural networks. While these are applied to deep learning,
they still require separate protection and comparison schemes.
Hence, they are inadequate for recent state-of-the-art biomet-
ric recognition methods, which largely rely on end-to-end deep
learning models for significantly improved performance.

Considering this, we recently proposed the Secure Triplet
Loss [8], a formulation of the triplet loss [30] that
enables learning end-to-end models to bind biometric sam-
ples with keys. With this method, biometric templates
become easily cancelable, just requiring a key change to be
invalidated. Additionally, the method provided near-perfect
non-invertibility without a decrease in performance relative
to the original triplet loss. However, it presented the major
drawback of high template linkability.

Hence, this article addresses this problem by reformulat-
ing the Secure Triplet Loss to include a linkability-measuring
term. With this, we aim to obtain a general methodology to
train end-to-end biometric models that achieve cancelability,
non-linkability, and non-invertibility without additional pro-
tection processes. The original triplet loss, the original Secure
Triplet Loss formulation, and the reformulated Secure Triplet
Loss are presented in Section III.

III. SECURE TRIPLET LOSS

A. Original Triplet Loss

The triplet loss [30] has been widely used in deep learn-
ing to train networks to accurately determine whether or not
two samples belong to the same class [31], [32], [33]. During
training, such networks receive three inputs (a triplet), in par-
allel: one is the anchor (xA, the reference with identity iA), the
second is the positive sample (xP, with identity iP = iA), and
the third is the negative sample (xN , with identity iN �= iA).
In biometrics, triplets are groups of three biometric samples
(images or signals): the anchor and positive inputs correspond
to the same individual, unlike the negative input.

For each input, the network will output a representation:
e.g., for the anchor, yA = f (xA). The three representations
are then compared using a measure of distance or dissim-
ilarity d(y1, y2), and the network is optimized through the
minimization of the triplet loss function:

lTL = max
[
0, α + d(yA, yP) − d(yA, yN)

]
, (1)

which leads representations of the same class to be more
similar than those of different classes, minimizing d(yA, yP)

and maximizing d(yA, yN). The loss also aims to enforce a
minimum margin α > 0 between the two distances.

This is a generally successful strategy when training neural
networks for biometric verification (assessing if the identi-
ties of a biometric template and a biometric query match).
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Fig. 1. Comparison between the model training schemes of the original
triplet loss and the proposed Secure Triplet Loss method [8].

However, it does not address the important issue of secu-
rity in biometrics, especially the topics of cancelability and
non-linkability.

B. Learning Cancelability

The training method proposed in [8] modifies the triplet
loss to make the final sample representations cancelable (as
illustrated in Fig. 1). Besides the triplet inputs (xA, xP, and
xN), the network also receives two different keys (k1, k2) that
are bound with the inputs by the network itself.

Unlike the original triplet loss, xP and xN are processed
by the network twice. First, they are combined with k1 and
then with k2. The anchor xA is only bound with k1. Thus, five
representations are obtained: yA = f (xA, k1), yP1 = f (xP, k1),
yP2 = f (xP, k2), yN1 = f (xN, k1), yN2 = f (xN, k2). From these,
four distances are computed: dSP = d(yA, yP1) (with matching
identities and keys), dDP = d(yA, yP2) (with matching iden-
tities but different keys), dSN = d(yA, yN1) (with different
identities but matching keys), and dDN = d(yA, yN2) (with
non-matching identities and keys).

The objective is to minimize dSP, when both the identi-
ties and the keys match, and maximize the remaining three
distances (see Fig. 2). Hence, the loss is computed through:

lSTL = max(0, α + dSP − dn), (2)

where dn results of the combination of all three distances to
be maximized. Here, we consider dn = min({dSN, dDP, dDN}),
with the three distances to be maximized being considered
equally relevant. This results in:

lSTL = max[0, α + dSP − min({dSN, dDP, dDN})]. (3)

As with triplet loss, α enforces a margin between positive
and negative distances. In this case, the loss involves four dis-
tances, since it also takes into account whether or not the keys
match. By minimizing the loss in (3), the network learns to
deal with the intrasubject and intersubject variability of the
biometric characteristic. More importantly, it learns to recog-
nize when the keys do not match, even if the identity is the
same. Hence, if the stored templates become compromised,
they can easily be invalidated through a key change. However,
as reported in [8], lSTL fails to promote non-linkability.

Fig. 2. During training, the Secure Triplet Loss promotes the proximity
between yA and yP1 (which match in identity and key) and larger distance to
the three negative samples with a margin α.

C. Promoting Non-Linkability

Non-linkability can be achieved by combining the original
formulation of the Secure Triplet Loss, lSTL, with a component
that quantifies linkability in the representations output by the
network during training, lL. Thus, the proposed reformulation
of the Secure Triplet Loss follows the equation:

lSTL2 = γ lSTL + (1 − γ )lL. (4)

The lSTL component is the original Secure Triplet Loss
in (3), focused on biometric performance and template can-
celability, following the formulation in (3). The parameter
γ ∈ [0, 1] balances the lSTL and lL loss components. The lL
component is focused on measuring template linkability. To
achieve non-linkability, one has to ensure similar distance val-
ues are obtained when keys don’t match (regardless of whether
or not the templates are from the same identity). Hence, dDP

and dDN should assume similar values. This can be achieved
using the Kullback-Leibler divergence (KLD), computed over
each batch. This agrees with the reference linkability metric,
which is also inspired by the KLD. In this case, this part of
the loss becomes:

lL = DKL
(
PdDP ||PdDN

) =
∑

PdDP log

(
PdDP

PdDN

)
, (5)

where PdDP and PdDN are the probability density functions for
the distributions of dDP and dDN , respectively. To obtain these
distributions and their respective probability density functions,
this part of the loss cannot be computed over each triplet,
instead being computed over each batch of triplets. For brevity,
this formulation of the Secure Triplet Loss with Kullback-
Leibler divergence-based linkability is from now on designated
as SecureTL w/KLD or STL w/KLD.

Alternatively, one can avoid estimating these distributions
and the computation of the Kullback-Leibler divergence using
simple statistics to promote linkability. If we consider μ(dDP)

and σ(dDP) as the mean and standard deviation, respectively,
of the distances dDP on a given batch, and likewise μ(dDN)

and σ(dDN) for the distances dDN on the same batch, then we
can reformulate

lL = |μ(dDP) − μ(dDN)| + |σ(dDP) − σ(dDN)|. (6)

This should lead the model to offer embeddings that result in
similar distance scores when the keys do not match, regardless
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Fig. 3. Architecture of the models used for ECG (top) and face (bottom)
identity verification (x denotes a input biometric sample, k a key, and y a
biometric template). The structure of the face model before concatenation
with k follows exactly the structure of the Inception-ResNet-v1, which is
presented in higher detail in [34].

of whether or not the identities match, thus avoiding tem-
plate linkability. Throughout the remainder of this article, for
brevity, the formulation of the Secure Triplet Loss with this
statistics-based linkability module is designated as SecureTL
w/SL or STL w/SL.

IV. EXPERIMENTAL SETTINGS

The proposed methodology for learning secure biometric
models was explored for two characteristics: the ECG and
face. The ECG comes from the prior research in Secure
Triplet Loss [8], and experiments have been conducted anew
and in more depth, using PyTorch for more flexibility. The
face enables the study of the method’s behavior on a more
mature and developed biometric characteristic. This section
presents the details on the models, the data, and the conducted
experiments.

For either characteristic, keys have been randomly gener-
ated for each triplet, consisting of unidimensional arrays with
100 binary values. Each key is processed after generation
to verify unit-l2 norm. For SecureTL w/KLD and SecureTL
w/SL, the parameter γ that controls the balance between the
Secure Triplet Loss and the linkability component was set to
0.9: this value has overall been able to offer good template
non-linkability without considerably harming the validation
performance and cancelability.

A. ECG Identity Verification

1) Data: The ECG data used comes from the University of
Toronto ECG Database (UofTDB) [11]. This database includes
recordings from 1019 subjects over up to six sessions and five
different positions. The signals are off-the-person (less obtru-
sive and more comfortable for realistic biometric applications)
and have been acquired at 200 Hz using dry electrodes on the
pointer fingers. Each recording is generally 2 to 5 seconds
long.

Data from the last 100 identities were used for training,
while the data from the remaining 919 subjects have been
reserved for testing. From these 919, one has been discarded
for only having a total of 30 seconds of data. Triplets have
been generated by selecting an anchor from the first 30 s of
data from a subject and positive and negative samples from

the remaining data of the same or another identity, respec-
tively. From the 100 training identities, 100 000 triplets have
been generated, with 20% being used for validation. A total
of 10 000 triplets have been generated for testing. Each of the
three samples in a triplet is a blindly-segmented five-second
raw ECG sample, normalized to zero mean and unit variance.

2) Model: The model for ECG identity verification (see
Fig. 3) follows the architecture of the model used for the
previous Secure Triplet Loss research in [8], adapted from
the competitive end-to-end model proposed in [31], [35]. The
model is composed of four unidimensional convolutional lay-
ers (with 16, 16, 32, and 32 filters, respectively, with size 1×5,
unit stride, and zero padding), each followed by ReLU acti-
vation and max-pooling (with 1 × 3 kernels and stride 3). The
model ends with two fully-connected layers, each with 100
units and followed by ReLU activation.

Once trained, this model receives a 5 second long raw ECG
segment (1000 samples long at 200 Hz sampling frequency)
and outputs an embedding or template that can be compared
to a reference through the Euclidean distance (during train-
ing) or through the normalized Euclidean distance [36] (with
the trained model, to obtain dissimilarity scores in the [0, 1]
range). In the case of Secure Triplet Loss, the feature vec-
tor s(x) (the flattened feature maps from the last max-pooling
layer) is concatenated with the key array k, and both are bound
together by the fully-connected layers to make the final secure
template f (x, k).

The model was trained using the Adam [37] optimizer, with
initial learning rate of 0.0001 and l2 weight regularization with
λ = 0.001. The training lasted a maximum of 250 epochs,
with batch size 32, with early stopping based on validation
loss with patience of 25 epochs.

B. Face Identity Verification

1) Data: To fine-tune and evaluate the model, images from
the YouTube Faces database [12] were used. This database is
composed of frames from 3425 YouTube videos, depicting
a total of 1595 subjects (up to six videos of each subject).
Each video corresponds to between 48 and 6070 frames. This
work used the aligned images provided on the database, which
resulted from face detection, cropping, and alignment.

Each face image has been reduced to 70% height and width
and resized to 160 × 160 to match the input dimensions of
the model. Ten random triplets have been generated for each
of the first 500 subjects on the database for a total of 5000
training triplets, of which 1000 have been used for validation.
Ten random triplets have also been generated from each of
the remaining identities, reserved for testing, resulting in a
total of 10 950 test triplets. Whenever possible, the anchor
and positive samples corresponded to different videos of the
same identity.

2) Model: The model for face identity verification (see
Fig. 3) is based on the Inception-ResNet [34]. This network
has been pretrained2 for identification on the VGGFace2
dataset [38] and offered an accuracy of 99.63% on the Labeled

2FaceNet Pytorch Package. Available on:
https://github.com/timesler/facenet-pytorch.
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Faces in the Wild (LFW) dataset and 95.12% on the YouTube
Faces database [39]. The original fully-connected layer has
been replaced with two new fully-connected layers, each with
100 units and followed by ReLU activation. For the Secure
Triplet Loss, the first of these layers receives the feature vec-
tor s(x) from the first part of the model, concatenated with the
key k. The second outputs the template y(x, k).

All layers on the model have been frozen, to take advan-
tage of the pretrained parameters. The exceptions are the last
convolutional block and the fully-connected layers that come,
respectively, before and after the average pooling operation.
The last convolutional block is fine-tuned to allow for small
adjustments during training, while the fully-connected layers
are newly created and thus require training. The model was
trained for a maximum of 250 epochs at batch size 32, with
early stopping based on validation EER with patience of 25
epochs. As with the ECG model, the Adam optimizer was
used with an initial learning rate 0.0001 and l2 regularization
with λ = 0.001.

C. Evaluation Frameworks and Metrics

The experiments have been designed to quantify the
performance of the models trained with the original and Secure
Triplet Loss formulations, not only considering verification
accuracy, but also biometric security.

1) Verification Performance: The verification performance
is quantified through the measurement of false match rates
(FMR) and false non-match rates (FNMR) over the range of
possible decision thresholds (for these models, t ∈ [0, 1]).
These values are presented in FMR vs. FNMR plots and
detection error tradeoff (DET) curves and used to compute
the equal error rate (EER), corresponding to the error where
FMRV = FNMR, and the FNMR@FMR = 0.01%.

2) Cancelability: Avoiding additional processes such as
biohashing or template encryption, the proposed Secure Triplet
Loss integrates cancelability into the single output of the
system, the template y(x, k), and is reflected in the distance
measure d between two templates. Although the proposed loss
is designed to promote cancelability, this property may not
necessarily be achieved.

Hence, the experiments with the Secure Triplet Loss include
the measurement of cancelability error. The plots of false
match vs. false non-match rates over the dissimilarity/distance
scores include both the false match rate based on identity
(when identities don’t match, denoted as FMRV ) but also false
match rate based on cancelability (when keys don’t match,
denoted as FMRC). The false non-match rate (FNMR) val-
ues are the same for identity and cancelability since they
refer to situations when both identity and keys match. The
value of cancelability false accept rate at the operation point
that corresponds to the verification EER, FMRC@EER, is also
computed.

3) Non-Linkability: The template non-linkability analysis
followed the method described by Gomez-Barrero et al. [9].
The test samples were paired into mated (different biomet-
ric samples from the same identity with different keys) and
non-mated instances (different identities and keys). These have

been used to compute p(d|Hm) and p(d|Hnm): the proba-
bility density functions of the distance score d given the
instances are, respectively, mated (hypothesis Hm) or non-
mated (hypothesis Hnm). From the likelihood ratio LR(d) =
p(d|Hm)/p(d|Hnm), D↔(d) is computed through

D↔(d) =
{

0, if LR(d) ≤ 1

2
((

1 + e−(LR(d)−1)
)−1 − 1

2

)
, if LR(d) > 1

(7)

which allows to compute the Dsys↔ linkability metric with

Dsys↔ =
∫ dmax

dmin

D↔(d) · p(d|Hm) dd. (8)

The Dsys↔ is considered the main metric to quantify template
linkability. A biometric system verifying perfect template non-
linkability, which is highly desirable, will assume Dsys↔ = 0.
A biometric system creating entirely linkable templates will
verify Dsys↔ = 1.

4) Non-Invertibility and Secrecy Leakage: Other aspects
of template security offered by the proposed method were
evaluated, namely non-invertibility and secrecy leakage. Non-
invertibility is measured through the privacy leakage rate,
which can be computed through the expression:

H(X|Y)

H(X)
= 1 − I(X; Y)

H(X)
, (9)

where X is the input biometric, Y is the output of the model,
H(X) denotes the entropy of X, H(X|Y) denotes the condi-
tional entropy of X given Y , and I(X; Y) denotes the mutual
information between X and Y . The privacy leakage rate, in
the range [0, 1], should be as close to 1 as possible: obtaining
information on X should be impossible even when one has
all knowledge of Y . The secrecy leakage measures the mutual
information between the stored template Y and the key K,
through the expression I(Y; K). The keys are public, unlike
the templates, so they should reveal as little information as
possible on the templates. Hence, the secrecy leakage should
be close to zero.

These require the computation of some information the-
oretical measures, such as entropy and mutual information.
This is very difficult in biometrics, due to the high dimen-
sionality of the inputs and the feature sets, as well as their
variability. In this work, we repeat the process described in [8]
to estimate such measures. Entropy and mutual information
were estimated using a Python implementation3 of the meth-
ods proposed in [40] and in [41], respectively, for continuous
multivariate data. These methods, based on nearest neighbor
statistics, were shown to be more accurate than the alterna-
tives [42]. Since the processing cost of such estimations grows
exponentially with the size of the dataset, a subset of 1000 test
anchors has been used for this test.

3Paul Brodersen’s Entropy Estimators. Available on:
https://github.com/paulbrodersen/entropy_estimators.
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TABLE I
SUMMARY OF THE TEST RESULTS FOR ECG IDENTITY VERIFICATION

TABLE II
SUMMARY OF THE TEST RESULTS FOR FACE IDENTITY VERIFICATION

V. RESULTS AND DISCUSSION

A general overview of the results obtained is presented in
Table I and Table II, respectively for ECG and face iden-
tity verification. The following subsections discuss the results
on verification performance, cancelability, and non-linkability,
and the comparison with state-of-the-art alternatives.

A. Verification Performance

On ECG identity verification, the baseline method trained
with triplet loss offered 12.56% EER. This is similar to the
results presented in the work that first proposed this end-to-end
model [31], [35]. As presented in Table I and in the receiver-
operating characteristic (ROC) curves in Fig. 4, the Secure
Triplet Loss previously formulated in [8], without considering
linkability, attained 11.36% EER, which is an improvement in
performance over the original triplet loss despite the inclusion
of a cancelability module. Both these results are aligned with
those previously reported in the original work in Secure Triplet
Loss [8].

The proposed reformulations of the Secure Triplet Loss,
which consider template linkability using the Kullback-Leibler
divergence (SecureTL w/KLD) or using distance statistics
(SecureTL w/SL), led the model to attain, respectively, 13.58%
and 13.33% EER. These results show that a small performance
gap should be expected when considering both cancelability
and linkability in the triplet loss. Recalling the performance
improvements with the previous Secure Triplet Loss formula-
tion, it can be hypothesized that the performance decrease in
SecureTL w/KLD and SecureTL w/SL is caused by measuring
linkability in a separate loss module (computed batch-by-batch
and then added to the SecureTL formulation). It is likely that,
if linkability was better integrated into the Secure Triplet Loss,
as was cancelability, then the performance gap would remain
closed.

Fig. 4. Detection Error Tradeoff (DET) curves for the ECG identity ver-
ification model when trained with the original triplet loss vs. the proposed
formulations of the Secure Triplet Loss.

Fig. 5. Detection Error Tradeoff (DET) curves for the face identity ver-
ification model when trained with the original triplet loss vs. the proposed
formulations of the Secure Triplet Loss.

Nevertheless, the model trained with any of the proposed
loss formulations still offers considerably better performance
than the state-of-the-art methods. The best state-of-the-art
method evaluated in the same conditions (in [31]) offered
21.82% EER vs. 13.58% attained by SecureTL w/KLD
and 13.33% achieved by SecureTL w/SL. This denotes that
the proposed method, while presenting a small performance
gap with the linkability loss module, still retains most of
the performance advantages associated with deep end-to-end
models.

For face identity verification, the performance results are
presented in Table II and in the ROC curves on Fig. 5. The
model trained with the triplet loss attained 13.99% EER, which
seems adequate given the difficulty of the evaluation set-
tings: the YouTube Faces provides a challenging framework
for evaluation (noted by the 95.12% accuracy achieved by
the Inception-ResNet model on this database vs. 99.63% on
the LFW database), disjoint subsets of identities are used for
training/validation and testing, and each identity is only repre-
sented by a single template for each comparison (the gallery
size is 1).

In harmony with the results on ECG, the model trained with
the Secure Triplet Loss without linkability offered a small
improvement on verification performance (13.61% EER).
Likewise, the addition of a linkability-measuring term to the
loss leads to a 2% increase in EER. This confirms the afore-
mentioned belief that the separate linkability loss term is
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Fig. 6. False match rate (FAR) and false non-match rate (FNMR) curves w.r.t. the distance comparison threshold t, for the ECG (left) and face (right)
identity verification models with triplet loss and the proposed Secure Triplet Loss formulations. The latter include both FMRP, relative to verification error,
and FMRC , relative to cancelability error, as well as the FMRC that corresponds to the EER point (FMRC@EER).

affecting performance and improvements could be achieved by
integrating it into the Secure Triplet Loss in a more cohesive
way.

Overall, the verification performance results denote that it is
possible to adequately train or fine-tune an end-to-end model
with the proposed loss formulations. With either biometric
characteristic, the performance difference between using KLD
and distance statistics is not appreciable, which denotes these
formulations may each be fitted for specific settings or used
interchangeably.

B. Cancelability Evaluation

As aforementioned, by integrating identity verification and
template cancelability into a single comparison score, template
cancelability is not necessarily ensured. Hence, the results of
false match rates based on cancelability (FMRC) are presented,
in Fig. 6, alongside the false match rates based on verification
(FMRV ) and the common false non-match rates (FNMR).

In all cases, the FMRC is lower than FMRV at and around
the EER operation point. In most cases, FMRC at this point
is very small and is lower than or equal to FMRV for all
operation points, which is highly desirable. As presented in
Table I and Table II, cancelability error is significantly lower
in the ECG models. As shown by the results, SecureTL
w/KLD and w/SL appear to be better at promoting cance-
lability than the original secure loss formulation, denoting
that the linkability loss term could have a positive effect on
cancelability.

Considering these results and the increased difficulty
experienced while fine-tuning the face models, one can
conclude that the proposed Secure Triplet Loss is likely bet-
ter fitted for training models from scratch than to adapt
previously trained models to become secure. Nevertheless,
the cancelability results, especially with the SecureTL
w/KLD and SecureTL w/SL, are encouraging in either
case.
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Fig. 7. Template linkability analysis for the ECG (top) and face (bottom) identity verification models, following the procedure proposed in [9].

C. Non-Linkability Evaluation

The results of the linkability analysis following the frame-
work established in [9] are presented in Fig. 7. In both cases,
the original formulation of the Secure Triplet Loss presents rel-
atively high Dsys↔ (0.288 for ECG and 0.399 for face). However,
the result with ECG is much better than the equivalent reported
in the previous work (0.67). This results from the fact that link-
ability was not promoted by this loss during model training:
hence, the model may achieve adequate non-linkability, but
that would be accidental.

In the case of the proposed SecureTL w/KLD and SecureTL
w/SL, linkability is actively promoted during training through
the loss. The effects of this loss reformulation are clear: the
probability density functions of mated and non-mated are more
superposed, which indicates that it would be more difficult, as
desired, to distinguish identities in pairs of templates where
the keys do not match.

With ECG, Dsys↔ assumes the values 0.005 for SecureTL
w/KLD and 0.004 for SecureTL w/SL. With face, it assumes
0.132 for SecureTL w/KLD and 0.070 for SecureTL w/SL.
All of these can be considered semi to fully-unlinkable. Just as
with cancelability, the proposed method seems more adequate
for training models from scratch than for fine-tuning existing
biometric models. Additionally, using KLD appears to offer
some advantages in linkability for ECG verification, but that
should be weighted with the increased instability this alter-
native has shown during training, relative to SecureTL w/SL,
especially in face verification.

D. Non-Invertibility and Secrecy Leakage

Regarding the non-invertibility and secrecy leakage eval-
uation, the results follow those previously reported in the
original Secure Triplet Loss work [8]. The privacy leakage
rate was estimated as 1 for the model trained with any of the
losses. This indicates that it is highly difficult for an attacker to
recover the original biometric measurements x based on com-
promised templates y output by the model. As stated in [8], this

could be a result of using end-to-end deep learning models:
recent research indicates that optimized deep models com-
press the inputs retaining only the information needed for the
task [43]. This means perfect non-invertibility can be achieved
without carefully handcrafted feature extraction algorithms.

Similarly, all losses led the model to offer a perfect secrecy
leakage rate of 0, which denotes that the public keys used
to make the templates cancelable reveal no information on
them. These results on non-invertibility and secrecy leakage do
not show a superiority of the proposed loss formulations over
the original triplet loss but emphasize the meaningful advan-
tages of using end-to-end deep learning models for secure
biometrics.

E. Comparison With State-of-the-Art Approaches

The proposed method was compared with two state-of-
the-art approaches: Bloom Filters (BF) and Homomorphic
Encryption (HE), as described in [9] and [10], respectively.
To provide a fair and direct comparison between the template
protection schemes, the features given to those methods were
those output by the triplet loss baseline model.

The results are presented in Table I, Table II, Fig. 4, and
Fig. 5. Both with face and ECG, the proposed method outper-
formed BF in EER, cancelability, and linkability. HE offered
the best linkability results, at the cost of poor cancelability.
Additionally, HE took significantly longer for biometric com-
parison than any of the alternatives, which may grant it limited
real applicability.

Although the error results are relatively high, the Secure
Triplet Loss is competitive vs. the state-of-the-art alternatives,
especially on cancelability and linkability. Moreover, improved
results are expected when the Secure Triplet Loss is used on
more accurate biometric models.

F. Effects of Varying γ

Fig. 8 presents the EER and Dsys↔ results obtained when
varying the γ parameter which balances the original secure
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Fig. 8. Results with the proposed loss when varying the γ parameter.

triplet loss formulation and the template linkability component.
As shown, lower γ values (γ < 0.7) lead to higher EER with
either SecureTL w/KLD or SecureTL w/SL, since template
non-linkability takes precedence over verification accuracy on
the loss that guides model training. For γ ≥ 0.7, lower EER
results are obtained, albeit with a slight increase in template
linkability (Dsys↔ ), especially for γ > 0.9. Results may vary
in other application scenarios depending on their specificities,
but 0.7 < γ < 0.95 should offer the highest likelihood of
success.

VI. CONCLUSION

This work reformulated the recently proposed Secure Triplet
Loss [8] to address the problem of template non-linkability.
The goal of this training methodology is to allow the learning
of end-to-end deep biometric models, without any additional
processes, to verify template cancelability, non-linkability, and
non-invertibility. The results on ECG and face identity verifi-
cation show that the proposed method is not only able to fulfill
this purpose, but also to adapt pretrained biometric models to
offer secure templates, with competitive performance results.

However, there is still room for improvement. Further efforts
should be devoted to design ways to better integrate linkabil-
ity in the Secure Triplet Loss, in order to avoid performance
decreases. A scheme where linkability would be measured
triplet-by-triplet (instead of batch-by-batch), similarly to can-
celability, should lead to improved performance using the
Secure Triplet Loss. This would also enable the formula-
tion of triplet mining approaches for the proposed method.
Nevertheless, the Secure Triplet Loss is, overall, a suitable and
flexible general scheme for template protection in end-to-end
deep biometrics.
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