Lecture 12 Liquid Rocket Propulsion

Prepared by Arif Karabeyoglu

Department of Aeronautics and Astronautics Stanford University and Mechanical Engineering KOC University

Stanford University

Fall 2019

KOC UNIVERS

Liquid Rocket Schematic

Liquid Rocket Types –Based on Propellants

- Monopropellant systems:
 - Single liquid, simpler system
 - Decompose over a catalyst bed
 - Low Isp performance
 - H2O2, hydrazine, N2O
 - Used in satellite propulsion, RCS
- Cryogenic Engines
 - LOX/LH2
 - Expensive, but very high lsp
 - Upper states
- LOX/Kerosene
 - Decent lsp and density
 - Hard to stabilize
 - A lot of launch vehicles use LOX/Kerosene engines
- Storable
 - NTO/Hydrazine or derivative
 - Toxic, not favored in modern systems

Stanford University

- LOX/Methane
 - Up and coming technology
 - Good compromise between kerosene and H2

Liquid Rocket Thrust Chamber

- Thrust chamber includes
 - Injector
 - Combustion chamber
 - Nozzle
 - Ignition system
- Introduce the oxidizer and fuel in liquid or gaseous phase
- Control the mass flow rate of oxidizer and fuel
- Vaporize mix and react the components
- Expel though the nozzle

- Staged combustion cycle is more efficient than the gas generator cycle (older systems such as F1 use the gas generation cycle).
- Fuel rich pre burners are easier to develop but not as desirable as the oxidizer rich burners
 - Soot deposit on turbine blades
 - Much more oxidizer than fuel (O/F >1)
- Only LOX rich staged combustion systems are Russian engines
 - LOX/H2 systems typically utilize fuel rich pre burners

Stanford University

Liquid Rocket Engines

Engine	Thrust, klb	lsp, sec	Propellants	Design Year
F-1	1,500	265	LOX/RP-1	1959
(Saturn V- First Stage)	(SL)	(SL)		
J-2	230	425	LOX/H2	1960
(Saturn V-Upper stages)	(vac)	(vac)		
RS-27A	200	255	LOX/RP-1	1987
(Old Delta Booster)	(SL)	(SL)		
MA-5A	430	265	LOX/RP-1	1988
(Old Atlas Booster)	(SL)	(SL)		
SSME (RS-24)	512	453	LOX/H2	1972
(Space Shuttle Main Engine)	(vac)	(vac)		
SE-10	Max 10.5	305	N2O4/N2H4+	1963
(Lunar Module Descent)	(vac)	(vac)	UDMH	
RD-180	900	311	LOX/Kerosene	Late 1970's
(Atlas V Booster)	(SL)	(SL)		

A High Performance Engine: RD-180

- High performance LOX/kerosene engine
- Built and marketed by RD AMROSS
 - 50% NPO Energomash (Russian)
 - 50% Pratt and Whitney (US)
- Derived from the Russian engine RD-170 (developed for the Energia/Buran system)
- Used in Atlas III and Atlas V launchers
- Staged combustion cycle Oxidizer rich pre burner
- Vacuum Isp: 337.8 sec
- Nozzle expansion ratio: 36.4
- Chamber pressure: 257 atm
- O/F: 2.71
- Thrust: 0.9 Mlbf
- Throttling range: 47% to 100%

Liquid Rocket Combustion

- Monopropellant vs Bipropellant
- Low Residency Times: <10 msec
- High Volumetric Heat Release: 370 Mega-Watt/m³

Liquid Rocket Combustion

- Combustion Zones:
 - Injection Atomization Zone:
 - Heterogeneous mixture (liquid/gas)
 - Low velocities
 - Relatively cool
 - Main process evaporation of the droplets
 - Rapid Combustion Zone:
 - Intensive fast combustion reactions
 - Large increase in velocity (due to gas/liquid volume increase)
 - Combustion is an inherently unsteady process (small explosions)
 - Stream Tube Combustion Zone:
 - High gas velocity, small residence time
 - Combustion reactions at a slow rate
 - Stream tubes are formed
 - Limited transport across the stream tubes
- Boundaries between zones are fuzzy
- Combustion models and design tools are incomplete

 See "Combustion" by I. Glassman for a rigorous derivation

- Diffusion flame
- Transport through molecular diffusion + convection
- Diffusion flame, O/F stoichiometric
- Evaporation of a burning droplet in quiescent environment
- D² law for droplet evaporation

$$\frac{dD^2}{dt} = -K = -\frac{8\lambda}{C_p\rho}\ln(1+B)$$

The Spalding number is

$$B = \frac{1}{h_{v}} \left[C_{p} \left(T_{\infty} - T_{l} \right) + \frac{Q_{r} Y_{ox,\infty}}{\left(O/F \right)_{stoic}} \right]$$

 As a first order approximation droplet surface temperature can be taken as the boiling temperature

KOC UNIVERSITY

Liquid Rocket Combustion-Stream Tube Model

- One dimensional model
- Different steam tubes could be at different O/F ratios. Introduces a loss
- Boundary layer heat transfer can be modeled by this model

Liquid Engine Design Issues

- Must consider performance, stability and compatibility simultaneously
- Performance (Isp):
 - Theoretical value (for a given average O/F)
 - Losses:
 - Thermal (heat transfer)
 - Combustion efficiency (mixing/kinetics)
 - Nonuniform propellant distribution (mixing)
 - Boundary layer (friction)
 - Geometry (nozzle divergence)
 - Particle lag (two phase flow)
 - The Isp efficiencies of the modern engines are fairly high: 95-98 %
 - Operational conditions are critical
 - Low pressures: Kinetics
 - Low Thrusts: Boundary layer
 - Small Volume: Low combustion efficiency

Liquid Engine Design Issues

- Stability:
 - Liquid engine combustion is an inherently unstable process
 - Metastable (minimize the amplitude of the fluctuations)
 - Stability fixes:
 - Chemical
 - Aerodynamic
 - Mechanical
- Compatibility
 - Environmental components
 - Thermal (Heat Transfer)
 - Chemical (Reactions)
 - Gas dynamic (Erosion)

Liquid Engine Design Issues

- Control Variables:
 - Feed system dynamics
 - Injector design, injector pressure drop
 - Combustion chamber geometry
 - Combustion chamber volume, Vc (includes the convergent part of the nozzle). Define L*

$$L^* = V_c / A_t$$

• Residence time in the chamber is

$$\tau = L * / c *$$

- Efficiency increases with L*. More time for atomization, vaporization, mixing and reacting
- For typical liquid systems L* ranges 0.8-3 meters
- Baffles
- Absorption cavities
- Propellant additive selection (i.e. Hypergolic propellants)

Liquid Engine Design Issues

- Combustion chamber and nozzle walls must be cooled
 - Regenerative cooling
 - Cooling jacket, some of the heat is used to warm the fuel
 - Ablative cooling
 - Carbon graphite, phenolic
 - Film cooling
 - Injector face cooling
 - Radiation cooling
 - Used in small engines and monopropellant systems
 - Niobium, Rhenium coated Inconel
 - Combination
- As the combustion chamber size reduces
 - Heating intensity increases
 - Surface area decreases
- Nozzle throat has the maximum heat transfer
- Total pressure loss in the chamber
 - Ac/At must be high to minimize the total pressure loss

Liquid Engine Injector Design

- Injector design is critical for stable and efficient operation
 - Meter the oxidizer and fuel flow rates
 - Atomize the liquids
- Types
 - Impinging stream: doublet, triplet, self impinging
 - Shower head (V2 rocket injector)
 - Hollow post sleeve element
 - Splash plate
 - Pintle
- Flow rate expression

$$\dot{m} = C_d A_i \sqrt{2\rho_l \Delta P}$$

- Typically Cd varies from 0.60 to 0.84 (0.61 for square edge orifice)
- Large injector pressure drop is important for stability and efficiency
 Increasing Delta P increases the tank weight or pump requirements
- Momentum matching for the oxidizer and fuel streams. Makes the throttling more difficult

Liquid Rocket Injector Design - SSME Injector

Liquid rocket injectors are very complex devices

Stanford University

Liquid Rockets Summary

Summary

- Complicated design
- Expensive manufacturing
 - Exotic materials
 - Complex parts with tight tolerance requirements
- Very good Isp performance
- Multiple liquids in the system
- Fire hazard
- Mature technology

Challenges

- Cost effective systems
- LOX/RP-1: Oxygen rich pre-burner
- Replacement for hydrazine and its derivatives

