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Abstract: Monensin is a lipid-soluble naturally occurring bioactive ionophore produced by Strepto-
myces spp. Its antimicrobial activity is mediated by its ability to exchange Na+ and K+ ions across the 
cell membrane thereby disrupting ionic gradients and altering cellular physiology. It is approved by 
Food and Drug Administration as a veterinary antibiotic to treat coccidiosis. Besides veterinary appli-
cations, monensin exhibits a broad spectrum activity against opportunistic pathogens of humans such 
as bacteria, virus, fungi and parasites in both drug sensitive and resistant strains. This ionophore can 
selectively kill pathogens with negligible toxic effect on mammalian cells. In this review, we discuss 
the therapeutic potential of monensin as a new broad-spectrum anti-microbial agent that warrants fur-
ther studies for clinical use. 
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1. INTRODUCTION 

Ionophores (ion carriers) such as ‘monensin’ are small 
lipophilic and hydrophobic molecules, which form complex 
with specific inorganic ions or biogenic amines and can in-
crease their permeability across biological and artificial lipid 
vesicles. These ionophores have played a significant role in 
understanding ion transport mechanism across the mem-
brane, a major biochemical phenomenon that operates in 
higher to lower biological organisms  [1]. Ions are trans-
ported across the cell membranes through ion pump or chan-
nel proteins which helps to maintain ionic gradient for cellu-
lar function. The ionophores disrupt ionic gradient leading to 
alteration in function depending on the specific gradient. The 
purpose of the review is to understand the applications of 
monensin as a chemotherapeutic agent against various 
pathogenic organisms. Ionophores are classified as neutral 
ionophores (e.g. valinomycin), carboxylic ionophores (e.g. 
monensin) and quasi-ionophores (e.g. gramicidin). Naturally 
occurring polyether antibiotic, Monensic acid was discov-
ered for its profound anticoccidial activity  [2], isolated from 
its natural source Streptomyces cinnamonensis [3]. 

 Monensin are related to the crown ethers which form 
complexes with monovalent cations such as Li+, Na+, K+,  
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Rb+, and Ag+  [4]. The most notable feature of monensin is 
capable of forming complexes with cations and transport 
across phospholipid cell membranes as Na+/H+ antiporter. 

2. STRUCTURE 

Monensin is an open chain molecule with three tetrahy-
drofuran and one tetrahydropyran ring with group at one 
terminal and tertiary hydroxyl group at the other end (Fig. 1). 
The molecule forms complex with ions through its cation 
ligand binding sites composed of oxygen atoms of the tetra-
hydrofuran and tetrahydropyran rings. Since the ionic radius 
is determinative in net free energy difference between desol-
vation and complexation, the ionic radius of sodium ion 
(0.95Å) permits it to fit exactly into this cavity. These results 
have ten times higher affinity of monensin for sodium ions 
than potassium ions (ionic radius 1.33 Å). Cationic com-
plexation results in central orientation of the ligand bound 
sites with nonpolar hydrocarbon backbone on the surface of 
the complex. This structural arrangement minimises interac-
tion of the bound cation with solvent thereby rendering the 
complex soluble only in nonpolar solvents. In addition, this 
solubility characteristic is responsible for the ability of 
monensin to transport sodium ion across lipid bilayer (Fig. 
1). The nonpolar complex is soluble in the acyl residues of 
the lipid bilayer, thus allowing it to diffuse across aqueous 
membrane interface [5]. 
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Fig. (1). Structure of monensin A and their transport mechanism 
across the cell membrane. Monensin acts as antiporter by mediating 
the exchange of Na+/H+ ions and affects the cytosolic pH. 

3. BROAD SPECTRUM ACTIVITY OF MONENSIN 

Monensin has immense therapeutic potential as anti-
bacterial, antifungal, anti-parasitic, antiplasmodial, anti-viral, 
anti-trypanosomiasis, anti-toxoplasmosis and anti-
leishmaniasis agent due to its ability to disrupt physiological 
functions in organisms. In the forthcoming sections, we will 
elaborate on the clinical importance of monensin against 
various diseases. 

4. MONENSIN AS AN ANTI-BACTERIAL AGENT 

The antimicrobial action of monensin is dependent on the 
cell membrane composition of the microbes. Monensin af-
fects Na+/H+gradient across the membrane and affects the 
osmotic gradient of the cell leading to irreversible growth 
arrest [6]. The native form of monensin was found to be ef-
fective in inhibiting the growth of diverse pathogenic gram 
(+ve) bacterial strains. To improve its efficacy,the backbone 
of monensin has been modified with addition or removal of 
functional groups that lead to enhanced antimicrobial effect 
as well reduced toxic-effects. The ester derivatives of 
monensin containing morpholine ring moiety exert antibacte-
rial activity against both methicillin resistant and susceptible 
strains of Staphylococcus aureus as well as other strains of 
human pathogenic bacteria. Monensin derivatives with 
phenyl or naphthalene ring showed decreased effectiveness 
against the gram-positive bacteria. New derivatives of 
monensin synthesized using double modified ester-carbonate 
were able to inhibit the growth of S. aureus strains (MIC: 
4.8-21.6µM) and Staphylococcus epidermidis (MIC: 9.7-
21.6µM). Similarly double modified amide-carbonate de-
rivative blocked the growth of S. aureus strains (MIC: 81.4-
162.8µM) and S. epidermidis (MIC: 325.7µM). But these 
double modifications increased the concentration of antibi-

otic needed to inhibit the growth of Staphylococcus strains in 
comparison to the unmodified monensin [7] 

Regio-selective chemical modification alters the ionic se-
lectivity of monensin with differential killing effect on bacte-
ria. An amide derivative, monensin N–phenylamide forms 
specific complex with Na+ ions. It was comparably effective 
against clinical bacterial isolates as that of monensin ester 
derivative  [8]. On the contrary, amide derivative was not 
effective in inhibiting the growth of Enterococcus hirae even 
at a concentration higher than 400µg/ml. Apparently, gram-
negative bacteria were insensitive to the amide derivative 
similar to monensin A due to their higher molecular weight 
and hydrophobic nature  [9]. Monensin N-phenylamide was 
potentially active against human opportunistic pathogenic 
strains, S. aureus and S. epidermidis [10]. 

The monovalent complex of monensin N-allylamide 
showed profound antibacterial activity against Staphylococ-
cus sp. and Bacillus sp. than the allyl derivative of monensin 
[8, 11]. But they were less efficient relative to phenylamide 
derivative of monensin. In addition, urethane derivatives of 
monensin display potent antibacterial activity than unmodi-
fied monensin and are even able to transport the divalent 
ions across the membrane  [12]. Addition of urethane sub-
stituent to monensin sodium markedly improved the biologi-
cal activity against hospital strains of methicillin-resistant S. 
epidermidis and S. aureus in comparison to unmodified 
parent compound [13]. Similarly, monensin reduced the 
viability of methicillin-­‐resistant S. aureus biofilm in treating 
bovine mastitis with minimum inhibitory concentration 
(MIC90) values less than16 µg/ml [14]. Monensin substi-
tuted with 4-aminobenzo-15-crown-5 improved the metal 
complex forming ability because of their two hydrophilic 
sites. The substituted monensin transport Na+ in the ratio of 
1:2 but with a lower biological efficiency than monensin A. 
This phenomenon is due to increased size and electrogenic 
potential which in turn reduce their biological activity 
against gram-positive bacteria  [15]. Concordantly, 
Monensin hands its derivative containing thallium (I) 
showed equal efficacy against tuberculosis causing patho-
gen, Mycobacterium tuberculosis H37Rv with 97-99% 
growth inhibition at a concentration of 6.25µg/ml  [16]. 
Similarly, other metal complexes of monensin showed pro-
found inhibitory effect against M. tuberculosis H37Rv. The 
monensin complex with metals such as Ba2+ Mg2+, Ca2+, Sr2+, 
Cs+, Li+ exhibited enhanced killing activity with MIC values 
in the range of 0.23-0.73 µg/ml against M. tuberculosis 
H37Rv. It showed dose-dependent inhibition of M. tubercu-
losis complex in culture with greater potency relative to 
BCG. Also, the study demonstrates that monensin is an ef-
fective inhibitor of Mycobacterium avium subspecies paratu-
berculosis (MAP) in radiometric culture with MIC of 
0.39µg/ml [17]. The anti-MAP activity of monensin could be 
due to perturbation in the metabolic pathways of M. tubercu-
losis with no effect on cell wall. Furthermore, treatment with 
monensin sodium effectively reduced the growth of bovine 
paratuberculosis with minimal pathological symptoms in 
murine model system [18]. Other complexes of monensin 
with metals such as Rb+, K+, Na+, Cu2+ possess anti-
tubercular activity with comparatively higher MICvalues 
greater than 1 µg/ml. The enhanced activity of the monensin 
metal complexes is due to their improved hydrophobicity 
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and increased permeability across membrane  [19] causing 
detrimental effect on bacterial growth. 

Monensin inhibited the growth of other intracellular 
pathogens such as Klebsiella pneumonia and Brucella 
through inhibition of endosome acidification [20]. Likewise, 
monensin disrupted the intracellular growth of Legionella 
pneumophila at a concentration of 25 µM by affecting the 
intracellular pH of the vacuole and thereby altering the iron 
metabolism  [21]. Thus, monensin facilitates the killing of 
numerous intracellular pathogenic bacteria that evaded the 
immune system as shown in Fig. (2). 

The additive effect of monensin with synthetic enterocin 
(bacteriocin) CRL35 was proven against pathogenic bacteria, 
Listeria monocytogenes FBUNT. The combined effect 
resulted in4-fold (MIC- 0.25 µg/ml) enhancement in their 
antibacterial activity than monensin alone (MIC- 1µg/ml)  
[22]. These results substantiate the efficacy of monensin 
based combination therapy in the treatment of foodborne 
pathogen and prevent the selection of drug resistance among 
the pathogens. 

The potential role of monensin to bind with the divalent 
cations such as Co2+, Mn2+ [23], Ca2+, Mg2+, Ni2+and Zn2+has 
been well studied.However, the transition and alkaline earth 
metal complexes of monensin showed an improved activity 
against B.subtillis, B. mycoides and S.lutea. The presence of 
calcium, magnesium, nickel and zinc in complex with parent 

monensin demonstrated 17-fold enhanced activity than un-
modified monensin ligand with the MIC50 value of 0.7-1.4 
µM  [24]. Furthermore, manganese and cobalt complexes of 
monensin showed 2-fold elevated activity against gram (+ve) 
bacteria [23] than the uncomplexed form of monensin. These 
complexes enhanced the inhibitory effect on the growth of 
gram-positive bacteria  [25]. Notably, increasing concentra-
tion of metal ions (Na+) in growth medium potentiated the 
efficacy of monensin against selected species of ruminal 
bacteria. Thus, dietary supplementation of monensin with 
ions could enhance the inhibitory effect against ruminal or-
ganisms in treating cattle [26]. The C-26 modified monensin 
(26-phenylaminomonensin) and 7-O-(4-substituted ben-
zyl)monensin showed stronger antibacterial activity against 
diverse bacterial pathogens than the parent compound [27]. 

Though monensin is ineffective against most of the  
gram-negative bacteria, it has displayed antibacterial activity  
against anaerobic gram-negative flora, Bacteroidesfragilis  
ATCC 23745 (MIC: 1.56 µg/ml). Also, anaerobic gram- 
positive strains including Clostridium sp., Eubacterium sp.,  
Peptococcus sp. and Peptostreptococcus sp., were sensitive  
to the ionophore monensin  [28]. Interestingly, various clini- 
cal isolates of gram-positive bacteria are highly susceptible  
to monensin and a few other urethane derivatives of  
monensin (Table 1). Though monensin and its derivatives  
show promising antibacterial activity against the gram- 
positive bacterial isolates, neither monensin nor its deriva-

 
Fig. (2). Entry mechanism of different types of intracellular obligate pathogens through a variety of endocytic processes. Monensin exerts 
inhibitory effect on diverse pathogens by affecting the pH of endosome-lysosome system. Treatment with monensin causes irreversible 
growth arrest by blocking their invasiveness and multiplication. 
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Table 1. The effect of monensin and its derivatives on various bacterial pathogens. 

Monensin Derivative Bacterial Strains MIC (µg/ml) References 

Monensin ester with morpholine group Staphylococcus aureus, Staphylococcus epidermis, Ba-
cillus subtilis, Bacillus cereus, Enterococcus hirae, 

Micrococcus luteus 

6.25-50 [8] 

Monensin ester with allyl group S. aureus, S. epidermis, B. subtilis, B. cereus, M. luteus 12.5-100 [8] 

Monensin N–phenylamide S. aureus, S. epidermis, B. subtilis, B. cereus, M. luteus 6.25-12.5 [9, 10] 

Monensin N-allylamide S. aureus, S. epidermis, B. subtilis, B. cereus, M. luteus 25-100 [11] 

Monensin amide (4-aminobenzo-15-crown-5) S. aureus, S. epidermis, B. subtilis, B. cereus, M. luteus 25-50 [15] 

Monensin urethane-Phenyl 0.1-3.1 

Monensin urethane-methylphenyl 0.05-3.1 

Monensin urethane-Fluorophenyl, Bromophenyl 0.05-1.6 

Monensin urethane-Iodophenyl 0.02-1.6 

Monensin urethane-Chlorophenyl 0.02-3.1 

Monensin urethane-Nitrophenyl 0.1-1.6 

Monensin urethane- Cyclohexyl, Phenoxyphenyl 0.1-3.1 

Monensin urethane-(R) and (S)-1-phenethyl 0.1-12.5 

Monensin urethane- Methyl 1.6 - >25 

Monensin urethane- 2-phenethyl 

S. aureus, M. luteus, Streptococcus faecium, Bacillus sp. 
E, B. subtilis, B. megaterium, Mycobacterium pheli, 

Streptomyces celluolosae, Paecilomycesvarioti 

0.4 - >25 

[12] 

Monensin A phenylurethane sodium salt methicillin-resistant 

S. epidermidis and S. aureus 

0.5-1 [13] 

Monensin dipodand 6.25-100 

Monsenin tripodand 

S. aureus, S. epidermis,B. subtilis, B. cereus,  
M. luteus, E. hirae 

12.5-200 

[29] 

 
tives were effective against the gram-negative bacteria. This 
major setback is due to the structural integrity of bacterial 
outer membrane which inhibits the entry of high molecular 
weight, hydrophobic monensin across cell bilayer. Further 
studies are needed to identify monensin derivatives which 
could be effective against the gram-negative bacteria. 

5. MONENSIN AS AN ANTIFUNGAL AGENT 

Monensin exhibits dual activity against the rumen fungus 
Neocallimastix sp. LM1. At lower concentration (1µg/ml), it 
acts as fungistatic and at higher concentration (16µg/ml) as 
fungicidal  [30]. Monensin interfered with gametes and zoo-
spore formation in aquatic fungus Allomycesmacrogynusby 
disrupting the function of Golgi cisternae which plays criti-
cal role in gametogenesis and zoosporogenesis [31]. The 
growth of fungi (Botrytis cinerea and Sclerotiumrolfsii) was 
inhibited by monensin through perturbation of the exopoly-
saccharide secretion and vesicular trafficking [32]. Monensin 
impaired the growth of yeast by disrupting the functions of 
intracellular transport, late secretory pathways and acidic 
vacuole. It also inhibited the cell wall synthesis of protoplast 
forming Neurosporacrassa [33]. In addition, monensin inter-

rupted the growth of various fungi (Hypomyceschlorinus, 
Neurosporacrassa, Achlyabisexualis, and Taphrinadefor-
mans) by inhibiting the sterol biosynthesis  [34] . Notably, 
monensin perturbed the growth of human pathogen Candida 
albicans by disrupting the vacuolar function leading to cell 
death [35]. Monensin A ester derivative inhibited the growth 
of Candida [8]. Moreover, effect of monensin was tested on 
yeast knockout mutants involved in post-Golgi traffic indi-
cating the interference in late secretory pathway by altered 
pH [36]. Thus, there are differences in the mode of action of 
monensin to inhibit the growth of different fungal strains. 

6. MONENSIN AS AN ANTIPARASITIC AGENT 

Monensin restrains the growth of clinically important 
human parasites such as Plasmodium falciparum, 
Trypanosomacruzi, Toxoplasma gondii, Leishmaniadono-
vani and Dirofilariaimmitis as shown in Fig. (2). Monensin 
is widely used in poultry industry to control parasites espe-
cially to prevent coccidial infections demonstrating its effi-
cacy against both single and mixed species infection of 
Eimeria [37]. Besides, its use in poultry, it controls coccidio-
sis in game birds, sheep and cattles  [38]. 
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7. MONENSIN AS AN ANTIPLASMODIAL AGENT 

Several studies have demonstrated that monensin inhib-
ited blood stage forms of human malaria parasite (Plasmo-
dium falciparum) both in vitro and in vivo conditions by al-
kalization of its digestive vacuole.  [39] Being lipophilic in 
nature, monensin intercalates into lipid bilayers and mediates 
influx of monovalent cations (K+or Na+) with efflux of H+ 

thereby altering the pH of food vacuole. It completely inhib-
its food vacuole protein degradation by increasing 
intravesicular pH of parasite  [40]. Interestingly, normal 
erythrocytes have low level of Na+, high level of K+ and low 
level of Ca2+in the cytosol. In contrast, cytosol of malaria-
infected erythrocytes contains high level of Na+, low level of 
K+. Parasite cytosol contains high level of K+ and low level 
of Na+ with 20-40 fold higher Ca2+ contents than the infected 
erythrocytes [41]. Thus accumulation of sodium or 
potassium by monensin impaired the growth of parasite by 
reducing the digestion of hemoglobin. The change in ionic 
equilibrium affects parasite cellular functions by distorting 
cytoskeleton, causing imbalance in levels of intracellular 
messengers like Ca2+ and cAMP and cause irreversible 
growth arrest by inhibiting mitotic division. There is a direct 
relationship between antiplasmodial activity and the ion flux 
induced by monensin in infected human erythrocytes. Also, 
presence of C26-hydroxyl group of the molecule is essential 
for the stability of 1:1 sodium complex of natural monensin 
and for its intrinsic antimalarial activity  [42].  

Among various potentantimalarial drugs reported to date, 
monensin exhibited remarkable activity in vitro against 
blood stages of various clinical isolates of P. falciparum with 
lower IC50 values in the range of (1.1 - 2.3nM)  [43]. A 
semisynthetic urethane derivatives of monensin showed 
marked inhibitionof P. bergheiinfection and improved 
thesurvival in mice  [44]. Interestingly, monensin exhibited 
selectivecytotoxic effects on Plasmodium infected erythro-
cytes while sparing normal erythrocytes [45]. In other study, 
monensin displayed selective killing ability of infected 
erythrocytes [46]. Compounds identified through quantita-
tive structure-based activity relationship (QSAR) model 
showed that monensin had superior activity among com-
pounds tested such ashycanthone, amsacrine, aphidicolin, 
bepridil, amiodarone, ranolazine and triclocarban against 
blood stages of P. falciparum 3D7 clone  [47]. Besides, 
monensin effectively cleared the blood parasite load in mice 
infected with P. chabaudi and P. vinckeipetteri, an ideal ro-
dent model for studying the liver stage malaria. Interestingly, 
monensin showed several fold enhancements in antiplasmo-
dial activity compared to standard antimalarial drugs 
(chloroquine, artemisinin) in in vitro. Monensin in combina-
tion with artemisinin exhibited synergistic to additive effect 
on growth of cultured P. falciparum [48]. Additionally, 
combined treatment of monensin and nigericin resulted in 
synergistic effect both in vitro and in vivo. Monensin ex-
changes Na+ for protons while nigericin exchanges K+ for 
protons leading to enhanced acidification of parasite cytosol 
[48b]. Also, combination therapy of monensin with other 
antimalarial drugs (chloroquine, piperaquine, FR900098) 
effectively inhibited parasite growth acting either synergisti-
cally or additively in cultured P. falciparum strains and P. 
berghei infection in mice [49]. 

As an antimalarial agent, monensin targets the parasite at 
multiple life stages. There are also evidences suggesting that 
pre-treatment of mice or HepG2 cells with monensin leads to 
impairment of sporozoite invasion [50]. Pre-treatment with 
monensin induced remodelling of the host cell (hepatocyte) 
resulting in protection against liver stage of malaria (exo-
erythrocytic stage). Also, monensin could obstruct liver 
stage infection of Plasmodium berghei at low nanomolar 
range potency [51]. Likewise, monensin treatment affected 
sporozoite attachment and motility from freshly isolated 
salivary glands of mosquitoes [52]. Surprisingly, monensin 
was able to completely inhibit P. vivax hypnozoites and 
schizonts suggesting its effectiveness in treating liver stage 
malaria [53]. Also, monensin could block the transmission of 
gametocytes at the sexual stage [54]. Malarial parasites 
treated with monensin led to accumulation of transport vesi-
cles and blockade of vacuole-vesicle fusion suggesting that 
monensin targeted endocytic pathway  [55]. In addition to 
these effects, monensin induced ‘Eryptosis’in plasmodium 
infected erythrocytes leading to cell shrinkage and scram-
bling of cell membrane demonstrating a new mechanism of 
cell death [56]. Therefore, the therapeutic efficacy of 
monensin as an anti-malarial agent is mediated by depletion 
of proton levels inside acidic food vacuole and disruption of 
vesicular trafficking in parasites. Chemically modified 
monensin (phenylurethane and chlorophenylurethane) inhib-
ited the growth of P. bergheiin mice  [12]. Thus, lysosomo-
tropic alkalinizing agent- monensin acts as a strong anti-
plasmodial agent without affecting the host cells at therapeu-
tic dosage. 

8. MONENSIN AS AN ANTI-TRYPANOSOMIASIS 
AGENT 

Insect transmitted protozoan parasite Trypanosoma leads 
to sleeping sickness leading to high mortality. Monensin 
interfered with the growth of Trypanosoma cruzi (epimas-
tigote and trypomastigote) by affecting parasite-macrophage 
interaction due to alteration in membrane components [57]. 
Monensin increased the intravesicular pH of parasite entered 
mammalian cells thereby inhibiting the exit of T. cruzi from 
phagosome [58]. Interestingly, monensin impeded the 
growth of T. brucei,by blocking the synthesis and transport 
of variant surface glycoprotein (VSG)  [59]. Monensin and 
its derivatives inhibited the bloodstream forms of T. brucei 
with lesser toxicity in human HL-60 cells and higher selec-
tivity index  [60]. Moreover, monensin inhibited starvation-
induced autophagic activity and acidocalcisomes in T. brucei 
[61]. Thus, monensin hampers the growth of different spe-
cies of Trypanosoma by different functions. 

9. MONENSIN AS AN ANTI-TOXOPLASMOSIS 
AGENT 

Monensin was found to be effective on both sexual and 
asexual stages of Toxoplasma. Exposure to monensin altered 
cellular physiology and leads to autophagy-like cell death in 
Toxoplasma gondii culture  [62]. The parasiticidal effect of 
monensin was observed against the cyst form (bradyzoite) of 
T. gondii. Monensin impaired the growth by forming swollen 
vesicles which led to cell lysis [63, 64]. Notably, TgMSH-1-
dependent cell cycle disruption during the late-S-phase by 
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monensin is a new mechanism of cell death in T. gondii [65]. 
However, loss of TgMSH1 (mitochondrial MutS DNA repair 
enzyme) in T. gondii failed to cause monensin induced cell 
death. This demonstrates that monensin kills parasites by 
inducing mitochondrial stress indicating a novel mechanism 
of action. Besides regulating cell cycle, monensin impaired 
mitochondrial function and induced oxidative stress in T. 
gondii [66]. More interestingly, monensin induced resistance 
in T. gondii tachyzoites resulted in reduced invasion and 
egress activities while increased intracellular replication. 
Their findings demonstrate upregulation of actin and down-
regulation of microneme proteins (MIC8) are involved in 
attaining resistant phenotype leading to reduced growth rate 
[67]. 

10. MONENSIN AS AN ANTI-LEISHMANIASIS 
AGENT 

Monensin exhibits a different mode of actions against 
growth stages of Leishmania. As a proton ionophore, 
monensin inhibited the entry of weak base into acidic com-
partments of megasomes and inclusion vesicles in amas-
tigotes of Leishmania amazonensis [68]. The presence of 
monensin increased the pH of acidic vacuoles making it 
unfavourable for parasite survival  [69]. In vitro studies 
showed that addition of monensin blocked the secretory acid 
phosphatise in L.donovani promastigotes demonstrating the 
inactiveness of the heterodispersenative form of enzyme 
(acid phosphatase) involved in golgimediated post-
translational modification [70]. Also, monensin blocked the 
entry of promastigotes in murine macrophages by inhibiting 
ceramide concentration in L.donovani infected cells [71].  

11. MONENSIN AS AN ANTI-CRYPTOSPORIDIOSIS 
AGENT 

 Monensin has been documented to block the growth of 
Cryptosporodium, one of the common water-borne parasitic 
diseases. Monensin completely inhibited the growth of Cryp-
tosporidium parvum without causing toxic effects on mouse 
fibroblast cells (L929) [72]. In addition, monensin showed 
maximum growth inhibition of C. parvum by blocking the 
DNA replication in comparison to other anti-cryptosporidial 
drugs [73].  

12. MONENSIN AS AN ANTI-COCCIDIOSIS AGENT 

For several years monensin has been used as an 
anticoccidial agent and is marketed under the brand name of 
Elancoban. It exhibits anticoccidial activity by increasing the 
Na+ ions inside acidic vacuole and disrupting the invasion 
event of sporozoites. Monensin bound to cation complex is 
highly effective against sporozoite and merozoite stage with 
rapid action against the coccidium Eimeriatenella. Monensin 
showed activity against the field isolates of Eimeria spp. in 
broiler farms and caused formation of distorted structures in 
E. tenella sporozoites(WIS strain) [74]In monensin suscepti-
ble strain of E. tenella, addition of monensin showed swollen 
and bulgy structures with loss of membrane fluidity in com-
parison to laboratory developed monensin resistant E. tenella 
[75]. Free merozoites of E. Tenella were rapidly killed by 
monensin due to osmotic swelling and cell burst while well 
differentiated schizonts and gamonts showed moderate 

growth inhibition  [76]. Monensin fed chickens and turkeys 
were completely devoid of E.mitis and E.dispersa infections 
[77]. 

13. ANTI-PARASITIC EFFECT OF MONENSIN 
AGAINST OTHER PARASITES 

Pre-treatment with monensin blocked TNFα secretion 
and activated the innate defence mechanism in mouse 
macrophage cell line (RAW 264.7) infected with DNA of 
intestinal protozoan Entamoeba histolytica [78]. In addition, 
monensin showed an inhibitory effect against a nematode 
infection, by affecting the contractile activity of Dirofilari-
aimmitisin dog heartworm  [79]. Monensin exhibited activity 
against Fasciola hepatica-infected rats and adult tegument in 
culture  [80]. The inhibitory effect was due to the perturba-
tion of Golgi secretory pathway in the vitelline cells of F. 
hepatica  [81]. These studies clearly demonstrate the poten-
tial use of monensin in treating a variety of parasitic infec-
tions of clinical relevance. 

14. MONENSIN AS ANTIVIRAL AGENT 

Monensin exhibits antiviral activity against both veteri-
nary and human disease-causing viruses. The most common 
viral infection in poultry birds caused by Newcastle disease 
virus (NDV) and Angara disease virus (ADV) could be 
treated with monensin. It showed immuno-modulatory effect 
by augmenting anti-NDV and anti-ADV responses suggest-
ing its immune-potentiating property  [82]. In addition, 
monensin blocks the cleavage of fusion protein (F0) of New-
castle disease virus in the trans-Golgi membrane of the cell 
necessary for the virus propagation. Monensin prevented the 
low pH-dependent infection of Equine arteritis virus by in-
terfering with the structural modification of membrane com-
plex proteins of virus  [83]. In addition, monensin hindered 
betanodavirus-induced cytopathology and virus production 
via inhibition of endosomal acidification  [84]. It arrested the 
release of pseudorabies virus from the cell  [85] by blocking 
the addition of fucose on the glycoprotein without disturbing 
the earlier glycosylation process. 

The simian virus 40 belonging to polyoma family is 
known to cause different types of sarcomas. Monensin was 
effective in hindering endosomes mediated infection path-
way in SV40  [86]. It prevented the acidification of the late 
endosomes necessary for further transport to endoplasmic 
reticulum. In addition, monensin has been reported to block 
the early stage of viral infection by preventing the internali-
zation of virus  [87]. Treatment of monensin inhibited the 
growth of Human Cytomegalovirus infection (HCMV) repli-
cation by decreasing the expression levels of IE2, UL44, and 
pp65 proteins [88]. Also, monensin prevented the generation 
of HCMV progeny by inhibiting DNA replication  [89]. 
Marsh and co-workers  [90] showed that monensin induced 
inhibition of Semliki virus penetration in BHK-21cells by 
increasing the pH (>6) in endocytic vacuoles and lysosomes. 
Similarly, monensin prevented the entry of Hepatitis C virus 
by inhibiting the fusion of viral and host cellular membranes  
[91].  

Monensin showed potent anti-viral activity against the 
clinically important viral pathogen Japanese encephalitis 
virus (JEP) [92] as well as in combination with brefeldin A. 
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It inhibited the transport of virus from Golgi apparatus to the 
cell surface leading to the cleavage of precursor form of 
structural (M) protein. Furthermore, it obstructed the con-
formational changes in structural protein (E) which is essen-
tial during the infection process. Monensin inhibited the 
cleavage of Friend Murine Leukemia virus precursor enve-
lope glycoprotein leading to defective endo-H-resistant 
oligosaccharides  [93]. This caused a subsequent reduction in 
the virus yield as the virions lacked glycoproteins, gp70 and 
p15 (E) suggesting glycoprotein blockage at an early stage of 
viral growth. In another study, monensin treatment resulted 
in the production of non-infective Mason-Pfizer monkey 
virus particles due to the inhibition of cleavage of precursor 
glycoprotein (Pr86env)  [94] which is crucial for infecting 
new host cells. Monensin potentially hindered the cleavage 
of Hendra virus fusion (F) protein in trans Golgi network  
[95]. 

Vesicular stomatitis and Sindbis virus assembly and re-
lease were blocked by monensin as a result of complete inhi-
bition of cell surface expression of viral envelope glycopro-
teins necessary for budding [96]. Monensin treatment de-
layed the transport of influenza virus surface proteins such as 
haemagglutinin and neuraminidase  [97] across trans Golgi 
membrane to the plasma membrane [98]. Further, it affected 
the mannose processing of haemagglutinin and delayed the 
development of endo H-resistance. In contrary to influenza, 
the transport of glycoprotein was completely blocked in ve-
sicular stomatitis virus by monensin  [99]. It also blocked the 
transport and glycosylation of envelope proteins (E1 & E2) 
in coronavirus  [100] thereby impairing the exocytosis of the 
virus from the cell. 

Monensin demonstrated anti-HIV activity in MOLT-3 
cells chronically infected with HTLV-IHB  [101]. It inhib-
ited the proteolytic cleavage of the env-coded polyprotein 
gpl60 to gpl20, leading to the accumulation of the precursor 
gpl60.The syncytia formed CEM cells (T Lymphoblast)co-
cultivated with HIV-1-infected MOLT-3 cells markedly 
inhibited the viral growth when treated with monensin  
[102]. Monensinblocked the replication of HSV-1  [103] and 
human cytomegalovirus  [104] in vitro. It blocked later 
stages of post-translational processing of glycoproteins in 
HSV-1 and HSV-2  [105]. It decreased the yield of both cell-
associated and released Punta Toro virus particles in a 
concentration-dependent manner, which generally assembles 
at the Golgi complex restructure [106]. Besides regulating 
the protein modification and transport, monensin destabi-
lized the early mRNA of mouse polyomavirus and inhibited 
the replication of the viral DNA  [107]. In addition, 
monensin profoundly inhibited the vesicular stomatitis po-
liovirus protein synthesis without affecting the host cells 
(HeLa) translation machinery [108]. Altogether, monensin 
demonstrated strong antiviral activity either by blocking the 
virus entry or by preventing their release (Fig. 2). 

15. MONENSIN IN VETERINARY APPLICATIONS 

In veterinary medicine, monensin was initially used to 
decrease methane production in the rumen of animals as 
methane. This ability of monensin is attributed to its 
potential to decrease the load of hydrogen-producing bacteria 
that required for methane production Thus feeding monensin 

to dairy animals reduced the production of methane  [109]. It 
has been reported that presence of monensin in feeds of dairy 
animals caused inhibition of protein degradation to ammonia 
in cattle. Feeding monensin to cattle resulted in decreased 
feed consumption, high feed efficiency and improvement in 
daily gains  [110]. This improvement in feed utilisation was 
due to increased efficiency of energy metabolism. Monensin 
induced change in the proportion of volatile fatty acid 
produced during microbial digestion in rumen has been 
suggested as the mechanism behind increased feed 
efficiency. There was an increase in propionic acid and 
concomitant decrease in acetic and butyric acid level in the 
rumen on feeding monensin [111]. 

Monensin has been approved by Food and Drug 
Administration (FDA), USA for use in cattle to increase feed 
utilisation under the trade name Rumensin. It was been 
reported that addition of monensin to diet significantly 
increased milk production in dairy cows  [112] and 
decreased the percentage of milk fat and saturated fatty acid 
in Holsteins cows. It inhibits hypoglycaemia and ketonuria 
in cows  [113]. By selectively eliminating lactic acid 
producing bacteria, monensin was able to control to acidosis 
effectively and decrease bloat formation in cattle  [114]. 
Thus, monensin finds widespread application in the dairy 
industry. The action of monensin is just not restricted as the 
feed supplement but its potential as a therapeutic agent has 
also been exploited for the treatment of animal infections 
like coccidiosis, acidosis and bloat  [110]. 

CONCLUSION AND PERSPECTIVE 

Monensin offers diverse chemotherapeutic potential 
against various infectious agents. Repurposing monensin as 
anti-infective agent for humans may effectively ameliorate 
the outbreak of emerging pathogens for which there are no 
vaccines and drugs. Delivery of monensin using suitable 
nanocarriers may further enhance the therapeutic efficacy 
and minimize its non-specific toxicity. [115] This US-FDA 
approved veterinary antibiotic can be co-administered with 
standard chemotherapy in combating drug-resistant 
pathogens.This drug needs further pre-clinical evaluation  
[116], for treating human pathogens. Interestingly, another 
carboxylic polyether potassium ionophores salinomycin has 
been used in clinical trials in treating cancer patients.It 
showed partial regression of tumours with no observable 
severe side effects [117]. Therefore, further preclinical stud-
ies are warranted to determine the therapeutic potential of 
monensin for clinical use. 
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