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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific
disciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in re-
search and teaching, has led to the establishment of the series Texts in
Applied Mathematics (TAM).
The development of new courses is a natural consequence of a high level

of excitement on the research frontier as newer techniques, such as numeri-
cal and symbolic computer systems, dynamical systems, and chaos, mix
with and reinforce the traditional methods of applied mathematics. Thus,
the purpose of this textbook series is to meet the current and future needs
of these advances and to encourage the teaching of new courses.
TAM will publish textbooks suitable for use in advanced undergraduate

and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman
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Preface to the English Edition

Shortly after the appearance of the German edition we were asked by
Springer to create an English version of our book, and we gratefully ac-
cepted. We took this opportunity not only to correct some misprints and
mistakes that have come to our knowledge1 but also to extend the text at
various places. This mainly concerns the role of the finite difference and
the finite volume methods, which have gained more attention by a slight
extension of Chapters 1 and 6 and by a considerable extension of Chapter
7. Time-dependent problems are now treated with all three approaches (fi-
nite differences, finite elements, and finite volumes), doing this in a uniform
way as far as possible. This also made a reordering of Chapters 6–8 nec-
essary. Also, the index has been enlarged. To improve the direct usability
in courses, exercises now follow each section and should provide enough
material for homework.

This new version of the book would not have come into existence without
our already mentioned team of helpers, who also carried out first versions
of translations of parts of the book. Beyond those already mentioned, the
team was enforced by Cecilia David, Basca Jadamba, Dr. Serge Kräutle,
Dr. Wilhelm Merz, and Peter Mirsch. Alexander Prechtel now took charge
of the difficult modification process. Prof. Paul DuChateau suggested im-
provements. We want to extend our gratitude to all of them. Finally, we

1Users of the German edition may consult
http://www.math.tu-clausthal.de/˜mala/publications/errata.pdf
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thank senior editor Achi Dosanjh, from Springer-Verlag New York, Inc., for
her constant encouragement.

Remarks for the Reader and the Use in Lectures

The size of the text corresponds roughly to four hours of lectures per week
over two terms. If the course lasts only one term, then a selection is nec-
essary, which should be orientated to the audience. We recommend the
following “cuts”:

Chapter 0 may be skipped if the partial differential equations treated
therein are familiar. Section 0.5 should be consulted because of the notation
collected there. The same is true for Chapter 1; possibly Section 1.4 may
be integrated into Chapter 3 if one wants to deal with Section 3.9 or with
Section 7.5.

Chapters 2 and 3 are the core of the book. The inductive presenta-
tion that we preferred for some theoretical aspects may be shortened for
students of mathematics. To the lecturer’s taste and depending on the
knowledge of the audience in numerical mathematics Section 2.5 may be
skipped. This might impede the treatment of the ILU preconditioning in
Section 5.3. Observe that in Sections 2.1–2.3 the treatment of the model
problem is merged with basic abstract statements. Skipping the treatment
of the model problem, in turn, requires an integration of these statements
into Chapter 3. In doing so Section 2.4 may be easily combined with Sec-
tion 3.5. In Chapter 3 the theoretical kernel consists of Sections 3.1, 3.2.1,
3.3–3.4.

Chapter 4 presents an overview of its subject, not a detailed development,
and is an extension of the classical subjects, as are Chapters 6 and 9 and
the related parts of Chapter 7.

In the extensive Chapter 5 one might focus on special subjects or just con-
sider Sections 5.2, 5.3 (and 5.4) in order to present at least one practically
relevant and modern iterative method.

Section 8.1 and the first part of Section 8.2 contain basic knowledge of
numerical mathematics and, depending on the audience, may be omitted.

The appendices are meant only for consultation and may complete
the basic lectures, such as in analysis, linear algebra, and advanced
mathematics for engineers.

Concerning related textbooks for supplementary use, to the best of our
knowledge there is none covering approximately the same topics. Quite a
few deal with finite element methods, and the closest one in spirit probably
is [21], but also [6] or [7] have a certain overlap, and also offer additional
material not covered here. From the books specialised in finite difference
methods, we mention [32] as an example. The (node-oriented) finite volume
method is popular in engineering, in particular in fluid dynamics, but to
the best of our knowledge there is no presentation similar to ours in a
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mathematical textbook. References to textbooks specialised in the topics
of Chapters 4, 5 and 8 are given there.

Remarks on the Notation

Printing in italics emphasizes definitions of notation, even if this is not
carried out as a numbered definition.

Vectors appear in different forms: Besides the “short” space vectors
x ∈ Rd there are “long” representation vectors u ∈ Rm, which describe
in general the degrees of freedom of a finite element (or volume) approxi-
mation or represent the values on grid points of a finite difference method.
Here we choose bold type, also in order to have a distinctive feature from
the generated functions, which frequently have the same notation, or from
the grid functions.

Deviations can be found in Chapter 0, where vectorial quantities belong-
ing to Rd are boldly typed, and in Chapters 5 and 8, where the unknowns
of linear and nonlinear systems of equations, which are treated in a general
manner there, are denoted by x ∈ Rm.

Components of vectors will be designated by a subindex, creating a
double index for indexed quantities. Sequences of vectors will be supplied
with a superindex (in parentheses); only in an abstract setting do we use
subindices.

Erlangen, Germany Peter Knabner
Clausthal-Zellerfeld, Germany Lutz Angermann
January 2002
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Preface to the German Edition

This book resulted from lectures given at the University of Erlangen–
Nuremberg and at the University of Magdeburg. On these occasions we
often had to deal with the problem of a heterogeneous audience composed
of students of mathematics and of different natural or engineering sciences.
Thus the expectations of the students concerning the mathematical accu-
racy and the applicability of the results were widely spread. On the other
hand, neither relevant models of partial differential equations nor some
knowledge of the (modern) theory of partial differential equations could be
assumed among the whole audience. Consequently, in order to overcome the
given situation, we have chosen a selection of models and methods relevant
for applications (which might be extended) and attempted to illuminate the
whole spectrum, extending from the theory to the implementation, with-
out assuming advanced mathematical background. Most of the theoretical
obstacles, difficult for nonmathematicians, will be treated in an “induc-
tive” manner. In general, we use an explanatory style without (hopefully)
compromising the mathematical accuracy.

We hope to supply especially students of mathematics with the in-
formation necessary for the comprehension and implementation of finite
element/finite volume methods. For students of the various natural or
engineering sciences the text offers, beyond the possibly already existing
knowledge concerning the application of the methods in special fields, an
introduction into the mathematical foundations, which should facilitate the
transformation of specific knowledge to other fields of applications.

We want to express our gratitude for the valuable help that we received
during the writing of this book: Dr. Markus Bause, Sandro Bitterlich,
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Dr. Christof Eck, Alexander Prechtel, Joachim Rang, and Dr. Eckhard
Schneid did the proofreading and suggested important improvements. From
the anonymous referees we received useful comments. Very special thanks
go to Mrs. Magdalena Ihle and Dr. Gerhard Summ. Mrs. Ihle transposed
the text quickly and precisely into TEX. Dr. Summ not only worked on the
original script and on the TEX-form, he also organized the complex and
distributed rewriting and extension procedure. The elimination of many
inconsistencies is due to him. Additionally he influenced parts of Sec-
tions 3.4 and 3.8 by his outstanding diploma thesis. We also want to thank
Dr. Chistoph Tapp for the preparation of the graphic of the title and for
providing other graphics from his doctoral thesis [70].

Of course, hints concerning (typing) mistakes and general improvements
are always welcome.

We thank Springer-Verlag for their constructive collaboration.
Last, but not least, we want to express our gratitude to our families for

their understanding and forbearance, which were necessary for us especially
during the last months of writing.

Erlangen, Germany Peter Knabner
Magdeburg, Germany Lutz Angermann
February 2000
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0
For Example:
Modelling Processes in Porous
Media with Differential Equations

This chapter illustrates the scientific context in which differential equation
models may occur, in general, and also in a specific example. Section 0.1
reviews the fundamental equations, for some of them discretization tech-
niques will be developed and investigated in this book. In Sections 0.2 –
0.4 we focus on reaction and transport processes in porous media. These
sections are independent of the remaining parts and may be skipped by
the reader. Section 0.5, however, should be consulted because it fixes some
notation to be used later on.

0.1 The Basic Partial Differential Equation Models

Partial differential equations are equations involving some partial deriva-
tives of an unknown function u in several independent variables. Partial
differential equations which arise from the modelling of spatial (and tempo-
ral) processes in nature or technology are of particular interest. Therefore,
we assume that the variables of u are x = (x1, . . . , xd)T ∈ Rd for d ≥ 1,
representing a spatial point, and possibly t ∈ R, representing time. Thus
the minimal set of variables is (x1, x2) or (x1, t), otherwise we have ordinary
differential equations. We will assume that x ∈ Ω, where Ω is a bounded
domain, e.g., a metal workpiece, or a groundwater aquifer, and t ∈ (0, T ] for
some (time horizon) T > 0. Nevertheless also processes acting in the whole
Rd×R, or in unbounded subsets of it, are of interest. One may consult the
Appendix for notations from analysis etc. used here. Often the function u
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represents, or is related to, the volume density of an extensive quantity like
mass, energy, or momentum, which is conserved. In their original form all
quantities have dimensions that we denote in accordance with the Inter-
national System of Units (SI) and write in square brackets [ ]. Let a be
a symbol for the unit of the extensive quantity, then its volume density
is assumed to have the form S = S(u), i.e., the unit of S(u) is a/m3. For
example, for mass conservation a = kg, and S(u) is a concentration. For
describing the conservation we consider an arbitrary “not too bad” sub-
set Ω̃ ⊂ Ω, the control volume. The time variation of the total extensive
quantity in Ω̃ is then

∂t

∫

Ω̃

S(u(x, t))dx . (0.1)

If this function does not vanish, only two reasons are possible due to con-
servation:
— There is an internally distributed source density Q = Q(x, t, u) [a/m3/s],
being positive if S(u) is produced, and negative if it is destroyed, i.e., one
term to balance (0.1) is

∫
Ω̃Q(x, t, u(x, t))dx.

— There is a net flux of the extensive quantity over the boundary ∂Ω̃ of
Ω̃. Let J = J(x, t) [a/m2/s] denote the flux density, i.e., J i is the amount,
that passes a unit square perpendicular to the ith axis in one second in
the direction of the ith axis (if positive), and in the opposite direction
otherwise. Then another term to balance (0.1) is given by

−
∫

∂Ω

J(x, t) · ν(x)dσ ,

where ν denotes the outer unit normal on ∂Ω. Summarizing the conserva-
tion reads

∂t

∫

Ω̃

S(u(x, t))dx = −
∫

∂Ω̃

J(x, t) · ν(x)dσ +
∫

Ω̃

Q(x, t, u(x, t))dx . (0.2)

The integral theorem of Gauss (see (2.3)) and an exchange of time
derivative and integral leads to

∫

Ω̃

[∂tS(u(x, t)) +∇ · J(x, t)−Q(x, t, u(x, t))]dx = 0 ,

and, as Ω̃ is arbitrary, also to

∂tS(u(x, t)) +∇ · J(x, t) = Q(x, t, u(x, t)) for x ∈ Ω, t ∈ (0, T ] . (0.3)

All manipulations here are formal assuming that the functions involved
have the necessary properties. The partial differential equation (0.3) is the
basic pointwise conservation equation, (0.2) its corresponding integral form.
Equation (0.3) is one requirement for the two unknowns u and J , thus it
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has to be closed by a (phenomenological) constitutive law, postulating a
relation between J and u.

Assume Ω is a container filled with a fluid in which a substance is dis-
solved. If u is the concentration of this substance, then S(u) = u and a
= kg. The description of J depends on the processes involved. If the fluid
is at rest, then flux is only possible due to molecular diffusion, i.e., a flux
from high to low concentrations due to random motion of the dissolved
particles. Experimental evidence leads to

J(1) = −K∇u (0.4)

with a parameter K > 0 [m2/s], the molecular diffusivity. Equation (0.4)
is called Fick’s law.

In other situations, like heat conduction in a solid, a similar model occurs.
Here, u represents the temperature, and the underlying principle is energy
conservation. The constitutive law is Fourier’s law, which also has the form
(0.4), but as K is a material parameter, it may vary with space or, for
anisotropic materials, be a matrix instead of a scalar.

Thus we obtain the diffusion equation

∂tu−∇ · (K∇u) = Q . (0.5)

If K is scalar and constant — let K = 1 by scaling —, and f := Q is
independent of u, the equation simplifies further to

∂tu−∆u = f ,

where ∆u := ∇·(∇u) . We mentioned already that this equation also occurs
in the modelling of heat conduction, therefore this equation or (0.5) is also
called the heat equation.

If the fluid is in motion with a (given) velocity c then (forced) convection
of the particles takes place, being described by

J (2) = uc , (0.6)

i.e., taking both processes into account, the model takes the form of the
convection-diffusion equation

∂tu−∇ · (K∇u− cu) = Q . (0.7)

The relative strength of the two processes is measured by the Péclet
number (defined in Section 0.4). If convection is dominating one may ignore
diffusion and only consider the transport equation

∂tu +∇ · (cu) = Q . (0.8)

The different nature of the two processes has to be reflected in the models,
therefore, adapted discretization techniques will be necessary. In this book
we will consider models like (0.7), usually with a significant contribution
of diffusion, and the case of dominating convection is studied in Chapter
9. The pure convective case like (0.8) will not be treated.
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In more general versions of (0.7) ∂tu is replaced by ∂tS(u), where S
depends linearly or nonlinearly on u. In the case of heat conduction S is
the internal energy density, which is related to the temperature u via the
factors mass density and specific heat. For some materials the specific heat
depends on the temperature, then S is a nonlinear function of u.

Further aspects come into play by the source term Q if it depends linearly
or nonlinearly on u, in particular due to (chemical) reactions. Examples for
these cases will be developed in the following sections. Since equation (0.3)
and its examples describe conservation in general, it still has to be adapted
to a concrete situation to ensure a unique solution u. This is done by the
specification of an initial condition

S(u(x, 0)) = S0(x) for x ∈ Ω ,

and by boundary conditions. In the example of the water filled container
no mass flux will occur across its walls, therefore, the following boundary
condition

J · ν(x, t) = 0 for x ∈ ∂Ω, t ∈ (0, T ) (0.9)

is appropriate, which — depending on the definition of J — prescribes the
normal derivative of u, or a linear combination of it and u. In Section 0.5
additional situations are depicted.

If a process is stationary, i.e. time-independent, then equation (0.3)
reduces to

∇ · J(x) = Q(x, u(x)) for x ∈ Ω ,

which in the case of diffusion and convection is specified to

−∇ · (K∇u − cu) = Q .

For constant K — let K = 1 by scaling —, c = 0, and f := Q, being
independent of u, this equation reduces to

−∆u = f in Ω ,

the Poisson equation.
Instead of the boundary condition (0.9), one can prescribe the values of

the function u at the boundary:

u(x) = g(x) for x ∈ ∂Ω .

For models , where u is a concentration or temperature, the physical reali-
sation of such a boundary condition may raise questions, but in mechanical
models, where u is to interpreted as a displacement, such a boundary con-
dition seems reasonable. The last boundary value problem will be the first
model, whose discretization will be discussed in Chapters 1 and 2.

Finally it should be noted that it is advisable to non-dimensionalise the
final model before numerical methods are applied. This means that both
the independent variables xi (and t), and the dependent one u, are replaced
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by xi/xi,ref , t/tref , and u/uref, where xi,ref , tref , and uref are fixed reference
values of the same dimension as xi, t, and u, respectively. These reference
values are considered to be of typical size for the problems under investiga-
tion. This procedure has two advantages: On the one hand, the typical size
is now 1, such that there is an absolute scale for (an error in) a quantity
to be small or large. On the other hand, if the reference values are chosen
appropriately a reduction in the number of equation parameters like K
and c in (0.7) might be possible, having only fewer algebraic expressions of
the original material parameters in the equation. This facilitates numerical
parameter studies.

0.2 Reactions and Transport in Porous Media

A porous medium is a heterogeneous material consisting of a solid matrix
and a pore space contained therein. We consider the pore space (of the
porous medium) as connected; otherwise, the transport of fluids in the
pore space would not be possible. Porous media occur in nature and man-
ufactured materials. Soils and aquifers are examples in geosciences; porous
catalysts, chromatographic columns, and ceramic foams play important
roles in chemical engineering. Even the human skin can be considered a
porous medium. In the following we focus on applications in the geosciences.
Thus we use a terminology referring to the natural soil as a porous medium.
On the micro or pore scale of a single grain or pore, i.e., in a range of µm
to mm, the fluids constitute different phases in the thermodynamic sense.
Thus we name this system in the case of k fluids including the solid matrix
as (k + 1)-phase system or we speak of k-phase flow.

We distinguish three classes of fluids with different affinities to the solid
matrix. These are an aqueous phase, marked with the index “w” for water,
a nonaqueous phase liquid (like oil or gasoline as natural resources or con-
taminants), marked with the index “o,” and a gaseous phase, marked with
the index “g” (e.g., soil air). Locally, at least one of these phases has al-
ways to be present; during a transient process phases can locally disappear
or be generated. These fluid phases are in turn mixtures of several com-
ponents. In applications of the earth sciences, for example, we do not deal
with pure water but encounter different species in true or colloidal solu-
tion in the solvent water. The wide range of chemical components includes
plant nutrients, mineral nutrients from salt domes, organic decomposition
products, and various organic and inorganic chemicals. These substances
are normally not inert, but are subject to reactions and transformation
processes. Along with diffusion, forced convection induced by the motion
of the fluid is the essential driving mechanism for the transport of solutes.
But we also encounter natural convection by the coupling of the dynamics
of the substance to the fluid flow. The description level at the microscale
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that we have used so far is not suitable for processes at the laboratory or
technical scale, which take place in ranges of cm to m, or even for processes
in a catchment area with units of km. For those macroscales new models
have to be developed, which emerge from averaging procedures of the mod-
els on the microscale. There may also exist principal differences among the
various macroscales that let us expect different models, which arise from
each other by upscaling. But this aspect will not be investigated here fur-
ther. For the transition of micro to macro scales the engineering sciences
provide the heuristic method of volume averaging, and mathematics the
rigorous (but of only limited use) approach of homogenization (see [36] or
[19]). None of the two possibilities can be depicted here completely. Where
necessary we will refer to volume averaging for (heuristic) motivation.

Let Ω ⊂ Rd be the domain of interest. All subsequent considerations are
formal in the sense that the admissibility of the analytic manipulations is
supposed. This can be achieved by the assumption of sufficient smoothness
for the corresponding functions and domains.

Let V ⊂ Ω be an admissible representative elementary volume in the
sense of volume averaging around a point x ∈ Ω. Typically the shape and
the size of a representative elementary volume are selected in such a manner
that the averaged values of all geometric characteristics of the microstruc-
ture of the pore space are independent of the size of V but depend on
the location of the point x. Then we obtain for a given variable ωα in the
phase α (after continuation of ωα with 0 outside of α) the corresponding
macroscopic quantities, assigned to the location x, as the extrinsic phase
average

〈ωα〉 :=
1
|V |

∫

V
ωα

or as the intrinsic phase average

〈ωα〉α :=
1

|Vα|

∫

Vα

ωα .

Here Vα denotes the subset of V corresponding to α. Let t ∈ (0, T ) be
the time at which the process is observed. The notation x ∈ Ω means the
vector in Cartesian coordinates, whose coordinates are referred to by x,
y, and z ∈ R. Despite this ambiguity the meaning can always be clearly
derived from the context.

Let the index “s” (for solid) stand for the solid phase; then

φ(x) := |V \ Vs|
/
|V | > 0

denotes the porosity, and for every liquid phase α,

Sα(x, t) := |Vα|
/
|V \ Vs| ≥ 0
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is the saturation of the phase α. Here we suppose that the solid phase is
stable and immobile. Thus

〈ωα〉 = φSα〈ωα〉α

for a fluid phase α and
∑

α:fluid

Sα = 1 . (0.10)

So if the fluid phases are immiscible on the micro scale, they may be miscible
on the macro scale, and the immiscibility on the macro scale is an additional
assumption for the model.

As in other disciplines the differential equation models are derived here
from conservation laws for the extensive quantities mass, impulse, and en-
ergy, supplemented by constitutive relationships, where we want to focus
on the mass.

0.3 Fluid Flow in Porous Media

Consider a liquid phase α on the micro scale. In this chapter, for clarity, we
write “short” vectors in Rd also in bold with the exception of the coordinate
vector x. Let '̃α [kg/m3] be the (microscopic) density, q̃α :=

(∑
η '̃ηṽη

)/
'̃α

[m/s] the mass average mixture velocity based on the particle velocity ṽη of
a component η and its concentration in solution '̃η [kg/m3]. The transport
theorem of Reynolds (see, for example, [10]) leads to the mass conservation
law

∂t'̃α +∇ · ('̃αq̃α) = f̃α (0.11)

with a distributed mass source density f̃α. By averaging we obtain from
here the mass conservation law

∂t(φSα'α) +∇ · ('αqα) = fα (0.12)

with 'α, the density of phase α, as the intrinsic phase average of '̃α and
qα, the volumetric fluid velocity or Darcy velocity of the phase α, as the
extrinsic phase average of q̃α. Correspondingly, fα is an average mass source
density.

Before we proceed in the general discussion, we want to consider some
specific situations: The area between the groundwater table and the imper-
meable body of an aquifer is characterized by the fact that the whole pore
space is occupied by a fluid phase, the soil water. The corresponding satu-
ration thus equals 1 everywhere, and with omission of the index equation
(0.12) takes the form

∂t(φ') +∇ · ('q) = f . (0.13)
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If the density of water is assumed to be constant, due to neglecting
the mass of solutes and compressibility of water, equation (0.13) simplifies
further to the stationary equation

∇ · q = f , (0.14)

where f has been replaced by the volume source density f/', keeping the
same notation. This equation will be completed by a relationship that
can be interpreted as the macroscopic analogue of the conservation of mo-
mentum, but should be accounted here only as an experimentally derived
constitutive relationship. This relationship is called Darcy’s law, which
reads as

q = −K (∇p + 'gez) (0.15)

and can be applied in the range of laminar flow. Here p [N/m2] is the intrinsic
average of the water pressure, g [m/s2] the gravitational acceleration, ez the
unit vector in the z-direction oriented against the gravitation,

K = k/µ , (0.16)

a quantity, which is given by the permeability k determined by the solid
phase, and the viscosity µ determined by the fluid phase. For an anisotropic
solid, the matrix k = k(x) is a symmetric positive definite matrix.

Inserting (0.15) in (0.14) and replacing K by K'g, known as hydraulic
conductivity in the literature, and keeping the same notation gives the
following linear equation for

h(x, t) :=
1
'g

p(x, t) + z ,

the piezometric head h [m]:

−∇ · (K∇h) = f . (0.17)

The resulting equation is stationary and linear. We call a differential equa-
tion model stationary if it depends only on the location x and not on the
time t, and instationary otherwise. A differential equation and correspond-
ing boundary conditions (cf. Section 0.5) are called linear if the sum or a
scalar multiple of a solution again forms a solution for the sum, respectively
the scalar multiple, of the sources.

If we deal with an isotropic solid matrix, we have K = KI with the d×d
unit matrix I and a scalar function K. Equation (0.17) in this case reads

−∇ · (K∇h) = f . (0.18)

Finally if the solid matrix is homogeneous, i.e., K is constant, we get from
division by K and maintaining the notation f the Poisson equation

−∆h = f , (0.19)
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which is termed the Laplace equation for f = 0. This model and its more
general formulations occur in various contexts. If, contrary to the above as-
sumption, the solid matrix is compressible under the pressure of the water,
and if we suppose (0.13) to be valid, then we can establish a relationship

φ = φ(x, t) = φ0(x)φf (p)

with φ0(x) > 0 and a monotone increasing φf such that with S(p) := φ′f (p)
we get the equation

φ0 S(p) ∂tp +∇ · q = f

and the instationary equations corresponding to (0.17)–(0.19), respectively.
For constant S(p) > 0 this yields the following linear equation:

φ0 S ∂th−∇ · (K∇h) = f , (0.20)

which also represents a common model in many contexts and is known from
corresponding fields of application as the heat conduction equation.

We consider single phase flow further, but now we will consider gas as
fluid phase. Because of the compressibility, the density is a function of the
pressure, which is invertible due to its strict monotonicity to

p = P (') .

Together with (0.13) and (0.15) we get a nonlinear variant of the heat
conduction equation in the unknown ':

∂t(φ') −∇ ·
(
K('∇P (') + '2gez)

)
= f , (0.21)

which also contains derivatives of first order in space. If P (') = ln(α') holds
for a constant α > 0, then '∇P (') simplifies to α∇'. Thus for horizontal
flow we again encounter the heat conduction equation. For the relationship
P (') = α' suggested by the universal gas law, α'∇' = 1

2α∇'
2 remains

nonlinear. The choice of the variable u := '2 would result in u1/2 in the
time derivative as the only nonlinearity. Thus in the formulation in ' the
coefficient of ∇' disappears in the divergence of ' = 0. Correspondingly,
the coefficient S(u) = 1

2φu
−1/2 of ∂tu in the formulation in u becomes

unbounded for u = 0. In both versions the equations are degenerate, whose
treatment is beyond the scope of this book. A variant of this equation has
gained much attention as the porous medium equation (with convection) in
the field of analysis (see, for example, [42]).

Returning to the general framework, the following generalization of
Darcy’s law can be justified experimentally for several liquid phases:

qα = −krα

µα
k (∇pα + 'αgez) .

Here the relative permeability krα of the phase α depends upon the
saturations of the present phases and takes values in [0, 1].



10 0. Modelling Processes in Porous Media with Differential Equations

At the interface of two liquid phases α1 and α2 we observe a difference of
the pressures, the so-called capillary pressure, that turns out experimentally
to be a function of the saturations:

pcα1α2
:= pα1 − pα2 = Fα1α2(Sw, So, Sg) . (0.22)

A general model for multiphase flow, formulated for the moment in terms
of the variables pα, Sα, is thus given by the equations

∂t(φSα'α)−∇ · ('αλαk(∇pα + 'αgez)) = fα (0.23)

with the mobilities λα := krα/µα, and the equations (0.22) and (0.10),
where one of the Sα’s can be eliminated. For two liquid phases w and g,
e.g., water and air, equations (0.22) and (0.10) for α = w, g read pc =
pg − pw = F (Sw) and Sg = 1 − Sw. Apparently, this is a time-dependent,
nonlinear model in the variables pw, pg, Sw, where one of the variables can
be eliminated. Assuming constant densities 'α, further formulations based
on

∇ ·
(
qw + qg

)
= fw/'w + fg/'g (0.24)

can be given as consequences of (0.10). These equations consist of a sta-
tionary equation for a new quantity, the global pressure, based on (0.24),
and a time-dependent equation for one of the saturations (see Exercise 0.2).
In many situations it is justified to assume a gaseous phase with constant
pressure in the whole domain and to scale this pressure to pg = 0. Thus
for ψ := pw = −pc we have

φ∂tS(ψ)−∇ · (λ(ψ)k(∇ψ + 'gez)) = fw/'w (0.25)

with constant pressure ' := 'w, and S(ψ) := F−1(−ψ) as a strictly
monotone increasing nonlinearity as well as λ.

With the convention to set the value of the air pressure to 0, the pressure
in the aqueous phase is in the unsaturated state, where the gaseous phase is
also present, and represented by negative values. The water pressure ψ = 0
marks the transition from the unsaturated to the saturated zone. Thus
in the unsaturated zone, equation (0.25) represents a nonlinear variant
of the heat conduction equation for ψ < 0, the Richards equation. As
most functional relationships have the property S′(0) = 0, the equation
degenerates in the absence of a gaseous phase, namely to a stationary
equation in a way that is different from above.

Equation (0.25) with S(ψ) := 1 and λ(ψ) := λ(0) can be continued in a
consistent way with (0.14) and (0.15) also for ψ ≥ 0, i.e., for the case of a
sole aqueous phase. The resulting equation is also called Richards equation
or a model of saturated-unsaturated flow.
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0.4 Reactive Solute Transport in Porous Media

In this chapter we will discuss the transport of a single component in a
liquid phase and some selected reactions. We will always refer to water
as liquid phase explicitly. Although we treat inhomogeneous reactions in
terms of surface reactions with the solid phase, we want to ignore exchange
processes between the fluid phases. On the microscopic scale the mass con-
servation law for a single component η is, in the notation of (0.11) by
omitting the phase index w,

∂t'̃η +∇ · ('̃η q̃) +∇ · Jη = Q̃η ,

where

Jη := '̃η (ṽη − q̃) [kg/m2/s] (0.26)

represents the diffusive mass flux of the component η and Q̃η [kg/m3/s] is
its volumetric production rate. For a description of reactions via the mass
action law it is appropriate to choose the mole as the unit of mass. The
diffusive mass flux requires a phenomenological description. The assump-
tion that solely binary molecular diffusion, described by Fick’s law, acts
between the component η and the solvent, means that

Jη = −'̃Dη∇ ('̃η/'̃) (0.27)

with a molecular diffusivity Dη > 0 [m2/s]. The averaging procedure applied
on (0.26), (0.27) leads to

∂t(Θcη) +∇ · (qcη) +∇ · J (1) +∇ · J(2) = Q(1)
η + Q(2)

η

for the solute concentration of the component η, cη [kg/m3], as intrinsic
phase average of '̃η. Here, we have J (1) as the average of Jη and J(2),
the mass flux due to mechanical dispersion, a newly emerging term at the
macroscopic scale. Analogously, Q(1)

η is the intrinsic phase average of Q̃η,
and Q(2)

η is a newly emerging term describing the exchange between the
liquid and solid phases.

The volumetric water content is given by Θ := φSw with the water
saturation Sw. Experimentally, the following phenomenological descriptions
are suggested:

J(1) = −ΘτDη∇cη

with a tortuosity factor τ ∈ (0, 1],

J (2) = −ΘDmech∇cη , (0.28)

and a symmetric positive definite matrix of mechanical dispersion Dmech,
which depends on q/Θ. Consequently, the resulting differential equation
reads

∂t(Θcη) +∇ · (qcη −ΘD∇cη) = Qη (0.29)
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with D := τDη + Dmech, Qη := Q(1)
η + Q(2)

η .
Because the mass flux consists of qcη, a part due to forced convection, and

of J (1) +J(2), a part that corresponds to a generalized Fick’s law, an equa-
tion like (0.29) is called a convection-diffusion equation. Accordingly, for
the part with first spatial derivatives like ∇ · (qcη) the term convective part
is used, and for the part with second spatial derivatives like −∇ · (ΘD∇cη)
the term diffusive part is used. If the first term determines the character of
the solution, the equation is called convection-dominated. The occurrence
of such a situation is measured by the quantity Pe, the global Péclet num-
ber, that has the form Pe = ‖q‖L/‖ΘD‖ [ - ]. Here L is a characteristic
length of the domain Ω. The extreme case of purely convective transport
results in a conservation equation of first order. Since the common mod-
els for the dispersion matrix lead to a bound for Pe, the reduction to the
purely convective transport is not reasonable. However, we have to take
convection-dominated problems into consideration.

Likewise, we speak of diffusive parts in (0.17) and (0.20) and of (nonlin-
ear) diffusive and convective parts in (0.21) and (0.25). Also, the multiphase
transport equation can be formulated as a nonlinear convection-diffusion
equation by use of (0.24) (see Exercise 0.2), where convection often dom-
inates. If the production rate Qη is independent of cη, equation (0.29) is
linear.

In general, in case of a surface reaction of the component η, the kinetics of
the reaction have to be described . If this component is not in competition
with the other components, one speaks of adsorption. The kinetic equation
thus takes the general form

∂tsη(x, t) = kηfη(x, cη(x, t), sη(x, t)) (0.30)

with a rate parameter kη for the sorbed concentration sη [kg/kg], which is
given in reference to the mass of the solid matrix. Here, the components
in sorbed form are considered spatially immobile. The conservation of the
total mass of the component undergoing sorption gives

Q(2)
η = −'b∂tsη (0.31)

with the bulk density 'b = 's(1−φ), where 's denotes the density of the solid
phase. With (0.30), (0.31) we have a system consisting of an instationary
partial and an ordinary differential equation (with x ∈ Ω as parameter). A
widespread model by Langmuir reads

fη = kacη(sη − sη)− kdsη

with constants ka, kd that depend upon the temperature (among other
factors), and a saturation concentration sη (cf. for example [24]). If we
assume fη = fη(x, cη) for simplicity, we get a scalar nonlinear equation in
cη,

∂t(Θcη) +∇ · (qcη −ΘD∇cη) + 'bkηfη(·, cη) = Q(1)
η , (0.32)
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and sη is decoupled and extracted from (0.30). If the time scales of transport
and reaction differ greatly, and the limit case kη → ∞ is reasonable, then
(0.30) is replaced by

fη(x, cη(x, t), sη(x, t)) = 0 .

If this equation is solvable for sη, i.e.,

sη(x, t) = ϕη(x, cη(x, t)) ,

the following scalar equation for cη with a nonlinearity in the time
derivative emerges:

∂t(Θcη + 'bϕη(·, cη)) +∇ · (qcη −ΘD∇cη) = Q(1)
η .

If the component η is in competition with other components in the sur-
face reaction, as, e.g., in ion exchange, then fη has to be replaced by a
nonlinearity that depends on the concentrations of all involved components
c1, . . . , cN , s1, . . . , sN . Thus we obtain a coupled system in these variables.
Finally, if we encounter homogeneous reactions that take place solely in the
fluid phase, an analogous statement is true for the source term Q(1)

η .

Exercises

0.1 Give a geometric interpretation for the matrix condition of k in (0.16)
and Dmech in (0.28).

0.2 Consider the two-phase flow (with constant 'α, α ∈ {w, g})

∂t(φSα) +∇ · qα = fα ,

qα = −λαk (∇pα + 'αgez) ,

Sw + Sg = 1 ,

pg − pw = pc

with coefficient functions

pc = pc(Sw) , λα = λα(Sw) , α ∈ {w, g}.

Starting from equation (0.23), perform a transformation to the new
variables

q = qw + qg , “total flow,”

p =
1
2
(pw + pg) +

1
2

∫ S

Sc

λg − λw

λg + λw

dpc

dξ
dξ , “global pressure,”

and the water saturation Sw. Derive a representation of the phase flows in
the new variables.
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0.3 A frequently employed model for mechanical dispersion is

Dmech = λL|v|2Pv + λT|v|2(I − Pv)

with parameters λL > λT, where v = q/Θ and Pv = vvT /|v|22. Here
λL and λT are the longitudinal and transversal dispersion lengths. Give a
geometrical interpretation.

0.5 Boundary and Initial Value Problems

The differential equations that we derived in Sections 0.3 and 0.4 have the
common form

∂tS(u) +∇ · (C(u)−K(∇u)) = Q(u) (0.33)

with a source term S, a convective part C, a diffusive part K, i.e., a total
flux C − K and a source term Q, which depend linearly or nonlinearly
on the unknown u. For simplification, we assume u to be a scalar. The
nonlinearities S, C, K, and Q may also depend on x and t, which shall be
suppressed in the notation in the following. Such an equation is said to be
in divergence form or in conservative form; a more general formulation is
obtained by differentiating ∇ · C(u) = ∂

∂uC(u) · ∇u + (∇ · C)(u) or by
introducing a generalized “source term” Q = Q(u,∇u). Up to now we have
considered differential equations pointwise in x ∈ Ω (and t ∈ (0, T )) under
the assumption that all occurring functions are well-defined. Due to the
applicability of the integral theorem of Gauss on Ω̃ ⊂ Ω (cf. (3.10)), the
integral form of the conservation equation follows straightforwardly from
the above:

∫

Ω̃
∂tS(u) dx +

∫

∂Ω̃
(C(u)−K(∇u)) · ν dσ =

∫

Ω̃
Q(u,∇u) dx (0.34)

with the outer unit normal ν (see Theorem 3.8) for a fixed time t or also
in t integrated over (0, T ). Indeed, this equation (on the microscopic scale)
is the primary description of the conservation of an extensive quantity:
Changes in time through storage and sources in Ω̃ are compensated by the
normal flux over ∂Ω̃. Moreover, for ∂tS, ∇ · (C − K), and Q continuous
on the closure of Ω̃, (0.33) follows from (0.34). If, on the other hand, F is
a hyperplane in Ω̃ where the material properties may rapidly change, the
jump condition

[(C(u)−K(∇u)) · ν] = 0 (0.35)

for a fixed unit normal ν on F follows from (0.34), where [ · ] denotes the
difference of the one-sided limits (see Exercise 0.4).

Since the differential equation describes conservation only in general,
it has to be supplemented by initial and boundary conditions in order to
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specify a particular situation where a unique solution is expected. Boundary
conditions are specifications on ∂Ω, where ν denotes the outer unit normal

• of the normal component of the flux (inwards):

− (C(u)−K(∇u)) · ν = g1 on Γ1 (0.36)

(flux boundary condition),

• of a linear combination of the normal flux and the unknown itself:

− (C(u)−K(∇u)) · ν + αu = g2 on Γ2 (0.37)

(mixed boundary condition),

• of the unknown itself:

u = g3 on Γ3 (0.38)

(Dirichlet boundary condition).

Here Γ1,Γ2,Γ3 form a disjoint decomposition of ∂Ω:

∂Ω = Γ1 ∪ Γ2 ∪ Γ3 , (0.39)

where Γ3 is supposed to be a closed subset of ∂Ω. The inhomogeneities
gi and the factor α in general depend on x ∈ Ω, and for nonstationary
problems (where S(u) -= 0 holds) on t ∈ (0, T ). The boundary conditions
are linear if the gi do not depend (nonlinearly) on u (see below). If the gi

are zero, we speak of homogeneous, otherwise of inhomogeneous, boundary
conditions.

Thus the pointwise formulation of a nonstationary equation (where S
does not vanish) requires the validity of the equation in the space-time
cylinder

QT := Ω× (0, T )

and the boundary conditions on the lateral surface of the space-time
cylinder

ST := ∂Ω× (0, T ) .

Different types of boundary conditions are possible with decompositions
of the type (0.39). Additionally, an initial condition on the bottom of the
space-time cylinder is necessary:

S(u(x, 0)) = S0(x) for x ∈ Ω . (0.40)

These are so-called initial-boundary value problems; for stationary prob-
lems we speak of boundary value problems. As shown in (0.34) and (0.35)
flux boundary conditions have a natural relationship with the differential
equation (0.33). For a linear diffusive part K(∇u) = K∇u alternatively
we may require

∂νK u := K∇u · ν = g1 on Γ1 , (0.41)
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and an analogous mixed boundary condition. This boundary condition is
the so-called Neumann boundary condition. Since K is symmetric, ∂νK u =
∇u ·Kν holds; i.e., ∂νK u is the derivative in direction of the conormal Kν.
For the special case K = I the normal derivative is given.

In contrast to ordinary differential equations, there is hardly any general
theory of partial differential equations. In fact, we have to distinguish dif-
ferent types of differential equations according to the various described
physical phenomena. These determine, as discussed, different (initial-)
boundary value specifications to render the problem well-posed. Well-
posedness means that the problem possesses a unique solution (with certain
properties yet to be defined) that depends continuously (in appropriate
norms) on the data of the problem, in particular on the (initial and)
boundary values. There exist also ill-posed boundary value problems for
partial differential equations, which correspond to physical and technical
applications. They require special techniques and shall not be treated here.

The classification into different types is simple if the problem is lin-
ear and the differential equation is of second order as in (0.33). By order
we mean the highest order of the derivative with respect to the variables
(x1, . . . , xd, t) that appears, where the time derivative is considered to be
like a spatial derivative. Almost all differential equations treated in this
book will be of second order, although important models in elasticity the-
ory are of fourth order or certain transport phenomena are modelled by
systems of first order.

The differential equation (0.33) is generally nonlinear due to the nonlin-
ear relationships S, C, K, and Q. Such an equation is called quasilinear if
all derivatives of the highest order are linear, i.e., we have

K(∇u) = K∇u (0.42)

with a matrix K, which may also depend (nonlinearly) on x, t, and u.
Furthermore, (0.33) is called semilinear if nonlinearities are present only
in u, but not in the derivatives, i.e., if in addition to (0.42) with K being
independent of u, we have

S(u) = Su , C(u) = uc (0.43)

with scalar and vectorial functions S and c, respectively, which may depend
on x and t. Such variable factors standing before u or differential terms are
called coefficients in general.

Finally, the differential equation is linear if we have, in addition to the
above requirements,

Q(u) = −ru + f

with functions r and f of x and t.
In the case f = 0 the linear differential equation is termed homoge-

neous, otherwise inhomogeneous. A linear differential equation obeys the
superposition principle: Suppose u1 and u2 are solutions of (0.33) with the
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source terms f1 and f2 and otherwise identical coefficient functions. Then
u1 + γu2 is a solution of the same differential equation with the source
term f1 + γf2 for arbitrary γ ∈ R. The same holds for linear boundary
conditions. The term solution of an (initial-) boundary value problem is
used here in a classical sense, yet to be specified, where all the quantities
occurring should satisfy pointwise certain regularity conditions (see Defini-
tion 1.1 for the Poisson equation). However, for variational solutions (see
Definition 2.2), which are appropriate in the framework of finite element
methods, the above statements are also valid.

Linear differential equations of second order in two variables (x, y) (in-
cluding possibly the time variable) can be classified in different types as
follows:

To the homogeneous differential equation

Lu = a(x, y)
∂2

∂x2
u + b(x, y)

∂2

∂x∂y
u + c(x, y)

∂2

∂y2
u

+ d(x, y)
∂

∂x
u + e(x, y)

∂

∂y
u + f(x, y)u = 0

(0.44)

the following quadratic form is assigned:

(ξ, η) .→ a(x, y)ξ2 + b(x, y)ξη + c(x, y)η2. (0.45)

According to its eigenvalues, i.e., the eigenvalues of the matrix
(

a(x, y) 1
2b(x, y)

1
2 b(x, y) c(x, y)

)
, (0.46)

we classify the types. In analogy with the classification of conic sections,
which are described by (0.45) (for fixed (x, y)), the differential equation
(0.44) is called at the point (x, y)

• elliptic if the eigenvalues of (0.46) are not 0 and have the same sign,

• hyperbolic if one eigenvalue is positive and the other is negative,

• parabolic if exactly one eigenvalue is equal to 0.

For the corresponding generalization of the terms for d + 1 variables and
arbitrary order, the stationary boundary value problems we treat in this
book will be elliptic, of second order, and — except in Chapter 8 — also
linear; the nonstationary initial-boundary value problems will be parabolic.

Systems of hyperbolic differential equations of first order require partic-
ular approaches, which are beyond the scope of this book. Nevertheless,
we dedicate Chapter 9 to convection-dominated problems, i.e., elliptic or
parabolic problems close to the hyperbolic limit case.

The different discretization strategies are based on various formulations
of the (initial-) boundary value problems: The finite difference method,
which is presented in Section 1, and further outlined for nonstationary prob-
lems in Chapter 7, has the pointwise formulation of (0.33), (0.36)–(0.38)



18 0. Modelling Processes in Porous Media with Differential Equations

(and (0.40)) as a starting point. The finite element method, , which lies in
the focus of our book (Chapters 2, 3, and 7), is based on an integral formu-
lation of (0.33) (which we still have to depict) that incorporates (0.36) and
(0.37). The conditions (0.38) and (0.40) have to be enforced additionally.
Finally, the finite volume method (Chapters 6 and 7) will be derived from
the integral formulation (0.34), where also initial and boundary conditions
come along as in the finite element approach.

Exercises

0.4 Derive (formally) (0.35) from (0.34).

0.5 Derive the orders of the given differential operators and differ-
ential equations, and decide in every case whether the operator is
linear or nonlinear, and whether the linear equation is homogeneous or
inhomogeneous:

(a) Lu := uxx + xuy ,

(b) Lu := ux + uuy ,

(c) Lu :=
√

1 + x2(cos y)ux + uyxy −
(
arctan x

y

)
u = ln(x2 + y2) ,

(d) Lu := ut + uxxxx +
√

1 + u = 0 ,

(e) utt − uxx + x2 = 0 .

0.6 (a) Determine the type of the given differential operator:
(i) Lu := uxx − uxy + 2uy + uyy − 3uyx + 4u ,

(ii) Lu = 9uxx + 6uxy + uyy + ux .

(b) Determine the parts of the plane where the differential operator Lu :=
yuxx − 2uxy + xuyy is elliptic, hyperbolic, or parabolic.

(c) (i) Determine the type of Lu := 3uy + uxy.

(ii) Compute the general solution of Lu = 0.

0.7 Consider the equation Lu = f with a linear differential operator of
second order, defined for functions in d variables (d ∈ N) in x ∈ Ω ⊂ Rd.
The transformation Φ : Ω → Ω′ ⊂ Rd has a continuously differentiable,
nonsingular Jacobi matrix DΦ := ∂Φ

∂x .
Show that the partial differential equation does not change its type if it

is written in the new coordinates ξ = Φ(x).



1
For the Beginning:
The Finite Difference Method for the
Poisson Equation

1.1 The Dirichlet Problem for the Poisson
Equation

In this section we want to introduce the finite difference method using
the Poisson equation on a rectangle as an example. By means of this ex-
ample and generalizations of the problem, advantages and limitations of
the approach will be elucidated. Also, in the following section the Poisson
equation will be the main topic, but then on an arbitrary domain. For the
spatial basic set of the differential equation Ω ⊂ Rd we assume as minimal
requirement that Ω is a domain, where a domain is a nonempty, open, and
connected set. The boundary of this domain will be denoted by ∂Ω, the
closure Ω ∪ ∂Ω by Ω (see Appendix A.2). The Dirichlet problem for the
Poisson equation is then defined as follows: Given functions g : ∂Ω → R
and f : Ω→ R, we are looking for a function u : Ω→ R such that

−
d∑

i=1

∂2

∂x2
i

u = f in Ω , (1.1)

u = g on ∂Ω . (1.2)

This differential equation model has already appeared in (0.19) and
(0.38) and beyond this application has an importance in a wide spectrum of
disciplines. The unknown function u can be interpreted as an electromag-
netic potential, a displacement of an elastic membrane, or a temperature.
Similar to the multi-index notation to be introduced in (2.16) (but with
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indices at the top) from now on for partial derivatives we use the following
notation.

Notation: For u : Ω ⊂ Rd → R we set

∂iu :=
∂

∂xi
u for i = 1, . . . , d ,

∂iju :=
∂2

∂xi ∂xj
u for i, j = 1, · · · , d ,

∆u := (∂11 + . . . + ∂dd)u .

The expression ∆u is called the Laplace operator. By means of this, (1.1)
can be written in abbreviated form as

−∆u = f in Ω . (1.3)

We could also define the Laplace operator by

∆u = ∇ · (∇u) ,

where ∇u = (∂1u, . . . , ∂du)T denotes the gradient of a function u, and
∇ · v = ∂1v1 + · · · + ∂dvd the divergence of a vector field v. Therefore,
an alternative notation exists, which will not be used in the following:
∆u = ∇2u. The incorporation of the minus sign in the left-hand side of
(1.3), which looks strange at first glance, is related to the monotonicity and
definiteness properties of −∆ (see Sections 1.4 and 2.1, respectively).

The notion of a solution for (1.1), (1.2) still has to specified more pre-
cisely. Considering the equations in a pointwise sense, which will be pursued
in this chapter, the functions in (1.1), (1.2) have to exist, and the equations
have to be satisfied pointwise. Since (1.1) is an equation on an open set Ω,
there are no implications for the behaviour of u up to the boundary ∂Ω. To
have a real requirement due to the boundary condition, u has to be at least
continuous up to the boundary, that is, on Ω. These requirements can be
formulated in a compact way by means of corresponding function spaces.
The function spaces are introduced more precisely in Appendix A.5. Some
examples are

C(Ω) :=
{
u : Ω→ R

∣∣ u continuous in Ω
}

,

C1(Ω) :=
{
u : Ω→ R

∣∣ u ∈ C(Ω) , ∂iu exists in Ω ,

∂iu ∈ C(Ω) for all i = 1, . . . , d
}

.

The spaces Ck(Ω) for k ∈ N, C(Ω), and Ck(Ω), as well as C(∂Ω), are
defined analogously. In general, the requirements related to the (contin-
uous) existence of derivatives are called, a little bit vaguely, smoothness
requirements.

In the following, in view of the finite difference method, f and g will also
be assumed continuous in Ω and ∂Ω, respectively.



1.2. The Finite Difference Method 21

Definition 1.1 Assume f ∈ C(Ω) and g ∈ C(∂Ω). A function u is called
a (classical) solution of (1.1), (1.2) if u ∈ C2(Ω) ∩C(Ω), (1.1) holds for all
x ∈ Ω, and (1.2) holds for all x ∈ ∂Ω.

1.2 The Finite Difference Method

The finite difference method is based on the following approach: We are
looking for an approximation to the solution of a boundary value problem
at a finite number of points in Ω (the grid points). For this reason we
substitute the derivatives in (1.1) by difference quotients, which involve
only function values at grid points in Ω and require (1.2) only at grid
points. By this we obtain algebraic equations for the approximating values
at grid points. In general, such a procedure is called the discretization of the
boundary value problem. Since the boundary value problem is linear, the
system of equations for the approximate values is also linear. In general, for
other (differential equation) problems and other discretization approaches
we also speak of the discrete problem as an approximation of the continuous
problem. The aim of further investigations will be to estimate the resulting
error and thus to judge the quality of the approximative solution.

Generation of Grid Points
In the following, for the beginning, we will restrict our attention to problems
in two space dimensions (d = 2). For simplification we consider the case
of a constant step size (or mesh width) h > 0 in both space directions.
The quantity h here is the discretization parameter, which in particular
determines the dimension of the discrete problem.

l = 8

m = 5

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
◦
◦
◦

◦
◦
◦
◦

• • • • • • •
• • • • • • •
• • • • • • •
• • • • • • •

!

"

• : Ωh

◦ : ∂Ωh

! : far from boundary

": close to boundary

Figure 1.1. Grid points in a square domain.

For the time being, let Ω be a rectangle, which represents the simplest
case for the finite difference method (see Figure 1.1). By translation of the
coordinate system the situation can be reduced to Ω = (0, a)× (0, b) with
a, b > 0 . We assume that the lengths a, b, and h are such that

a = lh, b = mh for certain l, m ∈ N. (1.4)
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We define

Ωh :=
{
(ih, jh)

∣∣ i = 1, . . . , l − 1 , j = 1, . . . , m− 1
}

=
{
(x, y) ∈ Ω

∣∣ x = ih , y = jh with i, j ∈ Z
} (1.5)

as a set of grid points in Ω in which an approximation of the differential
equation has to be satisfied. In the same way,

∂Ωh :=
{
(ih, jh)

∣∣ i ∈ {0, l} , j ∈ {0, . . . , m} or i ∈ {0, . . . , l} , j ∈ {0, m}
}

=
{
(x, y) ∈ ∂Ω

∣∣ x = ih , y = jh with i, j ∈ Z
}

defines the grid points on ∂Ω in which an approximation of the boundary
condition has to be satisfied. The union of grid points will be denoted by

Ωh := Ωh ∪ ∂Ωh.

Setup of the System of Equations

Lemma 1.2 Let Ω := (x − h, x + h) for x ∈ R, h > 0. Then there exists
a quantity R, depending on u and h, the absolute value of which can be
bounded independently of h and such that

(1) for u ∈ C2(Ω):

u′(x) =
u(x + h)− u(x)

h
+ hR and |R| ≤ 1

2
‖u′′‖∞ ,

(2) for u ∈ C2(Ω):

u′(x) =
u(x)− u(x− h)

h
+ hR and |R| ≤ 1

2
‖u′′‖∞ ,

(3) for u ∈ C3(Ω):

u′(x) =
u(x + h)− u(x− h)

2h
+ h2R and |R| ≤ 1

6
‖u′′′‖∞ ,

(4) for u ∈ C4(Ω):

u′′(x) =
u(x + h)− 2u(x) + u(x− h)

h2
+ h2R and |R| ≤ 1

12
‖u(4)‖∞ .

Here the maximum norm ‖ · ‖∞ (see Appendix A.5) has to be taken over
the interval of the involved points (x, x + h), (x− h, x), or (x− h, x + h).

Proof: The proof follows immediately by Taylor expansion. As an example
we consider statement 3: From

u(x± h) = u(x)± hu′(x) +
h2

2
u′′(x)± h3

6
u′′′(x± ξ±) for certain ξ±∈(0, h)

the assertion follows by linear combination. !
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Notation: The quotient in statement 1 is called the forward difference
quotient, and it is denoted by ∂+u(x). The quotient in statement 2 is
called the backward difference quotient (∂−u(x)), and the one in statement
3 the symmetric difference quotient (∂0u(x)). The quotient appearing in
statement 4 can be written as ∂−∂+u(x) by means of the above notation.

In order to use statement 4 in every space direction for the approximation
of ∂11u and ∂22u in a grid point (ih, jh), in addition to the conditions of
Definition 1.1, the further smoothness properties ∂(3,0)u, ∂(4,0)u ∈ C(Ω)
and analogously for the second coordinate are necessary. Here we use, e.g.,
the notation ∂(3,0)u := ∂3u/∂x3

1 (see (2.16)).
Using these approximations for the boundary value problem (1.1), (1.2),

at each grid point (ih, jh) ∈ Ωh we get

−
(

u ((i + 1)h, jh)− 2u(ih, jh) + u ((i− 1)h, jh)
h2

+
u (ih, (j + 1)h)− 2u(ih, jh) + u (ih, (j − 1)h)

h2

)
= (1.6)

= f(ih, jh) + R(ih, jh)h2.

Here R is as described in statement 4 of Lemma 1.2, a function depending
on the solution u and on the step size h, but the absolute value of which can
be bounded independently of h. In cases where we have less smoothness of
the solution u, we can nevertheless formulate the approximation (1.6) for
−∆u, but the size of the error in the equation is unclear at the moment.

For the grid points (ih, jh) ∈ ∂Ωh no approximation of the boundary
condition is necessary:

u(ih, jh) = g(ih, jh) .

If we neglect the term Rh2 in (1.6), we get a system of linear equations
for the approximating values uij for u(x, y) at points (x, y) = (ih, jh) ∈ Ωh.
They have the form

1
h2

(
− ui,j−1 − ui−1,j + 4uij − ui+1,j − ui,j+1

)
= fij (1.7)

for i = 1, . . . , l − 1 , j = 1, . . . , m− 1 ,

uij = gij if i ∈ {0, l}, j = 0, . . . , m or j ∈ {0, m}, i = 0, . . . , l . (1.8)

Here we used the abbreviations

fij := f(ih, jh), gij := g(ih, jh) . (1.9)

Therefore, for each unknown grid value uij we get an equation. The grid
points (ih, jh) and the approximating values uij located at these have a
natural two-dimensional indexing.

In equation (1.7) for a grid point (i, j) only the neighbours at the four
cardinal points of the compass appear, as it is displayed in Figure 1.2. This
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interconnection is also called the five-point stencil of the difference method
and the method the five-point stencil discretization.

! x

"
y

•
(i,j−1)

•
(i−1,j)

•
(i,j)

•
(i+1,j)

•
(i,j+1)

Figure 1.2. Five-point stencil.

At the interior grid points (x, y) = (ih, jh) ∈ Ωh, two cases can be
distinguished:

(1) (i, j) has a position such that its all neighbouring grid points lie in
Ωh (far from the boundary).

(2) (i, j) has a position such that at least one neighbouring grid point
(r, s) lies on ∂Ωh (close to the boundary). Then in equation (1.7) the
value urs is known due to (1.8) (urs = grs), and (1.7) can be modified
in the following way:
Remove the values urs with (rh, sh) ∈ ∂Ωh in the equations for (i, j)
close to the boundary and add the value grs/h2 to the right-hand
side of (1.7). The set of equations that arises by this elimination of
boundary unknowns by means of Dirichlet boundary conditions we
call (1.7)∗; it is equivalent to (1.7), (1.8).

Instead of considering the values uij , i = 1, . . . , l − 1, j = 1, . . . , m − 1,
one also speaks of the grid function uh : Ωh → R, where uh(ih, jh) = uij

for i = 1, . . . , l − 1, j = 1, . . . , m− 1. Grid functions on ∂Ωh or on Ωh are
defined analogously. Thus we can formulate the finite difference method
in the following way: Find a grid function uh on Ωh such that equations
(1.7), (1.8) hold, or, equivalently find a grid function uh on Ωh such that
equations (1.7)∗ hold.

Structure of the System of Equations
After choosing an ordering of the uij for i = 0, . . . , l, j = 0, . . . , m, the
system of equations (1.7)∗ takes the following form:

Ahuh = qh (1.10)

with Ah ∈ RM1,M1 and uh, qh ∈ RM1 , where M1 = (l − 1)(m− 1).
This means that nearly identical notations for the grid function and its

representing vector are chosen for a fixed numbering of the grid points.
The only difference is that the representing vector is printed in bold. The
ordering of the grid points may be arbitrary, with the restriction that the



1.2. Derivation and Properties 25

points in Ωh are enumerated by the first M1 indices, and the points in ∂Ωh

are labelled with the subsequent M2 = 2(l + m) indices. The structure of
Ah is not influenced by this restriction.

Because of the described elimination process, the right-hand side qh has
the following form:

qh = −Âhg + f , (1.11)

where g ∈ RM2 and f ∈ RM1 are the vectors representing the grid functions

fh : Ωh → R and gh : ∂Ωh → R

according to the chosen numbering with the values defined in (1.9). The
matrix Âh ∈ RM1,M2 has the following form:

(Âh)ij =






− 1
h2

if the node i is close to the boundary
and j is a neighbour in the five-point stencil,

0 otherwise .
(1.12)

For any ordering, only the diagonal element and at most four further entries
in a row of Ah, defined by (1.7), are different from 0; that is, the matrix is
sparse in a strict sense, as is assumed in Chapter 5.

An obvious ordering is the rowwise numbering of Ωh according to the
following scheme:

(h,b−h)
(l−1)(m−2)+1

(2h,b−h)
(l−1)(m−2)+2 · · · · · · (a−h,b−h)

(l−1)(m−1)

(h,b−2h)
(l−1)(m−3)+1

(2h,b−2h)
(l−1)(m−3)+2 · · · · · · (a−h,b−2h)

(l−1)(m−2)

...
...

. . . . . .
...

(h,2h)
l

(2h,2h)
l+1 · · · · · · (a−h,2h)

2l−2

(h,h)
1

(2h,h)
2 · · · · · · (a−h,h)

l−1

. (1.13)

Another name of the above scheme is lexicographic ordering. (However,
this name is better suited to the columnwise numbering.)

In this case the matrix Ah has the following form of an (m−1)× (m−1)
block tridiagonal matrix:

Ah = h−2





T −I
−I T −I 0

. . . . . . . . .
. . . . . . . . .

0 −I T −I
−I T





(1.14)
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with the unit matrix I ∈ Rl−1,l−1 and

T =





4 −1
−1 4 −1 0

. . . . . . . . .
. . . . . . . . .

0 −1 4 −1
−1 4





∈ Rl−1,l−1 .

We return to the consideration of an arbitrary numbering. In the fol-
lowing we collect several properties of the matrix Ah ∈ RM1,M1 and the
extended matrix

Ãh :=
(
Ah

∣∣ Âh

)
∈ RM1,M ,

where M := M1 + M2. The matrix Ãh takes into account all the grid
points in Ωh. It has no relevance with the resolution of (1.10), but with the
stability of the discretization, which will be investigated in Section 1.4.

• (Ah)rr > 0 for all r = 1, . . . , M1,

• (Ãh)rs ≤ 0 for all r = 1, . . . , M1, s = 1, . . . , M such that r -= s,

•
M1∑

s=1

(Ah)rs






≥ 0 for all r = 1, . . . , M1,

> 0 if r belongs to a grid point close to
the boundary,

(1.15)

•
M∑

s=1

(Ãh)rs = 0 for all r = 1, . . . , M1,

• Ah is irreducible ,

• Ah is regular.

Therefore, the matrix Ah is weakly row diagonally dominant (see Ap-
pendix A.3 for definitions from linear algebra). The irreducibility follows
from the fact that two arbitrary grid points may be connected by a path
consisting of corresponding neighbours in the five-point stencil. The reg-
ularity follows from the irreducible diagonal dominance. From this we
can conclude that (1.10) can be solved by Gaussian elimination without
pivot search. In particular, if the matrix has a band structure, this will be
preserved. This fact will be explained in more detail in Section 2.5.

The matrix Ah has the following further properties:

• Ah is symmetric,

• Ah is positive definite.

It is sufficient to verify these properties for a fixed ordering, for example the
rowwise one, since by a change of the ordering matrix, Ah is transformed
to PAhPT with some regular matrix P, by which neither symmetry nor
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positive definiteness is destroyed. Nevertheless, the second assertion is not
obvious. One way to verify it is to compute eigenvalues and eigenvectors
explicitly, but we refer to Chapter 2, where the assertion follows naturally
from Lemma 2.13 and (2.36). The eigenvalues and eigenvectors are specified
in (5.24) for the special case l = m = n and also in (7.60). Therefore, (1.10)
can be resolved by Cholesky’s method, taking into account the bandedness.

Quality of the Approximation by the Finite Difference Method
We now address the following question: To what accuracy does the grid
function uh corresponding to the solution uh of (1.10) approximate the
solution u of (1.1), (1.2)?

To this end we consider the grid function U : Ωh → R, which is defined
by

U(ih, jh) := u(ih, jh). (1.16)

To measure the size of U −uh, we need a norm (see Appendix A.4 and also
A.5 for the subsequently used definitions). Examples are the maximum
norm

‖uh − U‖∞ := max
i=1,...,l−1

j=1,...,m−1

|(uh − U) (ih, jh)| (1.17)

and the discrete L2-norm

‖uh − U‖0,h := h

(
l−1∑

i=1

m−1∑

j=1

((uh − U)(ih, jh))2
)1/2

. (1.18)

Both norms can be conceived as the application of the continuous norms
‖ · ‖∞ of the function space L∞(Ω) or ‖ · ‖0 of the function space L2(Ω)
to piecewise constant prolongations of the grid functions (with a special
treatment of the area close to the boundary). Obviously, we have

‖vh‖0,h ≤
√

ab ‖vh‖∞

for a grid function vh, but the reverse estimate does not hold uniformly in
h, so that ‖ · ‖∞ is a stronger norm. In general, we are looking for a norm
‖ · ‖h in the space of grid functions in which the method converges in the
sense

‖uh − U‖h → 0 for h → 0

or even has an order of convergence p > 0, by which we mean the existence
of a constant C > 0 independent of h such that

‖uh − U‖h ≤ C hp .

Due to the construction of the method, for a solution u ∈ C4(Ω) we have

AhU = qh + h2R ,
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where U and R ∈ RM1 are the representations of the grid functions U and
R according to (1.6) in the selected ordering. Therefore, we have:

Ah(uh −U) = −h2R

and thus

|Ah(uh −U)|∞ = h2|R|∞ = Ch2

with a constant C(= |R|∞) > 0 independent of h.
From Lemma 1.2, 4. we conclude that

C =
1
12

(
‖∂(4,0)u‖∞ + ‖∂(0,4)u‖∞

)
.

That is, for a solution u ∈ C4(Ω) the method is consistent with the bound-
ary value problem with an order of consistency 2. More generally, the notion
takes the following form:

Definition 1.3 Let (1.10) be the system of equations that corresponds to
a (finite difference) approximation on the grid points Ωh with a discretiza-
tion parameter h. Let U be the representation of the grid function that
corresponds to the solution u of the boundary value problem according to
(1.16). Furthermore, let ‖ · ‖h be a norm in the space of grid functions
on Ωh, and let | · |h be the corresponding vector norm in the space RM1h ,
where M1h is the number of grid points in Ωh. The approximation is called
consistent with respect to ‖ · ‖h if

|AhU − qh|h → 0 for h → 0 .

The approximation has the order of consistency p > 0 if

|AhU − qh|h ≤ Chp

with a constant C > 0 independent of h.

Thus the consistency or truncation error AhU −qh measures the quality
of how the exact solution satisfies the approximating equations. As we have
seen, in general it can be determined easily by Taylor expansion, but at
the expense of unnaturally high smoothness assumptions. But one has to
be careful in expecting the error |uh −U |h to behave like the consistency
error. We have

∣∣uh −U
∣∣
h

=
∣∣A−1

h Ah(uh −U)
∣∣
h
≤
∥∥A−1

h

∥∥
h

∣∣Ah(uh −U)
∣∣
h

, (1.19)

where the matrix norm ‖ · ‖h has to be chosen to be compatible with the
vector norm |·|h. The error behaves like the consistency error asymptotically
in h if

∥∥A−1
h

∥∥
h

can be bounded independently of h; that is if the method
is stable in the following sense:

Definition 1.4 In the situation of Definition 1.3, the approximation is
called stable with respect to ‖ · ‖h if there exists a constant C > 0
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independent of h such that
∥∥A−1

h

∥∥
h
≤ C .

From the above definition we can obviously conclude, with (1.19), the
following result:

Theorem 1.5 A consistent and stable method is convergent, and the order
of convergence is at least equal to the order of consistency.

Therefore, specifically for the five-point stencil discretization of (1.1),
(1.2) on a rectangle, stability with respect to ‖ · ‖∞ is desirable. In fact, it
follows from the structure of Ah: Namely, we have

∥∥A−1
h

∥∥
∞ ≤ 1

16
(a2 + b2) . (1.20)

This follows from more general considerations in Section 1.4 (Theo-
rem 1.14). Putting the results together we have the following theorem:

Theorem 1.6 Let the solution u of (1.1), (1.2) on a rectangle Ω be
in C4(Ω). Then the five-point stencil discretization has an order of
convergence 2 with respect to ‖ · ‖∞, more precisely,

|uh −U |∞ ≤ 1
192

(a2 + b2)
(
‖∂(4,0)u‖∞ + ‖∂(0,4)u‖∞

)
h2 .

Exercises

1.1 Complete the proof of Lemma 1.2 and also investigate the error of
the respective difference quotients, assuming only u ∈ C2[x− h, x + h].

1.2 Generalize the discussion concerning the five-point stencil discretiza-
tion (including the order of convergence) of (1.1), (1.2) on a rectangle for
h1 > 0 in the x1 direction and h2 > 0 in the x2 direction.

1.3 Show that an irreducible weakly row diagonally dominant matrix
cannot have vanishing diagonal elements.

1.3 Generalizations and Limitations of the Finite
Difference Method

We continue to consider the boundary value problem (1.1), (1.2) on a rect-
angle Ω. The five-point stencil discretization developed may be interpreted
as a mapping −∆h from functions on Ωh into grid functions on Ωh, which
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is defined by

−∆hvh(x1, x2) :=
1∑

i,j=−1

cijvh(x1 + ih, x2 + jh) , (1.21)

where c0,0 = 4/h2, c0,1 = c1,0 = c0,−1 = c−1,0 = −1/h2, and cij = 0 for
all other (i, j). For the description of such a difference stencil as defined
in (1.21) the points of the compass (in two space dimensions) may also
be involved. In the five-point stencil only the main points of the compass
appear.

The question of whether the weights cij can be chosen differently such
that we gain an approximation of −∆u with higher order in h has to be
answered negatively (see Exercise 1.7). In this respect the five-point stencil
is optimal. This does not exclude that other difference stencils with more
entries, but of the same order of convergence, might be worthwhile to con-
sider. An example, which will be derived in Exercise 3.11 by means of the
finite element method, has the following form:

c0,0 =
8

3h2
, cij = − 1

3h2
for all other i, j ∈ {−1, 0, 1} . (1.22)

This nine-point stencil can be interpreted as a linear combination of the
five-point stencil and a five-point stencil for a coordinate system rotated by
π
4 (with step size

√
2h), using the weights 1

3 and 2
3 in this linear combina-

tion. Using a general nine-point stencil a method with order of consistency
greater than 2 can be constructed only if the right-hand side f at the point
(x1, x2) is approximated not by the evaluation f(x1, x2), but by applying
a more general stencil. The mehrstellen method (“Mehrstellenverfahren”)
defined by Collatz is such an example (see, for example, [15, p. 66]).

Methods of higher order can be achieved by larger stencils, meaning
that the summation indices in (1.21) have to be replaced by k and −k,
respectively, for k ∈ N. But already for k = 2 such difference stencils
cannot be used for grid points close to the boundary, so that there one has
to return to approximations of lower order.

If we consider the five-point stencil to be a suitable discretization for
the Poisson equation, the high smoothness assumption for the solution in
Theorem 1.6 should be noted. This requirement cannot be ignored, since
in general it does not hold true. On the one hand, for a smoothly bounded
domain (see Appendix A.5 for a definition of a domain with Cl-boundary)
the smoothness of the solution is determined only by the smoothness of the
data f and g (see for example [13, Theorem 6.19]), but on the other hand,
corners in the domain reduce this smoothness the more, the more reentrant
the corners are. Let us consider the following examples:

For the boundary value problem (1.1), (1.2) on a rectangle (0, a)× (0, b)
we choose f = 1 and g = 0; this means arbitrarily smooth functions.
Nevertheless, for the solution u, the statement u ∈ C2(Ω) cannot hold,
because otherwise, −∆u(0, 0) = 1 would be true, but on the other hand,
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we have ∂1,1u(x, 0) = 0 because of the boundary condition and hence also
∂1,1u(0, 0) = 0 and ∂2,2u(0, y) = 0 analogously. Therefore, ∂2,2u(0, 0) = 0.
Consequently, −∆u(0, 0) = 0, which contradicts the assumption above.
Therefore, Theorem 1.6 is not applicable here.

In the second example we consider the domain with reentrant corner (see
Figure 1.3)

Ω =
{
(x, y) ∈ R2

∣∣ x2 + y2 < 1 , x < 0 or y > 0
}

.

In general, if we identify R2 and C, this means (x, y) ∈ R2 and z = x+ iy ∈
C, we have that if w : C → C is analytic (holomorphic), then both the real
and the imaginary parts 3w,4w : C → R are harmonic, which means that
they solve −∆u = 0.

x

y

Ω

Figure 1.3. Domain Ω with reentrant corner.

We choose w(z) := z2/3. Then the function u(x, y) := 4
(
(x + iy)2/3

)

solves the equation

−∆u = 0 in Ω .

In polar coordinates, x = r cosϕ, y = r sinϕ, the function u takes the form

u(x, y) = 4
((

reiϕ
)2/3

)
= r2/3 sin

(
2
3
ϕ

)
.

Therefore, u satisfies the boundary conditions

u
(
eiϕ
)

= sin
(

2
3
ϕ

)
for 0 ≤ ϕ ≤ 3π

2
, (1.23)

u(x, y) = 0 otherwise on ∂Ω .

But note that w′(z) = 2
3z−1/3 is unbounded for z → 0, so that ∂1u, ∂2u

are unbounded for (x, y) → 0. Therefore, in this case we do not even have
u ∈ C1(Ω).

The examples do not show that the five-point stencil discretization is not
suitable for the boundary value problems considered, but they show the ne-
cessity of a theory of convergence, which requires only as much smoothness
as was to be expected.

In the following we discuss some generalizations of the boundary value
problems considered so far.
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General Domains Ω
We continue to consider (1.1), (1.2) but on a general domain in R2, for
which the parts of the boundary are not necessarily aligned to the coor-
dinate axes. Therefore we can keep the second equation in (1.5) as the
definition of Ωh, but have to redefine the set of boundary grid points ∂Ωh.

For example, if for some point (x, y) ∈ Ωh we have

(x− h, y) /∈ Ω ,

then there exists a number s ∈ (0, 1] such that

(x− ϑh, y) ∈ Ω for all ϑ ∈ [0, s) and (x− sh, y) /∈ Ω .

Then (x− sh, y) ∈ ∂Ω, and therefore we define

(x− sh, y) ∈ ∂Ωh .

The other main points of the compass are treated analogously. In this
way the grid spacing in the vicinity of the boundary becomes variable; in
particular, it can be smaller than h.

For the quality of the approximation we have the following result:

Lemma 1.7 Let Ω = (x− h1, x + h2) for x ∈ R, h1, h2 > 0.

(1) Then for u ∈ C3(Ω),

u′′(x) =
2

h1 + h2

(
u(x + h2)− u(x)

h2
− u(x)− u(x− h1)

h1

)

+ max {h1, h2}R ,

where R is bounded independently of h1, h2.

(2) There are no α,β, γ ∈ R such that

u′′(x) = αu(x− h1) + β u(x) + γ u(x + h2) + R1h
2
1 + R2h

2
2

for all polynomials u of degree 3 if h1 -= h2.

Proof: Exercises 1.4 and 1.5. !

This leads to a discretization that is difficult to set up and for which the
order of consistency and order of convergence are not easily determined.

Other Boundary Conditions
We want to consider the following example. Let ∂Ω = Γ1 ∪ Γ3 be divided
into two disjoint subsets. We are looking for a function u such that

−∆u = f in Ω ,

∂νu := ∇u · ν = g on Γ1 ,

u = 0 on Γ3 ,

(1.24)

where ν : ∂Ω → Rd is the outer unit normal, and thus ∂νu is the normal
derivative of u.
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For a part of the boundary oriented in a coordinate direction, ∂νu is
just a positive or negative partial derivative. But if only grid points in
Ωh are to be used, only ±∂+u and ±∂−u respectively (in the coordinates
orthogonal to the direction of the boundary) are available directly from
the above approximations with a corresponding reduction of the order of
consistency. For a boundary point without these restrictions the question
of how to approximate ∂νu appropriately is open.

As an example we consider (1.24) for a rectangle Ω = (0, a)×(0, b), where

Γ1 := {(a, y) | y ∈ (0, b)} , Γ3 := Γ \ Γ1 . (1.25)

At the boundary grid points (a, jh), j = 1, . . . , m − 1, ∂2u = ∇u · ν
is prescribed, which can be approximated directly only by ∂−u. Due to
Lemma 1.2, 2 this leads to a reduction in the consistency order (see Ex-
ercise 1.8). The resulting system of equations may include the Neumann
boundary grid points in the set of unknowns, for which an equation with
the entries 1/h in the diagonal and −1/h in an off-diagonal corresponding
to the eastern neighbour (a − h, jh) has to be added. Alternatively, those
boundary points can be eliminated, leading for the eastern neighbour to a
modified difference stencil (multiplied by h2)

−1
−1 3

−1
(1.26)

for the right-hand side h2f(a− h, jh)+ hg(a, jh). In both cases the matrix
properties of the system of equations as collected in (1.15) still hold, with
the exception of

∑M1
s=1(Ah)rs = 0, both for the Neumann boundary points

and their neighbours, if no Dirichlet boundary point is involved in their
stencil. Thus the term “close to the boundary” has to be interpreted as
“close to the Dirichlet boundary.”

If one wants to take advantage of the symmetric difference quotient ∂0u,
then “artificial” values at new external grid points (a + h, jh) appear.

To keep the balance of unknowns and equations, it can be assumed that
the differential equation also holds at (a, jh), and thus it is discretized
with the five-point stencil there. If one attributes the discrete boundary
condition to the external grid point, then again the properties (1.15) hold
with the abovementioned interpretation. Alternatively, the external grid
points can be eliminated, leading to a modified difference stencil (multiplied
by h2) at (a, jh):

−1
−2 4

−1
(1.27)

for the right-hand side h2f(a, jh)+2hg(a, jh), with the same interpretation
of properties (1.15).
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More General Differential Equations
As an example we consider the differential equation

−∇ · (k∇u) = f on Ω (1.28)

with a continuous coefficient function k : Ω → R, which is bounded from
below by a positive constant on Ω. This equation states the conservation
of an extensive quantity u whose flux is −k∇u (see Section 0.5). This
should be respected by the discretization, and therefore the form of (1.28)
obtained by working out the derivatives is not recommended as a basis for
the discretization. The differential expression in (1.28) can be discretized
by a successive application of central difference quotients, but then again
the order of consistency has to be investigated.

In addition, one has to take into account the fact that the smoothness of
u depends on the smoothness of k. If processes in heterogeneous materials
have to be described, then k is often discontinuous. In the simplest example
k is assumed to take two different values: Let Ω = Ω1 ∪ Ω2 and

k|Ω1 = k1 > 0 , k|Ω2 = k2 > 0

with constants k1 -= k2.
As worked out in Section 0.5, on the interior boundary S := Ω1 ∩ Ω2 a

transmission condition has to be imposed:

• u is continuous,

• (k∇u) · ν is continuous, where ν is the outer normal on ∂Ω1, for
example.

This leads to the following conditions on ui, being the restrictions of u on
Ωi for i = 1, 2:

−k1∆u1 = f in Ω1 , (1.29)
−k2∆u2 = f in Ω2 ,

u1 = u2 on S , (1.30)
k1∂νu1 = k2∂νu2 on S .

In this case the question of an appropriate discretization is also open.

Summarizing, we have the following catalogue of requirements: We are
looking for a notion of solution for (general) boundary value problems with
nonsmooth coefficients and right-hand sides such that, for example, the
transmission condition is fulfilled automatically.

We are looking for a discretization on general domains such that, for
example, the (order of) convergence can also be assured for less smooth
solutions and also Neumann boundary conditions as in (1.24) can be treated
easily.

The finite element method in the subsequent chapters will fulfil these
requirements to a large extent.
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Exercises

1.4 Prove Lemma 1.7, 1.

1.5 Under the assumption that u : Ω ⊂ R → R is a sufficiently smooth
function, determine in the ansatz

αu(x− h1) + βu(x) + γu(x + h2) , h1, h2 > 0 ,

the coefficients α = α(h1, h2), β = β(h1, h2), γ = γ(h1, h2), such that

(a) for x ∈ Ω, u′(x) will be approximated with the order as high as
possible,

(b) for x ∈ Ω, u′′(x) will be approximated with the order as high as
possible,

and in particular, prove 1.7, 2.
Hint: Determine the coefficients such that the formula is exact for

polynomials with the degree as high as possible.

1.6 Let Ω ⊂ R2 be a bounded domain. For a sufficiently smooth function
u : Ω → R determine the difference formula with an order as high as
possible to approximate ∂11u(x1, x2), using the 9 values u(x1 + γ1h, x2 +
γ2h), where γ1, γ2 ∈ {−1, 0, 1}.

1.7 Let Ω ⊂ R2 be a bounded domain. Show that in (1.21) there exists
no choice of cij such that for an arbitrary smooth function u : Ω→ R,

|∆u(x)−∆hu(x)| ≤ Ch3

is valid with a constant C independent of h.

1.8 For the example (1.24), (1.25), investigate the order of consistency
both for the discretization (1.26) and (1.27) in the maximum norm. Are
there improvements possible considering the discrete L2-norm? (See (1.18).)

1.9 Consider example (1.24) with

Γ1 := {(a, y) | y ∈ (0, b)} ∪ {(x, b) | x ∈ (0, a]},
Γ3 := Γ \ Γ1,

and discuss the applicability of the one-sided and the symmetric differ-
ence quotients for the approximation of the Neumann boundary condition,
in particular with respect to properties (1.15). In which way does the
boundary condition at (a, b), where no unique normal exists, have to be
interpreted?
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1.10 Generalize the discussion concerning the five-point stencil dis-
cretization (including the order of convergence) to the boundary value
problem

−∆u + ru = f in Ω,
u = g on ∂Ω,

for r > 0 and Ω := (0, a)× (0, b). To approximate the reactive term ru, the
following schemes in the notation of (1.21) are to be used:

(a) c0,0 = 1, cij = 0 otherwise,

(b) c0,0 > 0, c0,1, c1,0, c0,−1, c−1,0 ≥ 0, cij = 0 otherwise, and∑1
i,j=−1 cij = 1 .

1.4 Maximum Principles and Stability

In this section the proof of the stability estimate (1.20), which is still miss-
ing, will be given. For this reason we develop a more general framework, in
which we will then also discuss the finite element method (see Section 3.9)
and the time-dependent problems (see Section 7.5). The boundary value
problem (1.1), (1.2) satisfies a (weak) maximum principle in the following
sense: If f is continuous and f(x) ≤ 0 for all x ∈ Ω (for short f ≤ 0), then

max
x∈Ω

u(x) ≤ max
x∈∂Ω

u(x) .

This maximum principle is also strong in the following sense: The maxi-
mum of u on Ω can be attained in Ω only if u is constant (see, for example,
[13], also for the following assertions). By exchanging u, f, g by −u,−f,−g,
respectively, we see that there is an analogous (strong) minimum principle.
The same holds for more general linear differential equations as in (1.28),
which may also contain convective parts (this means first-order deriva-
tives). But if the equation contains a reactive part (this means without
derivatives), as in the example

−∆u + ru = f in Ω

with a continuous function r : Ω → R such that r(x) ≥ 0 for x ∈ Ω, there
is a weak maximum principle only in the following form: If f ≤ 0, then

max
x∈Ω

u(x) ≤ max
{

max
x∈∂Ω

u(x), 0
}

.

The weak maximum principle directly implies assertions about the de-
pendence of the solution u of the boundary value problem on the data f
and g; this means stability properties. One can also follow this method in
investigating the discretization. For the basic example we have
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Theorem 1.8 Let uh be a grid function on Ωh defined by (1.7), (1.8) and
suppose fij ≤ 0 for all i = 1, . . . , l− 1, j = 1, . . . , m− 1. Then if uh attains
its maximum on Ωh ∪ ∂Ω∗

h at a point (i0h, j0h) ∈ Ωh, then the following
holds:

uh is constant on Ωh ∪ ∂Ω∗
h .

Here

∂Ω∗
h := ∂Ωh \ {(0, 0), (a, 0), (0, b), (a, b)} .

In particular, we have

max
(x,y)∈Ωh

uh(x, y) ≤ max
(x,y)∈∂Ω∗

h

uh(x, y) .

Proof: Let ū := uh(i0h, j0h). Then because of (1.7) and fij ≤ 0 we have

4ū ≤
∑

(k,l)∈N(i0,j0)

uh(kh, lh) ≤ 4ū ,

since in particular uh(kh, lh) ≤ ū for (k, l) ∈ N(i0,j0). Here we used the
notation

N(i0,j0) = {((i0 − 1), j0), ((i0 + 1), j0), (i0, (j0 + 1)), (i0, (j0 − 1))}

for the set of indices of neighbours of (i0h, j0h) in the five-point stencil.
From these inequalities we conclude that

uh(kh, lh) = ū for (k, l) ∈ N(i0,j0) .

If we apply this argument to the neighbours in Ωh of the grid points (kh, lh)
for (k, l) ∈ N(i0,j0) and then continue in the same way to the sets of neigh-
bours in Ωh arising in every such step, then finally, for each grid point
(ih, jh) ∈ Ωh ∪ ∂Ω∗

h the claimed identity uh(ih, jh) = ū is achieved. !

The exceptional set of vertices ∂Ωh \ ∂Ω∗
h does not participate in any

difference stencil, so that the values there are of no relevance for uh.
We want to generalize this result and therefore consider a system of

equations as in (1.10), (1.11):

Ahuh = qh = −Âhûh + f , (1.31)

where Ah ∈ RM1,M1 as in (1.10), Âh ∈ RM1,M2 as in (1.11), uh, f ∈ RM1 ,
and ûh ∈ RM2 . This may be interpreted as the discretization of a bound-
ary value problem obtained by the finite difference method or any other
approach and without restrictions on the dimensionality of the domain.
At least on one part of the boundary Dirichlet boundary conditions are re-
quired. Then the entries of the vector uh can be interpreted as the unknown
values at the grid points in Ωh ∪ ∂Ω(1)

h , where ∂Ω(1)
h correspond to a part

of ∂Ω (with flux or mixed boundary condition). Analogously, the vector ûh
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(indexed from M1 + 1 to M1 + M2) corresponds to the values fixed by the
Dirichlet boundary conditions on ∂Ω(2)

h . Again let M = M1 + M2 and

Ãh :=
(
Ah

∣∣ Âh

)
∈ RM1,M .

This means in particular that the dimensions M1 and M2 are not fixed,
but are in general unbounded for h → 0.

Oriented on (1.15) we require the following general assumptions for the
rest of the section:

(1) (Ah)rr > 0 for all r = 1, . . . , M1 ,

(2) (Ah)rs ≤ 0 for all r, s = 1, . . . , M1 such that r -= s ,

(3) (i)
M1∑
s=1

(Ah)rs ≥ 0 for all r = 1, . . . , M1 ,

(ii) for at least one index the strict inequality holds ,

(4) Ah is irreducible ,

(5) (Âh)rs ≤ 0 for all r = 1, . . . , M1 , s = M1 + 1, . . . , M ,

(6)
M∑

s=1
(Ãh)rs ≥ 0 for all r = 1, . . . , M1 ,

(7) for every s = M1 + 1, . . . , M there exists r ∈ {1, . . . , M1}
such that (Âh)rs -= 0.

(1.32)

Generalizing the notation above for r ∈ {1, . . . , M1}, the indices s ∈
{1, . . . , M} \ {r} are called neighbours, for which (Ãh)rs -= 0, and they are
assembled to form the set Nr. Therefore, the irreducibility of Ah means
that arbitrary r, s ∈ {1, . . . , M1} can be connected by neighbourhood
relationships.

The condition (7) is not a restriction: It only avoids the inclusion of
known values (ûh)s that do not influence the solution of (1.31) at all. For
the five-point stencil on the rectangle, these are the values at the corner
points. Because of the condition (7), every index r ∈ {M1 + 1, . . . , M}
is connected to every index s ∈ {1, . . . , M1} by means of neighbourhood
relationships.

The conditions (2) and (3) imply the weak diagonal dominance of Ah.
Note that the conditions are formulated redundantly: The condition (3)
also follows from (5) through (7).

To simplify the notation we will use the following conventions, where u,
v and A, B are vectors and matrices, respectively, of suitable dimensions:

u ≥ 0 if and only if (u)i ≥ 0 for all indices i ,
u ≥ v if and only if u− v ≥ 0 ,
A ≥ 0 if and only if (A)ij ≥ 0 for all indices (i, j) ,
A ≥ B if and only if A−B ≥ 0 .

(1.33)
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Theorem 1.9 We consider (1.31) under the assumptions (1.32). Fur-
thermore, let f ≤ 0. Then a strong maximum principle holds: If the
components of ũh =

(uh

ûh

)
attain a nonnegative maximum for some in-

dex r ∈ {1, . . . , M1}, then all the components are equal. In particular, a
weak maximum principle is fulfilled:

max
r∈{1,...,M}

(ũh)r ≤ max
{

0, max
r∈{M1+1,...,M}

(ûh)r

}
. (1.34)

Proof: Let ū = maxs∈{1,...,M}(ũh)s, and ū = (uh)r where r ∈
{1, . . . , M1}. Because of (1.32) (2), (5), (6) the rth row of (1.31) implies

(Ah)rrū ≤ −
∑

s∈Nr

(
Ãh

)
rs

(ũh)s =
∑

s∈Nr

∣∣(Ãh

)
rs

∣∣ (ũh)s

≤
∑

s∈Nr

∣∣(Ãh

)
rs

∣∣ ū ≤ (Ah)rrū ,
(1.35)

where the assumption ū ≥ 0 is used in the last estimate. Therefore, ev-
erywhere equality has to hold. Since the second inequality is valid also
for every single term and (Ãh)rs -= 0 by the definition of Nr, we finally
conclude that

(ũh)s = ū for all s ∈ Nr .

This allows us to apply this argument to all s ∈ Nr ∩ {1, . . . , M1}, then
to the corresponding sets of neighbours, and so on, until the assertion is
proven. !

The requirement of irreducibility can be weakened if instead of (1.32) (6)
we have

(6)∗
M∑

s=1

(
Ãh

)
rs

= 0 for all r = 1, . . . , M1 .

Then condition (4) can be replaced by the requirement

(4)∗ For every r1 ∈ {1, . . . , M1} such that
M1∑

s=1

(Ah)r1s = 0 (1.36)

there are indices r2, . . . , rl+1 such that
(Ah)riri+1 -= 0 for i = 1, . . . , l

and
M1∑

s=1

(Ah)rl+1s > 0 . (1.37)

These modified conditions without (7) will be denoted by (1.32)∗.
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Motivated by the example above we call a point r ∈ {1, . . . , M1} far from
the boundary if (1.36) holds, and close to the boundary if (1.37) holds, and
the points r ∈ {M1 + 1, . . . , M} are called boundary points.

Theorem 1.10 We consider (1.31) under the assumption (1.32)∗.
If f ≤ 0, then

max
r∈{1,...,M}

(ũh)r ≤ max
r∈{M1+1,...,M}

(ûh)r . (1.38)

Proof: We use the same notation and the same arguments as in the
proof of Theorem 1.9. In (1.35) in the last estimate equality holds, so that
no sign conditions for ū are necessary. Because of (4)∗ the maximum will
also be attained at a point close to the boundary and therefore also at
its neighbours. Because of (6)∗ a boundary point also belongs to these
neighbours, which proves the assertion. !

From the maximum principles we immediately conclude a comparison
principle:

Lemma 1.11 We assume (1.32) or (1.32)∗.
Let uh1, uh2 ∈ RM1 be solutions of

Ahuhi = −Âhûhi + f i for i = 1, 2

for given f1, f2 ∈ RM1 , ûh1, ûh2 ∈ RM2 , which satisfy f1 ≤ f2, ûh1 ≤
ûh2. Then

uh1 ≤ uh2 .

Proof: From Ah(uh1−uh2) = −Âh(ûh1− ûh2)+f1−f2 we can conclude
with Theorem 1.9 or 1.10 that

max
r∈{1,...,M1}

(uh1 − uh2)r ≤ 0 .

!

This implies in particular the uniqueness of a solution of (1.31) for
arbitrary ûh and f and also the regularity of Ah.

In the following we denote by 0 and 0 the zero vector and the zero
matrix, respectively, where all components are equal to 0. An immediate
consequence of Lemma 1.11 is the following

Theorem 1.12 Let Ah ∈ RM1,M1 be a matrix with the properties (1.32)
(1)–(3) (i), (4)∗, and uh ∈ RM1 . Then

Ahuh ≥ 0 implies uh ≥ 0 . (1.39)

Proof: To be able to apply Lemma 1.11, one has to construct a matrix
Âh ∈ RM1,M2 such that (1.32)* holds. Obviously, this is possible. Then one
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can choose
uh2 := uh , f2 := Ahuh2 , ûh2 := 0 ,
uh1 := 0 , f1 := 0 , ûh1 := 0

to conclude the assertion. Because of ûhi := 0 for i = 1, 2 the specific
definition of Âh plays no role. !

A matrix with the property (1.39) is called inverse monotone. An
equivalent requirement is

vh ≥ 0 ⇒ A−1
h vh ≥ 0 ,

and therefore by choosing the unit vectors as vh,

A−1
h ≥ 0 .

Inverse monotone matrices that also satisfy (1.32) (1), (2) are called M-
matrices.

Finally, we can weaken the assumptions for the validity of the comparison
principle.

Corollary 1.13 Suppose that Ah ∈ RM1,M1 is inverse monotone and
(1.32) (5) holds. Let uh1, uh2 ∈ RM1 be solutions of

Ahuhi = −Âhûhi + f i for i = 1, 2

for given f1, f2 ∈ RM1 , ûh1, ûh2 ∈ RM2 that satisfy f1 ≤ f2, ûh1 ≤ ûh2.
Then

uh1 ≤ uh2 .

Proof: Multiplying the equation

Ah(uh1 − uh2) = −Âh(ûh1 − ûh2) + f1 − f2

from the left by the matrix A−1
h , we get

uh1 − uh2 = −A−1
h︸︷︷︸
≥0

Âh︸︷︷︸
≤0

(ûh1 − ûh2)︸ ︷︷ ︸
≤0

+ A−1
h︸︷︷︸

≥0

(f1 − f2)︸ ︷︷ ︸
≤0

≤ 0 .

!

The importance of Corollary 1.13 lies in the fact that there exist
discretization methods, for which the matrix Ãh does not satisfy, e.g., con-
dition (1.32) (6), or (6)∗ but A−1

h ≥ 0. A typical example of such a method
is the finite volume method described in Chapter 6.

In the following we denote by 1 a vector (of suitable dimension) whose
components are all equal to 1.

Theorem 1.14 We assume (1.32) (1)–(3), (4)∗, (5). Furthermore, let
w(1)

h , w(2)
h ∈ RM1 be given such that

Ahw(1)
h ≥ 1 , Ahw(2)

h ≥ −Âh1 . (1.40)
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Then a solution of Ahuh = −Âhûh + f satisfies

(1) −
(
|f |∞w(1)

h + |ûh|∞w(2)
h

)
≤ uh ≤ |f |∞w(1)

h + |ûh|∞w(2)
h ,

(2) |uh|∞ ≤
∣∣w(1)

h

∣∣
∞|f |∞ +

∣∣w(2)
h

∣∣
∞|ûh|∞ .

Under the assumptions (1.32) (1)–(3), (4)∗, and (1.40) the matrix norm
‖ · ‖∞ induced by | · |∞ satisfies

∥∥A−1
h

∥∥
∞ ≤

∣∣w(1)
h

∣∣
∞ .

Proof: Since −|f |∞1 ≤ f ≤ |f |∞1 and the analogous statement for ûh

is valid, the vector vh := |f |∞w(1)
h + |ûh|∞w(2)

h − uh satisfies

Ahvh ≥ |f |∞1− f − Âh (|ûh|∞1− ûh) ≥ 0 ,

where we have also used −Âh ≥ 0 in the last estimate. Therefore, the right
inequality of (1) implies from Theorem 1.12 that the left inequality can be
proven analogously. The further assertions follow immediately from (1). !

Because of the inverse monotonicity and from (1.32) (5) the vectors pos-
tulated in Theorem 1.14 have to satisfy w(i)

h ≥ 0 necessarily for i = 1, 2.
Thus stability with respect to ‖ · ‖∞ of the method defined by (1.31) as-
suming (1.32) (1)–(3), (4)* is guaranteed if a vector 0 ≤ wh ∈ RM1 and a
constant C > 0 independent of h can be found such that

Ahwh ≥ 1 and |wh|∞ ≤ C . (1.41)

Finally, this will be proven for the five-point stencil discretization (1.1),
(1.2) on the rectangle Ω = (0, a)× (0, b) for C = 1

16 (a2 + b2).
For this reason we define polynomials of second degree w1, w2 by

w1(x) :=
1
4

x(a− x) and w2(y) :=
1
4

y(b− y) . (1.42)

It is clear that w1(x) ≥ 0 for all x ∈ [0, a] and w2(y) ≥ 0 for all y ∈ [0, b].
Furthermore, we have w1(0) = 0 = w1(a) and w2(0) = 0 = w2(b), and

w′′
1 (x) = −1

2
and w′′

2 (y) = −1
2

.

Therefore w1 and w2 are strictly concave and attain their maximum in a
2

and b
2 , respectively. Thus the function w(x, y) := w1(x) + w2(x) satisfies

−∆w = 1 in Ω ,
w ≥ 0 on ∂Ω .

(1.43)

Now let wh ∈ RM1 be, for a fixed ordering, the representation of the grid
function wh defined by

(wh)(ih, jh) := w(ih, jh) for i = 1, . . . , l − 1 , j = 1, . . . , m− 1 .
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Analogously, let ŵh ∈ RM2 be the representation of the function ŵh de-
fined on ∂Ω∗

h. As can be seen from the error representation in Lemma 1.2,
statement 4, the difference quotient ∂−∂+u(x) is exact for polynomials of
second degree. Therefore, we conclude from (1.43) that

Ahwh = −Âhŵh + 1 ≥ 1 ,

which finally implies

|wh|∞ = ‖wh‖∞ ≤ ‖w‖∞ = w1

(a

2

)
+ w2

( b

2

)
=

1
16

(a2 + b2) .

This example motivates the following general procedure to construct wh ∈
RM1 and a constant C such that (1.41) is fulfilled.

Assume that the boundary value problem under consideration reads in
an abstract form

(Lu)(x) = f(x) for x ∈ Ω ,
(Ru)(x) = g(x) for x ∈ ∂Ω .

(1.44)

Similar to (1.43) we can consider — in case of existence — a solution w
of (1.44) for some f, g, such that f(x) ≥ 1 for all x ∈ Ω, g(x) ≥ 0 for all
x ∈ Ω. If w is bounded on Ω, then

(wh)i := w(xi), i = 1, . . . , M1,

for the (non-Dirichlet) grid points xi, is a candidate for wh. Obviously,

|wh|∞ ≤ ‖w‖∞ .

Correspondingly, we set

(ŵh)i = w(xi) ≥ 0 , i = M1 + 1, . . . , M2 ,

for the Dirichlet-boundary grid points.
The exact fulfillment of the discrete equations by wh cannot be expected

anymore, but in case of consistency the residual can be made arbitrarily
small for small h. This leads to

Theorem 1.15 Assume that a solution w ∈ C(Ω) of (1.44) exists for data
f ≥ 1 and g ≥ 0. If the discretization of the form (1.31) is consistent with
(1.44) (for these data), and there exists H̃ > 0 so that for some α̃ > 0 :

−Âhŵh + f ≥ α̃1 for h ≤ H̃ , (1.45)

then for every 0 < α < α̃ there exists H > 0, so that

Ahwh ≥ α1 for h ≤ H .

Proof: Set

τh := Ahwh + Âhŵh − f
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for the consistency error, then

|τ h|∞ → 0 for h → 0 .

Thus

Ahwh = τh − Âhŵh + f

≥ −|τh|∞1 + α̃1 for h ≤ H̃

≥ α1 for h ≤ H

and some appropriate H > 0. !

Thus a proper choice in (1.41) is

1
α

wh and C :=
1
α
‖w‖∞ . (1.46)

The condition (1.45) is not critical: In case of Dirichlet boundary conditions
and (1.32) (5) (for corresponding rows i of Âh) then, due to (f)i ≥ 1, we
can even choose α̃ = 1. The discussion of Neumann boundary conditions
following (1.24) shows that the same can be expected.

Theorem 1.15 shows that for a discretization with an inverse monotone
system matrix consistency already implies stability.

To conclude this section let us discuss the various ingredients of (1.32)
or (1.32)* that are sufficient for a range of properties from the inverse
monotonicity up to a strong maximum principle: For the five-point stencil
on a rectangle all the properties are valid for Dirichlet boundary conditions.
If partly Neumann boundary conditions appear, the situation is the same,
but now close and far from the boundary refers to its Dirichlet part. In
the interpretation of the implications one has to take into account that the
heterogeneities of the Neumann boundary condition are now part of the
right-hand side f , as seen, e.g., in (1.26). If mixed boundary conditions are
applied, as

∂νu + αu = g on Γ2 (1.47)

for some Γ2 ⊂ Γ and α = α(x) > 0, then the situation is the same again
if αu is approximated just by evaluation, at the cost that (4)* no longer
holds. The situation is similar if reaction terms appear in the differential
equation (see Exercise 1.10).

Exercises

1.11 Give an example of a matrix Âh ∈ RM1,M2 that can be used in the
proof of Theorem 1.12.

1.12 Show that the transposition of an M-matrix is again an M-matrix.
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1.13 In the assumptions of Theorem 1.9 substitute (1.32) (4) by (4)* and
amend (6) to

(6)# Condition (1.32) (6) is valid and
M1∑
s=1

(Ah)rs > 0 ⇒ there exists s ∈ {M1, . . . , M} such that (Âh)rs < 0.

Under these conditions prove a weak maximum principle as in Theorem 1.9.

1.14 Assuming the existence of wh ∈ RM1 such that Ahwh ≥ 1 and
|wh|∞ ≤ C for some constant C independent of h, show directly (without
Theorem 1.14) a refined order of convergence estimate on the basis of an
order of consistency estimate in which also the shape of wh appears.



2
The Finite Element Method
for the Poisson Equation

The finite element method, frequently abbreviated by FEM, was devel-
oped in the fifties in the aircraft industry, after the concept had been
independently outlined by mathematicians at an earlier time. Even today
the notions used reflect that one origin of the development lies structural
mechanics. Shortly after this beginning, the finite element method was ap-
plied to problems of heat conduction and fluid mechanics, which form the
application background of this book.

An intensive mathematical analysis and further development was started
in the later sixties. The basics of this mathematical description and analy-
sis are to be developed in this and the following chapter. The homogeneous
Dirichlet boundary value problem for the Poisson equation forms the
paradigm of this chapter, but more generally valid considerations will be
emphasized. In this way the abstract foundation for the treatment of more
general problems in Chapter 3 is provided. In spite of the importance of the
finite element method for structural mechanics, the treatment of the linear
elasticity equations will be omitted. But we note that only a small expense
is necessary for the application of the considerations to these equations.
We refer to [11], where this is realized with a very similar notation.

2.1 Variational Formulation for the Model Problem

We will develop a new solution concept for the boundary value problem
(1.1), (1.2) as a theoretical foundation for the finite element method. For
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such a solution, the validity of the differential equation (1.1) is no longer re-
quired pointwise but in the sense of some integral average with “arbitrary”
weighting functions ϕ. In the same way, the boundary condition (1.2) will
be weakened by the renunciation of its pointwise validity.

For the present, we want to confine the considerations to the case of
homogeneous boundary conditions (i.e., g ≡ 0), and so we consider the
following homogeneous Dirichlet problem for the Poisson equation: Given
a function f : Ω→ R, find a function u : Ω→ R such that

−∆u = f in Ω , (2.1)
u = 0 on ∂Ω . (2.2)

In the following let Ω be a domain such that the integral theorem of
Gauss is valid, i.e. for any vector field q : Ω → Rd with components in
C(Ω) ∩ C1(Ω) it holds

∫

Ω
∇ · q(x) dx =

∫

∂Ω
ν(x) · q(x) dσ . (2.3)

Let the function u : Ω → R be a classical solution of (2.1), (2.2) in the
sense of Definition 1.1, which additionally satisfies u ∈ C1(Ω) to facili-
tate the reasoning. Next we consider arbitrary v ∈ C∞

0 (Ω) as so-called test
functions. The smoothness of these functions allows all operations of differ-
entiation, and furthermore, all derivatives of a function v ∈ C∞

0 (Ω) vanish
on the boundary ∂Ω. We multiply equation (2.1) by v, integrate the result
over Ω, and obtain

〈f, v〉0 =
∫

Ω
f(x)v(x) dx = −

∫

Ω
∇ · (∇u)(x) v(x) dx

=
∫

Ω
∇u(x) ·∇v(x) dx −

∫

∂Ω
∇u(x) · ν(x) v(x) dσ (2.4)

=
∫

Ω
∇u(x) ·∇v(x) dx .

The equality sign at the beginning of the second line of (2.4) is obtained
by integration by parts using the integral theorem of Gauss with q = v∇u .
The boundary integral vanishes because v = 0 holds on ∂Ω.

If we define, for u ∈ C1(Ω), v ∈ C∞
0 (Ω), a real-valued mapping a by

a(u, v) :=
∫

Ω

∇u(x) ·∇v(x) dx ,

then the classical solution of the boundary value problem satisfies the
identity

a(u, v) = 〈f, v〉0 for all v ∈ C∞
0 (Ω) . (2.5)
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The mapping a defines a scalar product on C∞
0 (Ω) that induces the norm

‖u‖a :=
√

a(u, u) =
{∫

Ω
|∇u|2 dx

}1/2

(2.6)

(see Appendix A.4 for these notions). Most of the properties of a
scalar product are obvious. Only the definiteness (A4.7) requires further
considerations. Namely, we have to show that

a(u, u) =
∫

Ω
(∇u ·∇u) (x) dx = 0 ⇐⇒ u ≡ 0 .

To prove this assertion, first we show that a(u, u) = 0 implies ∇u(x) = 0
for all x ∈ Ω. To do this, we suppose that there exists some point x̄ ∈ Ω
such that ∇u(x̄) -= 0. Then (∇u ·∇u) (x̄) = |∇u|2(x̄) > 0. Because of
the continuity of ∇u, a small neighbourhood G of x̄ exists with a positive
measure |G| and |∇u|(x) ≥ α > 0 for all x ∈ G. Since |∇u|2(x) ≥ 0 for all
x ∈ Ω, it follows that

∫

Ω
|∇u|2 (x) dx ≥ α2 |G| > 0 ,

which is in contradiction to a(u, u) = 0. Consequently, ∇u(x) = 0 holds
for all x ∈ Ω; i.e., u is constant in Ω. Since u(x) = 0 for all x ∈ ∂Ω, the
assertion follows.

Unfortunately, the space C∞
0 (Ω) is too small to play the part of the basic

space because the solution u does not belong to C∞
0 (Ω) in general. The

identity (2.4) is to be satisfied for a larger class of functions, which include,
as an example for v, the solution u and the finite element approximation
to u to be defined later.

For the present we define as the basic space V ,

V :=
{
u : Ω→ R

∣∣ u ∈ C(Ω̄) , ∂iu exists and is piecewise
continuous for all i = 1, . . . , d, u = 0 on ∂Ω

}
.

(2.7)

To say that ∂iu is piecewise continuous means that the domain Ω can be
decomposed as follows:

Ω̄ =
⋃

j

Ω̄j ,

with a finite number of open sets Ωj , with Ωj ∩Ωk = ∅ for j -= k , and ∂iu
is continuous on Ωj and it can continuously be extended on Ω̄j .

Then the following properties hold:

• a is a scalar product also on V ,
• C∞

0 (Ω) ⊂ V ,
• C∞

0 (Ω) is dense in V with respect to ‖·‖a; i.e., for any u ∈ V
a sequence (un)n∈N in C∞

0 (Ω) exists such that ‖un−u‖a → 0
for n →∞,

(2.8)
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• C∞
0 (Ω) is dense in V with respect to ‖ · ‖0. (2.9)

The first and second statements are obvious. The two others require a
certain technical effort. A more general statement will be formulated in
Theorem 3.7.

With that, we obtain from (2.5) the following result:

Lemma 2.1 Let u be a classical solution of (2.1), (2.2) and let u ∈ C1(Ω̄).
Then

a(u, v) = 〈f, v〉0 for all v ∈ V . (2.10)

Equation (2.10) is also called a variational equation.

Proof: Let v ∈ V . Then vn ∈ C∞
0 (Ω) exist with vn → v with respect

to ‖ · ‖0 and also to ‖ · ‖a. Therefore, it follows from the continuity of the
bilinear form with respect to ‖ · ‖a (see (A4.22)) and the continuity of the
functional defined by the right-hand side v .→ 〈f, v〉0 with respect to ‖ · ‖0

(because of the Cauchy–Schwarz inequality in L2(Ω)) that

〈f, vn〉0 → 〈f, v〉0 and a(u, vn) → a(u, v) for n →∞ .

Since a(u, vn) = 〈f, vn〉0, we get a(u, v) = 〈f, v〉0. !

The space V in the identity (2.10) can be further enlarged as long as (2.8)
and (2.9) will remain valid. This fact will be used later to give a correct
definition.

Definition 2.2 A function u ∈ V is called a weak (or variational) solution
of (2.1), (2.2) if the following variational equation holds:

a(u, v) = 〈f, v〉0 for all v ∈ V .

If u models e.g. the displacement of a membrane, this relation is called
the principle of virtual work.

Lemma 2.1 guarantees that a classical solution u is a weak solution.
The weak formulation has the following properties:

• It requires less smoothness: ∂iu has to be only piecewise continuous.

• The validity of the boundary condition is guaranteed by the definition
of the function space V .

We now show that the variational equation (2.10) has exactly the same
solution(s) as a minimization problem:

Lemma 2.3 The variational equation (2.10) has the same solutions u ∈ V
as the minimization problem

F (v) → min for all v ∈ V , (2.11)
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where

F (v) :=
1
2
a(v, v)− 〈f, v〉0

(
=

1
2
‖v‖2

a − 〈f, v〉0
)

.

Proof: (2.10) ⇒ (2.11):
Let u be a solution of (2.10) and let v ∈ V be chosen arbitrarily. We define
w := v − u ∈ V (because V is a vector space), i.e., v = u + w. Then, using
the bilinearity and symmetry, we have

F (v) =
1
2
a(u + w, u + w) − 〈f, u + w〉0

=
1
2
a(u, u) + a(u, w) +

1
2
a(w, w) − 〈f, u〉0 − 〈f, w〉0 (2.12)

= F (u) +
1
2
a(w, w) ≥ F (u) ,

where the last inequality follows from the positivity of a; i.e., (2.11) holds.
(2.10) ⇐ (2.11):

Let u be a solution of (2.11) and let v ∈ V , ε ∈ R be chosen arbitrarily. We
define g(ε) := F (u + εv) for ε ∈ R. Then

g(ε) = F (u + εv) ≥ F (u) = g(0) for all ε ∈ R ,

because u + εv ∈ V ; i.e., g has a global minimum at ε = 0.
It follows analogously to (2.12):

g(ε) =
1
2
a(u, u)− 〈f, u〉0 + ε (a(u, v)− 〈f, v〉0) +

ε2

2
a(v, v) .

Hence the function g is a quadratic polynomial in ε, and in particular,
g ∈ C1(R) is valid. Therefore we obtain the necessary condition

0 = g′(ε) = a(u, v)− 〈f, v〉0
for the existence of a minimum at ε = 0. Thus u solves (2.10), because
v ∈ V has been chosen arbitrarily. !

For applications e.g. in structural mechanics as above, the minimization
problem is called the principle of minimal potential energy.

Remark 2.4 Lemma 2.3 holds for general vector spaces V if a is a sym-
metric, positive bilinear form and the right-hand side 〈f, v〉0 is replaced by
b(v), where b : V → R is a linear mapping, a linear functional. Then the
variational equation reads as

find u ∈ V with a(u, v) = b(v) for all v ∈ V , (2.13)

and the minimization problem as

find u ∈ V with F (u) = min
{
F (v)

∣∣ v ∈ V
}

, (2.14)



2.1. Variational Formulation 51

where F (v) :=
1
2
a(v, v)− b(v) .

Lemma 2.5 The weak solution according to (2.10) (or (2.11)) is unique.

Proof: Let u1, u2 be two weak solutions, i.e.,

a(u1, v) = 〈f, v〉0 ,

a(u2, v) = 〈f, v〉0 ,
for all v ∈ V .

By subtraction, it follows that

a(u1 − u2, v) = 0 for all v ∈ V.

Choosing v = u1 − u2 implies a(u1 − u2, u1 − u2) = 0 and consequently
u1 = u2, because a is definite. !

Remark 2.6 Lemma 2.5 is generally valid if a is a definite bilinear form
and b is a linear form.

So far, we have defined two different norms on V : ‖ · ‖a and ‖ · ‖0. The
difference between these norms is essential because they are not equivalent
on the vector space V defined by (2.7), and consequently, they generate
different convergence concepts, as will be shown by the following example:

Example 2.7 Let Ω = (0, 1), i.e.

a(u, v) :=
∫ 1

0
u′v′ dx ,

and let vn : Ω→ R for n ≥ 2 be defined by (cf. Figure 2.1)

vn(x) =






nx , for 0 ≤ x ≤ 1
n ,

1 , for 1
n ≤ x ≤ 1− 1

n ,

n− nx , for 1− 1
n ≤ x ≤ 1 .

1

1

vn

1
n

n-1
n

Figure 2.1. The function vn.

Then

‖vn‖0 ≤
{∫ 1

0
1 dx

}1/2

= 1 ,
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‖vn‖a =

{∫ 1
n

0
n2 dx +

∫ 1

1− 1
n

n2 dx

}1/2

=
√

2n →∞ for n →∞ .

Therefore, there exists no constant C > 0 such that ‖v‖a ≤ C‖v‖0 for all
v ∈ V .

However, as we will show in Theorem 2.18, there exists a constant C > 0
such that the estimate

‖v‖0 ≤ C‖v‖a for all v ∈ V

holds; i.e., ‖ · ‖a is the stronger norm.
It is possible to enlarge the basic space V without violating the previous

statements. The enlargement is also necessary because, for instance, the
proof of the existence of a solution of the variational equation (2.13) or
the minimization problem (2.14) requires in general the completeness of V.
However, the actual definition of V does not imply the completeness, as
the following example shows:

Example 2.8 Let Ω = (0, 1) again and therefore

a(u, v) :=
∫ 1

0
u′v′ dx .

For u(x) := xα(1−x)α with α ∈
(

1
2 , 1

)
we consider the sequence of functions

un(x) :=






u(x) for x ∈
[

1
n , 1− 1

n

]
,

n u( 1
n )x for x ∈

[
0, 1

n

]
,

n u(1− 1
n ) (1− x) for x ∈

[
1− 1

n , 1
]

.

Then

‖un − um‖a → 0 for n, m →∞ ,

‖un − u‖a → 0 for n →∞ ,

but u /∈ V , where V is defined analogously to (2.7) with d = 1.

In Section 3.1 we will see that a vector space Ṽ normed with ‖ · ‖a exists
such that u ∈ Ṽ and V ⊂ Ṽ . Therefore, V is not complete with respect
to ‖ · ‖a; otherwise, u ∈ V must be valid. In fact, there exists a (unique)
completion of V with respect to ‖·‖a (see Appendix A.4, especially (A4.26)),
but we have to describe the new “functions” added by this process. Besides,
integration by parts must be valid such that a classical solution continues to
be also a weak solution (compare with Lemma 2.1). Therefore, the following
idea is unsuitable.

Attempt of a correct definition of V :
Let V be the set of all u with the property that ∂iu exists for all x ∈ Ω
without any requirements on ∂iu in the sense of a function.
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For instance, there exists Cantor’s function with the following properties:
f : [0, 1] → R, f ∈ C([0, 1]), f -= 0, f is not constant, f ′(x) exists with
f ′(x) = 0 for all x ∈ [0, 1].

Here the fundamental theorem of calculus, f(x) =
∫ x
0 f ′(s) ds+f(0), and

thus the principle of integration by parts, are no longer valid.
Consequently, additional conditions for ∂iu are necessary.

To prepare an adequate definition of the space V, we extend the definition
of derivatives by means of their action on averaging procedures. In order
to do this, we introduce the multi-index notation.

A vector α = (α1, . . . ,αd) of nonnegative integers αi ∈ {0, 1, 2, . . .} is
called a multi-index. The number |α| :=

∑d
i=1 αi denotes the order (or

length) of α.
For x ∈ Rd let

xα := xα1
1 · · ·xαd

d . (2.15)

A shorthand notation for the differential operations can be adopted by this:
For an appropriately differentiable function u let

∂αu := ∂α1
1 · · · ∂αd

d u . (2.16)

We can obtain this definition from (2.15) by replacing x by the symbolic
vector

∇ := (∂1, . . . , ∂d)
T

of the first partial derivatives.
For example, if d = 2 and α = (1, 2), then |α| = 3 and

∂αu = ∂1∂
2
2u =

∂3u

∂x1∂x2
2

.

Now let α be a multi-index of length k and let u ∈ Ck(Ω). We then
obtain for arbitrary test functions ϕ ∈ C∞

0 (Ω) by integration by parts
∫

Ω
∂αuϕ dx = (−1)k

∫

Ω
u ∂αϕ dx .

The boundary integrals vanish because ∂βϕ = 0 on ∂Ω for all multi-indices
β.

Therefore, we make the following definition:

Definition 2.9 v ∈ L2(Ω) is called the weak (or generalized) derivative
∂αu of u ∈ L2(Ω) for the multi-index α if for all ϕ ∈ C∞

0 (Ω),
∫

Ω
v ϕ dx = (−1)|α|

∫

Ω
u ∂αϕ dx .
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The weak derivative is well-defined because it is unique: Let v1, v2 ∈
L2(Ω) be two weak derivatives of u. It follows that

∫

Ω
(v1 − v2)ϕ dx = 0 for all ϕ ∈ C∞

0 (Ω) .

Since C∞
0 (Ω) is dense in L2(Ω), we can furthermore conclude that

∫

Ω
(v1 − v2)ϕ dx = 0 for all ϕ ∈ L2(Ω) .

If we now choose specifically ϕ = v1 − v2, we obtain

‖v1 − v2‖2
0 =

∫

Ω
(v1 − v2) (v1 − v2) dx = 0 ,

and v1 = v2 (a.e.) follows immediately. In particular, u ∈ Ck(Ω̄) has weak
derivatives ∂αu for α with |α| ≤ k, and the weak derivatives are identical
to the classical (pointwise) derivatives.

Also the differential operators of vector calculus can be given a weak
definition analogous to Definition 2.9. For example, for a vector field q
with components in L2(Ω), v ∈ L2(Ω) is the weak divergence v = ∇ · q if
for all ϕ ∈ C∞

0 (Ω)
∫

Ω
vϕ dx = −

∫

Ω
q ·∇ϕ dx .

The correct choice of the space V is the space H1
0 (Ω), which will be

defined below. First we define
H1(Ω) :=

{
u : Ω→ R

∣∣ u ∈ L2(Ω) , u has weak derivatives
∂iu ∈ L2(Ω) for all i = 1, . . . , d

}
.

(2.17)

A scalar product on H1(Ω) is defined by

〈u, v〉1 :=
∫

Ω
u(x)v(x) dx +

∫

Ω
∇u(x) ·∇v(x) dx (2.18)

with the norm

‖u‖1 :=
√
〈u, u〉1 =

{∫

Ω
|u(x)|2 dx +

∫

Ω
|∇u(x)|2 dx

}1/2

(2.19)

induced by this scalar product.
The above “temporary” definition (2.7) of V takes care of the boundary

condition u = 0 on ∂Ω by conditions for the functions. I.e. we want to
choose the basic space V analogously as:

H1
0 (Ω) :=

{
u ∈ H1(Ω)

∣∣ u = 0 on ∂Ω
}

. (2.20)

Here H1(Ω) and H1
0 (Ω) are special cases of so-called Sobolev spaces.

For Ω ⊂ Rd, d ≥ 2, H1(Ω) may contain unbounded functions. In par-
ticular, we have to examine carefully the meaning of u|∂Ω (∂Ω has the
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d-dimensional measure 0) and, in particular, u = 0 on ∂Ω. This will be
described in Section 3.1.

Exercises

2.1
(a) Consider the interval (−1, 1); prove that the function u(x) = |x| has

the generalized derivative u′(x) = sign(x).
(b) Does sign(x) have a generalized derivative?

2.2 Let Ω =
⋃N

l=1 Ωl, N ∈ N, where the bounded subdomains Ωl ⊂ R2

are pairwise disjoint and possess piecewise smooth boundaries. Show that
a function u ∈ C(Ω) with u|Ωl

∈ C1(Ωl), 1 ≤ l ≤ N, has a weak derivative
∂iu ∈ L2(Ω), i = 1, 2, that coincides in

⋃N
l=1 Ωl with the classical one.

2.3 Let V be the set of functions that are continuous and piecewise con-
tinuously differentiable on [0, 1] and that satisfy the additional conditions
u(0) = u(1) = 0. Show that there exist infinitely many elements in V that
minimize the functional

F (u) :=
∫ 1

0

{
1− [u′(x)]2

}2
dx.

2.2 The Finite Element Method
with Linear Elements

The weak formulation of the boundary value problem (2.1), (2.2) leads to
particular cases of the following general, here equivalent, problems:

Let V be a vector space, let a : V × V → R be a bilinear form, and let
b : V → R be a linear form.

Variational equation:

Find u ∈ V with a(u, v) = b(v) for all v ∈ V . (2.21)

Minimization problem:

Find u ∈ V with F (u) = min
{
F (v)

∣∣ v ∈ V
}

,

where F (v) =
1
2
a(v, v)− b(v) .

(2.22)

The discretization approach consists in the following procedure: Replace
V by a finite-dimensional subspace Vh; i.e., solve instead of (2.21) the finite-
dimensional variational equation,

find uh ∈ Vh with a(uh, v) = b(v) for all v ∈ Vh . (2.23)
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This approach is called the Galerkin method. Or solve instead of (2.22) the
finite-dimensional minimization problem,

find uh ∈ Vh with F (uh) = min
{
F (v)

∣∣ v ∈ Vh

}
. (2.24)

This approach is called the Ritz method.

It is clear from Lemma 2.3 and Remark 2.4 that the Galerkin method
and the Ritz method are equivalent for a positive and symmetric bilinear
form. The finite-dimensional subspace Vh is called an ansatz space.

The finite element method can be interpreted as a Galerkin method (and
in our example as a Ritz method, too) for an ansatz space with special
properties. In the following, these properties will be extracted by means of
the simplest example.

Let V be defined by (2.7) or let V = H1
0 (Ω).

The weak formulation of the boundary value problem (2.1), (2.2)
corresponds to the choice

a(u, v) :=
∫

Ω
∇u ·∇v dx , b(v) :=

∫

Ω
fv dx .

Let Ω ⊂ R2 be a domain with a polygonal boundary; i.e., the boundary
Γ of Ω consists of a finite number of straight-line segments as shown in
Figure 2.2.

Ω

Figure 2.2. Domain with a polygonal boundary.

Let Th be a partition of Ω into closed triangles K (i.e., including the
boundary ∂K) with the following properties:

(1) Ω = ∪K∈ThK;

(2) For K, K ′ ∈ Th, K -= K ′,

int (K) ∩ int (K ′) = ∅ , (2.25)

where int (K) denotes the open triangle (without the boundary ∂K).

(3) If K -= K ′ but K∩K ′ -= ∅, then K∩K ′ is either a point or a common
edge of K and K ′ (cf. Figure 2.3).

A partition of Ω with the properties (1), (2) is called a triangulation
of Ω. If, in addition, a partition of Ω satisfies property (3), it is called a
conforming triangulation (cf. Figure 2.4).
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Figure 2.3. Triangulations.

The triangles of a triangulation will be numbered K1, . . . , KN . The
subscript h indicates the fineness of the triangulation, e.g.,

h := max
{
diam (K)

∣∣ K ∈ Th

}
,

where diam (K) := sup
{
|x− y|

∣∣ x, y ∈ K
}

denotes the diameter of K.
Thus here h is the maximum length of the edges of all the triangles.
Sometimes, K ∈ Th is also called a (geometric) element of the partition.

The vertices of the triangles are called the nodes, and they will be
numbered

a1, a2, . . . , aM ,

i.e., ai = (xi, yi), i = 1, . . . , M , where M = M1 + M2 and

a1, . . . , aM1 ∈ Ω ,

aM1+1, . . . , aM ∈ ∂Ω .
(2.26)

This kind of arrangement of the nodes is chosen only for the sake
of simplicity of the notation and is not essential for the following
considerations.
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Figure 2.4. A conforming triangulation with N = 12, M = 11, M1 = 3, M2 = 8.

An approximation of the boundary value problem (2.1), (2.2) with linear
finite elements on a given triangulation Th of Ω is obtained if the ansatz
space Vh is defined as follows:

Vh :=
{
u ∈ C(Ω̄)

∣∣ u|K ∈ P1(K) for all K ∈ Th, u = 0 on ∂Ω
}

. (2.27)
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Here P1(K) denotes the set of polynomials of first degree (in 2 variables)
on K; i.e., p ∈ P1(K) ⇔ p(x, y) = α + βx + γy for all (x, y) ∈ K and for
fixed α,β, γ ∈ R.

Since p ∈ P1(K) is also defined on the space R×R, we use the short but
inaccurate notation P1 = P1(K); according to the context, the domain of
definition will be given as R× R or as a subset of it.

We have

Vh ⊂ V .

This is clear for the case of definition of V by (2.7) because ∂xu|K = const,
∂yu|K = const for K ∈ Th for all u ∈ Vh. If V = H1

0 (Ω), then this inclusion
is not so obvious. A proof will be given in Theorem 3.20 below.

An element u ∈ Vh is determined uniquely by the values u(ai), i =
1, . . . , M1 (the nodal values).

In particular, the given nodal values already enforce the continuity of the
piecewise linear composed functions. Correspondingly, the homogeneous
Dirichlet boundary condition is satisfied if the nodal values at the boundary
nodes are set to zero.

In the following, we will demonstrate these properties by an unnecessar-
ily involved proof. The reason is that this proof will introduce all of the
considerations that will lead to analogous statements for the more general
problems of Section 3.4.

Let Xh be the larger ansatz space consisting of continuous, piecewise
linear functions but regardless of any boundary conditions, i.e.,

Xh :=
{
u ∈ C(Ω̄)

∣∣ u|K ∈ P1(K) for all K ∈ Th

}
.

Lemma 2.10 For given values at the nodes a1, . . . , aM , the interpolation
problem in Xh is uniquely solvable. That is, if the values u1, . . . , uM are
given, then there exists a uniquely determined element

u ∈ Xh such that u(ai) = ui , i = 1, . . . , M .

If uj = 0 for j = M1 + 1, . . . , M , then it is even true that

u ∈ Vh .

Proof: (1) For any arbitrary K ∈ Th we consider the local interpolation
problem:

Find p = pK ∈ P1 such that p(ai) = ui , i = 1, 2, 3 , (2.28)

where ai, i = 1, 2, 3, denote the vertices of K, and the values ui, i = 1, 2, 3,
are given. First we show that problem (2.28) is uniquely solvable for a
particular triangle.

A solution of (2.28) for the so-called reference element K̂ (cf. Figure 2.5)
with the vertices â1 = (0, 0), â2 = (1, 0), â3 = (0, 1) is given by

p(x, y) = u1N1(x, y) + u2N2(x, y) + u3N3(x, y)
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0 1

1

x

y

K̂

Figure 2.5. Reference element K̂.

with the shape functions

N1(x, y) = 1− x− y ,

N2(x, y) = x ,

N3(x, y) = y .

(2.29)

Evidently, Ni ∈ P1, and furthermore,

Ni (âj) = δij =
{

1 for i = j ,
0 for i -= j ,

for i, j = 1, 2, 3 ,

and thus

p (âj) =
3∑

i=1

uiNi (âj) = uj for all j = 1, 2, 3 .

The uniqueness of the solution can be seen in the following way: If p1, p2

satisfy the interpolation problem (2.28) for the reference element, then for
p := p1 − p2 ∈ P1 we have

p (âi) = 0 , i = 1, 2, 3 .

Here p is given in the form p(x, y) = α + βx + γy. If we fix the second
variable y = 0, we obtain a polynomial function of one variable

p(x, 0) = α+ βx =: q(x) ∈ P1(R) .

The polynomial q satisfies q(0) = 0 = q(1), and q ≡ 0 follows by the
uniqueness of the polynomial interpolation in one variable; i.e., α = β = 0.
Analogously, we consider

q(y) := p(0, y) = α+ γy = γy ,

and we obtain from q(1) = 0 that γ = 0 and consequently p ≡ 0.
In fact, this additional proof of uniqueness is not necessary, because the

uniqueness already follows from the solvability of the interpolation problem
because of dimP1 = 3 (compare with Section 3.3).

Now we turn to the case of a general triangle K. A general triangle K is
mapped onto K̂ by an affine transformation (cf. Figure 2.6)

F : K̂ → K , F (x̂) = Bx̂ + d , (2.30)

where B ∈ R2,2, d ∈ R2 are such that F (âi) = ai.
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B = (b1, b2) and d are determined by the vertices ai of K as follows:

a1 = F (â1) = F (0) = d ,

a2 = F (â2) = b1 + d = b1 + a1 ,

a3 = F (â3) = b2 + d = b2 + a1 ;

i.e., b1 = a2−a1 and b2 = a3−a1. The matrix B is regular because a2−a1

and a3 − a1 are linearly independent, ensuring F (âi) = ai.
Since

K = conv {a1, a2, a3} :=

{
3∑

i=1

λiai

∣∣ 0 ≤ λi ≤ 1 ,
3∑

i=1

λi = 1

}

and especially K̂ = conv {â1, â2, â3}, F [K̂] = K follows from the fact that
the affine-linear mapping F satisfies

F

(
3∑

i=1

λiâi

)
=

3∑

i=1

λiF (âi) =
3∑

i=1

λiai

for 0 ≤ λi ≤ 1,
∑3

i=1 λi = 1.
In particular, the edges (where one λi is equal to 0) of K̂ are mapped

onto the edges of K.

K̂
x̂

ŷ

0

1

1

K

a
a

a

1

2

3

x

y

Figure 2.6. Affine-linear transformation.

Analogously, the considerations can be applied to the space Rd word for
word by replacing the set of indices {1, 2, 3} by {1, . . . , d + 1}. This will be
done in Section 3.3.

The polynomial space P1 does not change under the affine transforma-
tion F .

(2) We now prove that the local functions u|K can be composed
continuously:

For every K ∈ Th, let pK ∈ P1 be the unique solution of (2.28), where
the values u1, u2, u3 are the values ui1 , ui2 , ui3(i1, i2, i3 ∈ {1, . . . , M}) that
have to be interpolated at these nodes.

Let K, K ′ ∈ Th be two different elements that have a common edge E.
Then pK = pK′ on E is to be shown. This is valid because E can be
mapped onto [0, 1]× {0} by an affine transformation (cf. Figure 2.7). Then
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q1(x) = pK(x, 0) and q2(x) := pK′(x, 0) are elements of P1(R), and they
solve the same interpolation problem at the points x = 0 and x = 1; thus
q1 ≡ q2.

E 0 1

Figure 2.7. Affine-linear transformation of E on the reference element [0, 1].

Therefore, the definition of u by means of

u(x) = pK(x) for x ∈ K ∈ Th (2.31)

is unique, and this function satisfies u ∈ C(Ω̄) and u ∈ Xh.

(3) Finally, we will show that u = 0 on ∂Ω for u defined by (2.31) if
ui = 0 (i = M1 + 1, . . . , M) for the boundary nodes.
The boundary ∂Ω consists of edges of elements K ∈ Th. Let E be such
an edge; i.e., E has the vertices ai1 , ai2 with ij ∈ {M1 + 1, . . . , M}. The
given boundary values yield u(aij ) = 0 for j = 1, 2. By means of an affine
transformation analogously to the above one we obtain that u|E is a poly-
nomial of first degree in one variable and that u|E vanishes at two points.
So u|E = 0, and the assertion follows. !

The following statement is an important consequence of the unique solv-
ability of the interpolation problem in Xh irrespective of its particular
definition: The interpolation conditions

ϕi(aj) = δij , j = 1, . . . , M , (2.32)

uniquely determine functions ϕi ∈ Xh for i = 1, . . . , M. For any u ∈ Xh,
we have

u(x) =
M∑

i=1

u(ai)ϕi(x) for x ∈ Ω , (2.33)

because both the left-hand side and the right-hand side functions belong
to Xh and are equal to u(ai) at x = ai.

The representation u =
∑M

i=1 αiϕi is unique, too, for otherwise, a func-
tion w ∈ Xh, w -= 0, such that w(ai) = 0 for all i = 1, . . . , M would
exist. Thus {ϕ1, . . . ,ϕM} is a basis of Xh, especially dimXh = M . This
basis is called a nodal basis because of (2.33). For the particular case of a
piecewise linear ansatz space on triangles, the basis functions are called
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pyramidal functions because of their shape. If the set of indices is re-
stricted to {1, . . . , M1}; i.e., we omit the basis functions corresponding to
the boundary nodes, then a basis of Vh will be obtained and dim Vh = M1.

Summary: The function values u(ai) at the nodes a1, . . . , aM are the de-
grees of freedom of u ∈ Xh, and the values at the interior points a1, . . . , aM1

are the degrees of freedom of u ∈ Vh.
The following consideration is valid for an arbitrary ansatz space Vh with

a basis {ϕ1, . . . ,ϕM}. The Galerkin method (2.23) reads as follows: Find
uh =

∑M
i=1 ξiϕi ∈ Vh such that a(uh, v) = b(v) for all v ∈ Vh. Since

v =
∑M

i=1 ηiϕi for ηi ∈ R, this is equivalent to

a(uh,ϕi) = b(ϕi) for all i = 1, . . . , M ⇐⇒

a




M∑

j=1

ξjϕj ,ϕi



 = b(ϕi) for all i = 1, . . . , M ⇐⇒

M∑

j=1

a (ϕj ,ϕi) ξj = b(ϕi) for all i = 1, . . . , M ⇐⇒

Ahξ = qh (2.34)

with Ah = (a(ϕj ,ϕi))ij ∈ RM,M , ξ = (ξ1, . . . , ξM )T and qh = (b(ϕi))i .
Therefore, the Galerkin method is equivalent to the system of equations
(2.34).

The considerations for deriving (2.34) show that, in the case of equiva-
lence of the Galerkin method with the Ritz method, the system of equations
(2.34) is equivalent to the minimization problem

Fh(ξ) = min
{
Fh(η)

∣∣ η ∈ RM
}

, (2.35)

where

Fh(η) =
1
2
ηT Ahη − qT

h η .

Because of the symmetry and positive definiteness, the equivalence of (2.34)
and (2.35) can be easily proven, and it forms the basis for the CG methods
that will be discussed in Section 5.2.

Usually, Ah is called stiffness matrix, and qh is called the load vector.
These names originated from mechanics. For our model problem, we have

(Ah)ij = a(ϕj ,ϕi) =
∫

Ω
∇ϕj ·∇ϕi dx ,

(qh)i = b(ϕi) =
∫

Ω
fϕi dx .

By applying the finite element method, we thus have to perform the
following steps:

(1) Determination of Ah, qh. This step is called assembling.
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(2) Solution of Ahξ = qh.

If the basis functions ϕi have the property ϕi(aj) = δij , then the solution
of system (2.34) satisfies the relation ξi = uh(ai), i.e., we obtain the vector
of the nodal values of the finite element approximation.

Using only the properties of the bilinear form a, we obtain the following
properties of Ah:

• Ah is symmetric for an arbitrary basis {ϕi} because a is symmetric.

• Ah is positive definite for an arbitrary basis {ϕi} because for u =∑M
i=1 ξiϕi,

ξT Ahξ =
∑M

i,j=1 ξja(ϕj ,ϕi)ξi =
∑M

j=1 ξja
(
ϕj ,

∑M
i=1 ξiϕi

)

= a
(∑M

j=1 ξjϕj ,
∑M

i=1 ξiϕi

)
= a(u, u) > 0

(2.36)
for ξ -= 0 and therefore u -≡ 0.
Here we have used only the positive definiteness of a.

Thus we have proven the following lemma.

Lemma 2.11 The Galerkin method (2.23) has a unique solution if a is a
symmetric, positive definite bilinear form and if b is a linear form.

In fact, as we will see in Theorem 3.1, the symmetry of a is not necessary.

• For a special basis (i.e., for a specific finite element method), Ah is a
sparse matrix, i.e., only a few entries (Ah)ij do not vanish. Evidently,

(Ah)ij -= 0 ⇔
∫

Ω
∇ϕj ·∇ϕi dx -= 0 .

This can happen only if suppϕi ∩ suppϕj -= ∅, as this property is
again necessary for supp∇ϕi ∩ supp∇ϕj -= ∅ because of

(supp∇ϕi ∩ supp∇ϕj) ⊂ (suppϕi ∩ suppϕj) .

The basis function ϕi vanishes on an element that does not contain
the node ai because of the uniqueness of the solution of the local
interpolation problem. Therefore,

suppϕi =
⋃

K∈Th
ai∈K

K ,

cf. Figure (2.8), and thus

(Ah)ij -= 0 ⇒ ai, aj ∈ K for some K ∈ Th ; (2.37)

i.e., ai, aj are neighbouring nodes.
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If we use the piecewise linear ansatz space on triangles and if ai is an interior
node in which L elements meet, then there exist at most L nondiagonal
entries in the ith row of Ah. This number is determined only by the type
of the triangulation, and it is independent of the fineness h, i.e., of the
number of unknowns of the system of equations.

iϕsupp

ia

Figure 2.8. Support of the nodal basis function.

Example 2.12 We consider again the boundary value problem (2.1), (2.2)
on Ω = (0, a)× (0, b) again, i.e.

−∆u = f in Ω ,

u = 0 on ∂Ω ,

under the condition (1.4). The triangulation on which the method is based
is created by a partition of Ω into squares with edges of length h and by
a subsequent uniform division of each square into two triangles according
to a fixed rule (Friedrichs–Keller triangulation). In order to do this, two
possibilities (a) and (b) (see Figures 2.9 and 2.10) exist.
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Figure 2.9. Possibilities of Friedrichs–Keller triangulation.

In both cases, a node aZ belongs to six elements, and consequently, it
has at most six neighbours:
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for (a):

)
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)
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Figure 2.10. Support of the basis function.

Case (a) becomes case (b) by the transformation x .→ a − x, y .→ y.
This transformation leaves the differential equation or the weak formula-
tion, respectively, unchanged. Thus the Galerkin method with the ansatz
space Vh according to (2.27) does not change, because P1 is invariant with
respect to the above transformation. Therefore, the discretization matrices
Ah according to (2.34) are seen to be identical by taking into account the
renumbering of the nodes by the transformation.

Thus it is sufficient to consider only one case, say (b). A node which is
far away from the boundary has 6 neighbouring nodes in {a1, . . . , aM1},
a node close to the boundary has less. The entries of the matrix in the
row corresponding to aZ depend on the derivatives of the basis function
ϕZ as well as on the derivatives of the basis functions corresponding to the
neighbouring nodes. The values of the partial derivatives of ϕZ in elements
having the common vertex aZ are listed in Table 2.1, where these elements
are numbered according to Figure 2.10.

I II III IV V VI

∂1ϕZ − 1
h 0 1

h
1
h 0 − 1

h

∂2ϕZ − 1
h − 1

h 0 1
h

1
h 0

Table 2.1. Derivatives of the basis functions.

Thus for the entries of the matrix in the row corresponding to aZ we
have

(Ah)Z,Z=a(ϕZ,ϕZ) =
∫

I∪...∪VI
|∇ϕZ|2 dx = 2

∫

I∪II∪III

[
(∂1ϕZ)2 +(∂2ϕZ)2

]
dx,

because the integrands are equal on I and IV, on II and V, and on III and
VI. Therefore

(Ah)Z,Z = 2
∫

I∪III
(∂1ϕZ)2 dx + 2

∫

I∪II
(∂2ϕZ)2 dx = 2h−2h2 + 2h−2h2 = 4 ,

(Ah)Z,N = a (ϕN,ϕZ) =
∫

I∪II
∇ϕN ·∇ϕZ dx

=
∫

I∪II
∂2ϕN∂2ϕZ dx =

∫

I∪II

(
−h−1

)
h−1dx = −1 ,
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because ∂1ϕZ = 0 on II and ∂1ϕN = 0 on I. The element I for ϕN corre-
sponds to the element V for ϕZ; i.e., ∂1ϕN = 0 on I, analogously, it follows
that ∂2ϕN = h−1 on I ∪ II. In the same way we get

(Ah)Z,E = (Ah)Z,W = (Ah)Z,S = −1

as well as

(Ah)Z,NW = a (ϕNW,ϕZ) =
∫

II∪III
∂1ϕNW ∂1ϕZ + ∂2ϕNW ∂2ϕZ dx = 0 .

The last identity is due to ∂1ϕNW = 0 on III and ∂2ϕNW = 0 on III,
because the elements V and VI for ϕZ agree with the elements III and II
for ϕNW, respectively.

Analogously, we obtain for the remaining value

(Ah)Z,SE = 0 ,

such that only 5 (instead of the maximum 7) nonzero entries per row exist.
The way of assembling the stiffness matrix described above is called node-

based assembling. However, most of the computer programs implementing
the finite element method use an element-based assembling, which will be
considered in Section 2.4.

If the nodes are numbered rowwise analogously to (1.13) and if the equa-
tions are divided by h2, then h−2Ah coincides with the discretization matrix
(1.14), which is known from the finite difference method. But here the
right-hand side is given by

h−2 (qh)i = h−2

∫

Ω
fϕi dx = h−2

∫

I∪...∪VI
fϕi dx

for aZ = ai and thus it is not identical to f(ai), the right-hand side of the
finite difference method.

However, if the trapezoidal rule, which is exact for g ∈ P1, is applied to
approximate the right-hand side according to

∫

K
g(x) dx ≈ 1

3
vol (K)

3∑

i=1

g(ai) (2.38)

for a triangle K with the vertices ai, i = 1, 2, 3 and with the area vol (K),
then

∫

I
fϕi dx ≈ 1

3
1
2
h2 (f(aZ) · 1 + f(aO) · 0 + f(aN) · 0) =

1
6
h2f(aZ).

Analogous results are obtained for the other triangles, and thus

h−2

∫

I∪...∪VI
fϕi dx ≈ f(aZ) .

In summary, we have the following result.
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Lemma 2.13 The finite element method with linear finite elements on a
triangulation according to Figure 2.9 and with the trapezoidal rule to ap-
proximate the right-hand side yields the same discretization as the finite
difference method from (1.7), (1.8).

We now return to the general formulation (2.21)–(2.24). The approach
of the Ritz method (2.24), instead of the Galerkin method (2.23), yields an
identical approximation because of the following result.

Lemma 2.14 If a is a symmetric and positive bilinear form and b is a
linear form, then the Galerkin method (2.23) and the Ritz method (2.24)
have identical solutions.

Proof: Apply Lemma 2.3 with Vh instead of V . !

Hence the finite element method is the Galerkin method (and in our
problem the Ritz method, too) for an ansatz space Vh with the following
properties:

• The coefficients have a local interpretation (here as nodal values).

The basis functions have a small support such that:

• the discretization matrix is sparse,

• the entries of the matrix can be assembled locally.

Finally, for the boundary value problem (2.1), (2.2) with the correspond-
ing weak formulation, we consider other ansatz spaces, which to some extent
do not have these properties:

(1) In Section 3.2.1, (3.28), we will show that mixed boundary conditions
need not be included in the ansatz space. Then we can choose the fi-
nite dimensional polynomial space Vh = span

{
1, x, y, xy, x2, y2, . . .

}

for it. But in this case, Ah is a dense matrix and ill-conditioned. Such
ansatz spaces yield the classical Ritz–Galerkin methods.

(2) Let Vh = span {ϕ1, . . . ,ϕN} and let ϕi -≡ 0 satisfy, for some λi,

a(ϕi, v) = λi 〈ϕi, v〉0 for all v ∈ V ,

i.e., the weak formulation of the eigenvalue problem

−∆u = λu in Ω ,

u = 0 on ∂Ω ,

for which eigenvalues 0 < λ1 ≤ λ2 ≤ . . . and corresponding eigen-
functions ϕi exist such that 〈ϕi,ϕj〉0 = δij (e.g., see [12, p. 335]). For
special domains Ω, (λi,ϕi) can be determined explicitly, and

(Ah)ij = a(ϕj ,ϕi) = λj 〈ϕj ,ϕi〉0 = λjδij
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is obtained. Thus Ah is a diagonal matrix, and the system of equations
Ahξ = qh can be solved without too great expense. But this kind of
assembling is possible with acceptable costs for special cases only.

(3) The (spectral) collocation method consists in the requirement that
the equations (2.1), (2.2) be satisfied only at certain distinct points
xi ∈ Ω, called collocation points, for a special polynomial space Vh.

The above examples describe Galerkin methods without having the typical
properties of a finite element method.

2.3 Stability and Convergence of the Finite
Element Method

We consider the general case of a variational equation of the form (2.21)
and the Galerkin method (2.23). Here let a be a bilinear form, which is not
necessarily symmetric, and let b be a linear form.

Then, if

e := u− uh (∈ V )

denotes the error, the important error equation

a(e, v) = 0 for all v ∈ Vh (2.39)

is satisfied. To obtain this equation, it is sufficient to consider equation
(2.21) only for v ∈ Vh ⊂ V and then to subtract from the result the
Galerkin equation (2.23).

If, in addition, a is symmetric and positive definite, i.e.,

a(u, v) = a(v, u) , a(u, u) ≥ 0 , a(u, u) = 0 ⇔ u = 0

(i.e., a is a scalar product), then the error is orthogonal to the space Vh

with respect to the scalar product a.
Therefore, the relation (2.39) is often called the orthogonality of the error

(to the ansatz space). In general, the element uh ∈ Vh with minimal distance
to u ∈ V with respect to the induced norm ‖ ·‖a is characterized by (2.39):

Lemma 2.15 Let Vh ⊂ V be a subspace, let a be a scalar product on V ,
and let ‖u‖a := a(u, u)1/2 be the norm induced by a. Then for uh ∈ Vh, it
follows that

a(u− uh, v) = 0 for all v ∈ Vh ⇔ (2.40)

‖u− uh‖a = min
{
‖u− v‖a

∣∣ v ∈ Vh

}
. (2.41)

Proof: For arbitrary but fixed u ∈ V , let b(v) := a(u, v) for v ∈ Vh.
Then b is a linear form on Vh, so (2.40) is a variational formulation on Vh.
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According to Lemma 2.14 or Lemma 2.3, this variational formulation has
the same solutions as

F (uh) = min
{
F (v)

∣∣ v ∈ Vh

}

with F (v) :=
1
2
a(v, v) − b(v) =

1
2
a(v, v)− a(u, v) .

Furthermore, F has the same minima as the functional
(
2F (v) + a(u, u)

)1/2
=

(
a(v, v) − 2a(u, v) + a(u, u)

)1/2

=
(
a(u− v, u − v)

)1/2
= ‖u− v‖a ,

because the additional term a(u, u) is a constant. Therefore, F has the
same minima as (2.41). !

If an approximation uh of u is to be sought exclusively in Vh, then the
element uh, determined by the Galerkin method, is the optimal choice with
respect to ‖ · ‖a.

A general, not necessarily symmetric, bilinear form a is assumed to satisfy
the following conditions, where ‖ · ‖ denotes a norm on V :

• a is continuous with respect to ‖ ·‖; i.e., there exists M > 0 such that

|a(u, v)| ≤ M‖u‖‖v‖ for all u, v ∈ V ; (2.42)

• a is V -elliptic; i.e., there exists α > 0 such that

a(u, u) ≥ α‖u‖2 for u ∈ V . (2.43)

If a is a scalar product, then (2.42) with M = 1 and (2.43) (as equality)
with α = 1 are valid for the induced norm ‖ · ‖ := ‖ · ‖a due to the
Cauchy–Schwarz inequality.

The V -ellipticity is an essential condition for the unique existence of a
solution of the variational equation (2.21) and of the boundary value prob-
lem described by it, which will be presented in more detail in Sections 3.1
and 3.2. It also implies — without further conditions — the stability of the
Galerkin approximation.

Lemma 2.16 The Galerkin solution uh according to (2.23) is stable in
the following sense:

‖uh‖ ≤
1
α
‖b‖ independently of h , (2.44)

where

‖b‖ := sup
{
|b(v)|
‖v‖

∣∣∣ v ∈ V , v -= 0
}

.
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Proof: In the case uh = 0, there is nothing to prove. Otherwise, from
a(uh, v) = b(v) for all v ∈ Vh, it follows that

α‖uh‖2 ≤ a(uh, uh) = b(uh) ≤ |b(uh)|
‖uh‖

‖uh‖ ≤ ‖b‖ ‖uh‖.

Dividing this relation by α‖uh‖, we get the assertion. !

Moreover, the approximation property (2.41) holds up to a constant:

Theorem 2.17 (Céa’s lemma)
Assume (2.42), (2.43). Then the following error estimate for the Galerkin
solution holds:

‖u− uh‖ ≤
M

α
min

{
‖u− v‖

∣∣ v ∈ Vh

}
. (2.45)

Proof: If ‖u − uh‖ = 0, then there is nothing to prove. Otherwise, let
v ∈ Vh be arbitrary. Because of the error equation (2.39) and uh − v ∈ Vh,

a(u− uh, uh − v) = 0 .

Therefore, using (2.43) we have

α‖u− uh‖2 ≤ a(u− uh, u− uh) = a(u− uh, u− uh) + a(u− uh, uh − v)
= a(u− uh, u− v) .

Furthermore, by means of (2.42) we obtain

α‖u− uh‖2 ≤ a(u− uh, u− v) ≤ M‖u− uh‖ ‖u− v‖ for arbitrary v ∈ Vh .

Thus the assertion follows by division by α‖u− uh‖. !

Therefore also in general, in order to get an asymptotic error estimate
in h, it is sufficient to estimate the best approximation error of Vh, i.e.,

min
{
‖u− v‖

∣∣ v ∈ Vh

}
.

However, this consideration is meaningful only in those cases where M/α
is not too large. Section 3.2 shows that this condition is no longer satisfied
for convection-dominated problems. Therefore, the Galerkin approach has
to be modified, which will be described in Chapter 9.

We want to apply the theory developed up to now to the weak formula-
tion of the boundary value problem (2.1), (2.2) with V according to (2.7)
or (2.20) and Vh according to (2.27). According to (2.4) the bilinear form
a and the linear form b read as

a(u, v) =
∫

Ω
∇u ·∇v dx , b(v) =

∫

Ω
fv dx .

In order to guarantee that the linear form b is well-defined on V, it is suffi-
cient to assume that the right-hand side f of the boundary value problem
belongs to L2(Ω).
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Since a is a scalar product on V ,

‖u‖ = ‖u‖a =
(∫

Ω
|∇u|2 dx

)1/2

is an appropriate norm. Alternatively, the norm introduced in (2.19) for
V = H1

0 (Ω) can be taken as

‖u‖1 =
(∫

Ω
|u(x)|2 dx +

∫

Ω
|∇u(x)|2 dx

)1/2

.

In the latter case, the question arises whether the conditions (2.42) and
(2.43) are still satisfied. Indeed,

|a(u, v)| ≤ ‖u‖a‖v‖a ≤ ‖u‖1‖v‖1 for all u, v ∈ V .

The first inequality follows from the Cauchy–Schwarz inequality for the
scalar product a, and the second inequality follows from the trivial estimate

‖u‖a =
(∫

Ω
|∇u(x)|2 dx

)1/2

≤ ‖u‖1 for all u ∈ V .

Thus a is continuous with respect to ‖ · ‖1 with M = 1.
The V -ellipticity of a, i.e., the property

a(u, u) = ‖u‖2
a ≥ α‖u‖2

1 for some α > 0 and all u ∈ V ,

is not valid in general for V = H1(Ω). However, in the present situation
of V = H1

0 (Ω) it is valid because of the incorporation of the boundary
condition into the definition of V :

Theorem 2.18 (Poincaré) Let Ω ⊂ Rn be open and bounded. Then a
constant C > 0 exists (depending on Ω) such that

‖u‖0 ≤ C

(∫

Ω
|∇u(x)|2 dx

)1/2

for all u ∈ H1
0 (Ω) .

Proof: Cf. [13]. For a special case, see Exercise 2.5. !

Thus (2.43) is satisfied, for instance with

α =
1

1 + C2
,

(see also (3.26) below) and thus in particular

α‖u‖2
1 ≤ a(u, u) = ‖u‖2

a ≤ ‖u‖2
1 for all u ∈ V , (2.46)
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i.e., the norms ‖ · ‖1 and ‖ · ‖a are equivalent on V = H1
0 (Ω) and therefore

they generate the same convergence concept:

uh → u with respect to ‖ · ‖1 ⇔ ‖uh − u‖1 → 0

⇔ ‖uh − u‖a → 0 ⇔ uh → u with respect to ‖ · ‖a .

In summary the estimate (2.45) holds for ‖ · ‖ = ‖ · ‖1 with the constant
1/α.

Because of the Cauchy–Schwarz inequality for the scalar product on
L2(Ω) and

b(v) =
∫

Ω
f(x)v(x) dx ,

i.e., |b(v)| ≤ ‖f‖0 ‖v‖0 ≤ ‖f‖0 ‖v‖1, and thus ‖b‖ ≤ ‖f‖0, the stability
estimate (2.44) for a right-hand side f ∈ L2(Ω) takes the particular form

‖uh‖1 ≤
1
α
‖f‖0 .

Up to now, our considerations have been independent of the special form
of Vh. Now we make use of the choice of Vh according to (2.27). In order
to obtain an estimate of the approximation error of Vh, it is sufficient to
estimate the term ‖u− v̄‖ for some special element v̄ ∈ Vh. For this element
v̄ ∈ Vh, we choose the interpolant Ih(u), where

Ih :
{
u ∈ C(Ω̄)

∣∣ u = 0 on ∂Ω
}
→ Vh ,

u .→ Ih(u) with Ih(u)(ai) = u(ai) .
(2.47)

This interpolant exists and is unique (Lemma 2.10). Obviously,

min
{
‖u− v‖1

∣∣ v ∈ Vh

}
≤ ‖u− Ih(u)‖1 for u ∈ C(Ω̄) and u = 0 on ∂Ω .

If the weak solution u possesses weak derivatives of second order, then for
certain sufficiently fine triangulations Th, i.e., 0 < h ≤ h̄ for some h̄ > 0,
an estimate of the type

‖u− Ih(u)‖1 ≤ Ch (2.48)

holds, where C depends on u but is independent of h (cf. (3.88)). The
proof of this estimate will be explained in Section 3.4, where also sufficient
conditions on the family of triangulations (Th)h will be specified.

Exercises

2.4 Let a(u, v) :=
∫ 1
0 x2u′v′dx for arbitrary u, v ∈ H1

0 (0, 1).

(a) Show that there is no constant C1 > 0 such that the inequality

a(u, u) ≥ C1

∫ 1

0
(u′)2 dx for all u ∈ H1

0 (0, 1)
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is valid.
(b) Now let Th := {(xi−1, xi)}N

i=1, N ∈ N, be an equidistant partition of
(0, 1) with the parameter h = 1/N and Vh := span {ϕi}N−1

i=1 , where

ϕi(x) :=






(x− xi−1)/h in (xi−1, xi) ,
(xi+1 − x)/h in (xi, xi+1) ,
0 otherwise .

Does there exist a constant C2 > 0 with

a(uh, uh) ≥ C2

∫ 1

0
(u′

h)2 dx for all uh ∈ Vh ?

2.5
(a) For Ω := (α,β)× (γ, δ) and V according to (2.7), prove the inequality

of Poincaré: There exists a positive constant C with

‖u‖0 ≤ C‖u‖a for all u ∈ V .

Hint: Start with the relation u(x, y) =
x∫
α
∂xu(s, y) ds .

(b) For Ω := (α,β) and v ∈ C([α,β]) with a piecewise continuous
derivative v′ and v(γ) = 0 for some γ ∈ [α,β], show that

‖v‖0 ≤ (β − α)‖v′‖0 .

2.6 Let Ω := (0, 1)×(0, 1). Given f ∈ C(Ω), discretize the boundary value
problem −∆u = f in Ω, u = 0 on ∂Ω, by means of the usual five-point
difference stencil as well as by means of the finite element method with
linear elements. A quadratic grid as well as the corresponding Friedrichs–
Keller triangulation will be used.

Prove the following stability estimates for the matrix of the linear system
of equations:

(a) ‖A−1
h ‖∞ ≤ 1

8
, (b) ‖A−1

h ‖2 ≤
1
16

, (c) ‖A−1
h ‖0 ≤ 1 ,

where ‖ · ‖∞, ‖ · ‖2 denote the maximum row sum norm and the spectral
norm of a matrix, respectively, and ‖A−1

h ‖0 := supvh∈Vh
‖vh‖2

0/‖vh‖2
a with

‖vh‖2
a :=

∫
Ω |∇vh|2 dx.

Comment: The constant in (c) is not optimal.

2.7 Let Ω be a domain with polygonal boundary and let Th be a conform-
ing triangulation of Ω. The nodes ai of the triangulation are enumerated
from 1 to M.

Let the triangulation satisfy the following assumption: There exist
constants C1, C2 > 0 such that for all triangles K ∈ Th the relation

C1h
2 ≤ vol (K) ≤ C2h

2
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is satisfied. h denotes the maximum of the diameters of all elements of Th.

(a) Show the equivalence of the following norms for uh ∈ Vh in the space
Vh of continuous, piecewise linear functions over Ω :

‖uh‖0 :=
{∫

Ω
|uh|2 dx

}1/2

, ‖uh‖0,h := h

{ M∑

i=1

u2
h(ai)

}1/2

.

(b) Consider the special case Ω := (0, 1)×(0, 1) with the Friedrichs–Keller
triangulation as well as the subspace Vh ∩H1

0 (Ω) and find “as good
as possible” constants in the corresponding equivalence estimate.

2.4 The Implementation of the Finite Element
Method: Part 1

In this section we will consider some aspects of the implementation of
the finite element method using linear ansatz functions on triangles for
the model boundary value problem (1.1), (1.2) on a polygonally bounded
domain Ω ⊂ R2. The case of inhomogeneous Dirichlet boundary conditions
will be treated also to a certain extent as far as it is possible up to now.

2.4.1 Preprocessor

The main task of the preprocessor is to determine the triangulation.
An input file might have the following format:
Let the number of variables (including also the boundary nodes for

Dirichlet boundary conditions) be M. We generate the following list:
x-coordinate of node 1 y-coordinate of node 1

. . . . . .
x-coordinate of node M y-coordinate of node M

Let the number of (triangular) elements be N. These elements will be
listed in the element-node table. Here, every element is characterized by the
indices of the nodes corresponding to this element in a well-defined order
(e.g., counterclockwise); cf. Figure 2.11.

10

11

4

7

Figure 2.11. Element no. 10 with nodes nos. 4, 11, 7.
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For example, the 10th row of the element-node table contains the entry

4 11 7

Usually, a triangulation is generated by a triangulation algorithm. A short
overview on methods for the grid generation will be given in Section 4.1.
One of the simplest versions of a grid generation algorithm has the following
structure (cf. Figure 2.12):

Figure 2.12. Refinement by quartering.

Prescribe a coarse triangulation (according to the above format) and
refine this triangulation (repeatedly) by subdividing a triangle into 4 con-
gruent triangles by connecting the midpoints of the edges with straight
lines.

If this uniform refinement is done globally, i.e., for all triangles of the
coarse grid, then triangles are created that have the same interior angles as
the elements of the coarse triangulation. Thus the quality of the triangu-
lation, indicated, for example, by the ratios of the diameters of an element
and of its inscribed circle (see Definition 3.28), does not change. However,
if the subdivision is performed only locally, the resulting triangulation is
no longer admissible, in general. Such an inadmissible triangulation can be
corrected by bisection of the corresponding neighbouring (unrefined) tri-
angles. But this implies that some of the interior angles are bisected and
consequently, the quality of the triangulation becomes poorer if the bisec-
tion step is performed too frequently. The following algorithm circumvents
the depicted problem. It is due to R. Bank and is implemented, for example,
in the PLTMG code (see [4]).
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A Possible Refinement Algorithm
Let a (uniform) triangulation T be given (e.g., by repeated uniform refine-
ment of a coarse triangulation). The edges of this triangulation are called
red edges.

(1) Subdivide the edges according to a certain local refinement criterion
(introduction of new nodes) by successive bisection (cf. Figure 2.13).

.

.

.

.

.

.

.
.

.

.

..
.

.

Figure 2.13. New nodes on edges.

(2) If a triangle K ∈ T has on its edges in addition to the vertices two
or more nodes, then subdivide K into four congruent triangles.
Iterate over step 2 (cf. Figure 2.14).

(3) Subdivide the triangles with nodes at the midpoints of the edges into
2 triangles by bisection. This step introduces the so-called green edges.

(4) If the refinement is to be continued, first remove the green edges.

2.4.2 Assembling

Denote by ϕ1, . . . ,ϕM the global basis functions. Then the stiffness matrix
Ah has the following entries:

(Ah)ij =
∫

Ω
∇ϕj ·∇ϕi dx =

N∑

m=1

A(m)
ij

with

A(m)
ij =

∫

Km

∇ϕj ·∇ϕi dx .

Let a1, . . . , aM denote the nodes of the triangulation. Because of the
implication

A(m)
ij -= 0 ⇒ ai, aj ∈ Km

(cf. (2.37)), the element Km yields nonzero contributions for A(m)
ij only if

ai, aj ∈ Km at best. Such nonzero contributions are called element entries
of Ah. They add up to the entries of Ah.
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. . ..

. . .

. . ..

. . .

. . ..

. . .

..

..

..

..

..

..

:      green edges

Figure 2.14. Two refinement sequences.

In Example 2.12 we explained a node-based assembling of the stiffness
matrix. In contrast to this and on the basis of the above observations, in
the following we will perform an element-based assembling of the stiffness
matrix.

To assemble the entries of A(m), we will start from a local numbering
(cf. Figure 2.15) of the nodes by assigning the local numbers 1, 2, 3 to the
global node numbers r1, r2, r3 (numbered counterclockwise). In contrast to
the usual notation adopted in this book, here indices of vectors according to
the local numbering are included in parentheses and written as superscripts.
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1

3

2

m

3

2

1

r

r
r

K

Figure 2.15. Global (left) and local numbering.

Thus in fact, we generate
(
A(m)

rirj

)

i,j=1,2,3
as

(
Ã(m)

ij

)

i,j=1,2,3
.

To do this, we first perform a transformation of Km onto some reference
element and then we evaluate the integral on this element exactly.

Hence the entry of the element stiffness matrix reads as

Ã(m)
ij =

∫

Km

∇ϕrj ·∇ϕri dx .

The reference element K̂ is transformed onto the global element Km by
means of the relation F (x̂) = Bx̂ + d, therefore

Dx̂u(F (x̂)) = Dxu(F (x̂))Dx̂F (x̂) = Dxu(F (x̂))B ,

where Dxu denotes the row vector (∂1u, ∂2u), i.e., the corresponding dif-
ferential operator. Using the more standard notation in terms of gradients
and taking into consideration the relation B−T := (B−1)T , we obtain

∇xu (F (x̂)) = B−T∇x̂ (u (F (x̂))) (2.49)

and thus

Ã(m)
ij =

∫

K̂
∇xϕrj (F (x̂)) ·∇xϕri (F (x̂)) |det(DF (x̂))| dx̂

=
∫

K̂
B−T∇x̂

(
ϕrj (F (x̂))

)
· B−T∇x̂ (ϕri (F (x̂))) |det(B)| dx̂

=
∫

K̂
B−T∇x̂ϕ̂rj (x̂) · B−T∇x̂ϕ̂ri(x̂) |det(B)| dx̂ (2.50)

=
∫

K̂
B−T∇x̂Nj(x̂) · B−T∇x̂Ni(x̂) |det(B)| dx̂ ,

where the transformed basis functions ϕ̂ri , ϕ̂(x̂) := ϕ(F (x̂)) coincide with
the local basis functions on K̂, i.e., with the shape functions Ni:

ϕ̂ri(x̂) = Ni(x̂) for x̂ ∈ K̂ .

The shape functions Ni have been defined in (2.29) (where (x, y) there must
be replaced by (x̂1, x̂2) here) for the standard reference element defined
there.
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Introducing the matrix C :=
(
B−1

) (
B−1

)T =
(
BT B

)−1, we can write

Ã(m)
ij =

∫

K̂
C∇x̂Nj(x̂) ·∇x̂Ni(x̂) |det(B)| dx̂ . (2.51)

Denoting the matrix B by B =
(
b(1), b(2)

)
, then it follows that

C =

(
b(1) · b(1) b(1) · b(2)

b(1) · b(2) b(2) · b(2)

)−1

=
1

det(B)2

(
b(2) · b(2) −b(1) · b(2)

−b(1) · b(2) b(1) · b(1)

)

because det(BT B) = det(B)2. The previous considerations can be eas-
ily extended to the computation of the stiffness matrices of more general
differential operators like

∫

Ω
K(x)∇ϕj(x) ·∇ϕi(x) dx

(cf. Section 3.5). For the standard reference element, which we use from
now on, we have b(1) = a(2) − a(1), b(2) = a(3) − a(1). Here a(i), i = 1, 2, 3,
are the locally numbered nodes of K interpreted as vectors of R2.

From now on we make also use of the special form of the stiffness matrix
and obtain

Ã(m)
ij = γ1

∫

K̂
∂x̂1Nj ∂x̂1Ni dx̂

+ γ2
∫

K̂
∂x̂1Nj ∂x̂2Ni + ∂x̂2Nj ∂x̂1Ni dx̂ (2.52)

+ γ3
∫

K̂
∂x̂2Nj ∂x̂2Ni dx̂

with

γ1 := c11| det(B)| =
1

| det(B)|

(
a(3) − a(1)

)
·
(
a(3) − a(1)

)
,

γ2 := c12| det(B)| = − 1
| det(B)|

(
a(2) − a(1)

)
·
(
a(3) − a(1)

)
,

γ3 := c22| det(B)| =
1

| det(B)|

(
a(2) − a(1)

)
·
(
a(2) − a(1)

)
.

In the implementation it is advisable to compute the values γi just once
from the local geometrical information given in the form of the vertices
a(i) = ari and to store them permanently.

Thus we obtain for the local stiffness matrix

Ã(m) = γ1S1 + γ2S2 + γ3S3 (2.53)

with

S1 :=
(∫

K̂
∂x̂1Nj∂x̂1Ni dx̂

)

ij

,
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S2 :=
(∫

K̂
∂x̂1Nj∂x̂2Ni + ∂x̂2Nj∂x̂1Ni dx̂

)

ij

,

S3 :=
(∫

K̂
∂x̂2Nj∂x̂2Ni dx̂

)

ij

.

An explicit computation of the matrices Si is possible because the
integrands are constant, and also these matrices can be stored permanently:

S1 =
1
2




1 −1 0

−1 1 0
0 0 0



 , S2 =
1
2




2 −1 −1

−1 0 1
−1 1 0



 , S3 =
1
2




1 0 −1
0 0 0

−1 0 1



 .

The right-hand side (qh)i =
∫
Ω f(x)ϕi(x) dx can be treated in a similar

manner:

(qh)i =
N∑

m=1

(
q(m)

)
i

with
(
q(m)

)
i

=
∫

Km

f(x)ϕi(x) dx ( -= 0 ⇒ ai ∈ Km) .

Again, we transform the global numbering
(
q(m)
ri

)
i=1,2,3

for the triangle

Km = conv {ar1 , ar2 , ar3} into the local numbering
(
q̃(m)
i

)
i=1,2,3

. Anal-
ogously to the determination of the entries of the stiffness matrix, we
have

q̃(m)
i =

∫

K̂
f (F (x̂)) ϕri (F (x̂)) | det(B)| dx̂

=
∫

K̂
f̂(x̂)Ni(x̂) | det(B)| dx̂ ,

where f̂(x̂) := f(F (x̂)) for x̂ ∈ K̂.
In general, this integral cannot be evaluated exactly. Therefore, it has to

be approximated by a quadrature rule.
A quadrature rule for

∫
K̂ g(x̂) dx̂ is of the type

R∑

k=1

ωk g
(
b̂(k)

)

with certain weights ωk and quadrature points b̂(k). As an example, we take
the trapezoidal rule (cf. (2.38)), where

b̂(1) = â1 = (0, 0) , b̂(2) = â2 = (1, 0) , b̂(3) = â3 = (0, 1) ,

ωk = 1
6 , k = 1, 2, 3 .



2.4. The Implementation of the Finite Element Method: Part 1 81

Thus for arbitrary but fixed quadrature rules, we have

q̃(m)
i ≈

R∑

k=1

ωk f̂
(
b̂(k)

)
Ni

(
b̂(k)

)
| det(B)| . (2.54)

Of course, the application of different quadrature rules on different elements
is possible, too. The values Ni

(
b̂(k)

)
, i = 1, 2, 3, k = 1, . . . , R, should be

evaluated just once and should be stored. The discussion on the use of
quadrature rules will be continued in Sections 3.5.2 and 3.6.

In summary, the following algorithm provides the assembling of the
stiffness matrix and the right-hand side:

Loop over all elements m = 1, . . . , N :

• Allocating a local numbering to the nodes based on the element-node
table: 1 .→ r1, 2 .→ r2, 3 .→ r3.

• Assembling of the element stiffness matrix Ã(m) according to (2.51)
or (2.53).
Assembling of the right-hand side according to (2.54).

• Loop over i, j = 1, 2, 3:

(Ah)rirj
:= (Ah)rirj

+ Ã(m)
ij ,

(qh)ri
:= (qh)ri

+ q̃(m)
i .

For the sake of efficiency of this algorithm, it is necessary to adjust the
memory structure to the particular situation; we will see how this can be
done in Section 2.5.

2.4.3 Realization of Dirichlet Boundary Conditions: Part 1

Nodes where a Dirichlet boundary condition is prescribed must be labeled
specially, here, for instance, by the convention M = M1 + M2, where the
nodes numbered from M1 + 1 to M correspond to the Dirichlet boundary
nodes. In more general cases, other realizations are to be preferred.

In the first step of assembling of stiffness matrix and the load vector, the
Dirichlet nodes are treated like all the other ones. After this, the Dirichlet
nodes are considered separately. If such a node has the number j, the
boundary condition is included by the following procedure:

Replace the jth row and the jth column (for conservation of the sym-
metry) of Ah by the jth unit vector and (qh)j by g(aj), if u(x) = g(x) is
prescribed for x ∈ ∂Ω. If the jth column is replaced by the unit vector, the
right-hand side (qh)i for i -= j must be modified to (qh)i − (Ah)ijg(aj). In
other words, the contributions caused by the Dirichlet boundary condition
are included into the right-hand side. This is exactly the elimination that
led to the form (1.10), (1.11) in Chapter 1.
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2.5 Solving Sparse Systems of Linear Equations
by Direct Methods

Let A be an M×M matrix. Given a vector q ∈ RM , we consider the system
of linear equations

Aξ = q .

The matrices arising from the finite element discretization are sparse; i.e.,
they have a bounded number of nonzero entries per row independent of
the dimension of the system of equations. For the simple example of Sec-
tion 2.2, this bound is determined by the number of neighbouring nodes
(see (2.37)). Methods for solving systems of equations should take advan-
tage of the sparse structure. For iterative methods, which will be examined
in Chapter 5, this is easier to reach than for direct methods. Therefore, the
importance of direct methods has decreased. Nevertheless, in adapted form
and for small or medium size problems, they are still the method of choice.

Elimination without Pivoting using Band Structure
In the general case, where the matrix A is assumed only to be nonsingular,
there exist M ×M matrices P , L, U such that

PA = LU .

Here P is a permutation matrix, L is a scaled lower triangular matrix, and
U is an upper triangular matrix; i.e., they have the form

L =




1 0

. . .
lij 1



 , U =




u11 uij

. . .
0 uMM



 .

This decomposition corresponds to the Gaussian elimination method with
pivoting. The method is very easy and has favourable properties with re-
spect to the sparse structure, if pivoting is not necessary (i.e., P = I,
A = LU). Then the matrix A is called LU factorizable.

Denote by Ak the leading principal submatrix of A of dimension k × k,
i.e.,

Ak :=




a11 · · · a1k
...

. . .
...

ak1 · · · akk



 ,

and suppose that it already has been factorized as Ak = LkUk. This is
obviously possible for k = 1: A1 = (a11) = (1)(a11). The matrix Ak+1 can
be represented in the form of a block matrix

Ak+1 =

(
Ak b

cT d

)
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with b, c ∈ Rk, d ∈ R.
Using the ansatz

Lk+1 =

(
Lk 0

lT 1

)
, Uk+1 =

(
Uk u

0 s

)

with unknown vectors u, l ∈ Rk and s ∈ R, it follows that

Ak+1 = Lk+1Uk+1 ⇐⇒ Lku = b , UT
k l = c , lT u + s = d . (2.55)

From this, we have the following result:
Let A be nonsingular. Then lower and upper triangular matrices
L, U exist with A = LU if and only if Ak is nonsingular for all
1 ≤ k ≤ M . For this case, L and U are determined uniquely.

(2.56)

Furthermore, from (2.55) we have the following important consequences:
If the first l components of the vector b are equal to zero, then this is valid
for the vector u, too:

If b =
(

0
β

)
, then u also has the structure u =

(
0
'

)
.

Similarly,

c =
(

0
γ

)
implies the structure l =

(
0
λ

)
.

For example, if the matrix A has a structure as shown in Figure 2.16,
then the zeros outside of the surrounded entries are preserved after the
LU factorization. Before we introduce appropriate definitions to generalize
these results, we want to consider the special case of symmetric matrices.

A =





| ∗ | 0 | ∗ | 0 0
0 | ∗ ∗ | 0 | ∗ |

| ∗ ∗ ∗ ∗ ∗ |
0 0 | ∗ ∗ 0 |
0 | ∗ ∗ 0 ∗ |





Figure 2.16. Profile of a matrix.

If A is as before nonsingular and LU factorizable, then U = DLT with a
diagonal matrix D = diag (di), and therefore

A = LDLT .

This is true because A has the form A = LDŨ , where the upper triangular
matrix Ũ satisfies the scaling condition ũii = 1 for all i = 1, . . . , M . Such
a factorization is unique, and thus

A = AT implies LT = Ũ , therefore A = LDLT .
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If in particular A is symmetric and positive definite, then also di > 0 is
valid. Thus exactly one matrix L̃ of the form

L̃ =




l11 0

. . .
lij lMM



 with lii > 0 for all i

exists such that

A = L̃L̃T , the so-called Cholesky decomposition.

We have

L̃Chol = LGauss

√
D , where

√
D := diag

(√
di

)
.

This shows that the Cholesky method for the determination of the Cholesky
factor L̃ also preserves certain zeros of A in the same way as the Gaussian
elimination without pivoting.

In what follows, we want to specify the set of zeros that is preserved by
Gaussian elimination without pivoting. We will not consider a symmetric
matrix; but for the sake of simplicity we will consider a matrix with a
symmetric distribution of its entries.

Definition 2.19 Let A ∈ RM×M be a matrix such that aii -= 0 for i =
1, . . . , M and

aij -= 0 if and only if aji -= 0 for all i, j = 1, . . . , M . (2.57)

We define, for i = 1, . . . , M,

fi(A) := min
{
j
∣∣ aij -= 0 , 1 ≤ j ≤ i

}
.

Then

mi(A) := i− fi(A)

is called the ith (left-hand side) row bandwidth of A.
The bandwidth of a matrix A that satisfies (2.57) is the number

m(A) := max
1≤i≤M

mi(A) = max
{
i− j

∣∣ aij -= 0 , 1 ≤ j ≤ i ≤ M
}

.

The band of the matrix A is

B(A) :=
{
(i, j), (j, i)

∣∣ i−m(A) ≤ j ≤ i , 1 ≤ i ≤ M
}

.

The set

Env (A) :=
{
(i, j), (j, i)

∣∣ fi(A) ≤ j ≤ i , 1 ≤ i ≤ M
}

is called the hull or envelope of A. The number

p(A) := M + 2
M∑

i=1

mi(A)

is called the profile of A.
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The profile is the number of elements of Env(A).
For the matrix A in Figure 2.16 we have (m1(A), . . . , m5(A)) =

(0, 0, 2, 1, 3), m(A) = 3, and p(A) = 17.
Summarizing the above considerations, we have proved the following

theorem:

Theorem 2.20 Let A be a matrix with the symmetric structure (2.57).
Then the Cholesky method or the Gaussian elimination without pivoting
preserves the hull and in particular the bandwidth.

The hull may contain zeros that will be replaced by (nonzero) entries during
the decomposition process. Therefore, in order to keep this fill-in small, the
profile should be as small as possible.

Furthermore, in order to exploit the matrix structure for an efficient
assembling and storage, this structure (or some estimate of it) should be
known in advance, before the computation of the matrix entries is started.

For example, if A is a stiffness matrix with the entries

aij = a(ϕj ,ϕi) =
∫

Ω
∇ϕj ·∇ϕi dx ,

then the property

aij -= 0 ⇒ ai, aj are neighbouring nodes

can be used for the definition of an (eventually too large) symmetric matrix
structure. This is also valid for the case of a nonsymmetric bilinear form
and thus a nonsymmetric stiffness matrix. Also in this case, the definition
of fi(A) can be replaced by

fi(A) := min
{
j
∣∣ 1 ≤ j ≤ i , j is a neighbouring node of i

}
.

Since the characterization (2.56) of the possibility of the Gaussian elim-
ination without pivoting cannot be checked directly, we have to specify
sufficient conditions. Examples for such conditions are the following (see
[34]):

• A is symmetric and positive definite,
• A is an M-matrix.

Sufficient conditions for this property were given in (1.32) and (1.32)∗.
In Section 3.9, geometrical conditions for the family of triangula-
tions (Th)h will be derived that guarantee that the finite element
discretization considered here creates an M-matrix.

Data Structures
For sparse matrices, it is appropriate to store only the components within
the band or the hull. A symmetric matrix A ∈ RM×M with bandwidth
m can be stored in M(m + 1) memory positions. By means of the index
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conversion aik # bi,k−i+m+1 for k ≤ i, the matrix

A =





a11 a12 · · · a1,m+1

a21 a22 · · ·
...

. . . 0
...

...
. . .

...
. . . . . .

am+1,1 am+1,2 · · · am+1,m+1
. . . . . . . . .

. . . . . . . . . . . . . . . . . .

0
. . . . . . . . . . . . . . .

aM,M−m · · · aM,M−1 aM,M





∈ RM×M

is mapped to the matrix

B =





0 · · · · · · 0 a11

0 · · · 0 a21 a22
...

...
...

0 am,1 · · · · · · am,m

am+1,1 · · · · · · am+1,m am+1,m+1
...

...
...

...
...

...
...

...
...

...
aM,M−m · · · · · · aM,M−1 aM,M





∈ RM×(m+1) .

The unused elements of B, i.e., (B)ij for i = 1, . . . , m, j = 1, . . . , m+1− i,
are here filled with zeros.

For a general band matrix, the matrix B ∈ RM×(2m+1) obtained by the
above conversion has the following form:

B =





0 · · · 0 a11 a12 · · · a1,m+1

0 · · · a21 a22 · · · · · · a2,m+2

...
...

...
...

...
...

0 am,1 · · · · · · · · · · · · am,2m

am+1,1 · · · · · · · · · · · · · · · am+1,2m+1

...
...

...
...

...
...

...
aM−m,M−2m · · · · · · · · · · · · · · · aM−m,M

aM−m+1,M−2m+1 · · · · · · · · · · · · aM−m+1,M 0
...

...
...

...
...

...
aM,M−m · · · · · · aM,M 0 · · · 0





.

Here, in the right lower part of the matrix, a further sector of unused
elements arose, which is also filled with zeros.

If the storage is based on the hull, additionally a pointer field is needed,
which points to the diagonal elements, for example. If the matrix is sym-
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metric, again the storage of the lower triangular matrix is sufficient. For
the matrix A from Figure 2.16 under the assumption that A is symmetric,
the pointer field could act as shown in Figure 2.17.

a11 a22 a31 a32 a33 a43 a44 a52 a53 a54 a55

$$$$$$/

1

$$$$$$/

2

"

5

)
)

)0

7

------------1

11

Figure 2.17. Linear storage of the hull.

Coupled Assembling and Decomposition
A formerly popular method, the so-called frontal method, performs
simultaneously assembling and the Cholesky factorization.

We consider this method for the example of the stiffness matrix Ah =
(aij) ∈ RM×M with bandwidth m (with the original numbering).

The method is based on the kth step of the Gaussian or Cholesky method
(cf. Figure 2.18).

0

0
Bk

k

k

Figure 2.18. kth step of the Cholesky method.

Only the entries of Bk are to be changed, i.e., only those elements aij

with k ≤ i, j ≤ k + m. The corresponding formula is

a(k+1)
ij = a(k)

ij − a(k)
ik

a(k)
kk

a(k)
kj , i, j = k + 1, . . . , k + m . (2.58)

Here, the upper indices indicate the steps of the elimination method, which
we store in aij . The entries aij are generated by summation of entries of



88 2. Finite Element Method for Poisson Equation

the element stiffness matrix of those elements K that contain nodes with
the indices i, j.

Furthermore, to perform the elimination step (2.58), only a(k)
ik , a(k)

kj for
i, j = k, . . . , k +m must be completely assembled; a(k)

ij , i, j = k +1, . . . , k +
m, can be replaced by ã(k)

ij if a(k+1)
ij is later defined by a(k+1)

ij := ã(k+1)
ij +

a(k)
ij − ã(k)

ij . That is, for the present, aij needs to consist of only a few
contributions of elements K with nodes i, j in K.

From these observations, the following algorithm is obtained. The kth
step for k = 1, . . . , M reads as follows:

• Assemble all of the missing contributions of elements K that contain
the node with index k.

• Compute A(k+1) by modification of the entries of Bk according to
(2.58).

• Store the kth row of A(k+1), also out of the main memory.

• Define Bk+1 (by a south-east shift).

Here the assembling is node-based and not element-based.
The advantage of this method is that Ah need not be completely assem-

bled and stored in the main memory, but only a matrix Bk ∈ R(m+1)×(m+1).
Of course, if M is not too large, there may be no advantage.

Bandwidth Reduction
The complexity, i.e., the number of operations, is crucial for the application
of a particular method:

The Cholesky method, applied to a symmetric matrix A ∈ RM×M with
bandwidth m, requires O(m2M) operations in order to compute L.

However, the bandwidth m of the stiffness matrix depends on the num-
bering of the nodes. Therefore, a numbering is to be found where the
number m is as small as possible.

We want to consider this again for the example of the Poisson equation on
the rectangle with the discretization according to Figure 2.9. Let the inte-
rior nodes have the coordinates (ih, jh) with i = 1, . . . k−1, j = 1, . . . , l−1.
The discretization corresponds to the finite difference method introduced
beginning with (1.10); i.e., the bandwidth is equal to k − 1 for a rowwise
numbering or l − 1 for a columnwise numbering.

For k < l or k = l, this fact results in a large difference of the bandwidth
m or of the profile (of the left triangle), which is of size (k−1)(l−1)(m+1)
except for a term of m2. Therefore, the columnwise numbering is preferred
for k = l; the rowwise numbering is preferred for k < l.

For a general domain Ω, a numbering algorithm based on a given tri-
angulation Th and on a basis {ϕi} of Vh is necessary with the following
properties:
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The structure of A resulting from the numbering must be such that the
band or the profile of A is as small as possible. Furthermore, the numbering
algorithm should yield the numbers m(A) or fi(A), mi(A) such that the
matrix A can also be assembled using the element matrices A(k).

Given a triangulation Th and a corresponding basis
{
ϕi

∣∣ 1 ≤ i ≤ M
}

of
Vh, we start with the assignment of some graph G to this triangulation as
follows:

The nodes of G coincide with the nodes {a1, . . . , aM} of the triangulation.
The definition of its edges is:

(ai, aj) is an edge of G ⇐⇒
there exists a K ∈ Th such that ϕi|K -≡ 0 , ϕj |K -≡ 0 .

In Figure 2.19 some examples are given, where the example (2) will be
introduced in Section 3.3.

triangulation: .
.

.
.

.(1)

linear ansatz on triangle

. . .
...

(2)

(bi)linear ansatz on quadrilateral

Graph: .
.

.
.

. . . .
...

Figure 2.19. Triangulation and assigned graph.

If several degrees of freedom are assigned to some node of the triangu-
lation Th, then also in G several nodes are assigned to it. This is the case,
for example, if so-called Hermite elements are considered, which will be
introduced in Section 3.3. The costs of administration are small if the same
number of degrees of freedom is assigned to all nodes of the triangulation.

An often-used numbering algorithm is the Cuthill–McKee method. This
algorithm operates on the graph G just defined. Two nodes ai, aj of G are
called neighboured if (ai, aj) is an edge of G. The degree of a node ai of G
is defined as the number of neighbours of ai.

The kth step of the algorithm for k = 1, . . . , M has the following form:
k = 1: Choose a starting node, which gets the number 1. This starting

node forms the level 1.
k > 1: If all nodes are already numbered, the algorithm is terminated.

Otherwise, the level k is formed by taking all the nodes that are not num-
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bered yet and that are neighbours of a node of level k − 1. The nodes of
level k will be consecutively numbered.

Within a level, we can sort, for example, by the degree, where the node
with the smallest degree is numbered first.

The reverse Cuthill–McKee method consists of the above method and the
inversion of the numbering at the end; i.e.,

new node number = M + 1− old node number .

This corresponds to a reflection of the matrix at the counterdiagonal. The
bandwidth does not change by the inversion, but the profile may diminish
drastically for many examples (cf. Figure 2.20).

* * * *
*

*
* * * *
* * * *
* * * *

* * * *
* * * *
* * * *

*
*

* * * *
Figure 2.20. Change of the hull by reflection at the counterdiagonal.

The following estimate holds for the bandwidth m of the numbering
created by the Cuthill–McKee algorithm:

D + i

2
≤ m ≤ max

2≤k≤ν
(Nk−1 + Nk − 1) .

Here D is the maximum degree of a node of G, ν is the number of levels, and
Nk is the number of nodes of level k. The number i is equal to 0 if D is even,
and i is equal to 1 if D is odd. The left-hand side of the above inequality is
easy to understand by means of the following argument: To reach a minimal
bandwidth, all nodes that are neighbours of ai in the graph G should also
be neighbours of ai in the numbering. Then the best situation is given if the
neighboured nodes would appear uniformly immediately before and after
ai. If D is odd, then one side has one node more than the other.

To verify the right-hand side, consider a node ai that belongs to level
k−1 as well as a node aj that is a neighbour of ai in the graph G and that
is not yet numbered in level k − 1. Therefore, aj will get a number in the
kth step. The largest bandwidth is obtained if ai is the first node of the
numbering of level k− 1 and if aj is the last node of level k. Hence exactly
(Nk−1 − 1) + (Nk − 1) nodes lie between both of these; i.e., their distance
in the numbering is Nk−1 + Nk − 1.

It is favourable if the number ν of levels is as large as possible and if all
the numbers Nk are of the same size, if possible. Therefore, the starting
node should be chosen “at one end” of the graph G if possible; if all the
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starting nodes are to be checked, the expense will be O(MM̃), where M̃
is the number of edges of G. One possibility consists in choosing a node
with minimum degree for the starting node. Another possibility is to let
the algorithm run once and then to choose the last-numbered node as the
starting node.

If a numbering is created by the (reverse) Cuthill–McKee algorithm, we
can try to improve it “locally”, i.e., by exchanging particular nodes.

Exercise

2.8 Show that the number of arithmetic operations for the Cholesky
method for an M × M matrix with bandwidth m has order Mm2/2;
additionally, M square roots have to be calculated.



3
The Finite Element Method for Linear
Elliptic Boundary Value Problems of
Second Order

3.1 Variational Equations and Sobolev Spaces

We now continue the definition and analysis of the “correct” function spaces
that we began in (2.17)–(2.20). An essential assumption ensuring the exis-
tence of a solution of the variational equation (2.13) is the completeness of
the basic space (V, ‖ · ‖). In the concrete case of the Poisson equation the
“preliminary” function space V according to (2.7) can be equipped with
the norm ‖ ·‖1, defined in (2.19), which has been shown to be equivalent to
the norm ‖ · ‖a, given in (2.6) (see (2.46)). If we consider the minimization
problem (2.14), which is equivalent to the variational equation, the func-
tional F is bounded from below such that the infimum assumes a finite
value and there exists a minimal sequence (vn)n in V , that is, a sequence
with the property

lim
n→∞

F (vn) = inf
{
F (v)

∣∣ v ∈ V
}

.

The form of F also implies that (vn)n is a Cauchy sequence. If this sequence
converges to an element v ∈ V , then, due to the continuity of F with respect
to ‖ · ‖, it follows that v is a solution of the minimization problem. This
completeness of V with respect to ‖ · ‖a, and hence with respect to ‖ · ‖1, is
not satisfied in the definition (2.7), as Example 2.8 has shown. Therefore,
an extension of the basic space V , as formulated in (2.20), is necessary.
This space will turn out to be “correct,” since it is complete with respect
to ‖ · ‖1.
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In what follows we use the following general assumption:

V is a vector space with scalar product 〈·, ·〉 and the norm ‖ · ‖
induced by 〈·, ·〉 (for this, ‖v‖ := 〈v, v〉1/2 for v ∈ V issatisfied) ;

V is complete with respect to ‖ · ‖, i.e. a Hilbert space ; (3.1)
a : V × V → R is a (not necessarily symmetric) bilinear form ;
b : V → R is a linear form .

The following theorem generalizes the above consideration to nonsym-
metric bilinear forms:

Theorem 3.1 (Lax–Milgram) Suppose the following conditions are sat-
isfied:

• a is continuous (cf. (2.42)); that is, there exists some constant
M > 0 such that

|a(u, v)| ≤ M‖u‖ ‖v‖ for all u, v ∈ V ; (3.2)

• a is V -elliptic (cf. (2.43)); that is, there exists some constant α > 0
such that

a(u, u) ≥ α‖u‖2 for all u ∈ V ; (3.3)

• b is continuous; that is, there exists some constant C > 0 such that

|b(u)| ≤ C‖u‖ for all u ∈ V . (3.4)

Then the variational equation (2.21), namely,

find ū ∈ V such that a(ū, v) = b(v) for all v ∈ V, (3.5)

has one and only one solution.
Here, one cannot avoid the assumptions (3.1) and (3.2)–(3.4) in general.

Proof: See, for example, [26]; for an alternative proof see Exercise 3.1. !

Now returning to the example above, the assumptions (3.2) and (3.3) are
obviously satisfied for ‖ ·‖ = ‖ ·‖a. However, the “preliminary” definition of
the function space V of (2.7) with norm ‖·‖a defined in (2.19) is insufficient,
since (V, ‖ · ‖a) is not complete. Therefore, the space V must be extended.
Indeed, it is not the norm on V that has been chosen incorrectly, since V
is also not complete with respect to another norm ‖ · ‖ that satisfies (3.2)
and (3.3). In this case the norms ‖ · ‖ and ‖ · ‖a would be equivalent (cf.
(2.46)), and consequently,

(V, ‖ · ‖a) complete ⇐⇒ (V, ‖ · ‖) complete .

Now we extend the space V and thereby generalize definition (2.17).
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Definition 3.2 Suppose Ω ⊂ Rd is a (bounded) domain.
The Sobolev space Hk(Ω) is defined by

Hk(Ω) :=
{
v : Ω→ R

∣∣ v ∈ L2(Ω) , the weak derivatives ∂αv exist
in L2(Ω) and for all multi-indices α with |α| ≤ k

}
.

A scalar product 〈·, ·〉k and the resulting norm ‖ ·‖k in Hk(Ω) are defined
as follows:

〈v, w〉k :=
∫

Ω

∑

αmulti−index
|α|≤k

∂αv ∂αw dx , (3.6)

‖v‖k := 〈v, v〉1/2
k =

(∫

Ω

∑

αmulti−index
|α|≤k

∣∣∂αv
∣∣2 dx

)1/2

(3.7)

=

(
∑

αmulti−index
|α|≤k

∫

Ω

∣∣∂αv
∣∣2 dx

)1/2

=

(
∑

αmulti−index
|α|≤k

∥∥∂αv
∥∥2

0

)1/2

.

Greater flexibility with respect to the smoothness properties of the func-
tions that are contained in the definition is obtained by requiring that v
and its weak derivatives should belong not to L2(Ω) but to Lp(Ω). In the
norm denoted by ‖ · ‖k,p the L2(Ω) and 42 norms (for the vector of the
derivative norms) have to be replaced by the Lp(Ω) and 4p norms, respec-
tively (see Appendices A.3 and A.5). However, the resulting space, denoted
by W k

p (Ω), can no longer be equipped with a scalar product for p -= 2. Al-
though these spaces offer greater flexibility, we will not use them except in
Sections 3.6, 6.2, and 9.3.

Besides the norms ‖ ·‖k, there are seminorms | · |l for 0 ≤ l ≤ k in Hk(Ω),
defined by

|v|l =

(
∑

αmulti−index
|α|=l

∥∥∂αv
∥∥2

0

)1/2

,

such that

‖v‖k =

(
k∑

l=0

|v|2l

)1/2

,

In particular, these definitions are compatible with those in (2.18),

〈v, w〉1 :=
∫

Ω
vw +∇v ·∇w dx ,

and with the notation ‖ · ‖0 for the L2(Ω) norm, giving a meaning to this
one.
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The above definition contains some assertions that are formulated in the
following theorem:

Theorem 3.3 The bilinear form 〈·, ·〉k is a scalar product on Hk(Ω); that
is, ‖ · ‖k is a norm on Hk(Ω).

Hk(Ω) is complete with respect to ‖ · ‖k, and is thus a Hilbert space.

Proof: See, for example, [37]. !

Obviously,

Hk(Ω) ⊂ H l(Ω) for k ≥ l ,

and the embedding is continuous, since

‖v‖l ≤ ‖v‖k for all v ∈ Hk(Ω) . (3.8)

In the one-dimensional case (d = 1) v ∈ H1(Ω) is necessarily continuous:

Lemma 3.4

H1(a, b) ⊂ C[a, b] ,

and the embedding is continuous, where C[a, b] is equipped with the norm
‖ · ‖∞; that is, there exists some constant C > 0 such that

‖v‖∞ ≤ C‖v‖1 for all v ∈ H1(a, b) . (3.9)

Proof: See Exercise 3.2. !

Since the elements of Hk(Ω) are first of all only square integrable func-
tions, they are determined only up to points of a set of (d-dimensional)
measure zero. Therefore, a result as in Lemma 3.4 means that the func-
tion is allowed to have removable discontinuities at points of such a set of
measure zero that vanish by modifying the function values.

However, in general, H1(Ω) -⊂ C(Ω̄).
As an example for this, we consider a circular domain in dimension d = 2:

Ω = BR(0) =
{
x ∈ R2

∣∣ |x| < R
}

, R < 1 .

Then the function

v(x) := |log |x| |γ for some γ <
1
2

is in H1(Ω), but not in C(Ω̄) (see Exercise 3.3).
The following problem now arises: In general, one cannot speak of a

value v(x) for some x ∈ Ω because a set of one point {x} has (Lebesgue)
measure zero. How do we then have to interpret the Dirichlet boundary
conditions? A way out is to consider the boundary (pieces of the boundary,
respectively) not as arbitrary points but as (d − 1)-dimensional “spaces”
(manifolds).
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The above question can therefore be reformulated as follows: Is it possible
to interpret v on ∂Ω as a function of L2(∂Ω) (∂Ω “⊂” Rd−1) ?

It is indeed possible if we have some minimal regularity of ∂Ω in the
following sense: It has to be possible to choose locally, for some boundary
point x ∈ ∂Ω, a coordinate system in such a way that the boundary is
locally a hyperplane in this coordinate system and the domain lies on one
side. Depending on the smoothness of the parametrisation of the hyperplane
we then speak of Lipschitz, Ck- (for k ∈ N), and C∞- domains (for an exact
definition see Appendix A.5).

Examples:

(1) A circle Ω =
{
x ∈ Rd

∣∣ |x− x0| < R
}

is a Ck-domain for all k ∈ N,
and hence a C∞-domain.

(2) A rectangle Ω =
{
x ∈ Rd

∣∣ 0 < xi < ai, i = 1, . . . , d
}

is a Lipschitz
domain, but not a C1-domain.

(3) A circle with a cut Ω =
{
x ∈ Rd

∣∣ |x− x0| < R, x -= x0 +λe1 for 0 ≤
λ < R

}
is not a Lipschitz domain, since Ω does not lie on one side of

∂Ω (see Figure 3.1).

ΩΩΩ

Circle with cutRectangleCircle

Figure 3.1. Domains of different smoothness.

Hence, suppose Ω is a Lipschitz domain. Since only a finite number of
overlapping coordinate systems are sufficient for the description of ∂Ω,
using these, it is possible to introduce a (d − 1)-dimensional measure on
∂Ω and define the space L2(∂Ω) of square integrable functions with respect
to this measure (see Appendix A.5 or [37] for an extensive description). In
the following, let ∂Ω be equipped with this (d − 1)-dimensional measure
dσ, and integrals over the boundary are to be interpreted accordingly. This
also holds for Lipschitz subdomains of Ω, since they are given by the finite
elements.

Theorem 3.5 (Trace Theorem) Suppose Ω is a bounded Lipschitz do-
main. We define

C∞(Rd)|Ω :=
{
v : Ω→ R

∣∣ v can be extended to ṽ : Rd → R and
ṽ ∈ C∞(Rd)

}
.

Then, C∞(Rd)|Ω is dense in H1(Ω); that is, with respect to ‖·‖1 an arbitrary
w ∈ H1(Ω) can be approximated arbitrarily well by some v ∈ C∞(Rd)|Ω .
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The mapping that restricts v to ∂Ω,

γ0 :
(
C∞(Rd)|Ω, ‖ · ‖1

)
→

(
L2(∂Ω), ‖ · ‖0

)
,

v .→ v|∂Ω ,

is continuous.
Thus there exists a unique, linear, and continuous extension

γ0 :
(
H1(Ω), ‖ · ‖1

)
→
(
L2(∂Ω), ‖ · ‖0

)
.

Proof: See, for example, [37]. !

Therefore, in short form, γ0(v) ∈ L2(∂Ω), and there exists some constant
C > 0 such that

‖γ0(v)‖0 ≤ C‖v‖1 for all v ∈ H1(Ω) .

Here γ0(v) ∈ L2(∂Ω) is called the trace of v ∈ H1(Ω).
The mapping γ0 is not surjective; that is,

{
γ0(v)

∣∣ v ∈ H1(Ω)
}

is a real
subset of L2(∂Ω). For all v ∈ C∞(Rd)|Ω we have

γ0(v) = v|∂Ω .

In the following we will use again v|∂Ω or “v on ∂Ω” for γ0(v), but in
the sense of Theorem 3.5. According to this theorem, definition (2.20) is
well-defined with the interpretation of u on ∂Ω as the trace:

Definition 3.6 H1
0 (Ω) :=

{
v ∈ H1(Ω)

∣∣ γ0(v) = 0 (as a function on ∂Ω)
}
.

Theorem 3.7 Suppose Ω ⊂ Rd is a bounded Lipschitz domain. Then
C∞

0 (Ω) is dense in H1
0 (Ω).

Proof: See [37]. !

The assertion of Theorem 3.5, that C∞(Rd)|Ω is dense in H1(Ω), has
severe consequences for the treatment of functions in H1(Ω) which are in
general not very smooth. It is possible to consider them as smooth functions
if at the end only relations involving continuous expressions in ‖·‖1 (and not
requiring something like ‖∂iv‖∞) arise. Then, by some “density argument”
the result can be transferred to H1(Ω) or, as for the trace term, new terms
can be defined for functions in H1(Ω). Thus, for the proof of Lemma 3.4
it is necessary simply to verify estimate (3.9), for example for v ∈ C1[a, b].
By virtue of Theorem 3.7, analogous results hold for H1

0 (Ω).
Hence, for v ∈ H1(Ω) integration by parts is possible:

Theorem 3.8 Suppose Ω ⊂ Rd is a bounded Lipschitz domain. The outer
unit normal vector ν = (νi)i=1,...,d : ∂Ω→ Rd is defined almost everywhere
and νi ∈ L∞(∂Ω).
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For v, w ∈ H1(Ω) and i = 1, . . . , d,
∫

Ω
∂iv w dx = −

∫

Ω
v ∂iw dx +

∫

∂Ω
v w νi dσ .

Proof: See, for example, [14] or [37]. !

If v ∈ H2(Ω), then due to the above theorem, v|∂Ω := γ0(v) ∈ L2(∂Ω)
and ∂iv|∂Ω := γ0(∂iv) ∈ L2(∂Ω), since also ∂iv ∈ H1(Ω). Hence, the normal
derivative

∂νv|∂Ω :=
d∑

i=1

∂iv|∂Ω νi

is well-defined and belongs to L2(∂Ω).
Thus, the trace mapping

γ : H2(Ω) → L2(∂Ω)× L2(∂Ω) ,

v .→ (v|∂Ω, ∂νv|∂Ω) ,

is well-defined and continuous. The continuity of this mapping follows from
the fact that it is a composition of continuous mappings:

v ∈ H2(Ω) continuous.→ ∂iv ∈ H1(Ω) continuous.→ ∂iv|∂Ω ∈ L2(∂Ω)
continuous.→ ∂iv|∂Ω νi ∈ L2(∂Ω) .

Corollary 3.9 Suppose Ω ⊂ Rd is a bounded Lipschitz domain.

(1) Let w ∈ H1(Ω), qi ∈ H1(Ω), i = 1, . . . , d. Then
∫

Ω
q ·∇w dx = −

∫

Ω
∇ · q w dx +

∫

∂Ω
q · ν w dσ . (3.10)

(2) Let v ∈ H2(Ω), w ∈ H1(Ω). Then
∫

Ω
∇v ·∇w dx = −

∫

Ω
∆v w dx +

∫

∂Ω
∂νv w dσ .

The integration by parts formulas also hold more generally if only it is
ensured that the function whose trace has to be formed belongs to H1(Ω).
For example, if K = (kij)ij , where kij ∈ W 1

∞(Ω) and v ∈ H2(Ω), w ∈
H1(Ω), it follows that

∫

Ω
K∇v ·∇w dx = −

∫

Ω
∇ · (K∇v) w dx +

∫

∂Ω
K∇v · ν w dσ (3.11)

with conormal derivative (see (0.41))

∂νK v := K∇v · ν = ∇v · KTν =
d∑

i,j=1

kij∂jv νi.
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Here it is important that the components of K∇v belong to H1(Ω), using
the fact that for v ∈ L2(Ω), k ∈ L∞(Ω),

kv ∈ L2(Ω) and ‖kv‖0 ≤ ‖k‖∞‖v‖0 .

Theorem 3.10 Suppose Ω ⊂ Rd is a bounded Lipschitz domain.
If k > d/2, then

Hk(Ω) ⊂ C(Ω̄) ,

and the embedding is continuous.

Proof: See, for example, [37]. !

For dimension d = 2 this requires k > 1, and for dimension d = 3 we
need k > 3

2 . Therefore, in both cases k = 2 satisfies the assumption of the
above theorem.

Exercises

3.1 Prove the Lax–Milgram Theorem in the following way:

(a) Show, by using the Riesz representation theorem, the equivalence of
(3.5) with the operator equation

Aū = f

for A ∈ L[V, V ] and f ∈ V .

(b) Show, for Tε ∈ L[V, V ], Tεv := v − ε(Av − f) and ε > 0, that for
some ε > 0, the operator Tε is a contraction on V . Then conclude
the assertion by Banach’s fixed-point theorem (in the Banach space
setting, cf. Remark 8.5).

3.2 Prove estimate (3.9) by showing that even for v ∈ H1(a, b),

|v(x)− v(y)| ≤ |v|1|x− y|1/2 for x, y ∈ (a, b) .

3.3 Suppose Ω ⊂ R2 is the open disk with radius 1
2 and centre 0. Prove

that for the function u(x) :=
∣∣ ln |x|

∣∣α, x ∈ Ω \ {0}, α ∈ (0, 1
2 ) we have

u ∈ H1(Ω), but u cannot be extended continuously to x = 0.

3.4 Suppose Ω ⊂ R2 is the open unit disk. Prove that each u ∈ H1(Ω)
has a trace u|∂Ω ∈ L2(∂Ω) satisfying ‖u‖0,∂Ω ≤ 4

√
8 ‖u‖1,Ω .
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3.2 Elliptic Boundary Value Problems of Second
Order

In this section we integrate boundary value problems for the linear, sta-
tionary case of the differential equation (0.33) into the general theory of
Section 3.1.

Concerning the domain we will assume that Ω is a bounded Lipschitz
domain.

We consider the equation

(Lu)(x) := −∇ · (K(x)∇u(x)) + c(x) ·∇u(x) + r(x)u(x) = f(x) for x ∈ Ω
(3.12)

with the data

K : Ω→ Rd,d, c : Ω→ Rd, r, f : Ω→ R.

Assumptions about the Coefficients and the Right-Hand Side
For an interpretation of (3.12) in the classical sense, we need

∂ikij , ci , r , f ∈ C(Ω̄) , i, j ∈ {1, . . . , d} , (3.13)

and for an interpretation in the sense of L2(Ω) with weak derivatives, and
hence for a solution in H2(Ω),

∂ikij , ci , r ∈ L∞(Ω) , f ∈ L2(Ω) , i, j ∈ {1, . . . , d} . (3.14)

Once we have obtained the variational formulation, weaker assumptions
about the smoothness of the coefficients will be sufficient for the verifica-
tion of the properties (3.2)–(3.4), which are required by the Lax–Milgram,
namely,

kij , ci ,∇ · c , r ∈ L∞(Ω) , f ∈ L2(Ω) , i, j ∈ {1, . . . , d} ,

and if |Γ1 ∪ Γ2|d−1 > 0 , ν · c ∈ L∞(Γ1 ∪ Γ2) .
(3.15)

Here we refer to a definition of the boundary conditions as in (0.36)–(0.39)
(see also below). Furthermore, the uniform ellipticity of L is assumed: There
exists some constant k0 > 0 such that for (almost) every x ∈ Ω,

d∑

i,j=1

kij(x)ξiξj ≥ k0|ξ|2 for all ξ ∈ Rd (3.16)

(that is, the coefficient matrix K is positive definite uniformly in x).
Moreover, K should be symmetric.

If K is a diagonal matrix, that is, kij(x) = ki(x)δij (this is in particular
the case if ki(x) = k(x) with k : Ω → R, i ∈ {1, . . . , d}, where K∇u
becomes k∇u), this means that

(3.16) ⇔ ki(x) ≥ k0 for (almost) every x ∈ Ω , i ∈ {1, . . . , d} .
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Finally, there exists a constant r0 ≥ 0 such that

r(x) − 1
2
∇ · c(x) ≥ r0 for (almost) every x ∈ Ω . (3.17)

Boundary Conditions
As in Section 0.5, suppose Γ1,Γ2,Γ3 is a disjoint decomposition of the
boundary ∂Ω (cf. (0.39)):

∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ,

where Γ3 is a closed subset of the boundary. For given functions gj : Γj →
R , j = 1, 2, 3, and α : Γ2 → R we assume on ∂Ω

• Neumann boundary condition (cf. (0.41) or (0.36))

K∇u · ν = ∂νK u = g1 on Γ1 , (3.18)

• mixed boundary condition (cf. (0.37))

K∇u · ν + αu = ∂νK u + αu = g2 on Γ2 , (3.19)

• Dirichlet boundary condition (cf. (0.38))

u = g3 on Γ3 . (3.20)

Concerning the boundary data the following is assumed: For the classical
approach we need

gj ∈ C(Γj) , j = 1, 2, 3 , α ∈ C(Γ2) , (3.21)

whereas for the variational interpretation,

gj ∈ L2(Γj) , j = 1, 2, 3 , α ∈ L∞(Γ2) (3.22)

is sufficient.

3.2.1 Variational Formulation of Special Cases

The basic strategy for the derivation of the variational formulation of
boundary value problems (3.12) has already been demonstrated in Sec-
tion 2.1. Assuming the existence of a classical solution of (3.12) the
following steps are performed in general:

Step 1: Multiplication of the differential equation by test functions that
are chosen compatible with the type of boundary condition and
subsequent integration over the domain Ω.

Step 2: Integration by parts under incorporation of the boundary condi-
tions in order to derive a suitable bilinear form.

Step 3: Verification of the required properties like ellipticity and continuity.
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In the following the above steps will be described for some important special
cases.

(I) Homogeneous Dirichlet Boundary Condition
∂Ω = Γ3 , g3 ≡ 0 , V := H1

0 (Ω)
Suppose u is a solution of (3.12), (3.20); that is, in the sense of classical

solutions let u ∈ C2(Ω) ∩ C(Ω̄) and the differential equation (3.12) be
satisfied pointwise in Ω under the assumptions (3.13) as well as u = 0
pointwise on ∂Ω. However, the weaker case in which u ∈ H2(Ω) ∩ V and
the differential equation is satisfied in the sense of L2(Ω), now under the
assumptions (3.14), can also be considered.

Multiplying (3.12) by v ∈ C∞
0 (Ω) (in the classical case) or by v ∈ V ,

respectively, then integrating by parts according to (3.11) and taking into
account that v = 0 on ∂Ω by virtue of the definition of C∞

0 (Ω) and H1
0 (Ω),

respectively, we obtain

a(u, v) :=
∫

Ω
{K∇u ·∇v + c ·∇u v + r uv} dx (3.23)

= b(v) :=
∫

Ω
fv dx for all v ∈ C∞

0 (Ω) or v ∈ V .

The bilinear form a is symmetric if c vanishes (almost everywhere).
For f ∈ L2(Ω),

b is continuous on (V, ‖ · ‖1) . (3.24)

This follows directly from the Cauchy–Schwarz inequality, since

|b(v)| ≤
∫

Ω
|f | |v| dx ≤ ‖f‖0 ‖v‖0 ≤ ‖f‖0 ‖v‖1 for v ∈ V .

Further, by (3.15),

a is continuous (V, ‖ · ‖1) . (3.25)

Proof: First, we obtain

|a(u, v)| ≤
∫

Ω
{|K∇u| |∇v| + |c| |∇u||v| + |r| |u| |v|} dx .

Here | · | denotes the absolute value of a real number or the Euclidean
norm of a vector. Using also ‖ · ‖2 for the (associated) spectral norm, and
‖ ·‖∞ for the L∞(Ω) norm of a function, we further introduce the following
notations:

C1 := max
{∥∥‖K‖2

∥∥
∞, ‖r‖∞

}
< ∞ , C2 :=

∥∥|c|
∥∥
∞ < ∞ .

By virtue of

|K(x)∇u(x)| ≤ ‖K(x)‖2 |∇u(x)|,
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we continue to estimate as follows:

|a(u, v)| ≤ C1

∫

Ω
{|∇u| |∇v| + |u| |v|} dx

︸ ︷︷ ︸
=:A1

+ C2

∫

Ω
|∇u| |v| dx

︸ ︷︷ ︸
=:A2

.

The integrand of the first addend is estimated by the Cauchy–Schwarz
inequality for R2, and then the Cauchy–Schwarz inequality for L2(Ω) is
applied:

A1 ≤ C1

∫

Ω

{
|∇u|2 + |u|2

}1/2 {|∇v|2 + |v|2
}1/2

dx

≤ C1

{∫

Ω
|u|2 + |∇u|2 dx

}1/2{∫

Ω
|v|2 + |∇v|2 dx

}1/2

= C1‖u‖1 ‖v‖1 .

Dealing with A2, we can employ the Cauchy–Schwarz inequality for L2(Ω)
directly:

A2 ≤ C2

{∫

Ω
|∇u|2 dx

}1/2{∫

Ω
|v|2 dx

}1/2

≤ C2‖u‖1 ‖v‖0 ≤ C2‖u‖1 ‖v‖1 for all u, v ∈ V .

Thus, the assertion follows. !

Remark 3.11 In the proof of the propositions (3.24) and (3.25) it has not
been used that the functions u, v satisfy homogeneous Dirichlet boundary
conditions. Therefore, under the assumptions (3.15) these properties hold
for every subspace V ⊂ H1(Ω).

Conditions for the V -Ellipticity of a
(A) a is symmetric; that is c = 0 (a.e.): Condition (3.17) then has the
simple form r(x) ≥ r0 for almost all x ∈ Ω.
(A1) c = 0, r0 > 0:
Because of (3.16) we directly get

a(u, u) ≥
∫

Ω
{k0|∇u|2 + r0|u|2} dx ≥ C3‖u‖2

1 for all u ∈ V ,

where C3 := min{k0, r0}. This also holds for every subspace V ⊂ H1(Ω).
(A2) c = 0, r0 ≥ 0:
According to the Poincaré inequality (Theorem 2.18), there exists some
constant CP > 0, independent of u, such that for u ∈ H1

0 (Ω)

‖u‖0 ≤ CP

{∫

Ω
|∇u|2 dx

}1/2

.
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Taking into account (3.16) and using the simple decomposition k0 =
k0

1 + C2
P

+
C2

P

1 + C2
P

k0 we can further conclude that

a(u, u) ≥
∫

Ω
k0|∇u|2 dx (3.26)

≥ k0

1 + C2
P

∫

Ω
|∇u|2 dx +

C2
P

1 + C2
P

k0
1

C2
P

∫

Ω
|u|2 dx = C4‖u‖2

1 ,

where C4 :=
k0

1 + C2
P

> 0 .

For this estimate it is essential that u satisfies the homogeneous Dirichlet
boundary condition.
(B)

∥∥|c|
∥∥
∞ > 0 :

First of all, we consider a smooth function u ∈ C∞
0 (Ω). From u∇u = 1

2∇u2

we get by integrating by parts
∫

Ω
c ·∇u u dx =

1
2

∫

Ω
c ·∇u2 dx = −1

2

∫

Ω
∇ · c u2 dx .

Since according to Theorem 3.7 the space C∞
0 (Ω) is dense in V , the above

relation also holds for u ∈ V . Consequently, by virtue of (3.16) and (3.17)
we obtain

a(u, u) =
∫

Ω

{
K∇u ·∇u +

(
r − 1

2
∇ · c

)
u2

}
dx

≥
∫

Ω
{k0|∇u|2 + r0|u|2} dx for all u ∈ V .

(3.27)

Hence, a distinction concerning r0 as in (A) with the same results
(constants) is possible.

Summarizing, we have therefore proven the following application of the
Lax–Milgram Theorem (Theorem 3.1):

Theorem 3.12 Suppose Ω ⊂ Rd is a bounded Lipschitz domain. Under
the assumptions (3.15)–(3.17) the homogeneous Dirichlet problem has one
and only one weak solution u ∈ H1

0 (Ω).

(II) Mixed Boundary Conditions
∂Ω = Γ2 , V = H1(Ω)

Suppose u is a solution of (3.12), (3.19); that is, in the classical sense
let u ∈ C2(Ω) ∩ C1(Ω̄) and the differential equation (3.12) be satisfied
pointwise in Ω and (3.19) pointwise on ∂Ω under the assumptions (3.13),
(3.21). However, the weaker case can again be considered, now under the
assumptions (3.14), (3.22), that u ∈ H2(Ω) and the differential equation is
satisfied in the sense of L2(Ω) as well as the boundary condition (3.19) in
the sense of L2(∂Ω).
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As in (I), according to (3.11),

a(u, v) :=
∫

Ω
{K∇u ·∇v + c ·∇u v + r uv} dx +

∫

∂Ω
αuv dσ (3.28)

= b(v) :=
∫

Ω
fv dx +

∫

∂Ω
g2v dσ for all v ∈ V .

Under the assumptions (3.15), (3.22) the continuity of b and a, respec-
tively, ((3.24) and (3.25)) can easily be shown. The additional new terms
can be estimated, for instance under the assumptions (3.15), (3.22), by
the Cauchy–Schwarz inequality and the Trace Theorem (Theorem 3.4) as
follows:

∣∣∣∣
∫

∂Ω
g2v dσ

∣∣∣∣ ≤ ‖g2‖0,∂Ω‖v|∂Ω‖0,∂Ω ≤ C‖g2‖0,∂Ω‖v‖1 for all v ∈ V

and
∣∣∣∣
∫

∂Ω
αuv dσ

∣∣∣∣ ≤ ‖α‖∞,∂Ω‖u|∂Ω‖0,∂Ω‖v|∂Ω‖0,∂Ω ≤ C2‖α‖∞,∂Ω‖u‖1‖v‖1 ,

respectively, for all u, v ∈ V, where C > 0 denotes the constant appearing
in the Trace Theorem.

Conditions for the V -Ellipticity of a
For the proof of the V -ellipticity we proceed similarly to (I)(B), but now
taking into account the mixed boundary conditions. For the convective
term we have
∫

Ω
c ·∇u u dx =

1
2

∫

Ω
c ·∇u2 dx = −1

2

∫

Ω
∇ · c u2 dx +

1
2

∫

∂Ω
ν · c u2 dσ ,

and thus

a(u, u) =
∫

Ω

{
K∇u ·∇u +

(
r − 1

2
∇ · c

)
u2

}
dx+

∫

∂Ω

(
α+

1
2
ν · c

)
u2 dσ.

This shows that α + 1
2ν · c ≥ 0 on ∂Ω should additionally be assumed. If

r0 > 0 in (3.17), then the V -ellipticity of a follows directly. However, if only
r0 ≥ 0 is valid, then the so-called Friedrichs’ inequality, a refined version
of the Poincaré inequality, helps (see [25, Theorem 1.9]).

Theorem 3.13 Suppose Ω ⊂ Rd is a bounded Lipschitz domain and let
the set Γ̃ ⊂ ∂Ω have a positive (d − 1)-dimensional measure. Then there
exists some constant CF > 0 such that for all v ∈ H1(Ω),

‖v‖1 ≤ CF

{∫

Γ̃
v2 dσ +

∫

Ω
|∇v|2 dx

}1/2

. (3.29)

If α + 1
2ν · c ≥ α0 > 0 for x ∈ Γ̃ ⊂ Γ2 and Γ̃ has a positive (d − 1)-

dimensional measure, then r0 ≥ 0 is already sufficient for the V -ellipticity.
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Indeed, using Theorem 3.13, we have

a(u, u) ≥ k0|u|21 + α0

∫

Γ̃
u2 dσ ≥ min{k0,α0}

{
|u|21 +

∫

Γ̃
u2 dσ

}
≥ C5‖u‖2

1

with C5 := C−2
F min{k0,α0}. Therefore, we obtain the existence and

uniqueness of a solution analogously to Theorem 3.12.

(III) General Case
First, we consider the case of a homogeneous Dirichlet boundary
condition on Γ3 with |Γ3|d−1 > 0. For this, we define

V :=
{
v ∈ H1(Ω) : γ0(v) = 0 on Γ3

}
. (3.30)

Here V is a closed subspace of H1(Ω), since the trace mapping γ0 :
H1(Ω) → L2(∂Ω) and the restriction of a function from L2(∂Ω) to L2(Γ3)
are continuous.

Suppose u is a solution of (3.12), (3.18)–(3.20); that is, in the sense
of classical solutions let u ∈ C2(Ω) ∩ C1(Ω̄) and the differential equation
(3.12) be satisfied pointwise in Ω and the boundary conditions (3.18)–
(3.20) pointwise on their respective parts of ∂Ω under the assumptions
(3.13), (3.21). However, the weaker case that u ∈ H2(Ω) and the differential
equation is satisfied in the sense of L2(Ω) and the boundary conditions
(3.18)–(3.20) are satisfied in the sense of L2(Γj), j = 1, 2, 3, under the
assumptions (3.14), (3.22) can also be considered here.

As in (I), according to (3.11),

a(u, v) :=
∫

Ω
{K∇u ·∇v + c ·∇u v + r uv} dx +

∫

Γ2

αuv dσ (3.31)

= b(v) :=
∫

Ω
fv dx +

∫

Γ1

g1v dσ +
∫

Γ2

g2v dσ for all v ∈ V .

Under the assumptions (3.15), (3.22) the continuity of a and b, (3.25)) and
((3.24) can be proven analogously to (II).

Conditions for V -Ellipticity of a
For the verification of the V -ellipticity we again proceed similarly to (II),
but now the boundary conditions are more complicated. Here we have for
the convective term

∫

Ω
c ·∇u u dx = −1

2

∫

Ω
∇ · c u2 dx +

1
2

∫

Γ1∪Γ2

ν · cu2 dσ ,

and therefore

a(u, u) =
∫

Ω

{
K∇u ·∇u +

(
r − 1

2
∇ · c

)
u2

}
dx

+
1
2

∫

Γ1

ν · c u2 dσ +
∫

Γ2

(
α+

1
2
ν · c

)
u2 dσ .
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In order to ensure the V -ellipticity of a we need, besides the obvious
conditions

ν · c ≥ 0 on Γ1 and α+
1
2
ν · c ≥ 0 on Γ2 , (3.32)

the following corollary from Theorem 3.13.

Corollary 3.14 Suppose Ω ⊂ Rd is a bounded Lipschitz domain and Γ̃ ⊂
∂Ω has a positive (d − 1)-dimensional measure. Then there exists some
constant CF > 0 such that for all v ∈ H1(Ω) with v|Γ̃ = 0,

‖v‖0 ≤ CF

{∫

Ω
|∇v|2 dx

}1/2

= CF |v|1 .

This corollary yields the same results as in the case of homogeneous
Dirichlet boundary conditions on the whole of ∂Ω.

If |Γ3|d−1 = 0, then by tightening conditions (3.32) for c and α, the
application of Theorem 3.13 as done in (II) may be successful.

Summary
We will now present a summary of our considerations for the case of
homogeneous Dirichlet boundary conditions.

Theorem 3.15 Suppose Ω ⊂ Rd is a bounded Lipschitz domain. Under the
assumptions (3.15), (3.16), (3.22) with g3 = 0, the boundary value problem
(3.12), (3.18)–(3.20) has one and only one weak solution u ∈ V , if

(1) r − 1
2∇ · c ≥ 0 in Ω .

(2) ν · c ≥ 0 on Γ1 .

(3) α+ 1
2ν · c ≥ 0 on Γ2.

(4) Additionally, one of the following conditions is satisfied:

(a) |Γ3|d−1 > 0 .

(b) There exists some Ω̃ ⊂ Ω with |Ω̃|d > 0 and r0 > 0 such that
r − 1

2∇ · c ≥ r0 on Ω̃.
(c) There exists some Γ̃1 ⊂ Γ1 with |Γ̃1|d−1 > 0 and c0 > 0 such

that ν · c ≥ c0 on Γ̃1.
(d) There exists some Γ̃2 ⊂ Γ2 with |Γ̃2|d−1 > 0 and α0 > 0 such

that α+ 1
2ν · c ≥ α0 on Γ̃2.

Remark 3.16 We point out that by using different techniques in the proof,
it is possible to weaken conditions (4)(b)–(d) in such a way that only the
following has to be assumed:

(b)
∣∣{x ∈ Ω : r − 1

2∇ · c > 0
}∣∣

d
> 0 ,

(c)
∣∣ {x ∈ Γ1 : ν · c > 0}

∣∣
d−1

> 0 ,

(d)
∣∣{x ∈ Γ2 : α+ 1

2ν · c > 0
}∣∣

d−1
> 0 .
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However, we stress that the conditions of Theorem 3.15 are only suffi-
cient, since concerning the V -ellipticity, it might also be possible to balance
an indefinite addend by some “particular definite” addend. But this would
require conditions in which the constants CP and CF are involved.

Note that the pure Neumann problem for the Poisson equation

−∆u = f in Ω ,

∂νu = g on ∂Ω
(3.33)

is excluded by the conditions of Theorem 3.15. This is consistent with the
fact that not always a solution of (3.33) exists, and if a solution exists, it
obviously is not unique (see Exercise 3.8).

Before we investigate inhomogeneous Dirichlet boundary conditions, the
application of the theorem will be illustrated by an example of a natural
situation described in Chapter 0.

For the linear stationary case of the differential equation (0.33) in the
form

∇ · (c u−K∇u) + r̃ u = f

we obtain, by differentiating and rearranging the convective term,

−∇ · (K∇u) + c ·∇u + (∇ · c + r̃)u = f ,

which gives the form (3.12) with r := ∇ · c+ r̃ . The boundary ∂Ω consists
only of two parts Γ1 and Γ2. Therein, Γ1 an outflow boundary and Γ2 an
inflow boundary; that is, the conditions

c · ν ≥ 0 on Γ1 and c · ν ≤ 0 on Γ2

hold. Frequently prescribed boundary conditions are

−(c u−K∇u) · ν = −ν · c u on Γ1 ,

−(c u−K∇u) · ν = g2 on Γ2 .

They are based on the following assumptions: On the inflow boundary Γ2

the normal component of the total (mass) flux is prescribed but on the
outflow boundary Γ1, on which in the extreme case K = 0 the boundary
conditions would drop out, only the following is required:

• the normal component of the total (mass) flux is continuous over Γ1,

• the ambient mass flux that is outside Ω consists only of a convective
part,

• the extensive variable (for example, the concentration) is continuous
over Γ1, that is, the ambient concentration in x is also equal to u(x).

Therefore, after an obvious reformulation we get, in accordance with the
definitions of Γ1 and Γ2 due to (3.18), (3.19), the Neumann boundary
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condition (3.18), and the mixed boundary condition (3.19),

K∇u · ν = 0 on Γ1 ,

K∇u · ν + αu = g2 on Γ2 ,

where α := −ν · c.
Now the conditions of Theorem 3.15 can be checked:
We have r− 1

2∇·c = r̃+ 1
2∇·c; therefore, for the latter term the inequality

in (1) and (4)(b) must be satisfied. Further, the condition ν · c ≥ 0 on
Γ1 holds due to the characterization of the outflow boundary. Because of
α + 1

2ν · c = − 1
2ν · c, the condition (3) is satisfied due to the definition of

the inflow boundary.

Now we address the case of inhomogeneous Dirichlet boundary
conditions (|Γ3|d−1 > 0).

This situation can be reduced to the case of homogeneous Dirich-
let boundary conditions, if we are able to choose some (fixed) element
w ∈ H1(Ω) in such a way that (in the sense of trace) we have

γ0(w) = g3 on Γ3 . (3.34)

The existence of such an element w is a necessary assumption for the exis-
tence of a solution ũ ∈ H1(Ω). On the other hand, such an element w can
exist only if g3 belongs to the range of the mapping

H1(Ω) > v .→ γ0(v)|Γ3 ∈ L2(Γ3).

However, this is not valid for all g3 ∈ L2(Γ3), since the range of the trace
operator of H1(Ω) is a proper subset of L2(∂Ω).

Therefore, we assume the existence of such an element w. Since only
the homogeneity of the Dirichlet boundary conditions of the test functions
plays a role in derivation (3.31) of the bilinear form a and the linear form
b, we first obtain with the space V , defined in (3.30), and

Ṽ :=
{
v ∈ H1(Ω) : γ0(v) = g3 on Γ3

}
=
{
v ∈ H1(Ω) : v − w ∈ V

}

the following variational formulation:
Find ũ ∈ Ṽ such that

a(ũ, v) = b(v) for all v ∈ V .

However, this formulation does not fit into the theoretical concept of
Section 3.1 since the space Ṽ is not a linear one.

If we put ũ := u + w, then this is equivalent to the following:
Find u ∈ V such that

a(u, v) = b(v)− a(w, v) =: b̃(v) for all v ∈ V . (3.35)

Now we have a variational formulation for the case of inhomogeneous
Dirichlet boundary conditions that has the form required in the theory.
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Remark 3.17 In the existence result of Theorem 3.1, the only assumption
is that b has to be a continuous linear form in V .

For d = 1 and Ω = (a, b) this is also satisfied, for instance, for the special
linear form

δγ(v) := v(γ) for v ∈ H1(a, b),

where γ ∈ (a, b) is arbitrary but fixed, since by Lemma 3.4 the space
H1(a, b) is continuously embedded in the space C[a, b]. Thus, for d = 1
point sources (b = δγ) are also allowed. However, for d ≥ 2 this does not
hold since H1(Ω) -⊂ C(Ω̄).

Finally, we will once again state the general assumptions under which the
variational formulation of the boundary value problem (3.12), (3.18)–(3.20)
in the space (3.30),

V =
{
v ∈ H1(Ω) : γ0(v) = 0 on Γ3

}
,

has properties that satisfy the conditions of the Lax–Milgram Theorem
(Theorem 3.1):

• Ω ⊂ Rd is a bounded Lipschitz domain.
• kij , ci,∇ · c, r ∈ L∞(Ω) , f ∈ L2(Ω) , i, j ∈ {1, . . . , d}, and, if
|Γ1 ∪ Γ2|d−1 > 0, ν · c ∈ L∞(Γ1 ∪ Γ2) (i.e., (3.15)).

• There exists some constant k0 > 0 such that in Ω, we have ξ ·K(x)ξ ≥
k0|ξ|2 for all ξ ∈ Rd (i.e., (3.16)),

• gj ∈ L2(Γj) , j = 1, 2, 3, α ∈ L∞(Γ2) (i.e., (3.22)).
• The following hold:

(1) r − 1
2∇ · c ≥ 0 in Ω .

(2) ν · c ≥ 0 on Γ1 .

(3) α+ 1
2ν · c ≥ 0 on Γ2 .

(4) Additionally, one of the following conditions is satisfied:
(a) |Γ3|d−1 > 0 .

(b) There exists some Ω̃ ⊂ Ω with |Ω̃|d > 0 and r0 > 0 such
that r − 1

2∇ · c ≥ r0 on Ω̃.
(c) There exists some Γ̃1 ⊂ Γ1 with |Γ̃1|d−1 > 0 and c0 > 0

such that ν · c ≥ c0 on Γ̃1.
(d) There exists some Γ̃2 ⊂ Γ2 with |Γ̃2|d−1 > 0 and α0 > 0

such that α+ 1
2ν · c ≥ α0 on Γ̃2.

• If |Γ3|d−1 > 0 , then there exists some w ∈ H1(Ω) with γ0(w) = g3

on Γ3 (i.e., (3.34)).



3.2. Elliptic Boundary Value Problems 111

3.2.2 An Example of a Boundary Value Problem of Fourth
Order

The Dirichlet problem for the biharmonic equation reads as follows:
Find u ∈ C4(Ω) ∩ C1(Ω̄) such that

{
∆2u = f in Ω ,

∂νu = u = 0 on ∂Ω ,
(3.36)

where

∆2u := ∆ (∆u) =
d∑

i,j=1

∂2
i

(
∂2

j u
)
.

In the case d = 1 this collapses to ∆2u = u(4).
For u, v ∈ H2(Ω) it follows from Corollary 3.9 that

∫

Ω
(u∆v −∆u v) dx =

∫

∂Ω
{u ∂νv − ∂νu v}dσ

and hence for u ∈ H4(Ω), v ∈ H2(Ω) (by replacing u with ∆u in the above
equation),

∫

Ω
∆u∆v dx =

∫

Ω
∆2u v dx−

∫

∂Ω
∂ν∆u v dσ +

∫

∂Ω
∆u ∂νv dσ .

For a Lipschitz domain Ω we define

H2
0 (Ω) :=

{
v ∈ H2(Ω)

∣∣ v = ∂νv = 0 on ∂Ω
}

and obtain the variational formulation of (3.36) in the space V := H2
0 (Ω):

Find u ∈ V , such that

a(u, v) :=
∫

Ω
∆u∆v dx = b(v) :=

∫

Ω
fv dx for all v ∈ V .

More general, for a boundary value problem of order 2m in conservative
form, we obtain a variational formulation in Hm(Ω) or Hm

0 (Ω).

3.2.3 Regularity of Boundary Value Problems

In Section 3.2.1 we stated conditions under which the linear elliptic bound-
ary value problem admits a unique solution u (ũ, respectively) in some
subspace V of H1(Ω). In many cases, for instance for the interpolation of
the solution or in the context of error estimates (also in norms other than
the ‖ · ‖V norm) it is not sufficient that u (ũ, respectively) have only first
weak derivatives in L2(Ω).

Therefore, within the framework of the so-called regularity theory, the
question of the assumptions under which the weak solution belongs to
H2(Ω), for instance, has to be answered. These additional conditions
contain conditions about
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• the smoothness of the boundary of the domain,

• the shape of the domain,

• the smoothness of the coefficients and the right-hand side of the
differential equation and the boundary conditions,

• the kind of the transition of boundary conditions in those points,
where the type is changing,

which can be quite restrictive as a whole. Therefore, in what follows we
often assume only the required smoothness. Here we cite as an example
one regularity result ([13, Theorem 8.12]).

Theorem 3.18 Suppose Ω is a bounded C2-domain and Γ3 = ∂Ω. Further,
assume that kij ∈ C1(Ω̄), ci, r ∈ L∞(Ω) , f ∈ L2(Ω) , i, j ∈ {1, . . . , d},
as well as (3.16). Suppose there exists some function w ∈ H2(Ω) with
γ0(w) = g3 on Γ3. Let ũ = u + w and let u be a solution of (3.35). Then
ũ ∈ H2(Ω) and

‖ũ‖2 ≤ C{‖u‖0 + ‖f‖0 + ‖w‖2}

with a constant C > 0 independent of u, f , and w.

One drawback of the above result is that it excludes polyhedral domains.
If the convexity of Ω is additionally assumed, then it can be transferred
to this case. Simple examples of boundary value problems in domains with
reentrant corners show that one cannot avoid such additional assumptions
(see Exercise 3.5).

Exercises

3.5 Consider the boundary value problem (1.1), (1.2) for f = 0 in the
sector Ω :=

{
(x, y) ∈ R2

∣∣ x = r cosϕ, y = r sinϕ with 0 < r < 1, 0 < ϕ <
α
}

for some 0 < α < 2π, thus with the interior angle α. Derive as in (1.23),
by using the ansatz w(z) := z1/α, a solution u(x, y) = 4w(x + iy) for an
appropriate boundary function g. Then check the regularity of u, that is,
u ∈ Hk(Ω), in dependence of α.

3.6 Consider the problem (1.29) with the transmission condition (1.30)
and, for example, Dirichlet boundary conditions and derive a variational
formulation for this.

3.7 Consider the variational formulation:
Find u ∈ H1(Ω) such that
∫

Ω
∇u ·∇v dx =

∫

Ω
fv dx +

∫

∂Ω
gv dσ for all v ∈ H1(Ω) , (3.37)
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where Ω is a bounded Lipschitz domain, f ∈ L2(Ω) and g ∈ L2(∂Ω).

(a) Let u ∈ H1(Ω) be a solution of this problem. Show that −∆u exists
in the weak sense in L2(Ω) and

−∆u = f .

(b) If additionally u ∈ H2(Ω), then ∂νu|∂Ω exists in the sense of trace in
L2(∂Ω) and

∂νu = g

where this equality is to be understood as
∫

∂Ω
(∂νu− g)v dσ = 0 for all v ∈ H1(Ω) .

3.8 Consider the variational equation (3.37) for the Neumann problem
for the Poisson equation as in Exercise 3.7.

(a) If a solution u ∈ H1(Ω) exists, then the compatibility condition
∫

Ω
f dx +

∫

∂Ω
g dσ = 0 (3.38)

has to be fulfilled.

(b) Consider the following bilinear form on H1(Ω) :

ã(u, v) :=
∫

Ω
∇u ·∇v dx +

(∫

Ω
u dx

)(∫

Ω
v dx

)
.

Show that ã is V -elliptic on H1(Ω).
Hint: Do it by contradiction using the fact that a bounded sequence in
H1(Ω) possesses a subsequence converging in L2(Ω) (see, e.g., [37]).

(c) Consider the unique solution ũ ∈ H1(Ω) of

ã(u, v) =
∫

Ω
fv dx +

∫

∂Ω
gv dσ for all v ∈ H1(Ω) .

Then:

|Ω|
∫

Ω
ũ dx =

∫

Ω
f dx +

∫

∂Ω
g dσ .

Furthermore, if (3.38) is valid, then ũ is a solution of (3.37) (with∫
Ω ũ dx = 0).

3.9 Show analogously to Exercise 3.7: A weak solution u ∈ V ⊂ H1(Ω)
of (3.31), where V is defined in (3.30), with data satisfying (3.14) and
(3.22), fulfills a differential equation in L2(Ω). The boundary conditions
are fulfilled in the following sense:
∫

Γ1

∂νK u v dσ+
∫

Γ2

(∂νK u+αu)v dσ =
∫

Γ1

g1v dσ+
∫

Γ2

g2v dσ for all v ∈ V .
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3.3 Element Types and Affine Equivalent
Triangulations

In order to be able to exploit the theory developed in Sections 3.1 and 3.2
we make the assumption that Ω is a Lipschitz domain.

The finite element discretization of the boundary value problem (3.12)
with the boundary conditions (3.18)–(3.20) corresponds to performing a
Galerkin approximation (cf. (2.23)) of the variational equation (3.35) with
the bilinear form a and the linear form b, supposed to be defined as in
(3.31), and some w ∈ H1(Ω) with the property w = g3 on Γ3. The solution
of the weak formulation of the boundary value problem is then given by
ũ := u + w, if u denotes the solution of the variational equation (3.35).

Since the bilinear form a is in general not symmetric, (2.21) and (2.23),
respectively (the variational equation), are no longer equivalent to (2.22)
and (2.24), respectively (the minimization problem), so that in the following
we pursue only the first, more general, ansatz.

The Galerkin approximation of the variational equation (3.35) reads as
follows: Find some u ∈ Vh such that

a(uh, v) = b(v)− a(w, v) = b̃(v) for all v ∈ Vh . (3.39)

The space Vh that is to be defined has to satisfy Vh ⊂ V . Therefore, we
speak of a conforming finite element discretization, whereas for a non-
conforming discretization this property, for instance, can be violated. The
ansatz space is defined piecewise with respect to a triangulation Th of Ω
with the goal of getting small supports for the basis functions. A trian-
gulation in two space dimensions consisting of triangles has already been
defined in definition (2.25). The generalization in d space dimensions reads
as follows:

Definition 3.19 A triangulation Th of a set Ω ⊂ Rd consists of a finite
number of subsets K of Ω with the following properties:

(T1) Every K ∈ Th is closed.
(T2) For every K ∈ Th its nonempty interior int (K) is a Lipschitz domain.
(T3) Ω = ∪K∈ThK.

(T4) For different K1 and K2 of Th the intersection of int (K1) and int (K2)
is empty.

The sets K ∈ Th, which are called somewhat inaccurately elements in the
following, form a nonoverlapping decomposition of Ω. Here the formulation
is chosen in such a general way, since in Section 3.8 elements with curved
boundaries will also be considered. In Definition 3.19 some condition, which
corresponds to the property (3) of definition (2.25), is still missing. In the
following this will be formulated specifically for each element type. The
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parameter h is a measure for the size of all elements and mostly chosen as

h = max
{
diam (K)

∣∣ K ∈ Th

}
;

that is, for instance, for triangles h is the length of the triangle’s largest
edge.

For a given vector space Vh let

PK := {v|K | v ∈ Vh} for K ∈ Th , (3.40)

that is,

Vh ⊂
{
v : Ω→ R

∣∣ v|K ∈ PK for all K ∈ Th

}
.

In the example of “linear triangles” in (2.27) we have PK = P1, the poly-
nomials of first order. In the following definitions the space PK will always
consist of polynomials or of smooth “polynomial-like” functions, such that
we can assume PK ⊂ H1(K) ∩ C(K). Here, H1(K) is an abbreviation for
H1(int (K)). The same holds for similar notation.

As the following theorem shows, elements v ∈ Vh of a conforming ansatz
space Vh ⊂ V have therefore to be continuous :

Theorem 3.20 Suppose PK ⊂ H1(K) ∩ C(K) for all K ∈ Th. Then

Vh ⊂ C(Ω̄) ⇐⇒ Vh ⊂ H1(Ω)

and, respectively, for V0h :=
{
v ∈ Vh

∣∣ v = 0 on ∂Ω
}
,

V0h ⊂ C(Ω̄) ⇐⇒ V0h ⊂ H1
0 (Ω) .

Proof: See, for example, [9, Theorem 5.1 (p. 62)] or also Exercise 3.10. !

If Vh ⊂ C(Ω̄), then we also speak of C0-elements. Hence with this notion
we do not mean only the K ∈ Th, but these provided with the local ansatz
space PK (and the degrees of freedom still to be introduced). For a bound-
ary value problem of fourth order, Vh ⊂ H2(Ω) and hence the requirement
Vh ⊂ C1(Ω̄) are necessary for a conforming finite element ansatz. There-
fore, this requires, analogously to Theorem 3.20, so-called C1-elements. By
degrees of freedom we denote a finite number of values that are obtained
for some v ∈ PK from evaluating linear functionals on PK . The set of
these functionals is denoted by ΣK . In the following, these will basically
be the function values in fixed points of the element K, as in the example
of (2.27). We refer to these points as nodes. (Sometimes, this term is used
only for the vertices of the elements, which at least in our examples are
always nodes.) If the degrees of freedom are only function values, then we
speak of Lagrange elements and specify Σ by the corresponding nodes of
the element. Other possible degrees of freedom are values of derivatives in
fixed nodes or also integrals. Values of derivatives are necessary if we want
to obtain C1-elements.
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As in the example of (2.27) (cf. Lemma 2.10), Vh is defined by specifying
PK and the degrees of freedom on K for K ∈ Th. These have to be chosen
such that, on the one hand, they enforce the continuity of v ∈ Vh and,
on the other hand, the satisfaction of the homogeneous Dirichlet bound-
ary conditions at the nodes. For this purpose, compatibility between the
Dirichlet boundary condition and the triangulation is necessary, since it
will be required in (T6).

As can be seen from the proof of Lemma 2.10, it is essential

(F1) that the interpolation problem, locally defined on K ∈
Th by the degrees of freedom, is uniquely solvable in PK , (3.41)

(F2)

that this also holds on the (d−1)-dimensional boundary
surfaces F of K ∈ Th for the degrees of freedom from F
and the functions v|F where v ∈ PK ; this then ensures
the continuity of v ∈ Vh, if PK and PK′ match in the
sense of PK |F = PK′ |F for K, K ′ ∈ Th intersecting in F
(see Figure 3.2).

(3.42)

.

.
.P  = PK 1

.

.
P     = PK  F 1

Figure 3.2. Compatibility of the ansatz space on the boundary surface and the
degrees of freedom there.

The following finite elements defined by their basic domain K(∈ Th),
the local ansatz space PK , and the degrees of freedom ΣK satisfy these
properties.

For this, let Pk(K) be the set of mappings p : K → R of the following
form:

p(x) = p(x1, . . . , xd) =
∑

|α|≤k

γα1...αdxα1
1 · · ·xαd

d =
∑

|α|≤k

γαx
α , (3.43)

hence the polynomials of order k in d variables. The set Pk(K) forms
a vector space, and since p ∈ Pk(K) is differentiable arbitrarily often,
Pk(K) is a subset of all function spaces introduced so far (provided that
the boundary conditions do not belong to their definition).

For both, K ∈ Th and K = Rd we have

dimPk(K) = dimPk(Rd) =
(

d + k

k

)
, (3.44)

as even Pk(Rd)|K = Pk(K) (see Exercise 3.12). Therefore, for short we will
use the notation P1 = P1(K) if the dimension of the basic space is fixed.
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We start with simplicial finite elements, that is, elements whose basic
domain is a regular d-simplex of Rd. By this we mean the following:

Definition 3.21 A set K ⊂ Rd is called a regular d-simplex if there exist
d + 1 distinct points a1, . . . , ad+1 ∈ Rd, the vertices of K, such that

a2 − a1, . . . , ad+1 − a1 are linearly independent (3.45)

(that is, a1, . . . , ad+1 do not lie in a hyperplane) and

K = conv {a1, . . . , ad+1}

:=

{
x =

d+1∑

i=1

λiai

∣∣∣ 0 ≤ λi(≤ 1) ,
d+1∑

i=1

λi = 1

}
(3.46)

=

{
x = a1 +

d+1∑

i=2

λi (ai − a1)
∣∣∣ λi ≥ 0 ,

d+1∑

i=2

λi ≤ 1

}
.

A face of K is a (d − 1)-simplex defined by d points of {a1, . . . , ad+1}.
The particular d-simplex

K̂ := conv {â1, . . . , âd+1} with â1 = 0 , âi+1 = ei , i = 1, . . . , d , (3.47)

is called the standard simplicial reference element.

In the case d = 2 we get a triangle with dimP1 = 3 (cf. Lemma 2.10). The
faces are the 3 edges of the triangle. In the case d = 3 we get a tetrahedron
with dimP1 = 4, the faces are the 4 triangle surfaces, and finally, in the
case d = 1 it is a line segment with dimP1 = 2 and the two boundary
points as faces.

More precisely, a face is not interpreted as a subset of Rd, but of a
(d − 1)-dimensional space that, for instance, is spanned by the vectors
a2 − a1, . . . , ad − a1 in the case of the defining points a1, . . . , ad.

Sometimes, we also consider degenerate d-simplices, where the assump-
tion (3.45) of linear independence is dropped. We consider, for instance,
a line segment in the two-dimensional space as it arises as an edge of a
triangular element. In the one-dimensional parametrisation it is a regular
1-simplex, but in R2 a degenerate 2-simplex.

The unique coefficients λi = λi(x), i = 1, . . . , d + 1, in (3.46), are called
barycentric coordinates of x. This defines mappings λi : K → R, i =
1, . . . , d + 1.

We consider aj as a column of a matrix; that is, for j = 1, . . . , d, aj =
(aij)i=1,...,d. The defining conditions for λi = λi(x) can be written as a
(d + 1)× (d + 1) system of equations:

d+1∑
j=1

aijλj = xi

d+1∑
j=1

λj = 1





⇔ Bλ =

(
x
1

)
(3.48)
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for

B =





a11 · · · a1,d+1
...

. . .
...

ad1 · · · ad,d+1

1 · · · 1




. (3.49)

The matrix B is nonsingular due to assumption (3.45); that is, λ(x) =
B−1

(
x
1

)
, and hence

λi(x) =
d∑

j=1

cijxj + ci,d+1 for all i = 1, . . . , d + 1 ,

where C = (cij)ij := B−1.
Consequently, the λi are affine-linear, and hence λi ∈ P1. The level

surfaces
{
x ∈ K

∣∣ λi(x) = µ
}

correspond to intersections of hyperplanes
with the simplex K (see Figure 3.3). The level surfaces for distinct µ1 and
µ2 are parallel to each other, that is, in particlular, to the level surface for
µ = 0, which corresponds to the triangle face spanned by all the vertices
apart of ai.

.
.

.

.

.
.

a

a
a

a

a

a

1

12

2

23

3

31

λ1= 1
2 λ1= µ

Figure 3.3. Barycentric coordinates and hyperplanes.

By (3.48), the barycentric coordinates can be defined for arbitrary x ∈ Rd

(with respect to some fixed d-simplex K). Then

x ∈ K ⇐⇒ 0 ≤ λi(x) ≤ 1 for all i = 1, . . . , d + 1 .

Applying Cramer’s rule to the system Bλ =
(x
1

)
, we get for the ith

barycentric coordinate

λi(x) =
1

det(B)
det





a11 · · · x1 · · · a1,d+1
...

...
...

ad1 · · · xd · · · ad,d+1

1 · · · 1 · · · 1




.
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Here, in the ith column ai has been replaced with x. Since in general,

vol (K) = vol (K̂) | det(B)| (3.50)

for the reference simplex K̂ defined by (3.47) (cf. (2.50)), we have for the
volume of the d-simplex K = conv {a1, . . . , ad+1},

vol (K) =
1
d!

∣∣∣∣∣∣∣∣∣

det





a11 · · · a1,d+1
...

. . .
...

ad1 · · · ad,d+1

1 · · · 1





∣∣∣∣∣∣∣∣∣

,

and from this,

λi(x) = ± vol (conv {a1, . . . , x, . . . , ad+1})
vol (conv {a1, . . . , ai, . . . , ad+1})

. (3.51)

The sign is determined by the arrangement of the coordinates.
In the case d = 2 for example, we have

vol (K) = det(B)/2

⇐⇒ a1, a2, a3 are ordered positively (that is, counterclockwise).

Here, conv {a1, . . . , x, . . . , ad+1} is the d-simplex that is generated by re-
placing ai with x and is possibly degenerate if x lies on a face of K (then
λi(x) = 0). Hence, in the case d = 2 we have for x ∈ K that the barycentric
coordinates λi(x) are the relative areas of the triangles that are spanned by
x and the vertices other than ai. Therefore, we also speak of surface coordi-
nates (see Figure 3.4). Analogous interpretations hold for d = 3. Using the
barycentric coordinates, we can now easily specify points that admit a ge-
ometric characterization. The midpoint aij := 1

2 (ai + aj) of a line segment
that is given by ai and aj satisfies, for instance,

λi(x) = λj(x) =
1
2

.

By the barycentre of a d-simplex we mean

aS :=
1

d + 1

d+1∑

i=1

ai ; thus λi(aS) =
1

d + 1
for all i = 1, . . . , d + 1 . (3.52)

A geometric interpretation follows directly from the above considerations.
In the following suppose conv {a1, . . . , ad+1} to be a regular d-simplex.

We make the following definition:

Finite Element: Linear Ansatz on the Simplex

K = conv {a1, . . . , ad+1} ,

P = P1(K) , (3.53)
Σ = {p (ai) , i = 1, . . . , d + 1} .
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.

. .

a

aa

1

23

.x

conv{a1 ,a2 ,x}

conv{x ,a2 ,a3}

conv{a1 ,x,a3}

Figure 3.4. Barycentric coordinates as surface coordinates.

The local interpolation problem in P , given by the degrees of freedom Σ,
namely,

find some p ∈ P for u1, . . . , ud+1 ∈ R such that

p(ai) = ui for all i = 1, . . . , d + 1 ,

can be interpreted as the question of finding the inverse image of a linear
mapping from P to R|Σ|. By virtue of (3.44),

|Σ| = d + 1 = dim P .

Since both vector spaces have the same dimension, the solvability of the
interpolation problem is equivalent to the uniqueness of the solution. This
consideration holds independently of the type of the degrees of freedom (as
far as they are linear functionals on P ). Therefore, we need only to ensure
the solvability of the interpolation problem. This is obtained by specifying

N1, . . . , Nd+1 ∈ P with Ni (aj) = δij for all i, j = 1, . . . , d + 1 ,

the so-called shape functions (see (2.29) for d = 2). Then the solution of
the interpolation problem is given by

p(x) =
d+1∑

i=1

uiNi(x) (3.54)

and analogously in the following; that is, the shape functions form a basis
of P and the coefficients in the representation of the interpolating function
are exactly the degrees of freedom u1, . . . , ud+1.

Due to the above considerations, the specification of the shape functions
can easily be done by choosing

Ni = λi .

Finite Element: Quadratic Ansatz on the Simplex
Here, we have

K = conv {a1, . . . , ad+1} ,
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P = P2(K) , (3.55)
Σ = {p (ai) , p (aij) , i = 1, . . . , d + 1, i < j ≤ d + 1} ,

where the aij denote the midpoints of the edges (see Figure 3.5).
Since here we have

|Σ| =
(d + 1)(d + 2)

2
= dim P ,

it also suffices to specify the shape functions. They are given by

λi (2λi − 1) , i = 1, . . . , d + 1 ,

4λiλj , i, j = 1, . . . , d + 1 , i < j .

. . .
.

.
.

.

.

. . .
.
.

.

.. dim = 10
dim = 6

d = 3d = 2

Figure 3.5. Quadratic simplicial elements.

If we want to have polynomials of higher degree as local ansatz functions,
but still Lagrange elements, then degrees of freedom also arise in the interior
of K:

Finite Element: Cubic Ansatz on the Simplex

K = conv {a1, . . . , ad+1} ,

P = P3(K) , (3.56)
Σ = {p(ai), p(ai,i,j), p(ai,j,k)} ,

where

ai,i,j :=
2
3
ai +

1
3
aj for i, j = 1, . . . , d + 1 , i -= j ,

ai,j,k :=
1
3
(ai + aj + ak) for i, j, k = 1, . . . , d + 1 , i < j < k .

Since here |Σ| = dim P also holds, it is sufficient to specify the shape
functions, which is possible by

1
2
λi(3λi − 1)(3λi − 2), i = 1, . . . , d + 1 ,

9
2
λiλj(3λi − 1), i, j = 1, . . . , d + 1 , i -= j ,
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27λiλjλk, i, j, k = 1, . . . , d + 1 , i < j < k .

Thus for d = 2 the value at the barycentre arises as a degree of freedom.
This, and in general the ai,j,k, i < j < k, can be dropped if the ansatz
space P is reduced (see [9, p. 70]).

All finite elements discussed so far have degrees of freedom that are
defined in convex combinations of the vertices. On the other hand, two
regular d-simplices can be mapped bijectively onto each other by a unique
affine-linear F , that is, F ∈ P1 such that as defining condition, the vertices
of the simplices should be mapped onto each other. If we choose, besides
the general simplex K, the standard reference element K̂ defined by (3.47),
then F = FK : K̂ → K is defined by

F (x̂) = Bx̂ + a1 , (3.57)

where B = (a2 − a1, . . . , ad+1 − a1).
Since for F we have

F

(
d+1∑

i=1

λiâi

)
=

d+1∑

i=1

λiF (âi) for λi ≥ 0 ,
d+1∑

i=1

λi = 1 ,

F is indeed a bijection that maps the degrees of freedom onto each other as
well as the faces of the simplices. Since the ansatz spaces P and P̂ remain
invariant under the transformation FK , the finite elements introduced so
far are (in their respective classes) affine equivalent to each other and to
the reference element.

Definition 3.22 Two Lagrange elements (K, P,Σ), (K̂, P̂ , Σ̂) are called
equivalent if there exists a bijective F : K̂ → K such that

{
F (â)

∣∣ â ∈ K̂ generates a degree of freedom on K̂
}

=
{
a
∣∣ a ∈ K generates a degree of freedom on K

}

and
P =

{
p : K → R

∣∣ p ◦ F ∈ P̂
}

.

(3.58)

They are called affine equivalent if F is affine-linear.

Here we have formulated the definition in a more general way, since in
Section 3.8 elements with more general F will be introduced: For isopara-
metric elements the same functions F as in the ansatz space are admissible
for the transformation. From the elements discussed so far only the simplex
with linear ansatz is thus isoparametric. Hence, in the (affine) equivalent
case a transformation not only of the points is defined by

x̂ = F−1(x) ,

but also of the mappings, defined on K and K̂, (not only of P and P̂ ) is
given by

v̂ : K̂ → R , v̂(x̂) := v(F (x̂))
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for v : K → R and vice versa.
We can also use the techniques developed so far in such a way that only

the reference element is defined, and then a general element is obtained
from this by an affine-linear transformation. As an example of this, we
consider elements on a cube.

Suppose K̂ := [0, 1]d =
{
x ∈ Rd

∣∣ 0 ≤ xi ≤ 1, i = 1, . . . , d
}

is the unit
cube. The faces of K̂ are defined by setting a coordinate to 0 or 1; thus for
instance,

j−1∏

i=1

[0, 1]× {0}×
d∏

j+1

[0, 1] .

Let Qk(K) denote the set of polynomials on K that are of the form

p(x) =
∑

0≤αi≤k
i=1,...,d

γα1,...,αdxα1
1 · · ·xαd

d .

Hence, we have Pk ⊂ Qk ⊂ Pdk.
Therefore, we define a reference element generally for k ∈ N as follows:

Finite Element: d-polynomial Ansatz on the Cuboid

K̂ = [0, 1]d ,

P̂ = Qk(K̂) , (3.59)

Σ̂ =
{

p(x̂)
∣∣∣ x̂ =

(
i1
k

, . . . ,
id
k

)
, ij ∈ {0, . . . , k}, j = 1, . . . , d

}
,

which is depicted in Figure 3.6. Again, we have |Σ̂| = dim P̂ , such that
for the unique solvability of the local interpolation problem we have only
to specify the shape functions. They are obtained on K̂ as the product of
the corresponding shape functions for the case d = 1, thus of the Lagrange
basis polynomials

pi1,...,id(x̂) :=
d∏

j=1

(
k∏

i′j=0

i′j &=ij

kx̂j − i′j
ij − i′j

)
.

Interior degrees of freedom arise from k = 2 onward. Hence the ansatz
space on the general element K is, according to the definition above,

P =
{

p̂ ◦ F−1
K

∣∣ p̂ ∈ Qk(K̂)
}

.

In the case of a general rectangular cuboid, that is, if B in (3.57) is a
diagonal matrix, then P = Qk(K) holds, analogously to the simplices.
However, for a general B additional polynomial terms arise that do not
belong to Qk (see Exercise 3.14).
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. .

..

d = 2 ,  dim = 4

bilinear ansatz

. .

..

. .

..

d = 3

dim = 8

trilinear ansatz

. . .

. . .

. . .

d = 2 ,  dim = 9

biquadratic ansatz

. . .. . .. . .

. . .. . .. . .

. . .. . .. . .

d = 3

dim = 27

triquadratic ansatz

Figure 3.6. Quadratic and cubic elements on the cube.

An affine-linear transformation does not generate general cuboids but
only d-epipeds, thus for d = 3 parallelepipeds and for d = 2 only parallelo-
grams. To map the unit square to an arbitrary general convex quadrilateral,
we need some transformation of Q1, that is, isoparametric elements (see
(3.142)).

Let Th be a triangulation of d-simplices or of affinely transformed d-
unit cubes. In particular, Ω = int(∪K∈ThK) is polygonally bounded. The
condition (F1) in (3.41) is always satisfied. In order to be able to satisfy
the condition (F2) in (3.42) as well, a further assumption in addition to
(T1)–(T4) has to be made about the triangulation:

(T5) Every face of some K ∈ Th is either a subset of the boundary Γ of Ω
or identical to a face of another K̃ ∈ Th.

In order to ensure the validity of the homogeneous Dirichlet boundary
condition on Γ3 for the vh ∈ Vh that have to be defined, we additionally
assume the following:

(T6) The boundary sets Γ1, Γ2, Γ3 decompose into faces of elements K ∈
Th.

A face F of K ∈ Th that is lying on ∂Ω is therefore only allowed to contain
a point from the intersection Γi ∩ Γj for i -= j, if and only if the point is a
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boundary point of F . We recall that the set Γ3 has been defined as being
closed in ∂Ω.

In the following, we suppose that these conditions are always satisfied.
A triangulation that also satisfies (T5) and (T6) is called conforming.

Then, for all of the above finite elements,

• If K, K ′ ∈ Th have a common face F , then the degrees of
freedom of K and K ′ coincide on F .

(3.60)

• F itself becomes a finite element (that is, the local interpo-
lation problem is uniquely solvable) with the ansatz space
PK |F and the degrees of freedom on F .

(3.61)

We now choose Vh as follows:

Vh :=
{
v : Ω→ R

∣∣ v|K ∈ PK for K ∈ Th

and v is uniquely given in the degrees of freedom
}

.
(3.62)

Analogously to the proof of Lemma 2.10, we can see that v ∈ Vh is con-
tinuous over the face of an element; thus Vh ⊂ C(Ω̄), that is, Vh ⊂ H1(Ω)
according to Theorem 3.20.

Further, u|F = 0 if F is a face of K ∈ Th with F ⊂ ∂Ω and the specifica-
tions in the degrees of freedom of F are zero (Dirichlet boundary conditions
only in the nodes); that is, the homogeneous Dirichlet boundary conditions
are satisfied by enforcing them in the degrees of freedom. Due to the as-
sumption (T6), the boundary set Γ3 is fully taken into account in this
way.

Consequently, we the following theorem:

Theorem 3.23 Suppose Th is a conforming triangulation of d-simplices
or d-epipeds of a domain Ω ⊂ Rd. The elements are defined as in one of
the examples (3.53), (3.55), (3.56), (3.59).

Let the degrees of freedom be given in the nodes a1, . . . , aM . Suppose
they are numbered in such a way that a1, . . . , aM1 ∈ Ω ∪ Γ1 ∪ Γ2 and
aM1+1, . . . , aM ∈ Γ3. If the ansatz space Vh is defined by (3.62), then an
element v ∈ Vh is determined uniquely by specifying v(ai), i = 1, . . . , M,
and

v ∈ H1(Ω) .

If v(ai) = 0 for i = M1 + 1, . . . , M , then we also have

v = 0 on Γ3 .

Exactly as in Section 2.2 (see (2.32)), functions ϕi ∈ Vh are uniquely
determined by the interpolation condition

ϕi(aj) = δij , i, j = 1, . . . , M .

By the same consideration as there and as for the shape functions (see
(3.54)) we observe that the ϕi form a basis of Vh, the nodal basis, since
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each v ∈ Vh has a unique representation

v(x) =
M∑

i=1

v(ai)ϕi(x) . (3.63)

If for Dirichlet boundary conditions, the values in the boundary nodes
ai, i = M1 + 1, . . . , M , are given as zero, then the index has to run only up
to M1.

The support suppϕi of the basis functions thus consists of all elements
that contain the node ai, since in all other elements ϕi assumes the value 0
in the degrees of freedom and hence vanishes identically. In particular, for
an interior degree of freedom, that is, for some ai with ai ∈ int (K) for an
element K ∈ Th, we have suppϕi = K.

Different element types can also be combined (see Figure 3.7) if only
(3.60) is satisfied, thus, for instance for d = 2 (3.59), k = 1, can be combined
with (3.53) or (3.59), k = 2, with (3.55).

.
. .

.
.

. . .
.
.....

. .

. .

.
.

.

.
..

. .

.

Figure 3.7. Conforming combination of different element types.

For d = 3 a combination of simplices and parallelepipeds is not possible,
since they have different types of faces. Tetrahedra can be combined with
prisms at their two triangular surfaces, whereas their three quadrilateral
surfaces (see Exercise 3.17) allow for a combination of prisms with paral-
lelepipeds. Possibly also pyramids are necessary as transition elements (see
[57]).

So far, the degrees of freedom have always been function values (Lagrange
elements). If, additionally, derivative values are specified, then we speak of
Hermite elements. As an example, we present the following:

Finite Element: Cubic Hermite Ansatz on the Simplex

K = conv {a1, . . . , ad+1} ,
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P = P3(K) , (3.64)
Σ =

{
p(ai) , i = 1, . . . , d + 1 , p(ai,j,k) , i, j, k = 1, . . . , d + 1 , i < j < k ,

∇p(ai) · (aj − ai) , i, j = 1, . . . , d + 1 , i -= j
}

.

Instead of the directional derivatives we could also have chosen the par-
tial derivatives as degrees of freedom, but would not have generated
affine equivalent elements in that way. In order to ensure that directional
derivatives in the directions ξ and ξ̂ are mapped onto each other by the
transformation, the directions have to satisfy

ξ = Bξ̂ ,

where B is the linear part of the transformation F according to (3.57). This
is satisfied for (3.64), but would be violated for the partial derivatives, that
is, ξ = ξ̂ = ei. This has also to be taken into account for the question of
which degrees of freedom have to be chosen for Dirichlet boundary con-
ditions (see Exercise 3.19). Thus, the desired property that the degrees of
freedom be defined “globally” is lost here. Nevertheless, we do not have a
C1-element: The ansatz (3.64) ensures only the continuity of the tangential,
not of the normal derivative over a face.

Finite Element: Bogner–Fox–Schmit Rectangle
The simplest C1-element is for d = 2 :

K̂ = [0, 1]2 ,

P̂ = Q3(K̂) , (3.65)
Σ̂ = {p(a), ∂1p(a), ∂2p(a), ∂12p(a) for all vertices a} ;

that is, the element has 16 degrees of freedom.

In the case of Hermite elements, the above propositions concerning the
nodal basis hold analogously with an appropriate extension of the identity
(3.63).

Further, all considerations of Section 2.2 concerning the determination
of the Galerkin approximation as a solution of a system of equations (2.34)
also hold, since there only the (bi)linearity of the forms is supposed. There-
fore using the nodal basis, the quantity a(ϕj ,ϕi) has to be computed as
the (i, j)th matrix entry of the system of equations that has to be set up
for the bilinear form a. The form of the bilinear form (3.31) shows that
the consideration of Section 2.2, concerning that there is at most a nonzero
entry at position (i, j) if,

suppϕi ∩ suppϕj -= ∅ , (3.66)

still holds.
Since in the examples discussed, suppϕi consists of at most of those

elements containing the node ai (see Figure 3.10), the nodes have to be
adjacent, for the validity of (3.66); that is, they should belong to some
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common element. In particular, an interior degree of freedom of some ele-
ment is connected only with the nodes of the same element: This can be
used to eliminate such nodes from the beginning (static condensation).

The following consideration can be helpful for the choice of the element
type: An increase in the size of polynomial ansatz spaces increases the
(computational) cost by an increase in the number of nodes and an increase
in the population of the matrix.

As an example for d = 2 we consider triangles with linear (a) and
quadratic (b) ansatz (see Figure 3.8).

(a)

triangle with P1.

.
.

(b)

triangle with P2.
.

.
.

..

Figure 3.8. Comparison between linear and quadratic triangles.

In order to have the same number of nodes we compare (b) with the
discretization parameter h with (a) with the discretization parameter h/2
(one step of “red refinement”) (see Figure 3.9).

.
. ..

.

.
.

.

.
Figure 3.9. Generation of the same number of nodes.

However, this shows that we have a denser population in (b) than in (a).

.

.

.

.

.

. . .
.
...

.

suppϕi

.

.

.

.

.

. . .
.
...

.

suppϕi

Figure 3.10. Supports of the basis functions.
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To have still an advantage by using the higher polynomial order, the
ansatz (b) has to have a higher convergence rate. In Theorem 3.29 we will
prove the following estimate for a regular family of triangulations Th (see
Definition 3.28):

• If u ∈ H2(Ω), then for (a) and (b) we have the estimate

‖u− uh‖1 ≤ C1h . (3.67)

• If u ∈ H3(Ω), then for (b) but not for (a) we have the estimate

‖u− uh‖1 ≤ C2h
2 . (3.68)

For the constants we may in general expect C2 > C1.
In order to be able to make a comparison between the variants (a) and

(b), we consider in the following the case of a rectangle Ω = (0, a)× (0, b).
The number of the nodes is then proportional to 1/h2 if the elements are
all “essentially” of the same size.

However, if we consider the number of nodes M as given, then h is
proportional to 1/

√
M .

Using this in the estimate (3.67), we get for a solution u ∈ H2(Ω),

in the case (a) for h/2: ‖u− uh/2‖1 ≤ C1
1

2
√

M
,

in the case (b) for h: ‖u− uh‖1 ≤ C̄1
1√
M

.

If both constants are the same, this means an advantage for the variant
(a).

On the other hand, if the solution is smoother and satisfies u ∈ H3(Ω),
then the estimate (3.68), which can be applied only to the variant (b),
yields

in the case (a) for h/2: ‖u− uh/2‖1 ≤ C1
1

2
√

M
,

in the case (b) for h: ‖u− uh‖1 ≤ C2
1
M

.

By an elementary reformulation, we get

C2
1
M

< (<)C1
1

2
√

M
⇐⇒ M > (>) 4

C2
2

C2
1

,

which gives an advantage for (b) if the number of variables M is chosen,
depending on C2/C1, sufficiently large. However, the denser population of
the matrix in (b) has to be confronted with this.

Hence, a higher-order polynomial ansatz has an advantage only if the
smoothness of the solution leads to a higher convergence rate. Especially
for nonlinear problems with less-smooth solutions, a possible advantage of
the higher-order ansatz has to be examined critically.
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Exercises

3.10 Prove the implication “⇒” in Theorem 3.20.
Hint: For v ∈ Vh define a function wi by wi|int(K) := ∂iv, i = 1, . . . , d,

and show that wi is the ith partial derivative of v.

3.11 Construct the element stiffness matrix for the Poisson equation on
a rectangle with quadratic bilinear rectangular elements. Verify that this
finite element discretization of the Laplace operator can be interpreted as
a finite difference method with the difference stencil according to (1.22).

3.12 Prove that:

(a) dimPk(Rd) =
(d+k

k

)
.

(b) Pk(Rd)|K = Pk(K) if int (K) -= ∅.

3.13 Prove for given vectors a1, . . . , ad+1 ∈ Rd that a2 − a1, . . . , ad+1 −
a1 are linear independent if and only if a1 − ai, . . . , ai−1 − ai, ai+1 −
ai, . . . , ad+1 − ai are linearly independent for some i ∈ {2, . . . , d}.

3.14 Determine for the polynomial ansatz on the cuboid as reference
element (3.59) the ansatz space P that is obtained by an affine-linear
transformation to a d-epiped.

3.15 Suppose K is a rectangle with the (counterclockwise numbered) ver-
tices a1, . . . , a4 and the corresponding edge midpoints a12, a23, a34, a41.
Show that the elements f of Q1(K) are not determined uniquely by the
degrees of freedom f(a12), f(a23), f(a34), f(a41).

3.16 Check the given shape functions for (3.55) and (3.56).

3.17 Define a reference element in R3 by

K̂ = conv {â1, â2, â3}× [0, 1] with â1 =
(

0
0

)
, â2 =

(
1
0

)
, â3 =

(
0
1

)
,

P̂ =
{
p1(x1, x2) p2(x3)

∣∣ p1 ∈ P1(R2) , p2 ∈ P1(R)
}

,

Σ̂ =
{
p(x̂)

∣∣ x̂ = (âi, j) , i = 0, 1, 2 , j = 0, 1
}

.

Show the unique solvability of the local interpolation problem and describe
the elements obtained by affine-linear transformation.

3.18 Suppose d + 1 points aj , j = 1, . . . , d + 1, in Rd are given with the
property as in Exercise 3.13. Additionally, we define as in (3.48), (3.49) the
barycentric coordinates λj = λj(x; S) of x with respect to the d-simplex
S generated by the points aj. Show that for each bijective affine-linear
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mapping 4 : Rd → Rd, λj(x; S) = λj(4(x); 4(S)), which means that the
barycentric coordinates are invariant under such transformations.

3.19 Discuss for the cubic Hermite ansatz (3.64) and Dirichlet boundary
conditions the choice of the degrees of freedom with regard to the angle
between two edges of boundary elements that is either α -= 2π or α = 2π.

3.20 Construct a nodal basis for the Bogner–Fox–Schmit element in
(3.65).

3.4 Convergence Rate Estimates

In this section we consider further a finite element approximation in the
framework described in the previous section: The bounded basic domain
Ω ⊂ Rd of the boundary value problem is decomposed into conforming tri-
angulations Th, which may also consist of different types of elements. Here,
by an element we mean not only the set K ∈ Th, but this equipped with
some ansatz space PK and degrees of freedom ΣK . However, the elements
are supposed to decompose into a fixed number of subsets, independent
of h, each consisting of elements that are affine equivalent to each other.
Different elements have to be compatible with each other such that the
ansatz space Vh, introduced in (3.62), is well-defined. The smoothness of
the functions arising in this way has to be consistent with the boundary
value problem, in so far as Vh ⊂ V is guaranteed. In the following we
consider only one element type; the generalization to the more general sit-
uation will be obvious. The goal is to prove a priori estimates of the form

‖u− uh‖ ≤ C|u|hα (3.69)

with constants C > 0, α > 0 and norms and seminorms ‖ · ‖ and | · |,
respectively.

We do not attempt to give the constant C explicitly, although in prin-
ciple, this is possible (with other techniques of proof). In particular, in
the following C has to be understood generically; that is, by C we denote
at different places different values, which, however, are independent of h.
Therefore, the estimate (3.69) does not serve only to estimate numerically
the error for a fixed triangulation Th. It is rather useful for estimating what
gain in accuracy can be expected by increasing the effort, which then corre-
sponds to the reduction of h by some refinement (see the discussion around
(3.67)). Independently of the convergence rate α, (3.69) provides the cer-
tainty that an arbitrary accuracy in the desired norm ‖ · ‖ can be obtained
at all. In the following, we will impose some geometric conditions on the
family (Th)h, which have always to be understood uniformly in h. For a
fixed triangulation these conditions are always trivially satisfied, since here
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we have a finite number of elements. For a family (Th)h with h → 0, thus for
increasing refinement, this number becomes unbounded. In the following
estimates we have therefore to distinguish between “variable” values like
the number of nodes M = M(h) of Th, and “fixed” values like the dimen-
sion d or the dimension of PK or equivalence constants in the renorming
of PK , which can all be included in the generic constant C.

3.4.1 Energy Norm Estimates

If we want to derive estimates in the norm of the Hilbert space V underlying
the variational equation for the boundary value problem, concretely, in the
norm of Sobolev spaces, then Céa’s lemma (Theorem 2.17) shows that for
this purpose it is necessary only to specify a comparison element vh ∈ Vh

for which the inequality

‖u− vh‖ ≤ C|u|hα (3.70)

holds. For ‖ · ‖ = ‖ · ‖1, these estimates are called energy norm estimates
due to the equivalence of ‖ · ‖1 and ‖ · ‖a (cf. (2.46)) in the symmetric
case. Therefore, the comparison element vh has to approximate u as well
as possible, and in genera,l it is specified as the image of a linear operator
Ih:

vh = Ih(u) .

The classical approach consists in choosing for Ih the interpolation oper-
ator with respect to the degrees of freedom. To simplify the notation, we
restrict ourselves in the following to Lagrange elements, the generalization
to Hermite elements is also easily possible.

We suppose that the triangulation Th has its degrees of freedom in the
nodes a1, . . . , aM with the corresponding nodal basis ϕ1, . . . ,ϕM . Then let

Ih(u) :=
M∑

i=1

u(ai)ϕi ∈ Vh . (3.71)

For the sake of Ih(u) being well-defined, u ∈ C(Ω̄) has to be assumed in
order to ensure that u can be evaluated in the nodes. This requires a certain
smoothness assumption about the solution u, which we formulate as

u ∈ Hk+1(Ω) .

Thus, if we assume again d ≤ 3 for the sake of simplicity, the embedding
theorem (Theorem 3.10) ensures that Ih is well-defined on Hk+1(Ω) for
k ≥ 1. For the considered C0-elements, we have Ih(u) ∈ H1(Ω) by virtue
of Theorem 3.20. Therefore, we can substantiate the desired estimate (3.70)
to

‖u− Ih(u)‖1 ≤ Chα|u|k+1 . (3.72)
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Sobolev (semi) norms can be decomposed into expressions over subsets of
Ω, thus, for instance, the elements of Th,

|u|2l =
∫

Ω

∑

|α|=l

|∂αu|2 dx =
∑

K∈Th

∫

K

∑

|α|=l

|∂αu|2 dx =
∑

K∈Th

|u|2l,K ,

and, correspondingly,

‖u‖2
l =

∑

K∈Th

‖u‖2
l,K ,

where, if Ω is not basic domain, this will be included in the indices of
the norm. Since the elements K are considered as being closed, K should
more precisely be replaced by int (K). By virtue of this decomposition, it
is sufficient to prove the estimate (3.72) for the elements K. This has some
analogy to the (elementwise) assembling described in Section 2.4.2, which
is also to be seen in the following. On K, the operator Ih reduces to the
analogously defined local interpolation operator. Suppose the nodes of the
degrees of freedom on K are ai1 , . . . , aiL , where L ∈ N is the same for all
K ∈ Th due to the equivalence of elements. Then

Ih(u)|K = IK(u|K) for u ∈ C(Ω̄) ,

where

IK(u) :=
L∑

j=1

u(aij )ϕij for u ∈ C(K) ,

since both functions of PK solve the same interpolation problem on K (cf.
Lemma 2.10). Since we have an (affine) equivalent triangulation, the proof
of the local estimate

‖u− IK(u)‖m,K ≤ Chα|u|k+1,K (3.73)

is generally done in three steps:

• Transformation to some reference element K̂,

• Proof of (3.73) on K̂,

• Back transformation to the element K.

To be precise, the estimate (3.73) will even be proved with hK instead of
h, where

hK := diam(K) for K ∈ Th ,

and in the second step, the fixed value hK̂ is incorporated in the constant.
The powers of hK are due to the transformation steps.

Therefore, let some reference element K̂ with the nodes â1, . . . , âL be
chosen as fixed. By assumption, there exists some bijective, affine-linear
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mapping

F = FK : K̂ → K ,

F (x̂) = Bx̂ + d ,
(3.74)

(cf. (2.30) and (3.57)). By this transformation, functions v : K → R are
mapped to functions v̂ : K̂ → R by

v̂(x̂) := v(F (x̂)) . (3.75)

This transformation is also compatible with the local interpolation operator
in the following sense:

ÎK(v) = IK̂(v̂) for v ∈ C(K) . (3.76)

This follows from the fact that the nodes of the elements as well as the
shape functions are mapped onto each other by F .

For a classically differentiable function the chain rule (see (2.49)) implies

∇xv(F (x̂)) = B−T∇x̂v̂(x̂) , (3.77)

and corresponding formulas for higher-order derivatives, for instance,

D2
xv(F (x̂)) = B−T D2

x̂v̂(x̂)B−1 ,

where D2
xv(x) denotes the matrix of the second-order derivatives. These

chain rules hold also for corresponding v ∈ H l(K) (Exercise 3.22).
The situation becomes particularly simple in one space dimension (d =

1). The considered elements reduce to a polynomial ansatz on simplices,
which here are intervals. Thus

F : K̂ = [0, 1] → K = [ai1 , ai2 ] ,
x̂ .→ hK x̂ + ai1 ,

where hK := ai2 − ai1 denotes the length of the element. Hence, for l ∈ N,

∂l
xv(F (x̂)) = h−l

K ∂
l
x̂v̂(x̂) .

By the substitution rule for integrals (cf. (2.50)) an additional factor
| det(B)| = hK arises such that, for v ∈ H l(K), we have

|v|2l,K =
(

1
hK

)2l−1

|v̂|2
l,K̂

.

Hence, for 0 ≤ m ≤ k + 1 it follows by (3.76) that

|v − IK(v)|2m,K =
(

1
hK

)2m−1 ∣∣v̂ − IK̂(v̂)
∣∣2
m,K̂

.

Thus, what is missing, is an estimate of the type
∣∣v̂ − IK̂(v̂)

∣∣
m,K̂

≤ C|v̂|k+1,K̂ (3.78)
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for v̂ ∈ Hk+1(K̂). In specific cases this can partly be proven directly but
in the following a general proof, which is also independent of d = 1, will be
sketched. For this, the mapping

G : Hk+1(K̂) → Hm(K̂) ,
v̂ .→ v̂ − IK̂(v̂) ,

(3.79)

is considered. The mapping is linear but also continuous, since

∥∥IK̂(v̂)
∥∥

m,K̂
≤

∥∥∥∥∥

L∑

i=1

v̂(âi)ϕ̂i

∥∥∥∥∥
k+1,K̂

≤
L∑

i=1

‖ϕ̂i‖k+1,K̂ ‖v̂‖∞,K̂ ≤ C‖v̂‖k+1,K̂ ,

(3.80)

where the continuity of the embedding of Hk+1(K̂) in Hm(K̂) (see
(3.8)) and of Hk+1(K̂) in C(K̂) (Theorem 3.10) is used, and the norm
contribution from the fixed basis functions ϕ̂i is included in the constant.

If the ansatz space P̂ is chosen in such a way that Pk ⊂ P̂ , then G has
the additional property

G(p) = 0 for p ∈ Pk ,

since these polynomials are interpolated then exactly. Such mappings sat-
isfy the Bramble–Hilbert lemma, which will directly be formulated, for
further use, in a more general way.

Theorem 3.24 (Bramble–Hilbert lemma)
Suppose K ⊂ Rd is open, k ∈ N0, 1 ≤ p ≤ ∞, and G : W k+1

p (K) → R is a
continuous linear functional that satisfies

G(q) = 0 for all q ∈ Pk . (3.81)

Then there exists some constant C > 0 independent of G such that for all
v ∈ W k+1

p (K)

|G(v)| ≤ C ‖G‖ |v|k+1,p,K .

Proof: See [9, Theorem 28.1]. !

Here ‖G‖ denotes the operator norm of G (see (A4.25)). The estimate
with the full norm ‖ · ‖k+1,p,K on the right-hand side (and C = 1) would
hence only be the operator norm’s definition. The condition (3.81) allows
the reduction to the highest seminorm.

For the application of the Bramble–Hilbert lemma (Theorem 3.24), which
was formulated only for functionals, to the operator G according to (3.79)
an additional argument is required (alternatively, Theorem 3.24 could be
generalized):
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Generally, for ŵ ∈ Hm(K̂) (as in every normed space) we have

‖ŵ‖m,K̂ = sup
ϕ∈(Hm(K̂))′

‖ϕ‖≤1

ϕ(ŵ) , (3.82)

where the norm applying to ϕ is the operator norm defined in (A4.25).
For any fixed ϕ ∈ (Hm(K̂))′ the linear functional on Hk+1(K̂) is defined

by

G̃(v̂) := ϕ(G(v̂)) for v̂ ∈ Hk+1(K̂) . (3.83)

According to (3.80), G̃ is continuous and it follows that

‖G̃‖ ≤ ‖ϕ‖ ‖G‖ .

Theorem 3.24 is applicable to G̃ and yields

|G̃(v̂)| ≤ C ‖ϕ‖ ‖G‖ |v̂|k+1,K̂ .

By means of (3.82) it follows that

‖G(v̂)‖m,K̂ ≤ C ‖G‖ |v̂|k+1,K̂ .

The same proof can also be used in the proof of Theorem 3.31 (3.94).
Applied to G defined in (3.79), the estimate (3.80) shows that the

operator norm
∥∥Id− IK̂

∥∥ can be estimated independently from m (but
dependent on k and the ϕ̂i) and can be incorporated in the constant that
gives (3.78) in general, independent of the one-dimensional case.

Therefore, in the one-dimensional case we can continue with the
estimation and get

|v − IK(v)|2m,K ≤
(

1
hK

)2m−1

C|v̂|2
k+1,K̂

≤ C(hK)1−2m+2(k+1)−1|v|2k+1,K .

Since due to Ih(v) ∈ H1(Ω) we have for m = 0, 1
∑

K∈Th

|v − IK(v)|2m,K = |v − Ih(v)|2m ,

we have proven the following Theorem:

Theorem 3.25 Consider in one space dimension Ω = (a, b) the polyno-
mial Lagrange ansatz on elements with maximum length h and suppose that
for the respective local ansatz spaces P , the inclusion Pk ⊂ P is satisfied
for some k ∈ N. Then there exists some constant C > 0 such that for all
v ∈ Hk+1(Ω) and 0 ≤ m ≤ k + 1,

(
∑

K∈Th

|v − IK(v)|2m,K

)1/2

≤ Chk+1−m|v|k+1 .

If the solution u of the boundary value problem (3.12), (3.18)–(3.20) belongs
to Hk+1(Ω), then we have for the finite element approximation uh according
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to (3.39),

‖u− uh‖1 ≤ Chk|u|k+1 .

Note that for d = 1 a direct proof is also possible (see Exercise 3.21).
Now we address to the general d-dimensional situation: The seminorm

| · |1 is transformed, for instance, as follows (cf. (2.49)):

|v|21,K =
∫

K
|∇xv|2 dx =

∫

K̂
B−T∇x̂v̂ · B−T∇x̂v̂ | det(B)| dx̂ . (3.84)

From this, it follows for v̂ ∈ H1(K̂) that

|v|1,K ≤ C ‖B−1‖ | det(B)|1/2 |v̂|1,K̂ .

Since d is one of the mentioned “fixed” quantities and all norms on Rd,d

are equivalent, the matrix norm ‖ · ‖ can be chosen arbitrarily, and it is
also possible to change between such norms. In the above considerations K
and K̂ had equal rights; thus similarly for v ∈ H1(K), we have

|v̂|1,K̂ ≤ C ‖B‖ | det(B)|−1/2 |v|1,K .

In general, we have the following theorem:

Theorem 3.26 Suppose K and K̂ are bounded domains in Rd that are
mapped onto each other by an affine bijective linear mapping F , defined in
(3.74). If v ∈ W l

p(K) for l ∈ N and p ∈ [1,∞], then we have for v̂ (defined
in (3.75)), v̂ ∈ W l

p(K̂), and for some constant C > 0 independent of v,

|v̂|l,p,K̂ ≤ C ‖B‖l | det(B)|−1/p |v|l,p,K , (3.85)

|v|l,p,K ≤ C ‖B−1‖l | det(B)|1/p |v̂|l,p,K̂ . (3.86)

Proof: See [9, Theorem 15.1]. !

For further use, also this theorem has been formulated in a more general
way than would be necessary here. Here, only the case p = 2 is relevant.

Hence, if we use the estimate of Theorem 3.24, then the value ‖B‖ (for
some matrix norm) has to be related to the geometry of K. For this, let
for K ∈ Th,

'K := sup
{
diam(S)

∣∣ S is a ball in Rd and S ⊂ K
}

.

Hence, in the case of a triangle, hK denotes the longest edge and 'K the
diameter of the inscribed circle. Similarly, the reference element has its
(fixed) parameters ĥ and '̂. For example, for the reference triangle with
the vertices â1 = (0, 0), â2 = (1, 0), â3 = (0, 1) we have that ĥ = 21/2 and
'̂ = 2− 21/2.
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Theorem 3.27 For F = FK according to (3.74), in the spectral norm ‖·‖2,
we have

‖B‖2 ≤
hK

'̂
and ‖B−1‖2 ≤

ĥ

'K
.

Proof: Since K and K̂ have equal rights in the assertion, it suffices to
prove one of the statements: We have (cf. (A4.25))

‖B‖2 = sup
|ξ|2=+̂

∣∣∣∣B
(

1
'̂
ξ

)∣∣∣∣
2

=
1
'̂

sup
|ξ|2=+̂

|Bξ|2 .

For every ξ ∈ Rd with |ξ|2 = '̂ there exist some points ŷ, ẑ ∈ K̂ such that
ŷ−ẑ = ξ. Since Bξ = F (ŷ)−F (ẑ) and F (ŷ), F (ẑ) ∈ K, we have |Bξ|2 ≤ hK .
Consequently, by the above identity we get the first inequality. !

If we combine the local estimates of (3.78), Theorem 3.26, and
Theorem 3.27, we obtain for v ∈ Hk+1(K) and 0 ≤ m ≤ k + 1,

|v − IK(v)|m,K ≤ C

(
hK

'K

)m

hk+1−m
K |v|k+1,K , (3.87)

where '̂ and ĥ are included in the constant C. In order to obtain some
convergence rate result, we have to control the term hK/'K . If this term is
bounded (uniformly for all triangulations), we get the same estimate as in
the one-dimensional case (where even hK/'K = 1). Conditions of the form

'K ≥ σh1+α
K

for some σ > 0 and 0 ≤ α < k+1
m − 1 for m ≥ 1 would also lead to

convergence rate results. Here we pursue only the case α = 0.

Definition 3.28 A family of triangulations (Th)h is called regular if there
exists some σ > 0 such that for all h > 0 and all K ∈ Th,

'K ≥ σhK .

From estimate (3.87) we conclude directly the following theorem:

Theorem 3.29 Consider a family of Lagrange finite element discretiza-
tions in Rd for d ≤ 3 on a regular family of triangulations (Th)h in the
generality described at the very beginning. For the respective local ansatz
spaces P suppose Pk ⊂ P for some k ∈ N.

Then there exists some constant C > 0 such that for all v ∈ Hk+1(Ω)
and 0 ≤ m ≤ k + 1,

(
∑

K∈Th

|v − IK(v)|2m,K

)1/2

≤ Chk+1−m|v|k+1 . (3.88)



3.4. Convergence Rate Estimates 139

If the solution u of the boundary value problem (3.12), (3.18)–(3.20) belongs
to Hk+1(Ω), then for the finite element approximation uh defined in (3.39),
it follows that

‖u− uh‖1 ≤ Chk|u|k+1 . (3.89)

Remark 3.30 Indeed, here and also in Theorem 3.25 a sharper estimate
has been shown, which, for instance for (3.89), has the following form:

‖u− uh‖1 ≤ C

(
∑

K∈Th

h2k
K |u|2k+1,K

)1/2

. (3.90)

In the following we will discuss what the regularity assumption means in
the two simplest cases:

For a rectangle and the cuboid K, whose edge lengths can be assumed,
without any loss of generality, to be of order h1 ≤ h2[≤ h3], we have

hK

'K
=

(
1 +

(
h2

h1

)2
[
+
(

h3

h1

)2
])1/2

.

This term is uniformly bounded if and only if there exists some constant
α(≥ 1) such that

h1 ≤ h2 ≤ αh1 ,
h1 ≤ h3 ≤ αh1 .

(3.91)

In order to satisfy this condition, a refinement in one space direction has
to imply a corresponding one in the other directions, although in certain
anisotropic situations only the refinement in one space direction is recom-
mendable. If, for instance, the boundary value problem (3.12), (3.18)–(3.20)
with c = r = 0, but space-dependent conductivity K, is interpreted as the
simplest ground water model (see (0.18)), then it is typical that K varies
discontinuously due to some layering or more complex geological structures
(see Figure 3.11).

K1

K1

K2

Figure 3.11. Layering and anisotropic triangulation.

If thin layers arise in such a case, on the one hand they have to be resolved;
that is, the triangulation has to be compatible with the layering and there
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have to be sufficiently many elements in this layer. On the other hand, the
solution often changes less strongly in the direction of the layering than over
the boundaries of the layer, which suggests an anisotropic triangulation,
that is, a strongly varying dimensioning of the elements. The restriction
(3.91) is not compatible with this, but in the case of rectangles this is
due only to the techniques of proof. In this simple situation, the local
interpolation error estimate can be performed directly, at least for P =
Q1(K), without any transformation such that the estimate (3.89) (for k =
1) is obtained without any restrictions like (3.91).

The next simple example is a triangle K: The smallest angle αmin =
αmin(K) includes the longest edge hK , and without loss of generality, the
situation is as illustrated in Figure 3.12.

a1

a2

a3
α min

h2

hK

Figure 3.12. Triangle with the longest edge and the height as parameters.

For the 2×2 matrix B = (a2−a1 , a3−a1), in the Frobenius norm ‖ ·‖F

(see (A3.5)) we have

‖B−1‖F =
1

| det(B)|‖B‖F ,

and further, with the height h2 over hK ,

det(B) = hKh2 , (3.92)

since det(B)/2 is the area of the triangle, as well as

‖B‖2
F = |a2 − a1|22 + |a3 − a1|22 ≥ h2

K ,

such that

‖B‖F‖B−1‖F ≥ hK/h2 ,

and thus by virtue of cotαmin < hK/h2,

‖B‖F‖B−1‖F > cotαmin .

Since we get by analogous estimates

‖B‖F ‖B−1‖F ≤ 4 cotαmin ,

it follows that cotαmin describes the asymptotic behavior of ‖B‖‖B−1‖ for
a fixed chosen arbitrary matrix norm. Therefore, from Theorem 3.27 we
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get the existence of some constant C > 0 independent of h such that for
all K ∈ Th,

hK

'K
≥ C cotαmin(K) . (3.93)

Consequently, a family of triangulations (Th)h of triangles can only be reg-
ular if all angles of the triangles are uniformly bounded from below by
some positive constant. This condition sometimes is called the minimum
angle condition. In the situation of Figure 3.11 it would thus not be al-
lowed to decompose the flat rectangles in the thin layer by means of a
Friedrichs–Keller triangulation. Obviously, using directly the estimates of
Theorem 3.26 we see that the minimum angle condition is sufficient for the
estimates of Theorem 3.29. This still leaves the possibility open that less
severe conditions are also sufficient.

3.4.2 The Maximum Angle Condition on Triangles

In what follows we show that the condition (3.93) is due only to the tech-
niques of proof, and at least in the case of the linear ansatz, it has indeed
only to be enssured that the largest angle is uniformly bounded away from
π. Therefore, this allows the application of the described approach in the
layer example of Figure 3.11.

The estimate (3.87) shows that for m = 0 the crucial part does not arise;
hence only for m = k = 1 do the estimates have to be investigated. It turns
out to be useful to prove the following sharper form of the estimate (3.78):

Theorem 3.31 For the reference triangle K̂ with linear ansatz functions
there exists some constant C > 0 such that for all v̂ ∈ H2(K̂) and j = 1, 2,

∥∥∥∥
∂

∂x̂j

(
v̂ − IK̂(v̂)

)∥∥∥∥
0,K̂

≤ C

∣∣∣∣
∂

∂x̂j
v̂

∣∣∣∣
1,K̂

.

Proof: In order to simplify the notation, we drop the hat ˆ in the notation
of the reference situation in the proof. Hence, we have K = conv {a1, a2, a3}
with a1 = (0, 0)T , a2 = (1, 0)T , and a3 = (0, 1)T . We consider the following
linear mappings: F1 : H1(K) → L2(K) is defined by

F1(w) :=
∫ 1

0
w(s, 0) ds ,

and, analogously, F2 as the integral over the boundary part conv {a1, a3}.
The image is taken as constant function on K. By virtue of the Trace The-
orem (Theorem 3.5), and the continuous embedding of L2(0, 1) in L1(0, 1),
the Fi are well-defined and continuous. Since we have for w ∈ P0(K),

Fi(w) = w ,
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the Bramble–Hilbert lemma (Theorem 3.24) implies the existence of some
constant C > 0 such that for w ∈ H1(K),

‖Fi(w) − w‖0,K ≤ C|w|1,K . (3.94)

This can be seen in the following way: Let v ∈ H1(K) be arbitrary but
fixed, and for this, consider on H1(K) the functional

G(w) := 〈Fi(w) − w, Fi(v) − v〉 for w ∈ H1(K) .

We have G(w) = 0 for w ∈ P0(K) and

|G(w)| ≤ ‖Fi(w) − w‖0,K‖Fi(v) − v‖0,K ≤ C‖Fi(v)− v‖0,K‖w‖1,K

by the above consideration. Thus by Theorem 3.24,

|G(w)| ≤ C ‖Fi(v)− v‖0,K |w|1,K .

For v = w this implies (3.94). On the other hand, for w := ∂1v it follows
that

F1(∂1v) = v(1, 0)− v(0, 0) = (IK(v))(1, 0)− (IK(v))(0, 0) =
= ∂1(IK(v))(x1, x2)

for (x1, x2) ∈ K and, analogously, F2(∂2v) = ∂2(IK(v))(x1, x2). This,
substituted into (3.94), gives the assertion. !

Compared with estimate (3.78), for example in the case j = 1 the term
∂2

∂x̂2
2
v̂ does not arise on the right-hand side: The derivatives and thus the

space directions are therefore treated “more separately.”
Next, the effect of the transformation will be estimated more precisely.

For this, let αmax = αmax(K) be the largest angle arising in K ∈ Th,
supposed to include the vertex a1, and let h1 = h1K := |a2 − a1|2, h2 =
h2K := |a3 − a1| (see Figure 3.13).

αmax

a1

a2

a3

h1

h2

Figure 3.13. A general triangle.

As a variant of (3.86) (for l = 1) we have the following:
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Theorem 3.32 Suppose K is a general triangle. With the above notation
for v ∈ H1(K) and the transformed v̂ ∈ H1(K̂),

|v|1,K ≤
√

2 | det(B)|−1/2

(
h2

2

∥∥∥∥
∂

∂x̂1
v̂

∥∥∥∥
2

0,K̂

+ h2
1

∥∥∥∥
∂

∂x̂2
v̂

∥∥∥∥
2

0,K̂

)1/2

.

Proof: We have

B = (a2 − a1, a3 − a1) =:
(

b11 b12

b21 b22

)

and hence
∣∣∣∣

(
b11

b21

)∣∣∣∣ = h1 ,

∣∣∣∣

(
b12

b22

)∣∣∣∣ = h2 . (3.95)

From

B−T =
1

det(B)

(
b22 −b21

−b12 b11

)

and (3.84) it thus follows that

|v|21,K =
1

| det(B)|

∫

K̂

∣∣∣∣

(
b22

−b12

)
∂

∂x̂1
v̂ +

(
−b21

b11

)
∂

∂x̂2
v̂

∣∣∣∣
2

dx̂

and from this the assertion. !

In modification of the estimate (3.85) (for l = 2) we prove the following
result:

Theorem 3.33 Suppose K is a general triangle with diameter hK =
diam(K). With the above notation for v̂ ∈ H2(K̂) and the transformed
v ∈ H2(K),

∣∣∣∣
∂

∂x̂i
v̂

∣∣∣∣
1,K̂

≤ 4| det(B)|−1/2hihK |v|2,K for i = 1, 2 .

Proof: According to (3.84) we get by exchanging K and K̂,

|ŵ|2
1,K̂

=
∫

K
BT∇xw · BT∇xw dx | det(B)|−1

and, consequently, for ŵ = ∂
∂x̂i

v̂, thus by (3.77) for w = (BT∇xv)i,
∣∣∣∣
∂

∂x̂i
v̂

∣∣∣∣
2

1,K̂

=
∫

K

∣∣BT∇x

((
BT∇xv

)
i

)∣∣2 dx | det(B)|−1 .

According to (3.95), the norm of the ith row vector of BT is equal to hi,
which implies the assertion. !
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Instead of the regularity of the family of triangulations and hence
the uniform bound for cotαmin(K) (see (3.93)) we require the following
definition:

Definition 3.34 A family of triangulations (Th)h of triangles satisfies the
maximum angle condition if there exists some constant α < π such that for
all h > 0 and K ∈ Th the maximum angle αmax(K) of K satisfies

αmax(K) ≤ α .

Since αmax(K) ≥ π/3 is always satisfied, the maximum angle condition
is equivalent to the existence of some constant s̃ > 0, such that

sin(αmax(K)) ≥ s̃ for all K ∈ Th and h > 0 . (3.96)

The relation of this condition to the above estimates is given by (cf. (3.92))

det(B) = h1h2 sinαmax . (3.97)

Inserting the estimates of Theorem 3.32 (for v − IK(v)), Theorem 3.31,
and Theorem 3.33 into each other and recalling (3.96), (3.97), the following
theorem follows from Céa’s lemma (Theorem 2.17):

Theorem 3.35 Consider the linear ansatz (3.53) on a family of triangu-
lations (Th)h of triangles that satisfies the maximum angle condition. Then
there exists some constant C > 0 such that for v ∈ H2(Ω),

‖v − Ih(v)‖1 ≤ C h |v|2 .

If the solution u of the boundary value problem (3.12), (3.18)–(3.20) belongs
to H2(Ω), then for the finite element approximation uh defined in (3.39)
we have the estimate

‖u− uh‖1 ≤ Ch|u|2 . (3.98)

Exercise 3.26 shows the necessity of the maximum angle condition. Again,
a remark analogous to Remark 3.30 holds. For an analogous investigation
of tetrahedra we refer to [58].

With a modification of the above considerations and an additional
condition anisotropic error estimates of the form

|v − Ih(v)|1 ≤ C
d∑

i=1

hi |∂iv|1

can be proven for v ∈ H2(Ω), where the hi denote length parameter de-
pending on the element type. In the case of triangles, these are the longest
edge (h1 = hK) and the height on it as shown in Figure 3.12 (see [41]).

3.4.3 L2 Error Estimates

The error estimate (3.89) also contains a result about the approximation
of the gradient (and hence of the flux), but it is linear only for k = 1, in
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contrast to the error estimate of Chapter 1 (Theorem 1.6). The question is
whether an improvement of the convergence rate is possible if we strive only
for an estimate of the function values. The duality argument of Aubin and
Nitsche shows that this is correct, if the adjoint boundary value problem
is regular, where we have the following definition:

Definition 3.36 The adjoint boundary value problem for (3.12), (3.18)–
(3.20) is defined by the bilinear form

(u, v) .→ a(v, u) for u, v ∈ V

with V from (3.30). It is called regular if for every f ∈ L2(Ω) there exists
a unique solution u = uf ∈ V of the adjoint boundary value problem

a(v, u) = 〈f, v〉0 for all v ∈ V

and even uf ∈ H2(Ω) is satisfied, and for some constant C > 0 a stability
estimate of the form

|uf |2 ≤ C‖f‖0 for given f ∈ L2(Ω)

is satisfied.

The V -ellipticity and the continuity of the bilinear form (3.2), (3.3) di-
rectly carry over from (3.31) to the adjoint boundary value problem, so
that in this case the unique existence of uf ∈ V is ensured. More pre-
cisely, the adjoint boundary value problem is obtained by an exchange of
the arguments in the bilinear form, which does not effect any change in its
symmetric parts. The nonsymmetric part of (3.31) is

∫
Ω c ·∇u v dx, which

becomes
∫
Ω c ·∇v u dx. By virtue of
∫

Ω
c ·∇v u dx = −

∫

Ω
∇ · (cu) v dx +

∫

∂Ω
c · ν uv dσ

the transition to the adjoint boundary value problem therefore means the
exchange of the convective part c ·∇u by a convective part, now in diver-
gence form and in the opposite direction −c, namely ∇ · (−cu), with the
correponding modification of the boundary condition. Hence, in general we
may expect a similar regularity behavior to that in the original boundary
value problem, which was discussed in Section 3.2.3. For a regular adjoint
problem we get an improvement of the convergence rate in ‖ · ‖0:

Theorem 3.37 (Aubin and Nitsche)
Consider the situation of Theorem 3.29 or Theorem 3.35 and suppose the
adjoint boundary value problem is regular. Then there exists some constant
C > 0 such that for the solution u of the boundary value problem (3.12),
(3.18)–(3.20) and its finite element approximation uh defined by (3.39),

(1) ‖u− uh‖0 ≤ Ch‖u− uh‖1 ,

(2) ‖u− uh‖0 ≤ Ch‖u‖1 ,
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(3) ‖u− uh‖0 ≤ Chk+1|u|k+1 , if u ∈ Hk+1(Ω).

Proof: The assertions (2) and (3) follow directly from (1). On the one
hand, by using ‖u−uh‖1 ≤ ‖u‖1 + ‖uh‖1 and the stability estimate (2.44),
on the other hand directly from (3.89) and (3.98), respectively.

For the proof of (1), we consider the solution uf of the adjoint problem
with the right-hand side f = u − uh ∈ V ⊂ L2(Ω). Choosing the test
function u− uh and using the error equation (2.39) gives

‖u− uh‖2
0 = 〈u− uh, u− uh〉0 = a(u− uh, uf) = a(u− uh, uf − vh)

for all vh ∈ Vh. If we choose specifically vh = Ih(uf ), then from the con-
tinuity of the bilinear form, Theorem 3.29, and Theorem 3.35, and the
regularity assumption it follows that

‖u− uh‖2
0 ≤ C‖u− uh‖1‖uf − Ih(uf )‖1

≤ C‖u− uh‖1h|uf |2 ≤ C‖u− uh‖1h‖u− uh‖0 .

Division by ‖u− uh‖0 gives the assertion, which is trivial in the case ‖u−
uh‖0 = 0. !

Thus, if a rough right-hand side in (3.12) prevents convergence from
being ensured by Theorem 3.29 or Theorem 3.35, then the estimate (2) can
still be used to get a convergence estimate (of lower order).

In the light of the considerations from Section 1.2, the result of Theo-
rem 3.37 is surprising, since we have only (pointwise) consistency of first
order. On the other hand, Theorem 1.6 also raises the question of conver-
gence rate results in ‖ · ‖∞ which then would give a result stronger, in
many respects, than Theorem 1.6. Although the considerations described
here (as in Section 3.9) can be the starting point of such L∞ estimates, we
get the most far-reaching results with the weighted norm technique (see [9,
pp. 155 ff.]), whose description is not presented here.

The above theorems contain convergence rate results under regularity
assumptions that may often, even though only locally, be violated. In fact,
there also exist (weaker) results with less regularity assumptions. However,
the following observation seems to be meaningful: Estimate (3.90) indicates
that on subdomains, where the solution has less regularity, on which the
(semi) norms of the solutions thus become large, local refinement is advan-
tageous (without improving the convergence rate by this). Adaptive mesh
refinement strategies on the basis of a posteriori error estimates described
in Chapter 4 provide a systematical approach in this direction.

Exercises

3.21 Prove for the linear finite element ansatz (3.53) in one space di-
mension that for K ∈ Th and v ∈ H2(K), the following estimate
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holds:

|v − IK(v)|1,K ≤ hK |v|2,K .

Hint: Rolle’s theorem and Exercise 2.5 (b) (Poincaré inequality).
Generalize the considerations to an arbitrary polynomial ansatz P = Pk

in one space dimension by proving

|v − IK(v)|1,K ≤ hk
K |v|k+1,K for v ∈ Hk+1(K) .

3.22 Prove the chain rule (3.77) for v ∈ H1(K).

3.23 Derive analogously to Theorem 3.29 a convergence rate result for
the Hermite elements (3.64) and (3.65) (Bogner–Fox–Schmit element) and
the boundary value problem (3.12) with Dirichlet boundary conditions.

3.24 Derive analogously to Theorem 3.29 a convergence rate result for
the Bogner–Fox–Schmit element (3.65) and the boundary value problem
(3.36).

3.25 Let a triangle K with the vertices a1, a2, a3 and a function u ∈
C2(K) be given. Show that if u is interpolated by a linear polynomial
IK(u) with (IK(u))(ai) = u(ai), i = 1, 2, 3, then, for the error the estimate

sup
x∈K

|u(x)− (IK(u))(x)| + h sup
x∈K

|∇(u− IK(u))(x)| ≤ 2M
h2

cos(α/2)

holds, where h denotes the diameter, α the size of the largest interior angle
of K and M an upper bound for the maximum of the norm of the Hessian
matrix of u on K.

3.26 Consider a triangle K with the vertices a1 := (−h, 0), a2 := (h, 0),
a3 := (0, ε), and h, ε > 0. Suppose that the function u(x) := x2

1 is linearly
interpolated on K such that (Ih(u))(ai) = u(ai) for i = 1, 2, 3.
Determine ‖∂2(Ih(u) − u)‖2,K as well as ‖∂2(Ih(u) − u)‖∞,K and discuss
the consequences for of different orders of magnitude of h and ε.

3.27 Suppose that no further regularity properties are known for the
solution u ∈ V of the boundary value problem (3.12). Show under the
assumptions of Section 3.4 that for the finite element approximation
uh ∈ Vh

‖u− uh‖1 → 0 for h → 0 .
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3.5 The Implementation of the Finite Element
Method: Part 2

3.5.1 Incorporation of Dirichlet Boundary Conditions: Part 2

In the theoretical analysis of boundary value problems with inhomogeneous
Dirichlet boundary conditions u = g3 on Γ3, the existence of a function
w ∈ H1(Ω) with w = g3 on Γ3 has been assumed so far. The solution
u ∈ V (with homogeneous Dirichlet boundary conditions) is then defined
according to (3.31) such that ũ = u + w satisfies the variational equation
with test functions in V :

a(u + w, v) = b(v) for all v ∈ V . (3.99)

For the Galerkin approximation uh, which has been analyzed in Section 3.4,
this means that the parts −a(w,ϕi) with nodal basis functions ϕi, i =
1, . . . , M1, go into the right-hand side of the system of equations (2.34), and
then ũh := uh+w has to be considered as the solution of the inhomogeneous
problem

a(uh + w, v) = b(v) for all v ∈ Vh . (3.100)

If we complete the basis of Vh by the basis functions ϕM1+1, . . . ,ϕM for the
Dirichlet boundary nodes aM1+1, . . . , aM and denote the generated space
by Xh,

Xh = span {ϕ1, . . . ,ϕM1 ,ϕM1+1, . . . ,ϕM} , (3.101)

that is the ansatz space without taking into account boundary conditions,
then in particular, ũh ∈ Xh does not hold in general. This approach does
not correspond to the practice described in Section 2.4.3. That practice,
applied to a general variational equation, reads as follows:

For all degrees of freedom 1, . . . , M1, M1 + 1, . . . , M the system of
equations is built with the components

a(ϕj ,ϕi) , i, j = 1, . . . , M , (3.102)

for the stiffness matrix and

b(ϕi) , i = 1, . . . , M , (3.103)

for the load vector. The vector of unknowns is therefore

ξ̃ =
(

ξ

ξ̂

)
with ξ ∈ RM1 , ξ̂ ∈ RM2 .

For Dirichlet boundary conditions the equations M1+1, . . . , M are replaced
by

ξ̃i = g3(ai) , i = M1 + 1, . . . , M ,
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and the concerned variables are eliminated in equations 1, . . . , M1. Of
course, it is assumed here that g3 ∈ C(Γ3). This procedure can also be
interpreted in the following way: If we set

Ah :=(a(ϕj ,ϕi))i,j=1,...,M1
, Âh :=(a(ϕj ,ϕi))i=1,...,M1, j=M1+1,...,M ,

then the first M1 equations of the generated system of equations are

Ahξ + Âhξ̂ = qh ,

where qh ∈ RM1 consists of the first M1 components according to (3.103).
Hence the elimination leads to

Ahξ = qh − Âhξ̂ (3.104)

with ξ̂ = (g3(ai))i=M1+1,...,M2
. Suppose

wh :=
M∑

i=M1+1

g3(ai)ϕi ∈ Xh (3.105)

is the ansatz function that satisfies the boundary conditions in the Dirichlet
nodes and assumes the value 0 in all other nodes. The system of equations
(3.104) is then equivalent to

a(ǔh + wh, v) = b(v) for all v ∈ Vh (3.106)

for ǔh =
∑M1

i=1 ξiϕi ∈ Vh (that is, the “real” solution), in contrast to the
variational equation (3.100) was used in the analysis. This consideration
also holds if another h-dependent bilinear form ah and analogously a lin-
ear form bh instead of the linear form b is used for assembling. In the
following we assume that there exists some function w ∈ C(Ω̄) that sat-
isfies the boundary condition on Γ3. Instead of (3.106), we consider the
finite-dimensional auxiliary problem of finding some ˇ̌uh ∈ Vh, such that

a(ˇ̌uh + Īh(w), v) = b(v) for all v ∈ Vh . (3.107)

Here Īh : C(Ω̄) → Xh is the interpolation operator with respect to all
degrees of freedom,

Īh(v) :=
M1+M2∑

i=1

v(ai)ϕi ,

whereas in Section 3.4 we considered the interpolation operator Ih for func-
tions that vanish on Γ3. In the following, when analyzing the effect of
quadrature, we will show that — also for some approximation of a and b
—

ũh := ˇ̌uh + Īh(w) ∈ Xh (3.108)

is an approximation of u + w of the quality established in Theorem 3.29
(see Theorem 3.42). We have wh − Īh(w) ∈ Vh and hence also ǔh + wh −
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Īh(w) ∈ Vh. If (3.107) is uniquely solvable, which follows from the general
assumption of the V -ellipticity of a (3.3), we have

ǔh + wh − Īh(w) = ˇ̌uh

and hence for ũh, according to (3.108),

ũh = ǔh + wh . (3.109)

In this way the described implementation practice for Dirichlet boundary
conditions is justified.

3.5.2 Numerical Quadrature

We consider again a boundary value problem in the variational formulation
(3.31) and a finite element discretization in the general form described
in Sections 3.3 and 3.4. If we step through Section 2.4.2 describing the
assembling within a finite element code, we notice that the general element-
to-element approach with transformation to the reference element is here
also possible, with the exception that due to the general coefficient functions
K, c, r and f , the arising integrals can not be evaluated exactly in general.
If Km is a general element with degrees of freedom in ar1 , . . . , arL , then
the components of the element stiffness matrix for i, j = 1, . . . , L are

A(m)
ij =

∫

Km

K∇ϕrj ·∇ϕri + c ·∇ϕrjϕri + rϕrjϕri dx

+
∫

Km∩Γ2

αϕrjϕridσ (3.110)

=:
∫

Km

vij(x) dx +
∫

Km∩Γ2

wij(σ) dσ

=
∫

K̂
v̂ij(x̂) dx̂ | det(B)| +

∫

K̂′
ŵij(σ̂) dσ̂ | det(B̃)| .

Here, Km is affine equivalent to the reference element K̂ by the mapping
F (x̂) = Bx̂ + d. By virtue of the conformity of the triangulation (T6), the
boundary part Km ∩ Γ̄2 consists of none, one, or more complete faces of
Km. For simplicity, we restrict ourselves to the case of one face that is affine
equivalent to the reference element K̂ ′ by some mapping F̃ (σ̂) = B̃σ̂ + d̃
(cf. (3.42)). The generalization to the other cases is obvious. The functions
v̂ij and analogously ŵij are the transformed functions defined in (3.75).

Correspondingly, we get as components for the right-hand side of the
system of equations, that is, for the load vector,
(
q(m)

)
i

=
∫

K̂
f̂(x̂)Ni(x̂) dx̂ | det(B)| (3.111)

+
∫

K̂′
1

ĝ1(σ̂)Ni(σ̂) dσ̂ | det(B̃1)| +
∫

K̂′
2

ĝ2(σ̂)Ni(σ̂) dσ̂ | det(B̃2)| .
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i = 1, . . . , L. Here, the Ni, i = 1, . . . , L, are the shape functions; that is,
the local nodal basis functions on K̂.

If the transformed integrands contain derivatives with respect to x, they
can be transformed into derivatives with respect to x̂. For instance, for the
first addend in A(m)

ij we get, as an extension of (2.50),
∫

K̂
K(F (x̂))B−T∇x̂Nj(x̂) · B−T∇x̂Ni(x̂) dx̂ | det(B)| .

The shape functions, their derivatives, and their integrals over K̂ are known
which has been used in (2.52) for the exact integration. Since general coef-
ficient functions arise, this is in general, but also in the remaining special
cases no longer possible, for example for polynomial K(x) it is also not
recommendable due to the corresponding effort. Instead, one should ap-
proximate these integrals (and, analogously, also the boundary integrals)
by using some quadrature formula.

A quadrature formula on K̂ for the approximation of
∫

K̂ v̂(x̂) dx̂ has the
form

R∑

i=1

ω̂i v̂(b̂i) (3.112)

with weights ω̂i and quadrature or integration points b̂i ∈ K̂. Hence, ap-
plying (3.112) assumes the evaluability of v̂ in b̂i, which is in the following
ensured by the continuity of v̂. This implies the same assumption for the
coefficients, since the shape functions Ni and their derivatives are continu-
ous. In order to ensure the numerical stability of a quadrature formula, it
is usually required that

ω̂i > 0 for all i = 1, . . . , R , (3.113)

which we will also do. Since all the considered finite elements are such
that their faces with the enclosed degrees of freedom represent again a fi-
nite element (in Rd−1) (see (3.42)), the boundary integrals are included
in a general discussion. In principle, different quadrature formulas can be
applied for each of the above integrals, but here we will disregard this pos-
sibility (with the exception of distinguishing between volume and boundary
integrals because of their different dimensions).

A quadrature formula on K̂ generates a quadrature formula on a general
element K, recalling

∫

K
v(x) dx =

∫

K̂
v̂(x̂) dx̂ | det(B)|

by
R∑

i=1

ωi,K v(bi,K) ,
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where ωi = ωi,K = ω̂i| det(B)| and bi = bi,K := F (b̂i) are dependent on
K. The positivity of the weights is preserved. Here, again F (x̂) = Bx̂ + d
denotes the affine-linear transformation from K̂ to K. The errors of the
quadrature formulas

Ê(v̂) :=
∫

K̂
v̂(x̂) dx̂−

R∑

i=1

ω̂i v̂(b̂i) ,

EK(v) :=
∫

K
v(x) dx −

R∑

i=1

ωi v(bi)

(3.114)

are related to each other by

EK(v) = | det(B)|Ê(v̂) . (3.115)

The accuracy of a quadrature formula will be defined by the requirement
that for l as large as possible,

Ê(p̂) = 0 for p̂ ∈ Pl(K̂)

is satisfied, which transfers directly to the integration over K. A quadrature
formula should further provide the desired accuracy by using quadrature
nodes as less as possible, since the evaluation of the coefficient functions is
often expensive. In contrast, for the shape functions and their derivatives
a single evaluation is sufficient. In the following we discuss some exam-
ples of quadrature formulas for the elements that have been introduced in
Section 3.3.

The most obvious approach consists in using nodal quadrature formu-
las, which have the nodes â1, . . . , âL of the reference element (K̂, P̂ , Σ̂) as
quadrature nodes. The requirement of exactness in P̂ is then equivalent to

ω̂i =
∫

K̂
Ni(x̂) dx̂ , (3.116)

so that the question of the validity of (3.113) remains.
We start with the unit simplex K̂ defined in (3.47). Here, the weights

of the quadrature formulas can be given directly on a general simplex K: If
the shape functions are expressed by their barycentric coordinates λi, the
integrals can be computed by
∫

K
λα1

1 λ
α2
2 · · ·λαd+1

d+1 (x) dx =
α1!α2! · · ·αd+1!

(α1 + α2 + · · · + αd+1 + d)!
vol (K)
vol (K̂)

(3.117)

(see Exercise 3.28).
If P = P1(K) and thus the quadrature nodes are the vertices, it follows

that

ωi =
∫

K
λi(x) dx =

1
d + 1

vol (K) for all i = 1, . . . , d + 1 . (3.118)
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For P = P2(K) and d = 2 we get, by the shape functions λi(2λi− 1), the
weights 0 for the nodes ai and, by the shape functions 4λiλj , the weights

ωi =
1
3
vol (K) for bi = aij , i, j = 1, . . . , 3 , i > j ,

so that we have obtained here a quadrature formula that is superior to
(3.118) (for d = 2). However, for d ≥ 3 this ansatz leads to negative weights
and is thus useless. We can also get the exactness in P1(K) by a single
quadrature node, by the barycentre (see (3.52)):

ω1 = vol (K) and b1 = aS =
1

d + 1

d+1∑

i=1

ai ,

which is obvious due to (3.117).
As a formula that is exact for P2(K) and d = 3 (see [53]) we present

R = 4, ωi = 1
4 vol (K), and the bi are obtained by cyclic exchange of the

barycentric coordinates:
(

5−
√

5
20

,
5−

√
5

20
,
5−

√
5

20
,
5 + 3

√
5

20

)
.

On the unit cuboid K̂ we obtain nodal quadrature formulas, which are
exact for Qk(K̂), from the Newton–Côtes formulas in the one-dimensional
situation by

ω̂i1...id = ω̂i1 · · · ω̂id for b̂i1...id =
(

i1
k

, . . . ,
id
k

)
(3.119)

for ij ∈ {0, . . . , k} and j = 1, . . . , d .

Here the ω̂ij are the weights of the Newton–Côtes formula for
∫ 1
0 f(x)dx

(see [30, p. 128]). As in (3.118), for k = 1 we have here a generalization
of the trapezoidal rule (cf. (2.38), (8.31)) with the weights 2−d in the 2d

vertices. From k = 8 on, negative weights arise. This can be avoided and
the accuracy for a given number of points increased if the Newton–Côtes
integration is replaced by the Gauss–(Legendre) integration: In (3.119), ij/k
has to be replaced by the jth node of the kth Gauss–Legendre formula
(see [30, p. 156] there on [−1, 1]) and analogously ω̂ij . In this way, by
(k+1)d quadrature nodes the exactness in Q2k+1(K̂), not only in Qk(K̂),
is obtained.

Now the question as to which quadrature formula should be chosen arises.
For this, different criteria can be considered (see also (8.29)). Here, we re-
quire that the convergence rate result that was proved in Theorem 3.29
should not be deteriorated. In order to investigate this question we have
to clarify which problem is solved by the approximation ūh ∈ Vh based on
quadrature. To simplify the notation, from now on we do not consider
boundary integrals, that is, only Dirichlet and homogeneous Neumann
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boundary conditions are allowed. However, the generalization should be
clear. Replacing the integrals in (3.111) and (3.111) by quadrature formu-
las

∑R
i=1 ω̂iv̂(b̂i) leads to some approximation Āh of the stiffness matrix

and q̄h of the load vector in the form

Āh = (ah(ϕj ,ϕi))i,j , q̄h = (bh(ϕi))i ,

for i, j = 1, . . . , M . Here the ϕi are the basis functions of Xh (see (3.101))
without taking into account the Dirichlet boundary condition and

ah(v, w) :=
∑

K∈Th

R∑

l=1

ωl,K(K∇v ·∇w)(bl,K)

+
∑

K∈Th

R∑

l=1

ωl,K(c ·∇vw)(bl,K ) +
∑

K∈Th

∑

l=1

ωl,K(rvw)(bl,K )

for v, w ∈ Xh , (3.120)

bh(v) :=
∑

K∈Th

∑

l=1

ωl,K(fv)(bl,K) for v ∈ Xh .

The above-given mappings ah and bh are well-defined on Xh×Xh and Xh,
respectively, if the coefficient functions can be evaluated in the quadrature
nodes. Here we take into account that for some element K, ∇v for v ∈
Xh can have jump discontinuities on ∂K. Thus, for the quadrature nodes
bl,K ∈ ∂K in ∇v(bl,K) we have to choose the value “belonging to bl,K” that
corresponds to the limit of sequences in the interior of K. We recall that
in general ah and bh are not defined for functions of V . Obviously, ah is
bilinear and bh is linear. If we take into account the analysis of incorporating
the Dirichlet boundary conditions in (3.99)–(3.106), we get a system of
equations for the degrees of freedom ξ̄ = (ξ1, . . . , ξM1)T , which is equivalent
to the variational equation on Vh for ūh =

∑M1
i=1 ξ̄iϕi ∈ Vh :

ah(ūh, v) = bh(v)− ah(wh, v) for all v ∈ Vh (3.121)

with wh according to (3.105). As has been shown in (3.109), (3.121) is
equivalent, in the sense of the total approximation ūh +wh of u+w, to the
variational equation for ¯̄uh ∈ Vh,

ah(¯̄uh, v) = b̄h(v) := bh(v)− ah(Īh(w), v) for all v ∈ Vh , (3.122)

if this system of equations is uniquely solvable.

Exercises

3.28 Prove equation (3.117) by first proving the equation for K = K̂
and then deducing from this the assertion for the general simplex by
Exercise 3.18.
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3.29 Let K be a triangle with vertices a1, a2, a3. Further, let a12, a13, a23

denote the corresponding edge midpoints, a123 the barycenter and |K| the
area of K. Check that the quadrature formula

Qh(u) :=
|K|
60

[
3

3∑

i=1

u(ai) + 8
∑

i<j

u(aij) + 27u(a123)

]

computes the integral Q(u) :=
∫

K u dx exactly for polynomials of third
degree.

3.6 Convergence Rate Results in the Case of
Quadrature and Interpolation

The purpose of this section is to analyze the approximation quality of a
solution ¯̄uh + Īh(w) according to (3.122) and thus of ūh + wh according to
(3.121) of the boundary value problem (3.12), (3.18)–(3.20).

Hence, we have left the field of Galerkin methods, and we have to
investigate the influence of the errors

a− ah , b− a(w, ·) − bh + ah(Īh(w), ·).

To this end, we consider in general the variational equation in a normed
space (V, ‖ · ‖)

u ∈ V satisfies a(u, v) = l(v) for all v ∈ V , (3.123)

and the approximation in subspaces Vh ⊂ V for h > 0,

uh ∈ Vh satisfies ah(uh, v) = lh(v) for all v ∈ Vh . (3.124)

Here a and ah are bilinear forms on V × V and Vh × Vh, respectively, and
l, lh are linear forms on V and Vh, respectively. Then we have the following
theorem

Theorem 3.38 (First Lemma of Strang)
Suppose there exists some α > 0 such that for all h > 0 and v ∈ Vh,

α‖v‖2 ≤ ah(v, v) , (3.125)

and let a be continuous in V × V .
Then, there exists some constant C independent of Vh such that

‖u− uh‖ ≤ C

{
inf

v∈Vh

{
‖u− v‖ + sup

w∈Vh

|a(v, w) − ah(v, w)|
‖w‖

}

+ sup
w∈Vh

|l(w)− lh(w)|
‖w‖

}
.

(3.126)
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Proof: Let v ∈ Vh be arbitrary. Then it follows from (3.123)–(3.125) that

α‖uh − v‖2 ≤ ah(uh − v, uh − v)
= a(u− v, uh − v) +

(
a(v, uh − v)− ah(v, uh − v)

)

+
(
lh(uh − v)− l(uh − v)

)

and moreover, by the continuity of a (cf. (3.2)),

α‖uh − v‖ ≤ M‖u− v‖ + sup
w∈Vh

|a(v, w) − ah(v, w)|
‖w‖

+ sup
w∈Vh

|lh(w) − l(w)|
‖w‖ for v ∈ Vh .

By means of ‖u− uh‖ ≤ ‖u− v‖ + ‖uh − v‖ and taking the infimum over
all v ∈ Vh, the assertion follows. !

For ah = a and lh = l the assertion reduces to Céa’s lemma (Theo-
rem 2.17), which was the initial point for the analysis of the convergence
rate in Section 3.4. Here we can proceed analogously. For that purpose, the
following conditions must be fulfilled additionally:

• The uniform Vh-ellipticity of ah according to (3.125) must be ensured.

• For the consistency errors

Ah(v) := sup
w∈Vh

|a(v, w) − ah(v, w)|
‖w‖ (3.127)

for an arbitrarily chosen comparison function v ∈ Vh and for

sup
w∈Vh

|l(w)− lh(w)|
‖w‖

the behavior in h must be analyzed.

The first requirement is not crucial if only a itself is V -elliptic and Ah

tends suitably to 0 for h → 0 :

Lemma 3.39 Suppose the bilinear form a is V -elliptic and there exists
some function C(h) with C(h) → 0 for h → 0 such that

Ah(v) ≤ C(h) ‖v‖ for v ∈ Vh .

Then there exists some h̄ > 0 such that ah is uniformly Vh-elliptic for
h ≤ h̄.

Proof: By assumption, there exists some α > 0 such that for v ∈ Vh,

α‖v‖2 ≤ ah(v, v) + a(v, v)− ah(v, v)

and

|a(v, v) − ah(v, v)| ≤ Ah(v)‖v‖ ≤ C(h)‖v‖2 .
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Therefore, for instance, choose h̄ such that C(h) ≤ α/2 for h ≤ h̄. !

We concretely address the analysis of the influence of numerical quadra-
ture, that is, ah is defined as in (3.120) and lh corresponds to b̄h in (3.122)
with the approximate linear form bh according to (3.120). Since this is an
extension of the convergence results (in ‖ · ‖1) given in Section 3.4, the as-
sumptions about the finite element discretization are as summarized there
at the beginning. In particular, the triangulations Th consist of elements
that are affine equivalent to each other. Furthermore, for a simplification of
the notation, let again d ≤ 3 and only Lagrange elements are considered. In
particular, let the general assumptions about the boundary value problems
which are specified at the end of Section 3.2.1 be satisfied.

According to Theorem 3.38, the uniform Vh-ellipticity of ah must be
ensured and the consistency errors (for an appropriate comparison element
v ∈ Vh) must have the correct convergence behavior. If the step size h is
small enough, the first proposition is implied by the second proposition
by virtue of Lemma 3.39. Now, simple criteria that are independent of this
restriction will be presented. The quadrature formulas satisfy the properties
(3.112), (3.113) introduced in Section 3.5; in particular, the weights are
positive.

Lemma 3.40 Suppose the coefficient function K satisfies (3.16) and let
c = 0 in Ω, let |Γ3|d−1 > 0, and let r ≥ 0 in Ω. If P ⊂ Pk(K) for the
ansatz space and if the quadrature formula is exact for P2k−2(K), then ah

is uniformly Vh-elliptic.

Proof: Let α > 0 be the constant of the uniform positive definiteness of
K(x). Then we have for v ∈ Vh:

ah(v, v) ≥ α
∑

K∈Th

R∑

l=1

ωl,K |∇v|2(bl,K) = α

∫

Ω
|∇v|2(x) dx = α|v|21 ,

since |∇v|2
∣∣
K
∈ P2k−2(K). The assertion follows from Corollary 3.14. !

Further results of this type can be found in [9, pp. 194]. To investigate
the consistency error we can proceed similarly to the estimation of the
interpolation error in Section 3.4: The error is split into the sum of the errors
over the elements K ∈ Th and there transformed by means of (3.115) into
the error over the reference element K̂. The derivatives (in x̂) arising in the
error estimation over K̂ are backtransformed by using Theorem 3.26 and
Theorem 3.27, which leads to the desired hK-factors. But note that powers
of ‖B−1‖ or similar terms do not arise. If the powers of det(B) arising in
both transformation steps cancel each other (which will happen), in this
way no condition about the geometric quality of the family of triangulations
arises. Of course, these results must be combined with estimates for the
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approximation error of Vh, for which, in particular, both approaches of
Section 3.4 (either regularity or maximum angle condition) are admissible.

For the sake of simplicity, we restrict our attention in the following to the
case of the polynomial ansatz space P = Pk(K). More general results of
similar type, in particular for triangulations with the cuboid element and
P̂ = Qk(K̂) as reference element, are summarized in [9, p. 207].

We recall the notation and the relations introduced in (3.114), (3.115)
for the local errors. In the following theorems we make use of the Sobolev
spaces W l

∞ on Ω and on K with the norms ‖·‖l,∞ and ‖·‖l,∞,K, respectively,
and the seminorms | · |l,∞ and | · |l,∞,K , respectively. The essential local
assertion is the following:

Theorem 3.41 Suppose k ∈ N and P̂ = Pk(K̂) and the quadrature
formula is exact for P2k−2(K̂):

Ê(v̂) = 0 for all v̂ ∈ P2k−2(K̂) . (3.128)

Then there exist some constant C > 0 independent of h > 0 and K ∈ Th

such that for l ∈ {1, k} the following estimates are given:

(1) |EK(apq)| ≤ Chl
K‖a‖k,∞,K‖p‖l−1,K‖q‖0,K

for a ∈ W k
∞(K) , p, q ∈ Pk−1(K) ,

(2) |EK(cpq)| ≤ Chl
K‖c‖k,∞,K‖p‖l−1,K‖q‖1,K

for c ∈ W k
∞(K) , p ∈ Pk−1(K) , q ∈ Pk(K) ,

(3) |EK(rpq)| ≤ Chl
K‖r‖k,∞,K‖p‖l,K‖q‖1,K

for r ∈ W k
∞(K) , p, q ∈ Pk(K) ,

(4) |EK(fq)| ≤ Chk
K‖f‖k,∞,Kvol (K)1/2‖q‖1,K

for f ∈ W k
∞(K) , q ∈ Pk(K) .

The (unnecessarily varied) notation of the coefficients already indicates
the field of application of the respective estimate. The smoothness assump-
tion concerning the coefficients in (1)–(3) can be weakened to some extent.
We prove only assertion (1). However, a direct application of this proof to
assertions (2)–(4) leads to a loss of convergence rate (or higher exactness
conditions for the quadrature). Here, quite technical considerations includ-
ing the insertion of projections are necessary, which can be found to some
extent in [9, pp. 201–203]. In the following proof we intensively make use
of the fact that all norms are equivalent on the “fixed” finite-dimensional
ansatz space Pk(K̂). The assumption (3.128) is equivalent to the same con-
dition on a general element. However, the formulation already indicates an
assumption that is also sufficient in more general cases.
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Proof of Theorem 3.41, (1): We consider a general element K ∈ Th

and mappings a ∈ W k
∞(K), p, q ∈ Pk−1(K) on it and, moreover, mappings

â ∈ W k
∞(K̂), p̂, q̂ ∈ Pk−1(K̂) defined according to (3.75). First, the proof

is done for l = k. On the reference element K̂, for v̂ ∈ W k
∞(K̂) and q̂ ∈

Pk−1(K̂)), we have

∣∣Ê(v̂q̂)
∣∣ =

∣∣∣∣∣

∫

K̂
v̂q̂ dx̂−

R∑

l=1

ω̂l (v̂q̂)(b̂l)

∣∣∣∣∣ ≤ C ‖v̂q̂‖∞,K̂ ≤ C ‖v̂‖∞,K̂ ‖q̂‖∞,K̂ ,

where the continuity of the embedding of W k
∞(K̂) in C(K̂) is used (see [8,

p. 181]). Therefore, by the equivalence of ‖ ·‖∞,K̂ and ‖ ·‖0,K̂ on Pk−1(K̂),
it follows that

∣∣Ê(v̂q̂)
∣∣ ≤ C ‖v̂‖k,∞,K̂ ‖q̂‖0,K̂ .

If a fixed q̂ ∈ Pk−1(K̂) is chosen, then a linear continuous functional G is
defined on W k

∞(K̂) by v̂ .→ Ê(v̂q̂) that has the following properties:

‖G‖ ≤ C‖q̂‖0,K̂ and G(v̂) = 0 for v̂ ∈ Pk−1(K̂)

by virtue of (3.128).
The Bramble–Hilbert lemma (Theorem 3.24) implies

∣∣Ê(v̂q̂)
∣∣ ≤ C |v̂|k,∞,K̂ ‖q̂‖0,K̂ .

According to the assertion we now choose

v̂ = âp̂ for â ∈ W k,∞(K̂) , p̂ ∈ Pk−1(K̂) ,

and we have to estimate |âp̂|k,∞K̂ (thanks to the Bramble–Hilbert lemma
not ‖âp̂‖k,∞,K̂). The Leibniz rule for the differentiation of products implies
the estimate

|âp̂|k,∞,K̂ ≤ C
k∑

j=0

|â|k−j,∞,K̂ |p̂|j,∞,K̂ . (3.129)

Here the constant C depends only on k, but not on the domain K̂.
Since p̂ ∈ Pk−1(K̂), the last term of the sum in (3.129) can be omitted.

Therefore, we have obtained the following estimate holding for â ∈ W k
∞(K̂),

p̂, q̂ ∈ Pk−1(K̂):

∣∣Ê(âp̂q̂)
∣∣ ≤ C

{
k−1∑

j=0

|â|k−j,∞,K̂ |p̂|j,∞,K̂

}
‖q̂‖0,K̂

≤ C

{
k−1∑

j=0

|â|k−j,∞,K̂ |p̂|j,K̂

}
‖q̂‖0,K̂ .

(3.130)

The last estimate uses the equivalence of ‖ · ‖∞ and ‖ · ‖0 on Pk−1(K̂).
We suppose that the transformation F of K̂ to the general element K

has, as usual, the linear part B. The first transformation step yields the
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factor | det(B)| according to (3.115), and for the backtransformation it
follows from Theorem 3.26 and Theorem 3.27 that

|â|k−j,∞,K̂ ≤ C hk−j
K |a|k−j,∞,K ,

|p̂|j,K̂ ≤ C hj
K | det(B)|−1/2 |p|j,K ,

‖q̂‖0,K̂ ≤ C | det(B)|−1/2 ‖q‖0,K

(3.131)

for 0 ≤ j ≤ k − 1. Here a, p, q are the mappings â, p̂, q̂ (back)transformed
according to (3.75). Substituting these estimates into (3.130) therefore
yields

∣∣EK(apq)
∣∣ ≤ C hk

K

{
k−1∑

j=0

|a|k−j,∞,K |p|j,K

}
‖q‖0,K

and from this, assertion (1) follows for l = k.
If l = 1, we modify the proof as follows. Again, in (3.130) we estimate

by using the equivalence of norms:

∣∣Ê(âp̂q̂)
∣∣ ≤ C

{
k−1∑

j=0

|â|k−j,∞,K̂ ‖p̂‖j,∞,K̂

}
‖q̂‖0,K̂

≤ C

{
k−1∑

j=0

|â|k−j,∞,K̂

}
‖p̂‖0,K̂ ‖q̂‖0,K̂ .

The first and the third estimates of (3.131) remain applicable; the second
estimate is replaced with the third such that we have

∣∣EK(apq)
∣∣ ≤ C hK

{
k−1∑

j=0

|a|k−j,∞,K

}
, ‖p‖0,K ‖q‖0,K

since the lowest hK-power arises for j = k − 1. This estimate yields the
assertion (1) for l = 1 . !

Finally, we can now verify the assumptions of Theorem 3.38 with the
following result:

Theorem 3.42 Consider a family of affine equivalent Lagrange finite el-
ement discretizations in Rd, d ≤ 3, with P = Pk for some k ∈ N as local
ansatz space. Suppose that the family of triangulations is regular or sat-
isfies the maximum angle condition in the case of triangles with k = 1.
Suppose that the applied quadrature formulas are exact for P2k−2. Let the
function w satisfying the Dirichlet boundary condition and let the solution
u of the boundary value problem (3.12), (3.18)–(3.20) (with g3 = 0) belong
to Hk+1(Ω).

Then there exist some constants C > 0, h̄ > 0 independent of u and w
such that for the finite element approximation ūh+wh according to (3.105),
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(3.121), it follows for h ≤ h̄ that

∥∥u + w − (ūh + wh)
∥∥

1
≤ C hk

{
|u|k+1 + |w|k+1 +

(
d∑

i,j=1

‖kij‖k,∞

+
d∑

i=1

‖ci‖k,∞ + ‖r‖k,∞

)(
‖u‖k+1 + ‖w‖k+1

)
+ ‖f‖k,∞

}
.

Proof: According to (3.108), we aim at estimating
∥∥u+w−(¯̄uh+Īh(w))

∥∥
1
,

where ¯̄uh satisfies (3.122).
By virtue of Theorem 3.29 or Theorem 3.35 (set formally Γ3 = ∅) we

have

‖w − Īh(w)‖1 ≤ Chk|w|k+1 . (3.132)

For the bilinear form ah defined in (3.120), it follows from Theorem 3.41
for v, w ∈ Vh and l ∈ {0, k} that

∣∣a(v, w) − ah(v, w)
∣∣ ≤

∑

K∈Th

{
d∑

i,j=1

∣∣EK(kij∂j(v|K)∂i(w|K))
∣∣ (3.133)

+
d∑

i=1

∣∣EK(ci∂i(v|K)w)
∣∣+

∣∣EK(rvw)
∣∣
}

≤ C
∑

K∈Th

hl
K

{
d∑

i,j=1

‖kij‖k,∞,K +
d∑

i=1

‖ci‖k,∞,K + ‖r‖k,∞,K

}

×‖v‖l,K‖w‖1,K

≤ C hl

{
d∑

i,j=1

‖kij‖k,∞ +
d∑

i=1

‖ci‖k,∞ + ‖r‖k,∞

}

×
(
∑

K∈Th

‖v‖2
l,K

)1/2

‖w‖1,

by estimating the ‖ ·‖k,∞,K-norms in terms of norms on the domain Ω and
then applying the Cauchy–Schwarz inequality with “index” K ∈ Th.

From this we obtain for l = 1 an estimate of the form

|a(v, w) − ah(v, w)| ≤ Ch‖v‖1‖w‖1

such that the estimate required in Lemma 3.39 holds (with C(h) = C · h).
Therefore, there exists some h̄ > 0 such that ah is uniformly Vh-elliptic
for h ≤ h̄. Hence, the estimate (3.126) is applicable, and the first addend,
the approximation error, behaves as asserted according to Theorem 3.29 or
Theorem 3.35 (again, choose v = Ih(u) for the comparison element).

In order to estimate the consistency error of ah, a comparison element
v ∈ Vh has to be found for which the corresponding part of the norm in
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(3.133) is uniformly bounded. This is satisfied for v = Ih(u), since
(
∑

K∈Th

‖Ih(u)‖2
k,K

)1/2

≤ ‖u‖k +

{
∑

K∈Th

‖u− Ih(u)‖2
k,K

}1/2

≤ ‖u‖k + Ch|u|k+1 ≤ ‖u‖k+1

due to Theorem 3.29 or Theorem 3.35.
Hence, the consistency error in a behaves as asserted according to (3.133),

so that only the consistency error of l has to be investigated: We have

l − lh = b − bh − a(w, ·) + ah(Īh(w), ·) ,

where bh is defined in (3.120).
If v ∈ Vh, then

∣∣a(w, v)−ah(Īh(w), v)
∣∣ ≤

∣∣a(w, v)−a(Īh(w), v)
∣∣+
∣∣a(Īh(w), v)−ah(Īh(w), v)

∣∣.

For the first addend the continuity of a implies
∣∣a(w, v) − a(Īh(w), v)

∣∣ ≤ C
∥∥w − Īh(w)

∥∥
1
‖v‖1 ,

so that the corresponding consistency error part behaves like
∥∥w− Īh(w)

∥∥
1
,

which has already been estimated in (3.132). The second addend just cor-
responds to the estimate used for the consistency error in a (here, the
difference between Ih and Īh is irrelevant), so that the same contribution to
the convergence rate, now with ‖u‖k+1 replaced by ‖w‖k+1, arises. Finally,
Theorem 3.41, (4) yields for v ∈ Vh,

|b(v)− b(vh)| ≤
∑

K∈Th

|EK(fv)| ≤ C
∑

K∈Th

hk
K vol (K)1/2 ‖f‖k,∞,K ‖v‖1,K

≤ C hk |Ω|1/2 ‖f‖k,∞ ‖v‖1

by proceeding as in (3.133). This implies the last part of the asserted
estimate. !

If the uniform Vh-ellipticity of ah is ensured in a different way (perhaps
by Lemma 3.40), one can dispense with the smallness assumption about h.
If estimates as given in Theorem 3.41 are also available for other types of
elements, then triangulations consisting of combinations of various elements
can also be considered.
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3.7 The Condition Number of Finite Element
Matrices

The stability of solution algorithms for linear systems of equations as de-
scribed in Section 2.5 depends on the condition number of the system
matrix (see [28, Chapter 1]). The condition number also plays an impor-
tant role for the convergence behavior of iterative methods, which will be
discussed in Chapter 5. Therefore, in this section we shall estimate the
spectral condition number (see Appendix A.3) of the stiffness matrix

A =
(
a(ϕj ,ϕi)

)
i,j=1,...,M

(3.134)

and also of the mass matrix (see (7.45))

B =
(
〈ϕj ,ϕi〉0

)
i,j=1,...,M

, (3.135)

which is of importance for time-dependent problems. Again, we consider a
finite element discretization in the general form of Section 3.4 restricted to
Lagrange elements. In order to simplify the notation, we assume the affine
equivalence of all elements. Further we suppose that

• the family (Th)h of triangulations is regular.

We assume that the variational formulation of the boundary value problem
leads to a bilinear form a that is V -elliptic and continuous on V ⊂ H1(Ω).

As a modification of definition (1.18), let the following norm (which is
also induced by a scalar product) be defined in the ansatz space Vh =
span{ϕ1, . . . ,ϕM}:

‖v‖0,h :=

(
∑

K∈Th

hd
K

∑

ai∈K

|v(ai)|2
)1/2

. (3.136)

Here, a1, . . . , aM denote the nodes of the degrees of freedom, where in order
to simplify the notation, M instead of M1 is used for the number of degrees
of freedom. The norm properties follow directly from the corresponding
properties of | · |2 except for the definiteness. But the definiteness follows
from the uniqueness of the interpolation problem in Vh with respect to
degrees of freedom ai.

Theorem 3.43 (1) There exist constants C1, C2 > 0 independent of h
such that for v ∈ Vh:

C1‖v‖0 ≤ ‖v‖0,h ≤ C2‖v‖0 .

(2) There exists a constant C > 0 independent of h such that for v ∈ Vh,

‖v‖1 ≤ C

(
min

K∈Th

hK

)−1

‖v‖0 .
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Proof: As already known from Sections 3.4 and 3.6, the proof is done
locally in K ∈ Th and there transformed to the reference element K̂ by
means of F (x̂) = Bx̂ + d.

Ad (1): All norms are equivalent on the local ansatz space P̂ , thus also
‖ · ‖0,K̂ and the Euclidean norm in the degrees of freedom. Hence, there
exist some Ĉ1, Ĉ2 > 0 such that for v̂ ∈ P̂ ,

Ĉ1‖v̂‖0,K̂ ≤
(

L∑

i=1

|v̂(âi)|2
)1/2

≤ Ĉ2‖v̂‖0,K̂ .

Here, â1, . . . , âL are the degrees of freedom in K̂. Due to (3.50) we have

vol (K) = vol (K̂) | det(B)| ,

and according to the definition of hK and the regularity of the family (Th)h,
there exist constants C̃i > 0 independent of h such that

C̃1 hd
K ≤ C̃3 '

d
K ≤ | det(B)| ≤ C̃2 hd

K .

By the transformation rule we thus obtain for v ∈ PK , the ansatz space on
K, that

Ĉ1‖v‖0,K = Ĉ1 | det(B)|1/2 ‖v̂‖0,K̂ ≤
(
C̃2 hd

K

)1/2

(
L∑

i=1

|v̂(âi)|2
)1/2

= C̃1/2
2

(
∑

ai∈K

hd
K |v(ai)|2

)1/2

=
(
C̃2 hd

K

)1/2
(

L∑

i=1

|v̂(âi)|2
)1/2

≤
(
C̃2 hd

K

)1/2
Ĉ2 ‖v̂‖0,K̂ =

(
C̃2 hd

K

)1/2
Ĉ2 | det(B)|−1/2 ‖v‖0,K

≤ C̃1/2
2 Ĉ2 C̃−1/2

1 ‖v‖0,K .

This implies assertion (1).
Ad (2): Arguing as before, now using the equivalence of ‖ · ‖1,K̂ and

‖ · ‖0,K̂ in P̂ , it follows by virtue of (3.86) for v ∈ PK (with the generic
constant C) that

‖v‖1,K ≤ C | det(B)|1/2 ‖B−1‖2 ‖v̂‖0,K̂ ≤ C ‖B−1‖2 ‖v‖0,K ≤ C h−1
K ‖v‖0,K

by Theorem 3.27 and the regularity of (Th)h, and from this, the assertion
(2). !

In order to make the norm ‖ · ‖0,h comparable with the (weighted)
Euclidean norm we assume in the following:

• There exists a constant CA > 0 independent of h
such that for every node of Th, the number of elements
to which this node belongs is bounded by CA.

(3.137)
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This condition is (partly) redundant: For d = 2 and triangular elements,
the condition follows from the uniform lower bound (3.93) for the smallest
angle as an implication of the regularity. Note that the condition need not
be satisfied if only the maximum angle condition is required.

In general, if C ∈ RM,M is a matrix with real eigenvalues λ1 ≤ · · · ≤
λM and an orthonormal basis of eigenvectors ξ1, . . . , ξM , for instance a
symmetric matrix, then it follows for ξ ∈ RM \ {0} that

λ1 ≤
ξT Cξ

ξT ξ
≤ λM , (3.138)

and the bounds are assumed for ξ = ξ1 and ξ = ξM .

Theorem 3.44 There exists a constant C > 0 independent of h such that
we have

κ(B) ≤ C

(
h

min
K∈Th

hK

)d

for the spectral condition number of the mass matrix B according to (3.135).

Proof: κ(B) = λM/λ1 must be determined. For arbitrary ξ ∈ RM \ {0}
we have

ξT Bξ

ξT ξ
=

ξT Bξ

‖v‖2
0,h

‖v‖2
0,h

ξT ξ
,

where v :=
∑M

i=1 ξiϕi ∈ Vh. By virtue of ξT Bξ = 〈v, v〉0, the first factor on
the right-hand side is uniformly bounded from above and below according
to Theorem 3.43. Further, by (3.137) and ξ = (v(a1), . . . , v(aM ))T it follows
that

min
K∈Th

hd
K |ξ|2 ≤ ‖v‖2

0,h ≤ CA hd |ξ|2 ,

and, thus the second factor is estimated from above and below. This leads
to estimates of the type

λ1 ≥ C1 min
K∈Th

hd
K , λM ≤ C2 hd ,

and from this, the assertion follows. !

Therefore, if the family of triangulations (Th)h is quasi-uniform in the
sense that there exists a constant C > 0 independent of h such that

h ≤ C hK for all K ∈ Th , (3.139)

then κ(B) is uniformly bounded.
In order to be able to argue analogously for the stiffness matrix, we

assume that we stay close to the symmetric case:
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Theorem 3.45 Suppose the stiffness matrix A (3.134) admits real eigen-
values and a basis of eigenvectors. Then there exists a constant C > 0
independent of h such that the following estimates for the spectral condition
number κ hold:

κ(B−1A) ≤ C

(
min

K∈Th

hK

)−2

,

κ(A) ≤ C

(
min

K∈Th

hK

)−2

κ(B) .

Proof: With the notation of (3.138), we proceed analogously to the proof
of Theorem 3.44. Since

ξT Aξ

ξT ξ
=

ξT Aξ

ξT Bξ

ξT Bξ

ξT ξ
,

it suffices to bound the first factor on the right-hand side from above and
below. This also yields a result for the eigenvalues of B−1A, since we have
for the variable η := B1/2ξ,

ξT Aξ

ξT Bξ
=

ηT B−1/2AB−1/2η

ηT η
,

and the matrix B−1/2AB−1/2 possesses the same eigenvalues as B−1A by
virtue of B−1/2(B−1/2AB−1/2)B1/2 = B−1A. Here, B1/2 is the symmet-
ric positive definite matrix that satisfies B1/2B1/2 = B, and B−1/2 is its
inverse.

Since ξT Aξ/ξT Bξ = a(v, v)/〈v, v〉0 and

a(v, v) ≥ α‖v‖2
1 ≥ α‖v‖2

0 ,

a(v, v) ≤ C‖v‖2
1 ≤ C

(
min

K∈Th

hK

)−2

‖v‖2
0 ,

(3.140)

with a generic constant C > 0 (the last estimate is due to Theorem 3.43,
2), it follows that

α ≤ a(v, v)
〈v, v〉0

=
ξT Aξ

ξT Bξ
=

a(v, v)
〈v, v〉0

≤ C

(
min

K∈Th

hK

)−2

, (3.141)

and from this the assertion. !

The analysis of the eigenvalues of the model problem in Example 2.12
shows that the above-given estimates are not too pessimistic.
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3.8 General Domains and Isoparametric Elements

All elements considered so far are bounded by straight lines or plane sur-
faces. Therefore, only polyhedral domains can be decomposed exactly by
means of a triangulation. Depending on the application, domains with a
curved boundary may appear. With the available elements the obvious way
of dealing with such domains is the following (in the two-dimensional case):
for elements K that are close to the boundary put only the nodes of one
edge on the boundary ∂Ω. This implies an approximation error for the
domain, for Ωh :=

⋃
K∈Th

K, there holds in general neither Ω ⊂ Ωh nor
Ωh ⊂ Ω (see Figure 3.14).

B

Figure 3.14. Ω and Ωh.

As the simplest example, we consider homogeneous Dirichlet boundary
conditions, thus V = H1

0 (Ω), on a convex domain for which therefore Ωh ⊂
Ω is satisfied. If an ansatz space Vh is introduced as in Section 3.3, then
functions defined on Ωh are generated. Therefore, these functions must be
extended to Ω in such a way that they vanish on ∂Ω, and consequently, for
the generated function space Ṽh, Ṽh ⊂ V . This is supposed to be done by
adding the domains B whose boundary consists of a boundary part of some
element K ∈ Th close to the boundary and a subset of ∂Ω to the set of
elements with the ansatz space P (B) = {0}. Céa’s lemma (Theorem 2.17)
can still be applied, so that for an error estimate in ‖ · ‖1 the question of
how to choose a comparison element v ∈ Ṽh arises. The ansatz v = Ĩh(u),
where Ĩh(u) denotes the interpolation on Ωh extended by 0 on the domains
B, is admissible only for the (multi-)linear ansatz: Only in this case are all
nodes of an edge “close to the boundary” located on ∂Ω and therefore have
homogeneous degrees of freedom, so that the continuity on these edges is
ensured. For the present, let us restrict our attention to this case, so that
‖u− Ĩh(u)‖1 has to be estimated where u is the solution of the boundary
value problem.

The techniques of Section 3.4 can be applied to all K ∈ Th, and by the
conditions assumed there about the triangulation, this yields

‖u− uh‖1 ≤ C
(
‖u− Ih(u)‖1,Ωh + ‖u‖1,Ω\Ωh

)

≤ C
(
h|u|2,Ωh + ‖u‖1,Ω\Ωh

)
.
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If ∂Ω ∈ C2, then we have the estimate

‖u‖1,Ω\Ωh
≤ Ch‖u‖2,Ω

for the new error part due to the approximation of the domain, and thus
the convergence rate is preserved. Already for a quadratic ansatz this is no
longer satisfied, where only

‖u− uh‖1 ≤ Ch3/2‖u‖3

holds instead of the order O(h2) of Theorem 3.29 (see [31, pp. 194 ff]).
One may expect that this decrease of the approximation quality arises only
locally close to the boundary, however, one may also try to obtain a better
approximation of the domain by using curved elements. Such elements can
be defined on the basis of the reference elements (K̂, P̂ , Σ̂) of Lagrange type
introduced in Section 3.3 if a general element is obtained from this one by
an isoparametric transformation; that is, choose an

F ∈ (P̂ )d (3.142)

that is injective and then

K := F (K̂) , P :=
{
p̂ ◦ F−1

∣∣ p̂ ∈ P̂
}

, Σ :=
{
F (â)

∣∣ â ∈ Σ̂
}

.

Since the bijectivity of F : K̂ → K is ensured by requirement, a finite
element is thus defined in terms of (3.58). By virtue of the unique solvability
of the interpolation problem, F can be defined by prescribing a1, . . . , aL,
L = |Σ̂|, and requiring

F (âi) = ai , i = 1, . . . , L .

However, this does not in general ensure the injectivity. Since, on the other
hand, in the grid generation process elements are created by defining the
nodes (see Section 4.1), geometric conditions about their positions that
characterize the injectivity of F are desirable. A typical curved element
that can be used for the approximation of the boundary can be generated
on the basis of the unit simplex with P̂ = P2(K̂) (see Figure 3.15).

â1

â1 3

â1 2
â2

â2 3

â3

F ∈
(
P2(K̂)

)2
!
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Figure 3.15. Isoparametric element: quadratic ansatz on triangle.

Elements with, in general, one curved edge and otherwise straight edges
thus are suggested for the problem of boundary approximation. They are
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combined with affine “quadratic triangles” in the interior of the domain.
Subparametric elements can be generated analogously to the isoparametric
elements if (the components of) the transformations in (3.142) are restricted
to some subspace P̂T ⊂ P̂ . If P̂T = P1(K̂), we again obtain the affine
equivalent elements.

However, isoparametric elements are also important if, for instance, the
unit square or cube is supposed to be the reference element. Only the
isoparametric transformation allows for “general” quadrilaterals and hex-
ahedra, respectively, which are preferable in anisotropic cases (for instance
in generalization of Figure 3.11) to simplices due to their adaptability to
local coordinates. In what follows, let K̂ = [0, 1]d , P̂ = Q1(K̂).

In general, since also a finite element (in Rd−1) is defined for every face
Ŝ of K̂ with P̂ |Ŝ and Σ̂|Ŝ , the “faces” of K, that is, F [Ŝ], are already
uniquely defined by the related nodes.

Consequently, if d = 2, the edges of the general quadrilateral are straight
lines (see Figure 3.16), but if d = 3, we have to expect curved surfaces
(hyperbolic paraboloids) for a general hexahedron.
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Figure 3.16. Isoparametric element: bilinear ansatz on rectangle.

A geometric characterization of the injectivity of F is still unknown (to
our knowledge) for d = 3, but it can be easily derived for d = 2: Let the
nodes a1, a2, a3, a4 be numbered counterclockwise and suppose that they
are not on a straight line, and thus (by rearranging) T = conv (a1, a2, a4)
forms a triangle such that

2 vol (T ) = det(B) > 0 .

Here FT (x̂) = Bx̂ + d is the affine-linear mapping that maps the refer-
ence triangle conv (â1, â2, â4) bijectively to T . If ã3 := F−1

T (a3), then the
quadrilateral K̃ with the vertices â1, â2, ã3, â4 is mapped bijectively to K
by FT .

The transformation F can be decomposed into

F = FT ◦ FQ ,

where FQ ∈
(
Q1(K̂)

)2 denotes the mapping defined by

FQ(âi) = âi , i = 1, 2, 4 , FQ(â3) = ã3
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(see Figure 3.17).
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Figure 3.17. Decomposition of the bilinear isoparametric mapping.

Therefore, the bijectivity of F is equivalent to the bijectivity of FQ.
We characterize a “uniform” bijectivity which is defined by

det (DF (x̂1, x̂2)) -= 0 for the functional matrix DF (x̂1, x̂2):

Theorem 3.46 Suppose Q is a quadrilateral with the vertices a1,. . .,a4

(numbered counterclockwise). Then,

det (DF (x̂1, x̂2)) -= 0 for all (x̂1, x̂2) ∈ [0, 1]2 ⇐⇒
det (DF (x̂1, x̂2)) > 0 for all (x̂1, x̂2) ∈ [0, 1]2 ⇐⇒

Q is convex and does not degenerate into a triangle or straight line .

Proof: By virtue of

det (DF (x̂1, x̂2)) = det(B) det (DFQ(x̂1, x̂2))

and det(B) > 0, F can be replaced with FQ in the assertion. Since

FQ(x̂1, x̂2) =
(

x̂1

x̂2

)
+
(

ã3,1 − 1
ã3,2 − 1

)
x̂1x̂2 ,

it follows by some simple calculations that

det (DFQ(x̂1, x̂2)) = 1 + (ã3,2 − 1)x̂1 + (ã3,1 − 1)x̂2

is an affine-linear mapping because the quadratic parts just cancel each
other. This mapping assumes its extrema on [0, 1]2 at the 4 vertices, where
we have the following values:

(0, 0) : 1 , (1, 0) : ã3,2 , (0, 1) : ã3,1 , (1, 1) : ã3,1 + ã3,2 − 1 .

A uniform sign is thus obtained if and only if the function is everywhere
positive. This is the case if and only if

ã3,1 , ã3,2 , ã3,1 + ã3,2 − 1 > 0 ,

which just characterizes the convexity and the nondegeneration of K̃. By
the transformation FT this also holds for K. !
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According to this theorem it is not allowed that a quadrilateral degener-
ates into a triangle (now with linear ansatz). But a more careful analysis [55]
shows that this does not affect negatively the quality of the approximation.

In general, for isoparametric elements we have the following:
From the point of view of implementation, only slight modifications have

to be made: In the integrals (3.111), (3.111) transformed to the reference
element or their approximation by quadrature (3.120), | detB| has to be
replaced with |det (DF (x̂))| (in the integrand).

The analysis of the order of convergence can be done along the same
lines as in Section 3.4 (and 3.6), however, the transformation rules for the
integrals become more complex (see [9, pp. 237 ff.]).

3.9 The Maximum Principle for Finite Element
Methods

In this section maximum and comparision principles that have been intro-
duced for the finite difference method are outlined for the finite element
method.

In the case of two-dimensional domains Ω the situation has been well
investigated for linear elliptic boundary value problems of second order
and linear elements. For higher-dimensional problems (d > 2) as well as
other types of elements, the corresponding assumptions are much more
complex, or there does not necessarily exist any maximum principle.

From now on, let Ω ⊂ R2 be a polygonally bounded domain and let Xh

denote the finite element space of continuous, piecewise linear functions
for a conforming triangulation Th of Ω where the function values in the
nodes on the Dirichlet boundary Γ3 are included in the degrees of freedom.
First, we consider the discretization developed for the Poisson equation
−∆u = f with f ∈ L2(Ω). The algebraization of the method is done
according to the scheme described in Section 2.4.3. According to this, first
all nodes inside Ω and on Γ1 and Γ2 are numbered consecutively from 1
to a number M1. The nodal values uh(ar) for r = 1, . . . , M1 are arranged
in the vector uh. Then, the nodes that belong to the Dirichlet boundary
are numbered from M1 + 1 to some number M1 + M2, the corresponding
nodal values generate the vector ûh. The combination of uh and ûh gives
the vector of all nodal values ũh =

(uh

ûh

)
∈ RM , M = M1 + M2.

This leads to a linear system of equations of the form (1.31) described
in Section 1.4:

Ahuh = −Âhûh + f

with Ah ∈ RM1,M1 , Âh ∈ RM1,M2 , uh, f ∈ RM1 and ûh ∈ RM2 .
Recalling the support properties of the basis functions ϕi,ϕj ∈ Xh,

we obtain for a general element of the (extended) stiffness matrix Ãh :=
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(
Ah

∣∣ Âh

)
∈ RM1,M following the relation

(Ãh)ij =
∫

Ω
∇ϕj ·∇ϕi dx =

∫

suppϕi∩suppϕj

∇ϕj ·∇ϕi dx .

Therefore, if i -= j, the actual domain of integration consists of at most
two triangles. Hence, for the present it is reasonable to consider only one
triangle as the domain of integration .

Lemma 3.47 Suppose Th is a conforming triangulation of Ω. Then for
an arbitrary triangle K ∈ Th with the vertices ai, aj (i -= j), the following
relation holds: ∫

K
∇ϕj ·∇ϕi dx = −1

2
cotαK

ij ,

where αK
ij denotes the interior angle of K that is opposite to the edge with

the boundary points ai, aj.

Proof: Suppose the triangle K has the vertices ai, aj , ak (see Figure 3.18).
On the edge opposite to the point aj , we have

ϕj ≡ 0 .

Therefore, ∇ϕj has the direction of a normal vector to this edge and — by
considering in which direction ϕj increases — the orientation opposite to
the outward normal vector νki, that is,

∇ϕj = − |∇ϕj | νki with |νki| = 1 . (3.143)

.

.
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Figure 3.18. Notation for the proof of Lemma 3.47.

In order to calculate |∇ϕj | we use the following: From (3.143) we obtain

|∇ϕj | = −∇ϕj · νki ;

that is, we have to compute a directional derivative. By virtue of ϕj(aj) = 1,
we have

∇ϕj · νki =
0− 1
hj

= − 1
hj

,
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where hj denotes the height of K with respect to the edge opposite aj .
Thus we have obtained the relation

∇ϕj = − 1
hj
νki .

Hence we have

∇ϕj ·∇ϕi =
νki · νjk

hj hi
= −

cosαK
ij

hj hi
.

Since

2 |K| = hj |ak − ai| = hi |aj − ak| = |ak − ai| |aj − ak| sinαK
ij ,

we obtain

∇ϕj ·∇ϕi = −
cosαK

ij

4 |K|2 |ak − ai| |aj − ak| = −1
2

cotαK
ij

1
|K| ,

so that the assertion follows by integration. !

Corollary 3.48 If K and K ′ are two triangles of Th which have a common
edge spanned by the nodes ai, aj, then

(Ãh)ij =
∫

K∪K′
∇ϕj ·∇ϕi dx = −1

2
sin(αK

ij + αK′

ij )
(sinαK

ij )(sinαK′
ij )

.

Proof: The formula follows from the addition theorem for the cotangent
function. !

Lemma 3.47 and Corollary 3.48 are the basis for the proof of the as-
sumption (1.32)* in the case of the extended system matrix Ãh. Indeed,
additional assumptions about the triangulation Th are necessary:

Angle condition: For any two triangles of Th with a common edge, the
sum of the interior angles opposite to this edge does not exceed the
value π. If a triangle has an edge on the boundary part Γ1 or Γ2, then
the angle opposite this edge must not be obtuse.

Connectivity condition: For every pair of nodes both belonging to Ω ∪
Γ1 ∪ Γ2 there exists a polygonal line between these two nodes such
that the polygonal line consists only of triangle edges whose boundary
points also belong to Ω ∪ Γ1 ∪ Γ2 (see Figure 3.19).

Discussion of assumption (1.32)*: The proof of (1), (2), (5), (6)* is rather
elementary. For the “diagonal elements,”

(Ah)rr =
∫

Ω
|∇ϕr |2 dx =

∑

K⊂suppϕr

∫

K
|∇ϕr |2 dx > 0 , r = 1, . . . , M1 ,

which already is (1). Checking the sign conditions (2) and (5) for the
“nondiagonal elements” of Ãh requires the analysis of two cases:
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Figure 3.19. Example of a nonconnected triangulation (Γ3 = ∂Ω).

(i) For r = 1, . . . , M1 and s = 1, . . . , M with r -= s, there exist two
triangles that have the common vertices ar, as.

(ii) There exists only one triangle that has ar as well as as as vertices.

In case (i), Corollary 3.48 can be applied, since if K, K ′ just denote the two
triangles with a common edge spanned by ar, as, then 0 < αK

rs + αK′

rs ≤ π
and thus (Ãh)rs ≤ 0, r -= s. In case (ii), Lemma 3.47, due to the part of
the angle condition that refers to the boundary triangles, can be applied
directly yielding the assertion.

Further, since
∑M

s=1 ϕs = 1 in Ω, we obtain
M∑

s=1

(Ãh)rs =
M∑

s=1

∫

Ω
∇ϕs ·∇ϕr dx =

∫

Ω
∇
(

M∑

s=1

ϕs

)
·∇ϕr dx = 0 .

This is (6)*.
The sign condition in (3) now follows from (6)* and (5), since we have

M1∑

s=1

(Ah)rs =
M∑

s=1

(Ãh)rs

︸ ︷︷ ︸
=0

−
M∑

s=M1+1

(Âh)rs ≥ 0 . (3.144)

The difficult part of the proof of (3) consists in showing that at least one of
these inequalities (3.144) is satisfied strictly. This is equivalent to the fact
that at least one element (Âh)rs, r = 1, . . . , M1 and s = M1 + 1, . . . , M ,
is negative, which can be shown in terms of an indirect proof by using
Lemma 3.47 and Corollary 3.48, but is not done here in order to save
space. Simultaneously, this also proves the condition (7).

The remaining condition (4)* is proved similarly. First, due to the con-
nectivity condition, the existence of geometric connections between pairs of
nodes by polygonal lines consisting of edges is obvious. It is more difficult
to prove that under all possible connections there exists one along which



3.9. Maximum Principle for Finite Element Methods 175

the corresponding matrix elements do not vanish. This can be done by the
same technique of proof as used in the second part of (3), which, however,
is not presented here.

If the angle condition given above is replaced with a stronger angle con-
dition in which stretched and right angles are excluded, then the proof of
(3) and (4)* becomes trivial.

Recalling the relations

max
x∈Ω

uh(x) = max
r∈{1,...,M}

(ũh)r

and

max
x∈Γ3

uh(x) = max
r∈{M1+1,...,M}

(ûh)r ,

which hold for linear elements, the following result can be derived from
Theorem 1.10.

Theorem 3.49 If the triangulation Th satisfies the angle condition and
the connectivity condition, then we have the following estimate for the finite
element solution uh of the Poisson equation in the space of linear elements
for a nonpositive right-hand side f ∈ L2(Ω):

max
x∈Ω

uh(x) ≤ max
x∈Γ3

uh(x) .

Finally, we make two remarks concerning the case of more general
differential equations.

If an equation with a variable scalar diffusion coefficient k : Ω→ R is con-
sidered instead of the Poisson equation, then the relation in Corollary 3.48
loses its purely geometric character. Even if the diffusion coefficient is
supposed to be elementwise constant, the data-dependent relation

(Ãh)ij = −1
2

{
kK cotαK

ij + kK′ cotαK′

ij

}

would arise, where kK and kK′ denote the constant restriction of k to the
triangles K and K ′, respectively. The case of matrix-valued coefficients
K : Ω→ Rd,d is even more problematic.

The second remark concerns differential expressions that also contain
lower-order terms, that is, convective and reactive parts. If the diffusive
term −∇ · (K∇u) can be discretized in such a way that a maximum
principle holds, then this maximum principle is preserved if the discretiza-
tion of the other terms leads to matrices whose “diagonal elements” are
nonnegative and whose “nondiagonal elements” are nonpositive. These ma-
trix properties are much simpler than the conditions (1.32) and (1.32)*.
However, satisfying these properties causes difficulties in special cases,
e.g., for convection-dominated equations (see Chapter 9), unless additional
restrictive assumptions are made or special discretization schemes are used.



4
Grid Generation and A Posteriori
Error Estimation

4.1 Grid Generation

As one of the first steps, the implementation of the finite element method
(and also of the finite volume method as described in Chapter 6) requires
a “geometric discretization” of the domain Ω.

This part of a finite element program is usually included in the so-called
preprocessor (see also Section 2.4.1). In general, a finite element program
consists further of the intrinsic kernel (assembling of the finite-dimensional
system of algebraic equations, rearrangement of data (if necessary), solution
of the algebraic problem) and the postprocessor (editing of the results, ex-
traction of intermediate results, preparation for graphic output, a posteriori
error estimation).

4.1.1 Classification of Grids

Grids can be grouped according to different criteria: One criterion considers
the geometric shape of the elements (triangles, quadrilaterals, tetrahedra,
hexahedra, prisms, pyramids; possibly with curved boundaries). A further
criterion distinguishes the logical structure of the grid (structured or un-
structured grids). Beside these rough classes, in practice one can find a large
number of variants combining grids of different classes (combined grids).

A structured grid in the strict sense is characterized by a regular arrange-
ment of the grid points (nodes), that is, the connectivity pattern between
neighbouring nodes is identical everywhere in the interior of the grid. The



4.1. Grid Generation 177

only exceptions of that pattern may occur near the boundary of the domain
Ω.

Typical examples of structured grids are rectangular Cartesian two- or
three-dimensional grids as they are also used within the framework of the
finite difference methods described in Chapter 1 (see, e.g., Figure 1.1).

A structured grid in the wider sense is obtained by the application of a
piecewise smooth bijective transformation to some “reference grid”, which
is a structured grid in the strict sense. Grids of this type are also called
logically structured, because only the logical structure of the connectivity
pattern is fixed in the interior of the grid. However, the edges or faces of
the geometric elements of a logically structured grid are not necessarily
straight or even.

Logically structured grids have the advantage of simple implementation,
because the pattern already defines the neighbours of a given node. Fur-
thermore, there exist efficient methods for the solution of the algebraic
system resulting from the discretization, including parallelized resolution
algorithms.

In contrast to structured grids, unstructured grids do not have a self-
repeating node pattern. Moreover, elements of different geometric type can
be combined in unstructured grids.

Unstructured grids are suitable tools for the modelling of complex ge-
ometries of Ω and for the adjustment of the grid to the numerical solution
(local grid adaptation).

In the subsequent sections, a survey of a few methods for generating
unstructured grids will be given. Methods to produce structured grids can
be found, for instance, in the books [23] or [33].

4.1.2 Generation of Simplicial Grids

A simplicial grid consists of triangles (in two dimensions) or tetrahedra (in
three dimensions). To generate simplicial grids, the following three types
of methods are widely used:

• overlay methods,

• Delaunay triangulations,

• advancing front methods.

Overlay Methods
The methods of this type start with a structured grid (the overlay grid)
that covers the whole domain. After that, this basic grid is modified near
the boundary to fit to the domain geometry. The so-called quadtree (in
two dimensions) or octree technique (in three dimensions) forms a typical
example of an overlay method, where the overlay grid is a relatively coarse
rectangular Cartesian two- or three-dimensional grid. The substantial part
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of the algorithm consists of fitting routines for those parts of the starting
grid that are located near the boundary and of simplicial subdivisions of
the obtained geometric elements. The fitting procedures perform recursive
subdivisions of the boundary rectangles or rectangular parallelepipeds in
such a way that at the end every geometric element contains at most one
geometry defining point (i.e., a vertex of Ω or a point of ∂Ω, where the
type of boundary conditions changes). Finally, the so-called smoothing step,
which optimizes the grid with respect to a certain regularity criterion, can
be supplemented; see Section 4.1.4.

Typically, grids generated by overlay methods are close to structured
grids in the interior of the domain. Near the boundary, they lose the
structure. Further details can be found in the references [68] and [72].

Delaunay Triangulations
The core algorithm of these methods generates, for a given cloud of isolated
points (nodes), a triangulation of their convex hull. Therefore, a grid gen-
erator based on this principle has to include a procedure for the generation
of this point set (for example, the points resulting from an overlay method)
as well as certain fitting procedures (to cover, for example, nonconvex
domains, too).

The Delaunay triangulation of the convex hull of a given point set in
Rd is characterized by the following property (empty sphere criterion, Fig-
ure 4.1): Any open d-ball, the boundary of which contains d + 1 points
from the given set, does not contain any other points from that set. The
triangulation can be generated from the so-called Voronoi tesselation of Rd

for the given point set. In two dimensions, this procedure is described in
Chapter 6, which deals with finite volume methods (Section 6.2.1). How-

Figure 4.1. Empty sphere criterion in two dimensions (d = 2).
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ever, practical algorithms ([48] or [71]) apply the empty sphere criterion
more directly.

The interesting theoretical properties of Delaunay triangulations are one
of the reasons for the “popularity” of this method. In two dimensions, the
so-called max-min-angle property is valid: Among all triangulations of the
convex hull G of a given point set, the Delaunay triangulation maximizes
the minimal interior angle over all triangles. In the case d = 3, this nice
property does not remain true. In contrast, even badly shaped elements (the
so-called sliver elements) may occur. A further important property of a two-
dimensional Delaunay triangulation is that the sum of two angles opposite
an interior edge is not more than π. For example, such a requirement is a
part of the angle condition formulated in Section 3.9.

Advancing Front Methods
The idea of these methods, which are also known in the literature (see, e.g.,
[50], [56], [60], [62]) as moving front methods, is to generate a triangulation
recursively from a discretization of the current boundary. The methods
start with a partition of the boundary of G0 := Ω. For d = 2, this “initial
front” is a polygonal line, whereas in d = 3 it is a triangulation of a curved
surface (the so-called “2.5-dimensional triangulation”). The method con-
sists of an iteration of the following general step (Figure 4.2): An element
of the current front (i.e., a straight-line segment or a triangle) is taken
and then, either generating a new inner point or taking an already existing
point, a new simplex Kj that belongs to Gj−1 is defined. After the data of
the new simplex are saved, the simplex is deleted from Gj−1. In this way,
a smaller domain Gj with a new boundary ∂Gj (a new “current front”)
results. The general step is repeated until the current front is empty. Of-
ten, the grid generation process is supplemented by the so-called smoothing
step; see Section 4.1.4.
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Figure 4.2. Step j of the advancing front method: The new simplex Kj is deleted
from the domain Gj−1.
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4.1.3 Generation of Quadrilateral and Hexahedral Grids

Grids consisting of quadrilaterals or hexahedra can also be generated by
means of overlay methods (e.g., [66]) or advancing front methods (e.g.,
[46], [47]). An interesting application of simplicial advancing front meth-
ods in the two-dimensional case is given in the paper [73]. The method is
based on the simple fact that any two triangles sharing a common edge
form a quadrilateral. Obviously, a necessary condition for the success of
the method is that the triangulation should consist of an even number of
triangles. Unfortunately, the generalization of the method to the three-
dimensional situation is difficult, because a comparatively large number of
adjacent tetrahedra should be united to form a hexahedron.

Multiblock Methods
The basic idea of these methods is to partition the domain into a small num-
ber of subdomains (“blocks”) of simple shape (quadrilaterals, hexahedra,
as well as triangles, tetrahedra, prisms, pyramids, etc.) and then generate
structured or logically structured grids in the individual subdomains (see,
e.g., [23], [33]).

In multiblock grids, special attention has to be devoted to the treatment
of common boundaries of adjacent blocks. Unless special discretization
methods such as, for example, the so-called mortar finite element method
(cf. [45]) are used in this situation, there may be a conflict between certain
compatibility conditions at the common block interfaces (to ensure, e.g.,
the continuity of the finite element functions across the interfaces) on the
one hand and the output directives of an error estimation procedure that
may advise to refine a block-internal grid locally on the other hand.

Hierarchically Structured Grids
These grids are a further, hybrid variant of structured and unstructured
grids, though not yet very widespread. Starting with a logically structured
grid, hierarchically structured grids are generated by a further logically
structured refinement of certain subdomains. As in multiblock methods,
the interfaces between blocks of different refinement degrees have to be
treated carefully.

Combined Grids
Especially in three-dimensional situations, the generation of “purely” hexa-
hedral grids may be very difficult for complicated geometries of the domain.
Therefore, the so-called combined grids that consist of hexahedral grids in
geometrically simple subdomains and tetrahedral, prismatic, pyramidal,
etc. grids in more critical subregions are used.

Chimera Grids
These grids are also called overset grids (see, e.g., [51]). In contrast to the
multiblock grids described above, here the domain is covered by a compar-
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atively small number of domains of simple shape, and then structured or
logically structured grids are generated on the individual domains. That is,
a certain overlapping of the blocks and thus of the subgrids is admitted.

4.1.4 Grid Optimization

Many grid generation codes include “smoothing algorithms” that optimize
the grid with respect to certain regularity criteria. In the so-called r-method
(relocation method) the nodes are slightly moved, keeping the logical struc-
ture (connectivities) of the grid fixed. Another approach is to improve the
grid connectivities themselves.

A typical example for r-methods is given by the so-called Laplacian
smoothing (or barycentric smoothing), where any inner grid point is moved
into the barycentre of its neighbours (see [50]). A local weighting of selected
neighbours can also be used (weighted barycentric smoothing). From a for-
mal point of view, the application of the Laplacian smoothing corresponds
to the solution of a system of linear algebraic equations that is obtained
from the equations of the arithmetic (or weighted) average of the nodes.
The matrix of this system is large but sparse. The structure of this matrix
is very similar to the one that results from a finite volume discretization
of the Poisson equation as described in Section 6.2 (see the correspond-
ing special case of (6.9)). In general, there is no need to solve this system
exactly. Typically, only one to three steps of a simple iterative solver (as
presented in Section 5.1) are performed. When the domain is almost con-
vex, Laplacian smoothing will produce good results. It is also clear that for
strongly nonconvex domains or other special situations, the method may
produce invalid grids.

Among the methods to optimize the grid connectivities, the so-called
2:1-rule and, in the two-dimensional case, the edge swap (or diagonal swap,
[59]) are well known. The 2:1-rule is used within the quadtree or octree
method to reduce the difference of the refinement levels between neighbour-
ing quadrilaterals or hexahedra to one by means of additional refinement
steps; see Figure 4.3.

In the edge swap method, a triangular grid is improved. Since any two
triangles sharing an edge form a convex quadrilateral, the method decides
which of the two diagonals of the quadrilateral optimizes a given criterion.
If the optimal diagonal does not coincide with the common edge, the other
configuration will be taken; i.e., the edge will be swapped.

Finally, it should be mentioned that there exist grid optimization
methods that delete nodes or even complete elements from the grid.

4.1.5 Grid Refinement

A typical grid refinement algorithm for a triangular grid, the so-called
red/green refinement, has previously been introduced in Section 2.4.1. A
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Figure 4.3. 2:1-rule.

further class of methods is based on bisection, that is, a triangle is divided
by the median of an edge. A method of bisection is characterized by the
number of bisections used within one refinement step (stage number of the
method of bisection) and by the criterion of how to select the edge where
the new node is to be located. A popular strategy is to take the longest of
the three edges. The general (recursive) refinement step for some triangle
K is of the following form:

(i) Find the longest edge of K and insert the median connecting the
midpoint of that edge with the opposite vertex.

(ii) If the resulting new node is not a vertex of an already existing triangle
or is not a boundary point of the domain Ω, then the adjacent triangle
that shares the refined edge has to be divided, too.

Since the longest edge of the adjacent triangle need not coincide with the
common edge, the application of this scheme leads to a nonconforming
triangulation, in general. To obtain a conforming triangulation, all new
nodes resulting from substep (i) have to be detected, and then certain
closure rules have to be applied.

The red/green refinement as well as the method of bisection can be gener-
alized to the three-dimensional case. However, since the number of different
configurations is significantly larger than in the case d = 2, only a few
illustrative examples will be given.

The red/green refinement of a tetrahedron K (see Figure 4.4) yields a
partition of K into eight subtetrahedra with the following properties: All
vertices of the subtetrahedra coincide either with vertices or with edge mid-
points of K. At all the faces of K, the two-dimensional red/green refinement
scheme can be observed.

In addition to the difficulties arising in the two-dimensional situation,
the (one-stage) bisection applied to the longest edge of a tetrahedron also
yields faces that violate the conformity conditions. Therefore, the closure
rules are rather complicated, and in practice, multistage (often three-stage)
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Figure 4.4. Representation of the red/green refinement of a tetrahedron.

methods of bisection are used to circumvent these difficulties (see Figure
4.5).

Figure 4.5. Representation of the bisection of a tetrahedron.

Grid refinement may be necessary in those parts of the domain where
the weak solution of the variational equation has low regularity. The figure
of the front cover (taken from [70]) shows the domain for a density-driven
flow problem, where the inflow and the outflow pass through very small,
nearly point-sized surfaces. The refinement is the result of a grid adaptation
strategy based on a posteriori error estimators (see Section 4.2). In time-
dependent problems, where those parts of the grid in which a refinement is
needed may also vary, grid coarsening is necessary to limit the expense. A
simple grid coarsening can be achieved, for example, by cancelling former
refinement steps in a conforming way.

Exercises

4.1 For a given triangle K, the circumcentre can be computed by finding
the intersection of the perpendicular bisectors associated with two edges
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of K. This can be achieved by solving a linear system of equations with
respect to the coordinates of the circumcentre.

(a) Give such a system.
(b) How can the radius of the circumcircle be obtained from this solution?

4.2 Given a triangle K, denote by hi the length of edge i, i ∈ {1, 2, 3}.
Prove that the following expression equals the radius of the circumcircle
(without using the circumcentre!):

h1h2h3

4|K| .

4.3 Let K1, K2 be two triangles sharing an edge.

(a) Show the equivalence of the following edge swap criteria:
Angle criterion: Select the diagonal of the so-formed quadrilateral
that maximizes the minimum of the six interior angles among the
two configurations.
Circle criterion: Choose the diagonal of the quadrilateral for which
the open circumcircle disks to the resulting triangles do not contain
any of the remaining vertices.

(b) If α1,α2 denote the two interior angles that are located opposite the
common edge of the triangles K1 and K2, respectively, then the circle
criterion states that an edge swap is to be performed if

α1 + α2 > π.

Prove this assertion.
(c) The criterion in (b) is numerically expensive. Show that the following

test is equivalent:

[(a1,1 − a3,1)(a2,1 − a3,1) + (a1,2 − a3,2)(a2,2 − a3,2)]
∗[(a2,1 − a4,1)(a1,2 − a4,2)− (a1,1 − a4,1)(a2,2 − a4,2)]

< [(a2,1 − a4,1)(a1,1 − a4,1) + (a2,2 − a4,2)(a1,2 − a4,2)]
∗[(a2,1 − a3,1)(a1,2 − a3,2)− (a1,1 − a3,1)(a2,2 − a3,2)] .

Here ai = (ai,1, ai,2)T , i ∈ {1, 2, 3}, denote the vertices of a triangle
ordered clockwise, and a4 = (a4,1, a4,2)T is the remaining vertex of
the quadrilateral, the position of which is tested in relation to the
circumcircle defined by a1, a2, a3.
Hint: Addition theorems for the sin function.
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4.2 A Posteriori Error Estimates and Grid
Adaptation

In the practical application of discretization methods to partial differential
equations, an important question is how much the computed approximative
solution uh deviates from the weak solution u of the given problem.

Typically, a certain norm of the error u − uh is taken as a measure of
this deviation. For elliptic or parabolic differential equations of order two,
a common norm to quantify the error is the energy norm (respectively an
equivalent norm) or the L2-norm. Some practically important problems
involve the approximation of the so-called derived quantities which can be
mathematically interpreted in terms of values of certain linear functionals
of the solution u. In such a case, an estimate of the corresponding error is
also of interest.

Example 4.1
J(u) =

∫
Γ0
ν ·∇u dσ: flux of u through a part of the boundary Γ0⊂∂Ω,

J(u) =
∫
Ω0

u dx: integral mean of u on some subdomain Ω0⊂Ω.

In the following we will consider some estimates for a norm ‖ · ‖ of the
error u−uh and explain the corresponding terminology. Similar statements
remain true if ‖u− uh‖ is replaced by |J(u)− J(uh)|.

The error estimates given in the previous chapters are characterized by
the fact that no information about the computed solution uh is needed.
Estimates of this type are called a priori error estimates.

For example, consider a variational equation with a bilinear form that
satisfies (for some space V such that H1

0 (Ω) ⊂ V ⊂ H1(Ω) and ‖·‖ := ‖ · ‖1)
the assumptions (2.42), (2.43) and use numerically piecewise linear, con-
tinuous finite elements. Then Céa’s lemma (Theorem 2.17) together with
the interpolation error estimate from Theorem 3.29 implies the estimate

‖u− uh‖1 ≤
M

α
‖u− Ih(u)‖1 ≤

M

α
Ch , (4.1)

where the constant C depends on the weak solution u of the variational
equality.

Here C has the special form

C = C̄

{∫

Ω

∑

|α|=2

|∂αu|2 dx

}1/2

(4.2)

with C̄ > 0 independent of u. Unfortunately, the structure of the bound
(4.2) does not allow an immediate numerical application of (4.1).

But even if the constant C could be estimated and (4.1) could be used
to determine the discretization parameter h (maximum diameter of the
triangles in Th) for a prescribed tolerance, in general this would lead to
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a grid that is too fine. This corresponds to an algebraic problem that is
too large. The reason is that the described approach determines a global
parameter, whereas the true error measure may have different magnitudes
in different regions of the domain Ω.

So we should aim at error estimates of type

‖u− uh‖ ≤ Dη (4.3)

or

D1η ≤ ‖u− uh‖ ≤ D2η , (4.4)

where the constants D, D1, D2 > 0 do not depend on the discretization
parameters and

η =

{
∑

K∈Th

η2
K

}1/2

. (4.5)

Here the quantities ηK should be computable using only the data —
including possibly uh|K — which are known on the particular element K.

If the bounds η (or the terms ηK , respectively) in (4.3) (respectively
(4.4)) depend on uh, i.e., they can be evaluated only if uh is known, then
they are called (local) a posteriori error estimators in the wider sense.

Often the bounds also depend on the weak solution u of the variational
equality, so in fact, they cannot be evaluated immediately. In such a case
they should be replaced by computable quantities that do not depend on u
in a direct way. So, if the bounds can be evaluated without knowing u but
using possibly uh, then they are called (local) a posteriori error estimators
in the strict sense.

Inequalities of the form (4.3) guarantee, for a given tolerance ε > 0, that
the inequality η ≤ ε implies that the error measure does not exceed ε up
to a multiplicative constant. In this sense the error estimator η is called
reliable. Now, if the computed approximative solution uh is sufficiently
precise in the described sense, then the computation can be finished. If uh

is such that η > ε, then the question of how to modify the discretization
in order to achieve the tolerance or, if the computer resources are nearly
exhausted, how to minimize the overshooting of η, arises. That is, the
information given by the evaluation of the bounds has to be used to adapt
the discretization and then to perform a new run of the solution process.
A typical modification is to refine or to coarsen the grid.

Error estimators may overestimate the real error measure significantly;
thus a grid adaptation procedure based on such an error estimate gener-
ates a grid that is too fine, and consequently, the corresponding algebraic
problem is too large.

This effect can be reduced or even avoided if the error estimator satisfies
a two-sided inequality like (4.4). Then the ratio D2/D1 is a measure of the
efficiency of the error estimator.
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An error estimator η is called asymptotically exact if for an arbitrary con-
vergent sequence of approximations {uh} with ‖u− uh‖ → 0 the following
limit is valid:

η

‖u− uh‖
→ 1 .

Usually, a posteriori error estimators are designed for a well-defined class
of boundary or initial-boundary value problems. Within a given class of
problems, the question regarding the sensitivity of the constants D in (4.3)
or D1, D2 in (4.4), with respect to the particular data of the problem (e.g.,
coefficients, inhomogeneities, geometry of the domain, grid geometry, . . . ),
arises. If this dependence of the data is not crucial, then the error estimator
is called robust within this class.

Grid Adaptation
Let us assume that the local error estimators ηK composing an efficient er-
ror estimator η for an approximate solution uh on some grid Th really reflect
the error on the element K and that this local error can be improved by a
refinement of K (e.g., following the principles of Section 4.1.5). Then the
following grid adaptation strategies can be applied until the given tolerance
ε is reached or the computer resources are exhausted.

Equidistribution strategy: The objective of the grid adaptation (refinement
or coarsening of elements) is to get a new grid T new

h such that the
local error estimators ηnew

K for this new grid take one and the same
value for all elements K ∈ T new

h ; that is (cf. (4.5))

ηnew
K ≈ ε√

|T new
h |

for all K ∈ T new
h .

Since the number of elements of the new grid enters the right-hand
side of this criterion, the strategy is an implicit method. In practical
use, it is approximated iteratively.

Cut-off strategy: Given a parameter κ ∈ (0, 1), a threshold value κη is
defined. Then the elements K with ηK > κη will be refined.

Reduction strategy: Given a parameter κ ∈ (0, 1), an auxiliary toler-
ance εη := κη is defined. Then a couple of steps following the
equidistribution strategy with the tolerance εη are performed.

In practice, the equidistribution strategy may perform comparatively slowly
and thus may reduce the efficiency of the complete solution process. The
cut-off method does not allow grid coarsening. It is rather sensitive to the
choice of the parameter κ. Among all three strategies, the reduction method
represents the best compromise.
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Design of A Posteriori Error Estimators
In the following, three basic principles of the design of a posteriori error
estimators will be described. In order to illustrate the underlying ideas and
to avoid unnecessary technical difficulties, a model problem will be treated:
Consider a diffusion-reaction equation on a polygonally bounded domain
Ω ⊂ R2 with homogeneous Dirichlet boundary conditions

−∆u + ru = f in Ω ,
u = 0 on ∂Ω ,

where f ∈ L2(Ω) and r ∈ C(Ω) with r(x) ≥ 0 for all x ∈ Ω. The problem
is discretized using piecewise linear, continuous finite element functions as
described in Section 2.2.

Setting a(u, v) :=
∫
Ω(∇u ·∇v + ruv) dx for u, v ∈ V := H1

0 (Ω), we have
the following variational (weak) formulation:

Find u ∈ V such that a(u, v) = 〈f, v〉0 for all v ∈ V.

The corresponding finite element method reads as follows:

Find uh ∈ Vh such that a(uh, vh) = 〈f, vh〉0 for all vh ∈ Vh.

Residual Error Estimators
Similar to the derivation of the a priori error estimate in the proof of Céa’s
lemma (Theorem 2.17), the V -ellipticity of a (2.43) implies that

α‖u− uh‖2
1 ≤ a(u− uh, u− uh) .

Without loss of generality we may suppose u− uh ∈ V \ {0}, hence

‖u− uh‖1 ≤
1
α

a(u− uh, u− uh)
‖u− uh‖1

≤ 1
α

sup
v∈V

a(u − uh, v)
‖v‖1

. (4.6)

We observe that the term

a(u− uh, v) = a(u, v)− a(uh, v) = 〈f, v〉0 − a(uh, v) (4.7)

is the residual of the variational equation; i.e., the right-hand side of in-
equality (4.6) can be interpreted as a certain norm of the variational
residual.

In a next step, the variational residual will be split into local terms
according to the given grid, and these terms are transformed by means of
integration by parts. For arbitrary v ∈ V, from (4.7) it follows that

a(u− uh, v) =
∑

K∈Th

{∫

K
fv dx−

∫

K
(∇uh ·∇v + ruhv) dx

}

=
∑

K∈Th

{∫

K
[f − (−∆uh + ruh)]v dx−

∫

∂K
ν ·∇uhv dσ

}
.
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The first factor in the integrals over the elements K is the classical
elementwise residual of the differential equation:

rK(uh) := [f − (−∆uh + ruh)]
∣∣
K

All quantities entering rK(uh) are known. In the case considered here we
even have −∆uh = 0 on K, hence rK(uh) = [f − ruh]

∣∣
K

.
The integrals over the boundary of the elements K are further split into

a sum over the integrals along the element edges E ⊂ ∂K:
∫

∂K
ν ·∇uhv dσ =

∑

E⊂∂K

∫

E
ν ·∇uhv dσ .

Since v = 0 on ∂Ω, only the integrals along edges lying in Ω contribute to
the sum. Denoting by Eh the set of all interior edges of all elements K ∈ Th

and assigning a fixed unit normal νE to any of those edges, we see that in
the summation of the split boundary integrals over all K ∈ Th there occur
exactly two integrals along one and the same edge E ∈ Eh. This observation
results in the relation

∑

K∈Th

∫

∂K
ν ·∇uhv dσ =

∑

E∈Eh

∫

E
[νE ·∇uh]E v dσ ,

where, for a piecewise continuous function w : Ω→ R, the term

[w]E(x) := lim
+→+0

w(x + 'νE)− lim
+→+0

w(x − 'νE) , x ∈ E ,

denotes the jump of the function w across the edge E. If w is the normal
derivative of uh in the fixed direction νE , i.e., w = νE ·∇uh, then its jump
does not depend on the particular orientation of νE (see Exercise 4.6).

In summary, we have the following relation:

a(u − uh, v) =
∑

K∈Th

∫

K
rK(uh)v dx −

∑

E∈Eh

∫

E
[νE ·∇uh]E v dσ .

Using the error equation (2.39), we obtain for an arbitrary element vh ∈ Vh

the fundamental identity

a(u− uh, v) = a(u − uh, v − vh)

=
∑

K∈Th

∫

K
rK(uh)(v − vh) dx

−
∑

E∈Eh

∫

E
[νE ·∇uh]E (v − vh) dσ ,

which is the starting point for the construction of further estimates.
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Figure 4.6. The triangular neighbourhoods ∆(K) (left) and ∆(E) (right).

First we see that the Cauchy–Schwarz inequality immediately implies

a(u− uh, v − vh) ≤
∑

K∈Th

‖rK(uh)‖0,K‖v − vh‖0,K

+
∑

E∈Eh

∥∥[νE ·∇uh]E
∥∥

0,E
‖v − vh‖0,E .

(4.8)

To get this bound as small as possible, the function vh ∈ Vh is chosen such
that the element v ∈ V is approximated adequately in both spaces L2(K)
and L2(E). One suggestion is the use of an interpolating function according
to (2.47). However, since V -∈ C(Ω), this interpolant is not defined. There-
fore other approximation procedures have to be applied. Roughly speaking,
suitable approximation principles, due to Clément [52] or Scott and Zhang
[67], are based on taking certain local integral means. However, at this place
we cannot go further into these details and refer to the cited literature. In
fact, for our purposes it is important only that such approximations exist.
Their particular design is of minor interest.

We will formulate the relevant facts as a lemma. To do so, we need some
additional notation (see Figure 4.6):

triangular neighbourhood of a triangle K : ∆(K) :=
⋃

K′:K′∩K -=∅ K ′,

triangular neighbourhood of an edge E : ∆(E) :=
⋃

K′:K′∩E -=∅ K ′.

Thus ∆(K) consists of the union of the supports of those nodal basis
functions that are associated with the vertices of K, whereas ∆(E) is formed
by the union of those nodal basis functions that are associated with the
boundary points of E. Furthermore, the length of the edge E is denoted
by hE := |E|.

Lemma 4.2 Let a regular family (Th) of triangulations of the domain Ω
be given. Then for any v ∈ V there exists an element Qhv ∈ Vh such that
for all triangles K ∈ Th and all edges E ∈ Eh the following estimates are
valid:

‖v −Qhv‖0,K ≤ ChK |v|1,∆(K) ,
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‖v −Qhv‖0,E ≤ C
√

hE |v|1,∆(E) ,

where the constant C > 0 depends only on the family of triangulations.

Now, setting vh = Qhv in (4.8), the discrete Cauchy-Schwarz inequality
yields

a(u− uh, v) ≤ C
∑

K∈Th

hK‖rK(uh)‖0,K |v|1,∆(K)

+ C
∑

E∈Eh

√
hE

∥∥[νE ·∇uh]E
∥∥

0,E
|v|1,∆(E)

≤ C

{
∑

K∈Th

h2
K‖rK(uh)‖2

0,K

}1/2{ ∑

K∈Th

|v|21,∆(K)

}1/2

+ C

{
∑

E∈Eh

hE

∥∥[νE ·∇uh]E
∥∥2

0,E

}1/2{ ∑

E∈Eh

|v|21,∆(E)

}1/2

.

A detailed investigation of the two second factors shows that we can
decompose the integrals over ∆(K), ∆(E), according to

∫

∆(K)
. . . =

∑

K′⊂∆(K)

∫

K′
. . . ,

∫

∆(E)
. . . =

∑

K′⊂∆(E)

∫

K′
. . . .

This leads to a repeated summation of the integrals over the single elements
K. However, due to the regularity of the family of triangulations, the mul-
tiplicity of these summations is bounded independently of the particular
triangulation (see (3.93)). So we arrive at the estimates

∑

K∈Th

|v|21,∆(K) ≤ C|v|21,
∑

E∈Eh

|v|21,∆(E) ≤ C|v|21 .

Using the inequality a + b ≤
√

2(a2 + b2) for a, b ∈ R, we get

a(u− uh, v)

≤ C

{
∑

K∈Th

h2
K‖rK(uh)‖2

0,K +
∑

E∈Eh

hE‖[νE ·∇uh]E‖2
0,E

}1/2

|v|1 .

Finally, (4.6) yields

‖u− uh‖1 ≤ Dη with η2 :=
∑

K∈Th

η2
K

and

η2
K := h2

K‖f − ruh‖2
0,K +

1
2

∑

E⊂∂K\∂Ω

hE

∥∥[νE ·∇uh]E
∥∥2

0,E
. (4.9)
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Here we have taken into account that in the transformation of the edge
sum

∑

E∈Eh

. . . into the double sum
∑

K∈Th

∑

E⊂∂K\∂Ω

. . .

the latter sums up every interior edge twice.
In summary, we have obtained an a posteriori error estimate of the form

(4.3). By means of refined arguments it is also possible to derive lower
bounds for ‖u − uh‖1. For details, we refer to the literature, for example
[35].

Error Estimation by Gradient Recovery
If we are interested in an estimate of the error u − uh ∈ V = H1

0 (Ω)
measured in the H1- or energy norm ‖ ·‖, this problem can be simplified by
means of the fact that both norms are equivalent on V to the H1-seminorm

|u − uh|1 =
{∫

Ω
|∇u−∇uh|2 dx

}1/2

=: ‖∇u−∇uh‖0 .

This is a simple consequence of the definitions and the Poincaré inequality
(see Theorem 2.18). That is, there exist constants C1, C2 > 0 independent
of h such that

C1|u− uh|1 ≤ ‖u− uh‖ ≤ C2|u− uh|1 (4.10)

(cf. Exercise 4.8). Consequently, ∇u remains the only unknown quantity in
the error bound.

The idea of error estimation by means of gradient recovery is to replace
the unknown gradient of the weak solution u by a suitable quantity Rhuh

that is computable from the approximative solution uh at moderate ex-
pense. A popular example of such a technique is the so-called Z 2estimate.
Here we will describe a simple version of it. Further applications can be
found in the original papers by Zienkiewicz and Zhu, e.g., [74].

Similar to the notation introduced in the preceding subsection, for a
given node a the set

∆(a) :=
⋃

K′:a∈∂K′

K ′

denotes the triangular neighbourhood of a (see Figure 4.7). This set co-
incides with the support of the piecewise linear, continuous basis function
associated with that node.

The gradient∇uh of a piecewise linear, continuous finite element function
uh is constant on every triangle K. This suggests that at any node a of
the triangulation Th we define the average Rhuh(a) of the values of the
gradients on those triangles sharing the vertex a:

Rhuh(a) :=
1

|∆(a)|
∑

K⊂∆(a)

∇uh|K |K| .
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Figure 4.7. The triangular neighbourhood ∆(a).

Interpolating the two components of these nodal values of Rhuh separately
in Vh, we get a recovery operator Rh : Vh → Vh × Vh.

Now a local error estimator can be defined by the simple restriction of
the quantity η := ‖Rhuh −∇uh‖0 onto a single element K:

ηK := ‖Rhuh −∇uh‖0,K .

A nice insight into the properties of this local estimator was given by
Rodŕıguez ([64], see also [35]), who compared it with the corresponding
residual estimator (4.9). Namely, neglecting in the residual estimator just
the residual part, i.e., setting

η̃2
K :=

1
2

∑

E⊂∂K\∂Ω

hE

∥∥[νE ·∇uh]E
∥∥2

0,E
and η̃2 :=

∑

K∈Th

η̃2
K ,

then the following result is true:

Theorem 4.3 There exist two constants c1, c2 > 0 depending only on the
family of triangulations such that

c1η̃ ≤ η ≤ c2η̃ .

The motivation for the method of gradient recovery is to be seen in the
fact that Rhuh possesses special convergence properties. Namely, under
certain assumptions the recovered gradient Rhuh converges asymptoti-
cally to ∇u faster than ∇uh does. In such a case Rhuh is said to be a
superconvergent approximation to ∇u.

If superconvergence holds, the simple decomposition

∇u −∇uh = Rhuh −∇uh +∇u−Rhuh

demonstrates that the first difference on the right-hand side represents
the asymptotically dominating, computable part of the gradient error
∇u − ∇uh. In other words, if we could define, for the class of problems
under consideration, a superconvergent gradient recovery Rhuh that is com-
putable with moderate expense, then the quantities ηK and η defined above
may serve as a tool for a posteriori error estimation.
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Unfortunately, such superconvergence properties are valid only under
rather restrictive assumptions (especially with respect to the grid and to the
regularity of the weak solution). Thus it is difficult to obtain a full math-
ematical foundation in practice. Nevertheless, gradient recovery is often
applied and yields satisfactory results in many situations.

The following example, which is due to Repin [63], shows that a recovered
gradient does not have to reflect the real behaviour of the error.

Example 4.4 Consider the following boundary value problem for d = 1
and Ω = (0, 1):

−u′′ = f in Ω , u(0) = u(1)− 1 = 0 .

If f is constant, the exact solution reads u(x) = x(2+(1−x)f)/2. Suppose
we have found the function vh = x as an approximate solution. For an
arbitrary partition of Ω into subintervals, this function is piecewise linear
and it satisfies the boundary conditions formulated above. Now let Rh be
an arbitrary gradient recovery operator that is able to reproduce at least
constants. Since v′h = 1, we have v′h − Rhvh = 0, whereas the real error is
v′h − u′ = (x− 1

2 )f.

An interpretation of this effect is that the function vh does not solve the
corresponding discrete (Galerkin) equations. But this property of uh is used
for the proof of superconvergence. This property also plays an important
role in the derivation of the residual error estimates, because the error
equation is used therein.

Dual-Weighted Residual Error Estimators
The aforementioned a posteriori error estimates have two disadvantages:
On the one hand, certain global constants, which are not known in general,
are part of the bounds. Typical examples are α−1 in (4.6) and the constants
C1, C2 in the equivalence relation (4.10). On the other hand, we obtained
scaling factors like hK and

√
hE simply by using a particular approximation

operator.
In the following, we will outline a method that attempts to circumvent

these drawbacks. It is especially appropriate for the estimation of errors of
functionals depending linearly on the solution.

So let J : V → R denote a linear, continuous functional. We are interested
in an estimate of |J(u) − J(uh)|. Therefore, the following auxiliary dual
problem is considered:

Find w ∈ V such that a(v, w) = J(v) for all v ∈ V.

Taking v = u− uh, we get immediately

J(u)− J(uh) = J(u − uh) = a(u− uh, w) .

If wh ∈ Vh is an arbitrary element, the error equation (2.39) yields

J(u)− J(uh) = a(u− uh, w − wh) .
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Obviously, the right-hand side is of the same structure as in the derivation
of the estimate (4.8). Consequently, by using the same arguments it follows
that

|J(u)− J(uh)| ≤
∑

K∈Th

‖rK(uh)‖0,K‖w − wh‖0,K

+
∑

E∈Eh

∥∥[νE ·∇uh]E
∥∥

0,E
‖w − wh‖0,E .

In contrast to the previous approaches, here the norms of w − wh will not
be theoretically analyzed but numerically approximated. This can be done
by an approximation of the dual solution w. There are several (more or less
heuristic) ways to do this.

(1) Estimation of the approximation error: Here, the norms of w − wh

are estimated as in the case of residual error estimators. Since the
result depends on the unknown H1-seminorm of w, which is equiva-
lent to the L2-norm of ∇w, the finite element solution wh ∈ Vh of the
auxiliary problem is used to approximate ∇w. It is a great disadvan-
tage of this approach that again global constants enter in the final
estimate through the estimation of the approximation error. Further-
more, the discrete auxiliary problem is of similar complexity to that
of the original discrete problem.

(2) Higher-order discretizations of the auxiliary problem: The auxiliary
problem is solved numerically by using a method that is more accu-
rate than the original method to determine a solution in Vh. Then
w is replaced by that solution and wh ∈ Vh by an interpolant of
that solution. Unfortunately, since the discrete auxiliary problem is
of comparatively large dimension, this approach is rather expensive.

(3) Approximation by means of higher-order recovery: This method
works similarly to the approach described in the previous subsection;
w is replaced by an element that is recovered from the finite element
solution wh ∈ Vh of the auxiliary problem. The recovered element
approximates w with higher order in both norms than wh does. This
method exhibits two problems: On the one hand, the auxiliary prob-
lem has to be solved numerically, and on the other hand, ensuring
the corresponding superconvergence properties may be difficult.

At the end of this section we want to mention how the method could be
used to estimate certain norms of the error. In the case where the norms
are induced by particular scalar products, there is a simple, formal way.
For example, for the L2-norm we have

‖u− uh‖0 =
〈u− uh, u− uh〉0

‖u− uh‖0
.
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Keeping u and uh fixed, we get with the definition

J(v) :=
〈v, u− uh〉0
‖u− uh‖0

a linear, continuous functional J : H1(Ω) → R such that J(u) − J(uh) =
‖u− uh‖0.

The practical difficulty of this approach consists in the fact that to be
able to find the solution w of the auxiliary problem we have to know the
values of J, but they depend on the unknown element u − uh. The idea
of approximating these values immediately implies two problems: There is
additional expense, and the influence of the approximation quality on the
accuracy of the obtained bounds has to be analyzed.

Exercises

4.4 Let Ω ⊂ R2 be a bounded domain with a polygonal, Lipschitz con-
tinuous boundary and V := H1

0 (Ω). Now consider a V -elliptic, continuous
bilinear form a and a continuous linear form b. The problem

u ∈ V : a(u, v) = b(v) for all v ∈ V

is discretized using piecewise linear, continuous finite elements. If Ei de-
notes the support of the nodal basis functions of Vh associated with the
vertex ai, show that the abstract local error indicators

ηi := sup
v∈H1

0 (Ei)

a(e, v)
‖v‖

can be estimated by means of the solutions ei ∈ H1
0 (Ei) of the local

boundary value problems

ei ∈ H1
0 (Ei) : a(ei, v) = b(v)− a(uh, v) for all v ∈ H1

0 (Ei)

as follows (M and α denote the constants appearing in the continuity and
ellipticity conditions on a):

α‖ei‖ ≤ ηi ≤ M‖ei‖ .

If necessary, the elements of H1
0 (Ei) are extended by zero to the whole

domain Ω.

4.5 A linear polynomial on some triangle is uniquely defined either by
its values at the vertices or by its values at the edge midpoints. For a
fixed triangulation of a polygonally bounded, simply connected domain
Ω ⊂ R2, there can be defined two finite element spaces by identifying
common degrees of freedom of adjacent triangles.
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(a) Show that the dimension of the space defined by the degrees of free-
dom located at the vertices is less than the dimension of the other
space (provided that the triangulation consists of more than one
triangle).

(b) How can one explain this “loss of degrees of freedom”?

4.6 Denote by Th a triangulation of the domain Ω ⊂ Rd. Show that for
a function v : Ω → R that is continuously differentiable on each element
the jump [νE ·∇v]E of the normal derivative of v across an element edge
E does not depend on the orientation of the normal νE .

4.7 Let a regular family of triangulations (Th) of a domain Ω ⊂ R2 be
given. Show that there exist constants C > 0 that depend only on the
family (Th) such that

∑

K∈Th

|v|20,∆(K) ≤ C‖v‖2
0 for all v ∈ L2(Ω) ,

∑

E∈Eh

|v|20,∆(E) ≤ C‖v‖2
0 for all v ∈ L2(Ω) .

4.8 Let Ω ⊂ Rd be a bounded domain. Show that there are constants
C1, C2 > 0 such that for all v ∈ H1

0 (Ω),

C1|v|1 ≤ ‖v‖1 ≤ C2|v|1 .



5
Iterative Methods
for Systems of Linear Equations

We consider again the system of linear equations

Ax = b (5.1)

with nonsingular matrix A ∈ Rm,m, right-hand side b ∈ Rm, and solution
x ∈ Rm. As shown in Chapters 2 and 3, such systems of equations arise
from finite element discretizations of elliptic boundary value problems. The
matrix A is the stiffness matrix and thus sparse, as can be seen from (2.37).
A sparse matrix is vaguely a matrix with so many vanishing elements that
using this structure in the solution of (5.1) is advantageous. Taking advan-
tage of a band or hull structure was discussed in Section 2.5. More precisely,
if (5.1) represents a finite element discretization, then it is not sufficient to
know the properties of the solution method for a fixed m. It is on the con-
trary necessary to study a sequence of problems with growing dimension
m, as it appears by the refinement of a triangulation. In the strict sense we
understand by the notion sparse matrices a sequence of matrices in which
the number of nonzero elements per row is bounded independently of the
dimension. This is the case for the stiffness matrices due to (2.37) if the un-
derlying sequence of triangulations is regular in the sense of Definition 3.28,
for example. In finite element discretizations of time-dependent problems
(Chapter 7) as well as in finite volume discretizations (Chapter 6) systems
of equations of equal properties arise, so that the following considerations
can be also applied there.

The described matrix structure is best applied in iterative methods that
have the operation matrix× vector as an essential module, where either
the system matrix A or a matrix of similar structure derived from it is
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concerned. If the matrix is sparse in the strict sense, then O(m) elementary
operations are necessary. In particular, list-oriented storage schemes can be
of use, as pointed out in Section 2.5.

The effort for the approximative solution of (5.1) by an iterative method
is determined by the number of elementary operations per iteration step
and the number of iterations k that are necessary in order to reach the
desired relative error level ε > 0, i.e., to meet the demand

∥∥x(k) − x
∥∥ ≤ ε

∥∥x(0) − x
∥∥ . (5.2)

Here
(
x(k)

)
k

is the sequence of iterates for the initial value x(0), ‖ ·‖ a fixed
norm in Rm, and x = A−1b the exact solution of (5.1).

For all methods to be discussed we will have linear convergence of the
kind

∥∥x(k) − x
∥∥ ≤ 'k

∥∥x(0) − x
∥∥ (5.3)

with a contraction number ' with 0 < ' < 1, which in general depends on
the dimension m. To satisfy (5.2), k iterations are thus sufficient, with

k ≥
(

ln
1
ε

)/(
ln

1
'

)
. (5.4)

The computational effort of a method obviously depends on the size of ε,
although this will be seen as fixed and only the dependence on the dimen-
sion m is considered: often ε will be omitted in the corresponding Landau’s
symbols. The methods differ therefore by their convergence behaviour, de-
scribed by the contraction number ' and especially by its dependence
on m (for specific classes of matrices and boundary value problems). A
method is (asymptotically) optimal if the contraction numbers are bounded
independently of m:

'(m) ≤ ' < 1 . (5.5)

In this case the total effort for a sparse matrix is O(m) elementary opera-
tions, as for a matrix× vector step. Of course, for a more exact comparison,
the corresponding constants, which also reflect the effort of an iteration
step, have to be exactly estimated.

While direct methods solve the system of equations (5.1) with machine
precision, provided it is solvable in a stable manner, one can freely choose
the accuracy with iterative methods. If (5.1) is generated by the discretiza-
tion of a boundary value problem, it is recommended to solve it only with
that accuracy with which (5.1) approximates the boundary value prob-
lem. Asymptotic statements hereto have, among others, been developed in
(3.89), (7.129) and give an estimation of the approximation error by Chα,
with constants C,α > 0, whereby h is the mesh size of the corresponding
triangulation. Since the constants in these estimates are usually unknown,
the error level can be adapted only asymptotically in m, in order to gain
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an algorithmic error of equal asymptotics compared to the error of ap-
proximation. Although this contradicts the above-described point of view
of a constant error level, it does not alter anything in the comparison of
the methods: The respective effort always has to be multiplied by a fac-
tor O(ln m) if in d space dimensions m ∼ h−d is valid, and the relations
between the methods compared remain the same.

Furthermore, the choice of the error level ε will be influenced by the
quality of the initial iterate. Generally, statements about the initial iterate
are only possible for special situations: For parabolic initial boundary value
problems (Chapter 7) and a one-step time discretization it is recommended
to use the approximation of the old time level as initial iterate. In the
case of a hierarchy of space discretizations, a nested iteration is possible
(Section 5.6), where the initial iterates will naturally result.

5.1 Linear Stationary Iterative Methods

5.1.1 General Theory

We begin with the study of the following class of affine-linear iteration
functions,

Φ(x) := Mx + Nb , (5.6)

with matrices M, N ∈ Rm,m to be specified later. By means of Φ an iter-
ation sequence x(0), x(1), x(2), . . . is defined through a fixed-point iteration

x(k+1) := Φ
(
x(k)

)
, k = 0, 1, . . . , (5.7)

from an initial approximation x(0). Methods of this kind are called linear
stationary, because of their form (5.6) with a fixed iteration matrix M . The
function Φ : Rm → Rm is continuous, so that in case of convergence of x(k)

for k →∞, for the limit x we have

x = Φ(x) = Mx + Nb .

In order to achieve that the fixed-point iteration defined by (5.6) is con-
sistent with Ax = b, i.e., each solution of (5.1) is also a fixed point, we
must require

A−1b = MA−1b + Nb for arbitrary b ∈ Rm ,

i.e., A−1 = MA−1 + N , and thus

I = M + NA . (5.8)

On the other hand, if N is nonsingular, which will always be the case in
the following, then (5.8) also implies that a fixed point of (5.6) solves the
system of equations.
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Assuming the validity of (5.8), the fixed-point iteration for (5.6) can also
be written as

x(k+1) = x(k) −N
(
Ax(k) − b

)
, (5.9)

because

Mx(k) + Nb = (I −NA)x(k) + Nb .

If N is nonsingular, we have additionally an equivalent form given by

W
(
x(k+1) − x(k)

)
= −

(
Ax(k) − b

)
(5.10)

with W := N−1. The correction x(k+1)−x(k) for x(k) is given by the residual

g(k) := Ax(k) − b

through (5.9) or (5.10), possibly by solving a system of equations. In order
to compete with the direct method, the solution of (5.10) should require
one order in m fewer elementary operations. For dense matrices no more
operations than O(m2) should be necessary as are already necessary for
the calculation of g(k). The same holds for sparse matrices, for example
band matrices. On the other side the method should converge, and that as
quickly as possible.

In the form (5.6) Φ is Lipschitz continuous for a given norm ‖ · ‖ on
Rm with Lipschitz constant ‖M‖, where ‖ · ‖ is a norm on Rm,m that is
consistent with the vector norm (see (A3.9)).

More precisely, for a consistent iteration the error

e(k) := x(k) − x ,

with x = A−1b still denoting the exact solution, even satisfies

e(k+1) = Me(k) ,

because (5.7) and (5.8) imply

e(k+1) = x(k+1) − x = Mx(k) + Nb−Mx−NAx = Me(k) . (5.11)

The spectral radius of M , that is, the maximum of the absolute values of
the (complex) eigenvalues of M , will be denoted by '(M).

The following general convergence theorem holds:

Theorem 5.1 A fixed-point iteration given by (5.6) to solve Ax = b is
globally and linearly convergent if

'(M) < 1 . (5.12)

This is satisfied if for a matrix norm ‖ · ‖ on Rm,m induced by a norm ‖ · ‖
on Rm we have

‖M‖ < 1 . (5.13)
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If the consistency condition (5.8) holds and the matrix and vector norms
applied are consistent, then the convergence is monotone in the following
sense:

∥∥e(k+1)
∥∥ ≤

∥∥M
∥∥∥∥e(k)

∥∥ . (5.14)

Proof: Assuming (5.12), then for ε = (1− '(M)) /2 > 0 there is a norm
‖ · ‖S on Rm such that the induced norm ‖ · ‖S on Rm,m satisfies

‖M‖S ≤ '(M) + ε < 1

(see [16, p. 34]). The function Φ is a contraction with respect to this special
norm on Rm. Therefore, Banach’s fixed-point theorem (Theorem 8.4) can
be applied on X = (Rm, ‖ · ‖S), which ensures the global convergence of
the sequence

(
x(k)

)
k

to a fixed point x̄ of Φ.
If (5.13) holds, Φ is a contraction even with respect to the norm ‖ · ‖

on Rm, and ‖M‖ is the Lipschitz constant. Finally relation (5.14) follows
from (5.11). !

In any case, we have convergence in any norm on Rm, since they are all
equivalent. Linear convergence for (5.12) holds only in the generally not
available norm ‖ · ‖S with ‖M‖S as contraction number.

As termination criterion for the concrete iteration methods to be
introduced, often

∥∥g(k)
∥∥ ≤ δ

∥∥g(0)
∥∥ (5.15)

is used with a control parameter δ > 0, abbreviated as ‖g(k)‖ = 0. The
connection to the desired reduction of the relative error according to (5.2)
is given by

∥∥e(k)
∥∥

∥∥e(0)
∥∥ ≤ κ(A)

∥∥g(k)
∥∥

∥∥g(0)
∥∥ , (5.16)

where the condition number κ(A) = ‖A‖‖A−1‖ is to be computed with
respect to a matrix norm that is consistent with the chosen vector norm.
Relation (5.16) follows from

∥∥e(k)
∥∥ =

∥∥A−1g(k)
∥∥ ≤

∥∥A−1
∥∥∥∥g(k)

∥∥ ,
∥∥g(0)

∥∥ =
∥∥Ae(0)

∥∥ ≤
∥∥A
∥∥∥∥e(0)

∥∥ .

Therefore, for the selection of δ in (5.15) we have to take into account the
behaviour of the condition number.

For the iteration matrix M , according to (5.8), we have

M = I −NA ,

or according to (5.10) with nonsingular W ,

M = I −W−1A .
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To improve the convergence, i.e. to reduce '(M) (or ‖M‖), we need

N ≈ A−1 and W ≈ A ,

which is in contradiction to the fast solvability of (5.10).

5.1.2 Classical Methods

The fast solvability of (5.10) (in O(m) operations) is ensured by choosing

W := D , (5.17)

where A = L + D + R is the unique partition of A, with a strictly lower
triangular matrix L, a strictly upper triangular matrix R, and the diagonal
matrix D:

L :=





0 · · · · · · 0
a2,1 0 · · · 0

...
. . . . . .

...
am,1 · · · am,m−1 0




, R :=





0 a1,2 · · · a1,m
...

. . . . . .
...

0 · · · 0 am−1,m

0 · · · · · · 0




,

D :=





a11

a22 0

0
. . .

amm




.

(5.18)
Assume aii -= 0 for all i = 1, . . . , m, or equivalently that D is nonsingular,
which can be achieved by row and column permutation.

The choice of (5.17) is called the method of simultaneous displacements
or Jacobi’s method. In the formulation form (5.6) we have

N = D−1 ,

MJ = I −NA = I −D−1A = −D−1(L + R) .

Therefore, the iteration can be written as

D
(
x(k+1) − x(k)

)
= −

(
Ax(k) − b

)

or

x(k+1) = D−1
(
− Lx(k) −Rx(k) + b

)
(5.19)

or

x(k+1)
i =

1
aii



−
i−1∑

j=1

aijx
(k)
j −

m∑

j=i+1

aijx
(k)
j + bi



 for all i = 1, . . . , m .

On the right side in the first sum it is reasonable to use the new iterate
x(k+1) where it is already calculated. This leads us to the iteration

x(k+1) = D−1
(
− Lx(k+1) −Rx(k) + b

)
(5.20)
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or

(D + L)x(k+1) = −Rx(k) + b

or

(D + L)
(
x(k+1) − x(k)

)
= −

(
Ax(k) − b

)
, (5.21)

the so-called method of successive displacements or Gauss–Seidel method.
According to (5.21) we have here a consistent iteration with

W = D + L .

Since D is nonsingular, W is nonsingular. Written in the form (5.6) the
method is defined by

N = W−1 = (D + L)−1 ,

MGS = I −NA = I − (D + L)−1 A = − (D + L)−1 R .

In contrast to the Jacobi iteration, the Gauss–Seidel iteration depends on
the order of the equations. However, the derivation (5.20) shows that the
number of operations per iteration step is equal,

Jacobi becomes Gauss–Seidel,

if x(k+1) is stored on the same vector as x(k).

A sufficient convergence condition is given by the following theorem:

Theorem 5.2 Jacobi’s method and the Gauss–Seidel method converge
globally and monotonically with respect to ‖ · ‖∞ if the strict row sum
criterion

m∑

j=1
j &=i

|aij | < |aii| for all i = 1, . . . , m (5.22)

is satisfied.

Proof : The proof here is given only for the Jacobi iteration. For the other
method see, for example, [16].

The inequality (5.22) is equivalent to ‖MJ‖∞ < 1 because of MJ =
−D−1 (L + R) if ‖ · ‖∞ is the matrix norm that is induced by ‖ · ‖∞, which
means the maximum-row-sum norm (see (A3.6)). !

It can be shown that the Gauss–Seidel method converges “better” than
Jacobi’s method, as expected: Under the assumption of (5.22) for the
respective iteration matrices,

‖MGS‖∞ ≤ ‖MJ‖∞ < 1

(see, for example, [16]).
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Theorem 5.3 If A is symmetric and positive definite, then the Gauss–
Seidel method converges globally. The convergence is monotone in the
energy norm ‖ · ‖A, where ‖x‖A :=

(
xT Ax

)1/2 for x ∈ Rm.

Proof: See [16, p. 90]. !

If the differential operator, and therefore the bilinear form, is symmet-
ric, that is, if (3.12) holds with c = 0, then Theorem 5.3 can be applied.
Concerning the applicability of Theorem 5.2, even for the Poisson equation
with Dirichlet boundary conditions (1.1), (1.2) requirements for the finite
element discretization are necessary in order to satisfy at least a weaker
version of (5.22). This example then satisfies the weak row sum criterion
only in the following sense:

m∑
j=1
j &=i

|aij | ≤ |aii| for all i = 1, . . . , m ;

“<” holds for at least one i ∈ {1, . . . , m} .

(5.23)

In the case of the finite difference method (1.7) for the rectangular do-
main or the finite element method from Section 2.2, which leads to the
same discretization matrix, (5.23) is satisfied. For a general triangulation
with linear ansatz functions, conditions for the angles of the elements must
be required (see the angle condition in Section 3.9). The condition (5.23)
is also sufficient, if A is irreducible (see Appendix A.3).

Theorem 5.4 If A satisfies the condition (5.23) and is irreducible, then
Jacobi’s method converges globally.

Proof: See [28, p. 111]. !

The qualitative statement of convergence does not say anything about
the usefulness of Jacobi’s and the Gauss–Seidel method for finite element
discretizations. As an example we consider the Dirichlet problem for the
Poisson equation on a rectangular domain as in (1.5), with the five-point
stencil discretization introduced in Section 1.2. We restrict ourselves to
an equal number of nodes in both space directions for simplificity of the
notation. This number is denoted by n + 1, differently than in Chapter 1.
Therefore, A ∈ Rm,m according to (1.14), with m = (n − 1)2 being the
number of interior nodes. The factor h−2 can be omitted by multiplying
the equation by h2.

In the above example the eigenvalues and therefore the spectral radius
can be calculated explicitly. Due to D = 4I we have for Jacobi’s method

M = −1
4

(A− 4I) = I − 1
4
A ,
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and therefore A and M have the same eigenvectors, namely,
(
zk,l

)
ij

= sin
ikπ

n
sin

jlπ

n
, 1 ≤ i, j, k, l ≤ n− 1 ,

with the eigenvalues

2
(

2− cos
kπ

n
− cos

lπ

n

)
(5.24)

for A and
1
2

cos
kπ

n
+

1
2

cos
lπ

n
(5.25)

for M with 1 ≤ k, l ≤ n− 1. This can be proven directly with the help of
trigonometric identities (see, for example, [15, p. 53]). Thus we have

'(M) = − cos
(n− 1)π

n
= cos

π

n
= 1− π2

2n2
+ O

(
n−4

)
. (5.26)

With growing n the rate of convergence becomes worse. The effort to gain
an approximative solution, which means to reduce the error level below a
given threshold ε, is proportional to the number of iterations× operations
for an iteration, as we discussed at the beginning of this chapter. Due to
(5.4) and (5.12) the number of necessary operations is calculated as follows:

ln(1/ε)
− ln('(M))

· O(m) = ln
1
ε
· O

(
n2
)
· O(m) = ln

1
ε

O(m2) .

Here the well-known expansion ln(1 + x) = x + O(x2) is employed in the
determination of the leading term of −1/(ln('(M)). An analogous result
with better constants holds for the Gauss–Seidel method.

In comparison to this, the elimination or the Cholesky method requires

O
(
band-width2 · m

)
= O(m2)

operations; i.e., they are of the same complexity. Therefore, both methods
are of use for only moderately large m.

An iterative method has a superior complexity to that of the Cholesky
method if

'(M) = 1−O(n−α) (5.27)

with α < 2. In the ideal case (5.5) holds; then the method needs O(m)
operations, which is asymptotically optimal.

In the following we will present a sequence of methods with increasingly
better convergence properties for systems of equations that arise from finite
element discretizations.

The simplest iteration is the Richardson method, defined by

M = I −A , i.e., N = W = I . (5.28)
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For this method we have

'(M) = max {|1− λmax(A)|, |1 − λmin(A)|} ,

with λmax(A) and λmin(A) being the largest and smallest eigenvalues of A,
respectively. Therefore, this method is convergent for special matrices only.
In the case of a nonsingular D, the Richardson method for the transformed
system of equations

D−1Ax = D−1b

is equivalent to Jacobi’s method.
More generally, the following can be shown: If a consistent method is

defined by M, N with I = M+NA, and N nonsingular, then it is equivalent
to the Richardson method applied to

NAx = Nb . (5.29)

The Richardson method for (5.29) has the form

x(k+1) − x(k) = −Ñ
(
NAx(k) −Nb

)

with Ñ = I, which means the form (5.9), and vice versa.
Equation (5.29) can also be interpreted as a preconditioning of the system

of equations (5.1), with the aim to reduce the spectral condition number
κ(A) of the system matrix, since this is essential for the convergence be-
haviour. This will be further specified in the following considerations (5.33),
(5.73). As already seen in the aforementioned examples, the matrix NA will
not be constructed explicitly, since N is in general densely occupied, even
if N−1 is sparse. The evaluation of y = NAx therefore means solving the
auxiliary system of equations

N−1y = Ax .

Obviously, we have the following:

Lemma 5.5 If the matrix A is symmetric and positive definite, then for
the Richardson method all eigenvalues of M are real and smaller than 1.

5.1.3 Relaxation

We continue to assume that A is symmetric and positive definite. Therefore,
divergence of the procedure can be caused only by negative eigenvalues of
I − A less than or equal to −1. In general, bad or nonconvergent iterative
methods can be improved in their convergence behaviour by relaxation if
they meet certain conditions.

For an iteration method, given in the form (5.6), (5.7), the corresponding
relaxation method with relaxation parameter ω > 0 is defined by

x(k+1) := ω
(
Mx(k) + Nb

)
+ (1 − ω)x(k) , (5.30)
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which means

Mω := ωM + (1 − ω)I , Nω := ωN , (5.31)

or if the condition of consistency M = I −NA holds,

x(k+1) = ω
(
x(k) −N

(
Ax(k) − b

))
+ (1 − ω)x(k)

= x(k) − ωN
(
Ax(k) − b

)
.

Let us assume for the procedure (5.6) that all eigenvalues of M are real.
For the smallest one λmin and the largest one λmax we assume

λmin ≤ λmax < 1 ;

this is, for example, the case for the Richardson method. Then also the
eigenvalues of Mω are real, and we conclude that

λi(Mω) = ωλi(M) + 1− ω = 1− ω
(
1− λi(M)

)

if the λi(B) are the eigenvalues of B in an arbitrary ordering. Hence

'(Mω) = max
{
|1− ω (1− λmin(M))| , |1− ω (1− λmax(M))|

}
,

since f(λ) := 1 − ω(1 − λ) is a straight line for a fixed ω (with f(1) = 1
and f(0) = 1− ω).

f
1

λ1

ω1

ω2

λmin λmax

f (λ) for.. ω1 < 1 and ω2 > 1

ρ(Mω)
1

ω
1

λmax

λmin

1 - ω ( 1 − λmax )

1 - ω ( 1 − λmin )

- 1 + ω ( 1 − λmin )

ω

Figure 5.1. Calculation of ω̄.

For the optimal ω̄, i.e., ω̄ with

'(Mω̄) = min
ω>0

'(Mω) ,

we therefore have, as can be seen from Figure 5.1,

1− ω̄ (1− λmax(M)) = −1 + ω̄ (1− λmin(M))

⇐⇒ ω̄ =
2

2− λmax(M)− λmin(M)
.

Hence ω̄ > 0 and

'(Mω̄) = 1− ω̄(1− λmax(M)) < 1 ;



5.1. Linear Stationary Iterative Methods 209

consequently, the method converges with optimal ω even in cases where
it would not converge for ω = 1. But keep in mind that one needs the
eigenvalues of M to determine ω̄.

Moreover, we have

ω̄ < 1 ⇔ λmax(M) + λmin(M) < 0 .

If λmin(M) -= −λmax(M), that is, ω̄ -= 1, we will achieve an improvement
by relaxation:

'(Mω̄) < '(M) .

The case of ω < 1 is called underrelaxation, whereas in the case of ω > 1
we speak of an overerrelaxation.

In particular, for the Richardson method with the iteration matrix M =
I − A, due to λmin(M) = 1 − λmax(A) and λmax(M) = 1 − λmin(A), the
optimal ω̄ is given by

ω̄ =
2

λmin(A) + λmax(A)
. (5.32)

Hence

'(Mω̄) = 1− ω̄λmin(A) =
λmax(A)− λmin(A)
λmin(A) + λmax(A)

=
κ(A)− 1
κ(A) + 1

< 1 , (5.33)

with the spectral condition number of A

κ(A) :=
λmax(A)
λmin(A)

(see Appendix A.3).
For large κ(A) we have

'(Mω̄) =
κ(A)− 1
κ(A) + 1

≈ 1− 2
κ(A)

,

the variable of the proportionality being κ(A). For the example of the
five-point stencil discretization, due to (5.24),

λmin(A) + λmax(A) = 4
(

2− cos
n− 1

n
π − cos

π

n

)
= 8 ,

and thus due to (5.32),

ω̄ =
1
4

.

Hence the iteration matrix Mω̄ = I− 1
4A is identical to the Jacobi iteration:

We have rediscovered Jacobi’s method.
By means of (5.33) we can estimate the contraction number, since we

know from (5.24) that

κ(A) =
4
(
1− cos n−1

n π
)

4
(
1− cos πn

) =
1 + cos πn
1− cos πn

≈ 4n2

π2
. (5.34)
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This shows the stringency of Theorem 3.45, and again we can conclude that

'(Mω̄) = cos
π

n
≈ 1− π2

2n2
. (5.35)

Due to Theorem 3.45 the convergence behaviour seen for the model problem
is also valid in general for quasi-uniform triangulations.

5.1.4 SOR and Block-Iteration Methods

We assume again that A is a general nonsingular matrix. For the relaxation
of the Gauss–Seidel method we use it in the form

Dx(k+1) = −Lx(k+1) −Rx(k) + b ,

instead of the resolved form (5.20).
The relaxed method is then

Dx(k+1) = ω
(
− Lx(k+1) −Rx(k) + b

)
+ (1 − ω)Dx(k) (5.36)

with a relaxation parameter ω > 0. This is equivalent to

(D + ωL)x(k+1) = (−ωR + (1 − ω)D)x(k) + ωb . (5.37)

Hence

Mω := (D + ωL)−1 (−ωR + (1− ω)D) ,

Nω := (D + ωL)−1 ω .

In the application to discretizations of boundary value problems, nor-
mally we choose ω > 1, which means overrelaxation. This explains the
name of the SOR method as an abbreviation of successive overrelaxation.
The effort to execute an iteration step is hardly higher than for the Gauss–
Seidel method. Although we have to add 3m operations to the evaluation
of the right side of (5.36), the forward substitution to solve the auxiliary
system of equations in (5.37) is already part of the form (5.36).

The calculation of the optimal ω̄ here is more difficult, because Mω

depends nonlinearly on ω. Only for special classes of matrices can the opti-
mal ω̄ minimizing '(Mω) be calculated explicitly in dependence on '(M1),
the convergence rate of the (nonrelaxed) Gauss–Seidel method. Before we
sketch this, we will look at some further variants of this procedure:

The matrix Nω is nonsymmetric even for symmetric A. One gets a sym-
metric Nω if after one SOR step another one is performed in which the
indices are run through in reverse order m, m − 1, . . . , 2, 1, which means
that L and R are exchanged. The two half steps

Dx(k+ 1
2 ) = ω

(
− Lx(k+ 1

2 ) −Rx(k) + b
)

+ (1 − ω)Dx(k) ,

Dx(k+1) = ω
(
− Lx(k+ 1

2 ) −Rx(k+1) + b
)

+ (1 − ω)Dx(k+ 1
2 ) ,
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make up one step of the symmetric SOR, the SSOR method for short. A
special case is the symmetric Gauss–Seidel method for ω = 1.

We write down the procedure for symmetric A, i.e., R = LT in the form
(5.6), in which the symmetry of N becomes obvious:

M =
(
D + ωLT

)−1 [(1− ω)D − ωL
]
(D + ωL)−1 [(1− ω)D − ωLT

]
,

N = ω(2− ω)
(
D + ωLT

)−1
D (D + ωL)−1 . (5.38)

The effort for SSOR is only slightly higher than for SOR if the vectors
already calculated in the half steps are stored and used again, as for example
Lx(k+1/2).

Other variants of these procedures are created if the procedures are not
applied to the matrix itself but to a block partitioning

A = (Aij)i,j with Aij ∈ Rmi,mj , i, j = 1, . . . , p , (5.39)

with
∑p

i=1 mi = m. As an example we get the block-Jacobi method, which
is analogous to (5.19) and has the form

ξ(k+1)
i = A−1

ii



−
i−1∑

j=1

Aijξ
(k)
j −

p∑

j=i+1

Aijξ
(k)
j + βi



 for all i = 1, . . . , p .

(5.40)
Here x = (ξ1, . . . , ξp)T and b = (β1, . . . ,βp)T , respectively, are correspond-
ing partitions of the vectors. By exchanging ξ(k)

j with ξ(k+1)
j in the first

sum one gets the block-Gauss–Seidel method and then in the same way
the relaxed variants. The iteration (5.40) includes p vector equations. For
each of them we have to solve a system of equations with system matrix
Aii. To get an advantage compared to the pointwise method a much lower
effort should be necessary than for the solution of the total system. This
can require — if at all possible — a rearranging of the variables and equa-
tions. The necessary permutations will not be noted explicitly here. Such
methods are applied in finite difference methods or other methods with
structured grids (see Section 4.1) if an ordering of nodes is possible such
that the matrices Aii are diagonal or tridiagonal and therefore the systems
of equations are solvable with O(mi) operations.

As an example we again discuss the five-point stencil discretization of
the Poisson equation on a square with n + 1 nodes per space dimension.
The matrix A then has the form (1.14) with l = m = n. If the nodes are
numbered rowwise and we choose one block for each line, which means
p = n − 1 and mi = n − 1 for all i = 1, . . . , p, then the matrices Aii are
tridiagonal. On the other hand, if one chooses a partition of the indices of
the nodes in subsets Si such that a node with index in Si has neighbours
only in other index sets, then for such a selection and arbitrary ordering
within the index sets the matrices Aii become diagonal. Neighbours here
denote the nodes within a difference stencil or more generally, those nodes
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4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4





m = 3× 3: rowwise ordering.





4 0 0 0 0 −1 −1 0 0
0 4 0 0 0 −1 0 −1 0
0 0 4 0 0 −1 −1 −1 −1
0 0 0 4 0 0 −1 0 −1
0 0 0 0 4 0 0 −1 −1

−1 −1 −1 0 0 4 0 0 0
−1 0 −1 −1 0 0 4 0 0

0 −1 −1 0 −1 0 0 4 0
0 0 −1 −1 −1 0 0 0 4





red-black ordering:

red: node 1, 3, 5, 7, 9 from rowwise ordering

black: node 2, 4, 6, 8 from rowwise ordering

Figure 5.2. Comparison of orderings.

that contribute to the corresponding row of the discretization matrix. In
the example of the five-point stencil, starting with rowwise numbering, one
can combine all odd indices to a block S1 (the “red nodes”) and all even
indices to a block S2 (the “black” nodes). Here we have p = 2. We call this
a red-black ordering (see Figure 5.2). If two “colours” are not sufficient, one
can choose p > 2.

We return to the SOR method and its convergence: In the following the
iteration matrix will be denoted by MSOR(ω) with the relaxation parameter
ω. Likewise, MJ and MGS are the iteration matrices of Jacobi’s and the
Gauss–Seidel method, respectively. General propositions are summarized
in the following theorem:
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Theorem 5.6 (of Kahan; Ostrowski and Reich)

(1) '
(
MSOR(ω)

)
≥ |1− ω| for ω -= 0.

(2) If A is symmetric and positive definite, then

'
(
MSOR(ω)

)
< 1 for ω ∈ (0, 2) .

Proof: See [16, pp. 91 f.]. !

Therefore, we use only ω ∈ (0, 2). For a useful procedure we need more
information about the optimal relaxation parameter ωopt, given by

'
(
MSOR(ωopt)

)
= min

0<ω<2
'
(
MSOR(ω)

)
,

and about the size of the contraction number. This is possible only if the
ordering of equations and unknowns has certain properties:

Definition 5.7 A matrix A ∈ Rm,m is consistently ordered if for the
partition (5.18), D is nonsingular and

C(α) := α−1D−1L + αD−1R

has eigenvalues independent of α for α ∈ C\{0}.

There is a connection to the possibility of a multi-colour ordering, because
a matrix in the block form (5.39) is consistently ordered if it is block-
tridiagonal (i.e., Aij = 0 for |i − j| > 1) and the diagonal blocks Aii are
nonsingular diagonal matrices (see [28, pp. 114 f.]).

In the case of a consistently ordered matrix one can prove a relation
between the eigenvalues of MJ, MGS, and MSOR(ω). From this we can see
how much faster the Gauss–Seidel method converges than Jacobi’s method:

Theorem 5.8 If A is consistently ordered, then

'(MJ)2 = '(MGS) .

Proof: For a special case see Remark 5.5.2 in [16]. !

Due to (5.4) we can expect a halving of the number of iteration steps,
but this does not change the asymptotic statement (5.27).

Finally, in the case that Jacobi’s method converges the following theorem
holds:

Theorem 5.9 Let A be consistently ordered with nonsingular diagonal ma-
trix D, the eigenvalues of MJ being real and β := '(MJ) < 1. Then we have
for the SOR method:

(1) ωopt = 2
1 + (1 − β2)1/2 ,
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(2) '(MSOR(ω)) =






1− ω +
1
2
ω2β2 + ωβ

(
1− ω +

ω2β2

4

)1/2

for 0 < ω < ωopt

ω − 1 for ωopt ≤ ω < 2 ,

(3) '
(
MSOR(ωopt)

)
= β2

(1 + (1 − β2)1/2)2
.

Proof: See [18, p. 216].
!

0

1

1 2

ρ( MSOR(ω) )

ω opt ω

Figure 5.3. Dependence of #
(
MSOR(ω)

)
on ω.

If '(MJ) is known for Jacobi’s method, then ωopt can be calculated. This
is the case in the example of the five-point stencil discretization on a square:
From (5.26) and Theorem 5.9 it follows that

'(MGS) =
(
cos

π

n

)2
= 1− π2

n2
+ O(n−4) ;

hence

ωopt = 2/
(
1 + sin πn

)
,

'
(
MSOR(ωopt)

)
= ωopt − 1 = 1− 2πn + O(n−2) .

Therefore, the optimal SOR method has a lower complexity than all
methods described up to now.

Correspondingly, the number of operations to reach the relative er-
ror level ε > 0 is reduced to ln 1

ε O(m3/2) operations in comparison to
ln 1
ε O(m2) operations for the previous procedures.
Table 5.1 gives an impression of the convergence for the model problem.

It displays the theoretically to be expected values for the numbers of iter-
ations of the Gauss–Seidel method (mGS), as well as for the SOR method
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n mGS mSOR

8 43 8
16 178 17
32 715 35
64 2865 70

128 11466 140
256 45867 281

Table 5.1. Gauss–Seidel and optimal SOR method for the model problem.

with optimal relaxation parameter (mSOR). Here we use the very moderate
termination criterion ε = 10−3 measured in the Euclidean norm.

The optimal SOR method is superior, even if we take into account the
almost doubled effort per iteration step. But generally, ωopt is not known
explicitly. Figure 5.3 shows that it is probably better to overestimate ωopt

instead of underestimating. More generally, one can try to improve the
relaxation parameter during the iteration:

If '(MJ) is a simple eigenvalue, then this also holds true for the spectral
radius '(MSOR(ω)). The spectral radius can thus be approximated by the
power method on the basis of the iterates. By Theorem 5.9 (3) one can
approximate '(MJ), and by Theorem 5.9 (1) then also ωopt.

This basic principle can be extended to an algorithm (see, for example,
[18, Section 9.5]), but the upcoming overall procedure is no longer a linear
stationary method.

5.1.5 Extrapolation Methods

Another possibility for an extension of the linear stationary methods, re-
lated to the adaption of the relaxation parameter, is the following: Starting
with a linear stationary basic iteration x̃k+1 := Φ

(
x̃k
)

we define a new
iteration by

x(k+1) := ωkΦ
(
x(k)

)
+ (1 − ωk)x(k) , (5.41)

with extrapolation factors ωk to be chosen. A generalization of this defi-
nition is to start with the iterates of the basic iteration x̃(0), x̃(1), . . .. The
iterates of the new method are to be determined by

x(k) :=
k∑

j=0

αkj x̃
(j) ,

with αkj defined by a polynomial pk ∈ Pk, with the property pk(t) =
∑k

j=0 αkj t
j and pk(1) = 1. For an appropriate definition of such extrapola-

tion or semi-iterative methods we need to know the spectrum of the basic
iteration matrix M , since the error e(k) = x(k) − x satisfies

e(k) = pk(M)e(0) ,
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where M is the iteration matrix of the basic iteration. This matrix should
be normal, for example, such that

‖pk(M)‖2 = '(pk(M))

holds. Then we have the obvious estimation
∣∣e(k)

∣∣
2
≤
∣∣pk(M)e(0)

∣∣
2
≤
∥∥pk(M)

∥∥
2

∣∣e(0)
∣∣
2
≤ '(pk(M))

∣∣e(0)
∣∣
2
. (5.42)

If the method is to be defined in such a way that

'(pk(M)) = max
{
|pk(λ)|

∣∣ λ ∈ σ(M)
}

is minimized by choosing pk, then the knowledge of the spectrum σ(M) is
necessary. Generally, instead of this, we assume that suitable supersets are
known: If σ(M) is real and

a ≤ λ ≤ b for all λ ∈ σ(M) ,

then, due to
∣∣e(k)

∣∣
2
≤ max
λ∈[a,b]

∣∣pk(λ)
∣∣ ∣∣e(0)

∣∣
2
,

it makes sense to determine the polynomials pk as a solution of the
minimization problem on [a, b],

max
λ∈[a,b]

|pk(λ)|→ min for all p ∈ Pk with p(1) = 1 . (5.43)

In the following sections we will introduce methods with an analogous
convergence behaviour, without control parameters necessary for their
definition.

For further information on semi-iterative methods see, for example, [16,
Chapter 7].

Exercises

5.1 Investigate Jacobi’s method and the Gauss–Seidel method for solving
the linear system of equations Ax = b with respect to their convergence if
we have the following system matrices:

(a) A =




1 2 −2
1 1 1
2 2 1



 , (b) A =
1
2




2 −1 1
2 2 2
−1 −1 2



 .

5.2 Prove the consistency of the SOR method.

5.3 Prove Theorem 5.6, (1).
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5.2 Gradient and Conjugate Gradient Methods

In this section let A ∈ Rm,m be symmetric and positive definite. Then the
system of equations Ax = b is equivalent to the problem

Minimize f(x) :=
1
2
xT Ax− bT x for x ∈ Rm , (5.44)

since for such a functional the minima and stationary points coincide, where
a stationary point is an x satisfying

0 = ∇f(x) = Ax− b . (5.45)

In contrast to the notation x · y for the “short” space vectors x, y ∈ Rd we
write here the Euclidean scalar product as matrix product xT y.

For the finite element discretization this corresponds to the equivalence
of the Galerkin method (2.23) with the Ritz method (2.24) if A is the
stiffness matrix and b the load vector (see (2.34) and (2.35)). More generally,
Lemma 2.3 implies the equivalence of (5.44) and (5.45), if as bilinear form
the so-called energy scalar product

〈x, y〉A := xT Ay (5.46)

is chosen.
A general iterative method to solve (5.44) has the following structure:

Define a search direction d(k) .

Minimize α .→ f̃(α) := f
(
x(k) + αd(k)

)
(5.47)

exactly or approximately, with the solution αk .

Define x(k+1) := x(k) + αkd(k) . (5.48)

If f is defined as in (5.44), the exact αk can be computed from the condition
f̃ ′(α) = 0 and

f̃ ′(α) = ∇f
(
x(k) + αd(k)

)T
d(k)

as

αk = − g(k)T
d(k)

d(k)T
Ad(k)

, (5.49)

where

g(k) := Ax(k) − b = ∇f
(
x(k)

)
. (5.50)

The error of the kth iterate is denoted by e(k):

e(k) := x(k) − x .

Some relations that are valid in this general fromework are the following:
Due to the one-dimensional minimization of f , we have

g(k+1)T
d(k) = 0 , (5.51)
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and from (5.50) we can conclude immediately that

Ae(k) = g(k), e(k+1) = e(k) + αkd(k), (5.52)
g(k+1) = g(k) + αkAd(k). (5.53)

We consider the energy norm

‖x‖A :=
(
xT Ax

)1/2 (5.54)

induced by the energy scalar product. For a finite element stiffness matrix
A with a bilinear form a we have the correspondence

‖x‖A = a(u, u)1/2 = ‖u‖a

for u =
∑m

i=1 xiϕi if the ϕi are the underlying basis functions. Comparing
the solution x = A−1b with an arbitrary y ∈ Rm leads to

f(y) = f(x) +
1
2
‖y − x‖2

A , (5.55)

so that condition (5.44) also minimizes the distance to x in ‖ · ‖A. The
energy norm will therefore have a special importance. Measured in the
energy norm we have, due to (5.52),

∥∥e(k)
∥∥2

A
= e(k)T

g(k) = g(k)T
A−1g(k) ,

and therefore due to (5.52) and (5.51),
∥∥e(k+1)

∥∥2

A
= g(k+1)T

e(k) .

The vector −∇f
(
x(k)

)
in x(k) points in the direction of the locally steepest

descent, which motivates the gradient method, i.e.,

d(k) := −g(k) , (5.56)

and thus

αk =
d(k)T

d(k)

d(k)T
Ad(k)

. (5.57)

The above identities imply for the gradient method

∥∥e(k+1)
∥∥2 =

(
g(k) + αkAd(k)

)T
e(k) = ‖e(k)‖2

A

(
1− αk

d(k)T
d(k)

d(k)T
A−1d(k)

)

and thus by means of the definition of αk from (5.57)

∥∥x(k+1) − x
∥∥2

A
=
∥∥x(k) − x

∥∥2

A





1−

(
d(k)T

d(k)
)2

d(k)T
Ad(k) d(k)T

A−1d(k)





.

With the inequality of Kantorovich (see, for example, [28, p. 132]),

xT AxxT A−1x

(xT x)2
≤
(

1
2
κ1/2 +

1
2
κ−1/2

)2

,
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where κ := κ(A) is the spectral condition number, and the relation

1− 4
(
a1/2 + a−1/2

)2 =
(a− 1)2

(a + 1)2
for a > 0 ,

we obtain the following theorem:

Theorem 5.10 For the gradient method we have

∥∥x(k) − x
∥∥

A
≤
(
κ− 1
κ+ 1

)k ∥∥x(0) − x
∥∥

A
. (5.58)

This is the same estimate as for the optimally relaxed Richardson method
(with the sharper estimate ‖M‖A ≤ κ−1

κ+1 instead of '(M) ≤ κ−1
κ+1 ). The

essential difference lies in the fact that this is possible without knowledge
of the spectrum of A.

Nevertheless, for finite element discretizations we have the same poor
convergence rate as for Jacobi’s or similar methods. The reason for this
deficiency lies in the fact that due to (5.51), we have g(k+1)T

g(k) = 0, but
in general not g(k+2)T

g(k) = 0. On the contrary, these search directions are
very often almost parallel, as can be seen from Figure 5.4.

m = 2:

f = constant
(contour lines)

.x(0)

Figure 5.4. Zigzag behaviour of the gradient method.

The reason for this problem is the fact that for large κ the search di-
rections g(k) and g(k+1) can be almost parallel with respect to the scalar
products 〈·, ·〉A (see Exercise 5.4), but with respect to ‖ · ‖A the distance
to the solution will be minimized (see (5.55)).

The search directions d(k) should be orthogonal with respect to 〈·, ·〉A,
which we call conjugate.

Definition 5.11 Vectors d(0), . . . , d(l) ∈ Rm are conjugate if they satisfy
〈
d(i), d(j)

〉
A

= 0 for i, j = 0, . . . , l , i -= j .

If the search directions of a method defined according to (5.48), (5.49) are
chosen as conjugate, it is called a method of conjugate directions.

Let d(0), . . . , d(m−1) be conjugate directions. Then they are also linearly
independent and thus form a basis in which the solution x of (5.1) can be
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represented, say by the coefficients γk:

x =
m−1∑

k=0

γkd(k) .

Since the d(k) are conjugate and Ax = b holds, we have

γk =
d(k)T

b

d(k)T
Ad(k)

, (5.59)

and the γk can be calculated without knowledge of x. If the d(k) would by
given a priori, for example by orthogonalization of a basis with respect to
〈·, ·〉A, then x would be determined by (5.59).

If we apply (5.59) to determine the coefficients for x− x(0) in the form

x− x(0) =
m−1∑

k=0

γkd(k) ,

which means replacing b with b−Ax(0) in (5.59), then we get

γk = − g(0)T
d(k)

d(k)T
Ad(k)

.

For the kth iterate we have, according to (5.48);

x(k) = x(0) +
k−1∑

i=0

αid
(i)

and therefore (see (5.50))

g(k) = g(0) +
k−1∑

i=0

αiAd(i) .

For a method of conjugate directions this implies

g(k)T
d(k) = g(0)T

d(k)

and therefore

γk = − g(k)T
d(k)

d(k)T
Ad(k)

= αk ,

which means that x = x(m). A method of conjugate directions therefore
is exact after at most m steps. Under certain conditions such a method
may terminate before reaching this step number with g(k) = 0 and the
final iterate x(k) = x. If m is very large, this exactness of a method of
conjugate directions is less important than the fact that the iterates can
be interpreted as the solution of a minimization problem approximating
(5.44):
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Theorem 5.12 The iterates x(k) that are determined by a method of con-
jugate directions minimize the functional f from (5.44) as well as the error∥∥x(k) − x

∥∥
A

on x(0) + Kk(A; g(0)), where

Kk(A; g(0)) := span
{
d(0), . . . , d(k−1)

}
.

This is due to

g(k)T
d(i) = 0 for i = 0, . . . , k − 1 . (5.60)

Proof: It is sufficent to prove (5.60). Due to the one-dimensional mini-
mization this holds for k = 1 and for i = k−1 (see (5.51) applied to k−1).
To conclude the assertion for k from its knowledge for k − 1, we note that
(5.53) implies, for 0 ≤ i < k − 1,

d(i)T (
g(k) − g(k−1)

)
= αk−1d

(i)T
Ad(k−1) = 0 .

!

In the method of conjugate gradients, or CG method, the d(k) are
determined during the iteration by the ansatz

d(k+1) := −g(k+1) + βkd(k) . (5.61)

Then we have to clarify whether
〈
d(k), d(i)

〉
A

= 0 for k > i

can be obtained. The necessary requirement
〈
d(k+1), d(k)

〉
A

= 0 leads to

−
〈
g(k+1), d(k)

〉
A

+ βk

〈
d(k), d(k)

〉
A

= 0 ⇐⇒

βk = g(k+1)T
Ad(k)

d(k)T
Ad(k)

. (5.62)

In applying the method it is recommended not to calculate g(k+1) directly
but to use (5.53) instead, because Ad(k) is already necessary to determine
αk and βk.

The following equivalences hold:

Theorem 5.13 In case the CG method does not terminate prematurely
with x(k−1) being the solution of (5.1), then we have for 1 ≤ k ≤ m

Kk(A; g(0)) = span
{
g(0), Ag(0), . . . , Ak−1g(0)

}

= span
{
g(0), . . . , g(k−1)

}
.

(5.63)

Furthermore,

g(k)T
g(i) = 0 for i = 0, . . . , k − 1, and

dimKk(A; g(0)) = k .
(5.64)
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The space Kk(A; g(0)) = span
{
g(0), Ag(0), . . . , Ak−1g(0)

}
is called the

Krylov (sub)space of dimension k of A with respect to g(0).

Proof: The identities (5.64) are immediate consequences of (5.63) and
Theorem 5.12. The proof of (5.63) is given by induction:
For k = 1 the assertion is trivial. Let us assume that for k ≥ 1 the identity
(5.63) holds and therefore also (5.64) does. Due to (5.53) (applied to k−1)
it follows that

g(k) ∈ A
[
Kk

(
A; g(0)

)]
⊂ span

{
g(0), . . . , Akg(0)

}

and thus

span
{
g(0), . . . , g(k)

}
= span

{
g(0), . . . , Akg(0)

}
,

because the left space is contained in the right one and the dimension of
the left subspace is maximal (= k + 1) due to (5.64) and g(i) -= 0 for all
i = 0, . . . , k. The identity

span
{
d(0), . . . , d(k)

}
= span

{
g(0), . . . , g(k)

}

follows from the induction hypothesis and (5.61). !

The number of operations per iteration can be reduced to one matrix
vector, two scalar products, and three SAXPY operations, if the following
equivalent terms are used:

αk =
g(k)T

g(k)

d(k)T
Ad(k)

, βk =
g(k+1)T

g(k+1)

g(k)T
g(k)

. (5.65)

Here a SAXPY operation is of the form

z := x + αy

for vectors x, y, z and a scalar α.
The identities (5.65) can be seen as follows: Concerning αk we note that

because of (5.51) and (5.61),

−g(k)T
d(k) = −g(k)T (− g(k) + βk−1d

(k−1)
)

= g(k)T
g(k) ,

and concerning βk, because of (5.53), (5.64), (5.62), and the identity (5.49)
for αk, we have

g(k+1)T
g(k+1) = g(k+1)T (

g(k) + αkAd(k)
)

= αkg(k+1)T
Ad(k) = βkg(k)T

g(k)

and hence the assumption. The algorithm is summarized in Table 5.2.
Indeed, the algorithm defines conjugate directions:

Theorem 5.14 If g(k−1) -= 0, then d(k−1) -= 0 and the d(0), . . . , d(k−1) are
conjugate.
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Choose any x(0) ∈ Rm and calculate
d(0) := −g(0) = b−Ax(0) .

For k = 0, 1, . . . put

αk =
g(k)T

g(k)

d(k)T
Ad(k)

,

x(k+1) = x(k) + αkd(k) ,

g(k+1) = g(k) + αkAd(k) ,

βk =
g(k+1)T

g(k+1)

g(k)T
g(k)

,

d(k+1) = −g(k+1) + βkd(k) ,

until the termination criterion (“|g(k+1)|2 = 0”) is fulfilled.

Table 5.2. CG method.

Proof: The proof is done by induction:
The case k = 1 is clear. Assume that d(0), . . . , d(k−1) are all nonzero and
conjugate. Thus according to Theorem 5.12 and Theorem 5.13 the identities
(5.60)–(5.64) hold up to index k. Let us first prove that d(k) -= 0:

Due to g(k) + d(k) = βk−1d(k−1) ∈ Kk(A; g(0)) the assertion d(k) = 0
would imply directly g(k) ∈ Kk(A; g(0)). But relations (5.63) and (5.64)
imply for the index k,

g(k)T
x = 0 for all x ∈ Kk(A; g(0)) ,

which contradicts g(k) -= 0.
In order to prove d(k)T

Ad(i) = 0 for i = 0, . . . , k − 1, according to (5.62)
we have to prove only the case i ≤ k − 2. We have

d(i)T
Ad(k) = −d(i)T

Ag(k) + βk−1d
(i)T

Ad(k−1) .

The first term disappears due to Ad(i) ∈ A
(
Kk−1

(
A; g(0)

))
⊂ Kk

(
A; g(0)

)
,

which means that Ad(i) ∈ span
{
d(0), . . . , d(k−1)

}
, and (5.60). The second

term disappears because of the induction hypothesis. !

Methods that aim at minimizing the error or residual on Kk

(
A; g(0)

)

with respect to a norm ‖ · ‖ are called Krylov subspace methods. Here the
error will be minimized in the energy norm ‖ ·‖ = ‖ ·‖A according to (5.55)
and Theorem 5.12.

Due to the representation of the Krylov space in Theorem 5.13 the
elements y ∈ x(0) + Kk

(
A; g(0)

)
are exactly the vectors of the form

y = x(0) + q(A)g(0), for any q ∈ Pk−1 (for the notation q(A) see Appendix
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A.3). Hence it follows that

y − x = x(0) − x + q(A)A
(
x(0) − x

)
= p(A)

(
x(0) − x

)
,

with p(z) = 1 + q(z)z, i.e., p ∈ Pk and p(0) = 1. On the other hand,
any such polynomial can be represented in the given form (define q by
q(z) = (p(z)− 1) /z). Thus Theorem 5.12 implies

∥∥x(k) − x
∥∥

A
≤ ‖y − x‖A =

∥∥p(A)
(
x(0) − x

)∥∥
A

(5.66)

for any p ∈ Pk with p(0) = 1.
Let z1, . . . , zm be an orthonormal basis of eigenvectors, that is,

Azj = λjzj and zT
i zj = δij for i, j = 1, . . . , m . (5.67)

Then we have x(0) − x =
∑m

j=1 cjzj for certain cj ∈ R, and hence

p(A)
(
x(0) − x

)
=

m∑

j=1

p (λj) cjzj

and therefore

∥∥x(0) − x
∥∥2

A
=
(
x(0) − x

)T
A
(
x(0) − x

)
=

m∑

i,j=1

cicjz
T
i Azj =

m∑

j=1

λj |cj |2

and analogously

∥∥p(A)
(
x(0) − x

) ∥∥2

A
=

m∑

j=1

λj |cjp(λj)|2 ≤
(

max
i=1,...,m

|p(λi)|
)2 ∥∥x(0) − x

∥∥2

A
.

(5.68)
Relations (5.66), (5.68) imply the following theorem:

Theorem 5.15 For the CG method and any p ∈ Pk satisfying p(0) = 1,
we have

∥∥x(k) − x
∥∥

A
≤ max

i=1,...,m
|p(λi)|

∥∥x(0) − x
∥∥

A
,

with the eigenvalues λ1, . . . ,λm of A.

If the eigenvalues of A are not known, but their location is, i.e., if one
knows a, b ∈ R such that

a ≤ λ1, . . . ,λm ≤ b , (5.69)

then only the following weaker estimate can be used:
∥∥x(k) − x

∥∥
A
≤ max
λ∈[a,b]

|p(λ)|
∥∥x(0) − x

∥∥
A

. (5.70)

Therefore, we have to find p ∈ Pm with p(0) = 1 that minimizes
max

{
|p(λ)|

∣∣ λ ∈ [a, b]
}
.
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This approximation problem in the maximum norm appeared already in
(5.43), because there is a bijection between the sets

{
p ∈ Pk

∣∣ p(1) = 1
}

and
{
p ∈ Pk

∣∣ p(0) = 1
}

through

p .→ p̃ , p̃(t) := p(1− t) . (5.71)

Its solution can represented by using the Chebyshev polynomials of the
first kind (see, for example, [38, p. 302]). They are recursively defined by

T0(x) := 1 , T1(x) := x , Tk+1(x) := 2xTk(x) − Tk−1(x) for x ∈ R

and have the representation

Tk(x) = cos(k arccos(x))

for |x| ≤ 1. This immediately implies

|Tk(x)| ≤ 1 for |x| ≤ 1 .

A further representation, valid for x ∈ R, is

Tk(x) =
1
2

((
x +

(
x2 − 1

)1/2
)k

+
(
x−

(
x2 − 1

)1/2
)k
)

. (5.72)

The optimal polynomial in (5.70) is then defined by

p(z) :=
Tk ((b + a− 2z)/(b− a))

Tk ((b + a)/(b− a))
for z ∈ R .

This implies the following result:

Theorem 5.16 Let κ be the spectral condition number of A and assume
κ > 1. Then

∥∥x(k)−x
∥∥

A
≤ 1

Tk

(
κ+1
κ−1

)
∥∥x(0)−x

∥∥
A
≤ 2

(
κ1/2 − 1
κ1/2 + 1

)k ∥∥x(0)−x
∥∥

A
. (5.73)

Proof: Choose a as the smallest eigenvalue λmin and b as the largest one
λmax.

The first inequality follows immediately from (5.70) and κ = b/a. For
the second inequality note that due to (κ+ 1)/(κ− 1) = 1 + 2/(κ− 1) =:
1 + 2η ≥ 1, (5.72) implies

Tk

(
κ+ 1
κ− 1

)
≥ 1

2

(
1 + 2η +

(
(1 + 2η)2 − 1

)1/2
)k

=
1
2

(
1 + 2η + 2 (η(η + 1))1/2

)k
.

Finally,

1 + 2η + 2 (η(η + 1))1/2 =
(
η1/2 + (η + 1)1/2

)2
=

(η + 1)1/2 + η1/2

(η + 1)1/2 − η1/2
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=
(1 + 1/η)1/2 + 1
(1 + 1/η)1/2 − 1

,

which concludes the proof because of 1 + 1/η = κ. !

For large κ we have again

κ1/2 − 1
κ1/2 + 1

≈ 1− 2
κ1/2

.

Compared with (5.58), κ has been improved to κ1/2.
From (5.4) and (5.34) the complexity of the five-point stencil discretiza-

tion of the Poisson equation on the square results in

ln
(

1
ε

)
O
(
κ1/2

)
O(m) = O(n)O(m) = O

(
m3/2

)
.

This is the same behaviour as that of the SOR method with optimal re-
laxation parameter. The advantage of the above method lies in the fact
that the determination of parameters is not necessary for applying the
CG method. For quasi-uniform triangulations, Theorem 3.45 implies an
analogous general statement.

A relation to the semi-iterative methods follows from (5.71): The estimate
(5.66) can also be expressed as

∥∥e(k)
∥∥

A
≤
∥∥p(I −A)e(0)

∥∥
A

(5.74)

for any p ∈ Pk with p(1) = 1.
This is the same estimate as (5.42) for the Richardson iteration (5.28) as

basis method, with the Euclidean norm | · |2 replaced by the energy norm ‖ ·
‖A. While the semi-iterative methods are defined by minimization of upper
bounds in (5.42), the CG method is optimal in the sense of (5.74), without
knowledge of the spectrum σ(I − A). In this manner the CG method can
be seen as an (optimal) acceleration method for the Richardson iteration.

Exercises

5.4 Let A ∈ Rm,m be a symmetric positive definite matrix.

(a) Show that for x, y with xT y = 0 we have

〈x, y〉A
‖x‖A‖y‖A

≤ κ− 1
κ+ 1

,

where κ denotes the spectral condition number of A.
Hint: Represent x, y in terms of an orthonormal basis consisting of
eigenvectors of A.
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(b) Show using the example m = 2 that this estimate is sharp. To this
end, look for a positive definite symmetric matrix A ∈ R2,2 as well
as vectors x, y ∈ R2 with xT y = 0 and

〈x, y〉A
‖x‖A‖y‖A

=
κ− 1
κ+ 1

.

5.5 Prove that the computation of the conjugate direction in the CG
method in the general step k ≥ 2 is equivalent to the three-term recursion
formula

d(k+1) = [αkA + (βk + 1)I] d(k) − βk−1d
(k−1) .

5.6 Let A ∈ Rm,m be a symmetric positive definite matrix with spectral
condition number κ. Suppose that the spectrum σ(A) of the matrix A
satisfies a0 ∈ σ(A) as well as σ(A) \ {a0} ⊂ [a, b] with 0 < a0 < a ≤ b.

Show that this yields the following convergence estimate for the CG
method:

‖x(k) − x‖A ≤ 2
b− a0

a0

(√
κ̂− 1√
κ̂+ 1

)k−1

‖x(0) − x‖A ,

where κ̂ := b/a (< κ ).

5.3 Preconditioned Conjugate Gradient Method

Due to Theorem 5.16, κ(A) should be small or only weakly growing in m,
which is not true for a finite element stiffness matrix.

The technique of preconditioning is used — as already discussed in Sec-
tion 5.1 — to transform the system of equations in such a way that the
condition number of the system matrix is reduced without increasing the
effort in the evaluation of the matrix vector product too much.

In a preconditioning from the left the system of equations is transformed
to

C−1Ax = C−1b

with a preconditioner C; in a preconditioning from the right it is transformed
to

AC−1y = b ,

such that x = C−1y is the solution of (5.1). Since the matrices are generally
sparse, this always has to be interpreted as a solution of the system of
equations Cx = y.

If A is symmetric and positive definite, then this property is generally
violated by the transformed matrix for both variants, even for a symmetric
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positive definite C. We assume for a moment to have a decomposition of
C with a nonsingular matrix W as

C = WWT .

Then Ax = b can be transformed to W−1AW−T WT x = W−1b, i.e., to

By = c with B = W−1AW−T , c = W−1b . (5.75)

The matrix B is symmetric and positive definite. The solution x is then
given by x = W−T y. This procedure is called split preconditioning.

Due to W−T BWT = C−1A and WBW−1 = AC−1, B, C−1A and AC−1

have the same eigenvalues, and therefore also the same spectral condition
number κ. Therefore, C should be “close” to A in order to reduce the
condition number. The CG method, applied to (5.75) and then back trans-
formed, leads to the preconditioned conjugate gradient method (PCG):
The terms of the CG method applied to (5.75) will all be marked by ˜,
with the exception of αk and βk.

Due to the back transformation

x = W−T x̃

the algorithm has the search direction

d(k) := W−T d̃(k)

for the transformed iterate

x(k) := W−T x̃(k) . (5.76)

The gradient g(k) of (5.44) in x(k) is given by

g(k) := Ax(k) − b = W
(
Bx̃(k) − c

)
= Wg̃(k) ,

and hence

g(k+1) = g(k) + αkWBd̃(k) = g(k) + αkAd(k) ,

so that this formula remains unchanged compared with the CG method
with a new interpretation of the search direction. The search directions are
updated by

d(k+1) = −W−T W−1g(k+1) + βkd(k) = −C−1g(k+1) + βkd(k) ,

so that in each iteration step additionally the system of equations
Ch(k+1) = g(k+1) has to be solved.

Finally, we have

g̃(k)T

g̃(k) = g(k)T
C−1g(k) = g(k)T

h(k)

and

d̃(k)T

Bd̃(k) = d(k)T
Ad(k) ,

so that the algorithm takes the form of Table 5.3.
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Choose any x(0) ∈ Rm and calculate
g(0) = Ax(0) − b , d(0) := −h(0) := −C−1g(0) .

For k = 0, 1, . . . put

αk =
g(k)T

h(k)

d(k)T
Ad(k)

,

x(k+1) = x(k) + αkd(k) ,

g(k+1) = g(k) + αkAd(k) ,

h(k+1) = C−1g(k+1) ,

βk =
g(k+1)T

h(k+1)

g(k)T
h(k)

,

d(k+1) = −h(k+1) + βkd(k) ,

up to the termination criterion (“|g(k+1)|2 = 0”) .

Table 5.3. PCG method.

The solution of the additional systems of equations for sparse matrices
should have the complexity O(m), in order not to worsen the complexity
for an iteration. It is not necessary to know a decomposition C = WWT .

Alternatively, the PCG method can be established by noting that C−1A
is self-adjoint and positive definite with respect to the energy scalar product
〈·, ·〉C defined by C:

〈C−1Ax, y〉C =
(
C−1Ax

)T
Cy = xT Ay = xT C(C−1Ay) = 〈x, C−1Ay〉C

and hence also 〈C−1Ax, x〉C > 0 for x -= 0.
Choosing the CG method for (5.75) with respect to 〈·, ·〉C , we obtain

precisely the above method.
In case the termination criterion “

∣∣g(k+1)
∣∣
2

= 0” is used for the iteration,
the scalar product must be additionally calculated. Alternatively, we may
use “

∣∣g(k+1)T
h(k+1)

∣∣ = 0”. Then the residual is measured in the norm
‖ · ‖C−1 .

Following the reasoning at the end of Section 5.2, the PCG method can be
interpreted as an acceleration of a linear stationary method with iteration
matrix

M = I − C−1A .

For a consistent method, we have N = C−1 or, in the formulation (5.10),
W = C. This observation can be extended in such a way that the CG
method can be used for the acceleration of iteration methods, for example
also for the multigrid method, which will be introduced in Section 5.5. Due
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to the deduction of the preconditioned CG method and the identity
∥∥x(k) − x

∥∥
A

=
∥∥x̃(k) − x̃

∥∥
B

,

which results from the transformation (5.76), the approximation properties
for the CG method also hold for the PCG method if the spectral condition
number κ(A) is replaced by κ(B) = κ(C−1A). Therefore,

∥∥x(k) − x
∥∥

A
≤ 2

(
κ1/2 − 1
κ1/2 + 1

)k ∥∥x(0) − x
∥∥

A

with κ = κ(C−1A).
There is a close relation between those preconditioning matrices C, which

keep κ(C−1A) small, and well-convergent linear stationary iteration meth-
ods with N = C−1 (and M = I − C−1A) if N is symmetric and positive
definite. Indeed,

κ(C−1A) ≤ (1 + '(M))/(1 − '(M))

if the method defined by M and N is convergent and N is symmetric for
symmetric A (see Exercise 5.7).

From the considered linear stationary methods because of the required
symmetry we may take

• Jacobi’s method:

This corresponds exactly to the diagonal scaling, which means the division
of each equation by its diagonal element. Indeed, from the decomposition
(5.18) we have C = N−1 = D, and the PCG method is equivalent to the
preconditioning from the left by the matrix C−1 in combination with the
usage of the energy scalar product 〈·, ·〉C .

• The SSOR method:

According to (5.38) we have

C = ω−1(2− ω)−1(D + ωL)D−1(D + ωLT ) .

Hence C is symmetric and positive definite. The solution of the auxiliary
systems of equations needs only forward and backward substitutions with
the same structure of the matrix as for the system matrix, so that the
requirement of lower complexity is also fulfilled. An exact estimation of
κ(C−1A) shows (see [3, pp. 328 ff.]) that under certain requirements for A,
which reflect properties of the boundary value problem and the discretiza-
tion, we find a considerable improvement of the conditioning by using an
estimate of the type

κ(C−1A) ≤ const(κ(A)1/2 + 1) .

The choice of the relaxation parameter ω is not critical. Instead of try-
ing to choose an optimal one for the contraction number of the SSOR
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method, we can minimize an estimation for κ(C−1A) (see [3, p. 337]),
which recommends a choice of ω in [1.2, 1.6].

For the five-point stencil discretization of the Poisson equation on the
square we have, according to (5.34), κ(A) = O(n2), and the above con-
ditions are fulfilled (see [3, pp. 330 f.]). By SSOR preconditioning this is
improved to κ(C−1A) = O(n), and therefore the complexity of the method
is

ln
(

1
ε

)
O
(
κ1/2

)
O(m) = ln

(
1
ε

)
O
(
n1/2

)
O(m) = O

(
m5/4

)
. (5.77)

As discussed in Section 2.5, direct elimination methods are not suitable in
conjunction with the discretization of boundary value problems with large
node numbers, because in general fill-in occurs. As discussed in Section 2.5,
L = (lij) describes a lower triangular matrix with lii = 1 for all i = 1, . . . , m
(the dimension is described there with the number of degrees of freedom
M) and U = (uij) an upper triangular matrix. The idea of the incomplete
LU factorization, or ILU factorization, is to allow only certain patterns
E ∈ {1, . . . , m}2 for the entries of L and U , and instead of A = LU , in
general we can require only

A = LU −R.

Here the remainder R = (rij) ∈ Rm,m has to satisfy

rij = 0 for (i, j) ∈ E . (5.78)

The requirements

aij =
m∑

k=1

likukj for (i, j) ∈ E (5.79)

mean |E| equations for the |E| entries of the matrices L and U . (Notice that
lii = 1 for all i.) The existence of such factorizations will be discussed later.

Analogously to the close connection between the LU factorization and
an LDLT or LLT factorization for symmetric or symmetric positive def-
inite matrices, as defined in Section 2.5, we can use the IC factorization
(incomplete Cholesky factorization) for such matrices. The IC factorization
needs a representation in the following form:

A = LLT −R .

Based on an ILU factorization a linear stationary method is defined by
N = (LU)−1 (and M = I − NA), the ILU iteration. We thus have an
expansion of the old method of iterative refinement.

Using C = N−1 = LU for the preconditioning, the complexity of the
auxiliary systems depends on the choice of the matrix pattern E . In general,
the following is required:

E ′ :=
{
(i, j)

∣∣ aij -= 0 , i, j = 1, . . . , m
}
⊂ E ,

{
(i, i)

∣∣ i = 1, . . . , m
}
⊂ E .
(5.80)
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The requirement of equality E ′ = E is most often used. Then, and also in the
case of fixed expansions of E ′, it is ensured that for a sequence of systems
of equations with a matrix A that is sparse in the strict sense, this will also
hold for L and U . All in all, only O(m) operations are necessary, including
the calculation of L and U , as in the case of the SSOR preconditioning
for the auxiliary system of equations. On the other hand, the remainder R
should be rather small in order to ensure a good convergence of the ILU
iteration and also to ensure a small spectral condition number κ(C−1A).
Possible matrix patterns E are shown, for example, in [28, pp. 275 ff.], where
a more specific structure of L and U is discussed if the matrix A is created
by a discretization on a structured grid, for example by a finite difference
method.

The question of the existence (and stability) of an ILU factorization
remains to be discussed. It is known from (2.56) that also for the existence
of an LU factorization certain conditions are necessary, as for example the
M-matrix property. This is even sufficient for an ILU factorization.

Theorem 5.17 Let A ∈ Rm,m be an M-matrix. Then for a given pat-
tern E that satisfies (5.80), an ILU factorization exists. The hereby defined
decomposition of A as A = LU −R is regular in the following sense:

(
(LU)−1

)
ij
≥ 0 , (R)ij ≥ 0 for all i, j = 1, . . . , m .

Proof: See [16, p. 235]. !

An ILU (or IC) factorization can be defined by solving the equations
(5.78) for lij and uij in an appropriate order. Alternatively, the elimination
or Cholesky method can be used in its original form on the pattern E .

An improvement of the eigenvalue distribution of C−1A is sometimes
possible by using an MIC factorization (modified incomplete Cholesky fac-
torization) instead of an IC factorization. In contrast to (5.79) the updates
in the elimination method for positions outside the pattern are not ignored
here but have to be performed for the corresponding diagonal element.

Concerning the reduction of the condition number by the ILU or IC
preconditioning for the model problem, we have the same situation as for
the SSOR preconditioning. In particular (5.77) holds, too.

The auxiliary system of equations with C = N−1, which means that

h(k+1) = Ng(k+1) ,

can also be interpreted as an iteration step of the iteration method defined
by N with initial value z(0) = 0 and right-hand side g(k+1). An expansion
of the discussed possibilities for preconditioning is therefore obtained by
using a fixed number of iteration steps instead of only one.
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Exercises

5.7 Let A1, A2, . . . , Ak, C1, C2, . . . , Ck ∈ Rm,m be symmetric positive
semidefinite matrices with the property

axT Cix ≤ xT Aix ≤ bxT Cix for x ∈ Rm , i = 1, . . . , k and 0 < a ≤ b .

Prove: If A :=
∑k

i=1 Ai and C :=
∑k

i=1 Ci are positive definite, then the
spectral condition number κ of C−1A satisfies

κ(C−1A) ≤ b

a
.

5.8 Show that the matrix

A :=




2 1 1
1 2 1
1 1 2





is positive definite and its spectral condition number is 4.
Hint: Consider the associated quadratic form.

5.9 Investigate the convergence of the (P)CG method on the basis of
Theorem 3.45 and distinguish between d = 2 and d = 3.

5.4 Krylov Subspace Methods
for Nonsymmetric Systems of Equations

With the different variants of the PCG method we have methods that
are quite appropriate — regarding their complexity — for those systems
of equations that arise from the discretization of boundary value prob-
lems. However, this holds only under the assumption that the system
matrix is symmetric and positive definite, reducing the possibilities of ap-
plication, for example to finite element discretizations of purely diffusive
processes without convective transport mechanism (see (3.23)). Exceptions
for time-dependent problems are only the (semi-)explicit time discretization
(compare (7.72)) and the Lagrange–Galerkin method (see Section 9.4). For
all other cases the systems of equations that arise are always nonsymmetric
and positive real, which means that the system matrix A satisfies

A + AT is positive definite.

It is desirable to generalize the (P)CG methods for such matrices. The CG
method is characterized by two properties:

• The iterate x(k) minimizes f(·) = ‖ · −x‖A on x(0) + Kk

(
A; g(0)

)
,

where x = A−1b.
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• The basis vectors d(i), i = 0, . . . , k− 1, of Kk

(
A; g(0)

)
do not have to

be calculated in advance (and stored in the computer), but will be
calculated by a three-term recursion (5.61) during the iteration. An
analogous relation holds by definition for x(k) (see (5.48)).

The first property can be preserved in the following, whereby the norm
of the error or residual minimization varies in each method. The second
property is partially lost, because generally all basis vectors d(0), . . . , d(k−1)

are necessary for the calculation of x(k). This will result in memory space
problems for large k. As for the CG methods, preconditioning will be nec-
essary for an acceptable convergence of the methods. The conditions for
the preconditioning matrices are the same as for the CG method with the
exception of symmetry and positive definiteness. All three methods of pre-
conditioning are in principle possible. Therefore, preconditioning will not
be discussed in the following; we refer to Section 5.3.

The simplest approach is the application of the CG method to a system
of equations with symmetric positive definite matrix equivalent to (5.1).
This is the case for the normal equations

AT Ax = AT b . (5.81)

The approach is called CGNR (Conjugate Gradient Normal Residual),
because here the iterate x(k) minimizes the Euclidean norm of the residual
on x(0) + Kk

(
AT A; g(0)

)
with g(0) = AT

(
Ax(0) − b

)
. This follows from the

equation

‖y − x‖2
AT A = (Ay − b)T (Ay − b) = |Ay − b|22 (5.82)

for any y ∈ Rm and the solution x = A−1b.
All advantages of the CG method are preserved, although in (5.53) and

(5.65) Ad(k) is to be replaced by AT Ad(k). Additionally to the doubling of
the number of operations this may be a disadvantage if κ2(A) is large, since
κ2(AT A) = κ2(A)2 can lead to problems of stability and convergence. Due
to (5.34) this is to be expected for a large number of degrees of freedom.

Furthermore, in the case of list-based storage one of the operations Ay
and AT y is always very expensive due to searching. It is even possible
that we do not explicitly know the matrix A but that only the mapping
y .→ Ay can be evaluated, which then disqualifies this method completely
(see Exercise 8.6).

The same drawback occurs if

AAT x̃ = b (5.83)

with the solution x̃ = A−T x taken instead of (5.81). If x̃(k) is the kth iterate
of the CG method applied to (5.83), then the x(k) := AT x̃(k) minimizes the
residual in the Euclidean norm on x0 + AT

[
Kk

(
AAT ; g(0)

)]
: Note that

‖ỹ − x̃‖2
AAT =

(
AT ỹ − x

)T (
AT ỹ − x

)
=
∣∣AT ỹ − x

∣∣2
2
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Let g(0) ∈ Rm, g(0) -= 0 be given, Set
v1 := g(0)/ |g(0)|2 .

For j = 1, . . . , k calculate
hij := vT

i Avj for i = 1, . . . , j ,

wj := Avj −
j∑

i=1

hijvi ,

hj+1,j := |wj |2 .

If hj+1,j = 0, termination; otherwise, set
vj+1 := wj/hj+1,j .

Table 5.4. Arnoldi algorithm.

holds for any ỹ ∈ Rm and g(0) = Ax(0) − b. This explains the terminology
CGNE (with E for Error).

Whether a method minimizes the error of the residual obviously depends
on the norm used. For a symmetric positive definite B ∈ Rm,m, any y ∈ Rm,
and x = A−1b, we have

‖Ay − b‖B = ‖y − x‖AT BA .

For B = A−T and a symmetric positive definite A we get the situation of
the CG method:

‖Ay − b‖A−T = ‖y − x‖A .

For B = I we get again (5.82):

|Ay − b|2 = ‖y − x‖AT A .

The minimization of this functional on x(0) + Kk

(
A; g(0)

)
(not

Kk

(
AT A; g(0)

)
) leads to the GMRES method (Generalized Minimum

RESidual).
This (and other) methods are founded algorithmically on the recur-

sive construction of orthonormal bases of Kk

(
A; g(0)

)
by Arnoldi’s method.

This method combines the generation of a basis according to (5.61) and
Schmidt’s orthonormalization (see Table 5.4).

If Arnoldi’s method can be performed up to the index k, then

hij := 0 for j = 1, . . . , k, i = j + 2, . . . , k + 1 ,

Hk := (hij)ij ∈ Rk,k ,

H̄k := (hij)ij ∈ Rk+1,k ,

Vk+1 := (v1, . . . , vk+1) ∈ Rm,k+1 .

The matrix Hk is an upper Hessenberg matrix (see Appendix A.3). The
basis for the GMRES method is the following theorem:
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Theorem 5.18 If Arnoldi’s method can be performed up to the index k,
then

(1) v1, . . . , vk+1 form an orthonormal basis of Kk+1(A; g(0)).

(2)
AVk = VkHk + wkeT

k = Vk+1H̄k , (5.84)

with ek = (0, . . . , 0, 1)T ∈ Rk,

V T
k AVk = Hk . (5.85)

(3) The problem

Minimize |Ay − b|2 for y ∈ x(0) + Kk(A; g(0))

with minimum x(k) is equivalent to

Minimize
∣∣H̄kξ − βe1

∣∣
2

for ξ ∈ Rk (5.86)

with β := −
∣∣g(0)

∣∣
2

and minimum ξ(k), and we have

x(k) = x(0) + Vkξ
(k) .

If Arnoldi’s method terminates at the index k, then

x(k) = x = A−1b .

Proof: (1): The vectors v1, . . . , vk+1 are orthonormal by construction;
hence we have only to prove vi ∈ Kk+1

(
A; g(0)

)
for i = 1, . . . , k + 1. This

follows from the representation

vi = qi−1(A)v1 with polynomials qi−1 ∈ Pi−1 .

In this form we can prove the statement by induction with respect to k.
For k = 0 the assertion is trivial. Let the statement hold for k − 1. The
validity for k then follows from

hk+1,kvk+1 = Avk −
k∑

i=1

hikvi =

(
Aqk−1(A)−

k∑

i=1

hikqi−1(A)

)
v1 .

(2): Relation (5.85) follows from (5.84) by multiplication by V T
k , since

V T
k Vk = I and V T

k wk = hk+1,kV T
k vk+1 = 0 due to the orthonormality

of the vi.
The relation in (5.84) is the matrix representation of

Avj =
j∑

i=1

hijvi + wj =
j+1∑

i=1

hijvi for j = 1, . . . , k .

(3): Due to (1), the space x(0) + Kk

(
A; g(0)

)
has the parametrisation

y = x(0) + Vkξ with ξ ∈ Rk . (5.87)
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The assertion is a consequence of the identity

Ay − b = A
(
x(0) + Vkξ

)
− b = AVkξ + g(0)

= Vk+1H̄kξ − βv1 = Vk+1

(
H̄kξ − βe1

)
,

which follows from (2), since it implies

|Ay − b|2 =
∣∣Vk+1(H̄kξ − βe1)

∣∣
2

=
∣∣H̄kξ − βe1

∣∣
2

due to the orthogonality of Vk+1. The last assertion finally can be seen in
this way: If Arnoldi’s method breaks down at the index k, then relation (2)
becomes

AVk = VkHk ,

and

AVk = Vk+1H̄k

will further hold with vk+1 chosen arbitrarily (due to hk+1,k = 0). Since A
is nonsingular, this also holds for Hk. Hence the choice

ξ := H−1
k (βe1) ,

which satisfies
∣∣H̄kξ − βe1

∣∣
2

= |Hkξ − βe1|2 = 0 ,

is possible. Hence the corresponding y ∈ Rm defined by (5.87) fulfills y =
x(k) = x. !

One problem of Arnoldi’s method is that the orthogonality of the vi is
easily lost due to rounding errors. If one substitutes the assignment

wj := Avj −
j∑

i=1

hijvi

in Table 5.4 by the operations

wj := Avj ,
for i = 1, . . . , j calculate

hij := wT
j vi ,

wj := wj − hijvi ,

which define the same vector, one obtains the modified Arnoldi’s method.
From this relation and from (5.86) the GMRES method is constructed in
its basic form. Alternatively, Schmidt’s orthonormalization can be replaced
by the Householder method (see [28, pp. 159 ff.]). With exact arithmetic
the GMRES algorithm terminates only after reaching the exact solution
(with hk+1,k = 0). This is not always the case for alternative methods
of the same class. For an increasing iteration index k and large problem
dimensions m there may be lack of enough memory for the storage of
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the basis vectors v1, . . . , vk. A remedy is offered by working with a fixed
number n of iterations and then to restart the algorithm with x(0) := x(n)

and g(0) := Ax(0) − b, until finally the convergence criterion is fulfilled
(GMRES method with restart). There is also a truncated version of the
GMRES method, in which only the last n basis vectors are used. The
minimization of the error in the energy norm (on the vector space K)
as with the CG method makes sense only for symmetric positive definite
matrices A. But the variational equation

(Ay − b)T z = 0 for all z ∈ K

that characterizes this minimum in general can be taken as defining con-
dition for y. Further variants of Krylov subspace methods rely on this.
Another large class of such methods is founded on the Lanczos biorthogo-
nalization, in which apart from a basis v1, . . . , vk of Kk(A; v1) another basis
w1, . . . , wk of Kk(AT ; w1) is constructed, such that

vT
j wi = δij for i, j = 1, . . . , k .

The best-known representative of this method is the BICGSTAB method.
For further discussion of this topic see, for example, [28].

Exercises

5.10 Consider the linear system Ax = b, where A = αQ for some α ∈
R \ {0} and some orthogonal matrix Q. Show that, for an arbitrary initial
iterate x(0), the CGNE method terminates after one step with the exact
solution.

5.11 Provided that Arnoldi’s method can be performed up to the index
k, show that it is possible to incorporate a convergence test of the GMRES
method without computing the approximate solution explicitely, i.e., prove
the following formulas:

g(k) := Ax(k) − b = hk+1,keT
k ξ

(k)vk+1 ,

|g(k)|2 = hk+1,k|eT
k ξ

(k)| .

5.5 The Multigrid Method

5.5.1 The Idea of the Multigrid Method

We discuss again the model problem of the five-point stencil discretization
for the Poisson equation on the square and use the relaxed Jacobi’s method.
Then due to (5.31) the iteration matrix is

M = ωMJ + (1− ω)I = I − ω

4
A ,
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with A being the stiffness matrix according to (1.14). For ω̃ = ω/4 this
coincides with the relaxed Richardson method, which according to (5.35)
has the poor convergence behaviour of Jacobi’s method, even for optimal
choice of the parameter. Nevertheless, for a suitable ω the method has
positive properties. Due to (5.25) the eigenvalues of M are

λk,l = 1− ω +
ω

2

(
cos

kπ

n
+ cos

lπ

n

)
, 1 ≤ k, l ≤ n− 1 .

This shows that there is a relation between the size of the eigenvalues and
the position of the frequency of the assigned eigenfunction depending on
the choice of ω: For ω = 1, which is Jacobi’s method, '(M) = λ1,1 =
−λn−1,n−1. Thus the eigenvalues are large if k and l are close to 1 or n.
Hence there are large eigenvalues for eigenfunctions with low frequency as
well as for eigenfunctions with high frequency. For ω = 1

2 , however, we have
'(M) = λ1,1, and the eigenvalues are large only in the case that k and l
are near to 1, which means that the eigenfunctions have low frequency.

In general, if the error of the iterate e(k) had a representation in terms of
orthonormal eigenvectors zν with small eigenvalues, as for example |λν | ≤
1
2 ,

e(k) =
∑

ν:|λν |≤ 1
2

cνzν ,

then according to (5.11) it would follow for the error measured in the
Euclidean vector norm | · |2 that

∣∣e(k+1)
∣∣
2

=

∣∣∣∣∣∣

∑

ν:|λν |≤ 1
2

λνcνzν

∣∣∣∣∣∣
2

=




∑

ν:|λν |≤ 1
2

λ2
νc

2
ν




1/2

≤ 1
2




∑

ν:|λν |≤ 1
2

c2
ν




1/2

=
1
2
∣∣e(k)

∣∣
2

if the eigenvectors are chosen orthonormal with respect to the Euclidean
scalar product (compare (5.67)). For such an initial error and with ex-
act arithmetic the method would thus have a “small” contraction number
independent of the discretization.

For Jacobi’s method damped by ω = 1
2 this means that if the initial error

consists of functions of high frequency only (in the sense of an eigenvector
expansion only of eigenvectors with k or l distant to 1), then the above
considerations hold. But already due to rounding errors we will always
find functions of low frequency in the error such that the above statement
of convergence indeed does not hold, but instead the smoothing property
for the damped Jacobi’s method is valid: A few steps only lead to a low
reduction of the error but smooth the error in the sense that the parts of
high frequency are reduced considerably.
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The very idea of the multigrid method lies in the approximative calcula-
tion of this remaining error on a coarse grid. The smooth error can still be
represented on the coarser grid and should be approximated there. Gener-
ally, the dimension of the problem is greatly reduced in this way. Since the
finite element discretizations are a central topic of this book, we develop
the idea of multigrid methods for such an example. But it will turn out
that the multigrid method can be used as well for both the finite difference
and the finite volume methods. Multigrid methods have even been success-
fully used in areas other than the discretization of differential equations.
Algebraic multigrid methods are generally applicable to systems of linear
equations (5.1) and generate by themselves an abstract analogy of a “grid
hierarchy” (see, for example, [65]).

5.5.2 Multigrid Method for Finite Element Discretizations

Let Tl = Th be a triangulation that originates from a coarse triangulation
T0 by l applications of a refinement strategy, for example the strategy of
Section 2.4.1. As we will see, it is not necessary that, for example, in two
space dimensions going from Tk to Tk+1 each triangle will be partitioned
into four triangles. Only the relation

Vk ⊂ Vk+1 , k = 0, . . . , l − 1 ,

has to hold for finite-dimensional approximation spaces V0, V1, . . . , Vl =
Vh generated by a fixed ansatz; i.e., the approximation spaces have to be
nested. This holds for all approximation spaces discussed in Section 3.3 if
Tk+1 is still a conforming triangulation and results from Tk by partitioning
of K ∈ Tk into a possibly varying number of elements of equal kind.

The nodes of Tk, which are the degrees of freedom of the discretization
(possibly multiple in a Hermite ansatz), are denoted by

ak
i , i = 1, . . . , Mk ,

and the corresponding basis functions of Vk are denoted by

ϕk
i , i = 1, . . . , Mk ,

with the index k = 0, . . . , l. For a quadratic ansatz on a triangle and Dirich-
let boundary conditions the ak

i are just the vertices and midpoints of the
edges in the interior of the domain. Let the underlying variational equa-
tion (2.21) be defined by the bilinear form a and the linear form b on the
function space V . The system of equations to be solved is

Alxl = bl . (5.88)

In addition, we have to consider auxiliary problems

Akxk = bk
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for k = 0, . . . , l − 1. For the discretization matrix on each refinement level
we have, according to (2.34),

(Ak)ij = a
(
ϕk

j ,ϕk
i

)
, i, j = 1, . . . , Mk , k = 0, . . . , l ,

and for the right side of the problem to be solved

(bl)i = b
(
ϕl

i

)
, i = 1, . . . , Ml .

In Section 2.2, xl is denoted by ξ, and bl is denoted by qh.
First we discuss the finite element discretization of a variational equa-

tion with symmetric bilinear form, so that in reference to Lemma 2.14 the
Galerkin method to be solved is equivalent to the Ritz method, i.e., to the
minimization of

Fl(xl) :=
1
2
xT

l Alxl − bT
l xl .

Note that l indicates the discretization level and is not an index of a
component or an iteration step.

We distinguish between the function ul ∈ Vl and the representation
vector xl ∈ RMl , so that

ul =
Ml∑

i=1

xl,i ϕ
l
i . (5.89)

For a Lagrange ansatz we have

xl,i = ul

(
al

i

)
, i = 1, . . . , Ml ,

as illustrated by Figure 5.5.

1

2 ui x i =
1
2
1

1.5

Figure 5.5. ui and xi.

Relation (5.89) defines a linear bijective mapping

Pl : RMl → Vl . (5.90)

Thus for zl ∈ RMl (compare (2.35)),

Fl(zl) =
1
2
zT

l Alzl − bT
l zl =

1
2
a (Plzl, Plzl)− b(Plzl) = F (Plzl) ,

where

F (u) :=
1
2
a(u, u)− b(u) for u ∈ V
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Let x(k)
l be the kth iterate to the solution of (5.88).

(1) Smoothing step: For fixed ν ∈ {1, 2, . . .} calculate

x(k+1/2)
l = Sνl x(k)

l .

Let the corresponding function be:

u(k+1/2)
l = Plx

(k+1/2)
l ∈ Vl .

(2) Coarse grid correction: Solve (exactly)

F
(
u(k+1/2)

l + v
)
→ min (5.93)

varying v ∈ Vl−1, with solution v̄l−1. Then set

x(k+1)
l = P−1

l

(
u(k+1/2)

l + v̄l−1

)
= x(k+1/2)

l + P−1
l v̄l−1 .

Table 5.5. (k + 1)th step of the two-grid iteration.

is the energy functional for the variational equation.
If xl is an approximation of xl, then the error yl := xl −xl satisfies the

error equation

Alyl = bl −Alxl . (5.91)

This equation is equivalent to the minimization problem

Fl (xl + yl) = min
y∈RMl

Fl (xl + y)

and therefore to

F (Plxl + vl) = min
v∈Vl

F (Plxl + v) , (5.92)

with vl = Plyl.
If the error yl is “smooth” in the sense that it can be well approxi-

mated also in the lower-dimensional space Vl−1, one can solve the error
equation (5.91) approximately as part of an iteration step by solving the
minimization problem (5.92) only on Vl−1. The starting condition of a
“smooth” error will be ensured by the application of a fixed number of
steps of a smoothing iteration method. Let Sl denote the application of
such a smoothing operation, for example the damped Jacobi’s method

Slx = x− ωD−1
l (Alx− bl)

with the diagonal matrix Dl corresponding to Al according to (5.18).
Thus we get the algorithm of the two-grid iteration, whose (k+1)th step

is described in Table 5.5. Problem (5.93) from Table 5.5 is equivalent to
(compare with Lemma 2.3)

a
(
u(k+1/2)

l + v, w
)

= b(w) for all w ∈ Vl−1 (5.94)
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(1) A priori smoothing: Perform ν1 smoothing steps:

x(k+1/3)
l = Sν1l x(k)

l ,

where ν1 ∈ {1, 2, . . .} is fixed. Let the corresponding function be

u(k+1/3)
l := Plx

(k+1/3)
l .

(2) Coarse grid correction: Solve on Vl−1 the Galerkin discretization

a(v̄l−1, w) = b̃(w) for all w ∈ Vl−1 (5.95)

with the bilinear form a and the linear form

b̃(w) := b(w) − a
(
u(k+1/3)

l , w
)

(a) for l = 1 exactly,
(b) for l > 1 by µ steps of a multigrid iteration on level l − 1 for a

and b̃ and for the start approximation 0.

Set x(k+2/3)
l = x(k+1/3)

l + P−1
l v̄l−1.

(3) A posteriori smoothing: Perform ν2 smoothing steps

x(k+1)
l = Sν2l x(k+2/3)

l ,

with ν2 ∈ {1, 2, . . .} fixed.

Table 5.6. (k + 1)th step of the multigrid iteration on level l for bilinear form a
and linear form b.

and thus again to the Galerkin discretization of a variational equation with
Vl−1 instead of V , with the same bilinear form and with a linear form
defined by

w .→ b(w)− a
(
u(k+1/2)

l , w
)

for w ∈ Vl−1 .

Hence we can ignore the assumption of symmetry for the bilinear form a
and find the approximative solution of the error equation (5.91) on grid
level l−1 by solving the variational equation (5.94). The equivalent system
of equations will be derived in the following. On the one hand, this prob-
lem has a lower dimension than the original problem, but it also must be
solved for each iteration. This suggests the following recursive procedure:
If we have more than two grid levels, we again approximate this variational
equation by µ multigrid iterations; in the same way we treat the hereby
created Galerkin discretization on level l− 2 until level 0 is reached, where
we solve exactly. Furthermore, to conclude each iteration step smoothing
steps should be performed. This leads to the algorithm of the multigrid
iteration. The (k + 1)th step of the multigrid iteration on level l for the
bilinear form a, linear form b, and starting iteration x(k)

l is described in
Table 5.6.
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In general, ν1 = ν2 is used. In a convergence analysis it turns out that
only the sum of smoothing steps is important. Despite the recursive defi-
nition of a multigrid iteration we have here a finite method, because the
level 0 is reached after at most l recursions, where the auxiliary problem
will be solved exactly. For µ usually only the values µ = 1 or µ = 2 are
used. The terms V-cycle for µ = 1 and W-cycle for µ = 2 are commonly
used, because for an iteration, the sequence of levels on which operations
are executed have the shape of these letters (see Figure 5.6).
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Level

for l = 3 :

µ = 1

0

1
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Level

for  l = 2 :
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o

Figure 5.6. Grid levels for the V-cycle (µ = 1) and the W-cycle (µ = 2).

The problems in (5.94) and (5.95) (see Table 5.6) have the form

a (u + v, w) = b(w) for all w ∈ Vl−1 , (5.96)

where v ∈ Vl−1 is unknown and u ∈ Vl is known. An equivalent system of
equations arises by inserting the basis functions ϕl−1

j , j = 1, . . . , Ml−1,
for w and an appropriate representation for v. If we again take the
representation with respect to ϕl−1

j , we get as in (2.34)

Al−1P
−1
l−1v = dl−1 . (5.97)

Here the residual dk ∈ RMk of u on the different levels k = 0, . . . , l is
defined by

dk,i := b
(
ϕk

i

)
− a

(
u,ϕk

i

)
, i = 1, . . . , Mk .
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We now develop an alternative representation for (5.97) and the coarse
grid correction for possible generalizations beyond the Galerkin approxima-
tions. Therefore, let R ∈ RMl−1,Ml be the matrix that arises through the
unique representation of the basis functions ϕl−1

j with respect to the basis
ϕl

i, which means the elements rji of R are determined by the equations

ϕl−1
j =

Ml∑

i=1

rji ϕ
l
i , j = 1, . . . , Ml−1 .

Then (5.96) is equivalent to

a(v, w) = b(w)− a(u, w) for all w ∈ Vl−1

⇔ a




Ml−1∑

s=1

(
P−1

l−1v
)
s
ϕl−1

s ,ϕl−1
j



 = b
(
ϕl−1

j

)
− a

(
u,ϕl−1

j

)
, j = 1, . . . , Ml−1

⇔
Ml−1∑

s=1

(
P−1

l−1v
)

s
a

(
Ml∑

t=1

rstϕ
l
t ,

Ml∑

i=1

rjiϕ
l
i

)
=

Ml∑

i=1

rji

(
b
(
ϕl

i

)
− a

(
u,ϕl

i

))

⇔
Ml−1∑

s=1

Ml∑

i,t=1

rjia
(
ϕl

t,ϕ
l
i

)
rst

(
P−1

l−1v
)
s

= (Rdl)j , j = 1, . . . , Ml−1 .

Hence the system of equations has the form

RAlR
T
(
P−1

l−1v
)

= Rdl. (5.98)

The matrix R is easy to calculate for a node-based basis ϕl
i satisfying

ϕl
i

(
al

j

)
= δij , since in this case we have for v ∈ Vl,

v =
Ml∑

i=1

v
(
al

i

)
ϕl

i ,

and therefore in particular,

ϕl−1
j =

Ml∑

i=1

ϕl−1
j

(
al

i

)
ϕl

i

and thus

rji = ϕl−1
j

(
al

i

)
.

For the linear ansatz in one space dimension with Dirichlet boundary
conditions (i.e., with V = H1

0 (a, b) as basic space) this means that

R =





1
2 1 1

2
1
2 1 1

2

. . .
1
2 1 1

2




. (5.99)
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The representation (5.98) can also be interpreted in this way:
Due to Vl−1 ⊂ Vl the identify defines a natural prolongation from Vl−1 to
Vl, which means that

p̃ : Vl−1 → Vl , v .→ v ,

as illustrated by Figure 5.7.

1

1
2

1

1
2

Figure 5.7. Prolongation.

This prolongation corresponds to a prolongation p from RMl−1 to RMl ,
the canonical prolongation, through the transition to the representation
vectors (5.90). It is given by

p := P−1
l Pl−1 , (5.100)

since for xl−1 ∈ RMl−1 , p can be composed as follows:

xl−1 .→ Pl−1xl−1
p̃.→ Pl−1xl−1 .→ P−1

l Pl−1xl−1 .

Obviously, p is linear and can be identified with its matrix representation
in RMl,Ml−1 . Then

p = RT (5.101)

holds, because

Pl−1y =
Ml−1∑

j=1

yjϕ
l−1
j =

Ml∑

i=1

Ml−1∑

j=1

yjrjiϕ
l
i ,

i.e., RT y = P−1
l (Pl−1y) for any y ∈ RMl−1 .

In the following RMl will be endowed with a scalar product 〈·, ·〉(l), which
is an Euclidean scalar product scaled by a factor Sl,

〈xl, yl〉
(l) := Sl

Ml∑

i=1

xl,i yl,i . (5.102)

The scaling factor is to be chosen such that for the induced norm ‖ · ‖l and
the L2(Ω)-norm on Vl,

C1 ‖Plxl‖0 ≤ ‖xl‖l ≤ C2 ‖Plxl‖0 (5.103)

for x ∈ RMl , l = 0, 1, . . ., with constants C1, C2 independent of l: If the
triangulations are members of a regular and quasi-uniform family Th (see



5.5. Multigrid Method 247

Definition 3.28), then in d space dimensions one can choose Sl = hd
l , with

hl being the maximal diameter of K ∈ Tl (see Theorem 3.43).
Let r : RMl → RMl−1 be defined by

r = p∗ , (5.104)

with the adjoint p∗ defined with respect to the scalar products 〈·, ·〉(l−1)

and 〈·, ·〉(l); that is,
〈
r xl , yl−1

〉(l−1) =
〈
p∗ xl , yl−1

〉(l−1) =
〈
xl , p yl−1

〉(l)
.

If p is the canonical prolongation, then r is called the canonical restriction.
For the representation matrices,

Sl−1

Sl
r = pT = R . (5.105)

In example (5.102) for d = 2 with hl = hl−1/2 we have Sl−1/Sl = 1/4. Due
to Plp = Pl−1, the canonical restriction of RMl on RMl−1 satisfies

rRl = Rl−1 ,

where Rl : Vl → RMl is defined as the adjoint of Pl,

〈Plxl, vl〉0 = 〈xl, Rlvl〉(l) for all xl ∈ RMl , vl ∈ Vl ,

because for any yl−1 ∈ RMl−1 and for vl−1 ∈ Vl−1 ⊂ Vl,
〈
rRlvl−1 , yl−1

〉(l−1) =
〈
Rlvl−1 , pyl−1

〉(l) =
〈
vl−1 , Plpyl−1

〉
0

=
〈
vl−1, Pl−1yl−1

〉
0

=
〈
Rl−1vl−1, yl−1

〉(l−1)
.

Using (5.105) we see the equivalence of equation (5.98) to

(rAlp)yl−1 = rdl . (5.106)

Setting v := Pl−1ỹl−1 for a perhaps only approximative solution ỹl−1 of
(5.106), the coarse grid correction will be finished by addition of P−1

l v. Due
to

P−1
l v = P−1

l Pl−1

(
P−1

l−1v
)

= p
(
P−1

l−1v
)

,

the coarse grid correction is

x(k+2/3)
l = x(k+1/3)

l + p(ỹl−1) .

The above-mentioned facts suggest the following structure of a general
multigrid method: For discretizations defining a hierarchy of discrete
problems,

Alxl = bl ,

one needs prolongations

p : RMk−1 → RMk
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and restrictions

r : RMk → RMk−1

for k = 1, . . . , l and the matrices Ãk−1 for the error equations. The coarse
grid correction steps (5.93) and (5.95) hence take the following form:

Solve (with µ steps of the multigrid method)

Ãl−1yl−1 = r
(
bl −Alx

(k+1/3)
l

)

and set

x(k+2/3)
l = x(k+1/3)

l + pyl−1 .

The above choice

Ãl−1 = rAlp

is called the Galerkin product. For Galerkin approximations this coincides
with the discretization matrix of the same type on the grid of level l−1 due
to (5.97). This is also a common choice for other discretizations and then
an alternative to the Galerkin product. In view of the choice of p and r we
should observe the validity of (5.104). An interpolational definition of the
prolongation on the basis of (finite element) basis functions as for example
(5.101) (see also example (5.99)) is also common in other discretizations. In
more difficult problems, as for example those with (dominant) convection
in addition to diffusive transport processes, nonsymmetric problems arise
with a small constant of V -ellipticity. Here the use of matrix-dependent,
that means Al-dependent, prolongations and restrictions is recommended.

5.5.3 Effort and Convergence Behaviour

In order to judge the efficiency of a multigrid method the number of opera-
tions per iteration and the number of iterations (required to reach an error
level ε, see (5.4)) has to be estimated. Due to the recursive structure, the
first number is not immediately clear. The aim is to have only the optimal
amount of O(Ml) operations for sparse matrices. For this the dimensions
of the auxiliary problems have to decrease sufficiently. This is expressed by
the following:

There exists a constant C > 1 such that

Ml−1 ≤ Ml/C for l ∈ N . (5.107)

Hence we assume an infinite hierarchy of problems and/or grids, which
also corresponds to the asymptotic point of view of a discretization from
Section 3.4. Relation (5.107) is thus a condition for a refinement strategy.
For the model problem of the Friedrichs–Keller triangulation of a rectangle
(see Figure 2.9) in the case of a regular “red” refinement we have hl =
hl−1/2. Thus C = 4, and for analogous constructions in d space dimensions
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C = 2d. The matrices that appear should be sparse, so that for level l the
following holds:

smoothing step = CSMl operations,
error calculation and restrictions = CDMl operations,
prolongation and correction = CCMl operations.

Then we can prove the following (see [16, p. 326]):
If the number µ of multigrid steps in the recursion satisfies

µ < C , (5.108)

then the number of operations for an iteration step for a problem on level
l can be estimated by

C(ν)Ml . (5.109)

Here ν is the number of a priori and a posteriori smoothing steps and

C(ν) =
νCS + CD + CS

1− µ/C
+ O

(
(µ/C)l

)
.

The requirement (5.108) will be satisfied in general through the restriction
to µ = 1, µ = 2. Analogously, the memory requirement is O(Ml), since

l∑

k=0

Mk ≤
C

C − 1
Ml .

Whether this larger effort (of equal complexity) in comparison to other
methods discussed is justified will be decided by the rate of convergence.
The multigrid method is a linear stationary method. The iteration matrix
MTGM

l of the two-grid method results from

x(k+1/2)
l = Sνl x(k)

l ,

x(k+1)
l = x(k+1/2)

l + p
(
A−1

l−1

(
r
(
bl −Alx

(k+1/2)
l

)))

to

MTGM
l = (I − pA−1

l−1rAl)Sνl . (5.110)

Also, the consistency of the method follows immediately if the smoothing
iteration is consistent.

The analysis of the convergence of the multigrid method can be reduced
to the analysis of the two-grid method, since the iteration matrix is a
modification of MTGM

l (see [16, p. 328]). For a large class of a priori and a
posteriori smoothing operators as well as of restrictions and prolongations
it can be shown (see [16, p. 347]) that there exists a constant ' ∈ (0, 1)
independent of the discretization parameter hl such that '(MTGM ) ≤ '.
Combined with (5.109) this shows that multigrid methods are optimal in
their complexity. This also shows their potential superiority compared with
all other methods described.
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In the following we will only indicate the schematic procedure to prove
this assertion. It is sufficient to prove the following two properties, where
the spectral norm is used as the matrix norm, that is, the matrix norm
that is induced by the Euclidean vector norm.

(1) Smoothing property:

There exists CS > 0 :
∥∥AlS

ν
l

∥∥ ≤ CS

ν
‖Al‖ .

(2) Approximation property:

There exists CA > 0 :
∥∥A−1

l − pA−1
l−1r

∥∥ ≤ CA‖Al‖−1 . (5.111)

Due to

MTGM =
(
A−1

l − pA−1
l−1r

)
AlS

ν
l ,

we can conclude that
∥∥MTGM

∥∥ ≤
∥∥A−1

l − pA−1
l−1r

∥∥ ∥∥AlS
ν
l

∥∥ ≤ CSCA

ν
,

which means that for sufficiently large ν,

‖MTGM‖ ≤ ' < 1

with ' independent of l.
The smoothing property is of an algebraic nature, but for the proof of

the approximation property we will use — at least indirectly — the original
variational formulation of the boundary value problem and the correspond-
ing error estimate. Therefore, we discuss only the smoothing property for,
as an example, the relaxed Richardson method for a symmetric positive
definite matrix Al, i.e.,

Sl = Il − ωAl with ω ∈
(

0,
1

λmax(Al)

]
.

Let {zi}Ml
i=1 be an orthonormal basis of eigenvectors of Al. For any initial

vector x(0) represented in this basis as x(0) =
∑Ml

i=1 cizi it follows that
(compare (5.68))

∥∥AlS
ν
l x(0)

∥∥2 =
Ml∑

i=1

λ2
i (1− λiω)2νc2

i = ω−2
Ml∑

i=1

(λiω)2(1− λiω)2νc2
i

≤ ω−2

[
max
ξ∈[0,1]

ξ(1− ξ)ν
]2 Ml∑

i=1

c2
i .

The function ξ .→ ξ(1− ξ)ν has its maximum at ξmax = (ν + 1)−1; thus

ξmax(1 − ξmax)ν =
1

ν + 1

(
1− 1

ν + 1

)ν
=

1
ν

(
ν

ν + 1

)ν+1

≤ 1
eν

.
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Hence
∥∥AlS

ν
l x(0)

∥∥ ≤ 1
ωeν

∥∥x(0)
∥∥ ,

which implies
∥∥AlS

ν
l

∥∥ ≤ 1
ωeν

.

Since the inclusion ω ∈ (0, 1/λmax(Al)] can be written in the form ω =
σ/‖Al‖ with σ ∈ (0, 1], we have CS = 1/(σe).

The approximation property can be motivated in the following way. The
fine grid solution xl of Alxl = dl is replaced in the coarse grid correction
by pxl−1 from Al−1xl−1 = dl−1 := rdl. Therefore, pxl−1 ≈ A−1

l dl should
hold. The formulation (5.111) thus is just a quantitative version of this
requirement. Since in the symmetric case ‖Al‖−1 is simply the reciprocal
value of the largest eigenvalue, (3.140) in Theorem 3.45 establishes the
relation to the statements of convergence in Section 3.4. For a more exact
analysis of convergence and a more extensive description of this topic we
refer to the cited literature (see also [17]).

Exercises

5.12 Determine the prolongation and restriction according to (5.101) and
(5.104) for the case of a linear ansatz on a Friedrichs–Keller triangulation.

5.13 Prove the consistency of the two-grid method (5.110) in the case of
the consistent smoothing property.

5.6 Nested Iterations

As in Section 5.5 we assume that besides the system of equations

Alxl = bl

with Ml unknowns, there are given analogous low-dimensional systems of
equations

Akxk = bk , k = 0, . . . , l− 1 , (5.112)

with Mk unknowns, where M0 < M1 < · · · < Ml. Let all systems of
equations be an approximation of the same continuous problem such that
an error estimate of the type

‖u− Plxl‖ ≤ CAhαl

holds, with Pl according to (5.90) and α > 0. Here ‖ · ‖ is a norm on the
basic space V , and the constant CA generally depends on the solution u
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of the continuous problem. The discretization parameter hl determines the
dimension Ml: In the simplest case of a uniform refinement, hd

l ∼ 1/Ml

holds in d space dimensions. One may also expect that for the discrete
solution,

‖pxk−1 − xk‖k ≤ C1CAhαk , k = 1, . . . , l ,

holds with a constant C1 > 0. Here ‖ · ‖k is a norm on RMk , and the
mapping p = pk−1,k : RMk−1 → RMk is a prolongation, for example the
canonical prolongation introduced in Section 5.5. In this case the estimate
can be rigorously proven with the definition of the canonical prolongation
p = P−1

k Pk−1:

‖pxk−1 − xk‖k =
∥∥P−1

k

(
Pk−1xk−1 − Pkxk

)∥∥
k

≤
∥∥P−1

k

∥∥
L[Vk,RMk ]

∥∥Pk−1xk−1 − Pkxk

∥∥

≤
∥∥P−1

k

∥∥
L[Vk,RMk ]

(
CAhαk + CAhαk−1

)
≤ C1CAhαk

with

C1 = max
j=1,...,l

{∥∥P−1
j

∥∥
L[Vj ,RMj ]

(
1 +

(
hj−1

hj

)α)}
.

Let the system of equations be solved with an iterative method given by
the fixed-point mapping Φk, k = 0, . . . , l, which means that xk according
to (5.112) satisfies xk = Φk(xk, bk). Then it is sufficient to determine an
iterate x̃l with an accuracy

‖x̃l − xl‖l ≤ C̃Ahαl (5.113)

with C̃A := CA/‖Pl‖L[RMl ,V ], because then we also have

‖Plx̃l − Plxl‖ ≤ CAhαl .

If one does not have a good initial iterate from the concrete context, the
algorithm of nested iterations explained in Table 5.7 can be used. It is
indeed a finite process.

The question is how to choose the iteration numbers mk such that (5.113)
finally holds, and whether the arising overall effort is acceptable. An answer
to this question is provided by the following theorem:

Theorem 5.19 Let the iterative method Φk have the contraction number
'k with respect to ‖ · ‖k. Assume that there exist constants C2, C3 > 0 such
that

‖p‖L[RMk−1 ,RMk ] ≤ C2 ,

hk−1 ≤ C3hk ,

for all k = 1, . . . , l. If the iteration numbers mk for the nested iterations
are chosen in such a way that

'mk
k ≤ 1/(C2C

α
3 + C1‖Pl‖) , (5.114)
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Choose mk, k = 1, . . . , l.
Let x̃0 be an approximation of x0,

for example x̃0 = x0 = A−1
0 b0 .

For k = 1, . . . , l:

x̃(0)
k := p x̃k−1 .

Perform mk iterations:
x̃(i)

k := Φk

(
x̃(i−1)

k , bk

)
, i = 1, . . . , mk .

Set x̃k := x̃(mk)
k .

Table 5.7. Nested Iteration.

then

‖x̃k − xk‖k ≤ C̃Ahαk ,

for all k = 1, . . . , l, provided that this estimate holds for k = 0.

Proof: The proof is given by induction on k. Assume that the assertion
is true for k − 1. This induces

‖x̃k − xk‖k ≤ 'mk
k ‖px̃k−1 − xk‖k

≤ 'mk
k (‖p(x̃k−1 − xk−1)‖k + ‖pxk−1 − xk‖k)

≤ 'mk
k

(
C2C̃Ahαk−1 + C1CAhαk

)

≤ 'mk
k (C2C

α
3 + C1‖Pl‖) C̃Ahαk .

!

Theorem 5.19 allows the calculation of the necessary number of iterations
for the inner iteration from the norms ‖p‖L[RMk−1 ,RMk ], ‖P

−1
k ‖L[Vk,RMk ] and

the constants hk−1
hk

for k = 1, . . . , l, as well as the order of convergence α
of the discretization.

In order to estimate the necessary effort according to (5.114) more ex-
actly, the dependence of 'k of k must be known. In the following we consider
only the situation, known as the multigrid method, of a method of optimal
complexity

'k ≤ ' < 1 .

Here, in contrast to other methods, the number of iterations can be cho-
sen constant (mk = m for all k = 1, . . . , l). If, furthermore, the estimate
(5.107) holds with the constant C, then analogously to the consideration
in Section 5.5 the total number of operations for the nested iteration can
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be estimated by

m
C

C − 1
CMl .

Here CMk is the number of operations for an iteration with the iteration
method Φk.

In the model problem of the Friedrichs–Keller triangulation with uniform
refinement we have C/(C − 1) = 4/3 and C3 = 2. For ‖ · ‖ = ‖ · ‖0 as basic
norm, α = 2 is a typical case according to Theorem 3.37. The existence of
the constant C2 will hereby finally be ensured consistently by the condition
(5.103), observing (5.100). Assuming also that the constants C1, C2, ‖Pl‖
are “small” and the iteration method has a “small” contraction number ',
only a small number of iterations m is necessary, in the ideal case m = 1.
At least in this situation we can count on only a small increase of the
necessary effort through the process of nested iterations, which provides an
“appropriate” approximation x̃k on all levels k of discretization.

Finally, it is to be observed that the sequence of the discrete problems
has to be defined only during the process of the nested iteration. This offers
the possibility to combine it with a posteriori error estimators as discussed
in Section 4.2, in order to develop a grid Tk+1 on which the discrete problem
of level k + 1 is determined, on the basis of x̃k as a refinement of Tk.



6
The Finite Volume Method

Finite volume methods are widely applied when differential equations in
divergence form (cf. Section 0.5) or differential equations involving such
differential expressions (for example, parabolic differential equations) are to
be solved numerically. In the class of second-order linear elliptic differential
equations, expressions of the form

Lu := −∇ · (K∇u − c u) + r u = f (6.1)

are typical (cf. (0.33)), where

K : Ω→ Rd,d , c : Ω→ Rd , r, f : Ω→ R .

The corresponding “parabolic version” is

∂u

∂t
+ Lu = f

and will be treated in Chapter 7.
First-order partial differential equations such as the classical conservation

laws

∇ · q(u) = 0 ,

where q : R → Rd is a nonlinear vector field depending on u, or higher-order
partial differential equations (such as the biharmonic equation (3.36)), or
even systems of partial differential equations can be successfully discretized
by the finite volume method.

In correspondence to the comparatively large class of problems that can
be treated by the finite volume method, there are rather different sources
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1960 Forsythe and Wasow computation of neutron diffusion
1961 Marčuk computation of nuclear reactors
1971 McDonald fluid mechanics
1972 MacCormack and Paullay fluid mechanics
1973 Rizzi and Inouye fluid mechanics in 3D
1977 Samarski integro-interpolation method,

balance method
...

1979 Jameson finite volume method
1984 Heinrich integro-balance method,

generalized finite difference method
...

1987 Bank and Rose box method
...

Table 6.1. Some sources of the finite volume method.

originating mainly from practical applications. Some of these sources are
listed in Table 6.1. In contrast to finite difference or finite element methods,
the theoretical understanding of the finite volume method remained at an
early stage for a long time; only in recent years has essential progress been
noted.

The finite volume method can be viewed as a discretization method of
its own right. It includes ideas from both finite difference and finite element
methods. So in the literature approaches can be found that interpret it as
a “generalized finite difference method” or rather as a variant of the finite
element method. In this chapter, we will consider only equations of the
type (6.1).

6.1 The Basic Idea of the Finite Volume Method

Now we will describe the fundamental steps in the derivation of the finite
volume method. For simplicity, we restrict ourselves to the case d = 2 and
r = 0. Furthermore, we set q(u) := −K∇u + c u. Then equation (6.1)
becomes

∇ · q(u) = f . (6.2)

In order to obtain a finite volume discretization, the domain Ω will be
subdivided into M subdomains Ωi such that the collection of all those
subdomains forms a partition of Ω, that is:

(1) each Ωi is an open, simply connected, and polygonally bounded set
without slits,
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(2) Ωi ∩ Ωj = ∅ (i -= j),

(3) ∪M
i=1Ωi = Ω .

These subdomains Ωi are called control volumes or control domains.
Without going into more detail we mention that there also exist finite

volume methods with a well-defined overlapping of the control volumes
(that is, condition 2 is violated).

The next step, which is in common with all finite volume methods, con-
sists in integrating equation (6.2) over each control volume Ωi. After that,
Gauss’s divergence theorem is applied:

∫

∂Ωi

ν · q(u) dσ =
∫

Ωi

f dx , i ∈ {1, . . . , M} ,

where ν denotes the outer unit normal to ∂Ωi. By the first condition of the
partition, the boundary ∂Ωi is formed by straight-line segments Γij (j =
1, . . . , ni), along which the normal ν|Γij =: νij is constant (see Figure 6.1).
So the line integral can be decomposed into a sum of line integrals from
which the following equation results:

ni∑

j=1

∫

Γij

νij · q(u) dσ =
∫

Ωi

f dx . (6.3)

ν

ν

ν

ν ν

Ω

i

i

i

i i

i

5

4

3

2 1

Figure 6.1. A control volume.

Now the integrals occurring in (6.3) have to be approximated. This can
be done in very different ways, and so different final discretizations are
obtained.

In general, finite volume methods can be distinguished by the following
criteria:

(1) the geometric shape of the control volumes Ωi,

(2) the position of the unknowns (“problem variables”) with respect to
the control volumes,
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(3) the approximation of the boundary (line (d = 2) or surface (d = 3))
integrals.

Especially the second criterion divides the finite volume methods into two
large classes: the cell-centred and the cell-vertex finite volume methods. In
the cell-centred methods, the unknowns are associated with the control
volumes (for example, any control volume corresponds to a function value
at some interior point (e.g., at the barycentre)). In the cell-vertex methods,
the unknowns are located at the vertices of the control volumes. Sometimes,
instead of the first-mentioned class a subdivision into two classes, the so-
called cell-centred and node-centred methods, is considered. The difference
is whether the problem variables are assigned to the control volumes or,
given the problem variables, associated control volumes are defined.

Example 6.1 Consider the homogeneous Dirichlet problem for the Pois-
son equation on the unit square:

−∆u = f in Ω = (0, 1)2 ,
u = 0 on ∂Ω .

a a

a

a

a

i j

j

j

j

1

2

3

4

Problem variables:

Function values at the nodes ai

of a square grid with mesh width
h > 0

Control volumes:

Ωi := {x ∈ Ω : |x− ai|∞ < h
2 }

Figure 6.2. Problem variables and control volumes in a cell-centred finite volume
method.

For an inner control volume Ωi (i.e., ai ∈ Ω), equation (6.3) takes the
form

−
4∑

k=1

∫

Γijk

νijk ·∇u dσ =
∫

Ωi

f dx ,

where Γijk := ∂Ωi∩∂Ωjk . A closer look at the directional derivatives shows
that

νij1 ·∇u = ∂1u , νij2 ·∇u = ∂2u ,
νij3 ·∇u = −∂1u , νij4 ·∇u = −∂2u .

i.e. they are just partial derivatives with respect to the first or the second
variable on the corresponding parts of the boundary.
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Approximating the integrals on Γijk by means of the midpoint rule and
replacing the derivatives by difference quotients, we have

−
4∑

k=1

∫

Γijk

νijk ·∇u dσ ≈ −
4∑

k=1

νijk ·∇u

(
ai + ajk

2

)
h

≈ −
[
u(aj1)−u(ai)

h
+

u(aj2)−u(ai)
h

− u(ai)−u(aj3)
h

− u(ai)−u(aj4)
h

]
h

= 4 u(ai)−
4∑

k=1

u(ajk) .

Thus, we obtain exactly the expression that results from the application of
a finite element method with continuous, piecewise linear ansatz and test
functions on a Friedrichs–Keller triangulation (cf. Figure 2.9).

Furthermore, if we approximate the integral
∫
Ωi

f dx by f(ai)h2, we see
that this term coincides with the trapeziodal rule applied to the right-hand
side of the mentioned finite element formulation (cf. Lemma 2.13).

Actually, it is no accident that both discretization methods lead to the
same algebraic system. Later on we will prove a more general result to
confirm the above observation.

The boundary control volumes are treated as follows:
If ai ∈ ∂Ω, then parts of the boundary ∂Ωi lie on ∂Ω. At these nodes,

the Dirichlet boundary conditions already prescribe values of the unknown
function, and so there is no need to include the boundary control volumes
into the balance equations (6.3).

A detailed description for the case of flux boundary conditions will be
given later, in Section 6.2.4; see (6.23).

Example 6.2 We consider the same boundary value problem as in
Example 6.1.

Ω i

Problem variables:

Function values at the nodes ai

of a square grid with mesh width
h > 0

Control volumes:

Subsquares of the grid

Figure 6.3. Problem variables and control volumes in a cell-vertex finite volume
method.
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In the interior of Ω, the resulting discretization yields a 12-point stencil
(in the terminology of finite difference methods).

Remark 6.3 In the finite volume discretization of systems of partial dif-
ferential equations (resulting from fluid mechanics, for example), both
methods are used simultaneously for different variables; see Figure 6.4.

.
O

: problem variable of type 1

: problem variable of type 2

O O O O O

OOOOO

O O O O O

OOOOO

O O O O O.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Figure 6.4. Finite volume discretization of systems of partial differential
equations.

Assets and Drawbacks of the Finite Volume Method
Assets:

• Flexibility with respect to the geometry of the domain Ω (as in finite
element methods).

• Admissibility of unstructured grids (as in finite element methods,
important for adaptive methods).

• Simple assembling.

• Conservation of certain laws valid for the continuous problem
(for example, conservation laws or maximum principles). This
property is important in the numerical solution of differential equa-
tions with discontinuous coefficients or of convection-dominated
diffusion-convection equations (see Section 6.2.4).

• Easy linearization of nonlinear problems (simpler than in finite
element methods (Newton’s method)).

• Simple discretization of boundary conditions (as in finite element
methods, especially a “natural” treatment of Neumann or mixed
boundary conditions).

• In principle, no restriction of the spatial dimension d of the domain
Ω.
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Drawbacks:

• Smaller field of applications in comparison with finite element or finite
difference methods.

• Difficulties in the design of higher order methods (no so-called p-
version available as in the finite element method).

• In higher spatial dimensions (d ≥ 3), the construction of some classes
or types of control volumes may be a complex task and thus may lead
to a time-consuming assembling.

• Difficult mathematical analysis (stability, convergence, . . . ).

Exercises

6.1 Given the boundary value problem

−(au′)′ = 0 in (0, 1) , u(0) = 1 , u(1) = 0 ,

with piecewise constant coefficients

a(x) :=
{
κα , x ∈ (0, ξ) ,

α , x ∈ (ξ, 1) ,

where α,κ are positive constants and ξ ∈ (0, 1) \ Q :

(a) What is the weak solution u ∈ H1(0, 1) of this problem?
(b) For general “smooth” coefficients a, the differential equation is

obviously equivalent to

−au′′ − a′u′ = 0 .

Therefore, the following discretization is suggested:

−ai
ui−1 − 2ui + ui+1

h2
− ai+1 − ai−1

2h

ui+1 − ui−1

2h
= 0 ,

where an equidistant grid with the nodes xi = ih (i = 0, . . . , N + 1)
and ai := a(xi), ui :≈ u(xi) is used.
This discretization is also formally correct in the given situation of
discontinuous coefficients. Find the discrete solution (ui)N

i=1 in this
case.

(c) Under what conditions do the values ui converge to u(xi) for h → 0?
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6.2 The Finite Volume Method for Linear Elliptic
Differential Equations of Second Order on
Triangular Grids

In this section we will explain the development and the analysis of a finite
volume method of “cell-centred” type for a model problem. Here, Ω ⊂ R2

is a bounded, simply connected domain with a polygonal boundary, but
without slits.

6.2.1 Admissible Control Volumes

The Voronoi Diagram
By {ai}i∈Λ ⊂ Ω we denote a consecutively numbered point set that includes
all vertices of Ω, where Λ is the corresponding set of indices. Typically, the
points ai are placed at those positions where the values u(ai) of the exact
solution u are to be approximated. The convex set

Ω̃i :=
{
x ∈ R2

∣∣ |x− ai| < |x− aj | for all j -= i
}

is called the Voronoi polygon (or Dirichlet domain, Wigner–Seitz cell,
Thiessen polygon, . . . ). The family

{
Ω̃i

}
i∈Λ is called the Voronoi diagram

of the point set {ai}i∈Λ .. . .. .. . .
boundary of 

boundary of 

Ω

Ω∼i

Figure 6.5. Voronoi diagram.

The Voronoi polygons are convex, but not necessarily bounded, sets (con-
sider the situation near the boundary in Figure 6.5). Their boundaries are
polygons. The vertices of these polygons are called Voronoi vertices.

It can be shown that at any Voronoi vertex at least three Voronoi poly-
gons meet. According to this property, Voronoi vertices are classified into
regular and degenerate Voronoi vertices: In a regular Voronoi vertex, the
boundaries of exactly three Voronoi polygons meet, whereas a degenerate
Voronoi vertex is shared by at least four Voronoi polygons. In the latter
case, all the corresponding nodes ai are located at some circle (they are
“cocyclic”, cf. Figure 6.6).
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(a1 - a4 are cocyclic)
5

4

3

2

1

a

a

a
a

a

..
..

.

Figure 6.6. Degenerate and regular Voronoi vertex.

Now the elements Ωi (control volumes) of the partition of Ω required for
the definition of the finite volume method can be introduced as follows:

Ωi := Ω̃i ∩ Ω , i ∈ Λ .

As a consequence, the domains Ωi need not necessarily be convex if Ω is
nonconvex (cf. Figure 6.5).

Furthermore, the following notation will be used:

Λi :=
{
j ∈ Λ \ {i} : ∂Ωi ∩ ∂Ωj -= ∅

}
, i ∈ Λ ,

for the set of indices of neighbouring nodes,
Γij := ∂Ωi ∩ ∂Ωj , j ∈ Λi , for a joint piece of the

boundaries of neighbouring control volumes,
mij for the length of Γij .

The dual graph of the Voronoi diagram is defined as follows:
Any pair of points ai, aj such that mij > 0 is connected by a straight-line

segment. In this way, a further partition of Ω with an interesting property
results.

Theorem 6.4 If all Voronoi vertices are regular, then the dual graph coin-
cides with the set of edges of a triangulation of the convex hull of the given
point set.

This triangulation is called a Delaunay triangulation.
If among the Voronoi vertices there are degenerate ones, then a tri-

angulation can be obtained from the dual graph by a subsequent local
triangulation of the remaining m-polygons (m ≥ 4). A Delaunay triangula-
tion has the interesting property that two interior angles subtended by any
given edge sum to no more than π. In this respect Delaunay triangulations
satisfy the first part of the angle condition formulated in Section 3.9 for
the maximum principle in finite element methods.

Therefore, if Ω is convex, then we automatically get a triangulation to-
gether with the Voronoi diagram. In the case of a nonconvex domain Ω,
certain modifications could be required to achieve a correct triangulation.
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This edge has to be
removed from the
Delaunay triangulation.

. . .. .. . .
Figure 6.7. Delaunay triangulation to the Voronoi diagram from Figure 6.5.

The implication

Voronoi diagram ⇒ Delaunay triangulation ,

which we have just discussed, suggests that we ask about the converse
statement. We do not want to answer it completely at this point, but we
give the following sufficient condition.

Theorem 6.5 If a conforming triangulation of Ω (in the sense of finite
element methods) consists of nonobtuse triangles exclusively, then it is
a Delaunay triangulation, and the corresponding Voronoi diagram can be
constructed by means of the perpendicular bisectors of the triangles’ edges.

We mention that the centre of the circumcircle of a nonobtuse triangle is
located within the closure of that triangle.

In the analysis of the finite volume method, the following relation is
important.

Lemma 6.6 Given a nonobtuse triangle K with vertices aik , k ∈ {1, 2, 3},
then for the corresponding parts Ωik,K := Ωik ∩K of the control volumes
Ωik , we have

1
4
|K| ≤ |Ωik,K | ≤ 1

2
|K| , k ∈ {1, 2, 3} .

The Donald diagram
In contrast to the Voronoi diagram, where the construction starts from a
given point set, the starting point here is a triangulation Th of Ω, which is
allowed to contain obtuse triangles.

Again, let K be a triangle with vertices aik , k ∈ {1, 2, 3}. We define

Ωik,K :=
{
x ∈ K

∣∣ λj(x) < λk(x), j -= k
}

,

where λk denote the barycentric coordinates with respect to aik (cf. (3.51)).
Obviously, the barycentre satisfies aS = 1

3 (ai1 + ai2 + ai3), and (see, for
comparison, Lemma 6.6)

3 |Ωik,K | = |K| , k ∈ {1, 2, 3} . (6.4)

This relation is a simple consequence of the geometric interpretation of
the barycentric coordinates as area coordinates given in Section 3.3. The
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Figure 6.8. The subdomains Ωik,K .

required control volumes are defined as follows (see Figure 6.8):

Ωi := int

(
⋃

K:∂K/ai

Ωi,K

)
, i ∈ Λ .

The family {Ωi}i∈Λ is called a Donald diagram.
The quantities Γij , mij , and Λi are defined similarly as in the case of

the Voronoi diagram. We mention that the boundary pieces Γij are not
necessarily straight, but polygonal in general.

6.2.2 Finite Volume Discretization

The model under consideration is a special case of equation (6.1). Instead
of the matrix-valued diffusion coefficient K we will take a scalar coefficient
k : Ω → R, that is, K = kI. Moreover, homogeneous Dirichlet boundary
conditions are to be satisfied. So the boundary value problem reads as
follows:

−∇ · (k∇u − c u) + r u = f in Ω ,
u = 0 on ∂Ω ,

(6.5)

with k, r, f : Ω→ R, c : Ω→ R2.

The Case of the Voronoi Diagram
Let the domain Ω be partioned by a Voronoi diagram and the correspond-
ing Delaunay triangulation. Due to the homogeneous Dirichlet boundary
conditions, it is sufficient to consider only those control volumes Ωi that
are associated with inner nodes ai ∈ Ω. Therefore, we denote the set of
indices of all inner nodes by

Λ :=
{
i ∈ Λ

∣∣ ai ∈ Ω
}

.

In the first step, the differential equation (6.5) is integrated over the single
control volumes Ωi :

−
∫

Ωi

∇ · (k∇u− c u) dx +
∫

Ωi

r u dx =
∫

Ωi

f dx , i ∈ Λ . (6.6)
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The application of Gauss’s divergence theorem to the first integral of the
left-hand side of (6.6) yields

∫

Ωi

∇ · (k∇u− c u) dx =
∫

∂Ωi

ν · (k∇u− c u) dσ .

Due to ∂Ωi = ∪j∈ΛiΓij (cf. Figure 6.9), it follows that
∫

Ωi

∇ · (k∇u − c u) dx =
∑

j∈Λi

∫

Γij

νij · (k∇u− c u) dσ ,

where νij is the (constant) outer unit normal to Γij (with respect to Ωi).
In the next step we approximate the line integrals over Γij .

Γij
j

i

a

a

.

..
.

Figure 6.9. The edge Γij .

First, the coefficients k and νij · c are approximated on Γij by constants
µij > 0, respectively γij :

k|Γij ≈ µij = const > 0 , νij · c|Γij ≈ γij = const .

In the simplest case, the approximation can be realized by the correspond-
ing value at the midpoint aΓij of the straight-line segment Γij . A better
choice is

γij :=






1
mij

∫

Γij

νij · c dσ , mij > 0 ,

νij · c(aΓij ) , mij = 0 .
(6.7)

We thus obtain
∫

Ωi

∇ · (k∇u− c u) dx ≈
∑

j∈Λi

∫

Γij

[µij (νij ·∇u)− γij u] dσ .

The normal derivatives are approximated by difference quotients; that is,

νij ·∇u ≈ u(aj)− u(ai)
dij

with dij := |ai − aj| .

This formula is exact for such functions that are linear along the straight-
line segment between the points ai, aj . So it remains to approximate the
integral of u over Γij . For this, a convex combination of the values of u at
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the nodes ai and aj is taken:

u|Γij ≈ rij u(ai) + (1− rij) u(aj) ,

where rij ∈ [0, 1] is a parameter to be defined subsequently. In general, rij

depends on µij , γij , and dij .
Collecting all the above approximations, we arrive at the following

relation:
∫

Ωi

∇ · (k∇u− c u) dx

≈
∑

j∈Λi

{
µij

u(aj)− u(ai)
dij

− γij [rij u(ai) + (1− rij) u(aj)]
}

mij .

To approximate the remaining integrals from (6.6), the following formulas
are used:

∫

Ωi

r u dx ≈ r(ai)u(ai)mi =: ri u(ai)mi , with mi := |Ωi| ,
∫

Ωi

f dx ≈ f(ai)mi =: fi mi .

Instead of ri := r(ai) or fi := f(ai), the approximations

ri :=
1

mi

∫

Ωi

r dx respectively fi :=
1

mi

∫

Ωi

f dx (6.8)

can also be used. Denoting the unknown approximate values for u(ai) by
ui, we obtain the following linear system of equations:

∑

j∈Λi

{
µij

ui − uj

dij
+ γij [rijui + (1− rij)uj ]

}
mij + riuimi

= fimi , i ∈ Λ .

(6.9)

This representation clearly indicates the affinity of the finite volume method
to the finite difference method. However, for the subsequent analysis it is
more convenient to rewrite this system of equations in terms of a discrete
variational equality.

Multiplying the ith equation in (6.9) by arbitrary numbers vi ∈ R and
summing the results up over i ∈ Λ, we get

∑

i∈Λ
vi





∑

j∈Λi

{
µij

ui − uj

dij
+ γij [rij ui + (1− rij) uj]

}
mij + ri ui mi






=
∑

i∈Λ
fi vi mi .

Further, let Vh denote the space of continuous functions that are piecewise
linear over the (Delaunay) triangulation of Ω and that vanish on ∂Ω. Then
the values ui and vi can be interpolated in Vh; that is, there are unique



268 6. Finite Volume Method

uh, vh ∈ Vh such that uh(ai) = ui, vh(ai) = vi for all i ∈ Λ. The following
discrete bilinear forms on Vh × Vh can then be defined:

a0
h (uh, vh) :=

∑

i∈Λ
vi

∑

j∈Λi

µij (ui − uj)
mij

dij
,

bh (uh, vh) :=
∑

i∈Λ
vi

∑

j∈Λi

[rij ui + (1− rij) uj] γij mij ,

dh (uh, vh) :=
∑

i∈Λ
ri ui vi mi ,

ah (uh, vh) := a0
h (uh, vh) + bh (uh, vh) + dh (uh, vh) .

Finally, for two continuous functions v, w ∈ C(Ω), we set

〈w, v〉0,h :=
∑

i∈Λ
wi vi mi ,

where vi := v(ai), wi := w(ai).

Remark 6.7 〈·, ·〉0,h is a scalar product on Vh. In particular, the following
norm can be introduced:

‖vh‖0,h :=
√
〈vh, vh〉0,h , vh ∈ Vh . (6.10)

In (3.136) a discrete (L2-) norm for a general finite element space vh has
been defined using the same notation. This multiple use seems to be accept-
able, since for regular triangulations both norms are equivalent uniformly
in h (see Remark 6.16 below).

Now the discrete variational formulation of the finite volume method is
this:

Find uh ∈ Vh such that

ah (uh, vh) = 〈f, vh〉0,h for all vh ∈ Vh . (6.11)

Up to now, the choice of the weighting parameters rij has remained open.
For this, two cases can be roughly distinguished:

(1) There exists a pair of indices (i, j) ∈ Λ× Λ such that µij < |γij |dij .

(2) There is no such pair (i, j) with µij < |γij |dij .

In the second case, an appropriate choice is rij ≡ 1
2 . To some extent, this

can be seen as a generalization of the central difference method to nonuni-
form grids. The first case corresponds to a locally convection-dominated
situation and requires a careful selection of the weighting parameters rij .
This will be explained in more detail in Section 9.3.

In general, the weighting parameters are of the following structure:

rij = R

(
γij dij

µij

)
, (6.12)
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where R : R → [0, 1] is some function to be specified. The argument γij dij

µij

is called the local Péclet number. Typical examples for this function R are

R(z) =
1
2

[sign (z) + 1] , full upwinding,

R(z) =
{

(1− τ)/2 , z < 0 ,
(1 + τ)/2 , z ≥ 0 ,

τ(z) := max
{

0, 1− 2
|z|

}
,

R(z) = 1− 1
z

(
1− z

ez − 1

)
, exponential upwinding .

All these functions possess many common properties. For example, for all
z ∈ R,

(P1) [1−R(z)−R(−z)] z = 0 ,

(P2)
[
R(z)− 1

2

]
z ≥ 0 ,

(P3) 1− [1−R(z)] z ≥ 0 .

(6.13)

Note that the constant function R = 1
2 satisfies the conditions (P1) and

(P2) but not (P3).

The Case of the Donald Diagram
Let the domain Ω be triangulated as in the finite element method. Then,
following the explanations given in the second part of Section 6.2.1, the
corresponding Donald diagram can be created.

The discrete bilinear form in this case is defined by

ah (uh, vh) := 〈k∇uh,∇vh〉0 + bh (uh, vh) + dh (uh, vh) ;

that is, the principal part of the differential expression is discretized as in
the finite element method, where bh, dh, and Vh are defined as in the first
part of this section.

6.2.3 Comparison with the Finite Element Method

As we have already seen in Example 6.1, it may happen that a finite volume
discretization coincides with a finite difference or finite element discretiza-
tion. We also mention that the control volumes from that example are
exactly the Voronoi polygons to the grid points (i.e., to the nodes of the
triangulation).

Here we will consider this observation in more detail. By {ϕi}i∈Λ we de-
note the nodal basis of the space Vh of continuous, piecewise linear functions
on a conforming triangulation of the domain Ω.

Lemma 6.8 Let Th be a conforming triangulation of Ω (in the sense of
finite element methods), all triangles of which are nonobtuse, and consider
the corresponding Voronoi diagram in accordance with Theorem 6.5. Then,
for an arbitrary triangle K ∈ Th with vertices ai, aj (i -= j), the following
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relation holds:
∫

K
∇ϕj ·∇ϕi dx = −

mK
ij

dij
,

where mK
ij is the length of the segment of Γij that intersects K.

Proof: Here we use some of the notation and the facts prepared at the
beginning of Section 3.9. In particular, αK

ij denotes the interior angle of K
that is located in opposite the edge with vertices ai, aj . Next, the following
equality is an obvious fact from elementary geometry: 2 sinαK

ij mK
ij =

cosαK
ij dij . It remains to recall the relation

∫

K
∇ϕj ·∇ϕi dx = −1

2
cotαK

ij

from Lemma 3.47, and the statement immediately follows. !

Corollary 6.9 Under the assumptions of Lemma 6.8, we have for k ≡ 1,

〈∇uh,∇vh〉0 = a0
h (uh, vh) for all uh, vh ∈ Vh .

Proof: It is sufficient to verify the relation for vh = ϕi and arbitrary
i ∈ Λ. First, we see that

〈∇uh,∇ϕi〉0 =
∑

K⊂suppϕi

∫

K
∇uh ·∇ϕi dx .

Furthermore,
∫

K
∇uh ·∇ϕi dx =

∑

j:∂K/aj

uj

∫

K
∇ϕj ·∇ϕi dx

= ui

∫

K
∇ϕi ·∇ϕi dx +

∑

j -=i:∂K/aj

uj

∫

K
∇ϕj ·∇ϕi dx .

Since

1 =
∑

j:∂K/aj

ϕj

over K, it follows that

∇ϕi = −
∑

j -=i:∂K/aj

∇ϕj ; (6.14)

that is, by means of Lemma 6.8,
∫

K
∇uh ·∇ϕi dx =

∑

j -=i:∂K/aj

(uj − ui)
∫

K
∇ϕj ·∇ϕi dx
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=
∑

j -=i:∂K/aj

(ui − uj)
mK

ij

dij
. (6.15)

Summing over all K ⊂ suppϕi, we get

〈∇uh,∇ϕi〉0 =
∑

j∈Λi

(ui − uj)
mij

dij
= a0

h (uh,ϕi) . !

Remark 6.10 By a more sophisticated argumentation it can be shown
that the above corollary remains valid if the diffusion coefficient k is con-
stant on all triangles K ∈ Th and if the approximation µij is chosen
according to

µij :=






1
mij

∫

Γij

k dσ =
k|K mK

ij + k|K′ mK′

ij

mij
, mij > 0 ,

0 , mij = 0 ,

(6.16)

where K, K ′ are both triangles sharing the vertices ai, aj .

Treatment of Matrix-valued Diffusion Coefficients
Corollary 6.9 and Remark 6.10 are valid only in the spatial dimension d =
2. However, for more general control volumes, higher spatial dimensions,
or not necessarily scalar diffusion coefficients, weaker statements can be
proven.

As an example, we will state the following fact. As a by-product, we also
obtain an idea for how to derive discretizations in the case of matrix-valued
diffusion coefficients. For a better distinction between the elements K of
the triangulation and the diffusion coefficient, we keep the notation k for
the diffusion coefficient, even if k is allowed to be a matrix-valued function
temporarily.

Lemma 6.11 Let Th be a conforming triangulation of Ω, where in the
case of the Voronoi diagram it is additionally required that all triangles be
nonobtuse. Furthermore, assume that the diffusion matrix k : Ω→ R2,2 is
constant on the single elements of Th. Then for any i ∈ Λ and K ∈ Th we
have

∫

K
(k∇uh) ·∇ϕi dx = −

∫

∂Ωi∩K
(k∇uh) · ν dσ for all uh ∈ Vh,

where {Ωi}i∈Λ is either a Voronoi or a Donald diagram and ν denotes the
outer unit normal with respect to Ωi.

Without difficulties, the proof can be carried over from the proof of a related
result in [20, Lemma 6.1].

Now we will show how to use this fact to formulate discretizations for the
case of matrix-valued diffusion coefficients. Namely, using relation (6.14),
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we easily see that
∫

∂Ωi∩K
(k∇uh) · ν dσ =

∑

j:∂K/aj

∫

∂Ωi∩K
uj(k∇ϕj) · ν dσ

=
∑

j -=i:∂K/aj

(uj − ui)
∫

∂Ωi∩K
(k∇ϕj) · ν dσ .

Summing over all triangles that lie in the support of ϕi, we obtain by
Lemma 6.11 the relation

∫

Ω
(k∇uh) ·∇ϕi dx =

∑

j∈Λi

(ui − uj)
∫

∂Ωi

(k∇ϕj) · ν dσ . (6.17)

With the definition

µij :=






dij

mij

∫

∂Ωi

(k∇ϕj) · ν dσ , mij > 0 ,

0 , mij = 0 ,
(6.18)

it follows that
∫

Ω
(k∇uh) ·∇ϕi dx =

∑

j∈Λi

µij (ui − uj)
mij

dij
.

Note that, in the case of Voronoi diagrams, (6.16) is a special case of the
choice (6.18).

Consequently, in order to obtain a discretization for the case of a matrix-
valued diffusion coefficient, it is sufficient to replace in the bilinear form bh

and, if the Voronoi diagram is used, also in a0
h, the terms involving µij

according to formula (6.18).

Implementation of the Finite Volume Method
In principle, the finite volume method can be implemented in different
ways. If the linear system of equations is implemented in a node-orientated
manner (as in finite difference methods), the entries of the system matrix
Ah and the components of the right-hand side qh can be taken directly
from (6.9).

On the other hand, an element-orientated assembling is possible, too.
This approach is preferable, especially in the case where an existing finite
element program will be extended by a finite volume module. The idea of
how to do this is suggested by equation (6.17). Namely, for any triangle
K ∈ Th, the restricted bilinear form ah,K with the appropriate definition
of µij according to (6.18) is defined as follows:

ah,K(uh, vh) :=

∑

i∈Λ
vi






∑

j &=i:
∂K(aj

{
µij

ui − uj

dij
+ γij [rijui + (1− rij)uj ]

}
mK

ij + riuim
K
i





,
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where mK
i := |Ωi ∩ K|. Then the contribution of the triangle K to the

matrix entry (Ah)ij of the matrix Ah is equal to ah,K(ϕj ,ϕi). In the same
way, the right-hand side of (6.9) can be split elementwise.

6.2.4 Properties of the Discretization

Here we will give a short overview of basic properties of finite volume
methods. For the sake of simplicity, we restrict ourselves to the case of a
constant scalar diffusion coefficient k > 0. Then, in particular, it is useful
to set µij := k for all i ∈ Λ, j ∈ Λi.

Lemma 6.12 Suppose the approximations γij of νij · c|Γij satisfy γji =
−γij and the rij are defined by (6.12) with a function R satisfying (P1).
Then we get for all uh, vh ∈ Vh,

bh (uh, vh) =
1
2

∑

i∈Λ

∑

j∈Λi

ui vi γij mij

+
1
2

∑

i∈Λ

∑

j∈Λi

[(
rij −

1
2

)
(ui − uj) (vi − vj) +

1
2

(ujvi − uivj)
]
γij mij .

Proof: First, we observe that bh can be rewritten as follows:

bh (uh, vh) =
∑

i∈Λ

∑

j∈Λi

vi

[
(1− rij) uj −

(
1
2
− rij

)
ui

]
γij mij

+
1
2

∑

i∈Λ

∑

j∈Λi

ui vi γij mij .
(6.19)

In the first term, we change the order of summation and rename the indices:

bh (uh, vh) =
∑

i∈Λ

∑

j∈Λi

vj

[
(1− rji)ui −

(
1
2
− rji

)
uj

]
γji mji

+
1
2

∑

i∈Λ

∑

j∈Λi

ui vi γij mij .

Next we make use of the following relations, which easily result from dji =
dij and the assumptions on γij and rij :

(1− rji) γji = −rij γij ,

(
1
2
− rji

)
γji =

(
1
2
− rij

)
γij .

So we get, due to mji = mij ,

bh (uh, vh) =
∑

i∈Λ

∑

j∈Λi

vj

[
−rijui −

(
1
2
− rij

)
uj

]
γij mij

+
1
2

∑

i∈Λ

∑

j∈Λi

ui vi γij mij .
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Taking the arithmetic mean of both representations of bh, we arrive at

bh (uh, vh) =
1
2

∑

i∈Λ

∑

j∈Λi

ui vi γij mij

+
1
2

∑

i∈Λ

∑

j∈Λi

[
(1− rij)ujvi − rijuivj −

(
1
2
− rji

)
(uivi + ujvj)

]
γijmij

=
1
2

∑

i∈Λ

∑

j∈Λi

[(
1
2
− rij

)
(ujvi + uivj − uivi − ujvj)

+
1
2

(ujvi − uivj)
]
γijmij +

1
2

∑

i∈Λ

∑

j∈Λi

uiviγijmij .

!

Corollary 6.13 Let c1, c2,∇ · c ∈ C(Ω). Under the assumptions of
Lemma 6.12 and also assuming property (P2) for R, the bilinear form bh

satisfies for all vh ∈ Vh the estimate

bh(vh, vh) ≥ 1
2

∑

i∈Λ
v2

i




∫

Ωi

∇ · c dx +
∑

j∈Λi

∫

Γij

(γij − νij · c) dσ



 . (6.20)

Proof: Due to
(
rij − 1

2

)
γij ≥ 0, because of property (P2) in (6.13), it

immediately follows that

bh(vh, vh) ≥ 1
2

∑

i∈Λ

∑

j∈Λi

v2
i γij mij =

1
2

∑

i∈Λ
v2

i

∑

j∈Λi

γij mij .

For the inner sum, we can write
∑

j∈Λi

γij mij =
∑

j∈Λi

∫

Γij

γij dσ

=
∑

j∈Λi

∫

Γij

νij · c dσ +
∑

j∈Λi

∫

Γij

(γij − νij · c) dσ .

The first term can be rewritten as an integral over the boundary of Ωi, i.e.,
∑

j∈Λi

∫

Γij

νij · c dσ =
∫

∂Ωi

ν · c dσ .

By Gauss’s divergence theorem, it follows that
∫

∂Ωi

ν · c dσ =
∫

Ωi

∇ · c dx .

!
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Remark 6.14 If the approximations γij are chosen according to (6.7),
then γji = −γij , and (6.20) simplifies to

bh(vh, vh) ≥ 1
2

∑

i∈Λ
v2

i

∫

Ωi

∇ · c dx .

Using a similar argument as in the treatment of the term
∑

j∈Λi
γij mij

in the proof of Corollary 6.13, the value dh(vh, vh) can be represented as
follows:

dh(vh, vh) =
∑

i∈Λ
ri v2

i mi =
∑

i∈Λ
v2

i

∫

Ωi

ri dx

=
∑

i∈Λ
v2

i

∫

Ωi

r dx +
∑

i∈Λ
v2

i

∫

Ωi

(ri − r) dx . (6.21)

The second term vanishes if the approximations ri are defined as in (6.8).

Theorem 6.15 Let the rij be defined by (6.12) with R satisfying (P1) and
(P2). Suppose k > 0, c1, c2,∇ · c, r ∈ C(Ω), r + 1

2∇ · c ≥ r0 = const ≥ 0 on
Ω and that the approximations γij , respectively ri, are chosen according to
(6.7), respectively (6.8). Under the assumptions of Lemma 6.8, we have for
all vh ∈ Vh,

ah (vh, vh) ≥ k 〈∇vh,∇vh〉0 + r0

∑

i∈Λ
v2

i mi = k |vh|21 + r0‖vh‖2
0,h ;

that is, the bilinear form ah is Vh-elliptic uniformly with respect to h.

Proof: We start with the consideration of a0
h (vh, vh). Due to Corollary 6.9,

the relation

a0
h (vh, vh) = k 〈∇vh,∇vh〉0 = k |vh|21

holds. Furthermore, by Remark 6.14 and equation (6.21), we have

bh (vh, vh) + dh (vh, vh) ≥
∑

i∈Λ
v2

i

∫

Ωi

(
1
2
∇ · c + r

)
dx ≥ r0

∑

i∈Λ
v2

i mi .

Since by definition,

ah (vh, vh) = a0
h (vh, vh) + bh (vh, vh) + dh (vh, vh) ,

both relations yield the assertion. !

Remark 6.16 Let the family of triangulations (Th)h be regular. Then the
norms defined in (3.136) and in (6.10) and also the norms ‖ · ‖0,h and
‖ · ‖0 are equivalent on Vh uniformly with respect to h; i.e., there exist two
constants C1, C2 > 0 independent of h such that

C1‖v‖0 ≤ ‖v‖0,h ≤ C2‖v‖0 for all v ∈ Vh .
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Proof: Due to Theorem 3.43 (i) only the uniform equivalence of the dis-
crete L2-norms has to be shown. Denoting such an equivalence by ∼=, we
have for v ∈ Vh with vi := v(ai) for i ∈ Λ,

(
∑

i∈Λ
|vi|2mi

)1/2

=




∑

i∈Λ
|vi|2

∑

K∈Th:
K∩Ωi -=∅

|Ωi,K |





1/2

∼=




∑

i∈Λ

∑

K∈Th:
K∩Ωi -=∅

|vi|2|K|1/2





1/2

due to Lemma 6.6 or (6.4)

∼=




∑

K∈Th

|K|
∑

i:
ai∈K

|vi|2





1/2

∼=




∑

K∈Th

h2
K

∑

i:
ai∈K

|vi|2





1/2

,

since due to the regularity of (Th)h there is a uniform lower bound for
the angles of K ∈ Th (see (3.93)) and thus a uniform upper bound on the
number of K ∈ Th such that K ∩Ωi -= ∅.

!

Corollary 6.17 Under the assumptions of Theorem 6.15 and for a regular
family of triangulations (Th)h there exists a constant α > 0 independent of
h such that

ah (vh, vh) ≥ α‖vh‖2
1 for all vh ∈ Vh .

Proof: By Remark 6.16 and Theorem 6.15,

ah (vh, vh) ≥ k |vh|21 + r0C
2
1‖vh‖2

0 ,

i.e., we can take α := min{k; r0C2
1} . !

Theorem 6.15 (or Corollary 6.17) asserts the stability of the method. It
is the fundamental result for the proof of an error estimate.

Theorem 6.18 Let {Th}h∈(0,h̄] be a regular family of conforming triangu-
lations, where in the case of the Voronoi diagram it is additionally required
that all triangles be nonobtuse. Furthermore, suppose in (6.5) that k > 0,
c1, c2,∇ · c, r ∈ C(Ω), r + 1

2∇ · c ≥ r0 = const > 0 on Ω, f ∈ C1(Ω), and
that the approximations γij , respectively ri, are chosen according to (6.7),
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respectively (6.8). Let the rij be defined by (6.12) with R satisfying (P1)
and (P2). If the exact solution u of (6.5) belongs to H2(Ω) and uh ∈ Vh

denotes the solution of (6.11), then

‖u− uh‖1 ≤ C h [‖u‖2 + |f |1,∞] ,

where the constant C > 0 is independent of h.

Proof: The proof rests on a similar idea to those in the proof and the
application of Strang’s first lemma (Theorem 3.38) in Section 3.6.

Denoting by Ih : C
(
Ω̄
)
→ Vh the interpolation operator defined in (3.71)

and setting vh := uh − Ih(u), we have

ah(vh, vh) = ah(uh, vh)− ah(Ih(u), vh)
= 〈f, vh〉0,h − ah(Ih(u), vh)

= 〈f, vh〉0,h −
∑

i∈Λ
vi

∫

Ωi

f dx +
∑

i∈Λ
vi

∫

Ωi

f dx− ah(Ih(u), vh).

By the definition of the discrete form 〈f, vh〉0,h and by the differential
equation (6.5), considered as an equation in L2(Ω), we get

ah(vh, vh) =
∑

i∈Λ
vi

∫

Ωi

(fi − f) dx +
∑

i∈Λ
vi

∫

Ωi

Lu dx− ah(Ih(u), vh) ,

where Lu = −∇ · (k∇u− c u) + r u .
For f ∈ C1(Ω) and the choice fi := f(ai), it is easy to see that

|fi − f(x)| ≤ |f |1,∞ max
K:ai∈K

hK ≤ C h|f |1,∞ for all x ∈ Ωi .

So it follows that
∣∣∣∣∣
∑

i∈Λ
vi

∫

Ωi

(fi − f) dx

∣∣∣∣∣ ≤ C h|f |1,∞
∑

i∈Λ
|vi|mi

≤ C h|f |1,∞

{
∑

i∈Λ
v2

i mi

}1/2{∑

i∈Λ
mi

}1/2

︸ ︷︷ ︸
≤
√

|Ω|

≤ C h|f |1,∞‖vh‖0,h.

For the other choice of fi (see (6.8)), the same estimate is trivially satisfied.
The difficult part of the proof is to get an estimate of the consistency error

∣∣∣∣∣
∑

i∈Λ
vi

∫

Ωi

Lu dx− ah(Ih(u), vh)

∣∣∣∣∣ .
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This is very extensive, and so we will omit the details. A complete proof of
the following result is given in the paper [40]:
∣∣∣∣∣
∑

i∈Λ
vi

∫

Ωi

Lu dx− ah(Ih(u), vh)

∣∣∣∣∣ ≤ C h‖u‖2

{
|vh|21 + ‖vh‖2

0,h

}1/2
. (6.22)

Putting both estimates together and taking into consideration Remark 6.16,
we arrive at

ah(vh, vh) ≤ C h [‖u‖2 + |f |1,∞]
{
|vh|21 + ‖vh‖2

0,h

}1/2

≤ C h [‖u‖2 + |f |1,∞] ‖vh‖1 .

By Corollary 6.17, we conclude from this that

‖vh‖1 ≤ C h [‖u‖2 + |f |1,∞] .

It remains to apply the triangle inequality and the standard interpolation
error estimate (cf. Theorem 3.29 with k = 1 or Theorem 3.35)

‖u− uh‖1 ≤ ‖u− Ih(u)‖1 + ‖vh‖1 ≤ C h [‖u‖2 + |f |1,∞] .

!

We point out that the error measured in the H1-seminorm is of the same
order as for the finite element method with linear finite elements.

Now we will turn to the investigation of some interesting properties of
the method.

Global Conservativity
Here we consider the boundary value problem

−∇ · (k∇u− c u) = f in Ω ,
ν · (k∇u− c u) = g on ∂Ω .

Integrating the differential equation over Ω, we conclude from Gauss’s
divergence theorem that

−
∫

Ω
∇ · (k∇u − c u) dx = −

∫

∂Ω
ν · (k∇u − c u) dσ = −

∫

∂Ω
g dσ ,

and hence
∫

∂Ω
g dσ +

∫

Ω
f dx = 0 .

This is a necessary compatibility condition for the data describing the bal-
ance between the total flow over the boundary and the distributed sources.
We will demonstrate that the discretization requires a discretized version of
this compatibility condition, which is called discrete global conservativity.

Therefore, we first have to define the discretization for the above type of
boundary conditions. Obviously, for inner control volumes Ωi (i ∈ Λ), there
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is no need for any modifications. So we have to consider only the boundary
control volumes Ωi (i ∈ ∂Λ := Λ \ Λ).

In the case of the Voronoi diagram we have

−
∫

Ωi

∇ · (k∇u− c u) dx = −
∫

∂Ωi

ν · (k∇u− c u) dσ

= −
∑

j∈Λi

∫

Γij

ν · (k∇u− c u) dσ −
∫

∂Ωi∩∂Ω
ν · (k∇u− c u) dσ (6.23)

= −
∑

j∈Λi

∫

Γij

ν · (k∇u− c u) dσ −
∫

∂Ωi∩∂Ω
g dσ .

Since the line integrals over Γij can be approximated in the standard way,
we get the following equation:

∑

i∈Λ

vi

∑

j∈Λi

{
µij

ui − uj

dij
+ γij [rij ui + (1− rij) uj ]

}
mij (6.24)

−
∑

i∈Λ

vi

∫

∂Ωi∩∂Ω
g dσ =

∑

i∈Λ

fi vi mi ,

where the ansatz and test space Vh consists of all continuous functions over
Ω̄ that are piecewise linear with respect to the underlying triangulation
(that is, in the boundary nodes no function values are prescribed).

It is again assumed that the rij are defined by (6.12) with a function R
satisfying (P1) and γji = −γij .

Obviously, the particular function ih :≡ 1 belongs to Vh. So we are
allowed to set vh = ih in the discretization. Then, repeating the above
symmetry argument (cf. the proof of Lemma 6.12), we get

∑

i∈Λ

∑

j∈Λi

µij (ui − uj)
mij

dij
= −

∑

i∈Λ

∑

j∈Λi

µij (ui − uj)
mij

dij
,

that is,
∑

i∈Λ

∑

j∈Λi

µij (ui − uj)
mij

dij
= 0 .

On the other hand, using the same argument, we have
∑

i∈Λ

∑

j∈Λi

[rij ui + (1− rij) uj] γij mij

=
∑

i∈Λ

∑

j∈Λi

[rji uj + (1− rji) ui] γji mji

= −
∑

i∈Λ

∑

j∈Λi

[(1− rij)uj + rij ui] γij mij . (6.25)
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Consequently, this term vanishes, too. Because of
∑

i∈Λ

vi

∫

∂Ωi∩∂Ω
g dσ =

∫

∂Ω
g dσ ,

it follows that

−
∫

∂Ω
g dσ =

∑

i∈Λ

fi vi mi =
∑

i∈Λ

fi mi

(
≈
∫

Ω
f dx

)
. (6.26)

This is the mentioned compatibility condition. It ensures the solvability of
the discrete system (6.24).

In the case of the Donald diagram, we obviously have

〈k∇uh,∇vh〉0 = 0 .

Since the proof of (6.25) does not depend on the particular type of the
control volumes, the property of discrete global conservativity in the sense
of (6.26) is satisfied for the Donald diagram, too.

Inverse Monotonicity
The so-called inverse monotonicity is a further important property of the
boundary value problem (6.5) that is inherited by the finite volume dis-
cretization without any additional restrictive assumptions. Namely, it is
well known that under appropriate assumptions on the coefficients, the
solution u is nonnegative if the (continuous) right-hand side f in (6.5) is
nonnegative in Ω.

We will demonstrate that this remains true for the approximative solu-
tion uh. Only at this place is the property (P3) of the weighting function
R used; the preceding results are also valid for the simple case R(z) ≡ 1

2 .
There is a close relation to the maximum principles investigated in Sec-

tions 1.4 and 3.9. However, the result given here is weaker, and the proof
is based on a different technique.

Theorem 6.19 Let the assumptions of Theorem 6.15 be satisfied, but R
in (6.12) has to satisfy (P1)–(P3). Further, suppose that f ∈ C(Ω) and
f(x) ≥ 0 for all x ∈ Ω. Moreover, in the case of the Donald diagram, only
the weighting function R(z) = 1

2 [sign (z) + 1] is permitted.
Then

uh(x) ≥ 0 for all x ∈ Ω .

Proof: We start with the case of the Voronoi diagram. Let uh be the
solution of (6.11) with f(x) ≥ 0 for all x ∈ Ω. Then we have the following
additive decomposition of uh:

uh = u+
h − u−

h , where u+
h := max {0, uh} .

In general, u+
h , u−

h do not belong to Vh. So we interpolate them in Vh and
set in (6.11) vh := Ih(u−

h ), where Ih : C
(
Ω̄
)
→ Vh is the interpolation
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operator (3.71). It follows that

0 ≤ 〈f, vh〉0,h = ah (uh, vh) = ah

(
Ih(u+

h ), Ih(u−
h )
)
− ah

(
Ih(u−

h ), Ih(u−
h )
)

.

By Theorem 6.15, we have

k
∣∣Ih(u−

h )
∣∣2
1
≤ ah

(
Ih(u−

h ), Ih(u−
h )
)
≤ ah

(
Ih(u+

h ), Ih(u−
h )
)

.

If we were able to show that ah

(
Ih(u+

h ), Ih(u−
h )
)
≤ 0, then the theorem

would be proven, because this relation implies
∣∣Ih(u−

h )
∣∣
1

= 0, and from this
we immediately get u−

h = 0, and so uh = u+
h ≥ 0.

Since u+
i u−

i = 0 for all i ∈ Λ, it follows from (6.19) in the proof of
Lemma 6.12 that

bh

(
Ih(u+

h ), Ih(u−
h )
)

=
∑

i∈Λ

∑

j∈Λi

(1− rij) u+
j u−

i γij mij . (6.27)

Furthermore, obviously dh

(
Ih(u+

h ), Ih(u−
h )
)

= 0 holds. Thus

ah

(
Ih(u+

h ), Ih(u−
h )
)

=
∑

i∈Λ

∑

j∈Λi

[
−µij

dij
u+

j + γij (1− rij)u+
j

]
u−

i mij

= −
∑

i∈Λ

∑

j∈Λi

µij

dij

[
1− γij dij

µij
(1− rij)

]
u+

j u−
i mij .

Due to 1 − [1−R(z)] z ≥ 0 for all z ∈ R (cf. property (P3) in (6.13)) and
u+

j u−
i ≥ 0, it follows that

ah

(
Ih(u+

h ), Ih(u−
h )
)
≤ 0 .

So it remains to investigate the case of the Donald diagram. The function
R(z) = 1

2 [sign (z) + 1] has the property

[1−R(z)] z =
1
2

[1− sign (z)] z ≤ 0 for all z ∈ R ,

that is (cf. (6.27)),

bh

(
Ih(u+

h ), Ih(u−
h )
)
≤ 0 .

Taking u+
i u−

i = 0 into consideration, we get

ah

(
Ih(u+

h ), Ih(u−
h )
)

≤
〈
k∇Ih(u+

h ),∇Ih(u−
h )
〉
0

= k
∑

i∈Λ

∑

j∈Λi

u+
j u−

i 〈∇ϕj ,∇ϕi〉0 .

Now Lemma 3.47 implies that

ah

(
Ih(u+

h ), Ih(u−
h )
)
≤ −k

2

∑

i∈Λ

∑

j∈Λi

u+
j u−

i

(
cotαK

ij + cotαK′

ij

)
,

where K and K ′ are a pair of triangles sharing a common edge with vertices
ai, aj .
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Since all triangles are nonobtuse, we have cotαK
ij ≥ 0, cotαK′

ij ≥ 0, and
hence

ah

(
Ih(u+

h ), Ih(u−
h )
)
≤ 0 .

!

Exercises

6.2 Suppose that the domain Ω ⊂ R2 can be triangulated by means of
equilateral triangles with edge length h > 0 in an admissible way.

(a) Give the shape of the control domains in the case of the Voronoi and
the Donald diagrams.

(b) Using the control domains from subproblem (a), discretize the Poisson
equation with homogeneous Dirichlet boundary conditions by means
of the finite volume method.

6.3 Formulate an existence result for the weak solution in H1
0 (Ω) of the

boundary value problem (6.5) similar to Theorem 3.12. In particular, what
form will condition (3.17) take?

6.4 Verify Remark 6.7; i.e., show that 〈·, ·〉0,h possesses the properties of
a scalar product on Vh.

6.5 Prove Remark 6.16 in detail.

6.6 Verify or disprove the properties (P1)–(P3) for the three weighting
functions given before (6.13) and for R ≡ 1

2 .

6.7 Let K be a nonobtuse triangle with the vertices a1, a2, a3. The length
of the segments ΓK

ij := Γij ∩ K is denoted by mK
ij , and dij is the length

of the edge connecting ai with aj . Finally, αK
ij is the interior angle of K

opposite that edge.
Demonstrate the following relation: 2mK

ij = dij cotαK
ij .

6.8
(a) Formulate problem (6.11) in terms of an algebraic system of type

(1.31).
(b) Show that for the resulting matrix Ah ∈ RM1,M1 , where M1 is the

number of elements of the index set Λ, the following relation is valid:
AT

h 1 ≥ 0 . Here, as in Section 1.4, 0, respectively 1, denotes a vector
of dimension M1 whose components are all equal to 0, respectively 1.
(This is nothing other than the property (1.32)(3)(i) except for the
transpose of Ah.)



7
Discretization Methods for Parabolic
Initial Boundary Value Problems

7.1 Problem Setting and Solution Concept

In this section initial boundary value problems for the linear case of the
differential equation (0.33) are considered. We choose the form (3.12) to-
gether with the boundary conditions (3.18)–(3.20), which have already been
discussed in Section 0.5. In Section 3.2 conditions have been developed to
ensure a unique weak solution of the stationary boundary value problem. In
contrast to Chapter 3, the heterogeneities are now allowed also to depend
on time t, but for the sake of simplicity we do not do so for the coefficients
in the differential equations and the boundary conditions, which covers
most of the applications, for example from Chapter 0. Also for the sake
of simplicity, we take the coefficient in front of the time derivative to be
constant and thus 1 by a proper scaling. From time to time we will restrict
attention to homogeneous Dirichlet boundary conditions for further ease of
exposition. Thus the problem reads as follows:

The domain Ω is assumed to be a bounded Lipschitz domain and we
suppose that Γ1,Γ2,Γ3 form a disjoint decomposition of the boundary ∂Ω
(cf. (0.39)):

∂Ω = Γ1 ∪ Γ2 ∪ Γ3 ,

where Γ3 is a closed subset of the boundary.
In the space-time cylinder QT = Ω × (0, T ), T > 0, and its boundary

ST = ∂Ω × (0, T ) there are given functions f : QT → R, g : ST → R,
g(x, t) = gi(x, t) for x ∈ Γi, i = 1, 2, 3, and u0 : Ω→ R. The problem is to
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find a function u : QT → R such that
∂u

∂t
+ Lu = f in QT ,

Ru = g on ST ,

u = u0 on Ω× {0} ,

(7.1)

where Lv denotes the differential expression for some function v : Ω→ R,

(Lv) (x) := −∇ · (K(x)∇v(x)) + c(x) ·∇v(x) + r(x)v(x) (7.2)

with sufficiently smooth, time-independent coefficients

K : Ω→ Rd,d , c : Ω→ Rd , r : Ω→ R .

The boundary condition is expressed by the shorthand notation Ru = g,
which means, for a function α : Γ2 → R on ∂Ω,

• Neumann boundary condition (cf. (0.41) or (0.36))

K∇u · ν = ∂νK u = g1 on Γ1 × (0, T ) , (7.3)

• mixed boundary condition (cf. (0.37))

K∇u · ν + αu = ∂νK u + αu = g2 on Γ2 × (0, T ) , (7.4)

• Dirichlet boundary condition (cf. (0.38))

u = g3 on Γ3 × (0, T ) . (7.5)

Thus the stationary boundary problem considered so far reads

Lu(x) = f(x) for x ∈ Ω , (7.6)
Ru(x) = g(x) for x ∈ ∂Ω .

It is to be expected that both for the analysis and the discretization there
are strong links between (7.6) and (7.1). The formulation (7.1) in particular
includes the heat equation (cf. (0.20))

∂u

∂t
−∇ · (K∇u) = f in QT , (7.7)

or for constant scalar coefficients in the form (cf. (0.19))

∂u

∂t
−∆u = f in QT (7.8)

with appropriate initial and boundary conditions.
Again as in Chapter 1, one of the simplest cases will be, for two space
dimensions (d = 2), the case of a rectangle Ω = (0, a) × (0, b) or even the
case d = 1 (with Ω = (0, a)), for which (7.8) further reduces to

∂u

∂t
− ∂2

∂x2
u = 0 in QT = (0, a)× (0, T ). (7.9)

For problem (7.1), the following typical analytical questions arise:
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• existence of (classical) solutions,

• properties of the (classical) solutions,

• weaker concepts of the solution.

As in the case of elliptic boundary value problems, the theory of classical
solutions requires comparatively strong assumptions on the data of the
initial-boundary value problem. In particular, along the edge ∂Ω × {0}
of the space-time cylinder initial and boundary conditions meet, so that
additional compatibility conditions have to be taken into account.

Representation of Solutions in a Special Case
To enhance the familiarity with the problem and for further comparison we
briefly sketch a method, named separation of variables, by which closed-
form solutions in the form of infinite series can be obtained for special cases.
Also in these cases, the representations are not meant to be a numerical
method (by its evaluation), but only serve as a theoretical tool.

We start with the case of homogeneous data, i.e., f = 0, gi = 0 (i =
1, 2, 3), so that the process is determined only by the initial data u0.

We assume a solution of (7.1) to have the form u(x, t) = v(t)w(x) with
v(t) -= 0, w(x) -= 0. This leads to

v′(t)
v(t)

=
−Lw(x)

w(x)
, x ∈ Ω, t ∈ (0, T ) . (7.10)

Therefore, the expressions in (7.10) must be constant, for example, equal
to −λ for λ ∈ R. Therefore,

v′(t) = −λv(t) , t ∈ (0, T ), (7.11)

which for the initial conditions v(0) = 1 has the solution

v(t) = e−λt .

Furthermore, w has to satisfy

Lw(x) = λw(x) , x ∈ Ω ,
Rw(x) = 0 , x ∈ ∂Ω .

(7.12)

Such a function w : Ω̄→ R, w -= 0, is called an eigenfunction for the eigen-
value λ of the boundary value problem (7.6). If (wi,λi), i = 1, . . . , N, are
eigenfunctions/values for (7.6), then because of the superposition principle,
the function

u(x, t) :=
N∑

i=1

cie
−λitwi(x) (7.13)
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is a solution of the homogeneous initial-boundary value problem for the
initial value

u0(x) :=
N∑

i=1

ciwi(x) , (7.14)

where the ci ∈ R are arbitrary. If there are infinitely many eigenfunc-
tions/values (wi,λi) and if the sums in (7.13) and (7.14) converge in such
a way that also the infinite series possesses the derivatives appearing in
(7.6), then also

u(x, t) =
∞∑

i=1

cie
−λitwi(x) (7.15)

is a solution to

u0(x) =
∞∑

i=1

ciwi(x) . (7.16)

For an inhomogeneous right-hand side of the form

f(x, t) =
N∑

i=1

fi(t)wi(x) (7.17)

the solution representation can be extended to (variation of constants
formula)

u(x, t) :=
N∑

i=1

cie
−λitwi(x) +

N∑

i=1

t∫

0

fi(s)e−λi(t−s)ds wi(x) , (7.18)

and at least formally the sum can be replaced by the infinite series. To
verify (7.18) it suffices to consider the case u0 = 0, for which we have

(∂tu)(x, t) =
N∑

i=1
fi(t)wi(x) −

N∑
i=1

t∫

0
fi(s)e−λi(t−s)ds λiwi(x)

= f(x, t)− L

(
N∑

i=1

t∫

0
fi(s)e−λi(t−s)ds wi

)
(x)

= f(x, t)− L(u)(x, t) .

(7.19)

From these solution representations we can conclude that initial data (and
thus also perturbances contained in it) and also the influence of the right-
hand side act only exponentially damped if all eigenvalues are positive.

For d = 1, Ω = (0, a) and Dirichlet boundary conditions we have the
eigenfunctions

wν(x) = sin
(
ν
π

a
x
)

, ν ∈ N , (7.20)
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for the eigenvalues

λν =
(νπ

a

)2
. (7.21)

If the initial data u0 has the representation

u0(x) =
∞∑

ν=1

ci sin
(
ν
π

a
x
)

, (7.22)

then for example for f = 0 the (formal) solution reads

u(x, t) =
∞∑

ν=1

cie
−λνt sin

(
ν
π

a
x
)

. (7.23)

The eigenfunctions wν are orthogonal with respect to the scalar product
〈·, ·〉0 in L2(Ω), since they satisfy

〈
sin

(
ν
π

a
·
)

, sin
(
µ
π

a
·
)〉

0
=

{
0 for ν -= µ ,
a
2 for ν = µ ,

(7.24)

which can by checked by means of well-known identities for the trigono-
metric functions.
Therefore (see below (7.57)),

ci =
〈u0, wν〉0
〈wν , wν〉0

, (7.25)

which is called the Fourier coefficient in the Fourier expansion of u0.
Of course, the (wν ,λν) depend on the boundary conditions. For Neumann

boundary conditions in x = 0 and x = a we have

wν(x) = cos
(
ν πa x

)
, ν = 0, 1, . . . ,

λν =
(
ν πa
)2

, ν = 0, 1, . . . .
(7.26)

The occurrence of w0 = 1, λ0 = 0 reflects the nontrivial solvability of the
pure Neumann problem (which therefore is excluded by the conditions of
Theorem 3.15).

For Lu = −∆u and Ω = (0, a) × (0, b), eigenfunctions and eigenvalues
can be derived from the one-dimensional case because of

−∆(vν(x)ṽµ(y)) = −vν′′(x)ṽµ(y)− vν(x)ṽµ′′(y) = (λν + λ̃µ)vν(x)ṽµ(y).

Therefore, for Ω = (0, a)×(0, b) one has to choose the eigenfunctions/values
(vν ,λν) (in x, on (0, a)) for the required boundary conditions at x = 0 and
x = a, and (ṽµ, λ̃µ) (in y, on (0, b)) for the required boundary conditions
at y = 0, y = b.

For Dirichlet boundary conditions everywhere this leads to

wνµ(x, y) = sin
(
ν
π

a
x
)

sin
(
µ
π

b
x
)

(7.27)
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for the eigenvalues

λνµ =
(νπ

a

)2
+
(µπ

b

)2

(i.e., the smallest eigenvalue is
(
π
a

)2 +
(
π
b

)2 and λνµ →∞ for ν →∞ or
µ →∞).

As a further concluding example we note the case
x = 0 or x = a : u(x, y) = 0 for y ∈ [0, b] ,

y = 0 : ∇u · ν(x, y) = −∂2u(x, y) = 0 for x ∈ (0, a) ,
y = b : ∇u · ν(x, y) = ∂2u(x, y) = 0 for x ∈ (0, a) .

Eigenfunctions:

wνµ(x, y) = sin
(
ν
π

a
x
)

cos
(
µ
π

b
y
)

, (7.28)

ν = 1, 2, . . . , µ = 0, 1, 2, . . . .

Eigenvalues:

λνµ =
(
ν
π

a

)2
+
(
µ
π

b

)2
.

A Sketch of the Theory of Weak Solutions
As in the study of the elliptic boundary value problems (3.12), (3.18)–
(3.20), for equation (7.1) a weak formulation can be given that reduces the
requirements with respect to the differentiability properties of the solution.

The idea is to treat time and space variables in a different way:

(1) • For fixed t ∈ (0, T ), the function x .→ u(x, t) is interpreted
as a parameter-dependent element u(t) of some space V whose
elements are functions of x ∈ Ω. An obvious choice is (see
Subsection 3.2.1, (I)) the space

V = {v ∈ H1(Ω) : v = 0 on Γ3}.

• In a next step, that is, for varying t, a function t .→ u(t) results
with values in the (function) space V.

(2) In addition to V, a further space H = L2(Ω) occurs, from which the
initial value u0 is taken and which contains V as a dense subspace.
A subspace V is called dense in H if the closure of V with respect to
the norm on H coincides with H.

(3) The time derivative is understood in a generalized sense; see (7.29).

(4) The generalized solution t .→ u(t) is sought as an element of a function
space, the elements of which are “function-valued” (cf. (1)).

Definition 7.1 Let X denote one of the spaces H or V (in particular, this
means that the elements of X are functions on Ω ⊂ Rd).
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(i) The space Cl([0, T ], X), l ∈ N0, consists of all continuous functions
v : [0, T ] → X that have continuous derivatives up to the order l on
[0, T ] with the norm

l∑

i=0

sup
t∈(0,T )

‖v(i)(t)‖X .

For the sake of simplicity, the notation C([0, T ], X) := C0([0, T ], X)
is used.

(ii) The space Lp((0, T ), X) with 1 ≤ p ≤ ∞ consists of all functions on
(0, T )× Ω with the following properties:

v(t, ·) ∈ X for any t ∈ (0, T ), F ∈ Lp(0, T ) with F (t) := ‖v(t, ·)‖X .

Furthermore,

‖v‖Lp((0,T ),X) := ‖F‖Lp(0,T ) .

Remark 7.2 f ∈ L2(QT ) ⇒ f ∈ L2 ((0, T ), H) .
Proof:
Basically, the proof is a consequence of Fubini’s theorem (see [1]). !

Concerning the interpretation of the time derivative and of the weak
formulation, a comprehensive treatment is possible only within the frame-
work of the theory of distributions; thus a detailed explanation is beyond
the scope of this book. A short but mathematically rigorous introduction
can be found in the book [39, Chapter 23].

The basic idea consists in the following definition:
A function u ∈ L2 ((0, T ), V ) is said to have a weak derivative w if the

following holds:
∫ T

0
u(t)Ψ′(t) dt = −

∫ T

0
w(t)Ψ(t) dt for all Ψ ∈ C∞

0 (0, T ) . (7.29)

Usually, this derivative w is denoted by du
dt or u′.

Remark 7.3 The integrals occurring above are to be understood as so-
called Bochner integrals and are extensions of the Lebesgue integral to
function-valued mappings. Therefore, equation (7.29) is an equality of
functions.

Before we give a weak formulation of (7.1), the following notion is worth
recalling:

〈u, v〉0 :=
∫

Ω

u v dx for u, v ∈ H , (7.30)

a(u, v) :=
∫

Ω

[K∇u ·∇v + (c ·∇u + ru) v] dx+
∫

Γ2

αuv dσ, u, v ∈ V. (7.31)
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Let u0 ∈ H , f ∈ L2 ((0, T ), H), and in case of Dirichlet conditions we
restrict ourselves to the homogeneous case.

An element u ∈ L2 ((0, T ), V ) is called a weak solution of (7.1) if it has
a weak derivative du

dt = u′ ∈ L2 ((0, T ), H) and the following holds
〈

d

dt
u(t), v

〉

0

+ a (u(t), v) = 〈f(t), v〉0 +
∫

Γ1

g1(·, t)v dσ

+
∫

Γ2

g2(·, t)v dσ

for all v ∈ V and t ∈ (0, T ) ,
u(0) = u0 .

(7.32)

Due to u ∈ L2 ((0, T ), V ) and u′ ∈ L2 ((0, T ), H) , we also have u ∈
C ([0, T ], H) (see [12, p. 287]), so that the initial condition is meaningful in
the classical sense.

In what follows, the bilinear form a is assumed to be continuous on V ×V
(see (3.2)) and V -elliptic (see (3.3)). The latter means that there exists a
number α > 0 such that

a(v, v) ≥ α‖v‖2
V for all v ∈ V .

Lemma 7.4 Let a be a V -elliptic, continuous bilinear form, u0 ∈ H, and
f ∈ C ([0, T ], H), and suppose the considered boundary conditions are ho-
mogeneous. Then, for the solution u(t) of (7.32) the following estimate
holds:

‖u(t)‖0 ≤ ‖u0‖0 e−αt +
∫ t

0
‖f(s)‖0 e−α(t−s) ds for all t ∈ (0, T ) .

Proof: The following equations are valid almost everywhere in (0, T ).
Setting v = u(t), (7.32) reads as

〈u′(t), u(t)〉0 + a(u(t), u(t)) = 〈f(t), u(t)〉0 .

Using the relation

〈u′(t), u(t)〉0 =
1
2

d

dt
〈u(t), u(t)〉0 =

1
2

d

dt
‖u(t)‖2

0 = ‖u(t)‖0
d

dt
‖u(t)‖0

and the V -ellipticity, it follows that

‖u(t)‖0
d

dt
‖u(t)‖0 + α ‖u(t)‖2

V ≤ 〈f(t), u(t)〉0 .

Now the simple inequality

‖u(t)‖0 ≤ ‖u(t)‖V

and the Cauchy–Schwarz inequality

〈f(t), u(t)〉0 ≤ ‖f(t)‖0‖u(t)‖0
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yield, after division by ‖u(t)‖0, the estimate

d

dt
‖u(t)‖0 + α‖u(t)‖0 ≤ ‖f(t)‖0 .

Multiplying this relation by eαt, the relation

d

dt
(eαt‖u(t)‖0) = eαt d

dt
‖u(t)‖0 + αeαt‖u(t)‖0

leads to
d

dt
(eαt‖u(t)‖0) ≤ eαt‖f(t)‖0 .

The integration over (0, t) results in

eαt‖u(t)‖0 − ‖u(0)‖0 ≤
∫ t

0
eαs‖f(s)‖0 ds

for all t ∈ (0, T ). Multiplying this by e−αt and taking into consideration
the initial condition, we get the asserted relation

‖u(t)‖0 ≤ ‖u0‖0 e−αt +
∫ t

0
‖f(s)‖0 e−α(t−s) ds .

!

As a consequence of this lemma, the uniqueness of the solution of (7.32)
is obtained.

Corollary 7.5 Let a be a V -elliptic, continuous bilinear form. Then there
exists at most one solution of (7.32).

Proof: Suppose there are two different solutions u1(t), u2(t) ∈ V. Then
the difference v(t) := u1(t) − u2(t) solves a homogeneous problem of the
type (7.32) (i.e., with f = 0, u0 = 0). Lemma 7.4 immediately implies
‖v(t)‖0 = 0 in [0, T ); that is, u1(t) = u2(t) for all t ∈ [0, T ). !

There is a close relation between Lemma 7.4 and solution representations
such as (7.18) (with the sum being infinite). The eigenvalue problem (7.12)
is defined as follows in its variational form (see also the end of Section 2.2):

Definition 7.6 A number λ ∈ R is called an eigenvalue for the eigenvector
w ∈ V, w -= 0, if

a(w, v) = λ〈w, v〉0 for all v ∈ V .

Assume that additionally to our assumptions the bilinear form is symmetric
and the embedding of V into H is compact (see [26]), which is the case here.
Then there are enough eigenvectors in the sense that a sequence (wi,λi),
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0 < λ1 ≤ λ2 ≤ . . . , exists such that the wi are orthonormal with respect
to 〈·, ·〉0 and every v ∈ V has a unique representation (in H) as

v =
∞∑

i=1

ciwi . (7.33)

As in (7.25) the Fourier coefficients ci are given by

ci = 〈v, wi〉0 . (7.34)

In fact, (7.33) gives a rigorous framework to the specific considerations
in (7.16) and subsequent formulas. From (7.33) and (7.34) we conclude
Parseval’s identity

‖v‖2
0 =

∞∑

i=1

|〈v, wi〉0|2. (7.35)

Furthermore, the sequence vi := λ−1/2
i wi is orthogonal with respect to

a(·, ·), and a representation corresponding to (7.33), (7.34) holds such that

a(v, v) =
∞∑

i=1

|a(v, vi)|2 =
∞∑

i=1

λ−1
i |a(v, wi)|2 =

∞∑

i=1

λi|〈v, wi〉0|2. (7.36)

From (7.35) and (7.36) we see that the ellipticity constant can be inter-
preted as the smallest eigenvalue λ. In fact, the solution representation
(7.18) (with the sum being infinite in H) also holds true under the as-
sumptions mentioned and also leads to the estimate of Lemma 7.4. But
note that the proof there does not require symmetry of the bilinear form.

Exercises

7.1 Consider the initial-boundary value problem

ut − uxx = 0 in (0,∞)× (0,∞) ,
u(0, t) = h(t) , t ∈ (0,∞) ,
u(x, 0) = 0 , x ∈ (0,∞) ,

where h : (0,∞) → R is a differentiable function, the derivative of which
has at most exponential growth.

(a) Show that the function

u(x, t) =
√

2
π

∫ ∞

x/
√

2t
e−s2/2h

(
t− x2

2s2

)
ds

is a solution.
(b) Is ut bounded in the domain of definition? If not, give conditions on

h that guarantee the boundedness of ut.
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7.2 Consider the initial-boundary value problem in one space dimension

ut − uxx = 0 in (0,π)× (0,∞) ,
u(0, t) = u(π, t) = 0 , t ∈ (0,∞) ,

u(x, 0) = u0(x) , x ∈ (0,π) .

(a) Solve it by means of the method of separation.
(b) Give a representation for ‖ut(t)‖0.

(c) Consider the particular initial condition u0(x) = π−x and investigate,
using the result from subproblem (b), the asymptotic behaviour of
‖ut(t)‖0 near t = 0.

7.3 Let the domain Ω ⊂ Rd be bounded by a sufficiently smooth boundary
and set V := H1

0 (Ω), H := L2(Ω). Furthermore, a : V × V → R is a
continuous, V -elliptic, symmetric bilinear form and u0 ∈ H. Prove by using
the so-called energy method (cf. the proof of Lemma 7.4) the following a
priori estimate for the solution u of the initial boundary value problem

〈ut(t), v〉0 + a(u(t), v) = 0 for all v ∈ V, t ∈ (0, T ) ,
u(0) = u0 .

(a) αt‖u(t)‖2
1 + 2

∫ t

0
s‖ut(s)‖2

0 ds ≤ M

∫ t

0
‖u(s)‖2

1 ds .

(b) ‖ut(t)‖0 ≤
√

M

2α
1
t
‖u0‖0 .

Here M and α denote the corresponding constants in the continuity and
ellipticity conditions, respectively.

7.2 Semidiscretization
by the Vertical Method of Lines

For solving parabolic equations numerically, a wide variety of methods
exists. The most important classes of these methods are the following:

• Full discretizations:

– Application of finite difference methods to the classical initial
boundary value problem (as of the form (7.1)).

– Application of so-called space-time finite element methods to a
variational formulation that includes the time variable, too.

• Semidiscretizations:

– The vertical method of lines: Here the discretization starts with
respect to the spatial variable(s) (e.g., by means of the finite dif-
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ference method, the finite element method, or the finite volume
method).

– The horizontal method of lines (Rothe’s method): Here the
discretization starts with respect to the time variable.

As the name indicates, a semidiscretization has to be followed by a further
discretization step to obtain a full discretization, which may be one of
the above-mentioned or not. The idea behind semidiscretization methods
is to have intermediate problems that are of a well-known structure. In
the case of the vertical method of lines, a system of ordinary differential
equations arises for the solution of which appropriate solvers are often
available. Rothe’s method generates a sequence of elliptic boundary value
problems for which efficient solution methods are known, too.

The attributes “vertical” and “horizontal” of the semidiscretizations are
motivated by the graphical representation of the domain of definition of the
unknown function u = u(x, t) in one space dimension (i.e., d = 1), namely,
assigning the abscissa (horizontal axis) of the coordinate system to the
variable x and the ordinate (vertical axis) to the variable t, so that the
spatial discretization yields problems that are setted along vertical lines.

In what follows, the vertical method of lines will be considered in more
detail.

In the following, and similarly in the following sections, we will de-
velop the analogous (semi)discretization approaches for the finite difference
method, the finite element method, and the finite volume method. This
will allow us to analyze these methods in a uniform way, as far as only the
emerging (matrix) structure of the discrete problems will play a role. On
the other hand, different techniques of analysis as in Chapters 1, 3 and 6
will further elucidate advantages and disadvantages of the methods. Read-
ers who are interested only in a specific approach may skip some of the
following subsections.

The Vertical Method of Lines for the Finite Difference Method
As a first example we start with the heat equation (7.8) with Dirichlet
boundary conditions on a rectangle Ω = (0, a) × (0, b). As in Sec-
tion 1.2 we apply the five-point stencil discretizations at the grid points
x ∈ Ωh (according to (1.5)) for every fixed t ∈ [0, T ]. This leads to the
approximation

∂tuij(t) +
1
h2

(
− ui,j−1(t)− ui−1,j(t) + 4uij(t)− ui+1,j(t)− ui,j+1(t)

)

= fij(t) , i = 1, . . . , l − 1, j = 1, . . . , m− 1, t ∈ (0, T ) ,
(7.37)

uij(t) = gij(t), i ∈ {0, l}, j = 0, . . . , m ,

j ∈ {0, m}, i = 0, . . . , l .
(7.38)
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Here we use

fij(t) := f(ih, jh, t) ,

gij(t) := g(ih, jh, t) ,
(7.39)

and the index 3 in the boundary condition is omitted. Additionally, the
initial condition (at the grid points) will be prescribed, that is,

uij(0) = u0(ih, jh), (ih, jh) ∈ Ωh . (7.40)

The system (7.37), (7.38), (7.40) is a system of (linear) ordinary differential
equations (in the “index” (i, j)). If, as in Section 1.2, we fix an ordering of
the grid points, the system takes the form

d

dt
uh(t) + Ahuh(t) = qh(t) , t ∈ (0, T ) ,

uh(0) = u0 ,
(7.41)

with Ah, qh as in (1.10), (1.11) (but now qh = qh(t) because of the t-
dependence of f and g).

The unknown is the function

uh : [0, T ] → RM1 , (7.42)

which means that the Dirichlet boundary conditions are eliminated as in
Section 1.2.

For a simplification of the notation we use in the following M instead
of M1, which also includes the eliminated degrees of freedom. Only in
Sections 7.5 and 7.6 will we return to the original notation.

More generally, if we consider a finite difference approximation, which
applied to the stationary problem (7.6) will lead to the system of equations

Ahuh = qh,

with uh ∈ RM , then the same method applied to (7.1) for every fixed
t ∈ (0, T ) leads to (7.41). In particular, the system (7.41) has a unique
solution due to the theorem of Picard–Lindelöf (cf. [26]).

The Vertical Method of Lines for the Finite Element Method
We proceed as for the finite difference method by now applying the finite
element method to (7.1) in its weak formulation (7.32) for every fixed t ∈
(0, T ), using the abbrevation

b(t, v) := 〈f(t), v〉0 +
∫

Γ1

g1(·, t)v dσ +
∫

Γ2

g2(·, t)v dσ . (7.43)

So let Vh ⊂ V denote a finite-dimensional subspace with dim Vh = M =
M(h) and let u0h ∈ Vh be some approximation to u0. Then the semidiscrete
problem reads as follows:
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Find uh ∈ L2 ((0, T ), Vh) with u′
h ∈ L2 ((0, T ), H) , uh(0) = u0h and

〈
d

dt
uh(t), vh

〉

0

+a(uh(t), vh) = b(t, vh) for all vh ∈ Vh , t ∈ (0, T ) . (7.44)

To gain a more specific form of (7.44), again we represent the unknown
uh(t) by its degrees of freedom:

Let {ϕi}M
i=1 be a basis of Vh, uh(t) =

∑M
i=1 ξi(t)ϕi and u0h =∑M

i=1 ξ0i ϕi. Then for any t ∈ (0, T ), the discrete variational equality (7.44)
is equivalent to

M∑

j=1

〈ϕj ,ϕi〉0
dξj(t)

dt
+

M∑

j=1

a(ϕj ,ϕi) ξj(t) = b(t,ϕi) for all i ∈ {1, . . . , M} .

Denoting by Âh := (a(ϕj ,ϕi))ij the stiffness matrix , by Bh :=
(
〈ϕj ,ϕi〉0

)
ij

the mass matrix, and by

βh(t) := (b(t,ϕi))i ,

respectively ξ0h := (ξ0i)i , the vectors of the right-hand side and of the
initial value, we obtain for ξh(t) := (ξi(t))i the following system of linear
ordinary differential equations with constant coefficients:

Bh
d

dt
ξh(t) + Âh ξh(t) = βh(t) , t ∈ (0, T ) ,

ξh(0) = ξ0h .
(7.45)

Since the matrix Bh is symmetric and positive definite, it can be factored
(e.g., by means of Cholesky’s decomposition) as Bh = ET

h Eh. Introducing
the new variable uh := Ehξh (to maintain the possible definiteness of Ah),
the above system (7.45) can be written as follows:

d

dt
uh(t) + Ah uh(t) = qh(t) , t ∈ (0, T ) ,

uh(0) = uh0 ,
(7.46)

where Ah := E−T
h ÂhE−1

h is an RM -elliptic matrix and qh := E−T
h βh,

uh0 := Ehξ0h.
Thus again the discretization leads us to a system (7.41).

Remark 7.7 By means of the same arguments as in the proof of
Lemma 7.4, an estimate of ‖uh(t)‖0 can be derived.

The Vertical Method of Lines for the Finite Volume Method
Based on the finite volume methods introduced in Chapter 6, in this sub-
section a finite volume semidiscretization is given for the problem (7.1)
in its weak formulation (7.32) for every fixed t ∈ (0, T ) in the special
case Γ3 = ∂Ω and of homogeneous Dirichlet boundary conditions. As in
Chapter 6, the only essential difference to problem (7.1) is that here the
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differential expression L is in divergence form, i.e.,

Lu := −∇ · (K∇u− c u) + r u = f ,

where the data K, c, r, and f are as in (7.2).
Correspondingly, the bilinear form a in the weak formulation (7.32) is to

be replaced by

a(u, v) =
∫

Ω
[(K∇u − c u) ·∇v + ruv] dx . (7.47)

In order to obtain a finite volume semidiscretization of the problem (7.1)
in divergence form, and of (7.32) with the modification (7.47), we recall
the way that it was done in the elliptic situation. Namely, comparing the
weak formulation of the elliptic problem (see Definition 2.2) with the finite
volume method in the discrete variational formulation (6.11), we see that
the bilinear form a and the linear form b(·) := 〈f, ·〉0 have been replaced by
certain discrete forms ah and 〈f, ·〉0,h , respectively. This formal procedure
can be applied to the weak formulation (7.32) of the parabolic problem,
too.

So let Vh ⊂ V denote a finite-dimensional subspace as introduced in Sec-
tion 6.2 with dimVh = M = M(h) and let u0h ∈ Vh be some approximation
to u0. Then, the semidiscrete finite volume method reads as follows:

Find uh ∈ L2 ((0, T ), Vh) with u′
h ∈ L2 ((0, T ), H) , uh(0) = u0h and

〈 d

dt
uh(t), vh

〉

0,h
+ah(uh(t), vh) = 〈f(t), vh〉0,h for all vh ∈ Vh , t ∈ (0, T ) ,

(7.48)
where both the bilinear form ah and the form 〈·, ·〉0,h have been formally
defined in Section 6.2. However, to facilitate the comparison of the finite
volume discretization with the previously described methods, here we set
Λ := {1, . . . , M}.

As in Section 6.2 we consider the following discrete L2-scalar product
〈·, ·〉0,h:

〈 d

dt
uh(t), vh

〉

0,h
=

M∑

j=1

d

dt
uh(aj , t)vh(aj)mj . (7.49)

In analogy to the case of the finite element method (cf. Remark 7.7), a
stability estimate for the finite volume method can be obtained. Namely,
under the assumptions of Theorem 6.15, we have that

ah(vh, vh) ≥ α‖vh‖2
0,h for all vh ∈ Vh

with some constant α > 0 independent of h. Then, taking vh = uh(t) in
(7.48), we get

〈 d

dt
uh(t), uh(t)

〉

0,h
+ ah(uh(t), uh(t)) = 〈f(t), uh(t)〉0,h ,
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and, after some calculations,

d

dt
‖uh(t)‖0,h + α‖uh(t)‖0,h ≤ ‖f(t)‖0,h .

The subsequent arguments are as in the proof of Lemma 7.4; i.e., we obtain

‖uh(t)‖0,h ≤ ‖u0‖0,h e−αt +
∫ t

0
‖f(s)‖0,h e−α(t−s) ds .

If the right-hand side of (7.48) is a general bounded linear form, i.e., instead
of 〈f(t), vh〉0,h we have the term b(t, vh), where b : (0, T )×Vh → R is such
that

|b(t, v)| ≤ ‖b(t)‖∗‖v‖0,h for all v ∈ Vh , t ∈ (0, T ),

with ‖b(t)‖∗ < ∞ for all t ∈ (0, T ), then an analogous estimate holds:

‖uh(t)‖0,h ≤ ‖u0‖0,h e−αt +
∫ t

0
‖b(s)‖∗ e−α(t−s) ds . (7.50)

As in the previous subsection, we now want to give a more specific form of
(7.48).

Given a basis {ϕi}M
i=1 of the space Vh, such that ϕi(aj) = δij for the

underlying nodes, we have the unique expansions

uh(t) =
M∑

i=1

ξi(t)ϕi and u0h =
M∑

i=1

ξ0i ϕi .

Then for any t ∈ (0, T ), the discrete variational equality (7.48) is equivalent
to

mi
dξi(t)

dt
+

M∑

j=1

ah(ϕj ,ϕi) ξj(t) = 〈f(t),ϕi〉0,h for all i ∈ {1, . . . , M} ,

where mi = |Ωi|. Using the notation Âh := (ah(ϕj ,ϕi))ij for the finite
volume stiffness matrix, Bh := diag(mi) for the finite volume mass matrix,
βh(t) :=

(
〈f(t),ϕi〉0,h

)

i
for the vector of the right-hand side, and ξ0h :=

(ξ0i)i for the vector of the initial value, we obtain for the unknown vector
function ξh(t) := (ξi(t))i the following system of linear ordinary differential
equations with constant coefficients:

Bh
d

dt
ξh(t) + Âh ξh(t) = βh(t) , t ∈ (0, T ) ,

ξh(0) = ξ0h .
(7.51)

In contrast to the system (7.45) arising in the finite element semidiscretiza-
tion, here the matrix Bh is diagonal. Therefore, it is very easy to introduce
the new variable uh := Ehξ with Eh := diag(

√
mi), and the above system
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(7.51) can be written as follows:

d

dt
uh(t) + Ah uh(t) = qh(t) , t ∈ (0, T ) ,

uh(0) = uh0 ,
(7.52)

where Ah := E−1
h ÂhE−1

h is an RM -elliptic matrix and qh := E−1
h βh, uh0 :=

Ehξ0h.
Thus again we have arrived at a system of the form (7.41).

Representation of Solutions in a Special Case
The solution of system (7.41) can be represented explicitly if there is a
basis of RM composed of eigenvectors of Ah. This will be developed in the
following, but is not meant for numerical use, since only in special cases
can eigenvectors and values be given explicitly. Rather, it will serve as a
tool for comparison with the continuous and the fully discrete cases.

Let (wi,λi), i = 1, . . . , M, be the eigenvectors and real eigenvalues of
Ah. Then the following representation exists uniquely:

u0 =
M∑

i=1

ciwi and qh(t) =
M∑

i=1

qi
h(t)wi . (7.53)

Again by a separation of variables approach (cf. (7.18)) we see that

uh(t) =
M∑

i=1

(cie
−λit +

t∫

0

qi
h(t)e−λi(t−s)ds)wi . (7.54)

A more compact notation is given by

uh(t) = e−Ahtu0 +
t∫

0

e−Ah(t−s)qh(s)ds (7.55)

if we define for a matrix B ∈ RM,M ,

eB :=
∞∑

ν=0

Bν

ν!
.

This can be seen as follows:
Let

T := (w1, . . . , wM ) ∈ RM,M ,

Λ := diag(λi) ∈ RM,M .

Then

AhT = TΛ , i.e., T−1AhT = Λ ,
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and therefore

T−1e−AhtT =
∞∑

ν=0

tν

ν!
T−1(−Ah)νT =

∞∑

ν=0

tν

ν!
(−Λ)ν ,

since T−1(−Ah)νT = T−1(−Ah)TT−1(−Ah)TT−1 . . . T and thus

T−1e−AhtT = diag

( ∞∑

ν=0

(−λit)ν

ν!

)
= diag

(
e−λit

)
.

Then for c = (c1, . . . , cM )T ∈ RM , because of Tc = u0 we conclude for the
case qh = 0 that

uh(t) = Tdiag(e−λit)c = TT−1e−AhtTc = e−Ahtu0 ,

and similarly in general.
A basis of eigenvalues exists if Ah is self-adjoint with respect to a scalar

product 〈·, ·〉h in RM , meaning that

〈v, Ahu〉h = 〈Ahv, u〉h for all u, v ∈ RM .

Then the eigenvectors even are orthogonal ; that is,

〈wi, wj〉h = 0 for i -= j (7.56)

because of

λi〈wi, wj〉h = 〈Ahwi, wj〉 = 〈wi, Ahwj〉 = λj〈wi, wj〉h ,

and thus (7.56) if λi -= λj . But eigenvectors belonging to one eigenvalue
can always be orthonormalized. For orthogonal wi the coefficient ci from
(7.53) has the form

ci =
〈u0, wi〉h
〈wi, wi〉h

, (7.57)

and analogously for qi
h.

Order of Convergence Estimates for the Finite Difference Method
in a Special Case
As an illustrative example, we consider a case where the eigenvectors and
eigenvalues of Ah are known explicitly: the five-point stencil discretization
of the Poisson equation with Dirichlet conditions in Ω = (0, a) × (0, b).
Instead of considering a fixed ordering of the grid points, we prefer to use
the “natural” two-dimensional indexing; i.e., we regard the eigenvectors as
grid functions. As seen in Section 1.2, Ah is symmetric and thus self-adjoint
with respect to the Euclidean scalar product scaled with hd if Ω ⊂ Rd, i.e.,
d = 2 here:

〈u, v〉h = hd
M∑

i=1

uivi . (7.58)
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The norm induced by this scalar product is exactly the discrete L2-norm
defined in (1.18) (for d = 2 and for the vectors representing the grid func-
tions):

|u|0,h = 〈u, u〉1/2
h = hd/2

(
M∑

i=1

|ui|2
)1/2

. (7.59)

If we mean the grid function U, we denote the norm by ‖U‖0,h .
The eigenvectors, which have already been noted for a special case after

Theorem 5.4, are written as grid functions

uνµ(x, y) = sin
(
ν
π

a
x
)

sin
(
µ
π

b
y
)

for (x, y) ∈ Ωh ,

and ν = 1, . . . , l − 1, µ = 1, . . . , m− 1
(7.60)

for the eigenvalues

λνµh =
2
h2

(
2− cos

(
ν
π

a
h
)
− cos

(
µ
π

b
h
))

.

Note that the eigenvectors are the eigenfunctions of the continuous problem
evaluated at the grid points, but the grid points can distinguish only the
maximal frequencies l−1

2 and m−1
2 , so that for other indices ν, µ the given

grid functions would be repeated.
Due to 2 sin2

(
ξ
2

)
= 1− cos(ξ), an alternative representation is

λνµh =
4
h2

(
sin2

(
ν
π

a

h

2

)
+ sin2

(
µ
π

b

h

2

))
,

so that for h → 0,

λνµh =
(νπ

a

)2
(

sin
(
ν
π

a

h

2

)/(
ν
π

a

h

2

))2

+
(µπ

b

)2
(

sin
(

µ
π

b

h

2

)/(
µ
π

b

h

2

))2

→
(νπ

a

)2
cos2(0) +

(µπ

b

)2
cos2(0)

(7.61)

holds; i.e., the eigenvalues converge to the eigenvalues (7.27) of the
boundary value problem, with an order of convergence estimate of O(h2).

The eigenvectors are orthogonal with respect to 〈·, ·〉h, since they be-
long to different eigenvalues (see (7.56)). To specify the Fourier coefficients
according to (7.57), we need

〈uνµ, uνµ〉h =
ab

4
(7.62)

(see Exercise 7.5).
To investigate the accuracy of the semidiscrete approximation, the so-

lution representations can be compared. To simplify the exposition, we
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consider only f = 0, so that because of (7.18), (7.27) we have

u(x, y, t) =
∞∑

ν=1
µ=1

cνµe−λ
νµt sin

(
ν
π

a
x
)

sin
(
µ
π

b
y
)

,

and

cνµ =
4
ab

b∫

0

a∫

0

u0(x, y) sin
(
ν
π

a
x
)

sin
(
µ
π

b
y
)

dx dy

because of (7.25) and (7.24) (applied in every space direction), and finally,

λνµ =
(νπ

a

)2
+
(µπ

b

)2

for the continuous solution. For the semidiscrete approximation at a grid
point (x, y) ∈ Ωh we have, due to (7.54),

uh(x, y, t) =
l−1∑

ν=1

m−1∑

µ=1

ch
νµe−λ

νµ
h t sin

(
ν
π

a
x
)

sin
(
µ
π

b
y
)

and

ch
νµ =

4
ab

h2
l−1∑

i=1

m−1∑

j=1

u0(ih, jh) sin
(
ν
π

a
ih
)

sin
(
µ
π

b
jh
)

,

λνµh =
4
h2

(
sin2

(
ν
π

a

h

2

)
+ sin2

(
µ
π

b

h

2

))
.

Compared at the grid points u has additionally the terms in the infinite
series for ν = l, . . ., or µ = m, . . ..

They can be estimated by
∣∣∣∣∣

( ∞∑

ν=l

∞∑

µ=1

+
∞∑

ν=1

∞∑

µ=m

)
cνµe−λ

νµt sin
(
ν
π

a
x
)

sin
(
µ
π

b
y
) ∣∣∣∣∣

≤ C1

( ∞∑

ν=l

∞∑

µ=1

+
∞∑

ν=1

∞∑

µ=m

)
e−λ

νµt

with C1 := max{|cνµ| , ν, µ ∈ N, ν /∈ {1, . . . , l − 1} or µ /∈ {1, . . . , m− 1}}

≤ C1

(
C2

∞∑

ν=l

e−( νπ
a )2

t + C3

∞∑

µ=m

e−(µπ
b )2

t

)

with C2 :=
∑∞

µ=1 e−(µπ
b )2

t ≤ q2
1−q2

, where q2 := e−(π
b )2

t because of∑∞
µ=1 qµ = q

1−q for |q| < 1 , and C3 is defined analogously (µ ←→

ν, a ←→ b) with an estimate by q1
1−q1

, q1 := e−(π
a )2

t for t ≥ t > 0.
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Finally, we conclude the estimate because of
∑∞

µ=l qµ = ql

1−q by

≤ C1

(
C2

ql
1

1− q1
+ C3

qm
2

1− q2

)
.

Therefore, this error contribution for t ≥ t (for a fixed t > 0) approaches
0 for l → ∞ and m → ∞. The larger t is, the more this error term will
decrease. Because of, for example, l = a/h and thus ql

1 = exp
(
−π

2

a t 1
h

)
,

the decay in h is exponential and thus much stronger than a term like
O(h2). Therefore, we have to compare the terms in the sum only for ν =
1, . . . , l − 1, µ = 1, . . . , m− 1, i.e., the error in the Fourier coefficient and
in the eigenvalue:

cνµe−λ
νµt − ch

νµe−λ
νµ
h t =

(
cνµ − ch

νµ

)
e−λ

νµt + ch
νµ

(
e−λ

νµt − e−λ
νµ
h t
)

.

Note that ch
νµ can be perceived as an approximation of cνµ by the trape-

zoidal sum with step size h in each spatial direction (see, e.g., [30], p. 129),
since the integrand in the definition of cνµ vanishes for x = 0 or x = a and
y ∈ [0, b], and y = 0 or y = b and x ∈ [0, a]. Thus we have for u0 ∈ C2(Ω̄),

|cνµ − ch
νµ| = O(h2).

Because of

e−λ
νµt − e−λ

νµ
h t = e−λ

νµt
(
1− e−(λνµ

h −λνµ)t
)

,

and |λνµh − λνµ| = O(h2) (see (7.61)), also this term is of order O(h2) and
will be damped exponentially (depending on t and the size of the smallest
eigenvalue λνµ).

Summarizing, we expect

O(h2)

to be the dominating error term in the discrete maximum norm ‖·‖∞ at the
grid points (cf. definition (1.17)), which will also be damped exponentially
for increasing t. Note that we have given only heuristic arguments and that
the considerations cannot be transferred to the Neumann case, where the
eigenvalue λ = 0 appears.

We now turn to the finite element method.

Order of Convergence Estimates for the Finite Element Method
We will investigate the finite element method on a more abstract level as in
the previous subsection, but we will achieve a result (in different norms) of
similar character. As worked out at the end of Section 7.1, there is a strong
relation between the V -ellipticity of the bilinear form a with the parameter
α and a positive lower bound of the eigenvalues. Here we rely on the results
already achieved in Section 2.3 and Section 3.4 for the stationary case.

For that, we introduce the so-called elliptic projection of the solution u(t)
of (7.32) as a very important tool in the proof.
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Definition 7.8 For a V -elliptic, continuous bilinear form a : V × V → R,
the elliptic, or Ritz, projection Rh : V → Vh is defined by

v .→ Rhv ⇐⇒ a(Rhv − v, vh) = 0 for all vh ∈ Vh .

Theorem 7.9 Under the assumptions of Definition 7.8:
(i) Rh : V → Vh is linear and continuous.
(ii) Rh yields quasi-optimal approximations; that is,

‖v −Rhv‖V ≤ M

α
inf

vh∈Vh

‖v − vh‖V ,

where M and α are the Lipschitz and ellipticity constants according to
(2.42) and (2.43).

Proof: The linearity of Rh is obvious. The remaining statements
immediately follow from Lemma 2.16 and Theorem 2.17; see Exercise 7.6. !

Making use of the elliptic projection, we are able to prove the following
result.

Theorem 7.10 Suppose a is a V -elliptic, continuous bilinear form, f ∈
C([0, T ], H), u0 ∈ V, and u0h ∈ Vh. Then if u(t) is sufficiently smooth,

‖uh(t)− u(t)‖0 ≤ ‖u0h −Rhu0‖0 e−αt + ‖(I −Rh)u(t)‖0

+
∫ t

0
‖(I −Rh)u′(s)‖0 e−α(t−s) ds .

Proof: First, the error is decomposed as follows:

uh(t)− u(t) = uh(t)−Rhu(t) + Rhu(t)− u(t) =: θ(t) + '(t) .

We take v = vh ∈ Vh in (7.32) and obtain, by the definition of Rh,

〈u′(t), vh〉0 + a(u(t), vh) = 〈u′(t), vh〉0 + a(Rhu(t), vh) = b(t, vh) .

Here b(t, ·) is as defined in (7.43).
Subtracting this equation from (7.44), we get

〈u′
h(t), vh〉0 − 〈u′(t), vh〉0 + a(θ(t), vh) = 0 ,

and thus

〈θ′(t), vh〉0 + a(θ(t), vh) = 〈u′(t), vh〉0 −
〈

d

dt
Rhu(t), vh

〉

0

= −〈'′(t), vh〉0 .

The application of Lemma 7.4 yields

‖θ(t)‖0 ≤ ‖θ(0)‖0 e−αt +
∫ t

0
‖'′(s)‖0 e−α(t−s) ds .

Since the elliptic projection is continuous (Theorem 7.9, (i)) and u(t) is
sufficiently smooth, Rh and the time derivative d

dt commute; that is, '′(t) =
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(Rh − I)u′(t). It remains to apply the triangle inequality to get the stated
result. !

Theorem 7.10 has the following interpretation:
The error norm ‖uh(t)− u(t)‖0 is estimated by

• the initial error (exponentially decaying in t), which occurs only if
u0h does not coincide with the elliptic projection of u0,

• the projection error of the exact solution u(t) measured in the norm
of H,

• the projection error of u′(t) measured in the norm of H and integrally
weighted by the factor e−α(t−s) on (0, t).

Remark 7.11 If the bilinear form a defines an elliptic problem such that
for the elliptic projection an error estimate of the type

‖(I −Rh)w‖0 ≤ Ch2‖w‖2 for all w ∈ V ∩H2(Ω)

is valid, if u0h approximates the elliptic projection Rhu0 of the initial value
u0 at least with the same asymptotic quality, and if the solution u of (7.44)
is sufficiently smooth, then an optimal L2-error estimate results:

‖uh(t)− u(t)‖0 ≤ C(u(t))h2 .

We see that in order to obtain semidiscrete error estimates, we need esti-
mates of the projection error measured in the norm of H = L2(Ω). Due to
‖ ·‖0 ≤ ‖ ·‖V , the quasi-optimality of Rh (Theorem 7.9, (ii)) in conjunction
with the corresponding approximation error estimates (Theorem 3.29) al-
ready yield some error estimate. Unfortunately, this result is not optimal.
However, if the adjoint boundary value problem is regular in the sense of
Definition 3.36, the duality argument (Theorem 3.37) can be successfully
used to derive an optimal result.

Theorem 7.12 Suppose the bilinear form a is V -elliptic and continuous,
and the solution of the adjoint boundary value problem is regular.

Furthermore, let the space Vh ⊂ V be such that for any function w ∈
V ∩H2(Ω),

inf
vh∈Vh

‖w − vh‖V ≤ C h |w|2 ,

where the constant C > 0 does not depend on h and w. If u0 ∈ V ∩H2(Ω),
then for a sufficiently smooth solution u of (7.44) we have

‖uh(t)− u(t)‖0 ≤ ‖u0h − u0‖0 e−αt

+ C h2

(
‖u0‖2 e−αt + ‖u(t)‖2 +

∫ t

0
‖u′(s)‖2 e−α(t−s) ds

)
.
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Proof: The first term in the error bound from Theorem 7.10 is estimated
by means of the triangle inequality:

‖u0h −Rhu0‖0 ≤ ‖u0h − u0‖0 + ‖(I −Rh)u0‖0 .

Then the projection error estimate (Theorem 3.37, (1)) yields the given
bounds of the resulting second term as well as of the remaining two terms
in the error bound from Theorem 7.10. !

Order of Convergence Estimates for the Finite Volume Method
For simplicity we restrict attention to pure homogeneous Dirichlet condi-
tions (Γ3 = ∂Ω). The idea is similar to the proof given in the finite element
case. However, here we will meet some additional difficulties, which are
caused by the use of perturbed bilinear and linear forms.

We take v = vh ∈ Vh in (7.32) and subtract the result from (7.48):

〈u′
h(t), vh〉0,h − 〈u′(t), vh〉0 + ah(uh(t), vh)− a(u(t), vh)

= 〈f(t), vh〉0,h − 〈f(t), vh〉0 .

In analogy to the finite element method, we introduce the following aux-
iliary problem: Given some v ∈ V, find an element Rhv ∈ Vh such
that

ah(Rhv, vh) = a(v, vh) for all vh ∈ Vh . (7.63)

With this, the above identity can be rewritten as follows:

〈u′
h(t), vh〉0,h − 〈u′(t), vh〉0 + ah(uh(t)−Rhu(t), vh)

= 〈f(t), vh〉0,h − 〈f(t), vh〉0 .

Subtracting from both sides of this relation the term
〈

d
dtRhu(t), vh

〉
0,h

and assuming that u′(t) is a sufficiently smooth function of x, a slight
rearrangement yields

〈θ′(t), vh〉0,h + ah(θ(t), vh) = −〈'′(t), vh〉0,h + 〈u′(t), vh〉0 (7.64)

−〈u′(t), vh〉0,h + 〈f(t), vh〉0,h − 〈f(t), vh〉0 ,

where, as in the finite element case, θ(t) = uh(t) − Rhu(t) and '(t) =
Rhu(t) − u(t). Furthermore, we define, for v ∈ Vh, b1(t, v) := 〈u′(t), v〉0 −
〈u′(t), v〉0,h and b2(t, v) := 〈f(t), v〉0,h − 〈f(t), v〉0 .

In order to be able to apply the discrete stability estimate (7.50) to this
situation, we need an error estimate for Rhu′(t) as in Remark 7.11 and
bounds (consistency error estimates) for |b1(t, v)|, |b2(t, v)|.

So we turn to the first problem. In fact, the estimate is very similar
to the error estimate for the finite volume method given in the proof of
Theorem 6.18.

For an arbitrary function v ∈ V ∩H2(Ω) and vh := Rhv− Ih(v), we have
by (7.63) that

ah(vh, vh) = ah(Rhv, vh)− ah(Ih(v), vh) = a(v, vh)− ah(Ih(v), vh).
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By partial integration in the first term of the right-hand side, it follows
that

ah(vh, vh) = 〈Lv, vh〉0 − ah(Ih(v), vh).

From [40] an estimate of the right-hand side is known (cf. also (6.22)); thus

ah(vh, vh) ≤ Ch‖v‖2

{
|vh|21 + ‖vh‖2

0,h

}1/2
.

So Theorem 6.15 yields
{
|vh|21 + ‖vh‖2

0,h

}1/2 ≤ Ch‖v‖2 .

By the triangle inequality,

‖(Rh − I)v‖0,h ≤ ‖Rhv − Ih(v)‖0,h + ‖Ih(v)− v‖0,h.

Since the second term vanishes by the definitions of ‖ · ‖0,h and Ih, we get
in particular

‖(Rh − I)v‖0,h ≤ Ch‖v‖2 . (7.65)

Remark 7.13 In contrast to the finite element case (Remark 7.11), this
estimate is not optimal.

To estimate |b1(t, v)| and |b2(t, v)|, we prove the following result.

Lemma 7.14 Assume w ∈ C1(Ω) and v ∈ Vh. Then, if the finite volume
partition of Ω is a Donald diagram,

| 〈w, v〉0,h − 〈w, v〉0 | ≤ Ch|w|1,∞‖v‖0,h.

Proof: We start with a simple rearrangement of the order of summation:

〈w, v〉0,h =
M∑

j=1

wjvjmj =
∑

K∈Th

∑

j:∂K/aj

wjvj |Ωj,K | ,

where Ωj,K = Ωj ∩ intK . First, we will consider the inner sum. For any
triangle K ∈ Th with barycentre aS,K , we can write

∑

j:∂K/aj

wjvj |Ωj,K | =
∑

j:∂K/aj

[wj − w(aS,K)]vj |Ωj,K |

+
∑

j:∂K/aj

w(aS,K)

[
vj |Ωj,K |−

∫

Ωj,K

v dx

]

+
∑

j:∂K/aj

∫

Ωj,K

[w(aS,K)− w]v dx +
∑

j:∂K/aj

∫

Ωj,K

wv dx

=: I1,K + I2,K + I3,K +
∫

K
wv dx .
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To estimate I1,K , we apply the Cauchy–Schwarz inequality and get

|I1,K | ≤





∑

j:∂K/aj

|wj − w(aS,K)|2|Ωj,K |






1/2

‖v‖0,h,K,

where

‖v‖0,h,K :=





∑

j:∂K/aj

v2
j |Ωj,K |






1/2

.

Since |wj − w(aS,K)| ≤ hK |w|1,∞, it follows that

|I1,K | ≤ hK |w|1,∞
√
|K|‖v‖0,h,K.

Similarly, for I3,K we easily get

|I3,K | =
∣∣∣∣
∫

ΩK

[w(aS,K)− w]v dx

∣∣∣∣

≤ ‖w(aS,K)− w‖0,K‖v‖0,K ≤ hK |w|1,∞
√
|K|‖v‖0,K .

So it remains to consider I2,K . Obviously,

I2,K = w(aS,K)
∑

j:∂K/aj

∫

Ωj,K

[vj − v] dx .

We will show that if Ωj belongs to a Donald diagram, then the sum van-
ishes. To do so, let us suppose that the triangle under consideration has
the vertices ai, aj , and ak. The set Ωj,K can be decomposed into two sub-
triangles by drawing a straight line between aS,K and aj . We will denote
the interior of these triangles by Ωj,K,i and Ωj,K,k; i.e.,

Ωj,K,i := int
(
conv{aj, aS,K , aij}

)
, Ωj,K,k := int

(
conv{aj, aS,K , akj}

)
.

On each subtriangle, the integral of v can be calculated exactly by means
of the trapezoidal rule. Since |Ωj,K,i| = |Ωj,K,k| = |K|/6 in the case of the
Donald diagram (cf. also (6.4)), we have

∫

Ωj,K,i

v dx =
|K|
18

[
vj +

vj + vi

2
+

vj + vi + vk

3

]

=
|K|
18

[11
6

vj +
5
6
vi +

1
3
vk

]
,

∫

Ωj,K,k

v dx =
|K|
18

[11
6

vj +
5
6
vk +

1
3
vi

]
.

Consequently,
∫

Ωj,K

v dx =
|K|
18

[11
3

vj +
7
6
vi +

7
6
vk

]
,
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and thus
∑

j:∂K/aj

∫

Ωj,K

v dx =
|K|
3

∑

j:∂K/aj

vj .

On the other hand, since 3|Ωj,K | = |K| (cf. (6.4)), we have
∑

j:∂K/aj

∫

Ωj,K

vj dx =
|K|
3

∑

j:∂K/aj

vj ,

and so I2,K = 0. In summary, we have obtained the following estimate:

|I1,K + I2,K + I3,K | ≤ hK |w|1,∞
√
|K|

[
‖v‖0,h,K + ‖v‖0,K

]
.

So it follows that

| 〈w, v〉0,h − 〈w, v〉0 | ≤
∑

K∈Th

|I1,K + I2,K + I3,K |

≤ h|w|1,∞
∑

K∈Th

√
|K|

[
‖v‖0,h,K + ‖v‖0,K

]
.

By the Cauchy–Schwarz inequality,

∑

K∈Th

√
|K|‖v‖0,h,K ≤

{
∑

K∈Th

|K|
}1/2{ ∑

K∈Th

‖v‖2
0,h,K

}1/2

=
√
|Ω|‖v‖0,h

and, similarly,
∑

K∈Th

√
|K|‖v‖0,K ≤

√
|Ω|‖v‖0 .

So we finally arrive at

| 〈w, v〉0,h − 〈w, v〉0 | ≤ Ch|w|1,∞
[
‖v‖0,h + ‖v‖0

]
.

Since the norms ‖ · ‖0,h and ‖ · ‖0 are equivalent on Vh (see Remark 6.16),
we get

| 〈w, v〉0,h − 〈w, v〉0 | ≤ Ch|w|1,∞‖v‖0,h.

!

Now we are prepared to apply the discrete stability estimate (7.50) to
equation (7.64):

‖θ(t)‖0,h ≤ ‖θ(0)‖0,h e−αt

+
∫ t

0
[‖'′(s)‖0,h + ‖b1(s)‖∗ + ‖b2(s)‖∗] e−α(t−s)ds ,

where |bj(t, v)| ≤ ‖bj(t)‖∗‖v‖0,h for all v ∈ Vh, t ∈ (0, T ), and j = 1, 2. The
first term in the integral can be estimated by means of (7.65), whereas the
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estimates of ‖b1(s)‖∗, ‖b2(s)‖∗ result from Lemma 7.14:

‖θ(t)‖0,h ≤ ‖θ(0)‖0,h e−αt

+Ch

∫ t

0
[‖u′(s)‖2 + |u′(s)|1,∞ + ‖f(s)‖1,∞] e−α(t−s)ds .

If u0 ∈ V ∩H2(Ω), we can write, by (7.65),

‖θ(0)‖0,h ≤ ‖uh0 − u0‖0,h + ‖(I −Rh)u0‖0,h ≤ ‖uh0 − u0‖0,h + Ch‖u0‖2.

So we get

‖θ(t)‖0,h ≤ ‖uh0 − u0‖0,h e−αt + Ch
[
‖u0‖2e

−αt

+
∫ t

0
[‖u′(s)‖2 + |u′(s)|1,∞ + ‖f(s)‖1,∞] e−α(t−s)ds

]
.

Since

‖uh(t)− u(t)‖0,h ≤ ‖θ(t)‖0,h + ‖(Rh − I)u(t)‖0,h,

the obtained estimate and (7.65) yield the following result.

Theorem 7.15 In addition to the assumptions of Theorem 6.15, let f ∈
C([0, T ], C1(Ω)), u0 ∈ V ∩H2(Ω), and u0h ∈ Vh. Then if u(t) is sufficiently
smooth, the solution uh(t) of the semidiscrete finite volume method (7.48)
on Donald diagrams satisfies the following estimate:

‖uh(t)− u(t)‖0,h ≤ ‖uh0 − u0‖0,h e−αt + Ch
[
‖u0‖2e

−αt + ‖u(t)‖2

+
∫ t

0
[‖u′(s)‖2 + |u′(s)|1,∞ + ‖f(s)‖1,∞] e−α(t−s)ds

]
.

Remark 7.16 In comparison with the finite element method, the result is
not optimal in h. The reason is that, in general, the finite volume method
does not yield optimal L2-error estimates even in the elliptic case, but this
type of result is necessary to obtain optimal estimates.

Exercises

7.4 Let A ∈ RM,M be an RM-elliptic matrix and let the symmetric positive
definite matrix B ∈ RM,M have the Cholesky decomposition B = ET E.
Show that the matrix Â := E−T AE−1 is RM-elliptic.

7.5 Prove identity (7.62) by first proving the corresponding identity for
one space dimension:

h
l−1∑

i=1

sin2
(
ν
π

a
ih
)

=
a

2
.
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7.6 Let V be a Banach space and a : V ×V → R a V -elliptic, continuous
bilinear form. Show that the Ritz projection Rh : V → Vh in a subspace
Vh ⊂ V (cf. Definition 7.8) has the following properties:

(i) Rh : V → Vh is continuous because of ‖Rhu‖V ≤ M
α ‖u‖V ,

(ii) Rh yields quasi-optimal approximations; that is,

‖u−Rhu‖V ≤ M

α
inf

vh∈Vh

‖u− vh‖V .

Here M and α denote the constants in the continuity and ellipticity
conditions, respectively.

7.7 Let u ∈ C1([0, T ], V ). Show that Rhu ∈ C1([0, T ], V ) and d
dtRhu(t) =

Rh
d
dtu(t).

7.8 Transfer the derivation of the finite volume method given in Sec-
tion 6.2.2 for the case of an elliptic boundary value problem to the parabolic
initial-boundary value problem (7.1) in divergence form; i.e., convince your-
self that the formalism of obtaining (7.48) indeed can be interpreted as a
finite volume semidiscretization of (7.1).

7.3 Fully Discrete Schemes

As we have seen, the application of the vertical method of lines results in
the following situation:

• There is a linear system of ordinary differential equations of high
order (dimension) to be solved.

• There is an error estimate for the solution u of the initial-boundary
value problem (7.1) by means of the exact solution uh of the system
(7.41).

A difficulty in the choice and in the analysis of an appropriate discretiza-
tion method for systems of ordinary differential equations is that many
standard estimates involve the Lipschitz constant of the corresponding
right-hand side, here qh −Ahuh (cf. (7.41)). But this constant is typically
large for small spatial parameters h, and so we would obtain nonrealistic
error estimates (cf. Theorem 3.45).

There are two alternatives. For comparatively simple time discretiza-
tions, certain estimates can be derived in a direct way (i.e., without using
standard estimates for systems of ordinary differential equations). The sec-
ond way is to apply specific time discretizations in conjunction with refined
methods of proof.
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Here we will explain the first way for the so-called one-step-theta method.

One-Step Discretizations in Time, in Particular for the Finite
Difference Method
We start from the problem (7.41), which resulted from spatial discretization
techniques. Provided that T < ∞, the time interval (0, T ) is subdivided
into N ∈ N subintervals of equal length τ := T/N. Furthermore, we set
tn := nτ for n ∈ {0, . . . , N} and un

h ∈ RM for an approximation of uh(tn).
If the time interval is unbounded, the time step τ > 0 is given, and the
number n ∈ N is allowed to increase without bounded; that is, we set
formally N = ∞.

The values t = tn, where an approximation is to be determined, are
called time levels. The restriction to equidistant time steps is only for the
sake of simplicity. We approximate d

dtuh by the difference quotient

d

dt
uh(t) ∼ 1

τ
(uh(tn+1)− uh(tn)).

If we interpret this approximation to be at t = tn, we take the forward
difference quotient; at t = tn+1 we take the backward difference quotient;
at t = tn + 1

2 τ we take the symmetric difference quotient. Again we obtain
a generalization and unification by introducing a parameter Θ ∈ [0, 1] and
interpreting the approximation to be taken at t = tn + Θτ. As for Θ -= 0
or 1, we are not at a time level, and so we need the further approximation

Ahuh ((n + Θ) τ) ∼ ΘAhuh(tn) + ΘAhuh(tn+1).

Here we use the abbreviation Θ := 1 − Θ. The (one-step-)theta method
defines a sequence of vectors u0

h, . . . , uN
h by, for n = 0, 1, . . . , N − 1 ,

1
τ

(
un+1

h − un
h

)
+ ΘAhun

h + ΘAhun+1
h = qh((n + Θ)τ) , (7.66)

u0
h = u0 .

If we apply this discretization to the more general form (7.45), we get
correspondingly

1
τ

(
Bhun+1

h −Bhun
h

)
+ ΘÂhun

h + ΘÂhun+1
h = qh((n + Θ)τ) . (7.67)

Analogously to (7.45), the more general form can be transformed to (7.66),
assuming that Bh is regular: either by multiplying (7.67) by B−1

h or in the
case of a decomposition Bh = ET

h Eh (for a symmetric positive definite Bh)
by multiplying by E−T

h and a change of variables to Ehun
h. We will apply

two techniques in the following:
One is based on the eigenvector decomposition of Ah; thus for (7.67),

this means to consider the generalized eigenvalue problem

Âhv = λBhv . (7.68)
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Note that the Galerkin approach for the eigenvalue problems according
to Definition 7.6 leads to such a generalized eigenvalue problem with the
stiffness matrix Âh and the mass matrix Bh.

The other approach is based on the matrix properties (1.32)* or (1.32).
For the most important case,

Bh = diag(bi) , bi > 0 for i = 1, . . . , M , (7.69)

which corresponds to the mass lumping procedure, the above-mentioned
transformation reduces to a diagonal scaling, which does not influence any
of their properties.

Having this in mind, in the following we will consider explicitly only the
formulation (7.66).

In the case Θ = 0, the explicit Euler method, un
h can be determined

explicitly by

un+1
h = τ(qh(tn)−Ahun

h) + un
h = (I − τAh)un

h + τq(tn) .

Thus the effort for one time step consists of a SAXPY operation, a vector
addition, and a matrix-vector operation. For dimension M the first of these
is of complexity O(M), and also the last one if the matrix is sparse in the
sense defined at the beginning of Chapter 5. On the other hand, for Θ -= 0,
the method is implicit, since for each time step a system of linear equations
has to be solved with the system matrix I + ΘτAh. Here the cases Θ = 1,
the implicit Euler method, and Θ = 1

2 , the Crank–Nicolson method, will
be of interest. Due to our restriction to time-independent coefficients, the
matrix is the same for every time step (for constant τ). If direct methods
(see Section 2.5) are used, then the LU factorization has to be computed
only once, and only forward and backward substitutions with changing
right-hand sides are necessary, where computation for Θ -= 1 also requires
a matrix-vector operation. For band matrices, for example, operations of
the complexity bandwidth × dimension are necessary, which means for the
basic example of the heat equation on a rectangle O(M3/2) operations in-
stead of O(M) for the explicit method. Iterative methods for the resolution
of (7.66) cannot make use of the constant matrix, but with un

h there is a
good initial iterate if τ is not too large.

Although the explicit Euler method Θ = 0 seems to be attractive, we will
see later that with respect to accuracy or stability one may prefer Θ = 1

2
or Θ = 1.

To investigate further the theta method, we resolve recursively the
relations (7.66) to gain the representation

un
h =

(
(I + ΘτAh)−1 (I −ΘτAh

))n
u0 (7.70)

+ τ
n∑

k=1

(
(I + ΘτAh)−1 (I −ΘτAh

))n−k
(I + ΘτAh)−1 qh

(
tk −Θτ

)
.



314 7. Discretization of Parabolic Problems

Here we use the abbreviation A−n = (A−1)n for a matrix A. Compar-
ing this with the solution (7.55) of the semidiscrete problem, we see the
approximations

e−Ahtn ∼ En
h,τ ,

where

Eh,τ := (I + ΘτAh)−1 (I −ΘτAh

)

and
tn∫

0

e−Ah(tn−s)qh(s)ds =
tn∫

0

(
e−Ahτ

)(tn−s)/τ
qh(s)ds

∼ τ
n∑

k=1
s=kτ

E(tn−s)/τ
h,τ (I + ΘτAh)−1 qh

(
s−Θτ

)
.

(7.71)

The matrix Eh,τ thus is the solution operator of (7.66) for one time step
and homogeneous boundary conditions and right-hand side. It is to be
expected that it has to capture the qualitative behaviour of e−Ahτ that it
is approximating. This will be investigated in the next section.

One-Step Discretizations for the Finite Element Method
The fully discrete scheme can be achieved in two ways: Besides apply-
ing (7.66) to (7.41) in the transformed variable or in the form (7.67), the
discretization approach can applied directly to (7.44):

With ∂Un+1 := (Un+1 − Un)/τ, fn+s := sf(tn+1) + (1 − s)f(tn),
bn+s(v) := sb(tn+1, v) + (1 − s)b(tn, v), b according to (7.43), s ∈ [0, 1],
and with a fixed number Θ ∈ [0, 1], the fully discrete method for (7.44)
then reads as follows:

Find a sequence U0, . . . , UN ∈ Vh such that for n ∈ {0, . . . , N − 1},
〈
∂Un+1, vh

〉
0
+ a(ΘUn+1 + ΘUn, vh) = bn+Θ(vh)

for all vh ∈ Vh ,

U0 = u0h .

(7.72)

An alternative choice for the right-hand side, closer to the finite difference
method, is the direct evaluation at tn + Θτ, e.g., f(tn + Θτ). The version
here is chosen to simplify the order of convergence estimate in Section 7.6.

By representing the Un by means of a basis of Vh as after (7.44), again
we get the form (7.67) (or (7.66) in the transformed variable). Note that
also for Θ = 0 the problem here is implicit if Bh is not diagonal. Therefore,
mass lumping is often applied, and the scalar product 〈·, ·〉0 in (7.72) is
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replaced by an approximation due to numerical quadrature, i.e.,

〈∂Un+1, vh〉0,h + a(ΘUn+1 + ΘUn, vh) = bn+Θ(vh)
for all vh ∈ Vh ,

U0 = u0h .

(7.73)

As explained in Section 3.5.2, 〈uh, vh〉0,h is the sum over all contributions
from elements K ∈ Th, which takes the form (3.112) for the reference
element. In the case of Lagrange elements and a nodal quadrature formula
we have for the nodal basis functions ϕi:

〈ϕj ,ϕi〉0,h = 〈ϕi,ϕi〉0,h δij =: biδij for i, j = 1, . . . , M, (7.74)

since for i -= j the integrand ϕiϕj vanishes at all quadrature points. In this
case we arrive at the form (7.67) with a matrix Bh satisfying (7.69).

One-Step Discretizations for the Finite Volume Method
As in the previous subsection on the finite element approach, the
semidiscrete formulation (7.48) can be discretized in time directly:

Find a sequence U0, . . . , UN ∈ Vh such that for n ∈ {0, . . . , N − 1},
〈
∂Un+1, vh

〉
0,h

+ ah(ΘUn+1 + ΘUn, vh) =
〈
fn+Θ, vh

〉
0,h

for all vh ∈ Vh,

U0 = u0h ,

(7.75)

where ∂Un+1, Θ, fn+Θ are defined as before (7.72).
Remember that here we consider only homogeneous boundary conditions.
If the elements Un, Un+1 are represented by means of a basis of Vh, we

recover the form (7.67).
Since the mass matrix Bh is diagonal, the problem can be regarded as

being explicit for Θ = 0.

Exercise

7.9 Consider linear simplicial elements defined on a general conforming
triangulation of a polygonally bounded domain Ω ⊂ R2.

(a) Determine the entries of the mass matrix Bh.

(b) Using the trapezoidal rule, determine the entries of the lumped mass
matrix diag(bi).

7.4 Stability

In Section 7.3 we have seen that at least if a basis of eigenvectors of the
discretization matrix Ah allows for the solution representation (7.55) for
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the semidiscrete method, the qualitative behaviour of e−Ahτu0 should be
preserved by Eh,τu0, being one time step τ for homogeneous boundary
conditions and right-hand side (qh = 0) in the semi- and fully discrete
cases. It is sufficient to consider the eigenvector wi instead of a general u0.
Thus, we have to compare

(
e−Ahτ

)
wi = (e−λiτ )wi (7.76)

with
(
(I + ΘτAh)−1 (I −ΘτAh

))
wi =

(
1−Θτλi

1 + Θτλi

)
wi . (7.77)

We see that the exponential function is approximated by

R(z) =
1 + (1−Θ)z

1−Θz
, (7.78)

the stability function, at the points z = −λiτ ∈ C, given by the eigenvalues
λi, and the time step size τ .

For n time steps and qh = 0 we have
(
e−Ahτ

)n
wi = e−λitnwi ∼ R(−λiτ)nwi . (7.79)

Thus, the restriction to eigenvectors wi with eigenvalues λi has diagonal-
ized the system of ordinary differential equations (7.41) for qh = 0 to the
scalar problems

ξ′ + λiξ = 0 , t ∈ (0, T ) , (7.80)
ξ(0) = ξ0

(for ξ0 = 1) with its solution ξ(t) = e−λitξ0 , for which the one-step-theta
method gives the approximation

ξn+1 = R(−λiτ)ξn = (R(−λiτ))n+1ξ0 (7.81)

at t = tn+1. A basic requirement for a discretion method is the following:

Definition 7.17 A one-step method is called nonexpansive if for two nu-
merical approximations un

h and ũn
h, generated under the same conditions

except for two discrete initial values u0 and ũ0, respectively, the following
estimate is valid:

|un+1
h − ũn+1

h | ≤ |un − ũn| , n ∈ {0, . . . , N − 1} .

A recursive application of this estimate immediately results in

|un − ũn| ≤ |u0 − ũ0| , n ∈ {1, . . . , N} .

Here a general one-step method has the form

un+1
h = un

h + τΦ(τ, tn, un
h) , n ∈ {0, . . . , N − 1} ,

with u0
h = u0 and a so-called generating function Φ : R+ × [0, T )×RM →

RM that characterizes the particular method. The generating function of
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the one-step-theta method applied to the system (7.41) is

Φ(τ, t, ξ) = −(I + τΘAh)−1 [Ahξ − qh(t + Θτ)] .

Thus nonexpansiveness models the fact that perturbances, i.e., in partic-
ular errors, are not amplified in time by the numerical method. This is
considerably weaker than the exponential decay in the continuous solution
(see (7.18)), which would be too strong a request.

Having in mind (7.79)–(7.81), and expecting the (real parts of the) ei-
genvalues to be positive, the following restriction is sufficient:

Definition 7.18 A one-step method is called A-stable if its application to
the scalar model problem (7.80)

ξ′ + λξ = 0 , t ∈ (0, T ) ,
ξ(0) = ξ0 ,

yields a nonexpansive method for all complex parameters λ with 3λ > 0
and arbitrary step sizes τ > 0.

Because of (7.81) we have

ξn+1 − ξ̃n+1 = R(−λτ)[ξn − ξ̃n]

for two approximations of the one-step-theta method applied to (7.80).
This shows that the condition

|R(z)| ≤ 1 for all z with 3z < 0

is sufficient for the A-stability of the method. More generally, any one-step
method that can be written for (7.80) in the form

ξn+1 = R(−λiτ)ξn (7.82)

is nonexpansive iff

|R(−λiτ)| ≤ 1 . (7.83)

The one-step-theta method is nonexpansive for (7.41) in the case of an
eigenvector basis if (7.83) holds for all eigenvalues λi and step size τ. A
convenient formulation can be achieved by the notion of the domain of
stability.

Definition 7.19 Given a stability function R : C → C, the set

SR := {z ∈ C : |R(z)| < 1}

is called a domain of (absolute) stability of the one-step method ξn+1 =
R(−λτ)ξn.

Example 7.20
For the one-step-theta method we have:

(1) For Θ = 0, SR is the (open) unit disk with centre z = −1.
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(2) For Θ = 1
2 , SR coincides with the left complex half-plane (except for

the imaginary axis).

(3) For Θ = 1, SR is the whole complex plane except for the closed unit
disk with centre z = 1.

The notion of A-stability reflects the fact that the property |e−λτ | ≤ 1 for
3λ > 0 is satisfied by the function R(−λτ), too:

Corollary 7.21 For a continuous stability function R the one-step method
ξn+1 = R(−λτ)ξn is A-stable if the closure SR of its domain of stability
contains the left complex half-plane.

Thus the Crank–Nicolson and the implicit Euler methods are A-stable,
but not the explicit Euler method. To have nonexpansiveness, we need the
requirement

|1− λiτ | = |R(−λiτ)| ≤ 1 , (7.84)

which is a step size restriction: For positive λi it reads

τ ≤ 2/ max{λi | i = 1, . . . , M} . (7.85)

For the example of the five-point stencil discretization of the heat equation
on a rectangle with Dirichlet boundary conditions according to (7.37)–
(7.39), equation (7.84) reads

∣∣∣∣1−
τ

h2
2
(
2− cos

(
ν
π

a
h
)
− cos

(
µ
π

b
h
)) ∣∣∣∣ ≤ 1 (7.86)

for all ν = 1, . . . , l − 1, µ = 1, . . . , m− 1.
The following condition is sufficient (and for l, m →∞ also necessary):

τ

h2
≤ 1

4
. (7.87)

For the finite element method a similar estimate holds in a more general
context. Under the assumptions of Theorem 3.45 we conclude from its proof
(see (3.141)) that the following holds:

max{λi | i = 1, . . . , M} ≤ C

(
min

K∈Th

hK

)−2

for the eigenvalues of B−1
h Âh, where Bh = ET

h Eh is the mass matrix and
Âh the stiffness matrix, and thus also for Ah = EhB−1

h ÂhE−1
h . Here C is

a constant independent of h.
Therefore, we have

τ
/(

min
K∈Th

hK

)2

≤ 2/C (7.88)

as a sufficient condition for the nonexpansiveness of the method with a
specific constant depending on the stability constant of the bilinear form
and the constant from Theorem 3.43, (2).



7.4. Stability 319

These step size restrictions impede the attractivity of the explicit Euler
method, and so implicit versions are often used. But also in the A-stable
case there are distinctions in the behaviour (of the stability functions).
Comparing them, we see that

for Θ = 1
2 : R(−x) → −1 for x →∞ ;

for Θ = 1 : R(−x) → 0 for x →∞ .
(7.89)

This means that for the implicit Euler method the influence of large eigen-
values will be more greatly damped, the larger they are, corresponding
to the exponential function to be approximated, but the Crank–Nicolson
method preserves these components nearly undamped in an oscillatory
manner. This may lead to a problem for “rough” initial data or discontinu-
ities between initial data and Dirichlet boundary conditions. On the other
hand, the implicit Euler method also may damp solution components too
strongly, making the solution “too” smooth.

The corresponding notion is the following:

Definition 7.22 One-step methods whose stability function satisfies

R(z) → 0 for 3z → −∞,

are called L-stable.

An intermediate position is filled by the strongly A-stable methods. They
are characterized by the properties

• |R(z)| < 1 for all z with 3z < 0,

• lim
1z→−∞

|R(z)| < 1.

Example 7.23
(1) Among the one-step-theta methods, only the implicit Euler method

(Θ = 1) is L-stable.
(2) The Crank–Nicolson method (Θ = 1

2 ) is not strongly A-stable,
because of (7.89).

The nonexpansiveness of a one-step method can also be characterized by
a norm condition for the solution operator Eh,τ .

Theorem 7.24 Let the spatial discretization matrix Ah have a basis
of eigenvectors wi orthogonal with respect to the scalar product 〈·, ·〉h,
with eigenvalues λi, i = 1, . . . , M. Consider the problem (7.41) and
its discretization in time by a one-step method with a linear solution
representation

un
h = En

h,τu0 (7.90)

for qh = 0, where Eh,τ ∈ RM,M , and a stability function R such that (7.82)
and

Eh,τwi = R(−λiτ)wi (7.91)
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for i = 1, . . . , M . Then the following statements are equivalent:

(1) The one-step method is nonexpansive for the model problem (7.80)
and all eigenvalues λi of Ah.

(2) The one-step method is nonexpansive for the problem (7.41), with
respect to the norm ‖ · ‖h induced by 〈·, ·〉h.

(3) ‖Eh,τ‖h ≤ 1 in the matrix norm ‖ · ‖h induced by the vector norm
‖ · ‖h.

Proof: We prove (1) ⇒ (3) ⇒ (2) ⇒ (1):
(1) ⇒ (3): According to (7.83) (1) is characterized by

|R(−λiτ)| ≤ 1 , (7.92)

for the eigenvalues λi.
For the eigenvector, wi with eigenvalue λi we have (7.91), and thus, for

an arbitrary u0 =
∑M

i=1 ciwi,

‖Eh,τu0‖2
h = ‖

M∑
i=1

ciEh,τwi‖2
h

= ‖
M∑
i=1

ciR(−λiτ)wi‖2
h =

M∑
i=1

c2
i |R(−λiτ)|2 ‖wi‖2

h ,

because of the orthogonality of the wi, and analogously,

‖u0‖2
h =

M∑

i=1

c2
i ‖wi‖2

h ,

and finally, because of (7.92),

‖Eh,τu0‖2
h ≤

M∑

i=1

c2
i ‖wi‖2

h = ‖u0‖2
h ,

which is assertion (3).
(3) ⇒ (2): is obvious.
(2) ⇒ (3):

|R(−λiτ)| ‖wi‖h = ‖R(−λiτ)wi‖h = ‖Eh,τwi‖h ≤ ‖wi‖h .

!

Thus, nonexpansiveness is often identical to what is (vaguely) called
stability:

Definition 7.25 A one-step method with a solution representation Eh,τ

for qh = 0 is called stable with respect to the vector norm ‖ · ‖h if

‖Eh,τ‖h ≤ 1

in the induced matrix norm ‖ · ‖h.
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Till now we have considered only homogeneous boundary data and right-
hand sides. At least for the one-step-theta method this is not a restriction:

Theorem 7.26 Consider the one-step-theta method under the assumption
of Theorem 7.24, with λi ≥ 0, i = 1, . . . , M, and with τ such that the
method is stable. Then the solution is stable in initial condition u0 and
right-hand side qh in the following sense:

‖un
h‖h ≤ ‖u0‖h + τ

n∑

k=1

∥∥qh

(
tk −Θτ

)∥∥
h

. (7.93)

Proof: From the solution representation (7.70) we conclude that

‖un
h‖h ≤ ‖Eh,τ‖n

h‖u0‖h + τ
n∑

k=1

‖Eh,τ‖n−k
h ‖(I + τΘAh)−1‖h‖qh(tk −Θτ)‖h

(7.94)
using the submultiplicativity of the matrix norm.

We have the estimate

‖(I + ΘτAh)−1wi‖h =
∣∣∣∣

1
1 + Θ τλi

∣∣∣∣ ‖wi‖h ≤ ‖wi‖h ,

and thus as in the proof of Theorem 7.24, (1) ⇒ (3),

‖(I + Θ τAh)−1‖h ≤ 1

concludes the proof. !

The stability condition requires step size restrictions for Θ < 1
2 , which

have been discussed above for Θ = 0.
The requirement of stability can be weakened to

‖Eh,τ‖h ≤ 1 + Kτ (7.95)

for some constant K > 0, which in the situation of Theorem 7.24 is equi-
valent to

|R(−λτ)| ≤ 1 + Kτ,

for all eigenvalues λ of Ah. Because of

(1 + Kτ)n ≤ exp(Knτ),

in (7.93) the additional factor exp(KT ) appears and correspondingly
exp(K(n − k)τ) in the sum. If the process is to be considered only in a
small time interval, this becomes part of the constant, but for large time
horizons the estimate becomes inconclusive.

On the other hand, for the one-step-theta method for 1
2 < Θ ≤ 1 the

estimate ‖Eh,τ‖h ≤ 1 and thus the constants in (7.93) can be sharpened
to ‖Eh,τ‖h ≤ R(−λminτ), where λmin is the smallest eigenvalue of Ah,
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reflecting the exponential decay. For example, for Θ = 1, the (error in the)
initial data is damped with the factor

‖Eh,τ‖n
h = R(−λminτ)n =

1
(1 + λminτ)n

,

which for τ ≤ τ0 for some fixed τ0 > 0 can be estimated by

exp(−λnτ) for some λ > 0.

We conclude this section with an example.

Example 7.27 (Prothero-Robinson model) Let g ∈ C1[0, T ] be given.
We consider the initial value problem

ξ′ + λ(ξ − g) = g′ , t ∈ (0, T ) ,
ξ(0) = ξ0 .

Obviously, g is a particular solution of the differential equation, so the
general solution is

ξ(t) = e−λt[ξ0 − g(0)] + g(t) .

In the special case g(t) = arctan t , λ = 500, and for the indicated values of
ξ0, Figure 7.1 shows the qualitative behaviour of the solution.

0
50

-100

400

Figure 7.1. Prothero–Robinson model.

It is worth mentioning that the figure is extremely scaled: The continuous
line (to ξ0 = 0) seems to be straight, but it is the graph of g.

The explicit Euler method for this model is

ξn+1 = (1 − λτ)ξn + τ [g′(tn) + λg(tn)] .
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According to the above considerations, it is nonexpansive only if λτ ≤ 1
holds. For large numbers λ, this is a very restrictive step size condition; see
also the discussion of (7.85) to (7.87).

Due to their better stability properties, implicit methods such as the
Crank–Nicolson and the implicit Euler methods do not have such step
size restrictions. Nevertheless, the application of implicit methods is not
free from surprises. For example, in the case of large numbers λ, an order
reduction can occur.

Exercises

7.10 Determine the corresponding domain of stability SR of the one-step-
theta method for the following values of the parameter Θ : 0, 1

2 , 1.

7.11 Show the L-stability of the implicit Euler method.

7.12 (a) Show that the discretization

ξn = ξn−2 + 2τf(tn−1, ξ
n−1) , n = 2, . . . N

(midpoint rule), applied to the model equation ξ′ = f(t, ξ) with
f(t, ξ) = −λξ and λ > 0 leads, for a sufficiently small step size
τ > 0, to a general solution that can be additively decomposed into a
decaying and an increasing (by absolute value) oscillating component.

(b) Show that the oscillating component can be damped if additionally
the quantity ξN

∗ is computed (modified midpoint rule):

ξN
∗ =

1
2
[
ξN + ξN−1 + τf(tN , ξN )

]
.

7.13 Let m ∈ N be given. Find a polynomial Rm(z) = 1 + z +∑m
j=2 γjzj (γj ∈ R) such that the corresponding domain of absolute sta-

bility for R(z) := Rm(z) contains an interval of the negative real axis that
is as large as possible.

7.5 The Maximum Principle for the
One-Step-Theta Method

In Section 1.4 we have seen that for a discrete problem of the form (1.31)
there is a hierarchy of properties ranging from a comparison principle to
a strong maximum principle, which is in turn applied by a hierarchy of
conditions, partly summarized as (1.32) or (1.32)∗. To remind the reader,
we regroup these conditions accordingly:
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The collection of conditions (1.32), (1), (2), (3) i), (4)∗ is called (IM).
(IM) implies the inverse monotonicity of Ah (Theorem 1.12, (1.39)).
The collection of conditions (IM), (5) is called (CP).
(CP) implies a comparison principle in the sense of Corollary 1.13.
The collection of conditions (CP), (6)∗ is called (MP )∗.
(MP )∗ implies a maximum principle in the form of Theorem 1.10 (1.38).
Alternatively, the collection of conditions (CP) (6)# (see Exercise 1.13) is
called (MP).
(MP) implies a maximum principle in the form of Theorem 1.9 (1.34).
Finally, the collection of conditions (CP), (6), (4) (instead of (4)∗), (7) is
called (SMP).
(SMP) implies a strong maximum principle in the sense of Theorem 1.9.

An L∞-stability estimate in the sense of Theorem 1.14 is closely related.
This will be taken up in the next section.

In the following we will discuss the above-mentioned properties for the
one-step-theta method, cast into the form (1.31), on the basis of correspond-
ing properties of the underlying elliptic problem and its discretization. It
will turn out that under a reasonable condition (see (7.100)), condition (4)∗
(and thus (3) ii)) will not be necessary for the elliptic problem. This reflects
the fact that contrary to the elliptic problem, for the parabolic problem also
the case of a pure Neumann boundary condition (where no degrees of free-
dom are given and thus eliminated) is allowed, since the initial condition
acts as a Dirichlet boundary condition.

In assuming that the discretization of the underlying elliptic problem is
of the form (1.31), we return to the notation M = M1 + M2, where M2 is
the number of degrees of freedom eliminated, and thus Ah, Bh ∈ RM1,M1 .

We write the discrete problem according to (7.66) as one large system of
equations for the unknown

uh =





u1
h

u2
h
...

uN
h




, (7.96)

in which the vector of grid values ui
h ∈ RM1 are collected to one large

vector of dimension M1 := N · M1. Thus the grid points in Ω× (0, T ) are
the points (xj , tn), n = 1, . . . , N , xj ∈ Ωh, e.g., for the finite difference
method. The defining system of equations has the form

Chuh = ph , (7.97)
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where

Ch =





I + τΘAh

−I + τΘAh
. . . 0
. . . . . .

0 . . . . . .
−I + τΘAh I + τΘAh





,

again with Θ := 1−Θ,

ph =





τqh(Θτ) + (I − τΘAh)u0

τqh((1 + Θ)τ)
...
...

τqh(N − 1 + Θ)τ)





.

Since the spatial discretization is performed as in the stationary case, and
in the nth step the discretization relates to t = tn−1 + Θτ and also the
approximation

Ahu(tn−1 + Θτ) ∼ ΘAhu(tn−1) + ΘAhu(tn)

enters the formulation (7.66), we can assume to have the following structure
of the right-hand side of (7.66):

qh((n−1+Θ)τ) = −Âh(Θûn−1
h +Θûn

h)+f((n−1+Θ)τ) for n = 1, . . . , N.
(7.98)

Here the ûn
h ∈ RM2 are the known spatial boundary values on time level

tn, which have been eliminated from the equation as explained, e.g., in
Chapter 1 for the finite difference method. But as noted, we allow also for
the case where such values do not appear (i.e., M2 = 0) then (7.98) reduces
to

qh((n− 1 + Θ)τ) = f((n− 1 + Θ)τ) for n = 1, . . . , N .

For the continuous problem, data are prescribed at the parabolic boundary
Ω× {0} ∪ ∂Ω× [0, T ]; correspondingly, the known values ûi

h are collected
with the initial data u0 ∈ RM1 to a large vector

ûh =





u0

û0
h

û1
h
...

ûN
h




,
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i.e., a vector of dimension M2 := M1 + (N + 1)M2, which may reduce to
ûh = u0 ∈ RM1 .

With this notation we have

ph = −Ĉhûh + e (7.99)

if we define

Ĉh =





−I + τΘAh τΘÂh τΘÂh O

O
. . . . . .

...
...

. . . . . .
...

O τΘÂh τΘÂh




,

e =





τf (Θτ)

τf ((1 + Θ)τ)
...
...

τf ((N − 1 + Θ)τ)





.

In the following the validity of (1.32)∗ or (1.32) for

C̃h = (Ch, Ĉh)

will be investigated on the basis of corresponding properties of

Ãh = (Ah, Âh) .

Note that even if Ah is irreducible, the matrix Ch is always reducible,
since un

h depends only on u1
h, . . . , un−1

h , but not on the future time levels.
(Therefore, (7.97) serves only for the theoretical analysis, but not for the
actual computation.)

In the following we assume that

τΘ(Ah)jj < 1 for j = 1, . . . , M1 , (7.100)

which is always satisfied for the implicit Euler method (Θ = 1). Then:

(1) (Ch)rr > 0 for r = 1, . . . , M1

holds if (1) is valid for Ah. Actually, also (Ah)jj > −1/(τΘ) would
be sufficient.

(2) (Ch)rs ≤ 0 for r, s = 1, . . . , M1, r -= s:
If (2) is valid for Ah, then only the nonpositivity of the diagonal
elements of the off-diagonal block of Ch, −I + τΘAh, is in question.
This is ensured by (7.100) (weakened to “≤”).

(3) (i) Cr :=
( M1∑

s=1
Ch

)

rs
≥ 0 for r = 1, . . . , M1:
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(ii) Cr > 0 for at least one r ∈ {1, . . . , M1}:
We set

Aj :=
M1∑

k=1

(Ah)jk ,

so that condition (3) (i) for Ah means that Aj ≥ 0 for j = 1, . . . , M1.
Therefore, we have

Cr = 1 + τΘAj > 0 (7.101)

for the indices r of the first time level, where the “global” index r
corresponds to the “local” spatial index j. For the following time
levels, the relation

Cr = 1− 1 + τ(Θ + Θ)Aj = τAj ≥ 0 (7.102)

holds, i.e., (3) (i) and (ii).

(4)∗ For every r1 ∈ {1, . . . , M1} satisfying

M1∑

r=1

(Ch)rs = 0 (7.103)

there exist indices r2, . . . , rl+1 such that

(Ch)riri+1 -= 0 for i = 1, . . . , l

and
M1∑

s=1

(Ch)rl+1s > 0 . (7.104)

To avoid too many technicalities, we adopt the background of a finite
difference method. Actually, only matrix properties enter the reason-
ing. We call (space-time) grid points satisfying (7.103) far from the
boundary, and those satisfying (7.104) close to the boundary. Due to
(7.101), all points of the first time level are close to the boundary
(consistent with the fact that the grid points for t0 = 0 belong to the
parabolic boundary). For the subsequent time level n, due to (7.102),
a point (xi, tn) is close to the boundary if xi is close to the bound-
ary with respect to Ãh. Therefore, the requirement of (4)∗, that a
point far from the boundary can be connected via a chain of neigh-
bours to a point close to the boundary, can be realized in two ways:
Firstly, within the time level n, i.e., the diagonal block of Ch if Ah

satisfies condition (4)∗. Secondly, without this assumption a chain of
neighbours exist by (x, tn), (x, tn−1) up to (x, t1), i.e., a point close
to the boundary, since the diagonal element of −I + τΘAh does not
vanish due to (7.100). This reasoning additionally has established the
following:
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(4)# If Ah is irreducible, then a grid point (x, tn), x ∈ Ωh can be connected
via a chain of neighbours to every grid point (y, tk), y ∈ Ωh and
0 ≤ k ≤ n.

(5) (Ĉh)rs ≤ 0 for r = 1, . . . , M1, s = M1 + 1, . . . , M2:
Analogously to (2), this follows from (5) for Âh and (7.100).

(6)∗ C̃r :=
M∑

s=1
(C̃h)rs = 0 for r = 1, . . . , M :

Analogously to (7.102), we have

C̃r = τÃj := τ
M∑

k=1

(Ãh)jk ,

so that the property is equivalent to the corresponding one of Ãh.

(6) C̃r ≥ 0 for r = 1, . . . , M
is equivalent to (6) for Ãh by the above argument.

(7) For every s ∈ M1 + 1, . . . , M there exists an r ∈ {1, . . . , M1} such
that (Ĉh)rs -= 0:
Every listed boundary value should influence the solution: For the
values from û0

h, . . . , ûN
h this is the case iff Âh satisfies this property.

Furthermore, the “local” indices of the equation, where the boundary
values appear, are the same for each time level. For the values from
u0 ∈ RM1 the assertion follows from (7.100).

From the considerations we have the following theorem:

Theorem 7.28 Consider the one-step-theta method in the form (7.66).
Let (7.100) hold. If the spatial discretization Âh satisfies (1.32) (1), (2),
(3) (i), and (5), then a comparison principle holds:

(1) If for two sets of data f i, u0i and ûn
hi, n = 0, . . . , N and i = 1, 2, we

have

f1((n− 1 + Θ)τ) ≤ f2((n− 1 + Θ)τ) for n = 1, . . . , N ,

and

u01 ≤ u02; , ûn
h1 ≤ ûn

h1 for n = 0, . . . , N,

then

ûn
h1 ≤ ûn

h2 for n = 1, . . . , N

for the corresponding solutions.
If ûn

h1 = ûn
h2 for n = 1, . . . , N, then condition (1.32) (5) can be

omitted.
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(2) If Ãh additionally satisfies (1.32) (6)∗, then the following weak
maximum principle holds:

max
r∈{1,...,M}

n=0,...,N

(ũn
h)r ≤ max

(
max

r∈{1,...,M1}
(u0)r, max

r∈{M1+1,...,M}
n=0,...,N

(ûn
h)r

)
,

where

ũn
h :=

(
un

h
ûh

)
.

(3) If Ãh satisfies (1.32) (1), (2), (3) (i), (4), (5), (6), (7), then a strong
maximum principle in the following sense holds:
If the components of ũn

h, n = 0, . . . , N, attain a nonnegative maxi-
mum for some spatial index r ∈ {1, . . . , M1} and at some time level
k ∈ {1, . . . , N}, then all components for the time levels n = 0, . . . , k
are equal.

Proof: Only part (3) needs further consideration. Theorem 1.9 cannot
be applied directly to (7.97), since Ch is reducible. Therefore, the proof of
Theorem 1.9 has to be repeated: We conclude that the solution is constant
at all points that are connected via a chain of neighbours to the point where
the maximum is attained. According to (4)# these include all grid points
(x, tl) with x ∈ Ωh and l ∈ {0, . . . , k}. From (7.100) and the discussion of
(7) we see that the connection can also be continued to boundary values
up to level k. !

The additional condition (7.100), which may be weakened to nonstrict
inequality, as seen above, actually is a time step restriction: Consider again
the example of the five-point stencil discretization of the heat equation on
a rectangle, for which we have (Ah)jj = 4/h2. Then the condition takes
the form

τ

h2
<

1
4(1−Θ)

(7.105)

for Θ < 1. This is very similar to the condition (7.87), (7.88) for the explicit
Euler method, but the background is different.

As already noted, the results above also apply to the more general form
(7.67) under the assumption (7.69). The condition (7.100) then takes the
form

τΘ(Ah)jj ≤ bj for j = 1, . . . , M1 .

Exercises

7.14 Formulate the results of this section, in particular condition (7.100),
for the problem in the form (7.67) with Bh according to (7.69) (i.e.
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appropriate for finite element discretizations with mass lumping, see
(7.74)).

7.15 Show the validity of (6)# from Exercise 1.13 for Ch if it holds here
for Ah and conclude as in Exercise 1.13 a weak maximum principle for the
one-step-theta method.

7.16 Consider the initial-boundary value problem in one space dimension





ut − εuxx + cux = f in (0, 1)× (0, T ) ,
u(0, t) = g−(t), u(1, t) = g+(t) , t ∈ (0, T ) ,

u(x, 0) = u0(x) , x ∈ (0, 1) ,

where T > 0 and ε > 0 are constants, and c, f : (0, 1) × (0, T ) → R,
u0 : (0, 1) → R, and g−, g+ : (0, T ) → R are sufficiently smooth functions
such that the problem has a classical solution.

Define h := 1/m and τ = T/N for some numbers m, N ∈ N. Then the so-
called full-upwind finite difference method for this problem reads as follows:
Find a sequence of vectors u0

h, . . . , uN
h by

un+1
i − un

i

τ
− ε

un+1
i+1 − 2un+1

i + un+1
i−1

h2
− c−

un+1
i+1 − un+1

i

h
+ c+ un+1

i − un+1
i−1

h
= fn+1

i , i = 1, . . . , m− 1, n = 0, . . . , N − 1,

where c = c+ − c− with c+ = max{c, 0}, fn
i = f(ih, nτ), u0

i = u0(ih),
un

0 = g−(nτ) and un
m = g+(nτ).

Prove that a weak maximum principle holds for this method.

7.6 Order of Convergence Estimates

Based on stability results already derived, we will investigate the (order
of) convergence properties of the one-step-theta method for different dis-
cretization approaches. Although the results will be comparable, they will
be in different norms, appropriate for the specific discretization method, as
already seen in Chapters 1, 3, and 6.

Order of Convergence Estimates for the Finite Difference Method
From Section 1.4 we know that the investigation of the (order of)
convergence of a finite difference method consists of two ingredients:

• (order of) convergence of the consistency error

• stability estimates.

The last tool has already been provided by Theorem 7.26 and by Theo-
rem 1.14, which together with the considerations of Section 7.5 allow us to
concentrate on the consistency error. Certain smoothness properties will be
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required for the classical solution u of the initial boundary value problem
(7.1), which in particular makes its evaluation possible at the grid points
xi ∈ Ωh at each instance of time t ∈ [0, T ] and also of various derivatives.
The vector representing the corresponding grid function (for a fixed order-
ing of the grid points) will be denoted by U(t), or for short by Un := U(tn)
for t = tn. The corresponding grid points depend on the boundary condi-
tion. For a pure Dirichlet problem, the grid points will be from Ωh, but if
Neumann or mixed boundary conditions appear, they are from the enlarged
set

Ω̃h := Ωh ∩ (Ω ∪ Γ1 ∪ Γ2) . (7.106)

Then the error at the grid points and each time level is given by

en
h := Un − un

h for n = 0, . . . , N , (7.107)

where un
h is the solution of the one-step-theta method according to (7.66).

The consistency error q̂h as a grid function on Ωh × {t1, . . . , tN} or corres-
pondingly a sequence of vectors q̂n

h in RM1 for n = 1, . . . , N is then defined
by

q̂n+1
h :=

1
τ

(
Un+1 −Un)+ ΘAhUn+1

+ ΘAhUn − qh((n + Θ)τ) (7.108)

for n = 0, . . . , N − 1. Then the error grid function obviously satisfies

1
τ

(
en+1

h − en
h

)
+ ΘAhen+1

h + ΘAhen
h = q̂n+1

h for n = 0, . . . , N − 1 ,

e0
h = 0 (7.109)

(or nonvanishing initial data if the initial condition is not evaluated exactly
at the grid points). In the following we estimate the grid function q̂h in the
discrete maximum norm

‖q̂h‖∞ := max{|(q̂n
h)r| | r ∈ {1, . . . , M1} , n ∈ {1, . . . , N}}

= max{|q̂n
h|∞ | n ∈ {1, . . . , N}}, (7.110)

i.e., pointwise in space and time. An alternative norm would be the discrete
L2-norm, i.e.,

‖q̂h‖0,h :=

(
τ

N∑

n=1

hd
M1∑

r=1

|(q̂n
h)r|2

)1/2

=

(
τ

N∑

n=1

|q̂n
h|20,h

)1/2

, (7.111)

using the spatial discrete L2-norm from (7.59), where the same notation is
employed. If for the sequence of underlying grid points considered there is
a constant C > 0 independent of the discretization parameter h such that

M1 = M1(h) ≤ Ch−d , (7.112)
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then obviously,

‖q̂h‖0,h ≤ (CT )1/2‖q̂h‖∞ ,

so that the L2-norm is weaker than the maximum norm. Condition (7.112)
is satisfied for such uniform grids, as considered in Section 1.2. A norm in
between is defined by

‖q̂h‖∞,0,h := max {|q̂n
h|0,h | n = 1, . . . , N} , (7.113)

which is stronger than (7.111) and in the case of (7.112) weaker than the
maximum norm.

Analogously to Section 1.4, we denote Un amended by the eliminated
boundary values Û

n

h ∈ RM2 by the vector Ũ
n ∈ RM .

For simplicity we restrict attention, at the beginning, to the case of pure
Dirichlet data. Taking into account (7.98) and assuming that f((n−1+Θ)τ)
is derived from the continuous right-hand side by evaluation at the grid
points, we get

q̂n+1
h =

1
τ

(Un+1 −Un)−
(

d

dt
U

)
(tn + Θτ)

+ ΘÃhŨ
n+1

+ ΘÃhŨ
n − (LU)(tn + Θτ)

=: S1 + S2 , (7.114)

so that S1, consisting of the first two terms, is the consistency error for the
time discretization.

Here d
dtU and LU are the vectors representing the grid functions corre-

sponding to d
dtu and Lu, which requires the continuity of these functions

as in the notion of a classical solution. We make the following assumption:
The spatial discretization has the order of consistency α measured in

‖ · ‖∞ (according to (1.17)) if the solution of the stationary problem (7.6)
is in Cp(Ω) for some α > 0 and p ∈ N.

For example, for the Dirichlet problem of the Poisson equation and the
five-point stencil discretization on a rectangle, we have seen in Chapter 1
that α = 2 is valid for p = 4. If we assume for u(·, t), u being the solution
of (7.1), that

the spatial derivatives up to order p exist continuously
and are bounded uniformly in t ∈ [0, T ] , (7.115)

then there exists a constant C > 0 such that

|(ÃhŨ(t))i − (Lu(·, t))(xi)| ≤ Chα (7.116)

for every grid point xi ∈ Ωh and t ∈ [0, T ].
In the case of Neumann or mixed boundary conditions, then some of the

equations will correspond to discretizations of these boundary conditions.
This discretization may be directly a discretization of (7.3) or (7.4) (typ-

ically, if one-sided difference quotients are used) or a linear combination
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of the discretizations of the differential operator at xi ∈ Ω̃h and of the
boundary differential operator of (7.3) or (7.4) (to eliminate “artificial”
grid points) (see Section 1.3).

Thus we have to take xi ∈ Ω̃h and interpret Lu in (7.116) as this modified
differential operator for xi ∈ Γ1 ∪Γ2 just described to extend all the above
reasoning to the general case.

The estimation of the contribution S2 on the basis of (7.116) is directly
possible for Θ = 0 or Θ = 1, but requires further smoothness for Θ ∈ (0, 1).

We have

S2 = S3 + S4 ,

where

S3 := Θ(ÃhŨ
n+1 − (LU)(tn+1)) + Θ(ÃhŨ

n − (LU)(tn)) ,

S4 := Θ(LU)(tn+1) + Θ(LU)(tn)− (LU)(tn + Θτ) .

By Taylor expansion we conclude for a function v ∈ C2[0, T ] that

Θv(tn+1) + Θv(tn) = v(tn + Θτ) + τ2

(
Θ
Θ2

2
v′′(t1n) + Θ

Θ2

2
v′′(t2n)

)

for some t1n ∈ (tn, tn + Θτ), t2n ∈ (tn + Θτ, tn+1), so that

|S4|∞ ≤ Cτ2 (7.117)

for some constant C > 0 independent of τ and h if for Θ ∈ (0, 1) the
solution u of (7.1) satisfies

∂

∂t
Lu ,

∂2

∂t2
Lu ∈ C(QT ) . (7.118)

This is a quite severe regularity assumption, which often does not hold.
For S3 we conclude directly from (7.116) that

|S3|∞ ≤ Chα . (7.119)

To estimate S1 we have to distinguish between Θ = 1
2 and Θ -= 1

2 : If

∂

∂t
u,

∂2

∂t2
u ∈ C(QT ) and for Θ =

1
2

also
∂3

∂t3
u ∈ C(QT ), (7.120)

then Lemma 1.2 implies (for Θ = 0, 1, 1
2 , for Θ ∈ (0, 1) again with a Taylor

expansion)

|S1|∞ ≤ Cτβ (7.121)

for some constant C, independent of τ and h, with β = 1 for Θ -= 1
2 and

β = 2 for Θ = 1
2 .

Thus, under the additional regularity assumptions (7.115), (7.118),
(7.120), and if the spatial discretization has order of consistency α in
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the maximum norm, i.e., (7.116), then the one-step-theta method has the
following order of consistency:

‖q̂h‖∞ ≤ C(hα + τβ) (7.122)

for some constant C, independent of τ and h, with β as in (7.121).
By using a weaker norm one might hope to achieve a higher order of

convergence. If this is, for example, the case for the spatial discretization,
e.g., by considering the discrete L2-norm ‖ · ‖0,h instead of ‖ · ‖∞, then
instead of (7.116) we have

‖ÃhŨ(t)− Lu(·, t)‖0,h ≤ Chα , (7.123)

where the terms in the norm denote the corresponding grid functions.
Then again under (weaker forms of) the additional regularity assump-

tions (7.115), (7.118), (7.120) and assuming (7.112), we have

‖q̂h‖0,h ≤ C(hα + τβ) . (7.124)

By means of Theorem 7.26 we can conclude the first order of convergence
result:

Theorem 7.29 Consider the one-step-theta method and assume that the
spatial discretization matrix Ah has a basis of eigenvectors wi with eigen-
values λi ≥ 0, i = 1, . . . , M1, orthogonal with respect to the scalar product
〈·, ·〉h, defined in (7.58). The spatial discretization has order of consistency
α in ‖ · ‖0,h for solutions in Cp(Ω). If τ is such that the method is sta-
ble according to (7.95), then for a sufficiently smooth solution u of (7.1)
(e.g., (7.115), (7.118), (7.120)), and for a sequence of grid points satisfying
(7.112), the method converges in the norm ‖ · ‖∞,0,h with the order

O(hα + τβ) ,

where β = 2 for Θ = 1
2 and β = 1 otherwise.

Proof: Due to Theorem 7.26 and (7.109) we have to estimate the
consistency error in a norm defined by τ

∑N
n=1 |q̂

n
h|0,h (i.e., a discrete L1-

L2-norm), which is weaker than ‖q̂h‖0,h, in which the estimate has been
verified in (7.124). !

Again we see here a smoothing effect in time: The consistency error has
to be controlled only in a discrete L1-sense to gain a convergence result in
a discrete L∞-sense.

If a consistency estimate is provided in ‖ ·‖∞ as in (7.122), a convergence
estimate still needs the corresponding stability. Instead of constructing a
vector as in Theorem 1.14 for the formulation (7.97), we will argue directly
with the help of the comparison principle (Theorem 7.28, 1)), which would
have been possible also in Section 1.4 (see Exercise 1.14).
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Theorem 7.30 Consider the one-step-theta method and assume that the
spatial discretization matrix Ah satisfies (1.32) (1), (2), (3) (i) and assume
its L∞-stability by the existence of vectors wh ∈ RM1 and a constant C > 0
independent of h such that

Ahwh ≥ 1 and |wh|∞ ≤ C . (7.125)

The spatial discretization has order of consistency α in ‖ · ‖∞ for solutions
in Cp(Ω). If (7.100) is satisfied, then for a sufficiently smooth solution u
of (7.1) (e.g., (7.115), (7.118), (7.120)) the method converges in the norm
‖ · ‖∞ with the order

O(hα + τβ) ,

where β = 2 for Θ = 1
2 and β = 1 otherwise.

Proof: From (7.122) we conclude that

−Ĉ(hα + τβ)1 ≤ q̂n
h ≤ Ĉ(hα + τβ)1 for n = 1, . . . , N

for some constant Ĉ independent of h and τ.
Thus (7.109) implies

1
τ

(
en+1

h − en
h

)
+ ΘAhen+1

h + ΘAhen
h ≤ Ĉ(hα + τβ)1 ,

e0
h = 0 .

Setting wn
h := Ĉ(hα+τβ)wh with wh from (7.125), this constant sequence

of vectors satisfies
1
τ

(
wn+1

h −wn
h

)
+ ΘAhwn+1

h + ΘAhwn
h ≥ Ĉ(hα + τβ)1 .

Therefore, the comparison principle (Theorem 7.28, (1)) implies

en
h ≤ wn

h = Ĉ(hα + τβ)wh

for n = 0, . . . , N, and analogously, we see that

−Ĉ(hα + τβ)wh ≤ en
h ,

so that ∣∣∣(en
h)j

∣∣∣ ≤ Ĉ(hα + τβ)(wh)j (7.126)

for all n = 0, . . . , N and j = 1, . . . , M1, and finally,

|en
h|∞ ≤ Ĉ(hα + τβ)|wh|∞ ≤ Ĉ(hα + τβ)C

with the constant C from (7.125). !

Note that the pointwise estimate (7.126) is more precise, since it also
takes into account the shape of wh. In the example of the five-point stencil
with Dirichlet conditions on the rectangle (see the discussion around (1.43))
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the error bound is smaller in the vicinity of the boundary (which is to be
expected due to the exactly fulfilled boundary conditions).

Order of Convergence Estimates for the Finite Element Method
We now return to the one-step-theta method for the finite element method
as introduced in (7.72). In particular, instead of considering grid functions
as for the finite difference method, the finite element method allows us to
consider directly a function Un from the finite-dimensional approximation
space Vh and thus from the underlying function space V .

In the following, an error analysis for the case Θ ∈ [12 , 1] under the as-
sumption u ∈ C2([0, T ], V ) will be given. In analogy with the decomposition
of the error in the semidiscrete situation, we write

u(tn)− Un = u(tn)−Rhu(tn) + Rhu(tn)− Un =: '(tn) + θn .

The first term of the right-hand side is the error of the elliptic projection at
the time tn, and for this term an estimate is already known. The following
identity is used to estimate the second member of the right-hand side, which
immediately results from the definition of the elliptic projection:
〈

1
τ

(θn+1 − θn), vh

〉

0

+ a(Θθn+1 + Θθn, vh)

=
〈

1
τ
((Rhu(tn+1)−Rhu(tn)), vh

〉

0

+ a(ΘRhu(tn+1) + ΘRhu(tn), vh)

−
〈

1
τ
(Un+1 − Un), vh

〉

0

− a(ΘUn+1 + ΘUn, vh)

=
〈

1
τ
(Rhu(tn+1)−Rhu(tn)), vh

〉

0

+ a(Θu(tn+1) + Θu(tn), vh)

− bn+Θ(vh)

=
〈

1
τ
(Rhu(tn+1)−Rhu(tn)), vh

〉

0

− 〈Θu′(tn+1) + Θu′(tn), vh〉0
= 〈wn, vh〉0 ,

where

wn :=
1
τ
(Rhu(tn+1)− Rhu(tn))−Θu′(tn+1)−Θu′(tn) .

Taking into consideration the inequality a(vh, vh) ≥ 0 , the particular choice
of the test function as vh = Θθn+1 + Θθn yields

Θ‖θn+1‖2
0 + (1− 2Θ)〈θn, θn+1〉0 −Θ‖θn‖2

0 ≤ τ〈wn,Θθn+1 + Θθn〉0.

For Θ ∈ [12 , 1] we have (1− 2Θ) ≤ 0, and hence
[
‖θn+1‖0 − ‖θn‖0

] [
Θ‖θn+1‖0 + Θ‖θn‖0

]

= Θ‖θn+1‖2
0 + (1− 2Θ)‖θn‖0‖θn+1‖0 −Θ‖θn‖2

0

≤ Θ‖θn+1‖2
0 + (1− 2Θ)〈θn, θn+1〉0 −Θ‖θn‖2

0

≤ τ‖wn‖0

[
Θ‖θn+1‖0 + Θ‖θn‖0

]
.
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Dividing each side by the expression in the square brackets, we get

‖θn+1‖0 ≤ ‖θn‖0 + τ‖wn‖0 .

The recursive application of this inequality leads to

‖θn+1‖0 ≤ ‖θ0‖0 + τ
n∑

j=0

‖wj‖0 . (7.127)

That is, it remains to estimate the terms ‖wj‖0 . A simple algebraic
manipulation yields

wn :=
1
τ
((Rh − I)u(tn+1)− (Rh − I)u(tn)) +

1
τ
(u(tn+1)− u(tn))

− Θu′(tn+1)−Θu′(tn) . (7.128)

Taylor expansion with integral remainder implies

u(tn+1) = u(tn) + u′(tn)τ +
∫ tn+1

tn

(tn+1 − s)u′′(s) ds

and

u(tn) = u(tn+1)− u′(tn+1)τ +
∫ tn

tn+1

(tn − s)u′′(s) ds .

Using the above relations we get the following useful representations of the
difference quotient of u in tn :

1
τ

(u(tn+1)− u(tn)) = u′(tn) +
1
τ

∫ tn+1

tn

(tn+1 − s)u′′(s) ds ,

1
τ

(u(tn+1)− u(tn)) = u′(tn+1) +
1
τ

∫ tn+1

tn

(tn − s)u′′(s) ds .

Multiplying the first equation by Θ and the second one by Θ, the
summation of the results yields

1
τ
(u(tn+1)− u(tn)) = Θu′(tn+1) + Θu′(tn)

+
1
τ

∫ tn+1

tn

[Θtn + Θtn+1 − s]u′′(s) ds .

Since |Θtn +Θtn+1− s| ≤ τ , the second term in the decomposition (7.128)
of wn can be estimated as

∥∥∥∥
1
τ
(u(tn+1)− u(tn))−Θu′(tn+1)−Θu′(tn)

∥∥∥∥
0

≤
∫ tn+1

tn

‖u′′(s)‖0 ds .

To estimate the first term in (7.128), Taylor expansion with integral
remainder is applied to the function v(t) := (Rh − I)u(t). Then we have

1
τ

((Rh − I)u(tn+1)− (Rh − I)u(tn)) =
1
τ

∫ tn+1

tn

[(Rh − I)u(s)]′ ds .
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With the assumption on u using the fact that the derivative and the elliptic
projection commute, we get
∥∥∥∥

1
τ
((Rh − I)u(tn+1)− (Rh − I)u(tn))

∥∥∥∥
0

≤ 1
τ

∫ tn+1

tn

‖(Rh − I)u′(s)‖0 ds .

With (7.127) and summing the estimates for ‖wn‖0 we obtain the following
result:

Theorem 7.31 Let a be a V -elliptic, continuous bilinear form, u0h ∈ Vh,
u0 ∈ V , Θ ∈ [12 , 1]. If u ∈ C2([0, T ], V ), then

‖u(tn)− Un‖0 ≤ ‖u0h −Rhu0‖0 + ‖(I −Rh)u(tn)‖0

+
∫ tn

0
‖(I −Rh)u′(s)‖0 ds + τ

∫ tn

0
‖u′′(s)‖0 ds .

Remark 7.32 (i) Under stronger smoothness assumptions on u and by de-
tailed considerations it can also be shown that the Crank–Nicolson method
(Θ = 1

2 ) is of order 2 in τ .
(ii) Contrary to the semidiscrete situation (Theorem 7.12), the fully

discrete estimate does not reflect any exponential decay in time.

Utilizing the error estimate for the elliptic projection as in Section 7.2 (cf.
Theorem 7.12) and assuming u0 ∈ V ∩H2(Ω), we have

‖u(tn)− Un‖0 ≤ ‖u0h − u0‖0 + Ch2

[
‖u0‖2 + ‖u(tn)‖2 +

∫ tn

0
‖u′(s)‖2 ds

]

+ τ

∫ tn

0
‖u′′(s)‖0 ds .

If, in addition, ‖u0h − u0‖0 ≤ Ch2‖u0‖2, we obtain

‖u(tn)− Un‖0 ≤ C(u)(h2 + τ) ,

with C(u) > 0 depending on the solution u (and thus on u0) but not
depending on h and τ .

To conclude this section we give without proof a summary of error
estimates for all possible values of Θ:

‖u(tn)− Un‖0 ≤






C(u)(h2 + τ) , if Θ ∈ [12 , 1] ,
C(u)(h2 + τ2) , if Θ = 1

2 ,
C(u)h2 , if Θ ∈ [0, 1] and τ ≤ ϑh2 ,

(7.129)

where ϑ > 0 is a constant upper bound of the step size relation τ/h2.
The occurrence of such a restriction is not surprising, since similar

requirements have already appeared for the finite difference method.
We also mention that the above restriction to a constant step size τ is

only for simplicity of the notation. If a variable step size τn+1 is used (which
is typically determined by a step size control strategy), then the number τ
in Theorem 7.31 is to be replaced by maxn=0,...,N−1 τn .
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Order of Convergence Estimates for the Finite Volume Method
We now consider the one-step-theta method for the finite volume method
as introduced in (7.75).

The error analysis will run in a similar way as for the finite element
method.

We write

u(tn)− Un = u(tn)−Rhu(tn) + Rhu(tn)− Un =: '(tn) + θn ,

where Rh is the auxiliary operator defined in (7.63). So for the first term
of the right-hand side, an estimate is already known.

From the definition (7.63) and (7.32), we immediately derive the
following identity:
〈

1
τ

(θn+1 − θn), vh

〉

0,h

+ ah(Θθn+1 + Θθn, vh)

=
〈

1
τ

(Rhu(tn+1)−Rhu(tn)), vh

〉

0,h

+ ah(ΘRhu(tn+1) + ΘRhu(tn), vh)

−
〈

1
τ

(Un+1 − Un), vh

〉

0,h

− ah(ΘUn+1 + ΘUn, vh)

=
〈

1
τ

(Rhu(tn+1)−Rhu(tn)), vh

〉

0,h

+ a(Θu(tn+1) + Θu(tn), vh)

− 〈fn+Θ, vh〉0,h

=
〈

1
τ

(Rhu(tn+1)−Rhu(tn)), vh

〉

0,h

− 〈Θu′(tn+1) + Θu′(tn), vh〉0

+ 〈fn+Θ, vh〉0 − 〈fn+Θ, vh〉0,h

=
〈

1
τ

(Rhu(tn+1)−Rhu(tn)), vh

〉

0,h

− 〈Θu′(tn+1) + Θu′(tn), vh〉0,h

+ 〈Θu′(tn+1) + Θu′(tn), vh〉0,h − 〈Θu′(tn+1) + Θu′(tn), vh〉0
+ 〈fn+Θ, vh〉0 − 〈fn+Θ, vh〉0,h

= 〈wn, vh〉0,h + rn(vh) ,

where

wn :=
1
τ

(Rhu(tn+1)−Rhu(tn))−Θu′(tn+1)−Θu′(tn)

and

rn(vh) := 〈Θu′(tn+1) + Θu′(tn), vh〉0,h − 〈Θu′(tn+1) + Θu′(tn), vh〉0
+ 〈fn+Θ, vh〉0 − 〈fn+Θ, vh〉0,h .

Under the assumptions of Theorem 6.15, we know that ah(vh, vh) ≥ 0 for
all vh ∈ Vh. The particular choice of the test function as vh = vΘh :=
Θθn+1 + Θθn yields, similarly to the finite element case, for Θ ∈ [12 , 1] the
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estimate
[
‖θn+1‖0,h − ‖θn‖0,h

] [
Θ‖θn+1‖0,h + Θ‖θn‖0,h

]

≤ τ
(
〈wn, vΘh 〉0,h + rn(vΘh )

)

≤ τ
(
‖wn‖0,h + sup

vh∈Vh

rn(vh)
‖vh‖0,h

)
‖vΘh ‖0,h

≤ τ
(
‖wn‖0,h + sup

vh∈Vh

rn(vh)
‖vh‖0,h

)[
Θ‖θn+1‖0,h + Θ‖θn‖0,h

]
.

Dividing each side by the expression in the square brackets, we get

‖θn+1‖0,h ≤ ‖θn‖0,h + τ
(
‖wn‖0,h + sup

vh∈Vh

rn(vh)
‖vh‖0,h

)
.

The recursive application of this inequality leads to

‖θn+1‖0,h ≤ ‖θ0‖0,h + τ
n∑

j=0

‖wj‖0,h + τ
n∑

j=0

sup
vh∈Vh

rj(vh)
‖vh‖0,h

. (7.130)

The representation of wj obtained in the subsection on the finite element
method yields the following estimate:

‖wj‖0,h ≤
1
τ

∫ tj+1

tj

‖(Rh − I)u′(s)‖0,h ds +
∫ tj+1

tj

‖u′′(s)‖0,h ds .

Furthermore, by Lemma 7.14, we have

|rj(vh)| ≤ Ch
[
Θ|u′(tj+1)|1,∞ + Θ|u′(tj)|1,∞ + |f j+Θ|1,∞

]
‖vh‖0,h .

Using both estimates in (7.130), we obtain

‖θn+1‖0,h

≤ ‖θ0‖0,h + C

[∫ tn+1

0
‖(Rh − I)u′(s)‖0,h ds + τ

∫ tn+1

0
‖u′′(s)‖0,h ds

]

+ Chτ
[
Θ|u′(0)|1,∞ +

n∑

j=1

|u′(tj)|1,∞ + Θ|u′(tn+1)|1,∞

+
n∑

j=0

|f j+Θ|1,∞

]

≤ ‖θ0‖0,h + C

[∫ tn+1

0
‖(Rh − I)u′(s)‖0,h ds + τ

∫ tn+1

0
‖u′′(s)‖0,h ds

]

+ Ch
[

sup
s∈(0,tn+1)

|u′(s)|1,∞ + sup
s∈(0,tn+1)

|f(s)|1,∞

]
.

This is the basic estimate. The final estimate is easily obtained by the
same approach as in the finite element method. In summary, we have the
following result.

Theorem 7.33 In addition to the assumptions of Theorem 6.15, consider
the finite volume method on Donald diagrams. Furthermore, let u0h ∈ Vh,
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u0 ∈ V ∩H2(Ω), f ∈ C([0, T ], C1(Ω)), Θ ∈ [12 , 1]. Then if u(t) is sufficiently
smooth, the following estimate is valid:

‖u(tn)− Un‖0,h ≤ ‖u0h − u0‖0,h + Ch
[
‖u0‖2 + ‖u(tn)‖2

+
∫ tn

0
‖u′(s)‖2 ds + sup

s∈(0,tn)
|u′(s)|1,∞

+ sup
s∈(0,tn)

|f(s)|1,∞

]
+ Cτ

∫ tn

0
‖u′′(s)‖0,h ds .

Exercise

7.17 Verify Remark 7.32.



8
Iterative Methods for Nonlinear
Equations

In the same way as linear (initial-) boundary value problems by the dis-
cretization techniques discussed in this book lead to (sequences of) linear
equations, we get nonlinear equations of similar type from nonlinear prob-
lems. Two of them will be treated in this chapter. As in the Sections 1.2,
3.4, 7.3, and 6.2.4, we have to answer the question of the quality of the
approximation, and as in Section 2.5 and Chapter 5, the question of the
approximative resolution of the systems of equations. We will focus on the
latter in this chapter.

In general, the problem may be formulated in different equivalent
settings, namely:

Find x ∈ U with f(x) = b . (8.1)

Find x ∈ U with f(x) = 0 . (8.2)
Then x is called a root of (8.2) and a zero of f .

Find x ∈ U with f(x) = x . (8.3)
Then x is called a fixed point.

Here U ⊂ Rm, f : U → Rm is a mapping, and b ∈ Rm. The transition from
one formulation to another follows by redefining f in evident ways.

In most cases, a root or a fixed point cannot be calculated (with ex-
act arithmetic) in a finite number of operations, but only by an iterative
method, i.e., by a mapping

Φ : U → U ,
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so that (as in (5.7)) for the sequence

x(k+1) := Φ
(
x(k)

)
(8.4)

with given x(0) we get

x(k) → x for k →∞ . (8.5)

Here x is the solution of (8.1), (8.2), or (8.3).
As we already stated in Section 5.1, in the case of a continuous Φ it

follows from (8.4), (8.5) that the limit x satisfies

x = Φ(x) . (8.6)

This means that (8.6) should imply that x is a solution of (8.1), (8.2), or
(8.3). The extension of the definition of consistency in Section 5.1 requires
the inverse implication.

Concerning the error level that we should achieve in relation to the ap-
proximation error of the discretization, the statements in the introduction
of Chapter 5 still hold. In addition to the criteria of comparison for lin-
ear stationary methods we now have to take into account the following:
Methods may, if they do at all, converge only locally, which leads to the
following definition:

Definition 8.1 If in the above situation (8.5) holds for all x(0) ∈ U (i.e.,
for arbitrary starting values), then (x(k))k is called globally convergent. If
an open Ũ ⊂ U exists such that (8.5) holds for x(0) ∈ Ũ , then (x(k))k

is called locally convergent. In the latter case Ũ is called the range of the
iteration.

On the other hand, we may observe a faster convergence than the linear
convergence introduced in (5.3):

Definition 8.2 Let (x(k))k be a sequence in Rm, x ∈ Rm, and ‖ ·‖ a norm
on Rm. The sequence (x(k))k converges linearly to x with respect to ‖ · ‖ if
there exists a C with 0 < C < 1 such that

∥∥x(k+1) − x
∥∥ ≤ C

∥∥x(k) − x
∥∥ for all k ∈ N .

The sequence (x(k))k converges with order of convergence p > 1 to x if
x(k) → x for k →∞ and if there exists a C > 0 such that

∥∥x(k+1) − x
∥∥ ≤ C

∥∥x(k) − x
∥∥p for all k ∈ N .

The sequence (x(k))k converges superlinearly to x if

lim
k→∞

‖x(k+1) − x‖
‖x(k) − x‖

= 0 .

The case p = 2 is also called quadratic convergence. Thus, while a linearly
converging method guarantees a reduction of the error by a constant factor
C, this reduction is improved step by step in the case of superlinear or
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higher-order convergence. When we encounter quadratic convergence, for
example, the number of significant digits is doubled in every step (minus
a fixed number), so that usually only a small number of iterations will be
necessary. For this reason variants of the quadratically converging Newton
method (Section 8.2) are attractive. But the restriction of local convergence
may require modifications to enlarge the range of convergence.

To evaluate the complexity of a numerical method the number of ele-
mentary operations for an iteration has to be considered. By an elementary
operation we want also to understand the evaluation of functions like the
sine, although this is much more costly than an ordinary floating-point
operation. A typical subproblem during an iteration cycle is the solution
of a system of linear equations, analogously to the simpler systems in the
form (5.10) occurring in linear stationary problems. Besides the effort to
assemble this system of equations, we have to account for the work to
solve it, which can be done with one of the methods described in Sec-
tion 2.5 and Chapter 5, i.e., in particular, again with an iterative method.
We call this a secondary or inner iteration, which is attractive because of
the sparse structure of the matrices originating from the discretization, as
already discussed in Chapter 5. Here an inexact variant may be useful, with
which the inner iteration is performed only up to a precision that conserves
the convergence properties of the outer iteration. The numerical cost for
the assembling may, in fact, be more expensive than the cost for the in-
ner iteration. Hence methods with low cost for the assembling (but worse
convergence) should also be considered. Keeping this in mind, we devote
an introductory chapter to the fixed-point iterations, which are, roughly
speaking, methods in which the iteration Φ coincides with the mapping f .

8.1 Fixed-Point Iterations

For the fixed-point formulation (8.3) the choice Φ := f is evident according
to (8.6); in other words, the fixed-point iteration reads

x(k+1) := f
(
x(k)

)
. (8.7)

To diminish the distance of two succeeding members of the sequence, i.e.,
∥∥Φ(x(k+1))− Φ(x(k))

∥∥ =
∥∥x(k+2) − x(k+1)

∥∥ <
∥∥x(k+1) − x(k)

∥∥ ,

it is sufficient that the iteration function (here Φ = f) be contractive (see
Appendix A.4).

Sufficient conditions for a contraction are given by the following lemma:

Lemma 8.3 Let U ⊂ Rm be open and convex, and g : U → Rm

continuously differentiable. If

sup
x∈U

‖Dg(x)‖ =: L < 1
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holds, where ‖·‖ in Rm,m is compatible with ‖·‖ in Rm, then g is contracting
in U .

Proof: Exercise 8.1. !

Therefore, if U ⊂ Rm is open, f : U ⊂ Rm → Rm is continuously
differentiable, and if there exists some x̃ ∈ U with ‖Df(x̃)‖ < 1, then there
exists a closed convex neighbourhood Ũ of x̃ with

‖Df(x)‖ ≤ L < 1 for x ∈ Ũ

and, for example, L = ‖Df(x̃)‖ + 1
2 (1 − ‖Df(x̃)‖), guaranteeing the

contractivity of f in U.
The unique existence of a fixed point and the convergence of (8.7) is

guaranteed if the set U where f is a contraction is mapped into itself:

Theorem 8.4 (Banach’s fixed-point theorem) Let U ⊂ Rm, U -= ∅,
and U be closed. Let f : U → Rm be contractive with Lipschitz constant
L < 1 and f [U ] ⊂ U . Then we have:

(1) There exists one and only one fixed point x ∈ U of f .

(2) For arbitrary x(0) ∈ U the fixed point iteration (8.7) converges to x,
and we have

∥∥x(k) − x
∥∥ ≤ L

1− L

∥∥x(k) − x(k−1)
∥∥

(a posteriori error estimate)

≤ Lk

1− L

∥∥x(1) − x(0)
∥∥

(a priori error estimate).

Proof: The sequence x(k+1) := f(x(k)) is well-defined because of f [U ] ⊂ U .
We prove that (x(k))k is a Cauchy sequence (see Appendix A.4).
∥∥x(k+1) − x(k)

∥∥ =
∥∥f(x(k))− f(x(k−1))

∥∥ ≤ L
∥∥x(k) − x(k−1)

∥∥

≤ L2
∥∥x(k−1) − x(k−2)

∥∥ ≤ · · · ≤ Lk
∥∥x(1) − x(0)

∥∥, (8.8)

so that for any k, l ∈ N
∥∥x(k+l) − x(k)

∥∥

≤
∥∥x(k+l) − x(k+l−1)

∥∥+
∥∥x(k+l−1) − x(k+l−2)

∥∥+ · · · +
∥∥x(k+1) − x(k)

∥∥

≤ (Lk+l−1 + Lk+l−2 + · · · + Lk)
∥∥x(1) − x(0)

∥∥

= Lk(1 + L + · · · + Ll−1)
∥∥x(1) − x(0)

∥∥

≤ Lk
∞∑

l=0

Ll‖x(1) − x(0)‖ = Lk 1
1− L

∥∥x(1) − x(0)
∥∥ .
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Thus we have
∥∥x(k+l) − x(k)

∥∥ → 0 for k → ∞; i.e., (x(k))k is a Cauchy
sequence and thus converges to some x ∈ Rm because of the completeness
of Rm. Due to the closedness of U we conclude that x ∈ U . Since we have

x(k+1) → x , f
(
x(k)

)
→ f(x) for k →∞ ,

x is also a fixed point of f .
The fixed point is unique, because for fixed points x, x̄,

‖x− x̄‖ = ‖f(x)− f(x̄)‖ ≤ L‖x− x̄‖,

which immediately implies x = x̄ because of L < 1. Moreover, we have
∥∥x(k) − x

∥∥ =
∥∥f(x(k−1))− f(x)

∥∥ ≤ L‖x(k−1) − x‖

≤ L
(∥∥x(k−1) − x(k)

∥∥+
∥∥x(k) − x

∥∥
)

,

and thus from (8.8),

∥∥x(k) − x
∥∥ ≤ L

1− L

∥∥x(k) − x(k−1)
∥∥ ≤ L

1− L
Lk−1

∥∥x(1) − x(0)
∥∥ .

!

Remark 8.5 The theorem can be generalized: Since we used only the com-
pleteness of Rm, the proposition holds even in a Banach space (X, ‖ · ‖),
where U ⊂ X is a closed subset.

This enables us to define iterative schemes directly in the function space
for nonlinear boundary value problems, which means that the resulting
(linear) problems in the iteration step are to be discretized. So instead of
proceeding in the order discretization–iteration, we can apply the sequence
iteration–discretization. This leads in general to different schemes, even
if the approaches have been the same. We will always refer to the first
strategy.

According to Lemma 8.3 we can often construct a closed U such that
f is contractive on U . It remains to verify that f [U ] ⊂ U . For this, the
following lemma is helpful:

Lemma 8.6 Let U ⊂ Rm, f : U → Rm. If there exists a y ∈ U and a
r > 0 with

Br(y) ⊂ U ,

with f contractive on Br(y) with Lipschitz constant L < 1, so that

‖y − f(y)‖ ≤ r(1 − L) ,

then f has one and only one fixed point in Br(y), and (8.7) converges.

Proof: Exercise 8.2. !
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In the setting of Theorem 8.4 the fixed-point iteration is thus globally
convergent in U . In the setting of Lemma 8.6 it is locally convergent in
U (globally in Br(y)). We see that in the situation of Theorem 8.4 the
sequence (x(k)) has, because of

‖x(k+1) − x‖ = ‖f(x(k))− f(x)‖ ≤ L‖x(k) − x‖,

a linear order of convergence (and in general not better).
A sufficient condition for local convergence of the corresponding order is

given by the following theorem:

Theorem 8.7 Let U ⊂ Rm be open, Φ : U → U continuous, the sequence
(x(k)) defined by x(k+1) := Φ

(
x(k)

)
for a given x(0) ∈ U . If there exists

some x̄ ∈ U , an open V ⊂ U with x̄ ∈ V , and constants C, p with p ≥ 1,
C ≥ 0, and C < 1 for p = 1, such that for all x ∈ V ,

‖Φ(x)− x̄‖ ≤ C‖x− x̄‖p

holds, then the iteration defined by Φ converges locally to x̄ of order at least
p, and x̄ is a fixed point of Φ.

Proof: Choose W = Br(x̄) ⊂ V, with r > 0 sufficiently small, such that
W ⊂ V and

Crp−1 =: L < 1 .

If x(k) ∈ W , then we conclude because of
∥∥x(k+1) − x̄

∥∥ =
∥∥Φ
(
x(k)

)
− x̄

∥∥ ≤ C
∥∥x(k) − x̄

∥∥p
< Crp < r

that x(k+1) ∈ W , too. This means that for x(0) ∈ W we have that x(k) ∈ W
for all k ∈ N. Furthermore, we have

∥∥x(k+1) − x̄
∥∥ ≤ C

∥∥x(k) − x̄
∥∥p

< C rp−1
∥∥x(k) − x̄

∥∥ = L
∥∥x(k) − x̄

∥∥ ,

i.e.,

x(k) → x̄ for k →∞,

and consequently,

x̄ = lim
k→∞

x(k+1) = lim
k→∞

Φ
(
x(k)

)
= Φ(x̄) .

!

The special case of a scalar equation shows that we can expect at most
linear convergence for Φ = f :

Corollary 8.8 Let U ⊂ R be an open subset, Φ on U p-times continuously
differentiable, and x̄ ∈ U a fixed point of Φ.
If Φ′(x̄) -= 0, |Φ′(x̄)| < 1 for p = 1 and Φ′(x̄) = · · · = Φ(p−1)(x̄) = 0,
Φ(p)(x̄) -= 0 for p > 1, then the iteration defined by Φ is locally convergent
to x̄ with order of convergence p, but not better.
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Proof: Taylor’s expansion of Φ at x̄ gives, for x ∈ U ,

Φ(x) = Φ(x̄) +
Φ(p)(ξ)

p!
(x− x̄)p with ξ ∈ (x, x̄) ,

and in the case p = 1 we have |Φ′(ξ)| < 1 for sufficiently small |x− x̄|. Thus,
there exists a neighbourhood V of x̄ such that |Φ(x) − x̄| ≤ C|x − x̄|p for
all x ∈ V and C < 1 for p = 1. Theorem 8.7 implies order of convergence p.
The example Φ(x) = Lxp with L < 1 for p = 1 with the fixed point x = 0
shows that no improvement is possible. !

Exercises

8.1 Prove Lemma 8.3 with the help of the mean value theorem.

8.2 Prove Lemma 8.6.

8.2 Newton’s Method and Its Variants

8.2.1 The Standard Form of Newton’s Method

In the following we want to study the formulation stated in (8.2), i.e., the
problem of finding the solutions of

f(x) = 0 .

The simplest method of Chapter 5, the Richardson iteration (cf. (5.28)),
suggests the direct application of the fixed-point iteration for, e.g., Φ(x) :=
−f(x) + x. This approach succeeds only if, in the case of a differentiable
f , the Jacobian I −Df(x) is small in the sense of Lemma 8.3 close to the
solution. Here we denote by Df(x) = (∂jfi(x))ij the Jacobi or functional
matrix of f . A relaxation method similar to (5.30) leads to the damped
variants, which will be treated later.

The method in its corrector formulation, analogously to (5.10) with

δ(k) := x(k+1) − x(k) ,

is

δ(k) = −f
(
x(k)

)
, (8.9)

or in its relaxation formulation with relaxation parameter ω > 0,

δ(k) = −ωf(x(k)) .

Now we want to introduce another approach to define Φ:
Let x(0) be an approximation of a zero. An improved approximation is

probably given by the following:
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• Replace f by a simple function g that approximates f near x(0) and
whose zero is to be determined.

• Find x(1) as the solution of g(x) = 0.

Newton’s method needs the differentiability of f , and one chooses the
approximating affine-linear function given by Df(x(0)), i.e.,

g(x) = f
(
x(0)

)
+ Df

(
x(0)

)(
x− x(0)

)
.

Under the assumption that Df(x(0)) is nonsingular, the new iterate x(1) is
determined by solving the system of linear equations

Df
(
x(0)

)(
x(1) − x(0)

)
= −f

(
x(0)

)
, (8.10)

or formally by

x(1) := x(0) −Df
(
x(0)

)−1
f
(
x(0)

)
.

This suggests the following definition:

Φ(f)(x) = x−Df(x)−1f(x) . (8.11)

Here Φ is well-defined only if Df(x) is nonsingular. Then x ∈ Rm is a zero
of f if and only if x is a fixed point of Φ. When executing the iteration,
we do not calculate Df

(
x(k)

)−1 but only the system of equations similar
to (8.10).

Thus, the kth iteration of Newton’s method reads as follows: Solve

Df
(
x(k)

)
δ(k) = −f

(
x(k)

)
(8.12)

and set

x(k+1) := x(k) + δ(k) . (8.13)

Equation (8.13) has the same form as (5.10) with W = Df(x(k)), with
the residual at x(k)

d(k) := f
(
x(k)

)
.

Thus the subproblem of the kth iteration is easier in the sense that it con-
sists of a system of linear equations (with the same structure of dependence
as f ; see Exercise 8.6). In the same sense the system of equations (5.10)
in the case of linear stationary methods is “easier” to solve than the orig-
inal problem of the same type. Furthermore, W is in general different for
different k.

An application of (8.12), (8.13) to Ax = b, i.e., Df(x) = A for all x ∈ Rm

results in (5.10) with W = A, a method converging in one step, which just
reformulates the original problem:

A
(
x− x(0)

)
= −

(
Ax(0) − b

)
.
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The range of the iteration may be very small, as can be shown already
by one-dimensional examples. But in this neighbourhood of the solution
we have, e.g., for m = 1, the following:

Corollary 8.9 Let f ∈ C3(R) and let x̄ be a simple zero of f (i.e., f ′(x̄) -=
0). Then Newton’s method converges locally to x̄, of order at least 2.

Proof: There exists an open neighbourhood V of x̄ such that f ′(x) -= 0 for
all x ∈ V ; i.e., Φ is well-defined by (8.11), continuous on V , and x̄ is a fixed
point of Φ. According to Corollary 8.8 it suffices to show that Φ′(x̄) = 0:

Φ′(x) = 1− f ′(x)2 − f(x)f ′′(x)
f ′(x)2

= f(x)
f ′′(x)
f ′(x)2

= 0 for x = x̄,

and Φ′′ exists continuously, because f ∈ C3(R). !

In the following we want to develop a general local theorem of conver-
gence for Newton’s method (according to L.V. Kantorovich). It necessitates
only the Lipschitz continuity of Df and ensures the existence of a zero, too.
Here we always suppose a fixed norm on Rm and consider a compatible
norm on Rm,m. As a prerequisite we need the following lemma:

Lemma 8.10 Let C0 ⊂ Rm be convex, open, f : C0 → Rm differentiable,
and suppose there exists γ > 0 such that

‖Df(x)−Df(y)‖ ≤ γ ‖x− y‖ for all x, y ∈ C0 . (8.14)

Then for all x, y ∈ C0,

‖f(x)− f(y)−Df(y)(x− y)‖ ≤ γ

2
‖x− y‖2 .

Proof: Let ϕ : [0, 1] → Rm be defined by ϕ(t) := f(y + t(x − y)), for
arbitrary, fixed x, y ∈ C0. Then ϕ is differentiable on [0, 1] and

ϕ′(t) = Df(y + t(x − y))(x− y) .

Thus for t ∈ [0, 1] we have

‖ϕ′(t)− ϕ′(0)‖ = ‖(Df(y + t(x− y))−Df(y)) (x− y)‖
≤ ‖Df(y + t(x− y))−Df(y)‖‖x− y‖ ≤ γ t ‖x− y‖2 .

For

∆ := f(x)−f(y)−Df(y)(x−y) = ϕ(1)−ϕ(0)−ϕ′(0) =
∫ 1

0
(ϕ′(t)− ϕ′(0)) dt

we also get

‖∆‖ ≤
∫ 1

0
‖ϕ′(t)− ϕ′(0)‖ dt ≤ γ‖x− y‖2

∫ 1

0
t dt =

1
2
γ ‖x− y‖2 .

!
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Now we are able to conclude local, quadratic convergence:

Theorem 8.11 Let C ⊂ Rm be convex, open and f : C → Rm differen-
tiable.
For x(0) ∈ C there exist α,β, γ > 0 such that

h := αβ γ/2 < 1 ,

r := α/(1 − h) ,

B̄r

(
x(0)

)
⊂ C .

Furthermore, we require:

(i) Df is Lipschitz continuous on C0 = Br+ε

(
x(0)

)
for some ε > 0 with

constant γ in the sense of (8.14).

(ii) For all x ∈ Br

(
x(0)

)
there exists Df(x)−1 and

∥∥Df(x)−1
∥∥ ≤ β.

(iii)
∥∥Df

(
x(0)

)−1
f
(
x(0)

)∥∥ ≤ α .

Then:

(1) The Newton iteration

x(k+1) := x(k) −Df
(
x(k)

)−1
f
(
x(k)

)

is well-defined and

x(k) ∈ Br

(
x(0)

)
for all k ∈ N .

(2) x(k) → x̄ for k →∞ and f(x̄) = 0.

(3)
∥∥x(k+1) − x̄

∥∥ ≤ βγ

2
∥∥x(k) − x̄

∥∥2 and
∥∥x(k) − x̄

∥∥ ≤ α
h2k−1

1− h2k

for k ∈ N .

Proof: (1): To show that x(k+1) is well-defined it is sufficient to verify

x(k) ∈ Br

(
x(0)

)
(⊂ C) for all k ∈ N .

By induction we prove the extended proposition

x(k) ∈ Br

(
x(0)

)
and

∥∥x(k) − x(k−1)
∥∥ ≤ αh2k−1−1 for all k ∈ N . (8.15)

The proposition (8.15) holds for k = 1, because according to (iii),
∥∥x(1) − x(0)

∥∥ =
∥∥Df

(
x(0)

)−1
f
(
x(0)

)∥∥ ≤ α < r .

Let (8.15) be valid for l = 1, . . . , k. Then x(k+1) is well-defined, and by the
application of the Newton iteration for k − 1 we get
∥∥x(k+1) − x(k)

∥∥ =
∥∥Df

(
x(k)

)−1
f
(
x(k)

)∥∥ ≤ β
∥∥f(x(k))

∥∥

= β
∥∥f
(
x(k)

)
− f

(
x(k−1)

)
−Df

(
x(k−1)

)(
x(k) − x(k−1)

)∥∥

≤ βγ

2
∥∥x(k) − x(k−1)

∥∥2
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according to Lemma 8.10 with C0 = Br

(
x(0)

)
, and

∥∥x(k+1) − x(k)
∥∥ ≤ βγ

2
∥∥x(k) − x(k−1)

∥∥2 ≤ βγ

2
α2h2k−2 = αh2k−1 .

Thus the second part of (8.15) holds for k + 1, and also
∥∥x(k+1) − x(0)

∥∥ ≤
∥∥x(k+1) − x(k)

∥∥+
∥∥x(k) − x(k−1)

∥∥+ · · · +
∥∥x(1) − x(0)

∥∥

≤ α
(
h2k−1 + h2k−1−1 + · · · + h7 + h3 + h + 1

)

< α/(1 − h) = r .

Hence (8.15) holds for k + 1.
(2): Using (8.15) we are able to verify that (x(k))k is a Cauchy sequence,
because for l ≥ k we have
∥∥x(l+1) − x(k)

∥∥ ≤
∥∥x(l+1) − x(l)

∥∥+
∥∥x(l) − x(l−1)

∥∥+ · · · +
∥∥x(k+1) − x(k)

∥∥

≤ αh2k−1
(
1 + h2k

+
(
h2k)3 + · · ·

)
(8.16)

<
αh2k−1

1− h2k → 0 for k →∞ ,

since h < 1. Hence there exists x̄ = limk→∞ x(k) and x̄ ∈ Br

(
x(0)

)
.

Furthermore, f(x̄) = 0, because we can conclude from x(k) ∈ Br

(
x(0)

)

that
∥∥Df

(
x(k)

)
−Df

(
x(0)

)∥∥ ≤ γ
∥∥x(k) − x(0)

∥∥ < γr ;

thus
∥∥Df

(
x(k)

)∥∥ ≤ γr +
∥∥Df

(
x(0)

)∥∥ =: K

and from f
(
x(k)

)
= −Df

(
x(k)

)(
x(k+1) − x(k)

)
, we obtain

∥∥f
(
x(k)

)∥∥ ≤ K
∥∥x(k+1) − x(k)

∥∥→ 0

for k →∞. Thus we also have

f(x̄) = lim
k→∞

f(x(k)) = 0 .

(3): With l → ∞ in (8.16) we can prove the second part in (3); the first
part follows from

x(k+1) − x̄ = x(k) −Df
(
x(k)

)−1
f
(
x(k)

)
− x̄

= x(k) − x̄−Df
(
x(k)

)−1(
f
(
x(k)

)
− f(x̄)

)

= Df
(
x(k)

)−1
(
f(x̄)− f

(
x(k)

)
−Df

(
x(k)

)(
x̄− x(k)

))
,

which implies, according to Lemma 8.10 with C0 = Br+ε

(
x(0)

)
⊂ C,

∥∥x(k+1) − x̄
∥∥ ≤ β γ

2
∥∥x(k) − x̄

∥∥2
.

!
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The termination criterion (5.15), which is oriented at the residual, may
also be used for the nonlinear problem (and not just for the Newton
iteration). This can be deduced in analogy to (5.16):

Theorem 8.12 Let the following be valid:

There exists a zero x̄ of f such that Df(x̄) is nonsingular and
Df is Lipschitz continuous in an open neighbourhood C of x̄. (8.17)

Then for every ' > 0 there exists a δ > 0 such that for x, y ∈ Bδ(x̄),

‖f(y)‖ ‖x− x̄‖ ≤ (1 + ')κ(Df(x̄)) ‖f(x)‖ ‖y − x̄‖ .

Proof: See [22, p. 69, p. 72] and Exercise 8.4. !

Here κ is the condition number in a matrix norm that is consistent with
the chosen vector norm. For x = x(k) and y = x(0) we get (locally) the
generalization of (5.16).

8.2.2 Modifications of Newton’s Method

Modifications of Newton’s method aim in two directions:

• Reduction of the cost of the assembling and the solution of the sys-
tem of equations (8.12) (without a significant deterioration of the
properties of convergence).

• Enlargement of the range of convergence.

We can account for the first aspect by simplifying the matrix in (8.12)
(modified or simplified Newton’s method). The extreme case is the replace-
ment of Df

(
x(k)

)
by the identity matrix; this leads us to the fixed-point

iteration (8.9). If the mapping f consists of a nonlinear and a linear part,

f(x) := Ax + g(x) = 0 , (8.18)

then the system of equations (8.12) of the Newton iteration reads as
(
A + Dg

(
x(k)

))
δ(k) = −f

(
x(k)

)
.

A straightforward simplification in this case is the fixed-point iteration

A δ(k) = −f
(
x(k)

)
. (8.19)

It may be interpreted as the fixed-point iteration (8.9) of the system that
is preconditioned with A, i.e., of

A−1f(x) = 0.

In (8.19) the matrix is identical in every iteration step; therefore, it has to
be assembled only once, and if we use a direct method (cf. Section 2.5),
the LU factorization has to be carried out only once. Thus with forward
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and backward substitution we have only to perform methods with lower
computational cost. For iterative methods we cannot rely on this advantage,
but we can expect that x(k+1) is close to x(k), and consequently δ(k,0) = 0
constitutes a good initial guess. Accordingly, the assembling of the matrix
gets more important with respect to the overall computational cost, and
savings during the assembling become relevant.

We get a system of equations similar to (8.19) by applying the chord
method (see Exercise 8.3), where the linear approximation of the initial
iterate is maintained, i.e.,

Df
(
x(0)

)
δ(k) = −f

(
x(k)

)
. (8.20)

If the matrix B
(
x(k)

)
, which approximates Df

(
x(k)

)
, is changing in each

iteration step, i.e.,

B
(
x(k)

)
δ(k) = −f

(
x(k)

)
, (8.21)

then the only advantage can be a possibly easier assembling or solvability of
the system of equations. If the partial derivatives ∂jfi(x) are more difficult
to evaluate than the function fi(y) itself (or possibly not evaluable at all),
then the approximation of Df(x(k)) by difference quotients can be taken
into consideration. This corresponds to

B
(
x(k)

)
ej =

1
h

(
f(x + hej)− f(x)

)
(8.22)

for column j of B
(
x(k)

)
with a fixed h > 0. The number of computations for

the assembling of the matrix remains the same: m2 for the full matrix and
analogously for the sparse matrix (see Exercise 8.6). Observe that numerical
differentiation is an ill-posed problem, which means that we should ideally
choose h ∼ δ1/2, where δ > 0 is the error level in the evaluation of f . Even
then we can merely expect

∥∥Df
(
x(k)

)
−B

(
x(k)

)∥∥ ≤ Cδ1/2

(see [22, pp. 80 f.]). Thus in the best case we can expect only half of the
significant digits of the machine precision. The second aspect of facilitated
solvability of (8.21) occurs if there appear “small” entries in the Jaco-
bian, due to a problem-dependent weak coupling of the components, and
these entries may be skipped. Take, for example, a Df

(
x(k)

)
with a block

structure as in (5.39):

Df
(
x(k)

)
=
(
Aij

)
ij

, Aij ∈ Rmi,mj ,

such that the blocks Aij may be neglected for j > i. Then there results a
nested system of equations of the dimensions m1, m2, . . . , mp.

The possible advantages of such simplified Newton’s methods have to
be weighted against the disadvantage of a deterioration in the order of
convergence: Instead of an estimation like that in Theorem 8.11, (3), we
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have to expect an additional term
∥∥B

(
x(k)

)
−Df

(
x(k)

)∥∥ ∥∥x(k) − x
∥∥.

This means only linear or — by successive improvement of the approxi-
mation — superlinear convergence (see [22, pp. 75 ff.]). If we have a good
initial iterate, it may often be advantageous to perform a small number of
steps of Newton’s method. So in the following we will treat again Newton’s
method, although the subsequent considerations can also be transferred to
its modifications.

If the linear problems (8.12) are solved with an iterative scheme, we
have the possibility to adjust the accuracy of the algorithm in order to
reduce the number of inner iterations, without a (severe) deterioration of
the convergence of the outer iteration of the Newton iteration. So dealing
with such inexact Newton’s methods, we determine instead of δ(k) from
(8.12) only δ̃(k), which fulfils (8.12) only up to an inner residual r(k), i.e.,

Df
(
x(k)

)
δ̃(k) = −f

(
x(k)

)
+ r(k) .

The new iterate is given by

x(k+1) := x(k) + δ̃(k) .

The accuracy of δ̃(k) is estimated by the requirement
∥∥r(k)

∥∥ ≤ ηk

∥∥f
(
x(k)

)∥∥ (8.23)

with certain properties for the sequence (ηk)k that still have to be de-
termined. Since the natural choice of the initial iterate for solving (8.12)
is δ(k,0) = 0, (8.23) corresponds to the termination criterion (5.15).
Conditions for ηk can be deduced from the following theorem:

Theorem 8.13 Let (8.17) hold and consider compatible matrix and vector
norms. Then there exists for every ' > 0 a δ > 0 such that for x(k) ∈ Bδ(x̄),

∥∥x(k+1) − x̄
∥∥ ≤

∥∥x(k) −Df
(
x(k)

)−1
f
(
x(k)

)
− x̄

∥∥

+ (1 + ')κ
(
Df(x̄)

)
ηk

∥∥x(k) − x̄
∥∥ .

(8.24)

Proof: By the choice of δ we can ensure the nonsingularity of Df(x(k)).
From

δ̃(k) = −Df
(
x(k)

)−1
f
(
x(k)

)
+ Df

(
x(k)

)−1
r(k)

it follows that
∥∥x(k+1) − x̄

∥∥ =
∥∥x(k) − x̄ + δ̃(k)

∥∥

≤
∥∥x(k) − x̄−Df

(
x(k)

)−1
f
(
x(k)

)∥∥+
∥∥Df

(
x(k)

)−1
r(k)

∥∥ .

The assertion can be deduced from the estimation
∥∥Df

(
x(k)

)−1
r(k)

∥∥ ≤ (1 + ')1/2
∥∥Df(x̄)−1

∥∥∥∥r(k)
∥∥



356 8. Iterative Methods for Nonlinear Equations

≤ (1 + ')1/2
∥∥Df(x̄)−1

∥∥ ηk (1 + ')1/2
∥∥Df(x̄)

∥∥∥∥x(k) − x̄
∥∥ .

Here we used Exercise 8.4 (2), (3) and (8.23). !

The first part of the approximation corresponds to the error of the ex-
act Newton step, which can be estimated using the same argument as in
Theorem 8.11, (3) (with Exercise 8.4, (2)) by
∥∥x(k) −Df

(
x(k)

)−1
f
(
x(k)

)
− x̄

∥∥ ≤ (1 + ')1/2
∥∥Df(x̄)−1

∥∥γ
2
∥∥x(k) − x̄

∥∥2
.

This implies the following result:

Corollary 8.14 Let the assumptions of Theorem 8.13 be satisfied. Then
there exist δ > 0 and η̄ > 0 such that for x(0) ∈ Bδ(x̄) and ηk ≤ η̄ for all
k ∈ N for the inexact Newton’s method the following hold:

(1) The sequence
(
x(k)

)
k

converges linearly to x̄.

(2) If ηk → 0 for k →∞, then
(
x(k)

)
k

converges superlinearly.

(3) If ηk ≤ K
∥∥f
(
x(k)

)∥∥ for a K > 0, then
(
x(k)

)
k

converges quadratical-
ly.

Proof: Exercise 8.5. !

The estimation (8.24) suggests that we carefully choose a very fine level
of accuracy η̄ of the inner iteration to guarantee the above statements of
convergence. This is particularly true for ill-conditioned Df(x̄) (which is
common for discretization matrices: See (5.34)). In fact, the analysis in the
weighted norm ‖ · ‖ = ‖Df(x̄) · ‖ shows that only ηk ≤ η̄ < 1 has to be
ensured (cf. [22, pp. 97 ff.]). With this and on the basis of

η̃k = α
∥∥f
(
x(k)

)∥∥2
/
∥∥f
(
x(k−1)

)∥∥2

for some α ≤ 1 we can construct ηk in an adaptive way (see [22, p. 105]).
Most of the iterative methods introduced in Chapter 5 do not require the
explicit knowledge of the matrix Df

(
x(k)

)
. It suffices that the operation

Df
(
x(k)

)
y be feasible for vectors y, in general for fewer than m of them;

i.e., the directional derivative of f in x(k) in direction y is needed. Thus
in case a difference scheme for the derivatives of f should be necessary or
reasonable, it is more convenient to choose directly a difference scheme for
the directional derivative.

Since we cannot expect convergence of Newton’s method in general,
we require indicators for the convergence behaviour of the iteration. The
solution x̄ is in particular also the solution of

Minimize ‖f(x)‖2 for x ∈ Rm .
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Let x(0), τ > 0, η0, Θ̄ ∈ (0, 1), k = 0, i = 0 be given.

(1) δ̃(k,0) := 0 , i := 1 .

(2) Determine the ith iterate δ̃(k,i) for Df(x(k))δ̃(k) = −f(x(k))
and calculate

r(i) := Df(x(k))δ̃(k,i) + f(x(k)) .

(3) If ‖r(i)‖ ≤ ηk‖f(x(k))‖, then go to (4),
else set i := i + 1 and go to (2).

(4) δ̃(k) := δ̃(k,i) .

(5) x(k+1) := x(k) + δ̃(k) .

(6) If ‖f(x(k+1))‖ > Θ‖f(x(k))‖, interrupt.

(7) If ‖f(x(k+1))‖ ≤ τ‖f(x(0))‖, end.
Else calculate ηk+1, set k := k + 1, and go to (1).

Table 8.1. Inexact Newton’s method with monotonicity test.

Thus we could expect a descent of the sequence of iterates (x(k)) in this
functional, i.e.,

∥∥f(x(k+1))
∥∥ ≤ Θ̄

∥∥f(x(k))
∥∥ for a Θ̄ < 1.

If this monotonicity test is not fulfilled, the iteration is terminated. Such
an example of an inexact Newton’s method is given in Table 8.1.

In order to avoid the termination of the method due to divergence, the
continuation methods have been developed. They attribute the problem
f(x) = 0 to a family of problems to provide successively good initial iter-
ates. The approach presented at the end of Section 8.3 for time-dependent
problems is similar to the continuation methods. Another approach (which
can be combined with the latter) modifies the (inexact) Newton’s method,
so that the range of convergence is enlarged: Applying the damped (inex-
act) Newton’s method means reducing the step length of x(k) to x(k+1) as
long as we observe a decrease conformable to the monotonicity test. One
strategy of damping, termed Armijo’s rule, is described in Table 8.2 and
replaces the steps (1), (5), and (6) in Table 8.1.

Thus damping Newton’s method means also a relaxation similar to
(5.30), where ω = λk is being adjusted to the iteration step as in (5.41).

In the formulation of Table 8.2 the iteration may eventually not terminate
if in (5) λk is successively reduced. This must be avoided in a practical
implementation of the method. But except for situations where divergence
is obvious, this situation will not appear, because we have the following
theorem:
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Let additionally α,β ∈ (0, 1) be given.

(1) δ̃(k,0) := 0 , i := 1 , λk := 1.

(5) If ‖f(x(k) + λk δ̃(k))‖ ≥ (1− αλk)‖f(x(k))‖, set λk := βλk

and go to (5).

(6) x(k+1) := x(k) + λk δ̃(k) .

Table 8.2. Damped inexact Newton step according to Armijo’s rule.

Theorem 8.15 Let α,β, γ > 0 exist such that conditions (i), (ii) of Theo-
rem 8.11 on

⋃
k∈N Br(x(k)) hold for the sequence (x(k))k defined according

to Table 8.2. Let ηk ≤ η̄ for an η̄ < 1− α.
Then if f

(
x(0)

)
-= 0, there exists a λ̄ > 0 such that λk ≥ λ̄ for all k ∈ N. If

furthermore
(
x(k)

)
k

is bounded, then there exists a zero x̄, satisfying (8.17)
and

x(k) → x̄ for k →∞ .

There exists a k0 ∈ N such that for k ≥ k0 the relation

λk = 1

holds.

Proof: See [22, pp. 139 ff.]. !

We see that in the final stage of the iteration we again deal with the
(inexact) Newton’s method with the previously described behaviour of
convergence.

Finally, the following should be mentioned: The problem f(x) = 0 and
Newton’s method are affine-invariant in the sense that a transition to
Af(x) = 0 with a nonsingular A ∈ Rm,m changes neither the problem
nor the iteration method, since

D(Af)(x)−1Af(x) = Df(x)−1f(x) .

Among the assumptions of Theorem 8.11, (8.14) is not affine-invariant. A
possible alternative would be

‖Df(y)−1(Df(x)−Df(y))‖ ≤ γ‖x− y‖ ,

which fulfils the requirement. With the proof of Lemma 8.10 it follows that

‖Df(y)−1(f(x) − f(y)−Df(y)(x− y))‖ ≤ γ

2
‖x− y‖2 .

With this argument a similar variant of Theorem 8.11 can be proven.



8.2. Newton’s Method and Variants 359

The test of monotonicity is not affine-invariant, so probably the natural
test of monotonicity

∥∥Df
(
x(k)

)−1
f
(
x(k+1)

)∥∥ ≤ Θ̄
∥∥Df

(
x(k)

)−1
f
(
x(k)

)∥∥

has to be preferred. The vector on the right-hand side has already been
calculated, being, except for the sign, the Newton correction δ(k). But for
the vector in the left-hand side, −δ̄(k+1), the system of equations

Df
(
x(k)

)
δ̄(k+1) = −f

(
x(k+1)

)

additionally has to be resolved.

Exercises

8.3 Consider the chord method as described in (8.20). Prove the
convergence of this method to the solution x̄ under the following
assumptions:

(1) Let (8.17) with Br(x̄) ⊂ C hold,

(2)
∥∥∥
[
Df(x(0))

]−1
∥∥∥ ≤ β ,

(3) 2βγr < 1 ,

(4) x(0) ∈ Br(x̄) .

8.4 Let assumption (8.17) hold. Prove for compatible matrix and vector
norms that for every ' > 0 there exists a δ > 0 such that for every x ∈
Bδ(x̄),

(1) ‖Df(x)‖ ≤ (1 + ')1/2‖Df(x̄)‖ ,

(2) ‖Df(x)−1‖ ≤ (1 + ')1/2‖Df(x̄)−1‖
(employ ‖(I −M)−1‖ ≤ 1/(1− ‖M‖) for ‖M‖ < 1),

(3) (1 + ')−1/2‖Df(x̄)−1‖−1‖x− x̄‖ ≤ ‖f(x)‖
≤ (1 + ')1/2‖Df(x̄)‖‖x− x̄‖ ,

(4) Theorem 8.12.

8.5 Prove Corollary 8.14.

8.6 Let U ⊂ Rm be open and convex. Consider problem (8.2) with con-
tinuously differentiable f : U → Rm. For i = 1, . . . , m let Ji ⊂ {1, . . . , m}
be defined by

∂jfi(x) = 0 for j /∈ Ji and every x ∈ U .
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Then the operator f is sparsely occupied if li := |Ji| < m, or sparsely
occupied in the strict sense if li ≤ l for all i = 1, . . . , m and l < m is
independent of m for a sequence of problems (8.2) of dimension m.

Then the evaluation of Df(x) and its approximation according to (8.22)
both need

∑m
k=1 lk evaluations of ∂jfi or of fl, respectively. What is the

computational effort for a difference approximation

f(x + hδ/‖δ‖)− f(x)
h

‖δ‖

of the directional derivative Df(x)δ ?

8.3 Semilinear Boundary Value Problems for
Elliptic and Parabolic Equations

In this section we treat semilinear problems as the simplest nonlinear case,
where nonlinearities do not occur in parts containing derivatives. Hence we
want to examine differential equations of the form (0.33) that satisfy (0.42)
and (0.43).

Stationary Problems
As a stationary problem we consider the differential equation

Lu(x) + ψ(u(x)) = 0 for x ∈ Ω (8.25)

with the linear elliptic differential operator L according to (3.12) and linear
boundary conditions on ∂Ω according to (3.18)–(3.20). Here ψ : R → R
denotes a mapping that is supposed to be continuously differentiable.

A Galerkin discretization in Vh ⊂ V with H1
0 (Ω) ⊂ V ⊂ H1(Ω) according

to the type of boundary condition and Vh = span {ϕ1, . . . ,ϕM} with the
approximative solution uh ∈ Vh in the representation uh =

∑M
i=1 ξiϕi gives

Sξ + G(ξ) = b (8.26)

with the stiffness matrix S = (a (ϕj ,ϕi) )i,j and a vector b that con-
tains the contributions of the inhomogeneous boundary conditions. Here
the nonlinear mapping G : RM → RM is defined by

G(ξ) := (Gj(ξ))j with Gj(ξ) :=
∫

Ω
ψ

(
M∑

i=1

ξiϕi

)
ϕj dx .

Note that this notation differs from that in Section 2.2 and the subsequent
chapters: There we denoted S by Ah and b − G(ξ) by qh. For reasons of
brevity we omit the index h.

For the moment we want to suppose that the mapping G can be evaluated
exactly. The system of equations (8.26) with

A := S and g(ξ) := G(ξ)− b
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is of the type introduced in (8.18) in the variable ξ. Thus we may apply,
besides the Newton iteration, the fixed-point iteration, introduced in (8.19),
and the variants of Newton’s method, namely the modified and inexact
versions with their already discussed advantages and drawbacks. We have
to examine the question of how the properties of the matrix will change by
the transition from A to A+DG(ξ̄), where ξ̄ stands for the current iterate.
We have

(
DG(ξ̄)

)
ij

=
∫

Ω
ψ′(ū)ϕiϕj dx , (8.27)

where ū = P ξ̄ =
∑M

i=1 ξ̄iϕi ∈ Vh denotes the function belonging to the
representing vector ξ̄. This means that DG(ξ̄) is symmetric and positive
semidefinite, respectively definite, if the following condition for α = 0,
respectively α > 0, holds:

There exists some α ≥ 0 such that ψ′(u) ≥ α for all u ∈ R . (8.28)

More precisely, we have for η ∈ RM , if (8.28) is valid,

ηT DG(ξ̄)η =
∫

Ω
ψ′(ū) |Pη|2 dx ≥ α ‖Pη‖2

0 .

For such a monotone nonlinearity the properties of definiteness of the stiff-
ness matrix S may be “enforced”. If, on the other hand, we want to make
use of the properties of an M-matrix that can be ensured by the conditions
(1.32) or (1.32)∗, then it is not clear whether these properties are conserved
after addition of DG(ξ̄). This is due to the fact that DG(ξ̄) is a sparse ma-
trix of the same structure as S, but it also entails a spatial coupling that
is not contained in the continuous formulation (8.25).

Numerical Quadrature
Owing to the above reason, the use of a node-oriented quadrature rule for
the approximation of G(ξ) is suggested, i.e., a quadrature formula of the
type

Q(f) :=
M∑

i=1

ωif(ai) for f ∈ C(Ω̄) (8.29)

with weights ωi ∈ R. Such a quadrature formula results from

Q(f) :=
∫

Ω
I(f) dx for f ∈ C(Ω̄) , (8.30)

where

I : C(Ω̄) → Vh , I(f) :=
M∑

i=1

f(ai)ϕi ,

is the interpolation operator of the degrees of freedom. For this considera-
tion we thus assume that only Lagrangian elements enter the definition of
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Vh. In the case of (8.30) the weights in (8.29) are hence given by

ωi =
∫

Ω
ϕi dx .

This corresponds to the local description (3.116). More specifically, we get,
for example, for the linear approach on simplices as a generalization of the
composite trapezoidal rule,

ωi =
1

d + 1

∑

K∈Th

with ai∈K

|K| , (8.31)

with d denoting the spatial dimension and Th the underlying triangulation.
Approximation of the mapping G by a quadrature rule of the type (8.29)
gives

G̃(ξ) =
(
G̃j(ξ)

)

j
with G̃j(ξ) = ωjψ(ξj) ,

because of ϕj(ai) = δij . We see that the approximation G̃ has the property
that G̃j depends only on ξj . We call such a G̃ a diagonal field. Qualitatively,
this corresponds better to the continuous formulation (8.25) and leads to
the fact that DG̃(ξ̄) is diagonal:

DG̃(ξ̄)ij = ωjψ
′(ξ̄j)δij . (8.32)

If we impose that all quadrature weights ωi are positive, which is the case
in (8.31) and also in other examples in Section 3.5.2, all of the above con-
siderations about the properties of DG̃(ξ̄) and S + DG̃(ξ̄) remain valid;
additionally, if S is an M-matrix, because the conditions (1.32) or (1.32)∗

are fulfilled, then S + DG̃(ξ̄) remains an M-matrix, too. This is justified
by the following fact (compare [34] and [5]; cf. (1.33) for the notation):

If A is an M-matrix and B ≥ A with bij ≤ 0 for i -= j,
then B is an M-matrix as well.

(8.33)

Conditions of Convergence
Comparing the requirements for the fixed-point iteration and Newton’s
method stated in the (convergence) Theorems 8.4 and 8.11, we observe that
the conditions in Theorem 8.4 can be fulfilled only in special cases, where
S−1DG̃(ξ̄) is small according to a suitable matrix norm (see Lemma 8.3).
But it is also difficult to draw general conclusions about requirement (iii)
in Theorem 8.11, which together with h < 1 quantifies the closeness of the
initial iterate to the solution. The postulation (i), on the other hand, is
met for (8.27) and (8.32) if ψ′ is Lipschitz continuous (see Exercise 8.7).
Concerning the postulation (ii) we have the following: Let ψ be monotone
nondecreasing (i.e., (8.28) holds with α ≥ 0) and let S be symmetric and
positive definite, which is true for a problem without convection terms
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(compare (3.27)). Then we have in the spectral norm
∥∥S−1

∥∥
2

= 1/λmin(S) .

Here λmin(S) > 0 denotes the smallest eigenvalue of S. Hence
∥∥ (S + DG(ξ))−1 ∥∥

2
= 1/λmin

(
S + DG(ξ̄)

)
≤ 1/λmin(S) =

∥∥S−1
∥∥

2
,

and consequently, requirement (ii) is valid with β =
∥∥S−1

∥∥
2
.

Concerning the choice of the initial iterate, there is no generally successful
strategy. We may choose the solution of the linear subproblem, i.e.,

Sξ(0) = b . (8.34)

Should it fail to converge even with damping, then we may apply, as a
generalization of (8.34), the continuation method to the family of problems

f(λ, ξ) := S + λG(ξ)− b = 0

with continuation parameter λ ∈ [0, 1]. If all these problems have solutions
ξ = ξλ so that Df(ξ;λ) exists and is nonsingular in a neighbourhood of
ξλ, and if there exists a continuous solution trajectory without bifurcation,
then [0, 1] can be discretized by 0 = λ0 < λ1 < · · · < λN = 1, and solutions
ξλi

of f(ξ;λi) = 0 can be obtained by performing a Newton iteration with
the (approximative) solution for λ = λi−1 as starting iterate. Since the ξλi

for i < N are just auxiliary means, they should be obtained rather coarsely,
i.e., with one or two Newton steps. The stated conditions are fulfilled under
the supposition (8.28). If this condition of monotonicity does not hold, we
may encounter a bifurcation of the continuous solution (see, for example,
[29, pp. 28 ff.]).

Instationary Problems
The elliptic boundary value problem (8.25) corresponds to the parabolic
initial value problem

∂tu(x, t) + Lu(x, t) + ψ(u(x, t)) = 0 for (x, t) ∈ QT (8.35)

with linear boundary conditions according to (3.18)–(3.20) and the initial
condition

u(x, 0) = u0(x) for x ∈ Ω . (8.36)

We have already met an example for (8.35), (8.36) in (0.32). Analo-
gously to (8.26) and (7.45), the Galerkin discretization in Vh (i.e., the
semidiscretization) leads to the nonlinear system of ordinary differential
equations

B
d

dt
ξ(t) + Sξ(t) + G(ξ(t)) = β(t) for t ∈ (0, T ] , ξ(0) = ξ0

for the representing vector ξ(t) of the approximation uh(·, t) =
∑M

i=1 ξi(t)ϕi,
where u0h =

∑M
i=1 ξ0iϕi is an approximation of the initial value u0 (see



364 8. Iterative Methods for Nonlinear Equations

Section 7.2). The matrix B is the mass matrix

B =
(
〈ϕj ,ϕi〉0

)
ij

,

and β(t) contains the contributions of the inhomogeneous boundary
conditions analogously to b in (8.26).

To obtain the fully discrete scheme we use the one-step-theta method as
in Section 7.3. Here we allow the time step size τn to vary in each step, in
particular determined by a time step control before the execution of the
nth time step. So, if the approximation Un is known for t = tn, then the
approximation Un+1 for t = tn+1 := tn + τn is given in generalization of
(7.72) as the solution of
〈

1
τn
(
Un+1 − Un

)
, vh

〉

0
+ a

(
ΘUn+1 + (1−Θ)Un, vh

)

+
〈
ψn+Θ, vh

〉
=Θβ(tn+1) + (1 −Θ)β(tn).

(8.37)

Here Θ ∈ [0, 1] is the fixed parameter of implicity. For the choice of ψn+Θ

we have two possibilities:

ψn+Θ = Θψ(Un+1) + (1−Θ)ψ(Un) (8.38)

or

ψn+Θ = ψ
(
ΘUn+1 + (1−Θ)Un

)
. (8.39)

In the explicit case, i.e., Θ = 0, (8.37) represents a linear system of equa-
tions for Un+1 (with the system matrix B) and does not have to be treated
further here. In the implicit case Θ ∈ (0, 1] we obtain again a nonlinear
system of the type (8.18), i.e.,

Aξ + g(ξ) = 0 ,

in the variable ξ = ξn+1, where ξn+1 is the representation vector of Un+1:
Un+1 =

∑M
i=1 ξ

n+1
i ϕi. Now we have for the variant (8.38),

A := B + ΘτnS , (8.40)
g(ξ) := ΘτnG(ξ)− b , (8.41)

with
b := (B − (1−Θ)τnS) ξn − (1 −Θ)τnG(ξn)

+ Θβ(tn+1) + (1−Θ)β(tn) .
(8.42)

For the variant (8.39) g changes to

g(ξ) := τnG (Θξ + (1 −Θ)ξn)− b ,

and in the definition of b the second summation term drops out. The vector
ξn is the representation vector of the already known approximation Un.
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Numerical Quadrature
As in the stationary case we can approximate g by a quadrature rule of the
form (8.29), which leads to

g̃(ξ) = ΘτnG̃(ξ)− b

in (8.38) and to

g̃(ξ) = τnG̃ (Θξ + (1 −Θ)ξn)− b

in (8.39). The functional matrices of g and g̃ are thus equal for (8.38) and
(8.39), except to the point where ψ′ is being evaluated. Consequently, it
suffices in the following to refer to (8.38). Based on the same motivation,
a quadrature rule of the form (8.29) can be applied to the mass matrix
B. Such a mass lumping results in a diagonal approximation of the mass
matrix

B̃ = diag(ωi) .

In contrast to the stationary case we get the factor Θτn in front of the
nonlinearity, where the time step size τn may be chosen arbitrarily small.
Of course, we have to take into account that the number of time steps
necessary to achieve a fixed time T is respectively raised. All of the above
considerations about the matrix properties of A + Dg(ξ̄) are conserved,
where A is no longer the stiffness matrix, but represents the linear combina-
tion (8.40) with the mass matrix. This reduces the requirements concerning
the V -ellipticity of a (see (3.27)) and thus the positive definiteness of A.

Admittedly, A is not necessarily an M-matrix if S is one, because the
conditions (1.32) or (1.32)∗ are not valid. Here the approximation B̃ is ad-
vantageous, because using nonnegative weights will conserve this property
due to (8.33).

Conditions of Convergence
Clear differences arise in answering the question of how to ensure the con-
vergence of the iteration schemes. Even for the fixed-point iteration it is
true that the method converges globally if only the time step size τn is
chosen small enough. We want to demonstrate this in the following by an
example of a quadrature with nonnegative weights in the mass matrix and
the nonlinearity. Therefore, the Lipschitz constant of A−1g is estimated
according to Lemma 8.3. Let the norm be a matrix norm induced by a
p-norm | · |p and let A be nonsingular. We get
∥∥A−1

∥∥ sup
ξ∈RM

‖Dg̃(ξ)‖ ≤
∥∥∥
(
I + ΘτnB̃−1S

)−1
B̃−1

∥∥∥Θτn sup
s∈R

|ψ′(s)|
∥∥B̃

∥∥

≤ Θτn sup
s∈R

|ψ′(s)| κ(B̃)
∥∥∥
(
I + ΘτnB̃−1S

)−1
∥∥∥

=: Cτn
∥∥∥
(
I + ΘτnB̃−1S

)−1
∥∥∥ .
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Thus we assume the boundedness of ψ′ on R (which may even be weakened).
For a given ϑ ∈ (0, 1) choose τn sufficiently small such that

Θτn‖B̃−1S‖ ≤ ϑ

holds. With Lemma (A3.11) it follows that
∥∥∥
(
I + ΘτnB̃S

)−1
∥∥∥ ≤

1
1− ϑ ,

and thus we obtain

γ =
Cτn
1− ϑ

as a Lipschitz constant for A−1g. We see that by choosing τn sufficiently
small, the contraction property of A−1g can be guaranteed. From this fact
a (heuristic) step size control can be deduced that reduces the step size
when a lack of convergence is detected and repeats the step, and in case of
satisfactory convergence increases the time step size.

Nevertheless, in general, Newton’s method is to be preferred: Here we
can expect that the quality of the initial iterate ξ(0) = ξn for time step
(n+1) improves the smaller we choose τn. The step size control mentioned
above may thus be chosen here, too (in conjunction with the enlargement
of the range of convergence via damping). Nonetheless, a problem only to
be solved in numerical practice consists in coordinating the control param-
eters of the time step control, the damping strategy, and eventually the
termination of the inner iteration in such a way that overall, an efficient
algorithm is obtained.

Exercises

8.7 Study the Lipschitz property of DG defined by (8.27) and of DG̃
defined by (8.32), provided ψ′ is Lipschitz.

8.8 Decide whether A−1g is contractive in case of (8.40)–(8.42).

8.9 The boundary value problem

−u′′ + eu = 0 in (0, 1), u(0) = u(1) = 0,

is to be discretized by a finite element method using continuous, piecewise
linear functions on equidistant grids. Quadrature is to be done with the
trapezoidal rule.

(a) Compute the matrix Ah ∈ Rm,m and the nonlinear vectorvalued
function Fh : Rm → Rm, in a matrix-vector notation

AhUh + Fh(Uh) = 0
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of the discretization. Here Uh ∈ Rm denotes the vector of un-
known nodal values of the approximative solution and, for uniqueness
of the representation, the elements of Ah are independent of the
discretization parameter h.

(b) Study the convergence of the iterative procedure

(α) (2 + h2)U (k+1)
h =

(
(2 + h2)I −Ah

)
U (k)

h − Fh

(
U (k)

h

)
,

(β) 2U (k+1)
h + Fh

(
U (k+1)

h

)
= (2I − Ah)U (k)

h .



9
Discretization Methods
for Convection-Dominated Problems

9.1 Standard Methods and Convection-Dominated
Problems

As we have seen in the introductory Chapter 0, the modelling of transport
and reaction processes in porous media results in differential equations of
the form

∂tu−∇ · (K∇u− cu) = f ,

which is a special case of the form (0.33). Similar equations occur in the
modelling of the heat transport in flowing water, the carrier transport
in semiconductors, and the propagation of epidemics. These application-
specific equations often share the property that their so-called global Péclet
number

Pe :=
‖c‖∞diam(Ω)

‖K‖∞
(9.1)

is significantly larger than one. For example, representative values range
from 25 (transport of a dissolved substance in ground water) up to about
107 (modelling of semiconductors). In such cases, the equations are called
convection-dominated.

Therefore, in what follows, the Dirichlet boundary value problem intro-
duced in Section 3.2 will be looked at from the point of view of large global
Péclet numbers, whereas in Section 9.4, the initial boundary value problem
from Chapter 7 will be considered from this aspect.



9.1. Standard Methods 369

Let Ω ⊂ Rd denote a bounded domain with a Lipschitz continuous
boundary. Given a function f : Ω → R, a function u : Ω → R is to
be determined such that

Lu = f in Ω ,

u = 0 on Γ ,
(9.2)

where again

Lu := −∇ · (K∇u) + c ·∇u + ru ,

with sufficiently smooth coefficients

K : Ω→ Rd,d , c : Ω→ Rd , r : Ω→ R .

Unfortunately, standard discretization methods (finite difference, finite
element, and finite volume methods) fail when applied to convection-
dominated equations. At first glance, this seems to be a contradiction to the
theory of these methods presented in the preceding chapters, because there
we did not have any restriction on the global Péclet number. This apparent
contradiction may be explained as follows: On the one hand, the theoretical
results are still true for the convection-dominated case, but on the other
hand, some assumptions of the statements therein (such as “for sufficiently
small h”) lack sharpness. This, in turn, may lead to practically unrealistic
conditions (cf. the later discussion of the estimate (9.13)). For example, it
may happen that the theoretically required step sizes are so small that the
resulting discrete problems are too expensive or even untreatable.

So one can ask whether the theory is insufficient or not. The following
example will show that this is not necessarily the case.

Example 9.1 Given a constant diffusion coefficient k > 0, consider the
boundary value problem

(−ku′ + u)′ = 0 in Ω := (0, 1) ,

u(0) = u(1)− 1 = 0 .

Its solution is

u(x) =
1− exp (x/k)
1− exp (1/k)

.

A rough sketch of the graph (Figure 9.1) shows that this function has a
significant boundary layer at the right boundary of the interval even for
the comparatively small global Péclet number Pe = 100. In the larger
subinterval (about (0, 0.95)) it is very smooth (nearly constant), whereas
in the remaining small subinterval (about (0.95, 1)) the absolute value of
its first derivative is large.

Given an equidistant grid of width h = 1/(M + 1), M ∈ N, a dis-
cretization by means of symmetric difference quotients yields the difference
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Figure 9.1. Solution for k = 0.01.

equations

−k
ui−1 − 2ui + ui+1

h2
+

ui+1 − ui−1

2h
= 0 , i ∈ {1, . . . , M} =: Λ ,

u0 = uM+1 − 1 = 0 .

Collecting the coefficients and multiplying the result by 2h, we arrive at
(
−2k

h
− 1

)
ui−1 +

4k

h
ui +

(
−2k

h
+ 1

)
ui+1 = 0 , i ∈ Λ .

If we make the ansatz ui = λi, the difference equations can be solved
exactly:

ui =
1−

(
2k+h
2k−h

)i

1−
(

2k+h
2k−h

)M+1
.

In the case 2k < h, which is by no means unrealistic (e.g., for the typical
value k = 10−7), the numerical solution considerably oscillates, in contrast
to the behaviour of the exact solution u. These oscillations do not disappear
until h < 2k is reached, but this condition is very restrictive for small values
of k.

But even if the condition h < 2k is satisfied, undesirable effects can
be observed. For example, in the special case h = k we have at the node
aM = Mh that

u(aM ) =
1− exp (Mh/k)
1− exp (1/k)

=
1− exp (M)

1− exp (M + 1)
=

exp (−M)− 1
exp (−M)− exp (1)

→ exp (−1) for h → 0 ,
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whereas the numerical solution at this point asymptotically behaves like
(note that λ = (2k + h)/(2k − h) = 3)

uM =
1− λM

1− λM+1
=
λ−M − 1
λ−M − λ →

1
λ

=
1
3

for h → 0 .

So the numerical solution does not converge to the exact solution at the
node aM .

Again this is no contradiction to possible convergence results for the finite
difference method in the discrete maximum norm, since now the diffusion
coefficient is not fixed, but rather the discretization is to be viewed as
belonging to the limit case k = 0, with an artificial diffusion part in the
discretization (see (9.8) below).

Finite Difference Methods with Symmetric and One-Sided Dif-
ference Quotients
The oscillations in Example 9.1 show that in this case no comparison prin-
ciple as in Corollary 1.13 is valid. Such a comparison principle, or more
strongly a maximum principle, will lead to nonnegative solutions in the
case of nonnegative right-hand side and Dirichlet data. This avoids for a
homogeneous right-hand side an undershooting, as observed in Example 9.1,
i.e., negative solution values in this case, and also an overshooting, i.e., so-
lution values larger than the maximum of the Dirichlet data, provided that
condition (1.32) (6)* holds.

In the following we will examine how the convective part influences the
matrix properties (1.32) and thus the validity of a maximum or comparison
principle and also conclude a first simple remedy.

We consider the model problem (9.2), for simplicity on a rectangle
Ω = (0, a) × (0, b), with constant, scalar K = kI and equipped with an
equidistant grid Ωh. To maintain the order of consistency 2 of a spatial
discretization of −∇ · (K∇u) = −k∆u by the five-point stencil, the use of
the symmetric difference quotient for the discretization of

(c ·∇u)(x) = c1(x)∂1u(x) + c2(x)∂2u(x)

suggests itself, i.e., for a grid point x ∈ Ωh,

c1(x)∂1u(x) ∼ c1(x)
1
2h

(ui+1,j − ui−1,j), (9.3)

and similarly for c2(x)∂2u(x) (cf. (1.7) for the notation). This leads to
the following entries of the system matrix Ãh, for example in a rowwise
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numbering (compare (1.13)):

left secondary diagonal: −c1(x)
2h

− k

h2
;

right secondary diagonal: +
c1(x)
2h

− k

h2
;

l + 1 positions to the left: −c2(x)
2h

− k

h2
;

l + 1 positions to the right: +
c2(x)
2h

− k

h2
;

diagonal:
4k

h2
.

Condition (1.32) (1) and (1.32) (6)* obviously hold.
We check the conditions sufficient for a comparison principle (Corol-

lary 1.13). To satisfy condition (1.32) (2) we require

− k

h2
+

|c1(x)|
2h

< 0 ,

− k

h2
+

|c2(x)|
2h

< 0 .

Denoting the grid Péclet number by

Peh :=
‖c‖∞h

2k
, (9.4)

the above conditions are satisfied if

Peh < 1 (9.5)

is satisfied. Under this assumption also the conditions (1.32) (5) and (7)
are satisfied, and thus also (3), i.e., (9.5), is sufficient for the validity of a
comparison principle. In Example 9.1 this is just the condition h < 2k.

The grid Péclet number is obviously related to the global Péclet number
from (9.1) by

Peh = Pe
h

2 diam(Ω)
.

The requirement (9.4) can always be met by choosing h sufficiently small,
but for large Pe this may be a severe requirement, necessary for the sake of
stability of the method, whereas for the accuracy desired a larger step size
may be sufficient. A simple remedy to ensure condition (1.32) (2) is to use
a one-sided (upwind) discretization of c1∂1u and c2∂2u, which is selected
against the stream direction defined by c1 and c2, respectively:

For c1(x) ≥ 0 : c1(x)∂1u(x) ∼ c1(x)
1
h

(ui,j − ui−1,j) , (9.6)

for c1(x) < 0 : c1(x)∂1u(x) ∼ c1(x)
1
h

(ui+1,j − ui,j) ,
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and analogously for c2∂2u.
Due to this choice there are only additional nonnegative addends to the

diagonal position and nonpositive ones to the off-diagonal positions com-
pared to the five-point stencil or another discretization of a diffusive part.
Thus all properties (1.32) (1)–(7), (4)*, and (6)* remains unaffected; i.e.,
the upwind discretization satisfies all qualitative properties of Section 1.4
from the inverse monotonicity to the strong maximum principle, without
any restrictions to the local Péclet number.

The drawback lies in the reduced accuracy, since the one-sided difference
quotient has only order of consistency 1. In Section 9.3 we will develop
more refined upwind discretizations.

Due to

c1
u(x, y)− u(x− h, y)

h
= (9.7)

c1h

2
−u(x− h, y) + 2u(x, y)− u(x + h, y)

h2
+ c1

u(x + h, y)− u(x− h, y)
2h

,

and analogously for the forward difference quotient, the upwind dis-
cretization can be perceived as a discretization with symmetric difference
quotients if a step-size-dependent diffusive part, also discretized with ∂−∂+,
is added with the diffusion coefficient

Kh(x) :=
h

2

(
|c1(x)| 0

0 |c2(x)|

)
. (9.8)

Therefore, one also speaks of adding artificial diffusion (or viscosity). The
disadvantage of this full upwind method is that it recognizes the flow di-
rection only if the flow is aligned to one of the coordinate axes. This will
be improved in Section 9.2.

Error Estimates for the Standard Finite Element Method
In order to demonstrate the theoretical deficiencies, we will again reproduce
the way for obtaining standard error estimates for a model problem. So let
K(x) ≡ εI with a constant coefficient ε > 0, c ∈ C1(Ω, Rd), r ∈ C(Ω),
f ∈ L2(Ω). Furthermore, assume that the following inequality is valid in
Ω, where r0 > 0 is a constant: r − 1

2∇ · c ≥ r0.
Then the bilinear form a : V × V → R, V := H1

0 (Ω), corresponding to
the boundary value problem (9.2), reads as (cf. (3.23))

a(u, v) :=
∫

Ω
[ε∇u ·∇v + c ·∇u v + r uv ] dx , u, v ∈ V . (9.9)

To get an ellipticity estimate of a, we set u = v ∈ V in (9.9) and take the
relation 2v(c ·∇v) = c ·∇v2 into account. Then, by partial integration of
the middle term, we obtain

a(v, v) = ε|v|21 + 〈c ·∇v, v〉0 + 〈rv, v〉0
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= ε|v|21 −
〈

1
2
∇ · c, v2

〉

0

+ 〈rv, v〉0 = ε|v|21 +
〈

r − 1
2
∇ · c, v2

〉

0

.

Introducing the so-called ε-weighted H1-norm by

‖v‖ε :=
{
ε|v|21 + ‖v‖2

0

}1/2
, (9.10)

we immediately arrive at the estimate

a(v, v) ≥ ε|v|21 + r0‖v‖2
0 ≥ α̃‖v‖2

ε, (9.11)

where α̃ := min{1, r0} does not depend on ε.
Due to c ·∇u = ∇ · (cu)− (∇ · c)u, partial integration yields for arbitrary

u, v ∈ V the identity

〈c ·∇u, v〉0 = −〈u, c ·∇v〉0 − 〈(∇ · c)u, v〉0 .

So we get the continuity estimate

|a(u, v)| ≤ ε|u|1|v|1 + ‖c‖0,∞‖u‖0|v|1 + (|c|1,∞ + ‖r‖0,∞) ‖u‖0‖v‖0

≤ (
√
ε |u|1 + ‖u‖0) {(

√
ε+ ‖c‖0,∞) |v|1 + (|c|1,∞ + ‖r‖0,∞) ‖v‖0}

≤ M̃‖u‖ε‖v‖1 ,
(9.12)

where M̃ := 2 max{
√
ε+ ‖c‖0,∞, |c|1,∞ + ‖r‖0,∞}.

Since we are interested in the case of small diffusion ε > 0 and present
convection (i.e., ‖c‖0,∞ > 0), the continuity constant M̃ can be bounded
independent of ε. It is not very surprising that the obtained continuity
estimate is nonsymmetric, since also the differential expression L behaves
like that. Passing over to a symmetric estimate results in the following
relation:

|a(u, v)| ≤ M̃√
ε
‖u‖ε‖v‖ε .

Now, if Vh ⊂ V denotes a finite element space, we can argue as in the proof
of Céa’s lemma (Theorem 2.17) and get an error estimate for the corre-
sponding finite element solution uh ∈ Vh. To do this, the nonsymmetric
continuity estimate (9.12) is sufficient. Indeed, for arbitrary vh ∈ Vh, we
have

α̃‖u−uh‖2
ε ≤ a(u−uh, u−uh) = a(u−uh, u−vh) ≤ M̃‖u−uh‖ε‖u−vh‖1 .

Thus

‖u− uh‖ε ≤
M̃

α̃
inf

vh∈Vh

‖u− vh‖1 .

Here the constant M̃/α̃ does not depend on ε, h, and u. This estimate
is weaker than the standard estimate, because the ε-weighted H1-norm is
weaker than the H1-norm. Moreover, the error of the best approximation is
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not independent of ε, in general. For example, if we apply continuous, piece-
wise linear elements, then, under the additional assumption u ∈ H2(Ω),
Theorem 3.29 yields the estimate

inf
vh∈Vh

‖u− vh‖1 ≤ ‖u− Ih(u)‖1 ≤ Ch|u|2 ,

where the constant C > 0 does not depend on ε, h, and u. So, we finally
arrive at the relation

‖u− uh‖ε ≤ Ch|u|2 . (9.13)

However, the H2-seminorm of the solution u depends on ε in a disadvan-
tageous manner; for example, it may be (cf. also [27, Lemma III.1.18])
that

|u|2 = O(ε−3/2) (ε→ 0) .

This result is sharp, since for examples of boundary value problems for
ordinary linear differential equations the error of the best approximation
already exhibits this asymptotic behaviour.

So the practical as well as the theoretical problems mentioned above
indicate the necessity to use special numerical methods for solving
convection-dominated equations. In the next sections, a small collection
of these methods will be depicted.

9.2 The Streamline-Diffusion Method

The streamline-diffusion method is the prevalent method in the numerical
treatment of stationary convection-dominated problems. The basic idea
is due to Brooks and Hughes [49], who called the method the streamline
upwind Petrov–Galerkin method (SUPG method).

We describe the idea of the method for a special case of boundary value
problem (9.2) under consideration. Let the domain Ω ⊂ Rd be a bounded
polyhedron. We consider the same model as in the preceding section, that
is, K(x) ≡ εI with a constant coefficient ε > 0, c ∈ C1(Ω, Rd), r ∈ C(Ω),
f ∈ L2(Ω). We also assume that the inequality r− 1

2∇ · c ≥ r0 is valid in Ω,
where r0 > 0 is a constant. Then the variational formulation of (9.2) reads
as follows:

Find u ∈ V such that

a(u, v) = 〈f, v〉0 for all v ∈ V , (9.14)

where a is the bilinear form (9.9).
Given a regular family of triangulations {Th}, let Vh ⊂ V denote the set

of continuous functions that are piecewise polynomial of degree k ∈ N and
satisfy the boundary conditions, i.e.,

Vh :=
{
vh ∈ V

∣∣ vh|K ∈ Pk(K) for all K ∈ Th

}
. (9.15)
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If in addition the solution u ∈ V of (9.14) belongs to the space Hk+1(Ω),
we have, by (3.87), the following error estimate for the interpolant Ih(u):

‖u− Ih(u)‖l,K ≤ cinth
k+1−l
K |u|k+1,K (9.16)

for 0 ≤ l ≤ k+1 and all K ∈ Th. Since the spaces Vh are of finite dimension,
a so-called inverse inequality can be proven (cf. Theorem 3.43, (2) and
Exercise 9.3):

‖∆vh‖0,K ≤ cinv

hK
|vh|1,K (9.17)

for all vh ∈ Vh and all K ∈ Th. Here it is important that the constants
cint, cinv > 0 from (9.16) and (9.17), respectively, do not depend on u or vh

and on the particular elements K ∈ Th.
The basic idea of the streamline-diffusion method consists in the addition

of suitably weighted residuals to the variational formulation (9.14). Because
of the assumption u ∈ Hk+1(Ω), k ∈ N, the differential equation can be
interpreted as an equation in L2(Ω). In particular, it is valid on any element
K ∈ Th in the sense of L2(K), i.e.,

−ε∆u + c ·∇u + ru = f almost everywhere in K and for all K ∈ Th .

Next we take an elementwise defined mapping τ : Vh → L2(Ω) and multiply
the local differential equation in L2(K) by the restriction of τ(vh) to K.
Scaling by a parameter δK ∈ R and summing the results over all elements
K ∈ Th, we obtain

∑

K∈Th

δK 〈−ε∆u + c ·∇u + ru, τ(vh)〉0,K =
∑

K∈Th

δK 〈f, τ(vh)〉0,K .

If we add this relation to equation (9.14) restricted to Vh, we see that the
weak solution u ∈ V ∩Hk+1(Ω) satisfies the following variational equation:

ah(u, vh) = 〈f, vh〉h for all vh ∈ Vh ,

where

ah(u, vh) := a(u, vh) +
∑

K∈Th

δK 〈−ε∆u + c ·∇u + ru, τ(vh)〉0,K ,

〈f, vh〉h := 〈f, v〉0 +
∑

K∈Th

δK 〈f, τ(vh)〉0,K .

Then the corresponding discretization reads as follows:
Find uh ∈ Vh such that

ah(uh, vh) = 〈f, vh〉h for all vh ∈ Vh . (9.18)

Corollary 9.2 Suppose the problems (9.14) and (9.18) have a solution u ∈
V ∩Hk+1(Ω) and uh ∈ Vh, respectively. Then the following error equation
is valid:

ah(u − uh, vh) = 0 for all vh ∈ Vh . (9.19)
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In the streamline-diffusion method (sdFEM), the mapping τ used in (9.18)
is chosen as τ(vh) := c ·∇vh.

Without going into details, we mention that a further option is to set
τ(vh) := −ε∆vh + c ·∇vh + rvh. This results in the so-called Galerkin/least
squares–FEM (GLSFEM) [54].

Especially with regard to the extension of the method to other finite ele-
ment spaces, the discussion of how to choose τ and δK is not yet complete.

Interpretation of the Additional Term in the Case of Linear Ele-
ments
If the finite element spaces Vh are formed by piecewise linear functions (i.e.,
in the above definition (9.15) of Vh we have k = 1), we get ∆vh|K = 0 for
all K ∈ Th. If in addition there is no reactive term (i.e., r = 0), the discrete
bilinear form is

ah(uh, vh)=
∫

Ω
ε∇uh·∇vh dx+〈c ·∇uh, vh〉0+

∑

K∈Th

δK 〈c ·∇uh, c ·∇vh〉0,K .

Since the scalar product appearing in the sum can be rewritten as
〈c ·∇uh, c ·∇vh〉0,K =

∫
K(ccT∇uh) · ∇vh dx , we obtain the following

equivalent representation:

ah(uh, vh) =
∑

K∈Th

∫

K

(
(εI + δKccT )∇uh

)
·∇vh dx + 〈c ·∇uh, vh〉0 .

This shows that the additional term introduces an element-dependent extra
diffusion in the direction of the convective field c (cf. also Exercise 0.3),
which motivates the name of the method. In this respect, the streamline-
diffusion method can be understood as an improved version of the full
upwind method, as seen, for example, in (9.6).

Analysis of the Streamline-Diffusion Method
To start the analysis of stability and convergence properties of the
streamline-diffusion method, we consider the term ah(vh, vh) for arbitrary
vh ∈ Vh.

As in Section 3.2.1, the structure of the discrete bilinear form ah allows
us to derive the estimate

ah(vh, vh) ≥ ε|vh|21+r0‖vh‖2
0+

∑

K∈Th

δK 〈−ε∆vh + c ·∇vh + rvh, c ·∇vh〉0,K .

Furthermore, neglecting for a moment the second term in the sum and
using the elementary inequality ab ≤ a2 + b2/4 for arbitrary a, b ∈ R, we
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get
∣∣∣∣∣
∑

K∈Th

δK 〈−ε∆vh + rvh, c ·∇vh〉0,K

∣∣∣∣∣

≤
∑

K∈Th

{∣∣∣∣
〈
−ε
√
|δK |∆vh,

√
|δK | c ·∇vh

〉

0,K

∣∣∣∣

+
∣∣∣∣
〈√

|δK | rvh,
√
|δK | c ·∇vh

〉

0,K

∣∣∣∣

}

≤
∑

K∈Th

{
ε2|δK | ‖∆vh‖2

0,K + |δK | ‖r‖2
0,∞,K‖vh‖2

0,K

+
|δK |
2

‖c ·∇vh‖2
0,K

}
.

By means of the inverse inequality (9.17) it follows that
∣∣∣∣∣
∑

K∈Th

δK 〈−ε∆vh + rvh, c ·∇vh〉0,K

∣∣∣∣∣ ≤
∑

K∈Th

{
ε2|δK | c2

inv

h2
K

|vh|21,K

+|δK | ‖r‖2
0,∞,K‖vh‖2

0,K +
|δK |
2

‖c ·∇vh‖2
0,K

}
.

Putting things together, we obtain

ah(vh, vh) ≥
∑

K∈Th

{(
ε− ε2|δK | c2

inv

h2
K

)
|vh|21,K‖vh‖2

0,K

+
(
r0 − |δK | ‖r‖2

0,∞,K

)
+
(
δK − |δK |

2

)
‖c ·∇vh‖2

0,K

}
.

The choice

0 < δK ≤ 1
2

min

{
h2

K

εc2
inv

,
r0

‖r‖2
0,∞,K

}
(9.20)

leads to

ah(vh, vh) ≥ ε

2
|vh|21 +

r0

2
‖vh‖2

0 +
1
2

∑

K∈Th

δK‖c ·∇vh‖2
0,K .

Therefore, if the so-called streamline-diffusion norm is defined by

‖v‖sd :=

{
ε|v|21 + r0‖v‖2

0 +
∑

K∈Th

δK‖c ·∇v‖2
0,K

}1/2

, v ∈ V ,

then the choice (9.20) implies the estimate

1
2
‖vh‖2

sd ≤ ah(vh, vh) for all vh ∈ Vh . (9.21)
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Obviously, the streamline-diffusion norm ‖ · ‖sd is stronger than the
ε-weighted H1-norm (9.10); i.e.,

min{1,
√

r0}‖v‖ε ≤ ‖v‖sd for all v ∈ V .

Now an error estimate can be proven. Since estimate (9.21) holds only on
the finite element spaces Vh, we consider first the norm of Ih(u)− uh ∈ Vh

and make use of the error equation (9.19):

1
2
‖Ih(u)− uh‖2

sd ≤ ah(Ih(u)− uh, Ih(u)− uh) = ah(Ih(u)− u, Ih(u)− uh) .

In particular, under the assumption u ∈ V ∩Hk+1(Ω) the following three
estimates are valid:

ε

∫

Ω
∇(Ih(u)− u) ·∇(Ih(u)− uh) dx ≤

√
ε |Ih(u)− u|1‖Ih(u)− uh‖sd

≤ cint
√
εhk|u|k+1‖Ih(u)− uh‖sd ,

∫

Ω
[c ·∇(Ih(u)− u) + r(Ih(u)− u)](Ih(u)− uh) dx

=
∫

Ω
(r −∇ · c)(Ih(u)− u)(Ih(u)− uh) dx

−
∫

Ω
(Ih(u)− u) c ·∇(Ih(u)− uh) dx

≤ ‖r −∇ · c‖0,∞‖Ih(u)− u‖0‖Ih(u)− uh‖0

+ ‖Ih(u)− u‖0‖c ·∇(Ih(u)− uh)‖0

≤ C






{
∑

K∈Th

‖Ih(u)− u‖2
0,K

}1/2

+

{
∑

K∈Th

δ−1
K ‖Ih(u)− u‖2

0,K

}1/2



 ‖Ih(u)− uh‖sd

≤ Chk

{
∑

K∈Th

(
1 + δ−1

K

)
h2

K |u|2k+1,K

}1/2

‖Ih(u)− uh‖sd ,

and
∣∣∣∣∣
∑

K∈Th

δK 〈−ε∆(Ih(u)− u) + c ·∇(Ih(u)− u)

+ r(Ih(u)− u), c ·∇(Ih(u)− uh)〉0,K

∣∣∣∣∣ (9.22)
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≤
∑

K∈Th

cint

√
δK

[
εhk−1

K + ‖c‖0,∞,Khk
K + ‖r‖0,∞,Khk+1

K

]

× |u|k+1,K

√
δK ‖c ·∇(Ih(u)− uh)‖0,K

≤ C

{
∑

K∈Th

δK
[
εhk−1

K + hk
K + hk+1

K

]2 |u|2k+1,K

}1/2

‖Ih(u)− uh‖sd .

Condition (9.20), which was already required for estimate (9.21), implies
that

εδK ≤ h2
K

c2
inv

,

and so the application to the first term of the last bound leads to
∣∣∣∣∣
∑

K∈Th

δK
〈
− ε∆(Ih(u)− u) + c ·∇(Ih(u)− u)

+ r(Ih(u)− u), c ·∇(Ih(u)− uh)
〉
0,K

∣∣∣∣∣

≤ Chk

{
∑

K∈Th

[ε+ δK ] |u|2k+1,K

}1/2

‖Ih(u)− uh‖sd .

Collecting the estimates and dividing by ‖Ih(u) − uh‖sd, we obtain the
relation

‖Ih(u)− uh‖sd ≤ Chk

{
∑

K∈Th

[
ε+

h2
K

δK
+ h2

K + δK
]
|u|2k+1,K

}1/2

.

Finally, the terms in the square brackets will be equilibrated with the help
of condition (9.20). We rewrite the ε-dependent term in this condition as

h2
K

εc2
inv

=
2

c2
inv‖c‖∞,K

PeKhK

with

PeK :=
‖c‖∞,KhK

2ε
. (9.23)

This local Péclet number is a refinement of the definition (9.4).
The following distinctions concerning PeK are convenient:

PeK ≤ 1 and PeK > 1 .

In the first case, we choose

δK = δ0PeKhK = δ1
h2

K

ε
, δ0 =

2
‖c‖∞,K

δ1 ,
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with appropriate constants δ0 > 0 and δ1 > 0, respectively, which are
independent of K and ε. Then we have

ε+
h2

K

δK
+ h2

K + δK =
(

1 +
1
δ1

)
ε+ h2

K + δ1
2PeK

‖c‖0,∞,K
hK ≤ C(ε+ hK) ,

where C > 0 is independent of K and ε. In the second case, it is sufficient to
choose δK = δ2hK with an appropriate constant δ2 > 0 that is independent
of K and ε. Then

δK =
δ2

PeK
PeKhK =

δ2‖c‖0,∞,K

2PeK

h2
K

ε

and

ε+
h2

K

δK
+ h2

K + δK = ε+
(

1
δ2

+ δ2
)

hK + h2
K ≤ C(ε+ hK) ,

with C > 0 independent of K and ε. Note that in both cases the constants
can be chosen sufficiently small, independent of PeK , that the condi-
tion (9.20) is satisfied. Now we are prepared to prove the following error
estimate.

Theorem 9.3 Let the parameters δK be given by

δK =





δ1

h2
K

ε
, PeK ≤ 1 ,

δ2hK , PeK > 1 ,

where δ1, δ2 > 0 do not depend on K and ε and are chosen such that
condition (9.20) is satisfied. If the weak solution u of (9.14) belongs to
Hk+1(Ω), then

‖u− uh‖sd ≤ C
(√
ε+

√
h
)

hk|u|k+1,

where the constant C > 0 is independent of ε, h, and u.

Proof: By the triangle inequality, we get

‖u− uh‖sd ≤ ‖u− Ih(u)‖sd + ‖Ih(u)− uh‖sd .

An estimate of the second addend is already known. To deal with the first
term, the estimates of the interpolation error (9.16) are used directly:

‖u− Ih(u)‖2
sd

= ε|u− Ih(u)|21 + r0‖u− Ih(u)‖2
0 +

∑

K∈Th

δK‖c ·∇(u− Ih(u))‖2
0,K

≤ c2
int

∑

K∈Th

[
εh2k

K + r0h
2(k+1)
K + δK‖c‖2

0,∞,Kh2k
K

]
|u|2k+1,K
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≤ Ch2k
K

∑

K∈Th

[
ε+ h2

K + δK
]
|u|2k+1,K ≤ C(ε+ h)h2k

K |u|2k+1 .

!

Remark 9.4 (i) In the case of large local Péclet numbers, we have
ε ≤ 1

2‖c‖∞,KhK and thus

‖u− uh‖0 +

{
δ2

∑

K∈Th

hK‖c ·∇(u − uh)‖2
0,K

}1/2

≤ Chk+1/2|u|k+1 .

So the L2-error of the solution is not optimal in comparison with the
estimate of the interpolation error

‖u− Ih(u)‖0 ≤ Chk+1|u|k+1 ,

whereas the L2-error of the directional derivative of u in the direction
of c is optimal.

(ii) In general, the seminorm |u|k+1 depends on negative powers of ε.
Therefore, if h → 0, the convergence in Theorem 9.3 is not uniform
with respect to ε.

Comparing the estimate from Theorem 9.3 for the special case of continuous
linear elements with the estimate (9.13) for the corresponding standard
method given at the end of the introduction, i.e.,

‖u− uh‖ε ≤ Ch|u|2 ,

we see that the error of the streamline-diffusion method is measured in a
stronger norm than the ‖ · ‖ε-norm and additionally, that the error bound
is asymptotically better in the interesting case ε < h . A further advan-
tage of the streamline-diffusion method is to be seen in the fact that its
implementation is not much more difficult than that of the standard finite
element method.

However, there are also some disadvantages: Since the error bound in-
volves the Hk+1-seminorm of the solution u, it may depend on negative
powers of ε. Furthermore, there is no general rule to determine the param-
eters δ1, δ2. Usually, they are chosen more or less empirically. This may be
a problem when the streamline-diffusion method is embedded into more
complex programs (for example, for solving nonlinear problems). Finally,
in contrast to the finite volume methods described in the next section, the
property of inverse monotonicity (cf. Theorem 6.19) cannot be proven in
general.
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Exercises

9.1 (a) Given a constant diffusion coefficient ε > 0, rewrite the ordinary
boundary value problem

(−εu′ + u)′ = 0 in Ω := (0, 1) ,

u(0) = u(1)− 1 = 0 ,

into an equivalent form but with nonnegative right-hand side and
homogeneous Dirichlet boundary conditions.

(b) Compute the H2(0, 1)-seminorm of the solution of the transformed
problem and investigate its dependence on ε.

9.2 Prove the error equation of the streamline-diffusion method (Corollary
9.2).

9.3 Given an arbitrary, but fixed, triangle K with diameter hK , prove the
inequality

‖∆p‖0,K ≤ cinv

hK
|p|1,K

for arbitrary polynomials p ∈ Pk(K), k ∈ N, where the constant cinv > 0
is independent of K and p.

9.4 Verify that the streamline-diffusion norm ‖ · ‖sd is indeed a norm.

9.3 Finite Volume Methods

In the convection-dominated situation, the finite volume method intro-
duced in Chapter 6 proves to be a very stable, but not so accurate, method.
One reason for this stability lies in an appropriate asymptotic behaviour of
the weighting function R for large absolute values of its argument.

Namely, if we consider the examples of nonconstant weighting functions
given in Section 6.2.2, we see that

(P4) lim
z→−∞

R(z) = 0 , lim
z→∞

R(z) = 1 .

In the general case of the model problem (6.5) with k = ε > 0, (P4)

implies that for
γijdij

ε
< −1 the term rijui + (1 − rij)uj in the bilinear

form bh effectively equals uj , whereas in the case
γijdij

ε
= 1 the quantity

ui remains.
In other words, in the case of dominating convection, the approximation

bh evaluates the “information” (uj or ui) upwind, i.e., just at that node (aj

or ai) from which “the flow is coming”.
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This essentially contributes to the stabilization of the method and makes
it possible to prove properties such as global conservativity or inverse mono-
tonicity (cf. Section 6.2.4) without any restrictions on the size of the local

Péclet number
γijdij

ε
and thus without any restrictions on the ratio of h

and ε. This local Péclet number (note the missing factor 2 in comparison
to (9.23)) also takes the direction of the flow compared to the edge aiaj

into account.

The Choice of Weighting Parameters
In order to motivate the choice of the weighting parameters in the case of
the Voronoi diagram, we recall the essential step in the derivation of the
finite volume method, namely the approximation of the integral

Iij :=
∫

Γij

[µij (νij ·∇u)− γij u] dσ .

It first suggests itself to apply a simple quadrature rule, for example

Iij ≈ qijmij ,

where qij denotes the value of the expression to be integrated at the
point aij of the intersection of the boundary segment Γij with the edge
bounded by the vertices ai and aj (i.e., 2aij = ai + aj). Next, if this edge
is parametrised according to

x = x(τ) = aij + τdijνij , τ ∈
[
−1

2
,
1
2

]
,

and if we introduce the composite function w(τ) := u(x(τ)) , then we can
write

µij (νij ·∇u)− γij u = q(0) with q(τ) :=
µij

dij

dw

dτ
(τ) − γijw(τ) .

The relation defining the function q can be interpreted as a linear ordinary
differential equation for the unknown function w :

[
− 1

2 , 1
2

]
→ R . Provided

that q is continuous on the interval
[
− 1

2 , 1
2

]
, the equation can be solved

exactly:

w(τ) =

{
dij

µij

∫ τ

−1/2
q(s) exp

(
−γijdij

µij

(
s +

1
2

))
ds + w

(
−1

2

)}

× exp
(
γijdij

µij

(
τ +

1
2

))
.

Approximating q by a constant qij , we get in the case γij -= 0,

w(τ) ≈
{

qij

γij

[
1− exp

(
−γijdij

µij

(
τ +

1
2

))]
+ w

(
−1

2

)}

× exp
(
γijdij

µij

(
τ +

1
2

))
.
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In particular,

w

(
1
2

)
≈
{

qij

γij

[
1− exp

(
−γijdij

µij

)]
+ w

(
−1

2

)}
exp

(
γijdij

µij

)
; (9.24)

that is, the approximation qij of q(0) can be expressed by means of the
values w(± 1

2 ):

qij ≈ γij

w(1
2 )− w(− 1

2 ) exp
(
γijdij

µij

)

exp
(
γijdij

µij

)
− 1

. (9.25)

In the case γij = 0, it immediately follows from the exact solution and the
approximation q ≈ qij that

qij ≈ µij
w(1

2 )− w(− 1
2 )

dij
.

Since this is equal to the limit of (9.25) for γij → 0, we can exclusively
work with the representation (9.25).

If we define the weighting function R : R → [0, 1] by

R(z) := 1− 1
z

(
1− z

ez − 1

)
, (9.26)

then with the choice rij := R
(
γijdij

µij

)
, (9.25) can be written as

qij ≈ µij
uj − ui

dij
− [rijui + (1− rij)uj] γij .

A simple algebraic manipulation shows that this is exactly the approxima-
tion scheme given in Section 6.2.

The use of the weighting function (9.26) yields a discretization method
that can be interpreted as a generalization of the so-called Il’in– Allen–
Southwell scheme. However, in order to avoid the comparatively expensive
computation of the function values rij of (9.26), often simpler functions
R : R → [0, 1] are used (see Section 6.2.2), which are to some extent
approximations of (9.26) keeping the properties (P1) to (P4).

At the end of this paragraph we will illustrate the importance of the prop-
erties (P1) to (P3), especially for convection-dominated problems. Property
(P2) has been used in the proof of the basic stability estimate (6.20). On
the other hand, we have seen at several places (e.g., in Section 1.4 or in
Chapter 5) that the matrix Ah of the corresponding system of linear al-
gebraic equations should have positive diagonal entries. For example, if
in the differential equation from (9.2) the reaction term disappears, then
properties (P1) and (P3) guarantee that the diagonal entries are at least
nonnegative. This can be seen as follows:
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From (6.9) we conclude the following formula:

(Ah)ii =
[
µij

dij
+ γijrij

]
mij =

µij

dij

[
1 +

γijdij

µij
rij

]
mij , i ∈ Λ .

If we replace in property (P3) the number z by−z, then we get, by property
(P1),

0 ≤ 1 + [1−R(−z)] z = 1 + zR(z) .

Therefore, if the weighting function R satisfies (P1) and (P3), then we have
that (Ah)ii ≥ 0 for all i ∈ Λ .

The simple choice rij ≡ 1
2 does not satisfy property (P3). In this case,

the condition (Ah)ii ≥ 0 leads to the requirement

−γijdij

2µij
≤ 1 ,

which in the case γij ≤ 0, i.e., for a local flow from aj to ai, is a restriction
to the ratio of h and ε, and this is analogous to the condition (9.5) on the
grid Péclet number, where only the sizes of K, c, and h enter.

Similarly, it can be shown that property (P3) implies the nonpositivity
of the off-diagonal entries of Ah.

An Error Estimate
At the end of this section an error estimate will be cited, which can be
derived similarly to the corresponding estimate of the standard method.
The only special aspect is that the dependence of the occurring quantities
on ε is carefully tracked (see [40]).

Theorem 9.5 Let {Th}h be a regular family of conforming triangula-
tions, all triangles of which are nonobtuse. Furthermore, in addition to the
assumptions on the coefficients of the bilinear form (9.9), let f ∈ C1(Ω).

If the exact solution u of the model problem belongs to H2(Ω) and if
uh ∈ Vh denotes the approximative solution of the finite volume method
(6.11), where the approximations γij , respectively ri, are chosen according
to (6.7), respectively (6.8), then for sufficiently small h̄ > 0 the estimate

‖u− uh‖ε ≤ C
h√
ε

[‖u‖2 + |f |1,∞] , h ∈ (0, h̄] ,

holds, where both the constant C > 0 and h̄ > 0 do not depend on ε.

In special, but practically not so relevant, cases (for example, if the trian-
gulations are of Friedrichs–Keller type), it is possible to remove the factor
1√
ε

in the bound above.
Comparing the finite volume method with the streamline-diffusion

method, we see that the finite volume method is less accurate. However, it
is globally conservative and inverse monotone.
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Exercise

9.5 Using an equidistant grid, formulate both the streamline-diffusion
method and the finite volume method for a one-dimensional model problem
(d = 1, Ω = (0, 1), r = 0) with constant coefficients and compare the re-
sulting discretizations. Based on that comparison, what can be said about
the choice of the parameters in the streamline-diffusion method?

9.4 The Lagrange–Galerkin Method

In the previous sections, discretization methods for stationary diffusion-
convection equations were presented. In conjunction with the method of
lines, these methods can also be applied to parabolic problems. However,
since the method of lines decouples spatial and temporal variables, it can-
not be expected that the peculiarities of nonstationary diffusion-convection
equations are reflected adequately.

The so-called Lagrange–Galerkin method attempts to bypass this prob-
lem by means of an intermediate change from the Eulerian coordinates
(considered up to now) to the so-called Lagrangian coordinates. The latter
are chosen in such a way that the origin of the coordinate system (i.e., the
position of the observer) is moved with the convective field, and in the new
coordinates no convection occurs.

To illustrate the basic idea, the following initial-boundary value problem
will be considered, where Ω ⊂ Rd is a bounded domain with Lipschitz
continuous boundary and T > 0:

For given functions f : QT → R and u0 : Ω → R , find a function
u : QT → R such that

∂u

∂t
+ Lu = f in QT ,

u = 0 on ST ,

u = u0 on Ω× {0} ,

(9.27)

where

(Lu) (x, t) := −∇·(K(x)∇u(x, t))+c(x, t)·∇u(x, t)+r(x, t)u(x, t), (9.28)

with sufficiently smooth coefficients

K : Ω→ Rd,d , c : QT → Rd , r : QT → R .

As usual, the differential operators ∇ and ∇· act only with respect to the
spatial variables.

The new coordinate system is obtained by solving the following
parameter-dependent auxiliary problem:
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Given (x, s) ∈ QT , find a vector field X : Ω× [0, T ]2 → Rd such that
d

dt
X(x, s, t) = c(X(x, s, t), t) , t ∈ (0, T ) ,

X(x, s, s) = x .
(9.29)

The trajectories X(x, s, ·) are called characteristics (through (x, s)). If c
is continuous on QT and, for fixed t ∈ [0, T ], Lipschitz continuous with
respect to the first argument on Ω, then there exists a unique solution
X = X(x, s, t). Denoting by u the sufficiently smooth solution of (9.27)
and setting

û(x, t) := u(X(x, s, t), t) for fixed s ∈ [0, T ] ,

then the chain rule implies that
∂û

∂t
(x, t) =

(
∂u

∂t
+ c ·∇u

)
(X(x, s, t), t) .

The particular value
∂û

∂t
(x, s) =

∂u

∂t
(x, s) + c(x, s) ·∇u(x, s)

is called the material derivative of u at (x, s). Thus the differential equation
reads as

∂û

∂t
−∇ · (K∇u) + ru = f ;

i.e., it is formally free of any convective terms.
Now the equation will be semidiscretized by means of the horizontal

method of lines. A typical way is to approximate the time derivative by
backward difference quotients. So let an equidistant partition of the time
interval (0, T ) with step size τ := T/N, N ∈ N (provided that T < ∞), be
given.

Tracking the characteristics backwards in time, in the strip Ω ×
[tn, tn+1), n ∈ {0, 1, . . . , N − 1}, with x = X(x, tn+1, tn+1) the following
approximation results:
∂û

∂t
≈ 1
τ
[û(x, tn+1)− û(x, tn)] =

1
τ

[u(x, tn+1)− u(X(x, tn+1, tn), tn)] .

Further, if Vh denotes a finite-dimensional subspace of V in which we want
to find the approximations to u(·, tn), the method reads as follows:

Given u0h ∈ Vh, find an element Un+1 ∈ Vh, n ∈ {0, . . . , N − 1}, such
that

1
τ

〈
Un+1 − Un(X(·, tn+1, tn)), vh

〉
0

+
〈
K∇Un+1 ·∇vh, 1

〉
0

+
〈
r(·, tn+1)Un+1, vh

〉
0

= 〈f(·, tn+1), vh〉0
for all vh ∈ Vh,

U0 = u0h .
(9.30)
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A possible extension of the method is to use time-dependent subspaces;
that is, given a sequence of subspaces V n

h ⊂ V, n ∈ {0, . . . , N}, the
approximations Un to u(·, tn) are chosen from V n

h .
So the basic idea of the Lagrange–Galerkin method, namely, the elimi-

nation of convective terms by means of an appropriate transformation of
coordinates, allows the application of standard discretization methods and
makes the method attractive for situations where convection is dominating.

In fact, there exists a whole variety of papers dealing with error esti-
mates for the method in the convection-dominated case, but often under
the condition that the system (9.29) is integrated exactly.

In practice, the exact integration is impossible, and the system (9.29) has
to be solved numerically (cf. [61]). This may lead to stability problems, so
there is still a considerable need in the theoretical foundation of Lagrange–
Galerkin methods.

Only recently it has been possible for a model situation to prove order
of convergence estimates uniformly in the Péclet number for (9.30) (see
[43]). The key is the consequent use of Lagrangian coordinates, reveal-
ing that (9.30) is just the application of the implicit Euler method to an
equation arising from a transformation by characteristics defined piecewise
backward in time. This equation is a pure diffusion problem, but with a
coefficient reflecting the transformation. In conjunction with the backward
Euler method this is not visible in the elliptic part to be discretized. Thus
tracking the characteristics backward in time turns out to be important.



A
Appendices

A.1 Notation

C set of complex numbers
N set of natural numbers
N0 := N ∪ {0}
Q set of rational numbers
R set of real numbers
R+ set of positive real numbers
Z set of integers
3z real part of the complex number z
4z imaginary part of the complex number z
xT transpose of the vector x ∈ Rd, d ∈ N

|x|p :=
(∑d

j=1 |xj |p
)1/p

, x = (x1, . . . , xd)T ∈ Rd, d ∈ N, p ∈ [1,∞)
|x|∞ := maxj=1,...,d |xj | maximum norm of the vector x ∈ Rd, d ∈ N
|x| := |x|2 Euclidean norm of the vector x ∈ Rd, d ∈ N
x · y := xT y =

∑d
j=1 xjyj scalar product of the vectors x, y ∈ Rd

〈x, y〉A := yT Ax = y ·Ax energy product of the vectors x, y ∈ Rd w.r.t.
a symmetric, positive definite matrix A

|α| := |α|1 order (or length) of the multi-index α ∈ Nd
0, d ∈ N

I identity matrix or identity operator
ej jth unit vector in Rm, j = 1, . . . , m
diag(λi) = diag(λ1, . . . ,λm) diagonal matrix in Rm,m with diagonal

entries λ1, . . . ,λm ∈ C
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AT transpose of the matrix A
A−T transpose of the inverse matrix A−1

detA determinant of the square matrix A
λmin(A) minimum eigenvalue of a matrix A with real eigenvalues
λmax(A) maximum eigenvalue of a matrix A with real eigenvalues
σ(A) set of eigenvalues (spectrum) of the square matrix A
'(A) spectral radius of the square matrix A
m(A) bandwidth of the symmetric matrix A
Env (A) hull of the square matrix A
p(A) profile of the square matrix A
B+(x0) := {x : ‖x− x0‖ < '} open ball in a normed space
B+(x0) := {x : ‖x− x0‖ ≤ '} closed ball in a normed space
diam (G) diameter of the set G ⊂ Rd

|G|n n-dimensional (Lebesgue) measure of the G ⊂ Rn, n ∈ {1, . . . , d}
|G| := |G|d d-dimensional (Lebesgue) measure of the set G ⊂ Rd

vol (G) length (d = 1), area (d = 2), volume (d = 3) of “geometric bodies”
G ⊂ Rd

intG interior of the set G
∂G boundary of the set G
G closure of the set G
spanG linear hull of the set G
conv G convex hull of the set G
|G| cardinal number of the discrete set G
ν outer unit normal w.r.t. the set G ⊂ Rd

Ω domain of Rd, d ∈ N
Γ := ∂Ω boundary of the domain Ω ⊂ Rd

suppϕ support of the function ϕ
f−1 inverse of the mapping f
f [G] image of the set G under the mapping f
f−1[G] preimage of the set G under the mapping f
f |K restriction of f : G → R to a subset K ⊂ G
‖v‖X norm of the element v of the normed space X
dimX dimension of the finite-dimensional linear space X
L[X, Y ] set of linear, continuous operators acting from the normed space

X in the normed space Y
X ′ := L[X, R] dual space of the real normed space X
O(·), o(·) Landau symbols of asymptotic analysis
δij (i, j ∈ N0) Kronecker symbol, i.e., δii = 1 and δij = 0 if i -= j

Differential expressions

∂l (l ∈ N) symbol for the partial derivative w.r.t. the lth variable
∂t (t ∈ R) symbol for the partial derivative w.r.t. the variable t
∂α (α ∈ Nd

0 multi-index) αth partial derivative
∇ := (∂1, . . . , ∂d)T Nabla operator (symbolic vector)
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∆ Laplace operator
∂µ := µ ·∇ directional derivative w.r.t. the vector µ
DΦ := ∂Φ

∂x := (∂jΦi)m
i,j=1 Jacobi matrix or functional matrix

of a differentiable mapping Φ : Rm → Rm

Coefficients in differential expressions

K diffusion coefficient (a square matrix function)
c convection coefficient (a vector function)
r reaction coefficient

Discretization methods

Vh ansatz space
Xh extended ansatz space without any homogeneous Dirichlet

boundary conditions
ah approximated bilinear form
bh approximated linear form

Function spaces (see also Appendix A.5)

Pk(G) set of polynomials of maximum degree k on G ⊂ Rd

C(G) = C0(G) set of continuous functions on G
Cl(G) (l ∈ N) set of l-times continuously differentiable functions on G
C∞(G) set of infinitely often continuously differentiable functions on G
C(G) = C0(G) set of bounded and uniformly continuous functions on G

Cl(G) (l ∈ N) set of functions with bounded and uniformly continuous
derivatives up to the order l on G

C∞(G) set of functions, all partial derivatives of which are bounded and
uniformly continuous on G

C0(G) = C0
0 (G) set of continuous functions on G with compact support

Cl
0(G) (l ∈ N) set of l-times continuously differentiable functions on G

with compact support
C∞

0 (G) set of infinitely often continuously differentiable functions on G
with compact support

Lp(G) (p ∈ [1,∞)) set of Lebesgue-measurable functions whose pth power
of their absolute value is Lebesgue-integrable on G

L∞(G) set of measurable, essentially bounded functions
〈·, ·〉0,G scalar product in L2(G) †

‖ · ‖0,G norm in L2(G) †

‖ · ‖0,p,G (p ∈ [1,∞]) norm in Lp(G) †

‖ · ‖∞,G norm in L∞(G) †

W l
p(G) (l ∈ N, p ∈ [1,∞]) set of l-times weakly differentiable functions

from Lp(G), with derivatives in Lp(G)
‖ · ‖l,p,G (l ∈ N, p ∈ [1,∞]) norm in W l

p(G) †

| · |l,p,G (l ∈ N, p ∈ [1,∞]) seminorm in W l
p(G) †
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H l(G) := W l
2(G) (l ∈ N)

〈·, ·〉l,G (l ∈ N) scalar product in H l(G) †

‖ · ‖l,G (l ∈ N) norm in H l(G) †

| · |l,G (l ∈ N) seminorm in H l(G) †

〈·, ·〉0,h discrete L2(Ω)-scalar product
‖ · ‖0,h discrete L2(Ω)-norm
L2(∂G) set of square Lebesgue-integrable functions on the boundary ∂G
H1

0 (G) set of functions from H1(G) with vanishing trace on ∂G
C([0, T ], X) = C0([0, T ], X) set of continuous functions on [0, T ] with values

in the normed space X
Cl([0, T ], X) (l ∈ N) set of l-times continuously differentiable functions on

[0, T ] with values in the normed space X
Lp((0, T ), X) (p ∈ [1,∞]) Lebesgue-space of functions on [0, T ] with values

in the normed space X

† Convention: In the case G = Ω, this specification is omitted.

A.2 Basic Concepts of Analysis

A subset G ⊂ Rd is called a set of measure zero if, for any number ε > 0, a
countable family of balls Bj with d-dimensional volume εj > 0 exists such
that

∞∑

j=1

εj < ε and G ⊂
∞⋃

j=1

Bj .

Two functions f, g : G → R are called equal almost everywhere (in short:
equal a.e., notation: f ≡ g) if the set {x ∈ G : f(x) -= g(x)} is of measure
zero.

In particular, a function f : G → R is called vanishing almost everywhere
if it is equal to the constant function zero almost everywhere.

A function f : G → R is called measurable if there exists a sequence
(fi)i of step functions fi : G → R such that fi → f for i → ∞ almost
everywhere.

In what follows, G denotes a subset of Rd, d ∈ N.

(i) A point x = (x1, x2, . . . , xd)T ∈ Rd is called a boundary point of G
if every open neighbourhood (perhaps an open ball) of x contains a
point of G as well as a point of the complementary set R \ G.

(ii) The collection of all boundary points of G is called the boundary of
G and is denoted by ∂G.

(iii) The set G := G ∪ ∂G is called the closure of G.

(iv) The set G is called closed if G = G.
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(v) The set G is called open if G ∩ ∂G = ∅.

(vi) The set G \ ∂G is called the interior of G and is denoted by intG.

A subset G ⊂ Rd is called connected if for arbitrary distinct points
x1, x2 ∈ G there exists a continuous curve in G connecting them.

The set G is called convex if any two points from G can be connected by
a straight-line segment in G.

A nonempty, open, and connected set G ⊂ Rd is called a domain in Rd.

By α = (α1, . . . ,αd)T ∈ Nd
0 a so-called multi-index is denoted. Multi-

indices are a popular tool to abbreviate some elaborate notation. For
example,

∂α :=
d∏

i=1

∂αi
i , α! :=

d∏

i=1

αi! , |α| :=
d∑

i=1

αi .

The number |α| is called the order (or length) of the multi-index α.

For a continuous function ϕ : G → R, the set suppϕ := {x ∈ G : ϕ(x) -= 0}
denotes the support of ϕ.

A.3 Basic Concepts of Linear Algebra

A square matrix A ∈ Rn,n with entries aij is called symmetric if aij = aji

holds for all i, j ∈ {1, . . . , n}.
A matrix A ∈ Rn,n is called positive definite if x ·Ax > 0 for all x ∈

Rn \ {0}.
Given a polynomial p ∈ Pk, k ∈ N0, of the form

p(z) =
k∑

j=0

ajz
j with aj ∈ C, j ∈ {0, . . . , k}

and a matrix A ∈ Cn,n, then the following matrix polynomial of A can be
established:

p(A) :=
k∑

j=0

ajA
j .

Eigenvalues and Eigenvectors
Let A ∈ Cn,n. A number λ ∈ C is called an eigenvalue of A if

det(A− λI) = 0 .

If λ is an eigenvalue of A, then any vector x ∈ Cn \ {0} such that

Ax = λx (⇔ (A− λI)x = 0)

is called an eigenvector of A associated with the eigenvalue λ.
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The polynomial pA(λ) := det(A − λI) is called the characteristic
polynomial of A.

The set of all eigenvalues of a matrix A is called the spectrum of A,
denoted by σ(A).

If all eigenvalues of a matrix A are real, then the numbers λmax(A) and
λmin(A) denote the largest, respectively smallest, of these eigenvalues.

The number '(A) = maxλ∈σ(A) |λ| is called the spectral radius of A.

Norms of Vectors and Matrices
The norm of a vector x ∈ Rn, n ∈ N, is a real-valued function x .→ |x|
satisfying the following three properties:

(i) |x| ≥ 0 for all x ∈ Rn , |x| = 0 ⇔ x = 0 ,
(ii) |αx| = |α| |x| for all α ∈ R , x ∈ Rn ,
(iii) |x + y| ≤ |x| + |y| for all x, y ∈ Rn .

For example, the most frequently used vector norms are
(a) the maximum norm:

|x|∞ := max
j=1...n

|xj | . (A3.1)

(b) the 4p-norm, p ∈ [1,∞):

|x|p :=

{
n∑

j=1

|xj |p
}1/p

. (A3.2)

The important case p = 2 yields the so-called Euclidean norm:

|x|2 :=

{
n∑

j=1

x2
j

}1/2

. (A3.3)

The three most important norms (that is, p = 1, 2,∞) in Rn are equivalent
in the following sense: The inequalities

1√
n
|x|2 ≤ |x|∞ ≤ |x|2 ≤

√
n |x|∞ ,

1
n
|x|1 ≤ |x|∞ ≤ |x|1 ≤ n |x|∞ ,

1√
n
|x|1 ≤ |x|2 ≤ |x|1 ≤

√
n |x|2

are valid for all x ∈ Rn.
The norm of the matrix A ∈ Rn,n is a real-valued function A .→ ‖A‖

satisfying the following four properties:
(i) ‖A‖ ≥ 0 for all A ∈ Rn,n , ‖A‖ = 0 ⇔ A = 0 ,
(ii) ‖αA‖ = |α| ‖A‖ for all α ∈ R , A ∈ Rn,n ,
(iii) ‖A + B‖ ≤ ‖A‖+ ‖B‖ for all A, B ∈ Rn,n ,
(iv) ‖AB‖ ≤ ‖A‖ ‖B‖ for all A, B ∈ Rn,n .
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In comparison with the definition of a vector norm, we include here an
additional property (iv), which is called the submultiplicative property. It
restricts the general set of matrix norms to the practically important class
of submultiplicative norms.

The most common matrix norms are
(a) the total norm:

‖A‖G := n max
1≤i,k≤n

|aik| , (A3.4)

(b) the Frobenius norm:

‖A‖F :=

{
n∑

i,k=1

a2
ik

}1/2

, (A3.5)

(c) the maximum row sum:

‖A‖∞ := max
1≤i≤n

n∑

k=1

|aik| , (A3.6)

(d) the maximum column sum:

‖A‖1 := max
1≤k≤n

n∑

i=1

|aik| . (A3.7)

All these matrix norms are equivalent. For example, we have
1
n
‖A‖G ≤ ‖A‖p ≤ ‖A‖G ≤ n‖A‖p , p ∈ {1,∞} ,

or
1
n
‖A‖G ≤ ‖A‖F ≤ ‖A‖G ≤ n‖A‖F .

Note that the spectral radius '(A) is not a matrix norm, as the following
simple example shows:

For A =
( 0 1

0 0

)
, we have that A -= 0 but '(A) = 0.

However, for any matrix norm ‖ · ‖ the following relation is valid:

'(A) ≤ ‖A‖ . (A3.8)

Very often, matrices and vectors simultaneously appear as a product
Ax. In order to be able to handle such situations, there should be a certain
correlation between matrix and vector norms.

A matrix norm ‖ · ‖ is called mutually consistent or compatible with the
vector norm | · | if the inequality

|Ax| ≤ ‖A‖ |x| (A3.9)

is valid for all x ∈ Rn and all A ∈ Rn,n.
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Examples of mutually consistent norms are

‖A‖G or ‖A‖∞ with |x|∞ ,

‖A‖G or ‖A‖1 with |x|1 ,

‖A‖G or ‖A‖F with |x|2 .

In many cases, the bound for |Ax| given by (A3.9) is not sharp enough;
i.e., for x -= 0 we just have that

|Ax| < ‖A‖ |x| .

Therefore, the question arises of how to find, for a given vector norm, a
compatible matrix norm such that in (A3.9) the equality holds for at least
one element x -= 0.

Given a vector norm |x|, the number

‖A‖ := sup
x∈Rn\{0}

|Ax|
|x| = sup

x∈Rn: |x|=1
|Ax|

is called the induced or subordinate matrix norm.
The induced norm is a compatible matrix norm with the given vector

norm. It is the smallest norm among all matrix norms that are compatible
with the given vector norm |x|.

To illustrate the definition of the induced matrix norm, the matrix norm
induced by the Euclidean vector norm is derived:

‖A‖2 := max
|x|2=1

|Ax|2 = max
|x|2=1

√
xT (AT A)x =

√
λmax(AT A) =

√
'(AT A) .

(A3.10)
The matrix norm ‖A‖2 induced by the Euclidean vector norm is also called
the spectral norm. This term becomes understandable in the special case of
a symmetric matrix A. If λ1, . . . ,λn denote the real eigenvalues of A, then
the matrix AT A = A2 has the eigenvalues λ2

i satisfying

‖A‖2 = |λmax(A)| .

For symmetric matrices, the spectral norm coincides with the spectral ra-
dius. Because of (A3.8), it is the smallest possible matrix norm in that
case.

As a further example, the maximum row sum ‖A‖∞ is the matrix norm
induced by the maximum norm |x|∞.

The number

κ(A) := ‖A‖ ‖A−1‖

is called the condition number of the matrix A with respect to the matrix
norm under consideration.
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The following relation holds:

1 ≤ ‖I‖ = ‖AA−1‖ ≤ ‖A‖ ‖A−1‖ .

For | · | = | · |p, the condition number is also denoted by κp(A). If all
eigenvalues of A are real, the number

κ(A) := λmax(A)/λmin(A)

is called the spectral condition number. Hence, for a symmetric matrix A
the equality κ(A) = κ2(A) is valid.

Occasionally, it is necessary to estimate small perturbations of nonsin-
gular matrices. For this purpose, the following result is useful (perturbation
lemma or Neumann’s lemma). Let A ∈ Rn,n satisfy ‖A‖ < 1 with respect
to an arbitrary, but fixed, matrix norm. Then the inverse of I − A exists
and can be represented as a convergent power series of the form

(I −A)−1 =
∞∑

j=0

Aj ,

with

‖(I −A)−1‖ ≤ 1
1− ‖A‖ . (A3.11)

Special Matrices
The matrix A ∈ Rn,n is called an upper, respectively lower, triangular
matrix if its entries satisfy aij = 0 for i > j, respectively aij = 0 for i < j.

A matrix H ∈ Rn,n is called an (upper) Hessenberg matrix if it has the
following structure:

H :=





h11

h21
. . . ∗
. . . . . .

. . . . . .

0 hnn−1 hnn





(that is, hij = 0 for i > j + 1).
The matrix A ∈ Rn,n satisfies the strict row sum criterion (or is strictly

row diagonally dominant) if it satisfies
n∑

j=1
j &=i

|aij | < |aii| for all i = 1, . . . , n .

It satisfies the strict column sum criterion if the following relation holds:
n∑

i=1
i&=j

|aij | < |ajj | for all j = 1, . . . , n .
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The matrix A ∈ Rn,n satisfies the weak row sum criterion (or is weakly row
diagonally dominant) if

n∑

j=1
j &=i

|aij | ≤ |aii| holds for all i = 1, . . . , n

and the strict inequality “<” is valid for at least one number
i ∈ {1, . . . , n} .

The weak column sum criterion is defined similarly.
The matrix A ∈ Rn,n is called reducible if there exist subsets N1, N2 ⊂

{1, . . . , n} with N1 ∩N2 = ∅, N1 -= ∅ -= N2, and N1 ∪N2 = {1, . . . , n} such
that the following property is satisfied:

For all i ∈ N1, j ∈ N2 : aij = 0 .

A matrix that is not reducible is called irreducible.
A matrix A ∈ Rn,n is called an L0-matrix if for i, j ∈ {1, . . . , n} the

inequalities

aii ≥ 0 and aij ≤ 0 (i -= j)

are valid. An L0-matrix is called an L-matrix if all diagonal entries are
positive.

A matrix A ∈ Rn,n is called monotone (or of monotone type) if the
relation Ax ≤ Ay for two (otherwise arbitrary) elements x, y ∈ Rn implies
x ≤ y. Here the relation sign is to be understood componentwise.

A matrix of monotone type is invertible.
A matrix A ∈ Rn,n is a matrix of monotone type if it is invertible and

all entries of the inverse are nonnegative.
An important subclass of matrices of monotone type is formed by the

so-called M-matrices.
A monotone matrix A with aij ≤ 0 for i -= j is called an M-matrix.
Let A ∈ Rn,n be a matrix with aij ≤ 0 for i -= j and aii ≥ 0 (i, j ∈

{1, . . . , n}). In addition, let A satisfy one of the following conditions:

(i) A satisfies the strict row sum criterion.

(ii) A satisfies the weak row sum criterion and is irreducible.

Then A is an M-matrix.

A.4 Some Definitions and Arguments of Linear
Functional Analysis

Working with vector spaces whose elements are (classical or generalized)
functions, it is desirable to have a measure for the “length” or “magnitude”
of a function, and, as a consequence, for the distance of two functions.
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Let V be a real vector space (in short, an R vector space) and let ‖ · ‖
be a real-valued mapping ‖ · ‖ : V → R.

The pair (V, ‖ ·‖) is called a normed space (“V is endowed with the norm
‖ · ‖”) if the following properties hold:

‖u‖ ≥ 0 for all u ∈ V , ‖u‖ = 0 ⇔ u = 0 , (A4.1)

‖αu‖ = |α| ‖u‖ for all α ∈ R , u ∈ V , (A4.2)

‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ V . (A4.3)

The property (A4.1) is called definiteness; (A4.3) is called the triangle
inequality. If a mapping ‖ · ‖ : V → R satisfies only (A4.2) and (A4.3), it
is called a seminorm. Due to (A4.2), we still have ‖0‖ = 0, but there may
exist elements u -= 0 with ‖u‖ = 0.

A particularly interesting example of a norm can be obtained if the space
V is equipped with a so-called scalar product. This is a mapping 〈·, ·〉 :
V × V → R with the following properties:

(1) 〈·, ·〉 is a bilinear form, that is,

〈u, v1 + v2〉 = 〈u, v1〉+ 〈u, v2〉 for all u, v1, v2 ∈ V ,

〈u,αv〉 = α 〈u, v〉 for all u, v ∈ V, α ∈ R ,
(A4.4)

and an analogous relation is valid for the first argument.

(2) 〈·, ·〉 is symmetric, that is,

〈u, v〉 = 〈v, u〉 for all u, v ∈ V . (A4.5)

(3) 〈·, ·〉 is positive, that is,

〈u, u〉 ≥ 0 for all u ∈ V . (A4.6)

(4) 〈·, ·〉 is definite, that is,

〈u, u〉 = 0 ⇔ u = 0 . (A4.7)

A positive and definite bilinear form is called positive definite.
A scalar product 〈·, ·〉 defines a norm on V in a natural way if we set

‖v‖ := 〈v, v〉1/2 . (A4.8)

In absence of the definiteness (A4.7), only a seminorm is induced.
A norm (or a seminorm) induced by a scalar product (respectively by a

symmetric and positive bilinear form) has some interesting properties. For
example, it satisfies the Cauchy–Schwarz inequality, that is,

|〈u, v〉| ≤ ‖u‖ ‖v‖ for all u, v ∈ V , (A4.9)

and the parallelogram identity

‖u + v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) for all u, v ∈ V . (A4.10)
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Typical examples of normed spaces are the spaces Rn equipped with one
of the 4p-norms (for some fixed p ∈ [1,∞]). In particular, the Euclidean
norm (A3.3) is induced by the Euclidean scalar product

(x, y) .→ x · y for all x, y ∈ Rn . (A4.11)

On the other hand, infinite-dimensional function spaces play an important
role (see Appendix A.5).

If a vector space V is equipped with a scalar product 〈·, ·〉 , then, in
analogy to Rn, an element u ∈ V is said to be orthogonal to v ∈ V if

〈u, v〉 = 0 . (A4.12)

Given a normed space (V, ‖·‖), it is easy to define the concept of convergence
of a sequence (ui)i in V to u ∈ V :

ui → u for i →∞ ⇐⇒ ‖ui − u‖ → 0 for i →∞ . (A4.13)

Often, it is necessary to consider function spaces endowed with different
norms. In such situations, different kinds of convergence may occur. How-
ever, if the corresponding norms are equivalent, then there is no change
in the type of convergence. Two norms ‖ · ‖1 and ‖ · ‖2 in V are called
equivalent if there exist constants C1, C2 > 0 such that

C1‖u‖1 ≤ ‖u‖2 ≤ C2‖u‖1 for all u ∈ V . (A4.14)

If there is only a one-sided inequality of the form

‖u‖2 ≤ C‖u‖1 for all u ∈ V (A4.15)

with a constant C > 0, then the norm ‖ · ‖1 is called stronger than the
norm ‖ · ‖2.

In a finite-dimensional vector space, all norms are equivalent. Examples
can be found in Appendix A.3. In particular, it is important to observe that
the constants may depend on the dimension n of the finite-dimensional
vector space. This observation also indicates that in the case of infinite-
dimensional vector spaces, the equivalence of two different norms cannot
be expected, in general.

As a consequence of (A4.14), two equivalent norms ‖ ·‖1, ‖ ·‖2 in V yield
the same type of convergence:

ui → u w.r.t. ‖ · ‖1 ⇔ ‖ui − u‖1 → 0

⇔ ‖ui − u‖2 → 0 ⇔ ui → u w.r.t. ‖ · ‖2 .
(A4.16)

In this book, the finite-dimensional vector space Rn is used in two as-
pects: For n = d, it is the basic space of independent variables, and for
n = M or n = m it represents the finite-dimensional trial space. In the
first case, the equivalence of all norms can be used in all estimates without
any side effects, whereas in the second case the aim is to obtain uniform
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estimates with respect to all M and m, and so the dependence of the
equivalence constants on M and m has to be followed thoroughly.

Now we consider two normed spaces (V, ‖·‖V ) and (W, ‖·‖W ). A mapping
f : V → W is called continuous in v ∈ V if for all sequences (vi)i in V with
vi → v for i →∞ we get

f(vi) → f(v) for i →∞ .

Note that the first convergence is measured in ‖ · ‖V and the second
one in ‖ · ‖W . Hence a change of the norm may have an influence on the
continuity. As in classical analysis, we can say that

f is continuous in all v ∈ V ⇐⇒
f−1[G] is closed for each closed G ⊂ W .

(A4.17)

Here, a subset G ⊂ W of a normed space W is called closed if for any
sequence (ui)i from G such that ui → u for i → ∞ the inclusion u ∈
G follows. Because of (A4.17), the closedness of a set can be verified by
showing that it is a continuous preimage of a closed set.

The concept of continuity is a qualitative relation between the preimage
and the image. A quantitative relation is given by the stronger notion of
Lipschitz continuity:

A mapping f : V → W is called Lipschitz continuous if there exists a
constant L > 0, the Lipschitz constant, such that

‖f(u)− f(v)‖W ≤ L‖u− v‖V for all u, v ∈ V . (A4.18)

x

f
slope: -L

slope: L

admissible region for f(y)

Figure A.1. Lipschitz continuity (for V = W = R).

A Lipschitz continuous mapping with L < 1 is called contractive or a
contraction; cf. Figure A.1.

Most of the mappings used are linear; that is, they satisfy

f(u + v) = f(u) + f(v) ,

f(λu) = λf(u) ,

}
for all u, v ∈ V and λ ∈ R . (A4.19)

For a linear mapping, the Lipschitz continuity is equivalent to the
boundedness; that is, there exists a constant C > 0 such that

‖f(u)‖W ≤ C‖u‖V for all u ∈ V . (A4.20)
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In fact, for a linear mapping f, the continuity at one point is equivalent
to (A4.20). Linear, continuous mappings acting from V to W are also
called (linear, continuous) operators and are denoted by capital letters,
for example S, T, . . . .

In the case V = W = Rn, the linear, continuous operators in Rn are
the mappings x .→ Ax defined by matrices A ∈ Rn,n. Their boundedness,
for example with respect to ‖ · ‖V = ‖ · ‖W = ‖ · ‖∞ , is an immediate
consequence of the compatibility property of the ‖ · ‖∞-norm. Moreover,
since all norms in Rn are equivalent, these mappings are bounded with
respect to any norms in Rn.

Similarly to (A4.20), a bilinear form f : V × V → R is continuous if it is
bounded, that is, if there exists a constant C > 0 such that

|f(u, v)| ≤ C ‖u‖V ‖v‖V for all u, v ∈ V . (A4.21)

In particular, due to (A4.9) any scalar product is continuous with respect
to the induced norm of V ; that is,

ui → u , vi → v ⇒ 〈ui, vi〉 → 〈u, v〉 . (A4.22)

Now let (V, ‖ · ‖V ) be a normed space and W a subspace that is (addi-
tionally to ‖ · ‖V ) endowed with the norm ‖ · ‖W . The embedding from
(W, ‖ · ‖W ) to (V, ‖ · ‖V ) , i.e., the linear mapping that assigns any element
of W to itself but considered as an element of V, is continuous iff the norm
‖ · ‖W is stronger than the norm ‖ · ‖V (cf. (A4.15)).

The collection of linear, continuous operators from (V, ‖·‖V ) to (W, ‖·‖W )
forms an R vector space with the following (argumentwise) operations:

(T + S)(u) := T (u) + S(u) for all u ∈ V ,

(λT )(u) := λT (u) for all u ∈ V ,

for all operators T, S and λ ∈ R. This space is denoted by

L[V, W ] . (A4.23)

In the special case W = R, the corresponding operators are called linear,
continuous functionals, and the notation

V ′ := L[V, R] (A4.24)

is used. The R vector space L[V, W ] can be equipped with a norm, the
so-called operator norm, by

‖T ‖ := sup
{
‖T (u)‖W

∣∣ u ∈ V , ‖u‖V ≤ 1
}

for T ∈ L[V, W ] . (A4.25)

Here ‖T ‖ is the smallest constant such that (A4.20) holds. Specifically, for
a functional f ∈ V ′, we have that

‖f‖ = sup
{
|f(u)|

∣∣ ‖u‖V ≤ 1
}

.
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For example, in the case V = W = Rn and ‖u‖V = ‖u‖W , the norm of a
linear, bounded operator that is represented by a matrix A ∈ Rn,n coincides
with the corresponding induced matrix norm (cf. Appendix A.3).

Let (V, ‖·‖V ) be a normed space. A sequence (ui)i in V is called a Cauchy
sequence if for any ε > 0 there exists a number n0 ∈ N such that

‖ui − uj‖V ≤ ε for all i, j ∈ N with i, j ≥ n0 .

The space V is called complete or a Banach space if for any Cauchy sequence
(ui)i in V there exists an element u ∈ V such that ui → u for i → ∞. If
the norm ‖ · ‖V of a Banach space V is induced by a scalar product, then
V is called a Hilbert space.

A subspace W of a Banach space is complete iff it is closed. A basic
problem in the variational treatment of boundary value problems consists
in the fact that the space of continuous functions (cf. the preliminary defi-
nition (2.7)), which is required to be taken as a basis, is not complete with
respect to the norm (‖ · ‖l, l = 0 or l = 1). However, if in addition to the
normed space (W, ‖ · ‖), a larger space V is given that is complete with
respect to the norm ‖ · ‖, then that space or the closure

W̃ := W (A4.26)

(as the smallest Banach space containing W ) can be used. Such a com-
pletion can be introduced for any normed space in an abstract way. The
problem is that the “nature” of the limiting elements remains vague.

If the relation (A4.26) is valid for some normed space W, then W is
called dense in W̃ . In fact, given W, all “essential” elements of W̃ are
already captured. For example, if T is a linear, continuous operator T from
(W̃ , ‖ · ‖) to another normed space, then the identity

T (u) = 0 for all u ∈ W (A4.27)

is sufficient for

T (u) = 0 for all u ∈ W̃ . (A4.28)

The space of linear, bounded operators is complete if the image space is
complete. In particular, the space V ′ of linear, bounded functionals on the
normed space V is always complete.

A.5 Function Spaces

In this section G ⊂ Rd denotes a bounded domain.
The function space C(G) contains all (real-valued) functions defined on

G that are continuous in G. By Cl(G), l ∈ N, the set of l-times continuously
differentiable functions on G is denoted. Usually, for the sake of consistency,
the conventions C0(G) := C(G) and C∞(G) :=

⋂∞
l=0 Cl(G) are used.



A.5. Function Spaces 405

Functions from Cl(G), l ∈ N0, and C∞(G) need not be bounded, as for
d = 1 the example f(x) := x−1, x ∈ (0, 1) shows.

To overcome this difficulty, further spaces of continuous functions are
introduced. The space C(G) contains all bounded and uniformly contin-
uous functions on G, whereas Cl(G), l ∈ N, consists of functions with
bounded and uniformly continuous derivatives up to order l on G. Here the
conventions C0(G) := C(G) and C∞(G) :=

⋂∞
l=0 Cl(G) are used, too.

The space C0(G), respectively Cl
0(G), l ∈ N, denotes the set of all those

continuous, respectively l-times continuously differentiable, functions, the
supports of which are contained in G. Often this set is called the set of
functions with compact support in G. Since G is bounded, this means that
the supports do not intersect boundary points of G. We also set C0

0 (G) :=
C0(G) and C∞

0 (G) := C0(G) ∩ C∞(G).
The linear space Lp(G), p ∈ [1,∞), contains all Lebesgue measurable

functions defined on G whose pth power of their absolute value is Lebesgue
integrable on G. The norm in Lp(G) is defined as follows:

‖u‖0,p,G :=
{∫

G
|u|p dx

}1/p

, p ∈ [1,∞) .

In the case p = 2, the specification of p is frequently omitted; that is,
‖u‖0,G = ‖u‖0,2,G. The L2(G)-scalar product

〈u, v〉0,G :=
∫

G
uv dx , u, v ∈ L2(G) ,

induces the L2(G)-norm by setting ‖u‖0,G :=
√
〈u, u〉0,G.

The space L∞(G) contains all measurable, essentially bounded functions
on G, where a function u : G → R is called essentially bounded if the
quantity

‖u‖∞,G := inf
G0⊂G: |G0|d=0

sup
x∈G\G0

|u(x)|

is finite. For continuous functions, this norm coincides with the usual
maximum norm:

‖u‖∞,G = max
x∈G

|u(x)| , u ∈ C(G) .

For 1 ≤ q ≤ p ≤ ∞, we have Lp(G) ⊂ Lq(G), and the embedding is
continuous.

The space W l
p(G), l ∈ N, p ∈ [1,∞], consists of all l-times weakly differ-

entiable functions from Lp(G) with derivatives in Lp(G). In the special case
p = 2, we also write H l(G) := W l

2(G). In analogy to the case of continuous
functions, the convention H0(G) := L2(G) is used. The norm in W l

p(G) is
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defined as follows:

‖u‖l,p,G :=

{
∑

|α|≤l

∫

G
|∂αu|p dx

}1/p

, p ∈ [1,∞) ,

‖u‖l,∞,G := max
|α|≤l

|∂αu|∞,G .

In H l(G) a scalar product can be defined by

〈u, v〉l,G :=
∑

|α|≤l

∫

G
∂αu∂αv dx , u, v ∈ H l(G) .

The norm induced by this scalar product is denoted by ‖ · ‖l,G, l ∈ N:

‖u‖l,G :=
√
〈u, u〉l,G .

For l ∈ N, the symbol | · |l,G stands for the corresponding H l(G)-seminorm:

|u|l,G :=

√√√√
∑

|α|=l

∫

G
|∂αu|2 dx .

The space H1
0 (G) is defined as the closure (or completion) of C∞

0 (G) in the
norm ‖ · ‖1 of H1(G).

Convention: Usually, in the case G = Ω the specification of the domain
in the above norms and scalar products is omitted.

In the study of partial differential equations, it is often desirable to speak
of boundary values of functions defined on the domain G. In this respect,
the Lebesgue spaces of functions that are square integrable at the bound-
ary of G are important. To introduce these spaces, some preparations are
necessary.

In what follows, a point x ∈ Rd is written in the form x =
(

x′
xd

)
with

x′ = (x1, . . . , xd−1)T ∈ Rd−1.
A domain G ⊂ Rd is said to be located at one side of ∂G if for any x ∈ ∂G

there exist an open neighbourhood Ux ⊂ Rd and an orthogonal mapping
Qx in Rd such that the point x is mapped to a point x̂ = (x̂1, . . . , x̂d)T ,
and so Ux is mapped onto a neighbourhood Ux̂ ⊂ Rd of x̂, where in the
neighbourhood Ux̂ the following properties hold:

(1) The image of Ux ∩ ∂G is the graph of some function Ψx : Yx ⊂
Rd−1 → R; that is, x̂d = Ψx(x̂1, . . . , x̂d−1) = Ψx(x̂′) for x̂′ ∈ Yx.

(2) The image of Ux ∩G is “above this graph” (i.e., the points in Ux ∩G
correspond to x̂d > 0).
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(3) The image of Ux ∩ (Rd \ G) is “below this graph” (i.e., the points in
Ux ∩ (Rd \ G) correspond to x̂d < 0).

A domain G that is located at one side of ∂G is called a Cl domain, l ∈ N,
respectively a Lipschitz(ian) domain, if all Ψx are l-times continuously
differentiable, respectively Lipschitz continuous, in Yx.

Bounded Lipschitz domains are also called strongly Lipschitz.
For bounded domains located at one side of ∂G, it is well known (cf.,

e.g. [37]) that from the whole set of neighbourhoods {Ux}x∈∂G there can be
selected a family {Ui}n

i=1 of finitely many neighbourhoods covering ∂G, i.e.,
n ∈ N and ∂G ⊂

⋃n
i=1 Ui. Furthermore, for any such family there exists a

system of functions {ϕi}n
i=1 with the properties ϕi ∈ C∞

0 (Ui), ϕi(x) ∈ [0, 1]
for all x ∈ Ui and

∑n
i=1 ϕi(x) = 1 for all x ∈ ∂G. Such a system is called

a partition of unity.
If the domain G is at least Lipschitzian, then Lebesgue’s integral over

the boundary of G is defined by means of those partitions of unity. In cor-
respondence to the definition of a Lipschitz domain, Qi, Ψi, and Yi denote
the orthogonal mapping on Ui, the function describing the corresponding
local boundary, and the preimage of Qi(Ui ∩ ∂G) with respect to Ψi.

A function v : ∂G → R is called Lebesgue integrable over ∂G if the

composite functions x̂′ .→ v
(
QT

i

(
x̂′

Ψi(x̂′)
))

belong to L1(Yi). The integral

is defined as follows:
∫

∂G
v(s) ds :=

n∑

i=1

∫

∂G
v(s)ϕi(s) ds

:=
n∑

i=1

∫

Yi

v
(
QT

i

(
x̂′

Ψi(x̂′)
))
ϕi

(
QT

i

(
x̂′

Ψi(x̂′)
))

×
√
|det(∂jΨi(x̂′)∂kΨi(x̂′))d−1

j,k=1| dx̂′ .

A function v : ∂G → R belongs to L2(∂G) iff both v and v2 are Lebesgue
integrable over ∂G.

In the investigation of time-dependent partial differential equations, lin-
ear spaces whose elements are functions of the time variable t ∈ [0, T ],
T > 0, with values in a normed space X are of interest.

A function v : [0, T ] → X is called continuous on [0, T ] if for all t ∈ [0, T ]
the convergence ‖v(t + k)− v(t)‖X → 0 as k → 0 holds.

The space C([0, T ], X) = C0([0, T ], X) consists of all continuous
functions v : [0, T ] → X such that

sup
t∈(0,T )

‖v(t)‖X < ∞ .

The space Cl([0, T ], X), l ∈ N, consists of all continuous functions v :
[0, T ] → X that have continuous derivatives up to order l on [0, T ] with the
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norm
l∑

i=0

sup
t∈(0,T )

‖v(i)(t)‖X .

The space Lp((0, T ), X) with 1 ≤ p ≤ ∞ consists of all functions on (0, T )×
Ω for which

v(t, ·) ∈ X for any t ∈ (0, T ) , F ∈ Lp(0, T ) with F (t) := ‖v(t, ·)‖X .

Furthermore,

‖v‖Lp((0,T ),X) := ‖F‖Lp(0,T ) .
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[58] M. Kř́ıžek. On the maximum angle condition for linear tetrahedral
elements. SIAM J. Numer. Anal., 29:513–520, 1992.

[59] C.L. Lawson. Software for C1 surface interpolation. In: J.R. Rice, editor,
Mathematical Software III, 161–194. Academic Press, New York, 1977.
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[64] R. Rodŕıguez. Some remarks on Zienkiewicz–Zhu estimator. Numer. Meth.
PDE, 10(5):625–635, 1994.

[65] W. Ruge and K. Stueben. Algebraische Mehrgittermethoden. In: S.F. Mc-
Cormick, editor, Multigrid Methods, 73–130. SIAM, Philadelphia, 1987.



414 References: Journal Papers

[66] R. Schneiders and R. Bünten. Automatic generation of hexahedral finite
element meshes. Computer Aided Geometric Design, 12:693–707, 1995.

[67] L.R. Scott and S. Zhang. Finite element interpolation of nonsmooth
functions satisfying boundary conditions. Math. Comp., 54(190):483–493,
1990.

[68] M.S. Shephard and M.K. Georges. Automatic three-dimensional mesh
generation by the finite octree technique. Internat. J. Numer. Methods
Engrg., 32:709–749, 1991.

[69] G. Summ. Quantitative Interpolationsfehlerabschätzungen für Triangulierun-
gen mit allgemeinen Tetraeder- und Hexaederelementen. Diplomarbeit,
Friedrich–Alexander–Universität Erlangen–Nürnberg, 1996.
(http://www.am.uni-erlangen.de/am1/publications/dipl_phd_thesis)

[70] Ch. Tapp. Anisotrope Gitter — Generierung und Verfeinerung. Disserta-
tion, Friedrich–Alexander–Universität Erlangen–Nürnberg, 1999.
(http://www.am.uni-erlangen.de/am1/publications/dipl_phd_thesis)

[71] D.F. Watson. Computing the n-dimensional Delaunay tesselation with
application to Voronoi polytopes. Computer J., 24(2):167–172, 1981.

[72] M.A. Yerry and M.S. Shephard. Automatic three-dimensional mesh
generation by the modified-octree technique. Internat. J. Numer. Methods
Engrg., 20:1965–1990, 1984.

[73] J.Z. Zhu, O.C. Zienkiewicz, E. Hinton, and J. Wu. A new approach
to the development of automatic quadrilateral mesh generation. Internat.
J. Numer. Methods Engrg., 32:849–866, 1991.

[74] O.C. Zienkiewicz and J.Z. Zhu. The superconvergent patch recovery and
a posteriori error estimates. Parts I,II. Internat. J. Numer. Methods Engrg.,
33(7):1331–1364,1365–1382, 1992.



Index

adjoint, 247
adsorption, 12
advancing front method, 179, 180
algorithm

Arnoldi, 235
CG, 223
multigrid iteration, 243
nested iteration, 253
Newton’s method, 357

algorithmic error, 200
angle condition, 173
angle criterion, 184
anisotropic, 8, 139
ansatz space, 56, 67

nested, 240
properties, 67

approximation
superconvergent, 193

approximation error estimate, 139,
144

for quadrature rules, 160
one-dimensional, 137

approximation property, 250
aquifer, 7
Armijo’s rule, 357
Arnoldi’s method, 235

algorithm, 235

modified, 237
artificial diffusion method, 373
assembling, 62

element-based, 66, 77
node-based, 66

asymptotically optimal method, 199

Banach space, 404
Banach’s fixed-point theorem, 345
barycentric coordinates, 117
basis of eigenvalues

orthogonal, 300
best approximation error, 70
BICGSTAB method, 238
bifurcation, 363
biharmonic equation, 111
bilinear form, 400

bounded, 403
continuous, 93
definite, 400
positive, 400
positive definite, 400
symmetric, 400
V -elliptic, 93
Vh-elliptic, 156

block-Gauss–Seidel method, 211
block-Jacobi method, 211



416 Index

Bochner integral, 289
boundary, 393
boundary condition, 15

Dirichlet, 15
flux, 15
homogeneous, 15
inhomogeneous, 15
mixed, 15
Neumann, 16

boundary point, 393
boundary value problem, 15

adjoint, 145
regular, 145

weak solution, 107
Bramble–Hilbert lemma, 135
bulk density, 12
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constitutive relationship, 7
continuation method, 357, 363
continuity, 402
continuous problem, 21

approximation, 21
contraction, 402
contraction number, 199
control domain, 257
control volume, 257
convection

forced, 5, 12
natural, 5

convection-diffusion equation, 12
convection-dominated, 268
convective part, 12
convergence, 27

global, 343
linear, 343
local, 343
quadratic, 343
superlinear, 343
with order of convergence p, 343
with respect to a norm, 401

correction, 201
Crank-Nicolson method, 313
cut-off strategy, 187
Cuthill–McKee method, 89

Darcy velocity, 7
Darcy’s law, 8
decomposition

regular, 232
definiteness, 400
degree of freedom, 62, 115, 120
Delaunay triangulation, 178, 263
dense, 96, 288, 404
density, 7
derivative

generalized, 53
material, 388
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weak, 53, 289
diagonal field, 362
diagonal scaling, 230
diagonal swap, 181
difference quotient, 23

backward, 23
forward, 23
symmetric, 23

differential equation
convection-dominated, 12, 368
degenerate, 9
elliptic, 17
homogeneous, 16
hyperbolic, 17
inhomogeneous, 16
linear, 16
nonlinear, 16
order, 16
parabolic, 17
quasilinear, 16
semilinear, 16, 360
type of, 17

differential equation model
instationary, 8
linear, 8
stationary, 8

diffusion, 5
diffusive mass flux, 11
diffusive part, 12
Dirichlet domain, 262
Dirichlet problem

solvability, 104
discrete problem, 21
discretization, 21

five-point stencil, 24
upwind, 372

discretization approach, 55
discretization parameter, 21
divergence, 20
divergence form, 14
domain, 19, 394

Cl, 407
Ck-, 96
C∞-, 96
Lipschitz, 96, 407

strongly, 407
domain of (absolute) stability, 317
Donald diagram, 265
dual problem, 194

duality argument, 145

edge swap, 181
eigenfunction, 285
eigenvalue, 285, 291, 394
eigenvector, 291, 394
element, 57

isoparametric, 122, 169
element stiffness matrix, 78
element-node table, 74
ellipticity

uniform, 100
embedding, 403

Hk(Ω) in C(Ω̄), 99
empty sphere criterion, 178
energy norm, 218
energy norm estimates, 132
energy scalar product, 217
equidistribution strategy, 187
error, 201
error equation, 68, 242
error estimate

a priori, 131, 185
anisotropic, 144

error estimator
a posteriori, 186
asymptotically exact, 187
efficient, 186
reliable, 186
residual, 188

dual-weighted, 194
robust, 187

error level
relative, 199

Euler method
explicit, 313
implicit, 313

extensive quantity, 7
extrapolation factor, 215
extrapolation method, 215

face, 123
family of triangulations

quasi-uniform, 165
regular, 138

Fick’s law, 11
fill-in, 85
finite difference method, 17, 24
finite element, 115, 116
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C1-, 115, 127
affine equivalent, 122
Bogner–Fox–Schmit rectangle, 127
C0-, 115
cubic ansatz on simplex, 121
cubic Hermite ansatz on simplex,

126
d-polynomial ansatz on cuboid, 123
equivalent, 122
Hermite, 126
Lagrange, 115, 126
linear, 57
linear ansatz on simplex, 119
quadratic ansatz on simplex, 120
simplicial, 117

finite element code
assembling, 176
kernel, 176
post-processor, 176

finite element discretization
conforming, 114

condition, 115
nonconforming, 114

finite element method, 18
characterization, 67
convergence rate, 131
maximum principle, 175
mortar, 180

finite volume method, 18
cell-centred, 258
cell-vertex, 258
node-centred, 258
semidiscrete, 297

five-point stencil, 24
fixed point, 342
fixed-point iteration, 200, 344

consistent, 200
convergence theorem, 201

fluid, 5
Fourier coefficient, 287
Fourier expansion, 287
Friedrichs–Keller triangulation, 64
frontal method, 87
full discretization, 293
full upwind method, 373
function

almost everywhere vanishing, 393
continuous, 407
essentially bounded, 405

Lebesgue integrable, 407
measurable, 393
piecewise continuous, 48
support, 394

functional, 403
functional matrix, 348
functions

equal almost everywhere, 393

Galerkin method, 56
stability, 69
unique solvability, 63

Galerkin product, 248
Galerkin/least squares–FEM, 377
Gauss’s divergence theorem, 14, 47,

266
Gauss–Seidel method, 204

convergence, 204, 205
symmetric, 211

Gaussian elimination, 82
generating function, 316
GMRES method, 235

truncated, 238
with restart, 238

gradient, 20
gradient method, 218

error reduction, 219
gradient recovery, 192
graph

dual, 263
grid

chimera, 180
combined, 180
hierarchically structured, 180
logically structured, 177
overset, 180
structured, 176

in the strict sense, 176
in the wider sense, 177

unstructured, 177
grid adaptation, 187
grid coarsening, 183
grid function, 24
grid point, 21, 22

close to the boundary, 24, 327
far from the boundary, 24, 327
neighbour, 23

harmonic, 31
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heat equation, 9
Hermite element, 126
Hessenberg matrix, 398
Hilbert space, 404
homogenization, 6
hydraulic conductivity, 8

IC factorization, 231
ill-posedness, 16
ILU factorization, 231

existence, 232
ILU iteration, 231
inequality

of Kantorovich, 218
Friedrichs’, 105
inverse, 376
of Poincaré, 71

inflow boundary, 108
inhomogeneity, 15
initial condition, 15
initial-boundary value problem, 15
inner product

on H1(Ω), 54
integral form, 14
integration by parts, 97
interior, 394
interpolation

local, 58
interpolation error estimate, 138, 144

one-dimensional , 136
interpolation operator, 132
interpolation problem

local, 120
isotropic, 8
iteration

inner, 355
outer, 355

iteration matrix, 200
iterative method, 342

Jacobi matrix, 348
Jacobi’s method, 203

convergence, 204, 205
jump, 189
jump condition, 14

Krylov (sub)space, 222
Krylov subspace

method, 223, 233

L0-matrix, 399
L-matrix, 399
Lagrange element, 115, 126
Lagrange–Galerkin method, 387
Lagrangian coordinate, 387
Lanczos biorthogonalization, 238
Langmuir model, 12
Laplace equation, 9
Laplace operator, 20
lemma

Bramble–Hilbert, 135
Céa’s, 70
first of Strang, 155

lexicographic, 25
linear convergence, 199
Lipschitz constant, 402
Lipschitz continuity, 402
load vector, 62
LU factorization, 82

incomplete, 231

M-matrix, 41, 399
macroscale, 6
mapping

bounded, 402
continuous, 402
contractive, 402
linear, 402
Lipschitz continuous, 402

mass action law, 11
mass average mixture velocity, 7
mass lumping, 314, 365
mass matrix, 163, 296, 298
mass source density, 7
matrix

band, 84
bandwidth, 84
consistently ordered, 213
Hessenberg, 398
hull, 84
inverse monotone, 41
irreducible, 399
L0-, 399
L-, 399
LU factorizable, 82
M-, 399
monotone, 399
of monotone type, 399
pattern, 231



420 Index

positive definite, 394
profile, 84
reducible, 399
row bandwidth, 84
row diagonally dominant

strictly, 398
weakly, 399

sparse, 25, 82, 198
symmetric, 394
triangular

lower, 398
upper, 398

matrix norm
compatible, 396
induced, 397
mutually consistent, 396
submultiplicative, 396
subordinate, 397

matrix polynomial, 394
matrix-dependent, 248
max-min-angle property, 179
maximum angle condition, 144
maximum column sum, 396
maximum principle

strong, 36, 39, 329
weak, 36, 39, 329

maximum row sum, 396
mechanical dispersion, 11
mesh width, 21
method

advancing front, 179, 180
algebraic multigrid, 240
Arnoldi’s , 235
artificial diffusion, 373
asymptotically optimal, 199
BICGSTAB, 238
block-Gauss–Seidel, 211
block-Jacobi, 211
CG, 221
classical Ritz–Galerkin, 67
collocation, 68
consistent, 28
convergence, 27
Crank-Nicolson, 313
Cuthill–McKee, 89

reverse, 90
Euler explicit, 313
Euler implicit, 313
extrapolation, 215

finite difference, 24
full upwind, 373
Galerkin, 56
Gauss–Seidel, 204
GMRES, 235
iterative, 342
Jacobi’s, 203
Krylov subspace, 223, 233
Lagrange–Galerkin, 387
linear stationary, 200
mehrstellen, 30
moving front, 179
multiblock, 180
multigrid, 243
Newton’s, 349
of bisection, 182

stage number of, 182
one-step, 316
one-step-theta, 312
overlay, 177
PCG, 228, 229
r-, 181
relaxation, 207
Richardson, 206
Ritz, 56
Rothe’s, 294
semi-iterative, 215
SOR, 210
SSOR, 211
streamline upwind Petrov–

Galerkin, 375
streamline-diffusion, 377

method of conjugate directions, 219
method of lines

horizontal, 294
vertical, 293

method of simultaneous
displacements, 203

method of successive displacements,
204

MIC decomposition, 232
micro scale, 5
minimum angle condition, 141
minimum principle, 36
mobility, 10
molecular diffusivity, 11
monotonicity

inverse, 41, 280
monotonicity test, 357
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moving front method, 179
multi-index, 53, 394

length, 53, 394
order, 53, 394

multiblock method, 180
multigrid iteration, 243

algorithm, 243
multigrid method, 243

algebraic, 240

neighbour, 38
nested iteration, 200, 252

algorithm, 253
Neumann’s lemma, 398
Newton’s method, 349

algorithm, 357
damped, 357
inexact, 355
simplified, 353

nodal basis, 61, 125
nodal value, 58
node, 57, 115

adjacent, 127
degree, 89
neighbour, 63, 89, 211

norm, 400
discrete L2-, 27
equivalence of, 401
Euclidean, 395
Frobenius, 396
induced by a scalar product, 400
$p-, 395
matrix, 395
maximum, 395
maximum , 27
maximum column sum, 396
maximum row sum, 396
of an operator, 403
spectral, 397
streamline-diffusion, 378
stronger, 401
total, 396
vector, 395
ε-weighted, 374

normal derivative, 98
normal equations, 234
normed space

complete, 404
norms

equivalent, 395
numbering

columnwise, 25
rowwise, 25

octree technique, 177
one-step method, 316

A-stable, 317
strongly, 319

L-stable, 319
nonexpansive, 316
stable, 320

one-step-theta method, 312
operator, 403
operator norm, 403
order of consistency, 28
order of convergence, 27
orthogonal, 401
orthogonality of the error, 68
outer unit normal, 14, 97
outflow boundary, 108
overlay method, 177
overrelaxation, 209
overshooting, 371

parabolic boundary, 325
parallelogram identity, 400
Parseval’s identity, 292
particle velocity, 7
partition, 256
partition of unity, 407
PCG

method, 228, 229
Péclet number

global, 12, 368
grid, 372
local, 269

permeability, 8
perturbation lemma, 398
phase, 5

immiscible, 7
phase average

extrinsic, 6
intrinsic, 6

k-phase flow, 5
(k + 1)-phase system, 5
piezometric head, 8
point

boundary, 40
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close to the boundary, 40
far from the boundary, 40

Poisson equation, 8
Dirichlet problem, 19

polynomial
characteristic, 395
matrix, 394

pore scale, 5
pore space, 5
porosity, 6
porous medium, 5
porous medium equation, 9
preconditioner, 227
preconditioning, 207, 227

from the left, 227
from the right, 227

preprocessor, 176
pressure

global, 10
principle of virtual work, 49
projection

elliptic, 303, 304
prolongation, 246, 247

canonical, 246
pyramidal function, 62

quadrature points, 80
quadrature rule, 80, 151

accuracy, 152
Gauss–(Legendre), 153
integration points, 151
nodal, 152
trapezoidal rule, 66, 80, 153
weights, 151

quadtree technique, 177

range, 343
reaction

homogeneous, 13
inhomogeneous, 11
surface, 11

recovery operator, 193
red mblack ordering, 212
reduction strategy, 187
reference element, 58

standard simplicial, 117
refinement

iterative, 231
red/green, 181

relative permeability, 9
relaxation method, 207
relaxation parameter, 207
representative elementary volume, 6
residual, 188, 189, 201, 244

inner, 355
restriction, 248

canonical, 247
Richards equation, 10
Richardson method, 206

optimal relaxation parameter, 208
Ritz method, 56
Ritz projection, 304
Ritz–Galerkin method

classical, 67
root of equation, 342
Rothe’s method, 294
row sum criterion

strict, 204, 398
weak, 205, 399

2:1-rule, 181

saturated, 10
saturated-unsaturated flow, 10
saturation, 7
saturation concentration, 12
scalar product, 400

energy, 217
Euclidean, 401

semi-iterative method, 215
semidiscrete problem, 295
semidiscretization, 293
seminorm, 400, 406
separation of variables, 285
set

closed, 393, 402
connected, 394
convex, 394
open, 394

set of measure zero, 393
shape function, 59

cubic ansatz on simplex, 121
d-polynomial ansatz on cube, 123
linear ansatz on simplex, 120
quadratic ansatz on simplex, 121

simplex
barycentre, 119
degenerate, 117
face, 117
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regular d-, 117
sliver element, 179
smoothing

barycentric, 181
Laplacian, 181
weighted barycentric, 181

smoothing property, 239, 250
smoothing step, 178, 242

a posteriori, 243
a priori, 243

smoothness requirements, 20
Sobolev space, 54, 94
solid matrix, 5
solute concentration, 11
solution

classical, 21
of an (initial-) boundary value

problem, 17
variational, 49
weak, 49, 290

uniqueness, 51
solvent, 5
SOR method, 210, 213

convergence, 212
optimal relaxation parameter, 213

sorbed concentration, 12
source term, 14
space

normed, 400
space-time cylinder, 15

bottom, 15
lateral surface, 15

spectral norm, 397
spectral radius, 395
spectrum, 395
split preconditioning, 228
SSOR method, 211
stability function, 316
stability properties, 36
stable, 28
static condensation, 128
stationary point, 217
step size, 21
stiffness matrix, 62, 296, 298

element entries, 76
streamline upwind Petrov–Galerkin

method, 375
streamline-diffusion method, 377
streamline-diffusion norm, 378

superposition principle, 16
surface coordinate, 119
system of equations

positive real, 233

test function, 47
theorem

of Aubin and Nitsche, 145
of Kahan, 212
of Lax–Milgram, 93
of Ostrowski and Reich, 212
of Poincaré, 71
Trace, 96

Thiessen polygon, 262
three-term recursion, 234
time level, 312
time step, 312
tortuosity factor, 11
trace, 97
transformation

compatible, 134
isoparametric, 168

transformation formula, 137
transmission condition, 34
triangle inequality, 400
triangulation, 56, 114

anisotropic, 140
conforming, 56, 125
element, 114
properties, 114
refinement, 76

truncation error, 28
two-grid iteration, 242

algorithm, 242

underrelaxation, 209
unsaturated, 10
upscaling, 6
upwind discretization, 372
upwinding

exponential, 269
full, 269

V-cycle, 244
V -elliptic, 69
variation of constants, 286
variational equation, 49

equivalence to minimization
problem, 50
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solvability, 93
viscosity, 8
volume averaging, 6
volumetric fluid velocity, 7
volumetric water content, 11
Voronoi diagram, 262
Voronoi polygon, 262
Voronoi tesselation, 178
Voronoi vertex, 262

degenerate, 262

regular, 262

W-cycle, 244
water pressure, 8
weight, 30, 80
well-posedness, 16
Wigner–Seitz cell, 262

Z 2–estimate, 192
zero of function f , 342
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