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Rethinking Formalisms in Formal Education

Mitchell J. Nathan
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I explore a belief about learning and teaching that is commonly held in education and
society at large that nonetheless is deeply flawed. The belief asserts that mastery of for-
malisms—specialized representations such as symbolic equations and diagrams with no in-
herent meaning except that which is established by convention—is prerequisite to applied
knowledge. A formalisms first (FF) view of learning, rooted in Western dualist philosophy,
incorrectly advocates the introduction of formalisms too early in the development of learners’
conceptual understanding and can encourage a formalisms-only mind-set toward learning and
instruction. I identify the prevalence of FF in curriculum and instruction and outline some
of the serious problems engendered by FF approaches. I then turn to promising alternatives
that support progressive formalization, problem-based learning, and inquiry learning, which
capitalize on the strengths of formalisms but avoid some of the most costly problems found in
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FF approaches.

Well before the systematic study of science and mathemat-
ics, people were able to fly kites, solve story problems, and
even build bridges and computers. Yet the scholastic experi-
ence seems blind to many of these competencies or willfully
neglectful of them. Instead, in the hierarchically organized,
chronologically graded system typical of formal education,
the teaching and mastery of formalisms are often considered
prerequisite to applied knowledge. Formalisms occupy this
primary role because of deeply held beliefs in education and
in society at large in a formalisms first (FF) view, which
posits that learning and conceptual development proceeds
first from knowledge and mastery of discipline-specific for-
malisms before learners can exhibit competency applying
that knowledge to practical and clinical matters.

Formal structures, or formalisms, admittedly, constitute
a “fuzzy” category, one that does not have clearly speci-
fied boundaries. Under what I term the narrow view of for-
malisms, formalisms are confined to specialized represen-
tational forms that use heavily regulated notational systems
with no inherent meaning except those that are established
by convention to convey concepts and relations with a high
degree of specificity. The regulated conventions are intended
to reduce ambiguity and increase the potential for process-
ing them in systematic and objective ways. Under the terms
formal structure, formal knowledge, formal representations,
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formal theories, formal models, and formalisms fall sym-
bolic structures and inscriptions (Latour, 1987, 1990; Latour
& Woolgar, 1986) from the natural and information sciences
such as mathematical expressions and equations, stoichio-
metric equations, and vector diagrams, Boolean algebra, and
computer programming routines; conventional charts and di-
agrams, such as Cartesian graphs, flow charts, topological
graphs; and standardized tabular representations such as data
tables, matrices, and balance sheets. Members of this cate-
gory all have in common that they are conventionalized and
transcendent “forms” intended to “ascend” or abstract be-
yond the particulars of any material manifestation in order to
facilitate documentation and be “mobile, but also immutable,
presentable, readable, and combinable with one another” (La-
tour, 1986, p. 7). The narrow view of formalisms is strongly
represented in science, technology, engineering, and mathe-
matics (STEM fields). In addition, I consider how a broad
view of formalisms—which includes scientific theories and
models, formal principles, analytic cases, psychological con-
structs and abstract generalizations—contributes to this por-
trait of FF in areas such as the social sciences, humanities,
and teacher education.

My central claim is that the FF view exerts significant
influence on formal education but the view is misguided.
Although the case for FF based on the narrow consider-
ation of formalisms in STEM fields garners strong sup-
port, I also show that the prevalence of FF in non-STEM
fields is also highly suggestive under a broader view of
formalisms.
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I argue that FF is inappropriate for two main reasons.
First, FF supports an inadequate view of conceptual devel-
opment. It improperly privileges formal, scientific knowledge
over applied knowledge and (as I show) inaccurately advo-
cates the introduction of formalisms as a necessary precursor
to understanding and application. Second, FF encourages a
formalisms-only mind-set, where formalisms drive out other
representations and forms of reasoning. I elaborate on each
of these in the coming sections.

Formalisms, it must be acknowledged, are powerful for
their abilities to reify tacit knowledge, highlight deep struc-
ture, and retain and transmit cultural knowledge. However,
care must be taken not to conflate the foundational role for-
malisms play in specifying the structure of a discipline and in
providing conceptual tools for disciplinary experts, with the
developmental needs of students who are initially learning
the knowledge and practices of the discipline. Despite evi-
dence that FF is a flawed view of learning and development
for many students and in many content areas, its influence
on instruction, curriculum design, and educational policy is
far-reaching. The societal roots of FF are deeply ingrained
and operate with little scrutiny.

FORMALISMS AND APPLIED KNOWLEDGE

One of the main ways formal knowledge is privileged is when
itis cast as the driving force of scientific advancement and po-
sitioned as fundamentally antecedent to applied knowledge.
Perhaps the ultimate example of the power of formal, abstract
thought to further advance science is the prevailing account
of Einstein’s (1916) articulation of the theory of relativity.
The theory of relativity is the archetypal scientific revolution
(Kuhn, 1962; Posner, Strike, Hewson, & Gertzog, 1982). As
the account goes, Einstein’s process of scientific discovery
was both intuitive and abstract, drawing profoundly on the
prevailing scientific theories of electromagnetism and iner-
tial frames of reference (Stachel, 1982). Einstein explicated
his theory by drawing on isometries within a Poincare Group
(drawing on the associated algebraic notation), which pro-
vided the formal basis for the Lorentz Transformations that
figured prominently in his thinking. Relativity cut to the heart
of theoretical physics and the current conceptualization of the
nature of the universe. It stood light years apart from the world
occupied by tinkerers and manual laborers. Yet, as the circum-
stances of Einstein’s contributions come to light, the account
of his discovery is being revised, with a greater appreciation
for the role applied knowledge played in Einstein’s think-
ing, calling into question the relationship of theoretical and
applied knowledge in physics and throughout the sciences.

Formal Knowledge and Scientific Advancement

The foundation of Einstein’s groundbreaking theory was to
reframe the question of simultaneity—what it meant for two

events to happen at the same time even when they were not
located at the same place. As it is commonly understood, the
solitary theoretician, Albert Einstein, worked in the confines
of the Swiss patent office by day, and pondered—indeed,
rewrote—Isaac Newton’s widely accepted laws of the uni-
verse. Einstein’s discovery was considered to be exceedingly
abstract, couched deeply in theory and inscribed in the lan-
guage and notation of formal mathematics and physics.

A question that plagued Einstein was how, hypothetically,
clocks at different places could accurately mark simultane-
ous events. In Newton’s universe, the solution for synchro-
nizing distant clocks was simple. It drew on the postulate
of Absolute Time, where each place could be calibrated to
one, common time standard. But young Einstein rejected any
method where a central, “master” clock had to send a signal
to secondary clocks to denote the simultaneity of an event.
Because the secondary clocks could not, in practicality, all be
equidistant, and because light travels at a finite speed, clocks
closer to the central clock would receive the signal and record
the event before the others. To Einstein, it was unacceptable
on practical as well as theoretical grounds that the measure
of simultaneity of an event should depend on proximity to a
central clock. To rectify this shortcoming, Einstein (as cited
in Miller, 1981) offered a gedankenexperiment (or thought
experiment) to investigate legitimate procedures for coordi-
nating time. In his imaginary system, idealized clocks sent
electrical signals along idealized cables. Even in this simu-
lated world, Einstein reasoned that if one took into account
the time for the signal to travel from a central clock to the
different locations of each secondary clock along these ca-
bles (with each cable distance divided by the speed of light),
then the time recorded by a secondary clock would be in-
dependent of its proximity to the master clock. In a further
stroke of insight, Einstein showed that there was no need for
a central clock at all, because all times could be calibrated
relative to their distances (i.e., their times) from each other.

In thinking through simultaneity in this newly proposed
model of a universe of relative time, Einstein drew on an-
other gedankenexperiment, this one addressing the relative
experiences of observers on trains headed toward or away
from a lightning strike, as compared to a stationary observer
positioned along the railway embankment (Einstein, 1916).

The Revisionist Account of Applied Knowledge in
Scientific Advancement

As we learn more about the technological influences on
Einstein’s life and his manner of thinking, we see that far
from the process of pure mentation implied by accounts
of his thought experiments and highly mathematical trea-
tises (Stachel, 1982), the references to trains and systems
of synchronized clocks were not mere abstractions to jus-
tify a formal model (Galison, 2003). As train travel spread
across Europe during the early 20th century, the problem of
calibrating and coordinating time in different towns became
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significant and practical. As a patent officer, Einstein was ex-
posed to applications proposing electro-mechanical ways to
coordinate clocks and reliably schedule trains. To Einstein,
the technological artifacts of the day—systems of electroni-
cally coordinated clocks and traveling trains—were powerful
“things to think with” (M. Resnick, Martin, Sargent, & Sil-
verman, 1996) and to think about. Thus, it may have been
the exposure to these technological influences—to applied
science—that enabled this major advancement of formal the-
ories of physics. This runs counter to the traditional view of
science ingrained in FF, which posits that formal knowledge
is fundamentally prerequisite to applied knowledge.

Such counterexamples are abundant, however, and span
the range of scientific study. In Thing Knowledge, Baird
(2004) provided one such treasure trove, reviewing the his-
tory of a range of technological advancements that each rep-
resent “materialist conceptions of knowledge” (p. 1), rather
than formal conceptions, which present theory, offer predic-
tions, and “do epistemological work™ (p. 17). One illustra-
tive example is Baird’s account of Michael Faraday’s mate-
rial and literary contributions to our basic understanding of
the physical world. In 1821, Faraday constructed a device
that produced rotary motion by adjusting current that var-
ied a magnetic field in synchrony with the rotor, effectively
pulling the rotor forward throughout the cycle. Faraday had
invented the electromagnetic motor, a cornerstone of mod-
ern technology. In so doing, Faraday revealed fundamental
knowledge about all forms of electromagnetic phenomena,
including light. He also identified important aspects of the
conservation of energy, as electricity was converted to me-
chanical motion. Notably, he accomplished all this without
deriving his design from formal theories or equations. Indeed,
the formalized scientific theories and mathematical formulae
trailed his discovery by years. To disseminate his scientific
work, Faraday actually shipped prebuilt versions of the motor
the way scholars today share reprints and digital files of their
scientific papers.

As Baird and others (e.g., Cajas, 2001; Meli, 2006) show,
technology and applied knowledge can and often does pre-
cede the development of formal, scientific theory. Yet the sci-
entific community, and society more generally, seldom give
the technological advancements equal billing with codified
scientific text and formalisms. Despite evidence of the power
of material invention to advance scientific theory, we gen-
erally accept the FF view that technological advancements
are born from theory, and to be legitimate they must be de-
rived from formal knowledge represented in symbolic and
specialized notation.

FORMALISMS IN FORMAL EDUCATION

In education the privileged role of formalisms and formal
knowledge plays out along similar lines, as a belief that to
learn a specific content area one needs to first master the for-
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malisms for a domain before one can be expected to effec-
tively apply that domain knowledge. Laurillard (2001) made a
similar observation in undergraduate education in the United
Kingdom but appears to draw on something akin to the broad
view of formalisms mentioned earlier, when she conceptual-
ized the distinction between formal representations and the
things they reference. She included in her account all things
that are descriptions of primary experiences—those things
that mediate our access to the experiences and objects them-
selves and, consequently, the ways we process them. As with
the narrow view, this view, too, acknowledges the abstract
nature of formalisms with respect to the phenomena they
purport to describe. Laurillard made the observation that the
bulk of higher education students’ formal education is “act-
ing on descriptions of the world” (p. 55) rather than observing
or acting directly on the world. In her view, formal educa-
tion diverges from the everyday or practical experiences of
students (Laurillard calls these first-order experiences) and
focuses instead on academic (second-order) descriptions of
experiences and the knowledge and skills students need to use
these formal descriptions of the world in scholastic discourse
(Gee, 2004). Drawing from the broad view of formalisms,
Laurillard (and Gee, 2004, as well) would include in her
critique of FF all linguistic and visual forms that mediate
access to the directly perceived world, including historical
accounts and the use of analytic cases, and formal theories
and principles.

Beliefs about the primacy of knowledge of the formalisms
of a domain as prerequisite to applied domain knowledge
seem to be particularly prevalent in STEM fields and STEM
education. It is here where we are most likely to see FF based
on the narrow view of formalisms as conventionalized nota-
tional systems with no inherent meaning, and it is in these
STEM domains where there is a compelling body of evidence
that FF is widespread and suboptimal. However, I show sup-
port that FF views are present in the humanities and social
sciences, as well, where the broader view of formalisms more
aptly applies.

As an educational psychologist who studies teaching and
learning, I am interested in the implicit beliefs that those of
us in education, and in society more generally, have about
how people learn—particularly how people develop a con-
ceptual understanding of new content (Kalchman & Nathan,
2001)—and how these beliefs shape our explicit prescriptions
for how learners should be taught within formal education
settings.! The role of formalisms in education has gained little
critical attention yet has great implications regarding the aims
of public education and the manner in which policies and
practices for education are developed and implemented. In
particular, if one believes that disciplinary knowledge obtains

IThe claims in this article are about formal educational settings. Informal
and extracurricular education may follow different guidelines (e.g., L. B.
Resnick, 1987) and tend to treat formalisms in a different manner (e.g.,
Rose, 2004).
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its structure from a foundation built on discipline-specific for-
mal representations of scientific theories and mathematical
laws, it is natural to conceptualize learning and instruction
as primarily directed toward acquiring and exhibiting knowl-
edge of those formalisms.

In the remainder of this article, I set out to further artic-
ulate the FF view and examine beliefs and practices for the
role of formalisms. With math education as my initial con-
text, I show how the FF view is manifest in teachers’ beliefs
about learning and in curricular organization, though these
pedagogical and curricular views actually contradict aspects
of students’ patterns of performance. I then show that FF
can be observed in a wide array of education content areas
beyond math, including physics, chemistry, the nursing and
engineering professions, language arts, and even teacher ed-
ucation. I argue that the FF view arises out of an apparent
conflation between the power and utility of formalisms to do
discipline-specific work, on one hand, and the processes by
which learners are expected to develop disciplinary compe-
tencies in the first place. After identifying some of the more
serious problems with an education program that strictly fol-
lows a FF view, [ review promising research on approaches to
learning that support progressive formalization and project-
based learning by building upon students’ applied knowl-
edge and experiences. I conclude by reflecting on the ways
beliefs about knowledge development and learning influence
educational practices and characterize the aims of formal
education.

THE FORMALISMS FIRST VIEW

Widely adopted accounts of scientific advancement rest on a
deep-seated view of the pre-eminence of formalized knowl-
edge, and the derivative nature and subordinate status of ap-
plied knowledge (Baird, 2004; Cajas, 2001; Stokes, 1997). In
short, FF posits that conceptual development proceeds from
the formal to the applied. In this section I examine the sources
of support for the FF view and its influence on education. I
show how this general perspective appears in different forms
across several curriculum content areas and look at its per-
tinence and limitations for describing student performance
and conceptual development.

Support for the Formalisms First View

In Western culture there is a tendency to elevate formal rea-
soning and “pure” mathematics and science above that of the
practical and physical. The philosopher John Searle (1990)
placed this view in the context of Mind-Body Dualism, where
the mind is regarded as distinct from biological entities, as
“something formal and abstract, not a part of the wet and
slimy stuff in our heads” (p. 31). Dualism, along with ac-

counts of scientific advancements such as Einstein’s discov-
ery, is found throughout the history of Western thought.

Roots of the formalisms first view. Scientific inquiry,
from its earliest expression during the classic Greek era,
has been separated from practical use. Traditional Western
philosophy, from Plato (c. 400 BC) to Hume (c. mid-18th
century), considered the “detached theoretical viewpoint” to
be superior to “everyday practical concerns” (Dreyfus, 1991,
p. 6). Inquiry was elevated to its highest form when it was
purely for the pursuit of knowledge and offered no direct
application (Stokes, 1997). Plato (trans. 1992) considered the
“philosophical arts” in higher regard than the “manual arts.”
Consequently, the elite of the Hellenic and Greco-Roman eras
held the use-oriented engineer and technologist in contempt
(Stokes, 1997). Manual labor was relegated to those of lower
social status, often slaves. Reflecting on this classic view of
scientific practice, Baird (2004) noted,

To do proper epistemology, we have to “ascend” from the
material world to the “Platonic world” of thought. This may
reflect Plato’s concern with the impermanence of the mate-
rial world and what [Plato] saw as the unchanging external
perfection of the realm of forms. If knowledge is timeless, it
cannot exist in the corruptible material realm. (pp. 5-7)

Even in modern times, technology has been viewed as sub-
ordinate to pure research, often regarded as an outgrowth
or application of scientific knowledge (Barnes, 1982; Cajas,
1998). It was most clearly articulated in a report submit-
ted to the President of the United States entitled “Science
The Endless Frontier” in July 1945 by Vannevar Bush, the
director of the U.S. Office of Scientific Research and De-
velopment (Stokes, 1997). Bush produced a lasting blueprint
for America’s postwar policies governing science research
and for making funding decisions. In statements that clearly
resonated with the scientific community at the time, Bush
coined the term “basic research” and defined it as research
“performed without thought of practical ends” that produces
“general knowledge and an understanding of nature and its
laws” (Stokes, 1997, p. 3). To Bush, basic research was pre-
eminent, the driving force behind the major advances in tech-
nology and the pacesetter of technological progress (Stokes,
1997). When the National Science Foundation was founded
in 1950, it adopted this essential view and used it to guide
decisions for allocating scarce resources to fund the advance-
ment of science (as cited inStokes, 1997).

Empirical support for formalisms first view. Recent
research on learning has provided some empirical support for
FF. There are circumstances where realistic depictions detract
from the core idea and hamper transfer (like Baird’s “corrupt-
ible material realm”). In contrast, formal representations of
mathematics concepts are detached and “incorruptible,” re-

maining true to the ideas at hand, thereby supporting transfer
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more readily than concrete instances. For example, when con-
crete objects and ornate representations are used to stand for
things symbolically, their perceptual properties detract from
their representational roles. In a rich line of research, De-
Loache, Uttal, and colleagues (e.g., DeLoache, 1995, 2000;
Uttal, Liu, & DeLoache, 1999) have shown that children
struggle with “dual representations” where they must treat
entities as both objects and symbolic depictions of objects.
Scale models, such as dollhouses or spatial layouts, prove
to be more effective as representations of the things they are
intended to depict when the perceptual salience of the scale
models is reduced. In a similar vein, McNeil and colleagues
(2010) showed that mnemonic abbreviations in mathemat-
ics (like b for the cost of brownies; see Kiichemann, 1978)
can hinder students’ interpretations of algebraic expressions
because their salience invites spurious associations. Those
presented with nonmnemonic symbols, such as X and Y or
Greek letters, were more likely to provide structural interpre-
tations of the expression.

Another point favoring formalisms is that representa-
tions that show less resemblance to the things they are pur-
ported to stand for can mediate superior transfer. Kaminski
and colleagues demonstrated that when using an abstract or
“generic” instantiation of the concept and the rules that gov-
ern it, both undergraduate students and young children show
superior transfer than those presented with the concept and
its rules in concrete form (Kaminski, Sloutsky, & Heckler,
2008). With minimal training (Experiment 1 in Kaminski,
Sloutsky, & Heckler, 2009b), kindergarteners exposed to ab-
stract representations of proportions (the proportion of black
circles among black and white circles) applied the concept
to novel objects with much greater accuracy, whereas those
presented with the concrete objects (proportion of images of
cupcakes with and without colorful sprinkles and cherries)
operated at chance levels. In a second experiment, kinder-
garteners given the abstract circles were much more success-
ful at applying numerical fraction labels to novel object pro-
portions than those who learned from the concrete instances.
Surveying their findings over several studies, Kaminski et al.
(2009b) argued that “irrelevant perceptual richness of some
concrete instantiations can potentially hinder both learning
and transfer” (p. 154; also Uttal, O’Doherty, Newland, Hand,
& DeLoache, 2009). On this basis they concluded,

If a primary goal of learning abstract concepts such as math-
ematical concepts is the ability to recognize novel instantia-
tions and successfully transfer knowledge, then educational
material should maximize the likelihood of attending to re-
lational structure and minimize the likelihood of diverting
attention primarily to the superficial. One way of achieving
this is to present mathematical concepts via generic formats,
such as traditional symbolic notation. (p. 154)

However, as I later address, some scholars have critiqued the
theoretical basis of the work as well as its implications for
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education (e.g., De Bock, Deprez, Van Dooren, Roelens, &
Verschaffel, 2011; Jones, 2009).

Formalisms First View in Educational Practice:
The Case of Algebra

Studies such as those conducted by Kaminski and colleagues
offer an important perspective on the relative strengths and
weaknesses of concrete and abstract representations. To
gauge the impact of FF on education more fully, we should
also look for evidence of its pervasiveness in scholastic set-
tings. If FF is prominent, we can expect to find it shaping the
perceptions of teachers, influencing the design of curricula,
and predicting the performance patterns of students.

FF views among mathematics teachers. Cobb,
Yackel, and Wood (1992) lamented the divisions that stu-
dents confront between the classroom and out-of-school set-
tings. They noted, “It is only after mathematical structures
have been presented to students in finished form that they
are taught to apply this knowledge to situations that bear a
closer resemblance to those that they might encounter out-
side the mathematics classroom” (p. 13). To understand the
prevalence of the FF view within education, consider data
from math teachers asked to make predictions about stu-
dent performance on problems that were closer or further
from abstract, symbolic formats. A series of studies looked
at whether teachers preferred a learning trajectory that priv-
ileged formal equations as an entry point—consistent with
the FF view—or were more likely to favor beginning with
more applied, concrete tasks such as story problems before
focusing on formalism. In one study (Nathan & Koedinger,
2000c), high school teachers (N = 67) were asked to predict
how high school students who had successfully completed 1
year of algebra instruction would perform on a set of items
that were more abstract (equations) or more concrete (story
problems and word equations; see Table 1). The data on stu-
dent performance are presented somewhat later in this article.
Of interest here are the types of items teachers were asked
to evaluate. As shown in the examples of Table 1, arithmetic
and algebra problems can look structurally similar but differ
by the location of the unknown quantity. For algebra prob-
lems, students are asked to reason about unknown quantities
in relation to other quantities (the second row of Table 1). In
contrast, arithmetic problems provide the unknown value by
itself (top row).

In addition to the arithmetic-algebra distinction, problems
presented to teachers varied in their presentation formats, as
shown by comparing across the columns of Table 1. Symbolic
problems rely on formal syntax and algebraic notation. Verbal
problems, in contrast, use words rather than formal symbol
structures and can further be subdivided into story prob-
lems that include a situational context and word-equations
that verbally describe the relations found in symbolic equa-
tions without an explicit context. This 2 (rows) x 3 (columns)



Downloaded by [University of Wisconsin - Madison] at 07:16 11 August 2012

130 NATHAN

TABLE 1
A Sample of the Structurally Matched Problems Given to Teachers to Elicit Their Expectations of Student Arithmetic and
Algebraic Problem Difficulty, Organized by the Presentation Format (Columns) and the Position of the Unknown Value (Rows)

Verbal Problems

Symbolic Problems

Presentation format — Story
Position of the unknown value |
Result-unknown (arithmetic)

much per hour does Ted make?
Start-unknown (algebra)

How much per hour does Ted make?

When Ted got home from his waiter job, he took Starting with 81.90, if I subtract
the $81.90 he earned that day and subtracted
the $66 he received in tips. Then he divided
the remaining money by the 6 hours he
worked and found his hourly wage. How

When Ted got home from his waiter job, he
multiplied his hourly wage by the 6 hours he
worked that day. Then he added the $66 he
made in tips and found he earned $81.90.

Word-Equation Equation

Solve for X: (81.90—66)/ 6 =X
66 and then divide by 6, I get a

number. What is it?

Starting with some number, if | Solve for X: 6X + 66 = 81.90
multiply it by 6 and then add
66, I get 81.90. What number

did T start with?

design allowed Nathan and Koedinger (2000c) to investigate
how differences between formal equations and concrete word
problems affected teachers’ predictions about student per-
formance and whether these differences were evident across
both arithmetic and algebraic items. Other than these differ-
ences, items with different formats were carefully matched
for their underlying quantitative relations.

None of the item distinctions discussed here were made
explicit to the teachers during their prediction task, yet teach-
ers were clearly sensitive to them. Eighty-four percent of high
school math teachers ranked the arithmetic level problems
(top row of Table 1) as being more accessible to students
than the algebra (start-unknown) problems. Furthermore, in
keeping with the FF view, teachers consistently ranked the
symbolic problems as easier for students than the verbal story
problems or word equations, regardless of whether they were
arithmetic or algebraic. In contrast, only 12% expected that
equations would be harder for students than verbal problems.
When looking specifically at the algebra items, more than
75% of the teachers expected high school algebra students
to perform better on algebra equations than algebra word
equations or algebra story problems.

Clearly, teachers shared the FF view: Formalisms were
perceived as a natural entry point for algebraic reasoning, pre-
ceding competency in solving word problems. Applying alge-
bra concepts to verbal problems was expected to be much less
accessible to algebra students. Notably, this general pattern is
widespread among practicing teachers (Nathan & Koedinger,
2000a; Petrosino & Gordon, 2011) and preservice teachers
(Nathan & Petrosino, 2003; Petrosino & Gordon, 2011) in
different regions of the United States.

When asked to justify their predictions to the problem-
ranking task (Nathan & Koedinger, 2000a, 2000c; Nathan
& Petrosino, 2003), both in-service and preservice teachers
stated that symbolic reasoning was more basic and “pure”
than the verbal problems and provided the most natural way
to introduce arithmetic and algebraic problem solving. Echo-

ing Kaminski and colleagues, one teacher stated, “[The story
problem] provides a scenario that seems more likely to dis-
tract or confuse students.” Teachers also posited that skill in
solving equations was a necessary prerequisite for algebra
“applications” such as solving story problems.

FF views in algebra textbooks. The FF view is appar-
ently well ingrained in practicing and prospective teachers.
Another area of potential influence in education is the design
of school curricula. Textbooks influence what mathematics
is taught and how it is taught (Huntley, 2008; Jacob, 2001).
In a study of a national sample of science and mathematics
teachers (Weiss, Pasley, Smith, Banilower & Heck, 2003),
researchers found that

textbooks are second only to teachers’ knowledge, experi-
ences, and beliefs in the frequency of influence on instruc-
tion. The majority of teachers (71 percent nationally) rely
to some extent on the textbook/curriculum program in their
school or district in making decisions on how to teach. (p. 93)

Textbooks are important societal artifacts to examine in
this regard because they reveal institutionalized views about
learning and conceptual development that may be other-
wise implicit but are subsequently reified in specific design
choices regarding curriculum organization and sequencing.
A corpus analysis of 10 widely adopted commercial
algebra textbooks (including more than 1,000 curriculum
sections), chosen from the adoptions lists of teachers involved
in one of the ranking studies just cited, showed that new
material was most often introduced first through symbolic
formalisms, later followed by story problem solving as appli-
cations of the new material (Nathan, Long, & Alibali, 2002).
Eight of 10 textbooks showed a statistically significant prefer-
ence of presenting problems symbolically prior to presenting
problems in verbal form. This was consistent with what the
researchers termed the symbol precedence view of algebraic
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development, which, like FF, posits that students cannot gain
mastery with applied tasks such as story problem solving
until they first demonstrate mastery with the formalisms—in
this case, algebra equations. The two textbooks that did not
show the symbol precedence view were both reform-based
texts from the University of Chicago School Mathematics
Project series. The authors asserted that “these results estab-
lish the strong preferences of the publishers of textbooks in
the sample to introduce algebraic activities for new learners
in a symbolic form and then move learners on to verbal
problems as applications and extensions” (Nathan et al.,
2002, p. 13).

Since the publication of that original corpus analysis of
algebra textbooks, education reform has grown. Many text-
books now provide contextualized and applied supplemen-
tary materials online that may not align with the FF patterns.
Although online materials emphasizing applied knowledge
may be on the rise, their supplementary status may further
affirm the FF view: They are important, but not sufficiently
so as to alter the core curricular sequence.

The original textbook study also found that the symbol
precedence pattern was more prevalent among traditional
math texts and was not more likely than chance to occur in
reform textbooks. It is possible that reform textbooks with
alternative sequencing patterns now make up a more substan-
tial portion of the market than they did when the initial study
was conducted 10 years ago. One relevant issue is the level
of market penetration of reform textbooks; if they are radi-
cally different but affect a small segment of the market, then
the overall impact is likely to be small. Here it is quite diffi-
cult to get reliable data as sales and adoption levels remain
closely guarded information among publishers. Estimates by
insiders put the best selling middle school math curriculum
at about one third of the market (Anonymous, personal com-
munication, December 7, 2010), which is substantial but not
domineering. Curriculum adoptions at the elementary and
secondary grade bands are known to be much more varied,
with no one curriculum—reform or traditional—dominating
these markets (Madison Metropolitan School District, 2009).

New, and as yet unpublished, research has examined pat-
terns among more recent algebra textbooks. In this study,
Sherman (2010) extended the line of research initiated by
Nathan and colleagues by looking at both the student text-
book organization of written exercises in each section of
each book (as done in Nathan et al., 2002) and the recom-
mended exercises as directed in the teacher versions of the
textbooks. Essentially, the teacher editions guide teachers on
which exercises to assign (or do in class) and in which order.
Sherman compared “conventional” (n = 5) with National
Science Foundation—funded, “standards-based” (n = 5) cur-
ricula spanning from 1995 to 2008. Two of his findings are
relevant to the current discussion. First, reform textbooks in
the newer sample did not exhibit the symbol precedence pat-
tern, showing they are not guided by the FF view, replicating
Nathan and colleagues’ earlier finding. Second, conventional

FORMALISMS IN FORMAL EDUCATION 131

textbooks operating in the current standards-based climate
fail to show the symbol precedence pattern in the student
textbooks (at odds with the older study) but do show the
symbol precedence pattern significantly above chance lev-
els when considering the recommended items in the teach-
ers’ editions. Sherman’s analysis noted that student editions
seem to “front” the exercises with verbal and applied prob-
lems, but these are actually passed over or targeted for later
consideration in the publishers’ teacher editions. Sherman
concluded,

Thus, while the structure of the written exercises as they
appear in conventional student texts seems to have changed
over the last ten to fifteen years as described above, a symbols-
first approach is still prevalent with respect to how authors
of these curricula intend them to be used by teachers. (p. 27)

Taken together, these studies of math textbooks suggest that
reform movements influence curriculum designs, yet FF
views still persist and remain widespread.

FF views among algebra education researchers.
Although mathematics teachers and textbook designers may
operate with arcane views of learning, mathematics educa-
tion researchers are well informed by contemporary learning
theory. If researchers exhibit patterns such as the symbol
precedence view found in teacher responses and textbook
organization, this suggests that such views are deeply en-
trenched within the education community.

An investigation of researchers’ views (Nathan &
Koedinger, 2000c) used the ranking task presented to teach-
ers. The researchers who participated (N = 35) were all
actively engaged in scholarship regarding algebra learning
and instruction. They were dispersed throughout the world
and were all members of the Algebra Working Group of the
Psychology of Mathematics Education professional organi-
zation, through which they were recruited.

As with the teachers, a majority of the algebra researchers
(66%) ranked start-unknown (algebra) problems as consis-
tently more difficult for students than arithmetic problems.
Researchers also ranked symbolic equations at the arithmetic
level and the algebraic level as easiest for students 31% of the
time—giving it the strongest consistent ranking among the
six problem types—and nearly half supported a developmen-
tal trajectory placing equations as the easiest among algebra
problems. Looking across the teacher and researcher data,
the authors concluded that “teachers and researchers who are
examining a problem for its level of difficulty make their
decisions on the basis of the question ‘How far along the de-
velopmental trajectory from symbolic arithmetic to algebra
story-problem solving has a student progressed?”’ (p. 182).

FF patterns in algebra student performance. Hav-
ing observed the prevalence of the FF view among math
teachers, algebra researchers, and in algebra curriculum
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design, it is clear that FF has a notable presence in math
education. However, if FF describes students’ algebraic
development, then students should show a performance
advantage for formal, symbolic representations early in their
algebraic reasoning, prior to demonstrating competency in
applied tasks like story problem solving.

Performance on items that fit the six categories in Table 1
has been examined in a series of experimental studies. Across
the board, researchers have found that arithmetic problems
are easier than algebra (start-unknown) problems (Koedinger
& Nathan, 2004; Nathan & Kim, 2007), as expected from ear-
lier research (Carpenter & Moser, 1983). A more direct test
of the FF view, however, compares performance on formal
equations with that of mathematically matched word equa-
tions and story problems. In one study (Koedinger & Nathan,
2004, Experiment 1), algebra students in an urban high school
(N = 76) showed superior performance (about 64% correct)
solving the verbally presented story and word-equation prob-
lems than symbolic equations, a finding that runs counter to
that predicted by FF. The higher performance on verbal prob-
lems has been replicated in several other studies, including
those with samples of other high school students (N = 171
in Koedinger & Nathan, 2004, Experiment 2), middle school
students (N = 90 in Nathan et al., 2002; N = 372 in Nathan
& Kim, 2007), remedial community college (N = 153 in
Koedinger, Alibali, & Nathan, 2008), and high-performing
university students (N = 65 with mean math SAT score of
719 in Koedinger et al., 2008) among others (see Knuth, Al-
ibali, McNeil, Weinberg, & Stephens, 2005; and Weinberg,
2004, for additional replications.)

Despite formal instruction in prealgebra and algebra,
high school and college students still often do not know
what to do with symbolic equations. Across these stud-
ies, students frequently gave no response to symbol prob-
lems (high school students gave no response to 32% of
symbolic equations, double that of other representations),
suggesting a basic failure to comprehend the meaning of
the formalisms (Koedinger & Nathan, 2004). When stu-
dents directly solve equations, their attempts are highly er-
ror prone and their likelihood of success significantly lower
than for the strategies elicited by word equations and story
problems.

Contrary to the expectations within the FF view, a devel-
opmental analysis of student performance showed that it was
extremely rare for a student to solve arithmetic and algebraic
equations without also demonstrating success solving verbal
problems (only 1 in 76 students in Experiment 1, and 1
out of 171 in Experiment 2 showed this pattern; Nathan &
Koedinger, 2000c). Furthermore, the developmental analysis
showed that algebra students were far more likely to solve
symbolic problems correctly if they also correctly solved
word equations and story problems. Together, these findings
support a developmental trajectory that places primacy
with applied story problem solving before demonstrating
competency with algebraic formalisms—in stark contrast

to the FF views evident among teachers, researchers, and
curriculum designers.

Prevalence of the Formalisms First View in Other
Content Areas

The symbol precedence view in mathematics education is
one of many approaches that fit within the formalisms first
view of conceptual development. If this were its only man-
ifestation, FF would be notable for math education but of
little importance to education more generally. In this section,
I set out to show that FF patterns of curriculum design and
instruction can be found throughout education. In science
education, for example, formal symbols and models are of-
ten taken as primary, and their understanding as essential for
students’ later success with applied problem solving, as well
as the transfer of that knowledge for understanding technol-
ogy, engineering, and other scientific application areas (e.g.,
Bloomfield, 1998/2004; Bond-Robinson, 2002; Cajas, 1998,
2001). Up until now, the phenomenon has gone largely un-
investigated, yet there is a convergence of evidence across a
number of content areas worth examining, including analyses
of textbook organization and curriculum sequencing, student
performance measures, and student responses to surveys.

FF views in physics textbooks. Physics is an area
where the preeminence of symbolic representations is well
established. A comparative analysis of two college-level
introductory physics textbooks (Nathan, 2003) highlights
the FF approach as it plays out in curriculum organization.
In one of the most widely adopted, traditional textbooks in
the United States (Giancoli, 2004), physics topics were ex-
amined for the conceptual chain leading up to the focal topic
for a unit. The pattern is consistent with FF. For example,
the topic of hydraulics begins with the introduction of the
concept of density (D), which is presented first in narrative
form and then as the formal relation between mass (m)
and volume (V), D = m/V. The instructional sequence then
moves from density to the concept of pressure, represented
analytically as the amount of force (F) per area, (A), by the
equation P = F/A, and, diagrammatically, as an idealized
cube of fluid with arrows (idealized forces) pointing in from
all sides. Pascal’s Principle is then given, noting that the
pressure applied to a confined fluid increases the pressure
throughout the entire sample by the same amount (Giancoli,
2004, pp. 279 ff.). Next, the concept hydraulics is discussed,
first quite broadly and then, by example, as the underlying
principle that describes hydraulic lifts, brakes, and the
function and design of large hydraulic elevators. Hydraulic
elevators are presented as the outgrowth and application of
scientific theory of the science of hydraulics. This analysis
reveals a general structure starting with formal symbols and
equations, moving on to worked examples and illustrations
of idealized principles, followed then by the application of
the formalisms to technological innovations. The pattern,
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prototypical of the FF approach, is common throughout this
and other popular and influential textbooks, such as Sears and
Zemansky s University Physics with Modern Physics (Young,
Freedman, & Ford, 2007), which is now in its 12th edition.

In contrast, a less widely adopted cadre of reform text-
books uses application areas to motivate physics instruc-
tion. Typically in this approach, the author introduces one
or more technological innovations or application areas and
shows how the behavior of these various applications relies
upon common scientific principles. The volume that was an-
alyzed is Bloomfield’s (1998/2004) college textbook, How
Things Work: The Physics of Everyday Life. Here, the topic
of hydraulics appears in a chapter on elevators. The concep-
tual chain leading up to this chapter starts with the behav-
ior of water faucets and water hammer (the loud noise you
sometimes hear in your water pipes), vacuum cleaners, air-
planes and Frisbees, bicycle gears and freewheels, brakes,
pneumatic tires, fuel tanks, pumps and turbines. Hydraulics
and the physical laws of pressure are identified as common
principles across a range of technologies.

Of interest, the aims of these two approaches to physics
instruction have much in common. For example, the quan-
titative problems at the end of the respective chapters are
quite similar. Yet they embody sharply contrasting underlying
models of conceptual development—the trajectory by which
students are expected to attain these goals. In the FF trajec-
tory in the traditional textbook, students first learn general
laws of fluids steeped in the formalisms of algebraic equa-
tions and then learn how the laws can be applied to specific
problems and devices. The emphasis is on deductive learning
and application of formalisms to concrete situations. In the
alternative approach, students first learn about the behavior
and design of specific, familiar devices that exemplify a com-
mon set of physical relationships. The physical laws arise as
generalizations of common principles that model (or govern)
these behaviors. The relevant formalisms are then developed
inductively, as instantiated across a range of applications.

Student performance data in physics. With FF-
based curricula, what is the impact on student performance?
In a study of beginning college physics students conducted
over 5 successive years (N = 408, with annual sample sizes
ranging from 74 to 96), Meltzer (2005) looked at students’
facility with vector diagrams, which he compared with per-
formance on matched verbal problems. Although arrow dia-
grams” and other visual representations can exhibit concrete
qualities, vector diagrams are a specialized notational system
that fit within my definition of formalism in that they employ
conventions to map generic objects (circles and arrows) to
represent any of a number of possible entities (e.g., electrons,

2In unpublished research, Kurt VanLehn found that participants in his
studies on learning systems dynamics treat stock and flow diagrams as
abstract representations rather than in a concrete or iconic manner (personal
communication, June 28, 2011).
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planets) and forces (gravity, electromagnetism) as described
in a range of physics problems. Meltzer found that students
were more likely to correctly solve conceptual, decontextu-
alized physics multiple-choice problems involving Newton’s
Third Law (“For every action, there is an equal and oppo-
site reaction”) when those questions were presented verbally,
without the formal notation, as opposed to using matched
items with vector diagrams. Meltzer found that error rates
were significantly higher on the formal versions of the prob-
lems both at pretest and on students’ final (end-of-course) ex-
aminations. A significant disadvantage for formalisms-based
problems was found for the population as a whole. It even
held for the subset of students enrolled in the calculus-based
physics course (n = 240), even though these students had
greater mathematics training than the sample as a whole and
their relative performance levels on each item were much
higher than the sample means.

Similar results were reported by Heckler (2010). Intro-
ductory college physics students showed significantly lower
performance when they were prompted to solve standard
problems using a formal force diagram method compared
to students with no prompting. Analyses of solution strate-
gies and errors revealed that, when using force diagrams,
users made errors that revealed their poor understanding of
the formalisms themselves, whereas students in the control
group used intuitive methods that were more meaningful and
more reliable. In Sherin’s (2001) terms, the students in both
the Meltzer and Heckler studies failed to understand what
the formalisms “say.” Curricula may follow the FF approach,
but if formalisms are poorly understood, then little advance-
ment toward problem solving and other applications can be
expected.

FF view in chemistry instruction. Chemistry is a dis-
cipline deeply rooted in empirical inquiry. Yet here, too, the
influences of FF are evident. An analysis of a typical un-
dergraduate, general chemistry textbook revealed that the
underlying model of learning was based centrally on the
assumption that all students understood the symbolic nota-
tion of chemical elements and processes as prerequisite to
“doing” chemistry (Bond-Robinson, 2002). Half of all topic
explanations required understanding some form of symbolic
notation. Of those, 60% required understanding symbols and
notational conventions unique to chemistry, whereas 40% re-
quired understanding of mathematical symbols to make the
explanations comprehensible. Only 6% of topic explanations
in the textbook used primarily verbal descriptions.

Students’ views of FF in chemistry education. How
do undergraduates respond to this formalism-heavy ap-
proach to chemistry education? Research findings show that
learners struggle with information presented through formal
notation. A study using structured surveys of undergraduate
science majors (N = 600) in their first semester of chemistry,
along with interviews of their teaching assistants, revealed
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that students had tremendous difficulty understanding
and properly using formal symbols to stand for chemical
elements or to model chemical processes (Bond-Robinson,
2002). Students rated formal explanations at the atomic level
as less useful than explanations given at the more applied
level. In the curriculum, atomic theory and formal chemistry
notation were generally presented as precursors to chemistry
applications, yet students overwhelmingly reported that
these formal representations and principles interfered with
their ability to understand the later material.

FF view in professional education. Formalisms are
also commonly used in professional education and appear
at times to serve a role that is not merely a formalisms-first
view but a more stringent formalisms-only view of learning.
For example, novices in nursing encounter formalisms when
they are trained to represent complex procedures and poli-
cies. In a study of more than 100 nursing students and expert
nurse practitioners, Benner (1984) showed how formalisms
(such as premedication procedures and formal pain rating)
were often seized upon by novices because they recognized
the formalisms as a fundamental part of their training. Yet
Benner reported that the formalisms often obscured learning
and interfered with novices’ and advanced beginners’ abili-
ties to carry out the practices correctly. For example, nursing
students and instructors frequently encountered knowledge
and practices that could not be expressed with existing for-
mal models, theories, or representations. Likewise, formal
knowledge did not translate into practical actions that nurses
needed to take in order to capitalize on theoretically pos-
tulated input—output relations (Benner, Tanner, & Chelsea,
2009).

The study of nursing education has also documented a
climate that devalued knowledge and practices that could
not be formalized (the formalisms-only view), regardless of
their effectiveness for treating patients. An additional study
of the role of formal models and representations in func-
tioning surgical units (Gordon, 1984) revealed other short-
comings of the formalisms, such as medication flow rates,
used in clinical practice, including that novice nurses would
inadvertently equate formal models with reality, rather than
seeing them as representations of reality (reification), and
that formalization led to overconformity as diverse concepts
and procedures were forced into the same categories in order
to fit with the prevailing formalisms. In reevaluating the state
of clinical training, Benner and colleagues (2009) have noted
most recently, “Classroom presentations of ‘nursing knowl-
edge, science, theory, and technology’ have been assumed to
be the ‘blueprint’ or abstract knowledge to be literally ‘ap-
plied’ in the clinical setting” (pp. 383—-384) even while the
abstractions fall demonstrably short in accurately describing
the clinical situation and guiding clinician’s behaviors.

The FF issue has long been a source of concern for
professional training programs more generally. The Nobel
laureate Herbert Simon (1969/1996) observed in the early

post-Sputnik era that “engineering schools gradually became
schools of physics and mathematics; medical schools be-
came schools of biological science, business schools became
schools of finite mathematics” (p. 111). As Cajas (1998)
noted, this was still true 30 years later:

The way in which future technologists (e.g., engineers or
medical doctors) are generally prepared is the following:
Students first take science classes with the assumption that
such classes can be applied to specific technological prob-
lems (e.g., engineering problems, medical problems). The
justification of taking science classes (physics for example in
the case of engineers or physiology in the case of medicine)
is that these classes are the bases of their future professional
work. (p. 5)

Engineering education commonly reveals this general FF ap-
proach, even as it goes through substantial reform. The cen-
trality of formal math and science is well established in engi-
neering (National Academy of Engineering, 2010; National
Research Council, 2006), but its developmental primacy for
beginning engineers is presumed. Professional training pro-
grams typically require that students exhibit mastery with
formalisms from these content areas before they gain access
to discipline-specific studies (mechanical, chemical, electri-
cal, biomedical engineering, etc.) or to the rich design activ-
ities that make up much of advanced engineering studies and
workplace practices (Guzdial et al., 2001; Klingbeil, Mercer,
Rattan, Raymer, & Reynolds, 2004; McKenna, McMartin,
& Agogino, 2000). Design is frequently regarded as “both
the cornerstone and capstone of the engineering curriculum”
(Sheppard, 2001, p. 440). Yet one of the barriers for learn-
ing design, as noted by Sheppard (2001), is the early and
continued dissociation of formal methods of analysis from
engineering design. In the current reform climate, some have
successfully argued that the 1st-year experience for engi-
neering students should be built around project-based de-
sign activities (Ambrose & Amon, 1997; National Academy
of Engineering, 2005; Sheppard & Jenison, 1997a, 1997b),
though this is being adopted in a limited fashion.

Even within this reform climate, analyses of high school
curricula and classroom instruction, admissions require-
ments for university programs, and most freshmen experi-
ences still structure engineering education from within an FF
framework (Prevost, Nathan, Stein, Tran, & Phelps, 2009;
Stevens, O’Connor, & Garrison, 2005). For example, re-
search from the Center for the Advancement of Engineering
Education (Stevens et al., 2005) reports that 1st-year engi-
neering students typically must “prove themselves” through
a series of mathematics and science courses that present the
“foundations” of engineering (e.g., calculus, physics) far re-
moved from the workplace practices of professional engi-
neers. Thus, even in STEM training programs primarily de-
signed toward application, the FF approach of learning and
instruction is highly influential.
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FF view in the social sciences. Because of their close
ties to formal models of the physical world, it might be ex-
pected that formalisms play a central role in learning and per-
formance within the STEM fields. Yet formalisms are also
prominent in the social sciences. For example, economics
students regularly encounter the simultaneous presentation
of multiple formal representations and must learn to flexibly
coordinate graphs, tables, and equations to address substan-
tive questions about consumer preferences and the changing
marketplace. Experts in economics do this coordination reg-
ularly and fluently. However, H. J. M. Tabachneck (1992;
H. J. M. Tabachneck, Leonardo & Simon, 1994) showed that
novices experience great difficulty using the individual repre-
sentations that are formally presented in economics textbook
problems and perform quite poorly with more demanding
forms of reasoning that frequently require them to coordinate
multiple representations. Verbal reports taken of beginning
economics students at the college level show they make incor-
rect inferences about formal representations, such as graphs
of supply and demand, even when direct perception would
do. Students also form individuated mental representations
from the given formal representations, such as tables, graphs,
and systems of equations that are rarely integrated across the
formal representations, and, when they are combined, they
are most often combined incorrectly. This manner of instruc-
tion proves to be highly problematic as many basic concepts
within introductory economics such as supply—demand rela-
tions, and the impact of raising taxes on prices are framed in
terms of combined formalisms such as symbolic and graph-
ical representations.

Language arts instruction. Language arts, tradition-
ally an area in the humanities, seems remote from the study
of the natural and the social sciences. Yet if we apply the
broad view of formalisms, we can see that Grossman’s (1990)
comparative case study of six teachers during their 1st year
in high school English classrooms revealed ways that the
FF approach was present among the literature and language
experts she studied, as when teachers required students to
demonstrate mastery of formal grammatical rules before ap-
plying them to autobiographical writing. FF among subject
matter experts-turned-teachers was evident from convergent
sources, including teacher and student interviews, analyses
of lesson plans, interviewee performance during structured
tasks relevant to classroom planning, and classroom obser-
vations. These teachers were compelled to present English
and literature as formal disciplines, rather than reconcep-
tualizing English literature and language as school subjects
that needed to be taught to novice learners (Grossman, 1989).
These teachers operated with an FF view and saw formalisms
such as the rules of grammar as prerequisite to writing about
one’s personal experiences; they also positioned mastery of
highly technical literary techniques (such as mimesis and
intertextuality) as the gateway to understanding and enjoy-
ing literature. In contrast, the teacher education graduates
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in the study who had less training in literature and linguis-
tics than the content experts directed the focus of literature
instruction primarily on the relationship of the student to
the text and not exclusively on the text itself. In writing
instruction, these teachers identified the standardization of
grammar rules as a means to enhance one’s ability to com-
municate with readers and resolve ambiguity rather than as a
formal system that dictated writing norms. As in Bloomfield’s
(1998/2004) application-driven physics course, the end prod-
uct (e.g., the written essay) motivated the need for formal,
linguistic knowledge, and teachers used students’ intuitive
understandings as an entry point for developing the formal
knowledge that is privileged by the discipline.

Conflating Domain Practices With Development

It is not my intention here to globally challenge the power
and utility of formalisms for modeling and problem solving.
My focus is directed at learning experiences that provide
novices the greatest benefit. Formal representations such as
equations and graphs are vitally important because of the
central organizing role they play for a given discipline. For-
malisms support computational efficiency and can mitigate
ambiguity (e.g., H. T. Tabachneck, Koedinger, & Nathan,
1995). In addition, formalisms such as symbolic equations
can afford superior performance over alternative strategies
when solving certain problems, because formal representa-
tions often scale up to increased complexity far better than do
many idiosyncratic methods (Koedinger et al., 2008). Formal
representations can also reveal the common deep structure of
quantitative and qualitative relations of seemingly disparate
phenomena (such as the relation between mechanical sys-
tems and electrical circuits), and thereby provide important
conceptual bridges to support transfer, discovery, and theory
building (e.g., Goldstone & Son, 2005; Judd, 1908; Kamin-
ski, Sloutsky, & Heckler, 2008; Son & Goldstone, 2009).

These are properties of formalisms that serve the needs
of individuals and professional communities with compe-
tence in their respective fields. However, there is an apparent
conflation of the structure of a discipline and the develop-
mental trajectory by which newcomers gain mastery of that
discipline. The FF view uses the disciplinary structure as its
developmental roadmap: What is foundational to the disci-
pline is also deemed developmentally primary; what consti-
tutes secondary and peripheral topics to the field then follow
in the learning experience; and applications of disciplinary
knowledge to practical problems comes last in the scientific
process, and therefore are expected to occur later develop-
mentally.

In one particularly notable example of this conflation, the
foundational role of formal set theory as the (relatively newly
anointed) theoretical basis of numbers and operations in mod-
ern mathematics was enormously influential in shaping the
design of the original “New Math” program for elementary
school instruction of the mid-20th century. However, as we
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see, it proved to be inadequate for learners and teachers (e.g.,
Kline, 1973). In the 1950s, the state of mathematics achieve-
ment and instruction in the United States was scrutinized by
the National Council of Teachers of Mathematics (NCTM)
in its Second Report of the Commission on Post War Plans,
as well as by the University of Illinois Committee on School
Mathematics and the College Entrance Examination Board
Commission on Mathematics (NCTM, 1945/1970b). The de-
clining enrollment and waning interest toward mathematics
education that began prior to WWII continued, despite the
growing importance and marketability of a technical educa-
tion. By the mid-1950s, the popular press of the time, along
with many university mathematicians, declared that the con-
tent of K—14 mathematics education had been led by profes-
sional educators for too long, with insufficient progress. To
turn this tide, academicians turned their attention to school
curricula (NCTM, 1970a, p. 76). The fix, they reasoned, was
to base mathematics education on the same foundational con-
cepts that were being used to organize the area of mathemat-
ics for university study—set theory and number theory. In
1958 the NCTM, along with the Mathematical Association
of America and American Mathematical Society, funded the
School Mathematics Study Group (SMSG) to produce cur-
ricula based on this new conceptual structure. Led by mathe-
maticians, the SMSG is often regarded today as the face of the
“New Math” movement. The group was very productive in
generating curricular outlines and guidelines, and in produc-
ing surveys, evaluations, sample textbooks, and enrichment
materials that served as a guide for commercial textbooks
across the K—12 grades for many years to follow.

The experts who led the New Math movement believed
that the logical foundations of mathematical structure would
be transparent to children and, given opportunities, children’s
understanding would naturally follow (Klein, 2003). Crit-
ics, such as the late mathematics professor Morris Kline of
NYU (Kline, 1973) and others (e.g., Ahlfors, 1962; NCTM,
1970a), argued that New Math pedagogy was poor and often
absent, that the curriculum did not motivate students; that it
neglected areas of application, that the curriculum did not
promote active participation by students, and that it failed
to develop students’ intuitive notions of mathematics. Kline
criticized what he saw as an overemphasis on the formal
structure and notation of set theory. He disparaged the lack
of empirical evidence of the efficacy of the new program
on measures of student achievement and forms of mathe-
matical reasoning, attitudes toward math, retention, and later
interest in math-related fields. He also criticized the lack of
staff development for teachers, noting that teachers needed
to be better informed about the new content associated with
modern mathematics as well as the new program’s curricular
structure and goals.

Though a formal program evaluation was never con-
ducted, Kline (1973) argued that a there was a proxy evalua-
tion in the form of comparative test scores from the 1964 In-
ternational Study of Achievement in Mathematics. Because

the New Math program was, by this time, ubiquitous in the
United States but many other participating countries were
still using traditional curricula, Kline suggested that this pro-
vided some indication of its success. Although several differ-
ent grade-appropriate tests were employed, the United States
faired poorly in all of them, particularly among the 13-year-
old group, which ranked at the bottom. Some of the key devel-
opers of New Math had also publicly expressed doubts, with
Professor Beberman wondering aloud why they had chosen
to put so much emphasis on rigor (i.e., proof), and Professor
Edward G. Begle noting, “In our work on curriculum we did
not consider the pedagogy” (as cited in Kline, 1973, p. 110).

The New Math program failed, not simply because it of-
fered a poor curriculum but because the mathematicians who
organized SMSG did not know a lot about kids or teachers.
The mathematical content that formed the basis of New Math
had been designed by mathematicians to highlight the formal
structure of modern mathematical, with little regard to how
that content was to be learned by children, understood by
teachers, or taught in classrooms (Klein, 2003). Despite this
rocky beginning, many of the basic premises of a program of
mathematics education guided by the formal structure of the
field of mathematics are still firmly in place in contemporary
math education.

The FF view operates broadly and tacitly to influence the
design and delivery of learning environments in ways that
can be incompatible with students’ early skills and emerging
developmental needs. The primary role formalisms play in
codifying and objectifying the knowledge and practices of
a given discipline appears to have been appropriated whole-
cloth, and without question, by many instructors and curricu-
lum designers as the account of conceptual development. As
a lesson learned from the New Math movement, the educa-
tional community needs to be careful to distinguish between
conceptual structure, as it appears to disciplinary experts, and
Bruner’s (1960) account of structure as that which makes
salient the relations among seemingly unrelated things for
the purpose of transfer. “If earlier learning is to render later
learning easier, it must do so by providing a general picture in
terms of which the relations between things encountered ear-
lier and later are made as clear as possible” (Bruner, 1960, p.
12). In education, we need to identify and implement curric-
ula and instruction that are not merely true to the disciplines
from which they come, but also developmentally “true” to
new learners who are engaging with the ideas and discourse
practices of a new field (Barab & Roth, 2006).

Problems With the Formalisms First View

By now I have reviewed several ways that the FF view,
drawing on both narrow and broad views of formalisms,
is in evidence in educational settings, along with evidence
of some of the strengths of formalisms, as well as some of
the limitations. Yet the picture is not clear-cut, and research
findings like those presented by Kaminski and colleagues
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(2008, 2009b) and the ensuing critiques of that work are
important to understanding the issues formalism use raises.
Specifically, Kaminski and colleagues have argued that their
research shows that initial mastery of formal representations
of abstract concepts and relations prior to applications of
those concepts is better suited to support transfer, whereas
realistic depictions with perceptually rich features irrele-
vant to the task hinder learning and transfer. In this and
the next section, I lay out some of the shortcomings of those
studies.

First, in many of Kaminski at al.’s studies the stimuli that
are used to stand for the concrete cases—digital drawings
of cupcakes or glasses partially filled with liquid—are them-
selves still abstractions. As abstract depictions of actual ob-
jects they have some of the objectionable qualities of concrete
objects, such as task-irrelevant features, but are without many
ofthe multimodal qualities that benefit objects. Martin (2009;
Martin & Schwartz, 2005) has shown that an important as-
pect of successful mathematical problem solving with real
objects in areas like proportional reasoning involves touch-
ing, shifting, and physically regrouping the objects. Martin
shows how actions coupled with interpretations serve as de-
velopmental precursors to general mathematical procedures,
which can later be enacted mentally.

A second point is to clarify that, whereas concrete rep-
resentations have “irrelevant perceptual richness” when they
are used to serve strictly mathematical purposes (Kaminski
etal.,2009b, p. 153), abstract entities, such as equations, have
these qualities as well (Kirshner 1989). For example, Landy
and Goldstone (2007, 2010) have shown that solvers are in-
fluenced by perceptual features of arithmetic and algebraic
expressions, such as symbol spacing, which is, technically,
irrelevant to syntactic parsing. These perceptions can over-
ride well-established formal rules of symbol manipulation,
such as order of operations, even when students familiar
with the proper rules have recently been reminded to use
them.

A third point addresses transfer. Real objects (or their de-
pictions) may hamper learners’ ability to easily extract the
elements of a core, abstract concept that enable the more dis-
tal goal of transfer (Kaminski et al., 2009b). However, in the
broader educational context, an important facet of transfer
involves learning how to recognize the applicability of a core
concept for entities that display a field of task-irrelevant fea-
tures (Nathan, 1998). When the intended application areas
are perceptually rich environments, a substantial part of the
skill of learning to solve real-world problems through the
application of a previously learned concept is to identify the
deep structure that might be obscured by its visual or tactile
trappings. Developing one’s intellectual abilities exclusively
on stripped-down formalisms without exposure to perceptu-
ally rich stimuli robs learners of opportunities to learn how to
recognize deep structure and filter out irrelevancies. Learn-
ing that is steeped in the FF approach cannot develop that
skill. As we see, there are alternative approaches that draw
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on perceptually rich, concrete materials that can support the
development of this important aspect of transfer.

Others have also raised important issues concerning trans-
fer in Kaminski et al.’s (2008) original study. Jones (2009)
brought up two issues: that the hinting procedure they used is
known to strongly affect transfer performance, and although
the hints are controlled across conditions, they nevertheless
call into question just how much transfer either condition
supports; and that the generic (abstract) condition tasks can
be seen as closer to the transfer task, along some relevant
dimensions. This latter point is central to an empirical study
by De Bock and colleagues (2011). They provided a replica-
tion and extension of the Kaminski et al. (2008) study. They
showed the same transfer advantage to the abstract domain
from generic representations. However, they were also able
to show greater transfer to a new, concrete transfer task by
those using the concrete representations.

A fourth issue is motivational. Students appear to have
limited patience with instruction heavily steeped in for-
malisms (Bond-Robinson, 2002). In relatively short order,
students become disengaged. Generally, they favor verbally
and visually rich, concrete curriculum materials. The imme-
diate implications are unclear, but attraction and retention
in mathematics, and STEM more generally, suffers from a
general problem of lack of interest and engagement (NRC,
2005).

Finally, a skeptical account of FF must also acknowl-
edge that there are fundamental concerns about whether
(and if so, how) formalisms are valid accounts of the phe-
nomena they purport to model. Scholars in the natural and
social sciences have identified fundamental ways in which
formalisms fall short. In the natural sciences, Cartwright
(1999) showed the limits of scientific fundamentalism, the
view that the dominant scientific theories of the day cover
all natural phenomena. Rather, her analyses show how sci-
entific “laws” of physics are only applicable under highly
constrained conditions. The apparent regularities come about
only through what Cartwright terms a nomological machine:
“a fixed (enough) arrangement of components, or factors,
with stable (enough) capacities that in the right sort of sta-
ble (enough) environment will, with repeated operation, give
rise to the kind of regular behaviour that we represent in our
scientific laws” (p. 50). A classic example is the models of
motion for dropping a cannonball from the Leaning Tower
of Pisa. Yet work with real-world phenomena demands such
a degree of modification as to render the laws nonuniversal.
As Cartwright pointed out, the law for a falling cannonball
simply does not apply to the trajectory of a falling banknote,
which is subject to air resistance, more complex hydrody-
namics, and the influence of random wind variation. In a
similar vein, psychologists Cheng and Holyoak (1985) have
shown that there are common forms of reasoning that are not
the outcome of applying syntactic rules. Participants appear
to draw from pragmatic reasoning schemas, such as notions
of permission, causality, and evidence, based on rules that
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are simultaneously partly generalized and partly context sen-
sitive.

Taken together, this discussion makes clear that issues of
representations and transfer are complex (Kaminski, Slout-
sky, & Heckler, 2009a) and there is a great deal that is still
not known about engineering the conditions that are most
favorable for transfer to occur.

PROGRESSIVE FORMALIZATION AND
OTHER ALTERNATIVES TO THE
FORMALISMS FIRST VIEW

Based on the preceding account of the philosophical and his-
torical bases of the FF view, its prevalence and wide-ranging
influence in contemporary education, and its apparent mis-
alignment with learners’ trajectories of conceptual develop-
ment, | argue against instruction and curriculum design that
adheres to the FF position. Introducing novices to a new
concept or domain of study through formalisms has appeal
because it taps into the established knowledge of those who
are already highly competent with the content and conven-
tions of formal notation. The previous discussions show that
FF is inappropriate in two ways. First, the FF view provides
an inadequate mode of conceptual development. Evidence
of this comes from examining the curricular sequencing in
areas of mathematics, the natural sciences (chemistry and
physics), social science (economics), and language arts. In
some cases there is evidence that FF views contradict stu-
dent performance patterns. Even among reform curricula that
seemingly break from FF, teacher editions can draw the en-
acted curriculum toward FF methods. Second, FF encourages
a formalisms-only mind-set. This was particularly evident in
professional training programs in engineering and nursing,
where the emphasis is on hands-on practice. But it was also
apparent in the New Math movement, leading the notable
scientist-pedagogue Professor Richard Feynman (1965) to
raise the serious objection that because the New Math texts
were written by pure mathematicians who were uninterested
in the connections of mathematics with the real world, that
even at the secondary level the program did little to relate
mathematics to science and engineering. Despite its ubig-
uity, FF is an inaccurate portrayal of learning and serves as a
poor guide for curriculum design and instructional practice.
In the remainder of this section I explore the evidentiary base
for alternatives to the FF view. In this and the final section, I
consider what these findings imply for instruction.

A central aspect of learning, particularly for conceptually
oriented content (as opposed to learning certain procedures),
is the extent to which learners connect new knowledge to
old and meaningfully relate specialized notational systems
(or descriptions of first-order experiences; Laurillard, 2001)
to the objects and events in the world that they are intended
to represent (Bransford, Brown, & Cocking, 2000; Palmer,
1978). One explanation for students’ poor understanding of

formalisms across a range of fields is that students may not
achieve a grounded understanding that allows them to con-
struct meaning of these formalisms in terms of other things
that they already understand, or things they can perceive
and physically manipulate (Goldstone, Landy, & Son, 2008;
Martin, 2009). The computational properties of formalisms,
such as equations, come about because of the syntactic, form-
based (i.e., form-al) rules that govern the relations and trans-
formations of these systems of notation. Yet when formal
representations are understood exclusively by reference to
other formal representations in the form of rules and map-
pings, it can lead to an ungrounded form of understanding
that appears to be rote, shallow, and rigid (Harnad, 1990;
Searle, 1980). A poignant illustration was offered by the
philosopher John Searle (as cited in Cole, 2004):

Imagine a native English speaker who knows no Chinese
locked in a room full of boxes of Chinese symbols (a data
base) together with a book of instructions for manipulating
the symbols (the program). Imagine that people outside the
room send in other Chinese symbols, which, unknown to the
person in the room, are questions in Chinese (the input). And
imagine that by following the instructions in the program the
man in the room is able to pass out Chinese symbols, which
are correct answers to the questions (the output). The program
enables the person in the room to pass ... for understanding
Chinese but he does not understand a word of Chinese.

Although the Chinese Room metaphor was introduced to
question the strong claims of artificial intelligence and the
prospects that computer programs could someday think like
humans, its value in this instance is to demonstrate the chal-
lenges of deriving meaning from a system (or room) that
only supports formal structures and rules (the program) of
formal symbol manipulation. In this case, because many of
us would conclude that the person in the room does not un-
derstand Chinese, despite the appearance that the person
understands Chinese, we can similarly question one’s under-
standing of any domain that is rooted exclusively in the use
of formalisms.

The contrasting argument is that meaning comes ulti-
mately through reference of formalisms to grounded, non-
symbolic entities such as perceptions, actions, objects, and
experiences from the world (Barsalou, 2008; Glenberg, 1997,
1999; Harnad, 1990). Indeed, the claim has been made that
some of the advancements in mathematics—such as set the-
ory, the creation of negative numbers, logic, and infinity—can
be traced to the physically grounded behavior of objects and
events in the everyday world (Chiu, 2000; Johnson, 1999;
Lakoff & Johnson, 1999; Lakoff & Nunez, 2000). Although
the influences on these historical discoveries is difficult to
prove, there is both behavioral and neuroscientific evidence
that elements of mathematics, such as numerical reason-
ing, invoke visual attention (Dehaene, 2011; Fischer, Castell,
Dodd, & Pratt, 2003), spatial systems (Dehaene, Bossini, &
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Giraux, 1993; Goebel, Walsh, & Rushworth, 2001), and mo-
tor action (Badets & Pesenti, 2010; Fischer, 2004), whereas
the strength of the relationship between perceptual and mo-
toric systems and number processing reliably predicts math
achievement scores (Fayol, Barrouillet, & Marinthe, 1998).
It is through grounded relationships that connect to our direct
physical and perceptual experiences (or through chains of re-
lations that connect to things that connect to our experiences)
that these formal entities attain their meaning. Once mean-
ing is established, however, it is the abstract and form-based
properties of formalisms that imbue them with capabilities
for quantitative modeling across a broad range of domains,
as well as high-speed and high-capacity computation. Formal
systems are powerful culturally established tools for advanc-
ing our reasoning capacity and for institutionalizing cultural
knowledge. Yet they need to be mapped to the world they
purport to model to be meaningful and valid (Palmer, 1978).

Even in the face of this, some scholars (e.g., Laurillard,
2001) have argued that scholastic learning environments sel-
dom provide a balanced or integrated education with regard
to grounded and formal experiences. Ultimately, both prac-
tical and academic experiences seem necessary for a well-
educated populace. Instead, historical and policy-based bi-
ases favor second-order experiences, particularly as the level
of education increases. Yet schools can do more to provide
rich, lived experiences that connect to formalized knowledge
(Barab & Roth, 2006).

Methods for achieving such balance are founded, in part,
on a growing evidentiary base of the study of progressive
formalization (PF) methods (Romberg, 2001). In both lab-
oratory and field-based settings, PF provides early experi-
ences with first-order, concrete entities to support highly
accessible entry points for initial learning and provide the
grounded symbolization that fosters the ascension of mean-
ingful formal representations for later generalization and
transfer (Abrahamson, 2009; Goldstone et al., 2008; Lesh
& Doerr, 2003; Nathan & Koedinger, 2000b). Bloomfield
(1998/2004), author of the popular application-driven colle-
giate physics textbook, makes an insightful comparison to
the dominant FF approach when he stated, “While a method-
ological and logical development of scientific principles can
be very satisfying to the seasoned physicist, it can appear
alien to an individual who isn’t familiar with the language
being used” (p. vii).

Several alternative curricular innovations fall under the
general category of PF (Bransford & Schwartz, 1999; Grave-
meijer, as cited in Romberg, 2001; Schwartz & Bransford,
1998; Schwartz & Martin, 2004). Romberg (2001, p. 3) stated
the overarching design approach quite clearly.

Rather than starting with the presentation of formal terms,
signs, symbols, and rules and expecting students to use
these to solve problems (too commonly done in mathematics
classes), activities should lead students to the need for the
formal semiotics of mathematics. (p. 3)
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Support for PF methods is growing as empirical investiga-
tions amass results showing that formalisms can be learned
following early, concrete experiences. Field-based research
supports the claims. Romberg and Shafer (2008) used both
cross-sectional and longitudinal data to document positive
effects on middle school student learning with the Math-
ematics in Context curriculum. Also at the middle school
level, Nathan, Stephens, and colleagues (2002) described an
extended classroom intervention, using a form of PF called
Bridging Instruction, which showed greater gains in algebra
performance among seventh and eighth graders (N = 82)
than the standard curriculum.

More carefully controlled lab studies also show support
for PF. Koedinger and Anderson (1998) compared the order
with which students’ problem-solving strategies were guided
toward finding the unknown value for a story problem and
producing a general model. One group followed the FF
trajectory from formal variables and algebraic equations to
specific values that were applied to the symbolic equation. In
contrast, the inductive support method used PF by guiding
students to induce the symbolic expression from prior
experiences with simpler arithmetic relations. Although
students in both groups showed significant gains, those gains
exhibited by the inductive support group were reliably larger
than for the FF group.

Goldstone and Son (2005) provided experimental evi-
dence in favor of PF (“concreteness fading,” in their terms)
for supporting transfer by comparing the order with which
learners engaged with more or less formal representations of
the intended mathematical structures. In this case, undergrad-
uates were learning about the principles by which complex
adaptive systems operate. Thus, the target of instruction was
relatively abstract and intended to be generalizable. Transfer
measures were highest for those who first learned to apply the
principles in simulations using ants with very simple search
rules for collectively seeking out food as concrete depictions
of the systems phenomenon (a PF approach) followed by
use of more abstract forms as compared to any of the other
three conditions (first abstract then concrete, first abstract
then abstract, and first concrete then concrete). The authors
concluded that concreteness fading is effective “because it
allows simulation elements to be both intuitively connected
to their intended interpretations but also idealized in a man-
ner that promotes transfer” (p. 99). In essence, PF leverages
the most powerful advantages of the two representational
formats: Concrete entities are meaningful to learners early
on and so provide accessible entry points, abstractions tran-
scend the applicability of the representations and rules from
any one context, and grounded abstractions support learn-
ers” understanding of what the formalisms “say” and how
they apply widely to new application areas.

The comparative advantages of formalisms and grounded
representations are apparent in an experiment comparing
the types of feedback to foster algebra learning in a video-
game-like environment developed by Nathan (1998) aimed
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at grounding the meaning of symbols and operators in al-
gebraic equations to animations under the student’s con-
trol. Grounding the algebraic equations to specific entities
in student-constructed animations (such as trains colliding
or overtaking one another, and the proportion of a fence that
was painted working alone or with a coworker) helped stu-
dents to learn more efficiently and more effectively about
the meaning of those quantitative relations that were percep-
tually salient to students. Students who received no explicit
grounding of the equations to the animated situation of typi-
cal algebra word problems made more conceptual errors and
showed lower test gains and less transfer overall than students
who received grounding. However, some conceptual aspects
of the quantitative structure that could not be presented con-
cretely to learners (in one case, the rather tacit algorithm of
computing the reciprocal of the sum of reciprocals of re-
lated rates) saw no benefit from grounding the equations to
the animation of the problem situation. Direct instruction
in the formal symbol manipulation process, through a set
of pre-scripted hints, showed lower learning gains overall
but was significantly more effective than the approach that
used animation-based grounding in reducing the frequency
of errors that were not perceptually salient in the animations.
This illustrates some of the relative benefits of grounding and
formalism-based instruction and the trade-offs for fostering
conceptual development.

Project-based and problem-based learning (PBL) and in-
quiry learning also offer alternative approaches that promote
student-centered environments oriented toward intellectual
engagement in authentic scientific and mathematical thinking
and the production of authentic artifacts, including use and
derivation of formalisms (e.g., Dochy, Segers, Van den Boss-
che, & Gijbels, 2003; Marx, Blumenfeld, Krajcik, & Soloway,
1997). When PBL and inquiry learning are taught in a way
that guides students’ learning and employs effective scaf-
folding practices (Hmelo-Silver, Duncan, & Chinn, 2007),
students show benefits in both skills and content knowledge
(Roth & Roychoudhury, 1993). Of particular relevance is the
sequencing of learner activities and its impact on student
performance. For instance, in medical education, where PBL
has its roots, PBL students tend to be exposed to less for-
mal science content (e.g., biochemistry, anatomy), and their
exposure to this content occurs later in their studies than
students in conventional programs, because of PBLs early
commitment to more applied aspects of medical training
(e.g., palpation, collecting blood pressure measurements).
Yet a recent meta-analysis of more than 270 comparisons for
a single, long-standing PBL-based medical program showed
that, though PBL students initially exhibit lower levels of for-
mal science knowledge than randomly selected students from
the conventional program, PBL students’ science knowl-
edge continued to increase after course taking, whereas PBL
students also exhibited more accurate diagnostic reasoning,
superior integration of biomedical knowledge with clinical
practices, higher levels of communication skills, and better

domain-specific practical medical skills, such as performing
examinations (Schmidt, Van Der Molen, Te Winkel, & Wij-
nen, 2009). From this perspective, PBL provides an insight-
ful counternarrative to the FF account of conceptual develop-
ment that posits the necessary role of early formal instruction
for engendering successful applied, clinical practice.

Methods for grounding the learning of formal represen-
tations such as PBL, inquiry learning, and PF offer viable
alternatives to FF approaches for designing curricula and
learning experiences for novices. They support deeper un-
derstanding and more lasting learning by building on the
strengths that grounded and formal representations each con-
tribute (H. T. Tabachneck et al., 1995). Grounded represen-
tations and strategies will generally be computationally less
efficient than formal methods, but their direct mapping to the
referent situation promotes meaning making and facilitates
learner-guided error detection and correction (Nathan, 1998).
In a complementary way, the standardized syntax of formal
representations increases computational efficiency. Also, the
larger conceptual distance of formal representations from the
referent situation enhances its universal applicability, thereby
fostering generalization and abstraction.

Approaches such as PF, inquiry learning, and problem-
based/project-based learning strive to bring complementary
aspects of concrete entities and experiences and abstract
rules and representations together. When integrated, these
approaches acknowledge the important role that applied
performance and concrete entities play in providing novices
accessible entry points that support early comprehension
and meaning making, and then exploit the generalizability
and computational efficiencies of formalisms and, syner-
gistically, foster an understanding of the formalisms. As
research matures, we will likely learn more about the nature
of student learning and conceptual development and uncover
the processes that mediate integrative representations, such
as those proposed by Case and colleagues (Case, 1991; Case
& Okamoto, 2000; Griffin, Case, & Siegler, 1994; Kalchman
& Case, 1998; Kalchman, Moss, & Case, 2001; Siegler &
Ramani, 2009).

DISCUSSION

In this article, I delved into a belief that appears to be ubig-
uitous in formal education and highly influential for shaping
areas such as curriculum design, classroom instruction, and
expectations of learning yet has received little scrutiny in ed-
ucation research. At the heart of this view is the special regard
afforded formal representations and belief in the primacy of
formalisms in conceptual development and instruction. In
this final section I want to explore the issue more broadly,
entertain some speculative claims about FF, and discuss im-
plications of the preceding analysis for instruction and the
general aims of public education.



Downloaded by [University of Wisconsin - Madison] at 07:16 11 August 2012

In challenging the broad application and influence of the
FF view, I find it important to also acknowledge the ways
in which it is effective. These are the limited circumstances
that favor experts operating in domains in which they ex-
hibit mastery. Experts are remarkable agents and seem to
be able to perform extraordinary intellectual and physical
feats (Ericsson & Smith, 1991). It is natural to hold up ex-
pert performance as the target for education (Glaser, 1990).
However, we must carefully distinguish the needs of novices
with those of experts. In the hands of experts, and even those
who are “merely” highly competent in their field, formalisms
are concise, tractable, and highly efficient ways of achieving
one’s goals and expressing knowledge. Some might even say
that formalisms (ironically) can ground ideas for experts by
facilitating ties between new ideas to first principles.>

When used properly by masterful practitioners, for-
malisms are practically invisible to the agent. It is only when
formalisms are used by novice learners do we see just how
laden these representations are with arbitrary attributions and
domain-specific knowledge. (For illustrations of how for-
malisms can be misapplied because of poor understanding
of their underlying meaning, see Koedinger & Nathan, 2004;
Ma, 1999; and VanLehn, 1990.) In Heidegger’s terminology
(Dreyfus, 1991), a formal representation is ready-to-hand to
an expert, who wields it like a skilled carpenter wields a ham-
mer; and it is so integral to the execution of the task, and the
process is so well-practiced, that the expert sees through the
tool to the task itself. Though hammers are certainly not for-
malisms, one can appreciate, by analogy, the interruption and
shift in attention to the hammer that is suddenly unready-at-
hand, such as when the hammer breaks or a nail malfunctions
(cf. Dotov, Nie, & Chemero, 2010). Formalisms in the hands
of novices often have this unready-at-hand quality where
they easily “break” and suddenly appear to be cryptic or ill-
suited to the task. For example, consider how high school
students (N1 = 76, N2 = 171), all with at least 1 year of al-
gebra education, gave no response more than 30% of the time
when problems were presented as symbolic equations—more
than twice the rate of other presentation formats (Koedinger
& Nathan, 2004). In such cases formalisms resist becoming
transparent and can even be a hindrance to the task goals.

Although no systematic studies of general teacher educa-
tion programs have been conducted with this analytic per-
spective, I speculate that the FF view influences curriculum
design even in my own field of educational psychology. As a
preliminary examination of this claim, I reviewed all of the
educational psychology textbooks from my campus curricu-
lum library published in the last 15 years that were designed
for teacher education courses (N = 8). I looked specifically
at the sequences of topics across each textbook, the loca-
tion where the first substantive treatment of actual teaching
practices appears, and the sequences within each chapter of

3This exact point was made by an anonymous reviewer, whom I wish to
acknowledge.
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theory to application for a given topic. To be considered
“substantive,” treatment of instructional practices had to ex-
ceed one page and had to address a specific grade level and
one or more specific content areas. I also applied the broad
view of formalisms, which included formal psychological
theories, computational models, and idealized psychological
constructs, in addition to symbolic representations.

With these assumptions in place, the educational psy-
chology textbooks show many traits of FF. Many teaching
practices are discussed throughout each book, but they are
presented in the abstract with respect to age or content (e.g.,
a caution not to exceed short-term memory) or far too briefly
(a sentence or two) to provide sufficient detail to be adopted
by novices. On average, the first substantive treatment of
applied teaching practices appears 66.8% of the way into
each book (ranging from 46.5% to 81%). Analysis of the
sequences of topics shows this arises because the order of
major topics proceeds similarly across most of the textbooks:
a broad introduction, followed by theories (and theorists) in
development; theories of cognition, motivation, and learn-
ing; classroom instruction and class management (where
the substantive treatment of instruction typically appears);
assessment; and diversity among learners. Looking within
chapters, it was common to conclude with brief, nonsubstan-
tive treatments of instructional implications, though three
books in the sample also interleaved or started with specific,
motivating cases of learning, development, or instruction.
Although these findings are only provisional, the patterns
stand in contrast to the focus on hands-on, situated teaching
knowledge that dominates curriculum and instruction meth-
ods courses. Indeed, this point is also made in a recent report
from the American Psychological Association Division 15
(Educational Psychology) charged with revisiting the Amer-
ican Psychological Association recommendations from the
1995 committee charged with examining the role of educa-
tional psychology in teacher education (Patrick, Anderman,
Bruening, & Duffin, 2011). In their report, Patrick and col-
leagues noted that research in educational psychology is too
often largely abstracted away from the actual practices and
issues facing teachers, opting instead for generalized theo-
ries and principles of behavior. In addressing the challenge of
relevance of educational psychology to teaching, they cau-
tioned that “educational psychologists cannot assume that
simply deriving a list of principles from relatively decontex-
tualized studies is appropriate for making recommendations
to practitioners” (p. 75).

There is no question that the broad focus on formal psy-
chological theories, constructs, and principles is quite differ-
ent from versions of FF discussed up to this point, such as
the symbol precedence of algebra, which are based on the
narrow view of formalisms. Theories and principles are gen-
erally couched in linguistic rather than symbolic or diagram-
matic forms. However, I propose that the general expectation
is quite similar: Knowledge of decontextualized concepts of
a scientific domain (in this case, psychology) presented in
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formal language (specialized terms and diagrams) must be
mastered prior to developing competencies in the relevant
applied area (teaching). From this perspective, it would seem
radical to imagine imparting professional teaching practices
prior to establishing a foundation in formal psychological
theories. Teaching, in this light, is seen as the classroom ap-
plication of psychological theories of development, learning
and motivation, instructional approaches, and assessment.

Recently this “foundations first” model of educational
psychology within teacher education programs has come un-
der criticism. Too frequently, learning the formal theories and
principles of human behavior out of context from instruction
and other classroom-based practices has led to weak applica-
tion of these ideas to the real problems that are encountered
by classroom teachers (Anderson et al., 1995; Berliner, 1992;
Nathan & Alibali, 2010). However, as a developmental struc-
ture, elements of FF still appear to be prevalent in the designs
of many widely adopted educational psychology textbooks
and their associated programs. Along these lines, I offer sim-
ilar remedies in educational psychology to those in other
content areas. Teacher education textbooks are drawing more
frequently on the use of case books and video libraries that
situate the behaviors referred to by psychological theories and
ground their meaning and relevance. This practice should be
encouraged. Caution must also be exercised, however, that
these resources are used integrally with teaching psychologi-
cal theory. There is danger, evident in Sherman’s (2010) work
in mathematics education, that a disconnection between the
intended curriculum of the textbook is not reflected in the
enacted curriculum in the teacher education classroom, and,
despite these innovations, a foundations first approach may
still dominate the teacher education experience. Ultimately,
a PF approach to educational psychology instruction would
lead to rebuilding these textbooks from the ground up.

If FF is problematic, then why does it persist? Certainly
one powerful influence is the deeply entrenched societal view,
inherited from early Western philosophical views, that priv-
ileges abstract knowledge and work with symbols. I suspect
that another major reason is the value it serves content area
experts. It is often content experts who forge the broad out-
lines of curriculum design and instructional approaches, and
their views are weighed heavily when reviewing such designs.
Experts are steeped on discipline-based perspectives, which
they contribute to and internalize. These views, sometimes
to the exclusion of developmental and pedagogical consid-
erations, shape the externalization of these structures in the
form of curriculum and instruction. Kline (1973) made a sim-
ilar observation in deconstructing the basis of the New Math
movement and its emphasis on Modern Mathematics and
rigorous proof as a pathway to students’ conceptual devel-
opment. In promoting these formalism-based approaches, in
his view, members of the mathematics community “are serv-
ing themselves” (p. 94). He argued, “It is rational to present
mathematics logically, but it is not wise. ... The wise man
would also consider whether young people can learn the the-

ory” (p. 89). This suggests that to change teachers’ views on
this matter, we may need to do more than provide them with
reform curricula that advocate alternative approaches to FF.
Teachers’ views will likely continue to reflect those perspec-
tives that are pervasive in the media and in beliefs and values
espoused in society at large.

Implications for Instruction

In many ways, seemingly opposing approaches to instruc-
tion such as FF and PF ultimately strive for a common
goal, whereby learners develop a deep and flexible under-
standing of a powerful set of representations that can propel
their thinking and reveal underlying structural similarities
across a broad range of disciplines and activities. Despite the
challenges students encounter in understanding and learn-
ing to use formalisms, both narrowly and broadly construed
(diSessa, 2004), the utility of these specialized representa-
tions for mastering a field is unmatched. Where FF and PF
differ most dramatically is in conceptualizing the paths along
which learner development proceeds.

In making prescriptive claims, FF identifies early intro-
duction to formalisms as the most effective entry point for
learning a new domain. In this way, the formalisms, devoid of
distracting features or associations with particular contexts,
depict the pure structure of relations as the curricular target.
The formalism under the FF view is not only “fronted” as a
gatekeeper into a field, but it is “centered” as well, serving as
the focal point for instruction and later learning. Application
tasks are, generally, applicable insomuch as they reinforce
the understanding of the formalism and help to establish the
formalism’s broad utility.

As previously noted, although FF views are often found
among teachers and textbooks (and even members of the
research community!), there are several serious problems
with the FF view that limit its promotion of learning.
Perhaps the most notable to emerge from some of the studies
reviewed is that FF is rarely an accurate model of learners’
developmental trajectory (e.g., Nathan & Koedinger,
2000c). Learners not only stumble over early introduction to
formalisms, they dislike them (Bond-Robinson, 2002) and
can exhibit higher levels of performance with alternative
presentation formats (Heckler, 2010; Koedinger & Nathan,
2004; Meltzer, 2005). It is really when problems become
sufficiently complex that concrete formats show difficulty
scaling up and formalisms show their mettle (Koedinger
et al., 2008; Nathan & Kim, 2007).

Methods such as inquiry-based learning and PBL can also
fall prey to FF views, when understanding of formal models
of scientific phenomena are taken as primary to the learn-
ing experience. For example, analyses of classroom learning
(Prevost et al., 2009) show that even teachers operating in
project-based classes may still orient their curriculum units
around the initial introduction of formalisms, such as formal
presentations of the laws of kinematics when designing and
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building ballistics devices like catapults. During postlesson
interviews, these teachers justify the central and early role
of formalisms as necessary prerequisites to guide students’
engineering designs, and the building, testing, and redesign
of their devices. PF, as an alternative, promotes the idea of
framing new content from the outset in an applied context
that is often more likely to connect to students’ prior knowl-
edge of the setting (i.e., many high school students can build
a catapult but may not understand how the angle of release
and the initial velocity directly relate to the distance traveled).
This, in turn, can engage students’ verbal and spatial reason-
ing and meaning-making abilities (Abrahamson, Gutiérrez,
Lee, Reinholz, & Trninic, 2011; Goldstone & Son, 2005;
Koedinger & Nathan, 2004).

Connecting formal representations to applications estab-
lishes the grounding that is often missing for students who
are learning the meaning and utility of formalisms (Nathan,
2008). Yet the manner of connection is also important and
must be thoughtfully attended to. Too often, mere juxtapo-
sition of formalisms and applications are used as a proxy
for producing coherent integration among learners (Nathan,
Alibali, Wolfgram, Srisuruchan, & Walkington, 2011). Cur-
rent research suggests that explicit links need to be made by
teachers or knowledgeable others to engineer learning envi-
ronments with the proper level of cohesion to suit learners’
needs and task goals (Alibali & Nathan, in press; McNamara,
Graesser, & Lourwerse, 2012; Nathan et al., 2011; Prevost et
al., 2009). Early on, cohesion of the environment must be ac-
tively produced and maintained to engender learners’ forma-
tion of coherent mappings between formalisms and entities in
the world. Linking moves—often established through teach-
ers’ gestures and speech acts (Alibali & Nathan, in press;
Nathan, 2008)—are important means to produce a cohesive
learning environment. During complex classroom projects,
such as those encountered in engineering courses, students
must understand the connections between formal mathemat-
ical equations and physical laws, designs and specifications,
instruments and tools, objects, and device behavior. In these
PBL environments, links through gesture and speech are fre-
quently made to produce and maintain the cohesion needed
to help students see the many elements and phases as con-
tributing to an integrated whole.

Establishing cohesion provides a solid foundation for
learners to realize the relations between formal and concrete
entities. Over time, through methods such as concreteness
fading, the emphasis shifts and favors the computational effi-
ciencies that emerge by working directly with the formalisms.
In successful cases, the uses of formalisms is mediated by
a connected understanding that will enable the learner to
reinvoke the grounding circumstances in order to address
breakdowns, generate meaningful explanations and interpre-
tations, or even invent customized representations that are
designed to model novel situations (diSessa, 2004).

Misconceptions about the developmental process can lead
teachers, curriculum designers, and educational leaders to-
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ward nonoptimal or even inaccurate conclusions about the
progress of a child. FF-oriented curricula or assessment de-
signs will base the intended sequencing on their models of
learning and development (e.g., Pellegrino, Chudowsky, &
Glaser, 2001). For example, a teacher or school operating
with a strong FF view may use poor performance with for-
malisms such as symbol manipulation to withhold applica-
tions such as story problems or project-based tasks, even
though the student might be able to demonstrate compe-
tency in the more applied realm. A teacher may also take
a students’ correct answer on a formalism-based problem
as an unimpeachable indicator that the student has learned
both the taught method and its broader applicability, thereby
perpetuating a “veneer of accomplishment” (Lave, as cited
in Hennessy, McCormick, & Murphy, 1993). PF can create
learning opportunities that motivate the uses of formalisms
and potentially ground them to meaningful experiences and
prior knowledge.

In speculating on whether the efficacy of the FF approach
might be context dependent, I consider context along three
dimensions. In comparing educational settings, my expecta-
tion is that it is more prevalent in formal, in-school, settings
than out-of-school contexts. However, this relative difference
should not suggest that informal settings are absent FF. For
example, the patterns found in many math, chemistry, and
physics textbooks can also be found in books on craft knowl-
edge such as kite making, where, in one instance (Hosking,
1992), the author begins with a scientific primer on lift and
air pressure in the opening chapter laden with symbolic for-
malisms, complete with vectors, diagrams with angles of
attack, and schematic depictions of airflow. Content can be
considered a second dimension. FF does appear to be most
pronounced in mathematics courses. But it seems prevalent
throughout the STEM fields, including areas such as prec-
ollege engineering (Prevost et al., 2009). As shown, there is
evidence for FF in the social sciences and in language arts, as
well. The final dimension I consider is grade level. I believe
that FF is most apparent in tertiary and graduate education
(Laurillard, 2001), and least present in the primary grades.
Further explorations of this construct across settings, cur-
riculum materials, and staff development programs will be
needed to further illuminate these assertions.

Implications for Enacting the Aims of Public
Education

One concern about the formalisms first view of conceptual
development is that it stands to undermine central tenets of
public education. Public education is entrusted with provid-
ing equal access to excellent educational opportunities to
enhance one’s intellectual development and economic pre-
paredness. But, in practice, the knowledge and skills needed
to perform technical and service trades, such as carpentry,
hairstyling, plumbing, and welding, among others, are gener-
ally held in lower regard within the public education system
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than the knowledge associated with academically oriented
disciplines (e.g., mathematics, physics, biology, chemistry)
that focus on the acquisition and replication of knowledge
through discipline-specific formalisms (Rose, 2004). Across
a wide range of areas, knowledge of formal representations
is privileged over practical and applied knowledge as mea-
sured by status and pay (Symonds, Schwartz, & Ferguson,
2011). Consequently, there are biases that elevate the status
of fields that primarily function around formalisms and the-
oretical constructs over those fields that emphasize applied
knowledge and manual skills. These biases seem to be histor-
ically rooted rather than based on an empirical understanding
of how students’ conceptual development occurs in a given
field, or the relative level of intellectual demands incurred by
jobs across pay grades and organizational levels. Judgments
of the relative worth of fields of study and occupations seem
to be based largely on the perceptions of intellectual and prac-
tical demands. Rose (2004) described this perception in stark
terms: “The more applied and materialized the mathematics
is, the less intellectually substantial it is” (p. 98).

In actuality, analyses of nonprofessional trade skills and
knowledge reveal task performance rich in cognitive com-
plexities, such as planning, representation use, analytical
thinking, and reflection (Beach, 1993; Rose, 2004; Scribner,
1984). Yet the split between the practical work of the “hand”
and the intellectual work of the “head” is woven into the very
fabric of people’s thinking about science in the modern age.

Not long ago, vocational education programs focused on
student learning of the applied skills in order that young peo-
ple could secure certain roles in the workplace. In practice,
however, “voc ed” courses contributed to the polarization be-
tween college- and career-ready graduates of secondary edu-
cation. Rose (2004) called this the “fundamental paradox of
vocational education,” and argued that the persistent lack of
attention to theory, generalization, and reflection in current
technical education classes withholds essential knowledge
while perpetuating stereotypes of who is capable of abstract
thought and worthy of the tremendous resources of the educa-
tional system to foster upward economic and social mobility.
Recent shifts in policy and legislation are intended to re-
cast traditional vocational education as Career and Technical
Education. The 2006 Reauthorization of the Perkins Career
and Technical Education Act (Public Law 105-332, 1998;
previously the Perkins Vocational and Technical Education
Act) mandates that technical education and academic sub-
jects (e.g., math, physics) must be integrated “so that students
achieve both academic and occupational competencies” with
substantial funds allocated “to provide vocational education
programs that integrate academic and vocational education.”

As we have seen, the way this integration happens appears
to be driven, in part, by tacit beliefs about learning that shape
instruction and curriculum design. This has consequences
for the learning experiences students obtain in these pro-
grams. Furthermore, in keeping with the elevated status of
those second-order experiences that dominate academic dis-

course, the FF view functions to distance those with scholarly
and professional aspirations from the first-order experiences
that often serve as the grounding experiences needed for
deeply understanding and applying those formal represen-
tations. Because they are abstractions and not contextually
bound, formal representations are better suited for general-
izing the underlying ideas to a broad range of contexts (Son
& Goldstone, 2009). Yet, for profound understanding, both
forms of knowing must ultimately be achieved (Laurillard,
2001; Ma, 1999; L. B. Resnick, 1987). Beliefs in the primacy
of formalisms, and the concomitant policies and curricular
designs that follow from these beliefs, contribute to the seg-
regation of these forms of learning. In so doing, they un-
dermine the egalitarian aims of public education by keeping
some learners away from the very reality that formalisms are
intended to describe and keeping others from developing a
grounded understanding of the types of generalized thinking
that are most highly rewarded.
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