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Abstract

We explore the adaptation of the ideas that we developed for automatic elimination of
classical axioms [5] to extensionality axioms in Type Theory.

Extensionality axioms are added to Type Theory when we lack a way to prove equality between
two indistinguishable objects. These indistinguishable objects might be logically-equivalent propo-
sitions, pointwise equal functions, pointwise equivalent predicates, or equivalent (isomorphic) types
leading to the various following extensionality axioms:

� Propositional extensionality: PE : ΠP,Q : Prop. (P ⇔ Q)→ P =Prop Q

� Non-dependent functional extensionality: NFE : ΠA,B : U. Πf, g : (A → B). (Πa :
A. f a =B g a)→ f =A→B g

� Dependent functional extensionality: DFE : ΠA : U. ΠB : (A → U). Πf, g : (Πa : A →
B(a)). (Πa : A. f a =B(a) g a)→ f =Πa:A. B(a) g

� Predicate extensionality: PredE : ΠA : U. ΠP,Q : (A → Prop). (Πa : A. P a ⇔ Q a) →
P =A→Prop Q

� Set extensionality: SetE : ΠA : U. ΠX,Y : set(A). (Πa : A. a ∈ X ⇔ a ∈ Y )→ X =set(A) Y

� Univalence: let idtoeqv be the canonical function of type ΠA,B : U. (A =U B) → (A ≈ B),
for all types A,B : U , idtoeqv A B is an equivalence between the types A =U B and A ≈ B.

In these axiom statements, the symbol =A denotes equality between two terms of type A, set(A)
is type of the sets of elements of A, ∈ is the set membership relation, U is a universe and ' is the
equivalence relation over types in U .

Set extensionality is essentially another notation for predicate extensionality. Obviously,
DFE → NFE and NFE → PE → PredE. Less obviously, Prop can be de�ned in such a
way that logical equivalence corresponds to type equivalence; with this de�nition, univalence im-
plies PE. Even less obviously, univalence implies DFE (��4.9 in [12]). In the context of elimination
of the extensionality axioms, we probably do not want to reduce the relatively simple axiom of func-
tional extensionality to the more complex axiom of univalence; we do however discard the axioms
of propositional and predicate extensionality by considering Prop as a de�ned kind.

The univalence axiom has been proposed in the context of Homotopy Type Theory (HoTT) as a
new foundation of mathematics. In HoTT (��2.10 in [12]), the univalence axiom is stated as follows:

� If A and B are types, then A =U B → A ' B. (proof is easy)
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� Axiom: The function idtoeqv constructed by this proof is itself an equivalence.

In particular, the inverse ua of idtoeqv has the following interesting type: A ' B → A =U B
which can be read as "undistinguishable types are in fact equal", which corresponds to a common
habit in mathematics, in particular in category theory, of reasoning "modulo isomorphism".

Most mathematical concepts have multiple useful representations; for example:

� natural numbers may be represented in Peano form, which is useful for recursion, or in binary
form which leads to more e�cient extracted code,

� integers may be seen as pairs of a sign and an absolute value or as equivalence classes of
di�erences of natural numbers,

� �nite sets can be represented by sorted lists or red-black trees,

� polynomials can be represented as sets of roots or as arrays of coe�cients,

� graphs can be represented as sets of arcs and vertices or as adjacent matrices,

It is often useful to play with the di�erent representations of the same object to achieve some
complex mathematical proof. Hence univalence is promising since once we have proven that two
representations are equivalent, we can rewrite from one to the other thanks to the axiom. For
example, if we prove a complex arithmetic result using Peano natural numbers (which have a nice
inductive structure) and if this result has the form of a predicate independent of the representation
applied to the type of natural numbers in Peano representation, then we obtain for free by univalence
the corresponding theorem on the binary representation of natural numbers.

However, the univalence axiom is more than just the ua function, it is also the important fact
that this function is the inverse of idtoeqv and so has a computational content. In particular:

� ua maps the identity function to the re�exivity of equality: ua(idA) = re�A,

� uamaps composition of equivalences to transitivity of equality: ua(g◦f) = trans (ua(f)) (ua(g))

� ua maps equivalence inverses to symmetry of equality: ua(f−1) = sym (ua(f)).

Unfortunately, the axiomatic nature of the univalence makes these equalities only propositional.
It would be interesting to work in a theory where ua is de�ned as a partial function that reduces
by pattern matching on the function that it receives and on the types A and B.

In such a context, we expect the univalence function to be an algorithm that given a proof of
an equivalence between two representations A and B and a proof of some property on A constructs
the proof of the equivalent property on B.

In the rest of this section, we de�ne in Dedukti a rewrite system representing a type theory
featuring an extensional equality de�ned by ad-hoc polymorphism in Section 1. The main bene�t of
this rewrite system is that several extensionality axioms can uniformly be stated. This uniformity
is exploited in Section 2 in which rewrite rules are added to eliminate the extensionality axioms.
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1 Extensional Equality in Dedukti

In order to study the elimination of the extensionality axioms, we propose a Dedukti rewrite system
in which equality is de�ned by ad-hoc polymorphism in such a way that functional extensionality
and univalence hold by de�nition. In particular, we de�ne the type A =U B as A ' B when
U is a universe. We present our rewrite system both in mathematical notations and in Dedukti
syntax. The mathematical syntax is used to explain the meaning of the rewrite rules. We omit
some type arguments, in particular for constructors of inductive types to improve readability, the
missing pieces of information are given in the Dedukti terms. When type arguments are given, they
are placed in subscript so for example we write =A instead of = A.

The ambient type theory in which we are developing this rewrite system is the fragment of
Martin-Löf Type Theory in which we do not take the inductive de�nitions of natural numbers and
equality. Natural numbers are not needed for our rewrite system and we want to give another
de�nition of equality. Unfortunately, we have to take dependent products and dependent sums into
consideration because the de�nition of ' uses them.

In [12], several equivalent de�nitions of ' are proposed, we choose the simplest. A function f is
an equivalence if it has a left inverse (a function g such that g ◦f is the identity) and a right inverse
(a function g such that g ◦ f is the identity). Formally, the relation ' is de�ned as follows:

(A ' B) := Σf : A→ B.
(Σg : B → A. Πx : A. g (f x) =A x) × (Σg : A→ B. Πy : B. f (g y) =B y)

� We write U for any universe Typei, letting the universe level implicit following the common
habit of typical ambiguity. In Dedukti, types are represented as usual:

#NAME ua.

(; Types ;)

type : Type.

def term : type -> Type.

The universe level is also omitted on the Dedukti side

(; Universe ;)

U : type.

[] term U --> type.

Girard's paradox [6] can be expressed in this encoding if the implicit universe levels are used
in an inconsistent manner so a serious application of this work would require to make the
universe levels explicit but it is orthogonal to the presentation of our rewrite system.

When using mathematical notations, we do not distinguish between a term of type type and
the type of its inhabitants : we omit the function term completely. Nor do we distinguish
between type and U, a universe is simply written U .

� The empty type 0 has no constructor:

(; Empty type ;)

0 : Type.

Zero : type.

[] term Zero --> 0.
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� The singleton type 1 has a constructor 01 : 1:

(; Singleton type ;)

1 : Type.

One : type.

[] term One --> 1.

0_1 : 1.

� Cartesian product is written A×B, its constructor is written (a, b):

(; Product ;)

prod : type -> type -> Type.

Prod : type -> type -> type.

[A,B] term (Prod A B) --> prod A B.

Pair : A : type -> B : type -> term A -> term B -> prod A B.

� Sum-type is written A+B, its constructors are left : A→ A+B and right : B → A+B:

(; Sum ;)

sum : type -> type -> Type.

Sum : type -> type -> type.

[A,B] term (Sum A B) --> sum A B.

Left : A : type -> B : type -> term A -> sum A B.

Right : A : type -> B : type -> term B -> sum A B.

� Arrow type is written A→ B, its constructor is λ:

(; Dependend Product ;)

Arr : type -> type -> type.

[A, B] term (Arr A B) --> term A -> term B.

� Dependent product is written Πx : A. B where x is bound in B, the constructor of dependent
product is also written λ:

(; Dependend Product ;)

Pi : A : type -> (term A -> type) -> type.

[A, B] term (Pi A B) --> x : term A -> term (B x).

� Dependent sum is written Σx : A. B where x is bound in B, the constructor of dependent
sum is also written (a, b):

(; Dependend Sum ;)

sig : A : type -> (term A -> type) -> Type.

Sig : A : type -> (term A -> type) -> type.

[A, B] term (Sig A B) --> sig A B.

Dpair : A : type -> B : (term A -> type) ->

a : term A -> term (B a) -> sig A B.

We proceed to our de�nition of equality case by case, de�ning =A on a type A amounts to
provide a type for a =A a

′ when a and a′ are obtained from the constructors of type A:
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def Eq : A : type -> term A -> term A -> type.

def eq : A : type -> term A -> term A -> Type.

[A,x,y] eq A x y --> term (Eq A x y).

� 0 has no constructor so there is nothing to do to de�ne =0.

� 1 has exactly one constructor 01 and it should be trivially equal to itself:

(01 =1 01) := 1

[] Eq One 0_1 0_1 --> One

� two inhabitants of A + B are equal if they are equal terms of type A or equal terms of type
B, they are di�erent otherwise:

(left a =A+B left a′) := (a =A a
′)

(left a =A+B right b) := 0
(right b =A+B left a) := 0
(right b =A+B right b′) := (b =B b′)

[A,B,a,a'] Eq (Sum A B) (Left _ _ a) (Left _ _ a') --> Eq A a a'

[A,B,a,b] Eq (Sum A B) (Left _ _ a) (Right _ _ b) --> Zero

[A,B,b,a] Eq (Sum A B) (Right _ _ b) (Left _ _ a) --> Zero

[A,B,b,b'] Eq (Sum A B) (Right _ _ b) (Right _ _ b') --> Eq B b b'

� two inhabitants of A×B are equal if they are componentwise equal:

((a, b) =A×B (a′, b′)) := (a =A a
′)× (b =B b′)

[A,B,a,b,a',b'] Eq (Prod A B) (Pair _ _ a b) (Pair _ _ a' b') -->

Prod (Eq A a a') (Eq B b b')

� two inhabitants of A→ B are equal if they are pointwise equal hence our de�nition of equality
satis�es non-dependent functional extensionality by de�nition:

(f =A→B g) := Πx : A. f x =B g x

[A,B,f,g] Eq (Arr A B) f g --> Pi A (x => Eq B (f x) (g x))

� similarly, two inhabitants of Πx : A. B(x) are equal is they are pointwise equal hence our
de�nition of equality satis�es dependent functional extensionality by de�nition:

(f =Πx:A. B(x) g) := Πx : A. f x =B(x) g x
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[A,B,f,g] Eq (Pi A B) f g --> Pi A (x => Eq (B x) (f x) (g x)).

� two types are equal if they are equivalent hence our de�nition of equality satis�es univalence
by de�nition:

(A =U B) := A ' B

def Are_semi_inverse : A : type -> B : type ->

term (Arr A B) -> term (Arr B A) -> type.

[A,B,f,g] Are_semi_inverse A B f g --> Pi A (x => Eq A (g (f x)) x).

def Isequiv : A : type -> B : type -> term (Arr A B) -> type.

[A,B,f] Isequiv A B f -->

Prod (Sig (Arr B A) (g => Are_semi_inverse A B f g))

(Sig (Arr B A) (g => Are_semi_inverse B A g f)).

def Eqv : type -> type -> type.

[A,B] Eqv A B --> Sig (Arr A B) (Isequiv A B).

def eqv : type -> type -> Type.

[A,B] eqv A B --> term (Eqv A B).

[A,B] Eq U A B --> Eqv A B.

� the only remaining case is dependent sum; given two dependent pairs (a, b) and (a′, b′) of
type Σx : A. B(x), we start by comparing a and a′ in type A. Since b and b′ do not have
convertible types, we use our equality between a and a′ to substitute a by a′ in the type of b;
this operation is called transport:

((a, b) =Σx:A. B(x) (a′, b′)) := Σp : a =A a
′. (transportA a a′ p B b) =B(a′) b

′

The type of transport is

transport : ΠA : U. Πa : A. Πa′ : A. (a =A a
′)→ ΠP : (A→ U). P a→ P a′

def transport : A : type -> a : term A -> a' : term A -> eq A a a' ->

P : (term A -> type) -> term (P a) -> term (P a').

[A,B,a,b,a',b'] Eq (Sig A B) (Dpair _ _ a b) (Dpair _ _ a' b') -->

Sig (Eq A a a') (p => Eq (B a') (transport A a a' p B b) b').

The transport operation has to be de�ned mutually with equality, de�ning transport on a type
A amounts to provide an inhabitant of ΠP : (A → U). P a → P a′ when a and a′ are obtained
from the constructors of type A and p is obtained from the constructors of type a =A a

′:

� there is no inhabitant in 0 so there is nothing to do for transport0.

� there is a single constructor 01 in 1,

transport1 01 01 01 := λP : (1→ U). λh : P 01. h
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[h] transport One 0_1 0_1 0_1 _ h --> h

� to de�ne transportA+B, we only have to give two cases because there are no proofs of equality
in the two other cases:

transportA+B (left a) (left a′) p :=
λP : (A+B → U). λh : P (left a). transportA a a′ p (λx : A. P (left x)) h

transportA+B (right b) (right b′) p :=
λP : (A+B → U). λh : P (right b). transportB b b′ p (λx : B. P (right x)) h

[A,B,a,a',p,P,h]

transport (Sum A B) (Left _ _ a) (Left _ _ a') p P h

-->

transport A a a' p (x => P (Left A B x)) h

[A,B,b,b',p,P,h]

transport (Sum A B) (Right _ _ b) (Right _ _ b') p P h

-->

transport B b b' p (x => P (Right A B x)) h

� to de�ne transportA×B, we use the transport operations on A and B in sequence:

transportA×B (a, b) (a′, b′) (pA, pB) :=
λP : (A×B → U). λh : P (a, b).

transportB b b′ pB (λy : B. P (a′, y)) (transportA a a′ pA (λx : A. P (x, b)) h)

[A,B,a,b,a',b',P,pA ,pB ,h]

transport (Prod A B) (Pair _ _ a b) (Pair _ _ a' b')

(Pair _ _ pA pB) P h

-->

transport B b b' pB (y => P (Pair A B a' y))

(transport A a a' pA (x => P (Pair A B x b)) h).

� transport is not de�nable on arrows, dependent products and universes because these cases
correspond to unprovable axioms.

� the only remaining case is again dependent sum and is again the most complicated; to sub-
stitute a dependent pair (a, b) by an equal one (a′, b′) in a term h : P (a, b), we �rst substitute
a by a′ leading to a term h̃ : P (a′, transportA a a′ B p b) but this requires to extend transport

to allow the predicate to depend on the inhabitant of the equality type.

This generalized transport is called based-path induction (this name comes from the homotopy
interpretation of equality as path, see [12]):

bpi : ΠA : U. Πa : A. Πa′ : A. Πp : (a =A a
′). ΠP : (Πx : A. (a =A x)→ U).

P a (re�A a)→ P a′ p

where re� states the re�exivity of equality:
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re� : ΠA : U. Πa : A. (a =A a)

We de�ne both bpi and re� by ad-hoc polymorphism again:

def Refl : A : type -> a : term A -> eq A a a.

def bpi : A : type -> a : term A -> a' : term A -> p : eq A a a' ->

P : (x : term A -> eq A a x -> type) ->

term (P a (Refl A a)) -> term (P a' p).

� there is nothing to do for 0.

� the de�nitions are straightforward for 1:

re�1 01 := 01

bpi1 01 01 01 := λP : (Πx : 1. (01 =1 x)→ U). λh : P 01 01. h

[] Refl One 0_1 --> 0_1.

[h] bpi One 0_1 0_1 0_1 _ h --> h.

� for type A+B, we only have two cases to consider:

re�A+B (left a) := re�A a
re�A+B (right b) := re�B b
bpiA+B (left a) (left a′) pA :=

λP : (Πx : A. (a =A x)→ U).
λh : P (left a) (re�A a).

bpiA a a′ pA (λx : A. λp : a =A x. P (left x) p) h
bpiA+B (right b) (right b′) pB :=

λP : (Πy : B. (b =A y)→ U).
λh : P (right b) (re�B b).

bpiB b b′ pB (λy : B. λp : b =B y. P (right y) p) h

[A,B,a] Refl (Sum A B) (Left _ _ a) --> Refl A a

[A,B,b] Refl (Sum A B) (Right _ _ b) --> Refl B b.

[A,B,a,a',pA,P,h] bpi (Sum A B) (Left _ _ a) (Left _ _ a') pA P h -->

bpi A a a' pA (x => p => P (Left A B x) p) h

[A,B,b,b',pB,P,h] bpi (Sum A B) (Right _ _ b) (Right _ _ b') pB P h -->

bpi B b b' pB (x => p => P (Right A B x) p) h.

� again, bpi can not be de�ned for arrows, dependent products and universes but we can easily
de�ne re�exivity in these cases:

re�A→B f := λx : A. re�B (f x)
re�Πx:A. B(x) f := λx : A. re�B(x) (f x)

re�U A := (λx : A. x, ((λx : A. x, re�A), (λx : A. x, re�A)))
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[A,B,f] Refl (Arr A B) f --> a : term A => Refl B (f a)

[A,B,f] Refl (Pi A B) f --> a : term A => Refl (B a) (f a)

[A] Refl U A -->

Dpair (Arr A A) (Isequiv A A) (x => x)

(Pair (Sig (Arr A A) (g => Are_semi_inverse A A (x => x) g))

(Sig (Arr A A) (g => Are_semi_inverse A A g (x => x)))

(Dpair (Arr A A) (g => Are_semi_inverse A A (x => x) g)

(x => x) (Refl A))

(Dpair (Arr A A) (g => Are_semi_inverse A A g (x => x))

(x => x) (Refl A))).

� last but not least, we de�ne re� and bpi for products and Σ-types; re�Σx:A. B(x) (a, b)
should have type Σp : a =A a. (transportA a a p B b) =B(a) b, the only reasonable
choice to inhabit a =A a is to take re�A a and we are then asked to inhabit the type
(transportA a a (re�A a) B b) =B(a) b. This is not a problem in usual type theory where
transportA a a (re�A a) B b is convertible to b; to allow a similar conversion, we add the
rewrite rule

transportA a a (re�A a) P h −→ h

[A,a,P,h] transport A a a (Refl A a) P h --> h.

This rewrite rule is not linear, we would like to replace it by its linearization:

transportA a a′′ (re�A′ a′) P h −→ h

letting Dedukti infer that a ≡ a′ ≡ a′′ and A ≡ A′ in order to type-check the rewrite rule.
Unfortunately, this depends on the injectivity of = which Dedukti has no mean to guarantee.
In fact, nothing prevents the user to add non-injective rewrite rules between this one and the
moment where it will be matched so Dedukti is right in rejecting the linear rule.

For this reason, the current development has been type-checked by Dedukti using the non-
linearity �ag and could not be checked for con�uence automatically.

We de�ne re� on products and Σ-types by

re�A×B (a, b) := (re�A a, re�B b)
re�Σx:A. B(x) (a, b) := (re�A a, re�B(a) b)

[A,B,a,b] Refl (Prod A B) (Pair _ _ a b) -->

Pair (Eq A a a) (Eq B b b) (Refl A a) (Refl B b)

[A,B,a,b] Refl (Sig A B) (Dpair _ _ a b) -->

Dpair (Eq A a a)

(p : eq A a a => Eq (B a) (transport A a a p B b) b)

(Refl A a) (Refl (B a) b).

In order to de�ne bpi, we generalize the non-linear rule on transport to the dependent case:
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bpiA a a (re�A a) P h −→ h

[A,a,P,h] bpi A a a (Refl A a) P h --> h.

This allows us to de�ne bpi. In order to shorten this de�nition and increase readability, we
use local de�nitions. These local de�nitions are unfolded in the actual Dedukti �le.

bpiA×B (a, b) (a′, b′) (pA, pB) :=
λP : (Πc : A×B. ((a, b) =A×B c)→ U).
λh : P (a, b) (re�A a, re�B b).

bpiA a a′ pA (λx : A. λpx : a =A x. P (x, b′) (px, pB))
(bpiB b b′ pB (λy : B. λpy : b =B y. P (a, y) (re�A a, py)) h)

bpiΣx:A. B(x) (a, b) (a′, b′) (pA, pB) :=

λP : (Πc : Σx : A. B(x).((a, b) = c)→ U).
λh : P (a, b) (re�A a, re�B(a) b).

let move (x : A) (px : a =A x) : B(x) := transportA a x px B b in

let b̃ : B(a′) := move a′ pA in

let h̃ : P (a′, b̃) (pA, re�B(a′) b̃) :=

bpiA a a′ pA (λx : A. λpx : a =A x.P (x,move x px) (px, re�B(x) (move x px))) h

in

bpiB(a′) b̃ b
′ pB (λy : B(a′). λpy : b̃ =B(a′) y. P (a′, y) (pA, py)) h̃

[A,B,a,b,a',b',P,pA ,pB ,h]

bpi (Prod A B) (Pair _ _ a b) (Pair _ _ a' b') (Pair _ _ pA pB) P h

-->

bpi B b b' pB

(b'' => p =>

P (Pair A B a' b'') (Pair (Eq A a a') (Eq B b b'') pA p))

(bpi A a a' pA

(a' => pA =>

P (Pair A B a' b) (Pair (Eq A a a') (Eq B b b) pA (Refl B b)))

h).

[A,B,a,b,a',b',P,pA ,pB ,h]

bpi (Sig A B) (Dpair _ _ a b) (Dpair _ _ a' b') (Dpair _ _ pA pB) P h

-->

bpi (B a') (transport A a a' pA B b) b' pB

(b'' => p =>

P (Dpair A B a' b'')

(Dpair (Eq A a a')

(pA => Eq (B a') (transport A a a' pA B b) b'') pA p))

(bpi A a a' pA

(a' => pA =>

P (Dpair A B a' (transport A a a' pA B b))

(Dpair (Eq A a a')

(p =>
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Eq (B a') (transport A a a' p B b) (transport A a a' pA B b))

pA

(Refl (B a') (transport A a a' pA B b))))

h).

Let us summarize what we have done; we have de�ned extensional equality by ad-hoc poly-
morphism (by providing a di�erent de�nition for each possible type constructor) recursively and
mutually with the re�exivity theorem and the dependent elimination scheme bpi. The only missing
parts in this de�nition correspond to the three extensionality axioms: non-dependent functional
extensionality, dependent functional extensionality, and univalence. In other words, we have stated
these three axioms in a uniform way:

� transportA→B : Πf : A → B. Πg : A → B. (Πx : A. f x =B g x) → ΠP : ((A → B) →
U). P f → P g

� transportΠx:A. B(x) : Πf : (Πx : A. B(x)). Πg : (Πx : A. B(x)). (Πx : A. f x =B(x) g x) →
ΠP : ((Πx : A. B(x))→ U). P f → P g

� transportU : ΠA : U. ΠB : U. (A ' B)→ ΠP : (U → U). P A→ P B

2 Extending the Computational Content

We can now look for additional rewrite rules to eliminate these axioms. The �rst rules that we
should add are those which close the critical pairs with the rewrite rule
transportA a a (re�A a) P h −→ h:

� transportA→B f f (λx : A. re�B (f x)) P h −→ h

� transportΠx:A. B(x) f f (λx : A. re�B(x) (f x)) P h −→ h

� transportU A A (λx : A. x, ((λx : A. x, re�A), (λx : A. x, re�A))) P h −→ h

[B,f,h] bpi (Arr _ B) f f (x => Refl B (f x)) _ h --> h

[B,f,h] bpi (Pi _ B) f f (x => Refl (B x) (f x)) _ h --> h.

[A,h] bpi U A A

(Dpair (Arr A A) (Isequiv A A) (x => x)

(Pair _ _

(Dpair (Arr A A) _ (x => x) (Refl A))

(Dpair (Arr A A) _ (x => x) (Refl A)))) _ h --> h.

[B,f,h] transport (Arr _ B) f f (x => Refl B (f x)) _ h --> h

[B,f,h] transport (Pi _ B) f f (x => Refl (B x) (f x)) _ h --> h.

[A,h] transport U A A

(Dpair (Arr A A) (Isequiv A A) (x => x)

(Pair _ _

(Dpair (Arr A A) _ (x => x) (Refl A))

(Dpair (Arr A A) _ (x => x) (Refl A)))) _ h --> h.
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Even if it is very tempting, we do not add the general rewrite rule transportA a a _ P h −→ h
because is would lead to inconsistency since in Homotopy Type Theory there can be equality proofs
distinct from re�exivity. For example, there are two proofs of 2 =U 2 where 2 is the type 1 + 1, the
�rst one is re�U 2 and the second one is e := (switch, ((switch, switch-auto), (switch, switch-auto)))
where switch : 2 → 2 is de�ned by switch (left 01) := right 01 and switch (right 01) := left 01 and
switch-auto : Πx : 2. switch (switch x) =2 x is de�ned by switch-auto (left 01) := re�2 (left 01) and
switch-auto (right 01) := re�2 (right 01). transportU 2 2 e should not be the identity but the operation
consisting of exchanging left and right.

We can play on which argument we match against in the rewrite rules:

transportU A B (e,_) (λX : U. X) a −→ e a
transportA a a′ _ (λx : A. B) b −→ b
transportA a a′ p (λx : A. B(x)× C(x)) (b, c) −→ (transportA a a′ p B b, transportA a a′ p C c)
transportA a a′ p (λx : A. B(x) + C(x)) leftb −→ left(transportA a a′ p B b)
transportA a a′ p (λx : A.B(x) + C(x)) rightc −→ right(transportA a a′ p C c)
transportA a a′ p (λx : A. B(x)→ C(x)) f −→

λb : B(a′). transportA a a′ p C (f(transportA a′ a p−1 B b))

In the last rule, p−1 is the inverse of p resulting from the application of the symmetry of equality.
This lemma can be de�ned either from transport or directly by induction over types if we want to
limit the dependency to transport.

def Sym : A : term U -> a : term A -> b : term A ->

term (Eq A a b) -> term (Eq A b a).

[] Sym One 0_1 0_1 0_1 --> 0_1

[A,B,a,a',p] Sym (Sum A B) (Left _ _ a) (Left _ _ a') p --> Sym A a a' p

[A,B,b,b',p] Sym (Sum A B) (Right _ _ b) (Right _ _ b') p --> Sym B b b' p

[A,B,f,g,p] Sym (Arr A B) f g H --> a => Sym B (f a) (g a) (p a)

[A,B,f,g,p] Sym (Pi A B) f g H --> a => Sym (B a) (f a) (g a) (p a)

[A,B,a,b,a',b',pA ,pB]

Sym (Prod A B) (Pair _ _ a b) (Pair _ _ a' b') (Pair _ _ pA pB)

-->

Pair (Eq A a' a) (Eq B b' b) (Sym A a a' pA) (Sym B b b' pB).

[A,B,e,a]

transport U A B (Dpair (Arr A B) (Isequiv A B) e _) (X => X) a --> e a

[B,b] transport _ _ _ _ (x => B) b --> b

[A,a,a',B,C,p,b,c]

transport A a a' p (x => Prod (B x) (C x)) (Pair _ _ b c)

-->

Pair (B a') (C a')

(transport A a a' p (x => B x) b) (transport A a a' p (x => C x) c)

[A,a,a',B,C,D,p,f] transport A a a' p (x => Arr (B x) (C x)) f -->

b => transport A a a' p (x => C x)

(f (transport A a' a (Sym A a a' p) (x => B x) b)).

Similar rules can be added for dependent product, dependent sum, and equality but they are a
bit complicated so we did not implement them. For the same reason, we did not implement similar
rules for the dependent version bpi either.
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3 Related Work

For the particular case of representation change between the unary and the binary representations of
natural numbers, Magaud [9] proposes a method for automatically retrieving theorems on the binary
representation of natural numbers from an arithmetic library. He implemented this approach on a
Coq unary arithmetic library and successfully produced the corresponding binary arithmetic library.
The main di�culty in this work relies on the implicit use of computation through Coq conversion
rule because the computational behaviour is not the same on the unary and the binary de�nition
of arithmetic operations. The solution proposed by Magaud consists in automatically expliciting
these computation steps. For highly computational proofs such as the Coq proof of the four colour
theorem [7], this might however not be tractable. Contrary to Magaud's approach, we respect the
Poincaré principle [3] of separation of reasoning and computing and we let the computational part
of the proofs implicit. Magaud's work would be a good starting point for evaluating the e�ciency
of our rewrite system as a tool for automatic representation change.

De�ning functions and reasoning by induction over types in Type Theory has a long story. In
their presentation of Martin-Löf Type Theory [11], Nordstrom, Petersson, and Smith consider an
elimination rule for the universe which closes the universe but allows for reasoning by induction
on the structure of types. Development of proof assistants for Type Theory such as Lego, Coq,
and Agda then droped this principle in favor of open universes in which inductive types can be
added at will. The NuPRL proof assistant for extensional MLTT [10] also follows this approach
but its Oyster2 derivative [8] came back to type induction in order to de�ne tactics in Type Theory
itself instead of an auxiliary meta-language (usually a variant of prolog or ML). As far as we know,
Oyster2 is the only implementation of close universes and type induction.

Most of the second chapter of the HoTT book [12] is dedicated to characterizing equality on
type constructors. Functional extensionality and the univalence axiom are motivated by the lack
of such characterization for dependent product and universes. However, the book complains about
the lack of computational behaviour of these characterizations; in HoTT, these characterizations of
equalities are not judgmental but only propositional.

In order to prove the consistency of the axiom of functional extensionality in type theory, an
extensional model of type theory can be de�ned using setoids []. This model is internalized in Ob-
servational Type Theory [1]. In OTT, a few constructs are added to intentional type theory (called
coercions, heterogeneous equality, and coherence operator) in order to get a provably extensional
equality while preserving canonicity (the property that closed normal forms begin with a construc-
tor). However, both the setoid model and OTT require a strong notion of proof irrelevance: if ϕ is
a proposition, all the terms of type ϕ should be convertible. It is still unclear whether or not proof
irrelevant type theory can be encoded Dedukti (this issue is discussed in [2] in the context of the
encoding of Matita to Dedukti) so it is hard to relate our work with OTT.

Similarly for the univalence axiom, a model of univalent type theory called the cubical model
has been internalized in type theory leading to Cubical Type Theory [4], an extension of HoTT in
which univalence is derivable from other operations (glue and unglue) in a way which gives it more
computational behaviour. This work is a lot more ambitious than our approach. In particular,
Cubical Type Theory is believed to have the canonicity property.
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