Academia.eduAcademia.edu
Hydrobiologia DOI 10.1007/s10750-013-1639-x Review Paper FRESHWATER BIVALVES Bivalve distribution in hydrographic regions in South America: historical overview and conservation Daniel Pereira • Maria Cristina Dreher Mansur • Leandro D. S. Duarte • Arthur Schramm de Oliveira • Daniel Mansur Pimpão • Cláudia Tasso Callil • Cristián Ituarte • Esperanza Parada • Santiago Peredo • Gustavo Darrigran • Fabrizio Scarabino • Cristhian Clavijo • Gladys Lara • Igor Christo Miyahira • Maria Teresa Raya Rodriguez • Carlos Lasso Received: 19 January 2013 / Accepted: 25 July 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Based on literature review and malacological collections, 168 native freshwater bivalve and five invasive species have been recorded for 52 hydrographic regions in South America. The higher species richness has been detected in the South Atlantic, Uruguay, Paraguay, and Amazon Brazilian hydrographic regions. Presence or absence data were analysed by Principal Coordinate for PhylogenyWeighted. The lineage Veneroida was more representative in hydrographic regions that are poorer in species and located West of South America. The Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Simone G. P. Varandas, Elsa M. B. Froufe & Amı́lcar A. T. Teixeira / Biology and Conservation of Freshwater Bivalves D. Pereira (&)  M. C. D. Mansur  L. D. S. Duarte  A. S. de Oliveira  M. T. R. Rodriguez PPECO/CENECO/UFRGS – Programa de Pós-Graduação em Ecologia, Centro de Ecologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves n. 9500, Porto Alegre, RS 91540-000, Brazil e-mail: dani.mdourado@gmail.com Mycetopodidae and Hyriidae lineages were predominant in regions that are richest in species toward the East of the continent. The distribution of invasive species Limnoperna fortunei is not related to species richness in different hydrographic regions there. The species richness and its distribution patterns are closely associated with the geological history of the continent. The hydrographic regions present distinct phylogenetic and species composition regardless of the level of richness. Therefore, not only should the richness be considered to be a criterion for prioritizing areas for conservation, but also the phylogenetic diversity of communities engaged in services and functional aspects relevant to ecosystem maintenance. A plan to the management of this fauna according to C. T. Callil NEPA/UFMT – Núcleo de Estudos Ecológicos do Pantanal, Universidade Federal de Mato Grosso, Av. Fernando Correa da Costa, 2367, Cuiabá, MT 78060-900, Brazil e-mail: callil@ufmt.br L. D. S. Duarte e-mail: duarte.ldus@gmail.com C. Ituarte MACN – Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Av. Angel Gallardo 470, 140 50 JR Buenos Aires, Argentina e-mail: ituarte@macn.gov.ar D. M. Pimpão IBAMA – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis, Rua 229 n. 95, Setor Leste Universitário, Goiânia, GO 74605-090, Brazil e-mail: danielpimpao@yahoo.com.br E. Parada  S. Peredo ECOHYD – Plataforma de Investigación en Ecohidrologı́a y Ecohidráulica), Almirante Rivero 075, Providencia, Santiago, Chile e-mail: esperanza.parada@ecohyd.com M. C. D. Mansur e-mail: mcrismansur@gmail.com 123 Hydrobiologia particular ecological characteristics and human uses of hydrographic regions is needed. Keywords Bivalve  South America  Literature review  Scientific collections  Phylogenetic composition Literature review Earlier works on the freshwater bivalves of South America (from *1800 to *1890) are descriptive and consist of illustrated catalogs of species collected by naturalists during exploratory expeditions along river basins (Spix, 1827; Orbigny, 1835, 1846; Hupé, 1857). Shells acquired from travelers or merchants, or through exchange with colleagues or amateurs, have been described and cataloged by collectors and naturalists such as Maton (1811), Lamarck (1819), Lea (1834, 1838, 1852, 1857, 1860, 1863, 1869, 1874), Philippi (1847), Küster (1842), Sowerby (1864, 1867, 1868, 1869a, b), among others. Most scientific collections were private and would be eventually sold or donated to European museums (Dance, 1966; Olazarri, 1975; Haag, 2012). At that time, descriptions of new species were extremely poor, largely vague, and based on outdated concepts containing few illustrations and mostly from single specimens. Some of these catalogs were more iconographic than descriptive. In some cases, with the intent of showing the beauty shells, some conchological features were overlooked by designers. This fact led to misunderstandings and wrong identification at the genus or species levels. Very often, collecting localities were G. Darrigran FCNyM/UNLP – Museo de La Plata, Paseo del Bosque s/n8, 1900 La Plata, Argentina e-mail: invasion@fcnym.unlp.edu.ar F. Scarabino  C. Clavijo MNHNM – Museo Nacional de Historia Natural, 25 de mayo 582 – CC. 399, CP. 11000 Montevideo, Uruguay e-mail: fscara@gmail.com G. Lara Lab. de Limnologı́a y Recursos Hı́dricos, Facultad de Recursos Naturales, UCT – Universidad Católica de Temuco, Rudecindo Ortega 02950. Campus Norte, Temuco, Chile e-mail: glara@uct.cl 123 unknown or poorly documented, consisting of vague references such as the continent or country name where a species was collected. Sometimes, old local names of rivers and lakes are no longer used, making the collection site difficult to locate. In a subsequent period (*1890–1960), special attention was given to the works of Simpson (1900, 1914) who published a summary and a catalog of World Unionoida, including South American species. This publication includes redescriptions, lists of synonyms, and significant taxonomic comments, with many species being labeled as incertae sedis. Hermann von Ihering emigrated from Germany to Brazil and lived there for many years, where he studied and collected bivalve mollusks, starting in the State of Rio Grande do Sul. Some years later, he moved to São Paulo to open the Museu de Zoologia da Universidade de São Paulo in 1895. Ihering organized the malacological collection and published over 35 articles on mollusks (Vaz, 1986), including checklists and identification keys of taxa from several drainages from Brazil and neighboring countries (Ihering, 1890, 1893, 1910). He also revisited the bivalve species described by Spix and Lamarck (Ihering, 1890, 1910) by examining the types. He was the first researcher to see and describe the lasidium (Ihering, 1891) larvae of Mycetopodidae, which is very similar to the haustorium of African species of the same Etherioidea superfamily (Wächtler et al., 2001). Unfortunately, due to political problems during WWI, Ihering was forced to leave both the museum and the country, and ended up selling his collection to European museums. In the early twentieth century, a pioneering initiative by local researchers attempted to catalog bivalves. I. C. Miyahira Lab. de Malacologia, UERJ – Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, sala 525/2, Maracanã, Rio de Janeiro, RJ 20550-900, Brazil e-mail: icmiyahira@yahoo.com.br C. Lasso IAVH – Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Calle 28 A 15-09, Bogotá D.C., Colombia e-mail: classo@humboldtt.org.co Hydrobiologia Among them, we can mention Formica-Corsi (1900) who looked at Uruguayan bivalves, as well as Morretes (1949, 1953) who worked with the mollusks from Brazil. Ortmann (1921) was the first researcher to include anatomical traits of the soft parts of adults and the glochidia larvae in the descriptions of his species. He proposed the first studies on phylogenetic relationships among Unionoida. However, his studies were not given the right recognition by his future fellow scholars. Many Unionoida and Veneroida species were described for hydrographic basins located in Patagonia, Venezuela, Colombia, and Uruguay by Marshall (1916, 1922, 1924, 1927a, b, 1928, 1930) and Pilsbry (1896, 1897). Many new species were described (Baker, 1914, 1930) after conducting North American expeditions in the Amazon region, Brazil, and Venezuela. The 433 species of Unionoida described from South America were reduced by Haas (1930, 1931a, b, 1969) to 124, based primarily on shell characteristics. He mentioned 70 species and subspecies of Hyriidae and 54 Mycetopodidae. With Argentino Bonetto and his team from Argentina, a new period (from *1960 to present) pioneered by South American morphologists and taxonomists began. A series of morphological and taxonomic studies were published including the description of many species of glochidia and lasidia of South American freshwater bivalves (Bonetto, 1961a, b, 1962, 1963, 1964, 1965, 1966, 1967a, b, 1972, 1997); Bonetto & Ezcurra-de-Drago, 1966; Bonetto et al., 1986). At the end of the last century, malacology was consolidated in many South American universities, mainly Argentina, Brazil, Chile, Uruguay, and in other research institutions like: Instituto Miguel Lillo at Tucuman and Instituto Nacional de Limnologı́a at Santa Fé (both in Argentina), Plataforma de Investigación en Ecohidrologı́a y Ecohidraúlica at Santiago (Chile), Museo Nacional de Historia Natural de Montevideo (Uruguay), and Fundação Zoobotânica do Rio Grande do Sul at Porto Alegre (Brazil). From there, the study of freshwater bivalve became more consolidated resulting in several important scientific publications (Olazarri, 1963, 1966, 1975; Mansur, 1970, 1972, 1974, 1999; Veitenheimer, 1973a, b; Hebling & Penteado, 1974; Mansur & Veitenheimer, 1975; Hebling, 1976; Veitenheimer & Mansur, 1978a, b; Mansur & VeitenheimerMendes, 1979; Alvarenga & Ricci, 1979a, b, 1989; Mansur & Anflor, 1981; Mansur et al., 1987, 1988, 1991, 1994;; Mansur & Garces, 1988; Mansur & Campos- Velho, 1990, 2000; Mansur & Silva, 1990, 1999; Ricci et al., 1990; Mansur & Valer, 1992; Simone, 1994, 1997, 1999, 2006; Mansur & Olazarri, 1995; Avelar & Mendonça, 1998; Serrano et al., 1998; Pereira et al., 2000, 2011, 2012; Callil & Mansur, 2002, 2005, 2007; Mansur & Pereira, 2006; Scarabino & Mansur, 2007; Mansur & Pimpão, 2008; Pimpão et al., 2008, 2012; Lasso et al., 2009; Pimpão & Mansur, 2009). Chilean researchers carried out multiple studies on Diplodon chilensis documenting its ecology (Lara & Parada, 1991, 2009; Lara & Moreno, 1995; Lara et al., 2002a, b; Grandón et al., 2008), taxonomy (Parada & Peredo, 2002), morphology (Parada et al., 1989a; Valdovinos & Pedreros, 2007), reproduction (Peredo & Parada, 1984, 1986, Parada et al., 1987, 1990; Peredo et al., 1990), life history (Parada et al., 1989b, Parada & Peredo, 1994), genetics (Jara-Seguel et al., 2000; Peredo et al., 2003), distribution (Lara & Parada, 1988, 2008; Parada et al., 2007), and relocation (Parada & Peredo, 2005; Peredo et al., 2005). This intensive effort propelled D. chilensis as the best known species of Hyriidae in the continent. Considering the order Veneroida, Spix (1827), Orbigny (1835, 1846), Anton (1837), Baker (1930), Clessin (1879, 1888), Josseaume (1889), Pilsbry (1897, 1911), described the first species of Sphaeriidae from South America. Later, South American researchers described and cataloged several species for that continent: Doello-Jurado (1921), Meier-Brook (1967), Ituarte (1989, 1994a, 1995, 1996, 1999, 2000, 2001, 2004, 2005, 2007), Ituarte & Mansur (1993), Ituarte & Korniushin (2006), Klappenbach (1962), Mansur & Meier-Brook, (2000), and Mansur et al. (2008). Parodiz & Hennings (1965) reviewed the 30 species of Corbiculidae described for the Paraná/Paraguay and Uruguay basins. The authors concluded that only Cyanocyclas (= Necorbicula) limosa (Maton, 1811) and Cyanocyclas paranensis (Orbigny, 1835) would be valid species, whereas the others would be synonymized. Nevertheless, the species cited for the Amazon [Cyanocyclas amazonica (Prime, 1870) and Cyanocyclas brasiliana (Deshayes, 1854)], and more to the North of South America [Cyanocyclas bavayi (Ancey, 1880); Cyanocyclas cuneata (Jonas, 1844); Cyanocyclas rotunda (Prime, 1860) and Cyanocyclas surinamica (Clessin, 1879)] need revision. Later, Ituarte (1994b) presented important publications that provided diagnostic morphological and reproductive data of invasive species Corbicula fluminea (Müller, 123 Hydrobiologia 1774) and Corbicula largillierti (Philippi, 1884) compared to native species C. limosa. Martins et al. (2004) reviewed the Corbiculidae invasive species in Southern Brazil looking at morphological and conchological characters. Two known Dreissenidae species and Anticorbula fluviatilis (Adams, 1860), the last placed with doubts inside Myoida, requires taxonomic revisions. Darrigran & Damborenea (2009) and Mansur et al. (2012c) compiled a series of studies on Limnoperna fortunei (Dunker, 1857) after the invasion in South America since 1991. Recently, Simone (2006) has published an illustrated catalog of the continental mollusks of Brazil and neighboring countries, which cited 120 species of freshwater bivalves. Despite this massive effort, many genera and species were listed without the proper taxonomic revision. Furthermore, synonyms of different species were brought together without considering advances in the study of the larvae. Biological characterization In South America, there are three lineages of freshwaters Bivalvia: Mytiloida, Unionoida, and Veneroida. According to Simone (1999), the systematic definition of A. fluviatilis into Lyonsiidae and Myoida was used as a temporary suggestion. Mytiloida is represented by the invasive species L. fortunei commonly known as golden mussel. L. fortunei is native from Asia, and was probably brought to South America via ballast water in 1991 (Darrigran & Pastorino, 1995; Mansur et al., 2003b, 2004a, b; Santos et al., 2012). With morphological characteristics similar to marine mussels (Mansur, 2012), it presents the complete larval cycle in the plankton (Mansur et al., 2012a) and after recruitment forms macroclusters. L. fortunei is very aggressive to the environment since it modifies the landscape, the flora, and benthic fauna as an ‘‘ecosystem engineer’’ (Darrigran & Damborenea, 2011). In built environments that use untreated water for cooling, the golden mussel causes clogging with considerable economic losses (Darrigran et al., 2007). The Unionoida are commonly known as freshwater mussels or only mussels, without marine members. They can be found all over the world except for Antarctica. In South America, this order is represented by two families, Hyriidae and Mycetopodidae, 123 comprising of only native species. They normally have from 2 to 10 cm in length though they can be longer, but according to Castellanos & Landoni (1990), Mycetopoda soleniformis (Orbigny, 1835) can reach up to 22 cm in length. They are considered to be good biological (Pereira et al., 2011) and paleoenvironment (Wesselingh, 2006) indicators. During geological time, these bivalves were the first to adapt to freshwater. Fossil record of freshwater bivalve Anthraconauta Pruvost, 1930, from the Carboniferous and Permian (late Paleozoic era) (Pellant, 1996), hold many similarities to the current species (Parodiz, personal communication). The unionids are very biodiverse. They have an amazing life cycle and strategies allowing survival in extreme situations, such as waterfalls, drought, and flood pulses. In the larval stage, most are temporary fish parasites. The larvae form cysts on the gills, scales, and fish fins. After 1 month, the larvae evolve to the juvenile stage breaking the cysts and falling to the substrate. This strategy helps the bivalves to overcome the problems of dispersion in upstream rivers. The South American unionoids show two basic larval types: the lasidium of Mycetopodidae, and glochidium of Hyriidae (Mansur et al., 2012a). Both the larval types are modified veligers and act as temporary ectoparasites on fish. As fish parasites, the lasidium triples in size and sends haustorium that penetrates the host tissues and remove its nutrients. The larval shell consists of a single helmet-shaped piece which involves the dorsal part of a body. This is formed by an anterior tongue-shaped ciliated lobe or a bilobated one, a central body with ventral lobes, a bilobated posterior tail with terminal hooks, and an anterior transparent adhesive organ. Depending on the species, this can be either stripshaped (genus Monocondylaea Orbigny, 1835), scourge-shaped (Leila blainvilliana Lea, 1834), or flower-shaped with a micro hook at one end, as Anodontites Bruguière, 1792, Mycetopoda Orbigny, 1835 and Acostea rivolii Deshayes, 1827) (Bonetto, 1997). The lasidia of other species and genera of the family, as Mycetopodella Marshall, 1927, Diplodontites Marshall, 1922, Fossula Lea, 1870, Haasica Strand, 1932, Bartlettia A. Adams, 1866, and Tamsiella Haas, 1931 are unknown. The larval body of glochidia is protected by two valves with an edge on the ventral border, a hook and a basal callus on the internal side of the ventral edge. Internally, there is an adhesive flagellum (absent in Hydrobiologia Castalia Lamarck, 1819), sensory cilia, cirrus, a central adductor muscle, a very rudimentary velum, and phagocytic cells lining inside the valves. With the flagellum and hooks, the glochidium is enabled to get attached to the gills, fins, or scales of the fish that develop a cyst covering the larva. However, there are exceptions among species of the genus Diplodon Spix (1827). Hook and adhesive filament are absent on glochidia of the subgenus Rhipidodonta Morch, 1853. So the respective species are not fish parasites. Larval development until the juvenile stage is complete inside parental marsupium. In general, the glochidia of Hyriidae does not present spinules at the edges of the valves and on the base of the hook like other species of Unionoidea (Unionidae and Margaritiferidae) (Mansur et al., 2012a). Bonetto (1961b) described glochidia of several species of Diplodon genus. Based on morphological studies, Pimpão et al. (2012) reviewed and standardized the terminology of glochidia shells from South American Hyriidae, thus facilitating the differentiation between several species of Amazonian Basin. The order Veneroida includes the following families: Corbiculidae, Sphaeriidae, and Dreissenidae. They are too considered to be good biological indicators (Lanzer & Schäfer, 1987; Pereira et al., 2011). The Corbiculidae native genera are represented by Cyanocyclas Blainville, 1818, and Polymesoda Rafinesque, 1828 with pallial sinus. The invasive Corbiculidade are represented by four species of the genus Corbicula Mergele von Muehlfeld, 1811. The incubation of larvae is complete in Cyanocyclas until it reaches an advanced stage inside the marsupium, a case of euvivipary. The number of embryos is small, ranging from 25 to 45 per gill, and the release is not synchronized. Two species of Polymesoda occur in brackish waters in the Northern part of the continent. The pallial sinus is absent in the invasive species of Corbiculidae. Only C. fluminea and C. largillierti have their larval and life cycles known; their embryos are incubated in marsupial gills until the end of stage veliger or pediveliger, and liberated synchronously (Mansur, 2012; Mansur et al., 2012a, b). In Sphaeriidae, species of the genera Sphaerium Scopoli, 1777 and Musculium Link, 1807 show sequential development of broods into independent marsupial brood sacs. In Pisidium Pfeiffer, 1821 a synchronized development in a single marsupial brood sac occurs (Cooley & Ó Foighil, 2000). An exception was observed in Pisidium punctiferum (Guppy, 1867) which form one brood at a time, but with different sizes of embryos which suggest unsynchronized release (Anflor & Mansur, 2001). Eupera Bourguignat, 1854 has the most primitive system of reproduction. Embryos have synchronized development, but there is no brood sac inside the marsupium (Cooley & Ó Foighil, 2000). The species of this genus produce delicate byssus threads that facilitate adherence to pebbles, plants, or floating aquatic vegetation. The great expansion of its excretory sac may explain its adaptation and resistance to prolonged periods of drought. Among Dreissenidae, we only know of the biology of Mytilopsis lopesi Alvarenga & Ricci, 1989. In this species, the embryos grow attached to the mantle in the pallial cavity until the juvenile stage, with no synchronous release (Mansur et al., 2012a). A. fluviatilis is known from the Amazon River in Brazil and Peru (Simone, 1999). It is a nestling bivalve that lives attached to sandy grains and litter underneath (Beasley, pers. communication). Simone (1999) described its morphology for the first time including it with doubts in Lyonsiidae (Pandoroidea). According to him, this species has been reported by various authors also in Corbulidae (Myoida), sharing some similaritie with Myidae, Hiatelloidea, and Thraciidae as well. The purpose of this paper is to survey freshwater bivalve species from South America, to classify and rank hydrographic regions based on species richness, composition, and phylogenetic lineages in order to facilitate the identification of region-specific conservation needs of this highly threatened fauna. Compilation of species records and analysis South America, with an area of 17,819.100 km2, represents 12% of the world land area and is home to 6% of the world population. It has several major river systems such as the Amazon, Orinoco, Parana, and La Plata River basins, with a total drainage area of 9,583.000 km2. Both these systems and other smaller ones show areas of endemism, diversity hotspots, and unique landscapes. Data on the occurrence of bivalve species in hydrographic regions in South America (Fig. 1; Table 1) were compiled from the scientific literature and examinations of the following scientific collections: Academy of Natural Sciences of Philadelphia (ANSP; Philadelphia, USA); Carnegie Museum of 123 Hydrobiologia Fig. 1 Hydrographic regions in South American countries and territory. Respective codes shown in Table 1 Natural History (CM; Pittsburgh, USA); Coleção de Moluscos da Universidade do Estado do Rio do Janeiro (UERJ; Rio de Janeiro, Brazil); Coleção de Moluscos da Universidade Federal do Mato Grosso (UFMT; Cuiabá, Brazil); Fundación Miguel Lillo (FML; Tucumán, Argentina); Instituto Nacional de Pesquisas da Amazônia (INPA; Manaus, Brazil); Musée d’Histoire Naturelle Bâle (MHNB; Basel, Switzerland); Musée de Zoologie (ZML; Lausanne, Switzerland); Musée d’Histoire Naturelle de la Ville de Genève (MHNG; Geneva, Switzerland); Museo Argentino de Ciencias Naturales’’Bernadino Rivadávia’’ (MACN; Buenos Aires, Argentina); Museo de La 123 Plata (MLP; La Plata, Argentina); Museo Nacional de Historia Natural de Chile (MNHNC; Santiago, Chile); Museo Nacional de Historia Natural de Montevideo (MNHM; Montevideo, Uruguay); Museu de Ciências e Tecnologia da Pontifı́cia Universidade Católica do Rio Grande do Sul (MCP; Porto Alegre, Brazil); Museu de Ciências Naturais Fundação Zoobotânica do Rio Grande do Sul (MCN; Porto Alegre, Brazil); Museu de Zoologia da UNISINOS (MZU; São Leopoldo, Brazil); Museu de Zoologia da Universidade de São Paulo (MZUSP; São Paulo, Brazil); Museu Nacional da Universidade Federal do Rio de Janeiro (MNRJ; Rio de Janeiro, Brazil); Museu Paraense Hydrobiologia Table 1 Hydrographic regions in South America Table 1 continued Countries Hydrographic regions Codes Countries Hydrographic regions Argentina (AR)a Patagonico System APT Paraguay (PY)i Paraguay River PPG Endorreico Central System ACH Paraná River PPR Cuyano Subandino System Bonaerense ACY ABO Rivers that flow into the Pacific Ocean PPA Paranoplatense System APP Andine Lakes PLA Misionero System AMI Amazon River PAM Uruguay River System AUR Suriname (SU)k SUA Salado del Sur System ASS Rivers that flow into the Atlantic Ocean Noa System ANO Venezuela (VE)l Rivers that flow into Caribbean Sea VCA Maracaibo Lake VMA Brazil (BR)b Bolivia (BO)c d Chile (CH) Amazonas River BAM Tocantins/Araguaia River BTA Rivers of the North and Northeast Atlantic BAN São Francisco River BSF Rivers of the East Atlantic BAL Upper Paraná River Paraguay River BAP BPG Uruguay River BUR Rivers of the south and southeast Atlantic BAS Madeira River BoMA Titicaca Lake—endorheic basins BoTT Paraguay River BoPG Atlantic exorheic basins Trans-Andean exorheic basins CEAT CET Andean exorheic basins CEA Peru (PE)j Uruguay (UY)m Codes Orinoco River VOR Amazon River VAM Uruguay River UUR Negro River UNE La Plata River ULP Mirim Lake UMI Coastal Lagoons UCO The hydrographic regions were delimited and adapted according to the following sources: a IADIZA—Instituto Argentino de Investigaciones de las Zonas Áridas (www.cricyt.edu.ar/ladyot/lava_carto/mapas/ argentina_cuencas/index.html) b ANEEL—Agência Nacional de Energia Elétrica (www. aneel.gov.br/area.cfm?id_area=104) c Mondaca (2011) d IGM—Instituto Geografico Militar del Chile (www.igm.cl/) e Pre-Andean exorheic basins CEP IGAC—Instituto Geográfico Agustı́n Codazzi (www.igac. gov.co) Coastal exorheic basins CEC f,g,k Endorheic Basins of Alta Puna CNE Endorheic basins of intermediate elevations CNCI h IGM—Instituto Geográfico Militar del Ecuador (www.igm. gob.ec) Rivers that flow into the Caribbean Sea Magdalena River CoCA i Orinoco River CoOR Rivers that flow into the Pacific Ocean CoPA l Amazon River CoAM Rivers that flow into the Atlantic Ocean GUA m IA—Instituto de Agrimensura Facultad de Ingenierı́a UdelaR (www.fing.edu.uy/ia/deptogeom/libro/capitulo8/hidrografia.htm) French Guiana (GF)g Rivers that flow into the Atlantic Ocean GFA Ecuador (EQ)h Rivers that flow into the Pacific Ocean EPA Amazon River EAM Colombia (CO)e Guyana (GU) f Each country is one Hydrographic region considering that all rivers flow into the Atlantic Ocean Paraguay Biodiversidad (www.pybio.org/) j CoMA MINEM—Ministerio de Energia Y Minas del Peru (www. minem.gob.pe/minem/archivos/file/DGAAM/mapas/mapas_ cuencas.htm) IGVSB—Instituto Geográfico de Venezuela Simon Bolı́var (www.igvsb.gob.ve/#) Emilio Goeldi (MPEG; Belém, Brazil); Museum für Naturkunde (ZMB; Berlin, Germany); Museum National d’Histoire Naturelle (MNHN; Paris, France); National Museum of Natural History, Smithsonian Institution (USNM; Washington D.C., USA); Natural 123 Hydrobiologia History Museum of United Kingdom (NHMUK; London, United Kingdom); Naturhistorisches Museum (NMW; Wien, Austria); Senckenberg Forschungsinstitut und Naturmuseum (SMF; Frankfurt a.M., Germany); Staatliches Museum für Naturkunde (SMNS; Stuttgart, Germany); and Zoologische Staatssammlung München (ZSM; Munich, Germany). Part of the data on the occurrence of species in Peru, Ecuador, and Colombia were extracted from Mussel Project (mussel-project.uwsp.edu/). All records of species (presence or absence) were tabulated for each country according to the main hydrographic regions. In order to recognize the phylogenetic composition of Bivalvia in the main hydrographic regions in South America (Fig. 1; Table 1), the following phylogenetic relationships were looked at (Mytilidae ((Hyriidae ? Mycetopodidae) (((Sphaeriidae ? Corbiculidae) Dreissenidae) Anticorbula fluviatilis))))) and supported by the molecular and morphological analyses according to Walker et al. (2006) and Giribet & Wheeler (2002). A pairwise phylogenetic distance matrix (DP) for the presence or absence of bivalve species in hydrographic regions included in the dataset was generated using Mesquite software (available at http://mesquiteproject. org/mesquite/mesquite.html). Hence, tree branch lengths were fixed to 1.0, as clade age estimates for bivalves were not available, and patristic distances between species were computed. The phylogenetic composition of each hydrographic regions was addressed using the phylogenetic fuzzy-weighting method developed by Pillar & Duarte (2010), and implemented in the software SYNCSA v. 2.5.22 (Debastiani & Pillar, 2012, available at http://www.cran.org). Pairwise phylogenetic distances in DP were transformed into a phylogenetic similarity matrix (SP = 1 - DP). Then, phylogenetic similarities in SP were used to weigh species composition in hydrographic regions, using a fuzzy set algorithm (see Pillar & Duarte, 2010 for details). This procedure generates a matrix describing the phylogeny-weighted species composition for each hydrographic region in South America in the dataset. That is, the presence of each species i in a given hydrographic region is shared with each species j occurring in the array of hydrographic regions, taking into account the phylogenetic similarity between i and j. Accordingly, those species j that are more phylogenetically related to i (e.g., from the same genus) will receive a proportionally higher fraction of the presence 123 of i in those hydrographic regions than more phylogenetically distant species (e.g., from a different family), which will receive a proportionally lower fraction, and so on. Note that the sum of species presences (i.e., species richness) in each hydrographic region will remain exactly the same after phylogenetic fuzzyweighting. After defining a multivariate matrix describing phylogenetic composition of hydrographic regions, we conducted a principal coordinates analysis (Gower, 1966; Legendre & Legendre, 1998) on that matrix to generate principal coordinates of phylogenetic structure (PCPS) for each hydrographic regions (Duarte, 2011; Duarte et al., 2012). This analysis was conducted on square-rooted Bray–Curtis dissimilarities between hydrographic regions. Then, we plotted the two first PCPS in a scatter plot to evaluate the association between the hydrographic regions and major bivalve lineages. PCPS analysis was conducted using the PCO statistical software (by M. Anderson, available at http:// www.stat.auckland.ac.nz/*mja/Programs.htm). The Mantel test was used to assess the possible relationship of the distribution of invasive species with species richness in hydrographic regions. The test verified the possible correlation between two arrays: presence and absence of L. fortunei or Corbicula species (obtained from Jaccard index) and richness species of freshwater bivalves (chord distance). Species richness and distribution Based on the survey of presence and absence, 168 native limnic bivalves and 5 invasive species were recorded for the 52 hydrographic regions of 12 South American countries, and one territory (Table 2). Hyriidae (36.42%) accounts for the highest percentage of species, followed by Mycetopodidae (27.75%) and Sphaeriidae (24.86%), Corbiculidae (8.09%), Dreissenidae (1.73%), and Mytilidae and Lyonsiidae (0.58%). The Unionoida represents 64.18% of the species richness of freshwater bivalves in South America while Veneroida 35.26% and Mytilioida 0.58%. The country that has the highest species richness is Brazil (117 species), followed by Argentina (60), Venezuela (49), and Uruguay (46) (Table 2). Hydrographic regions with the greatest species richness (Fig. 2) are in Brazil followed by Argentina and Uruguay, Venezuela and Peru. In Brazil, the richest hydrographic regions are in the South and Southeast Hydrobiologia Table 2 Freshwater bivalves species of South American countries and territory Species South American countries AR BR UY PY BO CH CO EQ PE GU SU GF VE Mytiloida Mytilidae Limnoperna fortunei (Dunker, 1857) 1 1 1 1 1 0 0 0 0 0 0 0 0 1 Unionoida Mycetopodidae Anodontites (Anodontites) aroanus H.B. Baker, 1930 0 0 0 0 0 0 0 0 0 0 0 0 Anodontites (A.) carinatus (Dunker, 1858) 0 0 0 0 0 0 1 1 1 0 0 0 1 Anodontites (A.) colombiensis Marshall, 1922 0 0 0 0 0 0 1 0 0 0 0 0 0 Anodontites (A.) crispatus Bruguière, 1792 0 1 0 0 1 0 1 1 1 1 1 1 1 Anodontites (A.) elongatus (Swainson, 1823) 1 1 1 1 1 0 1 1 1 0 0 0 1 Anodontites (A.) ferrarisii (Orbigny, 1835) 1 1 1 0 0 0 0 0 0 0 0 0 0 Anodontites (A.) guanarensis Marshall, 1927 0 0 0 0 0 0 0 0 0 0 0 0 1 Anodontites (A.) iheringi (Clessin, 1882) 0 1 0 0 0 0 0 0 0 0 0 0 0 Anodontites (A.) infossus H.B. Baker, 1930 0 0 0 0 0 0 0 0 0 0 0 0 1 Anodontites (A.) irisans Marshall, 1926 Anodontites (A.) lucidus (Orbigny, 1835) 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 Anodontites (A.) moricandii (Lea, 1860) 0 1 0 0 0 0 0 0 0 0 0 0 0 Anodontites (A.) obtusus (Spix 1827) 0 1 0 0 0 0 0 0 0 0 0 0 0 Anodontites (A.) patagonicus (Lamarck, 1819) 1 1 1 1 0 0 0 0 0 0 0 0 0 Anodontites (A.) puelchanus (Orbigny, 1835) 1 0 0 0 0 0 0 0 0 0 0 0 0 Anodontites (A. pittieri) Marshall, 1922 0 0 0 0 0 0 0 0 0 0 0 0 1 Anodontites (A.) schomburgianus (Sowerby, 1870) 0 1 0 0 0 0 0 0 1 1 0 0 1 Anodontites (A.) soleniformis (Orbigny, 1835) 1 1 0 1 1 0 0 0 1 0 0 0 0 Anodontites (A.) tenebricosus (Lea, 1834) 1 1 1 1 1 0 0 0 1 0 0 0 1 Anodontites (A.) tortilis (Lea, 1852) 0 0 0 0 0 0 1 1 1 0 0 0 1 Anodontites (A.) trapesialis (Lamarck, 1819) 1 1 1 1 1 0 1 1 1 0 0 0 1 Anodontites (A.) trapezeus (Spix, 1827) 1 1 1 1 1 0 0 0 0 0 0 0 1 Anodontites (Lamproscapha) ensiformis (Spix, 1827) 1 1 1 1 1 0 0 1 1 1 0 0 1 Anodontites (L.) falsus (Simpson, 1900) 0 0 0 0 0 0 0 0 0 0 0 0 1 Mycetopoda legumen (Martens, 1888) Mycetopoda siliquosa (Spix, 1827) 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 Mycetopoda soleniformis Orbigny, 1835 1 1 1 1 1 0 1 0 1 0 0 0 1 Mycetopodella falcata (Higgins, 1868) 0 1 0 0 0 0 1 0 1 0 0 0 0 Monocondylaea corrientesensis (Orbigny, 1835) 1 1 1 1 0 0 0 0 0 0 0 0 0 0 Monocondylaea costulata (Moricand, 1858) 0 1 0 0 1 0 0 0 1 0 0 0 Monocondylaea franciscana (Moricand, 1837) 0 1 0 0 0 0 0 0 0 0 0 0 0 Monocondylaea guarayana (Orbigny, 1835) 0 0 0 1 1 0 0 0 0 0 0 0 0 Monocondylaea jaspidea (Hupé, 1857) 0 1 0 0 0 0 0 0 0 1 0 0 1 Monocondylaea minuana (Orbigny, 1835) 1 1 1 0 0 0 0 0 0 0 0 0 0 Monocondylaea paraguayana (Orbigny, 1835) 1 1 1 1 0 0 0 0 0 0 0 0 0 Monocondylaea parchappii (Orbigny, 1835) 1 1 0 0 0 0 0 0 0 0 0 0 0 Fossula fossiculifera (Orbigny, 1835) 1 1 1 1 0 0 0 0 0 0 0 0 0 Tamsiella amazonica Bonetto, 1972 0 1 0 0 1 0 0 0 1 0 0 0 0 123 Hydrobiologia Table 2 continued Species South American countries AR BR UY PY BO CH CO EQ PE GU SU GF VE Tamsiella schroeteriana (Lea, 1852) 0 1 0 0 0 0 0 0 1 0 0 0 Tamsiella tamsiana (Dunker, 1858) 0 0 0 0 0 0 1 0 0 0 0 0 0 1 Diplodontites cookei Marshall, 1922 0 0 0 0 0 0 1 1 1 0 0 0 0 Diplodontites olssoni Pilsbry, 1933 0 0 0 0 0 0 1 0 0 0 0 0 0 Diplodontites pilsbryana Olsson & Wurtz, 1951 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Haasica balzani (Ihering, 1893) 0 1 0 0 0 0 0 0 0 0 0 0 Leila blainvilliana (Lea, 1834) 1 1 1 1 0 0 0 0 0 0 0 0 0 Leila esula (Orbigny, 1835) 0 1 0 1 1 0 1 0 1 1 0 0 1 Acostaea rivolii (Deshayes, 1827) 0 0 0 0 0 0 1 0 0 0 0 0 0 Bartlettia stefanensis (Moricand, 1856) 0 1 0 1 1 0 0 1 1 0 0 0 0 Hyriidae Diplodon (Australis) solidulus (Philippi, 1869) 0 0 0 0 0 1 0 0 0 0 0 0 0 Diplodon (Diplodon) aethiops (Lea, 1860) 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) berthae Ortmann, 1921 Diplodon (D.) besckeanus (Dunker, 1848) 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) caipira (Ihering, 1893) 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) chilensis (Gray, 1828) 1 0 0 0 0 1 0 0 1 0 0 0 0 Diplodon (D.) delodontus (Lamarck, 1819) 1 1 1 1 0 0 0 0 0 0 0 0 0 Diplodon (D.) dunkerianus (Lea, 1856) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) ellipticus Spix, 1827 0 1 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) expansus (Küster, 1856) 0 1 0 1 0 0 0 0 0 0 0 0 0 Diplodon (D.) granosus (Bruguière, 1792) 0 1 0 0 0 0 0 0 0 1 1 1 1 Diplodon (D.) guaranianus (Orbigny, 1835) 0 0 0 1 1 0 0 0 0 0 0 0 0 Diplodon (D.) imitator Ortmann, 1921 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) martensi (Ihering, 1893) 0 1 0 1 0 0 0 0 0 0 0 0 Diplodon (D.) multistriatus (Lea, 1831) 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) obsolescens Baker, 1913 0 1 0 0 0 0 0 0 0 1 0 0 1 Diplodon (D.) parallelopipedon (Lea, 1834) 1 1 1 1 1 0 0 0 0 0 0 0 0 Diplodon (D.) parodizi Bonetto, 1960 1 1 0 1 0 0 0 0 0 0 0 0 0 Diplodon (D.) paulista (Ihering, 1893) Diplodon (D.) piceus (Lea, 1860) 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) rhombeus Spix, 1827 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) rhuacoicus (Orbigny, 1835) 1 1 1 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) suavidicus (Lea, 1856) 0 1 0 0 0 0 1 0 0 1 0 0 1 Diplodon (D.) vicarius Ortmann, 1821 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon (D.) wymanii (Lea, 1860) 1 1 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon (Rhipidodonta) burroughianus (Lea, 1834) 1 1 1 0 0 0 0 0 0 0 0 0 Diplodon (R.) charruanus (Orbigny, 1835) 1 1 1 0 0 0 0 0 0 0 0 0 0 Diplodon (R.) deceptus Simpson, 1914 sensu Ortmann, 1921 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon (R.) funebralis (Lea, 1860) 0 1 1 0 0 0 0 0 0 0 0 0 0 Diplodon (R.) koseritzi (Clessin, 1888) Diplodon (R.) hildae Ortmann, 1921 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Diplodon (R.) hylaeus (Orbigny, 1835) 1 1 1 0 1 0 0 1 1 0 0 0 0 123 Hydrobiologia Table 2 continued Species South American countries AR BR UY PY BO CH CO EQ PE GU SU GF VE Diplodon (R.) iheringi Simpson, 1914 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon (R.) peraeformis (Lea, 1860) 1 0 1 0 0 0 0 0 0 0 0 0 0 Diplodon (R.) variabilis (Maton, 1811) 1 0 1 0 0 0 0 0 0 0 0 0 0 Diplodon fontainianus (Orbigny, 1835) 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon greeffeanus (Ihering, 1893) 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Diplodon paranensis (Lea, 1834) 1 1 1 1 0 0 0 0 0 0 0 0 Diplodon pfeifferi (Dunker, 1848) 0 1 0 0 0 0 0 0 0 0 0 0 0 Diplodon rotundus Spix, 1827 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Diplodon solisianus (Orbigny, 1835) 0 0 1 0 0 0 0 0 0 0 0 0 Diplodon uruguayensis (Lea, 1860) 0 1 1 0 0 0 0 0 0 0 0 0 0 Diplodon voltzi Vernhout, 1914 0 0 0 0 0 0 0 0 0 0 1 1 1 Castalia ambigua Lamarck, 1819 0 1 0 0 1 0 1 1 1 1 1 0 1 Castalia cordata Swainson, 1840 0 1 0 0 0 0 0 0 0 0 0 0 0 Castalia crosseana Hidalgo, 1865 Castalia duprei (Récluz, 1842) 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 Castalia ecarinata Mousson, 1869 0 0 0 0 0 0 1 1 0 0 0 0 Castalia inflata Orbigny, 1835 1 1 1 1 1 0 0 0 0 0 0 0 0 Castalia martensi (Ihering, 1891) 0 1 1 0 0 0 0 0 0 0 0 0 0 Castalia multisulcata Hupé, 1857 0 0 0 0 0 0 1 0 0 0 0 0 1 Castalia nehringi (Ihering, 1893) 0 1 0 1 0 0 0 0 0 0 0 0 0 Castalia orbignyi (Deville & Hupé, 1850) 0 1 0 0 0 0 0 0 0 0 0 0 0 Castalia orinocensis Morrison, 1943 0 0 0 0 0 0 1 0 0 0 0 0 1 Castalia psammoica (Orbigny, 1835) 1 1 1 1 0 0 0 0 0 0 0 0 0 Castalia quadrata (Sowerby, 1869) 0 1 0 0 0 0 0 0 0 1 0 0 1 Castalia schombergiana Sowerby, 1869 0 1 0 0 0 0 0 0 0 0 0 0 1 Castalia stevensi (Baker, 1930) 0 0 0 0 0 0 1 0 0 1 0 0 1 1 Castalia sulcata (Krauss, 1849) 0 1 0 0 0 0 0 0 0 1 1 1 Castalia undosa Martens, 1885 0 1 0 0 0 0 0 0 0 0 0 0 0 Paxyodon syrmathophorus (Meuschen, 1781) 0 1 0 0 1 0 1 0 1 1 0 0 1 Prisodon obliquus Schumacher, 1817 Triplodon corrugatus (Lamarck, 1819) 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 Triplodon chodo Mansur & Pimpão, 2008 0 1 0 0 0 0 0 0 0 0 0 0 0 Veneroida Dreissenidae Mytilopsis lopesi Alvarenga & Ricci, 1989 0 1 0 0 0 0 0 0 0 0 0 0 0 Mytilopsis trautwineana (Tryon, 1866) 0 0 0 0 0 0 1 1 0 0 0 0 0 Congeria hoeblichi Schütt, 1991 0 0 0 0 0 0 1 0 0 1 0 0 1 Cyanocyclas amazonica (Prime, 1870) 0 1 0 0 0 0 0 0 0 0 0 0 0 Cyanocyclas bavayi (Ancey, 1880) 0 0 0 0 0 0 0 0 0 0 0 1 1 Cyanocyclas brasiliana (Deshayes, 1854) 0 1 0 0 0 0 0 0 0 0 0 0 0 Cyanocyclas cuneata (Jonas, 1844) 0 0 0 0 0 0 0 0 0 0 0 0 1 Cyanocyclas limosa (Maton,1811) 1 1 1 0 0 0 0 0 0 0 0 0 0 Corbiculidae 123 Hydrobiologia Table 2 continued Species South American countries AR BR UY PY BO CH CO EQ PE GU SU GF VE Cyanocyclas paranaensis (Orbigny, 1835) 1 1 1 1 0 0 0 0 0 0 0 0 0 Cyanocyclas rotunda (Prime, 1860) 0 0 0 0 0 0 0 0 0 1 1 0 1 Cyanocyclas surinamica (Clessin, 1879) 0 0 0 0 0 0 0 0 0 0 1 0 1 Corbicula fluminalis (Müller, 1774) 0 1 0 0 0 0 0 0 0 0 0 0 1 Corbicula fluminea (Müller, 1774) 1 1 1 0 0 0 1 0 1 0 0 0 1 Corbicula largillierti (Philippi, 1844) 1 1 1 0 0 0 0 0 0 0 0 0 0 Corbicula sp. 0 1 0 0 0 0 0 0 0 0 0 0 0 Polymesoda solida (Phillipi, 1846) 0 1 0 0 0 0 1 0 0 0 0 0 1 Polymesoda aequilatera (Deshayes, 1854) 0 1 0 0 0 0 0 0 0 1 1 1 1 0 Sphaeriidae Byssanodonta paranensis Orbigny, 1846 1 1 0 0 0 0 0 0 0 0 0 0 Eupera bahiensis (Spix, 1827) 0 1 0 0 0 0 0 0 0 0 0 0 1 Eupera doellojuradoi Klappenbach, 1962 1 1 1 0 0 0 0 0 0 0 0 0 0 Eupera elliptica Ituarte & Dreher-Mansur, 1993 Eupera guaraniana Ituarte, 1994 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Eupera iguazuensis Ituarte, 1989 1 1 0 0 0 0 0 0 0 0 0 0 0 Eupera klappenbachi Mansur & Veitenheimer, 1975 0 1 1 0 0 0 0 0 0 0 0 0 0 Eupera modioliforme (Anton, 1837) 0 0 0 0 0 0 0 0 0 0 0 0 1 Eupera platensis Doello-Jurado, 1921 1 1 1 1 0 0 0 0 0 0 0 0 0 Eupera primei Klappenbach, 1967 0 0 0 0 0 0 0 0 1 0 0 0 0 Eupera simoni (Jousseaume, 1889) 0 1 0 0 0 0 0 0 1 0 0 0 1 Eupera tumida (Clessin, 1879) 0 1 0 0 0 0 0 0 0 0 0 0 1 Musculium argentinum (Orbigny, 1835) 1 1 1 0 0 1 0 0 0 0 0 0 0 Musculium patagonicum Pilsbry, 1911 1 0 0 0 0 1 0 0 0 0 0 0 0 1 Pisidium bejumae Baker, 1930 0 1 0 0 0 0 0 0 0 0 0 0 Pisidium boliviense Sturany, 1900 0 1 0 0 0 0 0 1 1 0 0 0 0 Pisidium chicha Ituarte, 2005 1 0 0 0 0 0 0 0 0 0 0 0 0 Pisidium chilense (Orbigny, 1846) 0 0 0 0 0 1 0 0 0 0 0 0 0 Pisidium chiquitanum Ituarte, 2001 1 0 0 0 1 0 0 0 0 0 0 0 0 Pisidium dorbignyi Clessin, 1879 Pisidium forense Meier-Brook, 1967 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pisidium globulus Clessin, 1888 0 1 0 0 0 0 0 0 0 0 0 0 0 Pisidium huillichum Ituarte, 1999 1 0 0 0 0 1 0 0 0 0 0 0 0 Pisidium inacayali Ituarte, 1996 1 0 0 0 0 0 0 0 0 0 0 0 0 Pisidium iquito Ituarte, 2004 0 0 0 0 0 0 0 0 1 0 0 0 0 Pisidium lebruni Mabille, 1884 1 0 0 0 0 1 0 0 0 0 0 0 0 Pisidium llanquihuense Ituarte, 1999 0 0 0 0 0 1 0 0 0 0 0 0 0 Pisidium magellanicum (Dall, 1908) 1 0 0 0 0 1 0 0 0 0 0 0 0 Pisidium meierbrooki Kuiper & Hinz, 1984 0 0 0 0 1 1 0 0 1 0 0 0 0 Pisidium ocloya Ituarte, 2005 1 0 0 0 0 0 0 0 0 0 0 0 0 Pisidium omaguaca Ituarte, 2005 1 0 0 0 0 0 0 0 0 0 0 0 0 Pisidium patagonicum Pilsbry, 1911 1 0 0 0 0 0 0 0 0 0 0 0 0 Pisidium pipoense Ituarte, 2000 1 0 0 0 0 0 0 0 0 0 0 0 0 123 Hydrobiologia Table 2 continued Species South American countries AR BR UY PY BO CH CO EQ PE GU SU GF VE Pisidium plenilunium (Melvill & Standen, 1907) 1 0 0 0 0 0 0 0 0 0 0 0 Pisidium punctiferum (Guppy, 1867) 0 1 0 0 0 0 0 0 0 0 0 0 0 1 Pisidium sterkianum Pilsbry, 1897 1 1 1 1 1 0 0 0 0 0 0 0 0 Pisidium taraguyense Ituarte, 2000 1 1 1 0 0 0 0 0 0 0 0 0 0 Pisidium vile Pilsbry, 1897 1 1 1 1 1 0 0 0 0 0 0 0 0 Sphaerium aequatoriale Clessin, 1879 0 0 0 0 0 0 0 1 0 0 0 0 0 Sphaerium cambaraense Mansur et al., 2008 0 1 0 0 0 0 0 0 0 0 0 0 0 Sphaerium forbesi (Philippi, 1869) 0 0 0 0 1 1 1 0 1 0 0 0 0 Sphaerium lauricochae (Philippi, 1869) 0 0 0 0 0 1 0 0 1 0 0 0 0 Sphaerium titicacense (Pilsbry, 1924) 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 60 117 46 31 27 12 29 18 33 17 9 6 49 Myoida (?) Lyonsiidae (?) Anticorbula fluviatilis (Adams, 1860) Species richness (S) Atlantic, Uruguay, Paraguay, and Amazon Rivers ([40 species). In Uruguay, the continuation of the Uruguay River basin presents the greatest wealth, followed by the basin of the La Plata River. In Argentina, the Uruguay River and the rivers of Paranoplatense System are the richest in species. Further North of this continent, the Orinoco River in Venezuela and Amazon River, in Peru are quite relevant. In rivers, generally there is a greater species richness in the middle and lower zones (Mansur & Pereira, 2006; Pereira et al., 2011), where the primary production is higher. Moreover, in these areas, a floodplain with oxbow lakes containing many species of bivalves (Colle & Callil, 2012) is very common. Very low richness is probably related to small Pacific drainages, to arid domains from the Andes, to the semiarid at Brazilian Northeast Atlantic or salty endorheic systems in Argentina (Fig. 2). Only 43 native species occur in more than 10% of the hydrographic regions inventoried, while the other species occur in only 5 of 131 hydrographic regions inventoried (\10%) (Fig. 3). It means that there is an expressive and large zone of endemisms forming mosaics with different richness levels and taxocenosis compositions. Anodontites (A). trapesialis (Lamarck, 1819) and C. fluminea are widely distributed in South American hydrographic regions. The respective frequency of occurrence figures for these species in the basins analyzed are 59.6 and 53.8%. The following species should also be mentioned: M. siliquosa (Spix, 1827) (44.2%); Anodontites (A). elongatus (Swainson, 1823); Anodontites (A). trapezeus (Spix, 1827) and C. largillierti (32.7%); Anodontites (A). patagonicus (Lamarck, 1819) (28.8%); Anodontites (L). ensiformes (Spix, 1827) (26.9%); L. fortunei (25.7%); Anodontites (A). crispatus Bruguière, 1792; Anodontites (A). tenebricosus (Lea, 1834) and Pisidium sterkianum Pilsbry, 1897 (25.0%); M. soleniformis and Castalia ambigua Lamarck, 1819 (21.1%). A. trapesialis is widely spread in hydrographic regions of the South America, occurring in sandy/ muddy or muddy-only sediment, with deposits of silt and clay, in regions of lower water velocity as side channels or in marginal lakes, where it finds food (phytoplankton) in abundance (Bonetto & Di Persia, 1975; Hebling, 1976; Simone, 1994; Pereira et al., 2011; Colle & Callil, 2012). The species had dispersed further due to fish farming. The lasidia of this species appear not to show specificity with hosts (Callil et al., 2012), facilitating the dispersion in the fish farms, causing damage on fish production (Guardia-Felipi & Silva-Souza, 2008). C. fluminea, which has been reported in South America since the 70s has invaded all the large basins of the continent from Colombia to the North of Patagonia where it became quickly dominant (Santos et al., 2012). M. siliquosa is not abundant but present in most of the South American basins living in small aggregate populations that prefer 123 Hydrobiologia Fig. 2 Species richness (S) zonation of freshwater bivalves in the hydrographic regions in South America compacted substrate of marginal areas. A. (A). elongatus is present in many basins from the North at the Magdalena, Orinoco, and Amazon basins to the South in the Uruguay River. It usually occurs together with A. (A). trapesialis and Castalia spp. sharing the same habitat in areas of marginal lakes and side channels, especially in the region of the Pantanal on the upper Paraguay River (Colle & Callil, 2012). A. (A). trapezeus is very common in the basins of the Eastern and Southern Atlantic, Paraná, Paraguay, and Uruguay, and is rare in Tocantins, Amazonas, and Orinoco. The distribution of two Corbicula species does show no significant (P \ 0.01) correlation with species 123 richness in the different hydrographic regions in South America: C. fluminea (r = 0.11; P = 0.012) and C. fluminalis (r = 0.07; P = 0.31). However, C. largillierti demonstrates significant and poor positive correlation (r = 0.32; P = 0.0001) with species richness. C. largillierti was the first species of the genus to invade South America through the La Plata River. Subsequently, C. largillierti decreased in density and distribution after the arrival of another invasive species, C. fluminea. A.(A). patagonicus is very common in the Southern American hydrographic regions as Paraná, Uruguay, and South Atlantic River basins. A. (L.) ensiformis is common in the middle Paraná in Argentina, Hydrobiologia Fig. 3 Occurence frequency (N and %) of freshwater bivalves in hydrographic regions of South America in Paraguay River of Brazil and Paraguay and in a small part of middle Uruguay River bordering Argentina and Brazil. Northwards, it is observed in the Madeira River in Bolivia, in the Amazon, Tocantins, and Orinoco basins. Like M. siliquosa, it lives in small populations on muddy river margins. The distribution of L. fortunei does show no significant correlation (r = 0.02; P = 0.69) with species richness in different hydrographic regions in South America. After the first record of L. fortunei in the La Plata River near Buenos Aires, the species was rapidly dispersed with the help of the boats that flow through waterways of the Uruguay, Paraná, and Paraguay rivers invading Argentina, Brazil, Uruguay, Paraguay, and Bolivia. So far it has not been reported in the Amazon River Basin despite the proximity. It has been recorded in the upper Paraná River, downstream of the dam of St. Simon at Paranaiba River, bordering the state of Goiás, Brazil. This region is very close to the headwaters of the Tocantins River which flows in the delta of the Amazon River (Santos et al., 2012). A. (A). crispatus is more frequent in the basins of the Northern part of the continent, and the upper tributaries of the Paraguay river. A. (A). tenebricosus is very common on the lower part of the Uruguay river, where it appears in a very robust form. It also occurs in the south Atlantic drainage of Brazil but at a lower extent, and in the basins of Plata and Paraná becoming more scarce to the north. The record of this species for the Orinoco must be revised because it may have been confused with the related species A. (A). crispatus or A. elongatus. Pisidium sterkianum is often present and abundant in sandy bottoms of lakes and lower parts of the rivers of Paraguay, Paraná, upper Paraná in Brazil, and Uruguay basins. It has also been reported for the Amazon Basin in Brazil and Bolivia. Mycetopoda soleniformis just like the other species of this genus, lives in clusters forming small populations. It is most frequently found in the basin of the Paraná River, and much less common in the Uruguay River. As for the Amazonas River, there are records for Peru, Bolivia near the Madeira River, and in the state of Acre in Brazil. C. ambigua is common in large parts of the Orinoco and the Amazon Rivers even along the Andes in Peru and Ecuador, and has been reported for the Pacific basin in Ecuador. It occurs also in the rivers 123 Hydrobiologia of Suriname and Guyana. The citations of C. ambigua to La Plata, Paraná and Paraguay rivers, and the lower reach of the Uruguay River must be carefully studied with the support of genetics considering the similarities to Castalia inflata Orbigny, 1835 which predominates in these Southern hydrographic regions. It is possible that both species could be considered as synonyms. Endemisms can be easily observed in some species that live on stones in running waters like: A. rivolii (Magdalena River at Colombia), Bartlettia stefanensis (Moricand, 1856) (High Amazon and Paraguay rivers), Byssanodonta (Ihering, 1893) (Middle Paraná River), and M. lopesi (lower part of Amazon and Tocantins rivers). Triplodon, Paxyodon Schumacher, 1817 and Prisodon Schumacher, 1817 only appear in the Amazon and Orinoco rivers. H. balzani lives in very restricted areas of the Paraguay River that present calcareous water. Endemisms are even more evident among Sphaeriidae. Eupera iguazuensis Ituarte, 1989 is restricted to Iguazú falls (area bordering Brazil and Argentina) and Pisidium pipoensis Ituarte, 2000 found only in the region of Missiones (Argentina). In the region of Patagonia in Argentina and Chile, there are many proper species of Pisidium and at Lake Titicaca (area bordering between Peru and Bolivia) some endemic species of Sphaerium can be found. Regarding Dreissenidae, the native M. lopesi, from the lower part of the Amazon River and Tocantins/ Araguaia Rivers is adapted to freshwater forming small and low clusters on submerged rocks (Alvarenga & Ricci, 1989). Embryos and larvae develop outside the gills, inside the pallial cavity, fixed to the mantle of parental individuals, and are released as they are young (Mansur, 2012). They differ considerably from estuarine dreissenids as Mytilopsis sallei (Recluz, 1849) and Mytilopsis leucophaeata (Conrad, 1831) with planktotrophic larvae. Both species are from North America: the former was detected in Venezuela and the latter has been most recently collected in the mangroves of Recife (Souza et al., 2005). A. fluviatilis is an endemic species of Amazonas River occurring from Peru to river mouth on the main channel (Simone, 1999, 2006). Phylogenetic composition and origin of the hydrographic regions The principal coordinate’s analysis for phylogenyweighted species composition generated 51 PCPS. 123 The first two PCPS contained, respectively, 53.6 and 33.8% of the total variation in the phylogenetic composition matrix. The ordination scatter plot (Fig. 4) shows that the first PCPS was positively related to hydrographic regions characterized by the predominant occurrence of Veneroida ? A. fluviatilis, and negatively related to predominant occurrence of Mycetopodidae and Hyriidae. On the other hand, the second PCPS split hydrographic regions characterized by predominant occurrence of Hyriidae (positive values) and Mycetopodidae (negative values). The Veneroida had higher species richness in the hydrographic regions located in the Andes Mountains on the far Southwest, and coastal areas of the continent. This order is represented basically by several species of Pisidium genus concentrated mainly in Andean area. These are cooler regions, where rivers are born in mountainous areas. These are very similar environments to the frozen rivers of the Paleartic Region, where many species of Pisidium are sympatric. However, the species of Pisidium are rarely sympatric in South America and show a great variation within populations (Kuiper, 1983). In streams and lakes of the Andean highlands, they are more numerous and concentrated (Kuiper & Hinz, 1984; Ituarte, 2007). Species of Sphaerium, are practically only present in the Andean highlands. An exception is Sphaerium cambaraense Mansur et al., 2008, which occurs in the highlands (above 800 m) in Southern Brazil at the Araucaria angustifolia forest (Mansur et al., 2008). Fitkau (1981) mentioned that the Amazon does not have habitats suitable for the occurrence of Sphaeriidae except for E. simoni, which is adapted to the fluctuations of the water level and long drought periods. In the coastal environment of Northern Brazil and Venezuela, species of Cyanocyclas and Polymesoda genus are predominant. Parodiz & Bonetto (1963) presented distribution maps of Hyriidae and Mycetopodiade in South America which coincide with the distribution of species observed in this study. Some species of Hyriidae and Mycetopodidae have also been reported in rivers located in mountainous areas which are not so elevated like Andes area. D. chilensis is the only species of Unionoida inhabiting Andine Rivers and lakes in the Patagonian region found in Chile, Argentina, and Peru. This is the most frequent species in lakes near the cities of Temuco, Valdivia, and Puerto Montt at Chile (Parada & Peredo, 2002; Parada et al., 2007). Hydrobiologia Fig. 4 Principal coordinates analysis of phylogenetic structure (PCPS) for each hydrographic regions of South America. A Ordination scatter plot. B Phylogenetic structure of hydrographic regions. Arrow indicates very high richness. Hyriidae (h) and Mycetopodidae (m) A. (A). tenebricosus, B. stefanensis, and A. rivoli are typical waterfall species. However, the highest richness of Mycetopodidae and Hyriidae is to be found in lowland rivers, oxbow lakes, lakes, and costal lakes. Very inflated species, such as Castalia inflata, float over the mud of river margins and lakes. The elongated forms like Mycetopoda, Mycetopodella falcata (Higgins, 1868), A. (L). ensiformis bury themselves in the compacted substrate of wet river banks. To understand the patterns of distribution of species, it is necessary to know the geological events that gave rise to the current configuration of the landscape and hydrographic regions in South America. According to Leal (2011), during the breakup of the Gondwana Paleocontinent in the Mesozoic (Cretaceous period, *100 Ma), the main drainage of the South American plate was directed to the West. This pattern changed due to geotectonic episodes like: separation of South America from Africa with the opening of the South Atlantic Ocean, the Andean uplift, and the closure of the Panamanian Isthmus. Since the upper Mesozoic era (83–67 Ma), three separate large river basins were present, two located at the current Amazon River Basin (one part which flowed East and another West), and another drainage which flowed South and originated the Paraná–Paraguay river system. According to Hubert & Renno (2006), successive geological events determined the genesis of the current South American basins in the Cenozoic era (Tertiary period) as follows: (1) 15 and 10 Ma: the last event of great marine incursion, before the final establishment of the Amazon, previously dated between and was postulated to lead to a 150-m marine highstand forming a big sea called Pebas. At least one continental sea, the Paranean Sea between Southern Brazil and Northern Argentina, was formed. The Magdalena basin was isolated after the uplift of the Northwestern Andes changing the direction of river flow to the west; (2) 10 and 8 Ma: marine regressions and Andean foreland dynamics are associated with the 123 Hydrobiologia final establishment of the Amazon basin. The Paraná– Paraguay split from the protoAmazon at 10 Ma; (3) 8 and 5 Ma: separation of the Orinoco occurred on the Vaupes arch. The modern course of Amazon River appeared with the final uplift of the central Andean cordillera related to the rise of the Purus arch. The Maracaibo Lake was formed after the final uplift of the Northwestern Andes. The Upper Amazon was isolated from the remainders of the Orinoco and Paraná rivers; and (4) 4 Ma: after marine regressions and Andean dynamics, the Upper Amazon was fragmented. The formation of the Pebas sea got several rivers isolated and consequently got their populations of freshwater bivalves isolated, too. According to Wesselingh (2006), the Western Amazonian became a mosaic of lakes, swamps, and meander belts splitting the mains river in different subsystems. According to Wares & Turner (2003), the freshwater habitats are typically connected in a hierarchical, fractal geometric fashion with low-order streams draining into larger streams and rivers. This physical configuration offers a great diversity of habitats for freshwater clams. The compartmentation of hydrographic regions in South American basins promoted different ways to diversification of both invertebrate and vertebrate fauna like fishes, and this fact is closely associated with hydrogeological history of the continent (Hubert & Renno, 2006). According to the same authors, ‘‘the patchy nature of freshwater habitats, may in some respects account for the high species diversity encountered there considering that opportunity for geographic isolation (and presumably alopatric speciation) is greater than in marine habitats’’. For million years in the Mioceno, there was also probably sufficient time for diversification of freshwater bivalves. By virtue of the formation of Pebas, the Andean uplift and erosion changed the fluvial landscapes of South America again resulting in more intensive diversification of freshwater bivalves. Events similar to the formation of Pebas occured in the Southern part of the continent in the Paraná–Paraguay with formation of Paranean Sea. Events like these probably promoted the fauna diversification in water courses as Rivers of the South and Southeast Atlantic, and coastal lakes. Lanzer (2001) verified that the distribution of freshwater clams in lake systems of the coast of Rio Grande do Sul, in Southern Brazil, is related to the genesis of those systems that resulted from the processes of marine transgressions and regressions. 123 In addition to the geological events, other factors are important for the distribution of bivalves. Freshwater clams cited for South America can also be scattered across the stomach contents of fish, but are limited to the distribution areas of these vectors. They can also be transported over long distances by birds, crossing geographical barriers. These birds eat large bivalves, but normally they break the shell eating only the soft part. However, smaller bivalves can remain unscattered through the gut, mainly Corbiculidae, and Mytilidade, or transported fixed on feathers, mainly Corbiculidae and Sphaeriidae. Knowledge gaps The lack of basic knowledge on freshwater clams is a reality that hinders the categorization of species conservation status in South America. This paucity is in part due to the lack of organized and representative collections of the freshwater bivalves species of the main hydrographic regions in South America, difficulties in obtaining type material or respective good illustrations, lack of identification keys and publications on the reproduction, ecology, morphology, and on the affinity of the species with the host fish of gloquidia and lasidia, besides the scarcity of limnological institutions or biological stations dealing with mussels. Many hydrographic regions are underrepresented in scientific collections, especially those located in the Northern part of the continent. By comparing the study of freshwater bivalves in South America with the one developed in other continents, especially Europe and North America, we can see that in the period of the early naturalists (Haag, 2012), the difficulties encountered there, such as the scarcity of morphological data and the lack of sampling locality of the species, were similar to ours. But in South America, we have aggravating circumstances that type material and additional collections were donated or sold to museums in Europe or North America. In the subsequent periods, the first museums and scientific collections were formed in the countries of the Northern hemisphere. At that time, studies on mussels compared morphologies, ecology, and phylogeny saw a period of major development (Haag, 2012). In South America, the studies leave something to be desired by the lack of comparative material, and again, important collections as the one from Ihering Hydrobiologia were still sold to Europe. Ortmann (1921), who started and strongly encouraged malacology and mussel ecology in North America (Haag, 2012), did not collect in our watersheds. He described relatively few species from some basins, mainly those mussels collected by his colleague Ichthyologist J. D. Hasemann, with their testimonies reported at the Carnegie Museum, Pittsburgh, again outside South America. In recent decades, genetic studies have shed light on the phylogenetic and evolutionary relationships inside Unionoida. However, the presence of unionoidean doubly uniparental inheritance of mtDNA (DUI) make evolutionary interpretations difficult mainly by the South American Hyriidae that are scarcely evaluated. Genetic studies are also necessary in order to differentiate similar or cryptic species of Mycetopodidae as, Anodontites (A.) iheringi (Clessin, 1882), and Anodontites ferrarisii (Orbigny, 1835); A. tenebricosus and A. soleniformis; and of Hyriidae as, D. granosus and D. multistriatus; C. ambigua, and C. inflata. Many species are morphologically unknown and rare in scientific collections like, Anodontites (A.) aroanus Baker, 1930; Anodontites (A.) carinatus (Dunker, 1858); Anodontites (A.) colombienses Marshall, 1922; Anodontites (A.) guanarensis Marshall, 1927; Anodontites (A.) puelchanus Orbigny, 1835; Monocondylaea costulata (Moricand, 1858); Monocondylaea franciscana (Moricand, 1837); Monocondylaea guarayana (Orbigny, 1835); Tamsiella amazonica Bonetto, 1972 and, Tamsiella schroeteriana (Lea, 1852). It would be necessary to conduct new expeditions in the type localities in order to obtain topotypes to support the redescription of these species. Many species of Diplodon genus cited for the basins of the Eastern Atlantic, Upper Paraná River, and North and Northeast Atlantic are hardly differentiated. Until now, the diagnostic criteria are not well established, thus requiring adequate morphological studies for the recognition of their taxonomic status: Diplodon (D.) caipira (Ihering, 1893); Diplodon (D.) expansus (Kuester, 1856); Diplodon (D.) ellipticus (Spix, 1827); Diplodon (R.) funebralis (Lea, 1860); Diplodon (D.) multistriatus (Lea, 1831); Diplodon (D.) granosus (Bruguière, 1792); Diplodon (D.) paulista (Ihering, 1893), and Diplodon (D.) rhombeus (Spix, 1827). In addition, Diplodon (D.) imitator Ortmann, 1921 was described from the Jacuı́ River in the South Atlantic Basin; however, it has not been found ever since. Some species of genus Diplodon were not yet framed within subgenera due to lack of knowledge of glochidia morphology (Table 2). The species, C. ambigua, C. inflata, Castalia quadrata Sowerby, 1869, Castalia schombergiana Sowerby, 1869 and Castalia sulcata (Krauss, 1849) show a wide morphological variation, with a particular shape of the shell for each different basin, which also hampers the recognition of these species by nonspecialists. The internal anatomy is unknown for the most part of the species and the glochidium is not a good intraspecific character in this genus. Prisodon obliquus Schumacher, 1817 and Paxyodon syrmatophorus (Gmelin, 1791) are very similar species with winged hinge, no umbonal sculpture and the same color and periostracum brightness. The upper Amazon River sees a predominance of P. obliquus, whereas in the low Amazon River, P. syrmatophorus prevails. However, intermediate forms occur in sympatry in some parts of the lower Amazon River. Therefore, questions remain to be answered about the identity of both species, raising suspicions of the existence of only one species with a wide morphological variation along the basin. Pimpão et al. (2012) observed that the glochidia of both species are also very similar. All species of the genus Cyanocyclas should be reviewed. Mainly species of northern part of the continent and C. limosa, which shows a wide morphological variation and may represent a large number of species. Considering Sphaeriidae in the Southern hemisphere, Kuiper (1983) emphasizes the fact that the paucity of species with conspicuous interpopulational variation in the same environment is regarded as a rule. This morphological variation makes difficult the definition of diagnostic criteria and consequently the species recognition. The species of the Pisidium genus cited for Argentina, Bolivia, Chile, Peru, and Uruguay were reviewed by Ituarte (2007), and all other hydrographic regions in South America require similar revisions and more collections. Considering the abovementioned amount of gaps of knowledge, we can recognise that D. chilensis is one exception and probably the best known species of Hyriidae in the continent. Risks for the biodiversity of freshwater bivalves The main threats to the conservation of freshwater bivalves are related to habitat destruction, water 123 Hydrobiologia pollution, and the invasion of exotic bivalves (Mansur et al., 2003a; Machado et al., 2008; Pereira et al., 2012). Among the causes of habitat destruction, we can highlight the deforestation of riparian vegetation, damming and channeling rivers, wetland drainage, siltation of rivers and lakes, sand mining, etc. The bivalves are filter feeders that have little or no mobility in adulthood. As a consequence, they are very sensitive to changes in river flow, sediment grain size, water level, slope and shading on the margins. The destruction of the terrestrial environments entails drastic consequences to hydrographic regions. Until today, the practice of burning forests and savannah environments are common in many South American countries and territories despite the restrictions imposed by environmental agencies sponsored by the government. This practice disrupts the soil, facilitating erosion and siltation. Thus, all processes that modify and destroy the vegetation cover also have a negative impact on hydrographic regions, affecting the assemblage of bivalves. Miyahira et al. (2012a, b) made some comments on the habitat degradation and their effects on freshwater mussels in the state of Rio de Janeiro. Water pollution is an important factor in the population decline of native bivalves. The high organic contamination decreases the oxygen dissolved in the water, keeping these mollusk from surviving. Contamination from industrial effluents and solid waste generates metals that are incorporated by the bivalves and accumulated in the food chain. The agricultural activity also impacts on this fauna which is poisoned by pesticides. In South America, the main source of energy is provided by hydroelectric plants. In Brazil, the construction of reservoirs to meet the energy demands required for the accelerated development of this country is encouraged by the government. However, when it comes to mollusks, the terms of reference that guide the implementation of the environmental studies for licensing ventures require only a survey of the snails vector of zoonosis. In addition to that, the construction of dams causes environmental changes in making a river into a lake. This fact changes the patterns of connectivity of the wet drainage and affects the structure of the fish fauna (composition and abundance of fish), and their migratory routes. The majority of the Unionoida use fish as dispersal vectors. With the interruption of the migration route of host fishes, the dispersion of mollusks is compromised. 123 Historical data (Takeda et al., 2005; Pereira et al., 2012) revealed that the construction of 70 reservoirs in a system of waterfalls along the most populated area of Brazil, in high Paraná River, changed the lotic environment to lentic, favoring the colonization of the Corbiculidae invasive species and L. fortunei, as well as the gastropod Melanoides tuberculata (Müller, 1774). The river segments that allow the survival of native bivalves in their natural habitats are rare. Furthermore, the fish that dispersed bivalve larvae are unable to move upstream along rivers. Consequently, all Unionoida species reported in this area are endangered, though many of them do not appear on official red lists. The freshwater bivalves have been adapted to drought and flood of the rivers for millions of years. With the construction of reservoirs, the natural flood pulse that occurred in the floodplains of the rivers has become artificially regulated. In many of those rivers, the overflow of the channel during the rainy season is stopped, so there is no more communication with floodplain lakes. This change in water dynamics of rivers impacts the life cycle of bivalves that depend on fish for their dispersal. The disconnection of these environments limits the lasidia and glochidia dispersion through the fish. Moreover, the bivalves can not keep up with sudden emptying of reservoirs in times of intense rainfall. Two types of impacts are known to be related to that. One occurs in the reservoir when it is quickly emptied by opening the floodgates. The water level decreases dramatically exposing the entire bank, resulting in the death of bivalves that can not keep up with the speed of emptying. The same impact can be observed in the Northeast of Brazil at the times of severe droughts, when reservoirs became empty due the absence of rains. The other impact occurs downstream the reservoir when the water is released at high speed dragging all the marginal fauna and flora, often throwing the bivalves out of the system. The dispersion of the invasive bivalve species in several hydrographic regions of South America constitutes a threat to the conservation of native clams. The golden mussel produces byssus threads that enable the incrustation on the various types of hard substrates forming macrofouling. This structure of aggregates alter different types of substrate-forming mussel beds on sediment and between rhizomes of the Schoenoplectus californicus (C.A. Mey.) Palla Hydrobiologia (Cyperaceae), a kind of emergent shoreline vegetation common in South America (Santos et al., 2012). Also, it forms macroclusters over other types of free-floating and amphibious macrophytes, such as species of trees from the banks of rivers and lakes. All these habitats are modified and so is the entire benthic fauna composition. In addition to the habitat loss, the bivalves are choked by the incrustation of mussels on their shells, keeping the valves from opening, and in some cases, from closing, too. So the native bivalves can not perform filtering and become exposed to predators. The golden mussel occurs predominantly on hard substrates, and to a lesser extent on sandy bottoms. On the other hand, the Corbiculidae invasive species occurs predominantly on sandy bottoms dominating the benthic communities. Thus, the pressure of invasive species on native clams is intense. L. fortunei can reach 500,000 ind m-2 (Bergonci et al., 2009) and C. fluminea just to 5,295 ind m-2 (Mansur & Garces, 1988). L. fortunei form macrofouling on hard substrate covering great areas of rivers and lake bottoms altering the benthic fauna structure. The great density of L. fortunei related to the high filtration rates have an impact on the planktonic community and food chain (Darrigran & Damborenea, 2011). The macrofouling also impact the equipments of hydroelectric and thermoelectric plants. However, until now new designs for power plants do not present solutions to minimize the effects of biofouling. Conservation strategies Since the 1990s there has been a great effort from most South American countries for the preparation of their official lists of endangered species of their fauna. However, most of these lists include only vertebrate species. Out of the 12 South American countries and 1 territory, only 4 have published lists of endangered species of mollusks: Brazil, Colombia, Paraguay, and Uruguay. The Brazilian list of threatened fauna (Machado et al., 2008) includes the following species: Diplodon (R.) koseritzi (Clessin, 1888) (critically endangered, CEN); A. (A.) ferrarisi, A. (A.) iheringi, D. caipira, D. (D.) dunkerianus, D. fontainianus, D. pfeifferi, D. rotundus, C. undosa, A. (A.) trapezeus, Fossula fossiculifera (Orbigny, 1835), L. blainvilliana (endangered, EN); A. (A.) elongatus, A. (L.) ensiformis, A. (A.) soleniformis, A. (A.) tenebricosus, A. (A.) trapesialis, M. legumen, M. siliquosa, Monocondylaea paraguayana (Orbigny, 1835), Leila esula (Orbigny, 1835), B. stefanensis, D. (D.) expansus (Vulnerable, VU). The species A. (A.) soleniformis, A. (A.) trapezeus, F. fossiculifera, H. balzani, B. stefanensis, D. (D.) expansus, C. inflata and C. nehringi were considered in the Paraguayan list (Ministerio de Agricultura y Ganaderia, 1998) in only one category defined as ‘‘endangered’’. Polymesoda solida (Philippi, 1946) was considered to be a vulnerable species in the threatened fauna list of Colombia (Ardila et al., 2002). The list of the IUCN (2012) includes only D. (D.) dunkerianus and D. fontainianus (endangered, EN); Diplodon (D.) expansus, D. pfeifferi, and Castalia martensi (Ihering, 1891) (vulnerable, VU). The National list of priority species (Scarabino & Clavijo, 2009) recognized that 93% of the species of bivalves (37) from the freshwater environments from Uruguay are priority for conservation. Later Clavijo et al. (2010) prioritized three other species for conservation. Pereira et al. (2012) listed all species of freshwater bivalves from Brazil and their conservations status based on an official list. According to the authors, 1% of species is critically endangered, 10% are endangered, 9% are vulnerable, and 37% need a new evaluation and should be included in the revised list. Many other species need more information for the adequate determination of their conservation status. The quotation of A. (A.) trapesialis in the list of Brazilian threatened fauna should be revised because this species has dispersed through aquaculture systems as well as invasive species. A. (A.) trapesialis adapts to different environmental conditions and probably does not fit into any category of endangered species. The lack of basic knowledge on freshwater clams is a general reality that hinders the categorization of the conservation status of the species. There are too many gaps in collection records in Northern South America. These regions are underrepresented in scientific collections; however, in better represented South regions that are many gaps, too. For the purposes of conservation and management, Parada & Peredo (2005) and Peredo et al. (2005) made an experience with relocation of two populations of D. chilensis through a long-term evaluation of survival and recruitment. After 18 years, the relocated 123 Hydrobiologia population remained at the same site. At one site, the authors did not found recruits but the individuals were greater than at the original site. At the other site, the recruitment has resulted from the dispersion of larvae by the host fish. The size of the juveniles suggested that recruitment took place in the previous reproductive season. In Brazil, Beasley et al. (2000) studied the reproductive cycle of the harvested salmon pink mussel P. syrmatophorus, giving strategies for conservation and management of the species in the Tocantins River Basin, in Brazil. Later, Beasley (2001) studied the density, size frequency distribution, the habitat structure, and the impact of exploitation of these bivalves by industries of pearl buttons aiming to define management strategies. Initiatives on relocation, translocation, and repopulation of the freshwater mussels are unknown in Brazil. There is little information on the conservation status of freshwater bivalves in Uruguay. Scarabino & Mansur (2007) listed the species of bivalves in Uruguay with the intent of supporting the conservation of this fauna. Scarabino (2004) reviewed for the first time the conservation status of Uruguayan malacofauna and highlighted the priority actions to be taken in order to conserve this fauna. Currently, there are several initiatives to improve and disseminate the knowledge base and implement conservation measures for freshwater bivalves in Uruguay (Clavijo et al., 2010). The first and only experience of relocation was held in Uruguay in 2010 based on a private initiative. As a result of this experience, a total of 133 specimens of D. (R.) charruanus, D. (D.) rhuacoicus (Orbigny, 1835), A. (A.) trapesialis and A. (A.) patagonicus ended up endangered by a dam construction were relocalized to a natural place (Clavijo et al., 2012). The concern on bivalve conservation in Argentina begins with the implementation of database systems for the malacological scientific collections. Rumi et al. (2008) evaluated the richness of mollusk species in continental Argentina, and mapped their distribution. The authors offered subsidies for prioritizing areas for conservation. Final considerations The number of 111 Uninoid species places South America as a very rich continent, but not richer than 123 North America. According to Graf & Cummings (2007), North America presents the highest diversity of mussels on Earth (*300 species). Our results came to 63 mussel species of Hyriidae and 48 Mycetopodidae, a number which is a bit higher than the figures presented by Graf & Cummings (2007) for both families (40 and 32 species, respectively) in South America. The most diverse hydrographic regions in South America are: (1) very high richness, Amazon River, Paraguay River, Uruguay River, and Rivers of the South and Southeast Atlantic in Brazil; (2) high richness, Orinoco River in Venezuela; Paranoplatense System in Argentina; Uruguay River, La Plata River, and Negro River in Uruguay; and (3) medium richness (Amazon River in Peru, Upper Parana River in Brazil, and Paraguay River in Paraguay). These hydrographic areas are located within the two richest South American macroregions identified by Graf & Cummings (2007): Amazon–Orinoco (on the Peba System) and Paraná–Paraguay (on the Paranean System). The hydrographic regions present distinct phylogenetic and species composition regardless of the level of richness. Therefore, not only should the richness be considered to be as a criterion for prioritizing areas for conservation, but also the phylogenetic diversity of communities engaged in services and functional aspects relevant to ecosystem maintenance. The wide distribution of some native species can be attributed to their high tolerance to environmental factors, transposition of geographical barriers, and persistence in face of geological events in the past. Native species with wide distribution, such as Anodontites trapesialis, may have similar properties to invasive species, which would explain its wide distribution along to hydrographic regions and success in its current dispersion in the fish farms. However, more studies are needed on the biology of this species for us to understand their mechanisms of dispersion and whether these mechanisms are related to a certain degree of invasiveness. Another issue to be considered is that the small number of invasive species seems not to interfere in the patterns of species composition and phylogenetic lineages in the different hydrographic regions looked at. L. fortunei does not contribute to the dominance of Mytilidae lineage in none of the hydrographic regions assessed with complex assemblages of native mollusks. On that line, it can be inferred from the Hydrobiologia occurrence of Corbiculidae invaders, among the Veneroida, which are widely distributed in South America, that they appear also in areas dominated by Mycetopodidae and Hyriidae. It is also to consider that the number of corbiculid invaders is much smaller than the total number of species of Veneroida recorded in the continent. However, it is important to raise awareness to the potential impact of invasive species that are dispersing by South American water courses. The golden mussel invasion may result in the reduction of the diversity of bivalve mollusks in the different addressed areas with the capacity to modify the patterns of species richness, species composition, and phylogenetic lineages. Considering this possibility, efforts should be made in order to control the dispersion and population growth of invasive species. The control of the spread of invasive species depends primarily on educational actions intended to raise awareness of boatmen, fishermen, and farmers, who use the water for irrigation; their procedures and equipment must be revised in an attempt to minimize the danger of contamination of new bodies of water. The distribution of invasive species L. fortunei, C. largillierti, C. fluminea, and C. fluminalis is not related to species richness in the different hydrographic regions in South America. This distribution does not corroborate to the assumption that the poorest communities in species would be more susceptible to bioinvasion (Wolfe, 2002; Bohn et al., 2004). However, the Andean region does not seem to be inviting to the invasion of L. fortunei according to Darrigran et al. (2011). The same authors identified three environmental parameters that are barriers to invasion in this region: salinity, river flow intermittence (in different sectors of Pilcomayo and Salado del Norte Rivers), and concentration of suspended sediments (in the Bermejo River and in the upper reaches of the Salado del Norte and Pilcomayo Rivers). Detailed inventories of native bivalve fauna in different hydrographic regions are also needed, as well as the identification of habitats, with the environmental variables that govern the distribution of the species, the patterns of diversity, and the provision of deeper insights into the reproductive cycle and morphological characters which are determinants for species recognition. This is essential for the establishment of management strategies, identification of potential areas for the conservation, breeding and relocation of endangered species. The species composition and phylogenetic patterns identified in this study will contribute to the definition of priority actions for the conservation of the native mollusks fauna and the control of invasive species. They can also help to direct more studies in order to understand this diversity and to review the lists of endangered species. Acknowledgments To UFRGS/PPECO/CENECO Universidade Federal do Rio Grande do Sul, Centro de Ecologia and Programa de Pós-Graduação Ecologia for the facilities and support; To CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior for the scholarship to D. Pereira; To ELETROBRÁS FURNAS (Furnas Centrais Elétricas S.A.) for the research grant to M. C. D. Mansur; to Facultad de Ciencias Naturales y Museo (Universidad Nacional de La Plata) and Consejo Nacional de Investigaciones Cientificas y Tecnicas (Proyecto de Investigacion Plurianual 1017), for the support to G. Darrigran; to Dirección General de investigación y Postgrado, Catholic University of Temuco, Chile, for financial support of multiple proyects and research staff; and to CNPq/PROTAX – Conselho Nacional de Pesquisas, Programa de Capacitação em Taxonomia 562291/2010-5 for the scholarship to I. C. Miyahira. References Alvarenga, L. C. F. & C. N. Ricci, 1979a. Contribuição ao conhecimento dos gloquı́dios do gênero Diplodon Spix, 1827: D. besckeanus (Dunker, 1849). (Bivalvia; Unionoidea; Hyriidae). In Fundação Zoobotânica do Rio Grande do Sul (eds), Anais do V Encontro de Malacologistas Brasileiros. FZB, Porto Alegre: 33–38. Alvarenga, L. C. F. & C. N. Ricci, 1979b. Variações morfológicas encontradas nas conchas de uma população de Diplodon besckeanus (Dunker, 1849). (Bivalvia; Unionoidea; Hyriidae). In Fundação Zoobotânica do Rio Grande do Sul (eds), Anais do V Encontro de Malacologistas Brasileiro. FZB, Porto Alegre: 41–53. Alvarenga, L. C. F. & C. N. Ricci, 1989. Espécie nova de Mytilopsis Conrad, 1857, do rio Tocantins, Tucuruı́, Pará, Brasil (Mollusca, Bivalvia, Dreissenidae). Memórias Instituto Oswaldo Cruz 84: 27–33. Anflor, L. M. & M. C. D. Mansur, 2001. Pisidium punctiferum (Guppy, 1867) (Bivalvia, Sphaeriidae) – Aspectos do seu desenvolvimento em amostras da população do Arroio Bom Jardim, Rio Grande do Sul. Biociências 9: 141–154. Anton, H. E., 1837. Diagnosen einiger neuen Conchilien – Arten. Archiv für Naturgeschichte 1: 281–286. Ardila, N., G. R. Navas & J. O. Reyes (eds), 2002. Libro rojo de Invertebrados Marinos de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Ministerio del Medio Ambiente, Bogotá. Avelar, W. E. P. & S. H. S. T. Mendonça, 1998. Aspectos da gametogênese de Diplodon rotundus gratus (Wagner, 1827) (Bivalvia: Hyriidae) in Brazil. American Malacological Bulletin 14: 157–163. 123 Hydrobiologia Baker, B., 1930. The mollusks collected by the University of Michigan – Williamson expedition in Venezuela. Occasional Papers of the Museum of Zoology 210: 1–90. Baker, M. D. F., 1914. The land and fresh-water mollusks of the Stanford Expedition to Brazil. Proceedings of the United States National Museum 65: 618–672. Beasley, C. R., 2001. The impact of exploitation on freshwater mussel (Bivalvia: Hyriidae) in the Tocantins River Brazil. Studies on Neotropical Fauna and Environment 36: 159–165. Beasley, C. R., E. Túry, W. G. Vale & C. H. Tagliaro, 2000. The reproductive cycle, conservation and management of P. syrmatophorus (Meuschen, 1781) in the Tocantins River. Brazil. Journal of Molluscan Studies 66: 393–402. Bergonci, P. E. A., M. C. D. Mansur, D. Pereira & C. P. Santos, 2009. Population sampling of the golden mussel, Limnoperna fortunei (Dunker, 1857), based on artificial ceramic substrate. Biotemas 22: 85–94. Bohn, T., O. T. Sandlund, P. Amundsen & R. Primicerio, 2004. Rapidly changing life history during invasion. Oikos 106: 138–150. Bonetto, A. A., 1961a. Notas sobre los géneros Castalina y Castalia en el Parana medio e inferior. Dirección General de Recursos Naturales, Ministerio de Agricultura e Ganaderia, Santa Fé. Bonetto, A. A., 1961b. Investigaciones acerca de las formas larvales en el género Diplodon y su aplicación a los estudios sistemáticos. Dirección General de Recursos Naturales, Ministerio de Agricultura y Ganaderia, Santa Fé: 1–47. Bonetto, A. A., 1962. Especies del genero Mycetopoda en el sistema hidrográfico del rio de La Plata. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia 8: 173–182. Bonetto, A. A., 1963. Contribución al conocimiento de Leila blainvilleana (Lea) (Mollusca: Pelecypoda). Physis 24: 11–16. Bonetto, A. A., 1964. Las espécies del gênero Diplodon (Moll. Unionacea) en los rios de la pendiente atlántica del sur del Brasil. Physis 24: 323–328. Bonetto, A. A., 1965. Las almejas sudamericanas de la tribu Castaliini. Comunicaciones Instituto Nacional de Limnologia 25: 187–196. Bonetto, A. A., 1966. Especies de la subfamı́lia Monocondylaeinae en las aguas del sistema del Rio da La Plata (Moll. Mutelacea). Archiv für Molluskenkunde 95: 3–14. Bonetto, A. A., 1967a. La superfamı́lia Unionacea em la cuenca Amazonica. In Lent, H. (ed.), Atas Simpósio Biota Amazônica 3: Limnologia. CNPq, Rio de Janeiro: 63–82. Bonetto, A. A., 1967b. El género Anodontites Bruguière (Mollusca, Pelecypoda) en el sistema hidrográfico del Plata. Physis 26: 459–467. Bonetto, A. A., 1972. A new species of Monocondylaeinae from the Amazon basin, and some considerations on this subfamily in the hydrogeographic systems of South America. Amazoniana 3: 224–230. Bonetto, A. A., 1997. Las ‘‘ostras de agua dulce’’ (Muteloidea: Mutelidae). Su Taxonomia y distribucion geográfica en el conjunto de las naiades del mundo. Biociências 5: 113–142. Bonetto, A. A. & D. H. Di Persia, 1975. Las poblaciones de pelecipodos del arroyo Ayui Grande (Prov. Entre Rios) y 123 los factores que regulan su distribución y estructura. Ecosur 2: 123–151. Bonetto, A. A. & I. Ezcurra-de-Drago, 1966. Notas Malacologicas IV. Moluscos paranaensis en aguas uruguayas y del sur de Brasil. Physis 26: 121–124. Bonetto, A. A., M. Tassara & A. Rumi, 1986. Australis n. subgen. de Diplodon Spix (Bivalvia, Unionacea) y possibles relaciones con Hyriidae australianos. Boletin de La Sociedad de Biologia de Concepción 57: 55–61. Callil, C. T. & M. C. D. Mansur, 2002. Corbiculidae in the Pantanal: history of invasion in southeast and central South America and biometrical data. Amazoniana 17: 153–167. Callil, C. T. & M. C. D. Mansur, 2005. Ultrastructural analysis of the shells of Anodontites trapesialis (Lamarck) and Anodontites elongatus (Swainson) (Mollusca, Bivalvia, Etherioidea) from the Mato Grosso Pantanal Region, Brazil. Revista Brasileira de Zoologia 22: 724–734. Callil, C. T. & M. C. D. Mansur, 2007. Gametogênese e dinâmica da reprodução de Anodontites trapesialis (Lamarck) (Unionoida, Mycetopodidae) no lago Baı́a do Poço, planı́cie de inundação do rio Cuiabá, Mato Grosso, Brasil. Revista Brasileira de Zoologia 24(3): 825–840. Callil, C. T., D. Krinski & F. A. Silva, 2012. Variations on the larval incubation of Anodontites trapesialis (Unionoida, Mycetopodidae): synergetic effect of the environmental factors and host availability. Brazilian Journal of Biology 72: 1–8. Castellanos, Z. J. A. & N. A. Landoni, 1990. La familia Mycetopodidae Gray, 1840 en la Republica Argentina. In Ringuelet, R. A. (ed.), Fauna de Agua Dulce de la Republica Argentina. FECIC, Buenos Aires: 1–86. Clavijo, C., A. Carranza, F. Scarabino & A. Soutullo, 2010. Conservation priorities for Uruguayan land and freshwater molluscs. Tentacle 18: 14–16. Clavijo, C., G. Martı́nez & A. Carranza, 2012. First relocation of freshwater mussels in Uruguay. Tentacle 20: 9–11. Clessin, S., 1879. Familie der Cycladeen. In Abbildungen nach der Natur mit Beschreibungen. In Martini, F. H. W. & J. H. Chemnitz (eds), Systematisches Conchylien Cabinet. Bauer & Baspe, Nümberg: 1–283. Clessin, S., 1888. Binnenmollusken aus Südbrasilien. Malakozoologische Blätter 10: 165–174. Colle, A. C. & C. T. Callil, 2012. Environmental influences on the composition and structure of the freshwater mussels in shallow lakes in the Cuiabá River floodplain. Brazilian Journal of Biology 72: 249–256. Cooley, L. R. & D. Ó Foighil, 2000. Phylogenetic analysis of the Sphaeriidae (Mollusca: Bivalvia) based on mitochondrial 16S rDNA gene sequences. Invertebrate Biology 119: 299–308. Dance, S. P., 1966. Shell Collecting: An Illustrated History. Faber & Faber, London. Darrigran, G. & M. C. Damborenea, 2009. Introdução a Biologia das Invasões – O Mexilhão Dourado na América do Sul: Biologia, Dispersão, Impacto. Prevenção e Controle. Cubo Multimı́dia Ltda, São Carlos. Darrigran, G. & M. C. Damborenea, 2011. Ecosystem engineering impacts of Limnoperna fortunei in South America. Zoological Science 28: 1–7. Hydrobiologia Darrigran, G. & G. Pastorino, 1995. The recent introduction of Asiatic Bivalve, Limnoperna fortunei (Mytilidae) into South America. The Veliger 38: 183–187. Darrigran, G., C. Damborenea & N. Greco, 2007. Freshwater invasive bivalves in man-made environments: a case study of larvae biology of Limnoperna fortunei in a hydroelectric power plant in South America. AMBIO 36: 575–579. Darrigran, G., C. Damborenea, E. Drago, I. Ezcurra de Drago & A. Paira, 2011. Environmental factors restrict the invasion process of Limnoperna fortunei (Mytilidae) in the neotropical region: a case study from the Andean tributaries. Annales de Limnologie – International Journal of Limnology 47: 1–10. Debastiani, V. J. & V. D. Pillar, 2012. SYNCSA—R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics 28: 2067–2068. Doello-Jurado, M., 1921. Uma nueva espécie de Eupera del Rio de La Plata. Physis 5: 72–75. Duarte, L. D. S., 2011. Phylogenetic habitat filtering influences forest nucleation in grasslands. Oikos 120: 208–215. Duarte, L. D. S., P. V. Prieto & V. D. Pillar, 2012. Assessing spatial and environmental drivers of phylogenetic structure in Brazilian Araucaria forests. Ecography 35: 952–960. Fitkau, E. J., 1981. Armut in der Vielfalt – Amazonien als Lebensraum für Weichtiere. Mitteilungen der Zoologischen Gesellschaft Braunau 3: 329–343. Formica-Corsi, A., 1900. Moluscos de la Republica Oriental del Uruguay. Anales del Museo Nacional de Montevideo 1: 1–237. Giribet, G. & W. Wheeler, 2002. On bivalve phylogeny: a highlevel analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebrate Biology 121: 271–324. Gower, J. C., 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53: 325–338. Graf, D. L., & K. S. Cummings, 2007. Review of the systematicsand global diversity of freshwater mussel species (Bivalvia: Unionoida). Journal of Molluscan Studies 73: 291–314. Grandón, M. A., J. A. Barros & R. R. González, 2008. Caracterización metabólica de Diplodon chilensis (Gray 1828) (Bivalvia: Hyriidae) expuesto a anoxia experimental. Revista de Biologı́a Marina y Oceanografı́a 43: 531–537. Guardia-Felipi, P. & Â. T. Silva-Souza, 2008. Anodontites trapesialis (Lamarck, 1819): um bivalve parasito de peixes de água doce. Semina, Ciências Agrárias 29: 895–904. Haag, W. R., 2012. North American Freshwater Mussels, Natural History, Ecology and Conservation. Cambridge University Press, Cambridge. Haas, F., 1930. Versuch einer kritischen Sichtung der Südamerikanischen Najaden, hauptsächlich an hand der Sammlung des Senckenberg-Museums I. Senckenbergiana 12: 175–195. Haas, F., 1931a. Versuch einer kritischen Sichtung der Südamerikanischen Najaden, hauptsächlich an hand der Sammlung des Senckenberg-Museums II. Senckenbergiana 13: 30–52. Haas, F., 1931b. Versuch einer kritischen Sichtung der Südamerikanischen Najaden, hauptsächlich an hand der Sammlung des Senckenberg-Museums III. Senckenbergiana 13: 87–111. Haas, F., 1969. Superfamiia Unionacea. In Mertens, R., W. Hennig & H. Wermuth (eds), Das Tierreich – Eine Zusammenstellung und Kennzeichunung der rezenten Tierformen. Walter de Gruyter, Berlin: 1–663. Hebling, N. J., 1976. The functional morphology of Anodontites trapezeus (Spix) and Anodontites trapesialis (Lamarck) (Bivalvia: Mycetopodidae). Boletim de Zoologia da Universidade de São Paulo 1: 265–298. Hebling, N. J. & A. M. G. Penteado, 1974. Anatomia functional de Diplodon rotundus gratus Wagner, 1827 (Mollusca, Bivalvia). Revista Brasileira de Biologia 34: 67–80. Hubert, N., & J. F. Renno, 2006. Historical biogeography of South American freshwater fishes. Journal of Biogeography 33: 1414–1436. Hupé, H. 1857. Mollusques. In Francis De Castelnau, F. (ed.), Animaus nouveaux ou rares recueillis pendant l’expedition dans les parties centrals de l’Amerique du Sud, Rio de Janeiro à Lima au Para; executée par ordre du gouvernement français pendant lês anées 1834 à 1847. Chez P. Bertrand Libraire-Editeur, Paris: 1–96. Ihering, H., 1890. Revision der von Spix in Brasilien gesammelten Najaden. Archiv für Naturgeschichte 11: 117–170. Ihering, H., 1891. Anodonta und Glabaris. Zoologischen Anzeiger 14: 474–487. Ihering, H., 1893. Najaden von S. Paulo und die geographische Verbreitung der süsswasser Faunen von Südamerika. Archiv für Naturgeschichte 1: 45–140. Ihering, H., 1910. Über brasilianische Najaden. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft 32: 111–140. Ituarte, C. F., 1989. Los generos Byssanodonta d’Orbigny, 1846 y Eupera Bourguignat, 1854 (Bivalvia: Sphaeriidae) en el area Paranoplatense. Descripcion de Eupera iguazuensis n. sp. del rio Iguazu, Misiones, Argentina. Neotropica 35: 53–63. Ituarte, C. F., 1994a. Eupera guaraniana n. sp. (Pelecypoda: Sphaeriidae) del rio Uruguay, Argentina. Gayana Zoologı́a 58: 1–7. Ituarte, C. F., 1994b. Corbicula and Neocorbicula (Bivalvia: Corbiculidae) in the Paraná, Uruguay, and Rio de La Plata Basin. The Nautilus 107: 120–135. Ituarte, C. F., 1995. Nuevos registros de Pisidium Pfeiffer, 1821 y Sphaerium Scopoli, 1777 (Bivalvia Sphaeriidae) en Chile, Bolivia y Noroeste argentino. Neotrópica 41: 31–41. Ituarte, C. F., 1996. Argentine species of Pisidium Pfeiffer, 1821, and Musculium Link, 1807 (Bivalvia: Sphaeriidae). The Veliger 39: 189–203. Ituarte, C. F., 1999. Pisidium chilense (d’Orbigny, 1846) and new species of Pisidum C. Pfeiffer, 1821 from southern Chile (Bivalvia, Sphaeriidae). Zoosystema 21: 249–257. Ituarte, C. F., 2000. Pisidium taraguyense and Pisidum pipoense, new species from Northeastern Argentina (Bivalvia: Sphaeriidae). The Veliger 43: 51–57. Ituarte, C. F., 2001. Pisidium chiquitanum new species from Santa Cruz de la Sierra, Bolivia (Bivalvia:Sphaeriidae). The Nautilus 115: 50–54. Ituarte, C. F., 2004. Sphaeriidae (Bivalvia) from Peruvian Amazon floodplain, with the description of Pisidium iquito new species. The Nautilus 118: 167–174. Ituarte, C. F., 2005. Sphaeriidae of Northweastern Argentina, including three new species of Pisidium (Bivalvia: Sphaeriidae). Neotropica 39: 11–16. Ituarte, C. F., 2007. Las especies de Pisidum Pfeiffer de Argentina, Bolivia, Chile, Perú y Uruguay (Bivalvia: 123 Hydrobiologia Sphaeriidae). Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia 9: 169–203. Ituarte, C. F. & A. V. Korniushin, 2006. Anatomical characteristics of the two enigmatic and two poorly known Pisidium species (Bivalvia: Sphaeriidae) from southern South America. Zootaxa 1338: 33–47. Ituarte, C. F. & M. C. D. Mansur, 1993. Eupera elliptica n. sp., una nueva especie en el rio Iguazú, Misiones, Argentina. Neotropica 39: 11–16. IUCN, 2012. The IUCN Red List of Threatened Species. Version 2012.2. Available at http://www.iucnredlist.org. Jara-Seguel, P., C. Palma-Rojas, S. Peredo, E. Parada & G. Lara, 2000. Quantitative karyotype of Diplodon chilensis chilensis (Gray,1828) (Bivalvia;Hyriidae). Gayana 64: 189–193. Josseaume, F., 1889. Voyage de M. Eugéne Simon au Venezuele. Mémoires de la Société Zoologique de France 2: 232–259. Klappenbach, M. A., 1962. Una nueva especie de Eupera (Moll., Pelecypoda) del Uruguay. Revista del Museo Argentino de Ciencias Naturales Bernardino Rivadavia 8: 101–106. Kuiper, J. G. J., 1983. The Sphaeriidae of Australia. Basteria 47: 3–52. Kuiper, J. G. J. & W. Hinz, 1984. Zur Fauna der Kleinmuscheln in den Anden. Archiv für Molluskenkunde 114: 137–156. Küster, H. C., 1842. Die Flussperlmuscheln (Unio et Hyria). In Abbildungen nach der Natur. In Martini, F. H. W. & J. H. Chemnitz (eds), Systematisches Conchylien Cabinet v.9. Bauer & Baspe, Nümberg: 1–318. Lamarck, J. B. P. A., 1819. Histoire Naturelle des Animaux sans Vertebres. Lamarck, Paris. Lanzer, R., 2001. Distribuição, fatores históricos e dispersão de moluscos lı́mnicos em lagoas do sul do Brasil. Biociências 9: 63–84. Lanzer, R. & A. Schäfer, 1987. Moluscos dulceaquı́colas como indicadores de condições tróficas em lagoas costeiras do sul do Brasil. Revista Brasileira de Biologia 47: 47–56. Lara, G. & C. Moreno, 1995. Efecto de la depredación de Aegla abtao sobre la población de Diplodon chilensis en el Lago Panguipulli. Revista Chilena de Historia Natural 68: 123–129. Lara, G. & E. Parada, 1988. Distribución espacial y densidad de Diplodon chilensis chilensis (Gray, 1828) en el lago Villarrica (30°180 S; 72°050 W). Boletı́n de la Sociedad de Biologı́a de Concepción 59: 105–114. Lara, G. & E. Parada, 1991. Seasonal changes in the condicion index of Diplodon chilensis chilensis (Gray 1828) in sandy and muddy substrata. Villarrica Lake (39°180 S; 72°050 W). Boletı́n de la Sociedad de Biologı́a de Concepción 62: 99–106. Lara, G. & E. Parada, 2008. Manutención del patrón de distribución espacial, densidad y estructura de tamaños de la almeja de agua dulce Diplodon chilensis (Bivalvia: Hyriidae) en el Lago Panguipulli. Gayana 72: 41–51. Lara, G. & E. Parada, 2009. Substrate selection by the freshwater mussel Diplodon chilensis (Gray 1828): field and laboratory experiments. Journal of Molluscan Studies 75: 153–157. Lara, G., E. Parada & S. Peredo, 2002a. Alimentación y conducta alimentaria de la almeja de agua dulce Diplodon chilensis (Bivalvia: Hyriidae). Gayana 66: 107–112. 123 Lara, G., A. Contreras & F. Encina, 2002b. La almeja de agua dulce Diplodon chilensis (Bivalvia: Hyriidae) potencial biofiltro para disminuir los niveles de coliformes fecales en pozos: experimentos de laboratorio. Gayana 66: 113–118. Lasso, C. A., R. Martı́nez-Escarbassiere, J. C. Capelo, M. A. Morales-Betancourt & A. Sánchez-Maya, 2009. Lista de los moluscos (Gastropoda-Bivalvia) dulceacuı́colas y estuarinos de la cuenca del Orinoco (Venezuela). Biota Colombiana 10: 63–74. Lea, I., 1834. Observations on the genus Unio, Vol. 1. Authors ed, Philadelphia. Lea, I., 1838. Observations on the genus Unio, Vol. 2. Authors ed, Philadelphia. Lea, I., 1852. Observations on the genus Unio, Vol. 5. Authors ed, Philadelphia. Lea, I., 1857. Observations on the genus Unio, Vol. 6. Authors ed, Philadelphia. Lea, I., 1860. Observations on the genus Unio, Vol. 7. Authors ed, Philadelphia. Lea, I., 1863. Observations on the genus Unio, Vol. 10. Authors ed, Philadelphia. Lea, I., 1869. Observations on the genus Unio, Vol. 12. Authors ed, Philadelphia. Lea, I., 1874. Observations on the genus Unio, Vol. 13. Authors ed, Philadelphia. Leal, M. E. C., 2011. Evolução dos sistemas hidrogeológicos Sul Americanos. In Fernandez, M. A., S. B. Santos, A. Pimenta & S. C. Thiengo (org), Tópicos em Malacologia. Sociedade Brasileira de Malacologia. SBMa, Rio de Janeiro: 55–66. Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd ed. Elsevier, Amsterdam. Machado, A. B. M., G. M. Drummond & A. P. Paglia, 2008. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção. Brasilia, Ministério do Meio Ambiente e Fundação Biodiversitas, Brasilia. Mansur, M. C. D., 1970. Lista de moluscos bivalves das famı́lias Hyriidae e Mycetopodidae para o Estado do Rio Grande do Sul. Iheringia Série Zoologia 39: 33–95. Mansur, M. C. D., 1972. Morfologia do sistema digestivo de Castalia undosa martensi (Ihering, 1891) (Bivalvia, Hyriidae). Iheringia Série Zoologia 41: 21–34. Mansur, M. C. D., 1974. Monocondylaea minuana Orbigny, 1835: variabilidade da concha e morfologia do sistema digestivo (Bivalvia, Mycetopodidadae). Iheringia Série Zoologia 45: 3–25. Mansur, M. C. D., 1999. Gloquı́dio de Diplodon martensi (Ihering) (Mollusca, Bivalvia, Hyriidae) e seu ciclo parasitário. Revista Brasileira de Zoologia 162: 185–194. Mansur, M. C. D., 2012. Bivalves invasores lı́mnicos: morfologia comparada de Limnoperna fortunei e espécies de Corbicula spp. In Mansur, M. C. D., C. P. Santos, D. Pereira, I. C. P. Paz, M. L. L. Zurita, M. T. R. Rodriguez, M. V. Nehrke & P. E. A. Bergonci (org), Moluscos Lı́mnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 61–74. Mansur, M. C. D. & L. M. Anflor, 1981. Diferenças morfológicas entre Diplodon charruanus Orbigny, 1835 e Diplodon pilsbryi Marshall, 1928 (Bivalvia, Hyriidae). Iheringia Série Zoologia 60: 101–116. Hydrobiologia Mansur, M. C. D. & N. M. R. Campos-Velho, 1990. Técnicas para o estudo de gloquı́dios de Hyriidae (Mollusca, Bivalvia, Unionoida). Acta Biologica Leopoldensia 121: 5–18. Mansur, M. C. D. & N. M. R. Campos-Velho, 2000. Glochidium of Castalia martensi (Ihering, 1891) (Mollusca, Bivalvia, Hyriidae). Heldia 31: 6–10. Mansur, M. C. D. & L. M. M. P. Garces, 1988. Ocorrência e densidade de Corbicula fluminea (Müller, 1774) e Neocorbicula limosa (Maton, 1811) na Estação Ecológica do Taı́m, Rio Grande do Sul, Brasil. Iheringia Série Zoologia 68: 99–115. Mansur, M. C. D. & C. Meier-Brook, 2000. Morphology of Eupera (Bourguignat, 1854) and Byssanodonta (Orbigny, 1846) and the phylogenetic affinities whitin Sphaeriidae and Corbiculidae (Bivalvia, Veneroida). Archiv für Molluskenkunde der Senckenbergischen Naturforschenden Gesellschaft 128: 1–59. Mansur, M. C. D. & J. Olazarri, 1995. Redescrição, distribuição e preferências ambientais de Anodontites ferrarisi (Orbigny, 1835) revalidada (Bivalvia). Iheringia Série Zoologia 79: 3–12. Mansur, M. C. D. & D. Pereira, 2006. Bivalves lı́mnicos da bacia do rio dos Sinos, Rio Grande do Sul, Brasil (Bivalvia, Unionoida, Veneroida e Mytiloida). Revista Brasileira de Zoologia 23: 1123–1147. Mansur, M. C. D. & D. M. Pimpão, 2008. Triplodon chodo, a new species of pearly fresh water mussel from the Amazon Basin (Mollusca, Bivalvia, Unionoida, Hyriidae). Revista Brasileira de Zoologia 25: 111–115. Mansur, M. C. D. & M. G. O. Silva, 1990. Morfologia e microanatomia comparada de Bartletia stefanensis (Moricand, 1856) e Anodontites tenebricosus (Lea, 1834) (Bivalvia, Unionoida, Muteloidea). Amazoniana 11: 147–166. Mansur, M. C. D. & M. G. O. Silva, 1999. Description of glochidia of five species of freshwater mussels (Hyriidae: Unionoidea) from South America. Malacologia 41: 475–483. Mansur, M. C. D. & R. M. Valer, 1992. Moluscos bivalves do rio Uraricoera e rio Branco, Roraima, Brasil. Amazoniana 12: 85–100. Mansur, M. C. D. & I. L. Veitenheimer, 1975. Nova espécie de Eupera (Bivalvia: Sphaeriidae) e primeiras contribuições anatômicas para o gênero. Iheringia Série Zoologia 47: 23–46. Mansur, M. C. D. & I. L. Veitenheimer-Mendes, 1979. Redescrição de Mycetopoda legumen (Martens, 1988) (Bivalvia, Mycetopodidae). Revista Brasileira de Biologia 39: 695–702. Mansur, M. C. D., C. Schulz & L. M. M. P. Garces, 1987. Moluscos bivalves de água doce: identificação dos gêneros do sul e leste do Brasil. Acta Biologica Leopoldensia 9: 181–202. Mansur, M. C. D., I. L. Veitenheimer-Mendes & J. E. M. Almeida-Caon, 1988. Mollusca, Bivalvia de um trecho do curso inferior do rio Jacuı́, RS, Brasil. Iheringia Série Zoologia: 87–108. Mansur, M. C. D., C. Schulz, M. G. O. Silva & N. M. R. Campos-Velho, 1991. Moluscos bivalves lı́mnicos da Estação Ecológica do Taı́m e áreas adjacentes, Rio Grande do Sul, Brasil. Iheringia Série Zoologia 71: 43–58. Mansur, M. C. D., R. M. Valer & N. C. M. Aires, 1994. Distribuição e preferências ambientais dos moluscos bivalves do açude do Parque de Proteção Ambiental COPESUL, municı́pio de Triunfo, Rio Grande do Sul, Brasil. Biociências 2: 27–45. Mansur, M. C. D., I. Heydrich, D. Pereira, L. M. Z. Richinitti, J. C. Tarasconi & E. C. Rios, 2003a. Moluscos. In Fontana, C. S., G. A. Bencke & R. E. Reis (eds), Livro Vermelho da Fauna Ameaçada de Extinção no Rio Grande do Sul. EDIPUCRS, Porto Alegre: 49–71. Mansur, M. C. D., C. P. Santos, G. Darrigran, I. Heydrich, C. T. Callil & F. R. Cardoso, 2003b. Primeiros dados qualiquantitativos do mexilhão dourado, Limnoperna fortunei (Dunker), no Delta do Jacuı́, no Lago Guaı́ba e na Laguna dos Patos, Rio Grande do Sul, Brasil e alguns aspectos de sua invasão no ambiente. Revista Brasileira de Zoologia 20: 75–84. Mansur, M. C. D., F. R. Cardoso, L. A. Ribeiro, C. P. Santos, B. M. Thormann, F. C. Fernandes & L. M. Z. Richinitti, 2004a. Distribuição e conseqüências após cinco anos da invasão do mexilhão-dourado, Limnoperna fortunei, no estado do Rio Grande do Sul, Brasil (Mollusca, Bivalvia, Mytilidae). Biociências 122: 165–172. Mansur, M. C. D., C. B. Quevedo, C. P. Santos, & C. T. Callil, 2004b. Prováveis vias da introdução de Limnoperna fortunei (Dunker,1857) (Mollusca, Bivalvia, Mytilidae) na bacia da laguna dos Patos, Rio Grande do Sul e novos registros de invasão no Brasil pelas bacias do Paraná e Paraguai. In Silva, J. S. V. & R. C. C. L. Souza (org), Água de Lastro e Bioinvasão. Interciências, Rio de Janeiro: 33–38. Mansur, M. C. D., C. Ituarte & C. Meier-Brook, 2008. A new species of Sphaerium Scopoli, 1777, from southern Brazil (Bivalvia: Sphaeriidae). The Nautilus 122: 228–235. Mansur, M. C. D., D. M. Pimpão, P. E. A. Bergonci, C. P. Santos & G. C. S. Figueiredo, 2012a. Morfologia e ciclo larval comparados de bivalves lı́mnicos invasores e nativos. In Mansur, M. C. D., C. P. Santos, D. Pereira, I. C. P. Paz, M. L. L. Zurita, M. T. R. Rodriguez, M. V. Nehrke & P. E. A. Bergonci (org), Moluscos Lı́mnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 95–110. Mansur, M. C. D., A. S. Vanin, P. E. A. Bergonci & A. S. Oliveira, 2012b. Dinâmica reprodutiva de Corbicula fluminea e Corbicula largillierti. In Mansur, M. C. D., C. P. Santos, D. Pereira, I. C. P. Paz, M. L. L. Zurita, M. T. R. Rodriguez, M. V. Nehrke & P. E. A. Bergonci (org), Moluscos Lı́mnicos Invasores no Brasil, Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 119–124. Mansur, M. C. D., C. P. Santos, D. Pereira, I. C. P. Paz, M. L. L. Zurita, M. T. R. Rodriguez, M. V. Nehrke & P. E. A. Bergonci (org), 2012c. Moluscos Lı́mnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre. Marshall, W. B., 1916. Three new species of Anodontites from Brazil. Proceedings of the United States National Museum 49: 527–529. Marshall, W. B., 1922. New pearly fresh water mussels from South America. Proceedings of the United States National Museum 61: 1–9. 123 Hydrobiologia Marshall, W. B., 1924. New Uruguayan mollusks of the genus Corbicula. Proceedings of the United States National Museum 66: 1–12. Marshall, W. B., 1927a. A new genus and two new species of South American fresh-water mussels. Proceedings of the United States National Museum 71: 1–3. Marshall, W. B., 1927b. New species of mollusks of the genus Corbicula from Uruguay and Brazil. Proceedings of the United States National Museum 72: 1–7. Marshall, W. B., 1928. New fresh-water and marine bivalve shells from Brazil and Uruguay. Proceedings of the United States National Museum 74: 1–7. Marshall, W. B., 1930. New land and fresh-water mollusks from South America. Proceedings of the United States National Museum 77: 1–7. Martins, D. S., I. L. Veitenheimer-Mendes & M. C. FaccioniHeuser, 2004. Corbicula (Bivalvia, Corbiculidae) em simpatria no lago Guaı́ba, RS, Brasil. Biociências 12: 129–138. Maton, W. G., 1811. Description of seven species of Testacea. Transactions of the Linnean Society 10: 325–332. Meier-Brook, C., 1967. Pisidium forense, a new species from Brazil (Mollusca; Eulamellibranchiata; Sphaeriidae). Archiv für Hydrobiologie 64: 63–68. Ministerio de Agricultura y Ganaderia, 1998. Fauna Amenazada del Paraguay. Direccion de Parques Nacionales y Vida Silvestre, Fundación Moises Bertoni, Asuncion. Miyahira, I. C., M. C. D. Mansur, J. B. Carneiro & S. B. Santos, 2012a. Freshwater mussels (Hyriidae, Diplodon) of the state of the Rio de Janeiro, Brasil: the last survivors? Tentacle 20: 19–21. Miyahira, I. C., S. B. Santos, M. C. D. Mansur & J. B. Carneiro, 2012b. Freshwater mussels in Brazil: past, present and future, at least, we hope they have one. American Conchologist 40: 16–18. Mondaca, G., 2011. El enfoque de gestión integral de recursos hı́dricos por cuencas, como propuesta base de la regulación hı́drica en Bolivia. >Por qué la importancia de una visión de cuencas en la futura ley de aguas? Revista Virtual REDESMA 5: 59–71. Morretes, F. L., 1949. Ensaio de catálogo dos moluscos do Brasil. Arquivos do Museu Paranaense 7: 3–216. Morretes, F. L., 1953. Adenda e corrigenda ao ensaio de catálogo dos moluscos do Brasil. Arquivos do Museu Paranaense 10: 37–76. Olazarri, J., 1963. Primera contribución a la bibliografia malacologica uruguaya. Comunicaciones de La Sociedad Malacologica del Uruguay 1: 111–222. Olazarri, J., 1966. Los moluscos de agua dulce del Departamento de Colonia, Uruguay Parte I: Pelecypoda. Comunicaciones de La Sociedad Malacologica del Uruguay 2: 15–36. Olazarri, J., 1975. Historia de La Malacologia en el Uruguay. Museu de Historia Natural de Monteviedeo, Montevideo. Orbigny, A. D’., 1835. Synopsis terrestrium et fluviatilium molluscorum in suo per American Meridionalem itinere. Magazin de Zoologie 5: 1–40. Orbigny, A. D’., 1846. Voyage dans l’Amerique Méridionale: 5 Mollusques. C. P Bertrand, Paris. Ortmann, A. E., 1921. South American naiads: a contribution to the knowledge of the freshwater mussels of South America. Memories of the Carnegie Museum 8: 451–670. 123 Parada, E. & S. Peredo, 1994. Un enfoque ecológico evolutivo de lãs estratégias de historia de vida de lós Hyriidos chilenos (Mollusca, Bivalvia) Boletı́n de la Sociedad de Biologı́a de Concepción 65: 71–80. Parada, E. & S. Peredo, 2002. Estado actual de la Taxonomia de bivalves dulceacuı́colas chilenos: progressos y conflictos. Revista Chilena de Historia Natural 75: 691–701. Parada, E. & S. Peredo, 2005. La relocalización como una herramienta de conservación y manejo de la biodiversidad. Lecciones aprendidas con Diplodon chilensis (Gray 1828) (Bivalvia: Hyriidae). Gayana 69: 41–47. Parada, E., S. Peredo & C. Gallardo, 1987. Esfuerzo reproductivo em Diplodon chilensis (Gray, 1828) (Bivalvia, Hyriidae), uma proposicion para su determinación. Boletı́n de la Sociedad de Biologı́a de Concepción 58: 121–126. Parada, E., S. Peredo, G. Lara & F. Antonin, 1989a. Contribución al conocimiento de los Hyriidae Chilenos. Boletı́n de la Sociedad de Biologı́a de Concepción 60: 173–182. Parada, E., S. Peredo, G. Lara & I. Valdebenito, 1989b. Growth, age and life span of the freshwater mussel Diplodon chilensis chilensis (Gray, 1828). Archiv für Hydrobiologie 115: 563–573. Parada, E., S. Peredo & C. Gallardo, 1990. Tácticas reproductivas y dinámica poblacional de Diplodon chilensis (Gray, 1828) (Bivalvia, Hyriidae). Revista Chilena de Historia Natural 63: 23–35. Parada, E., S. Peredo, J. Valenzuela & D. Manuschevich, 2007. Extention of the current northern distribution range of freshwater mussel Diplodon chilensis (Gray, 1828) (Bivalvia: Hyriidae) in Chile. Gayana 71: 212–215. Parodiz, J. J. & A. A. Bonetto, 1963. Taxonomy and zoogeographic relationships of the South American naiades (Pelecypoda: Unionacea and Mutelacea). Malacologia 1: 179–213. Parodiz, J. J. & L. Hennings, 1965. The Neocorbicula (Mollusca, Pelecypoda) of the Paraná–Uruguay Basin. Annals of the Carnegie Museum 38: 69–96. Pellant, C., 1996. An Illustrated Guide to Fossils. The Nature Company, Berkley. Peredo, S. & E. Parada, 1984. Gonadal organization and gametogenesis in the freshwater mussel Diplodon chilensis chilensis (Mollusca: Bivalvia). The Veliger 27: 126–133. Peredo, S. & E. Parada, 1986. Reproductive cycle in the freshwater mussel Diplodon chilensis chilensis (Mollusca: Bivalvia). The Veliger 28: 418–425. Peredo, S., O. Garrido & E. Parada, 1990. Spermiogenesis and sperm ultrastructure in the freshwater mussel Diplodon chilensis chilensis (Mollusca: Bivalvia). Invertebrate Reproduction and Development 17: 171–179. Peredo, S., P. Jara-Seguel, E. Parada & C. Palma-Rojas, 2003. Comparative karyology of lentic and lotic populations of Diplodon chilensis chilensis (Bivalvia: Hyriidae). The Veliger 46: 314–319. Peredo, S., E. Parada, I. Valdebenito & M. Peredo, 2005. Relocation of the freshwater mussel Diplodon chilensis (Hyriidae) as a strategy for its conservation and management. Journal of Molluscan Studies 71: 195–198. Pereira, D., I. L. Veitenheimer-Mendes, M. C. D. Mansur & M. C. P. Silva, 2000. Malacofauna lı́mnica do sistema de irrigação do arroio Capivara, Triunfo, RS, Brasil. Biociências 8: 137–157. Hydrobiologia Pereira, D., J. O. Arruda, R. Menegat, M. L. Porto, A. Schwarzbold & S. M. Hartz, 2011. Guildas tróficas, composição e distribuição de espécies de moluscos lı́mnicos no gradiente fluvial de um riacho subtropical brasileiro. Biotemas 24: 21–36. Pereira, D., M. C. D. Mansur & D. M. Pimpão, 2012. Identificação e diferenciação dos bivalves lı́mnicos invasores dos demais bivalves nativos do Brasil. In Mansur, M. C. D., C. P. Santos, D. Pereira, I. C. P. Paz, M. L. L. Zurita, M. T. R. Rodriguez, M. V. Nehrke & P. E. A. Bergonci (org), Moluscos Lı́mnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 75–94. Philippi, R. A., 1847. Abbildungen und Beschreibungen neuer oder wenig bekannten Conchylien. Cassel, Theodor Fischer. Pillar, V. & L. D. S. Duarte, 2010. A framework for metacommunity analysis of phylogenetic structure. Ecology Letters 13: 587–596. Pilsbry, H. A., 1896. New species of fresh water mollusks from South America. Proceedings of the Academy of Natural Sciences of Philadelphia 48: 561–570. Pilsbry, H. A., 1897. New species of mollusks from Uruguay. Proceedings of Academy of Natural Sciences of Philadelphia 49: 290–298. Pilsbry, H. A., 1911. Non-marine mollusca of Patagonia. Proceedings of Academy of Natural Sciences Philadelphia 3: 514–611. Pimpão, D. M. & M. C. D. Mansur, 2009. Chave pictórica para identificação dos bivalves do baixo rio Aripuanã, Amazonas, Brasil (Sphaeriidae, Hyriidae e Mycetopodidae). Biota Neotropica 9: 1–8. Pimpão, D. M., M. S. Rocha & D. C. Fettuccia, 2008. Freshwater mussels of Catalão, confluence of Solimões and Negro rivers, state of Amazonas, Brazil. Check List 4: 395–400. Pimpão, D. M., M. C. D. Mansur, P. E. A. Bergonci & C. R. Beasley, 2012. Comparative morphometry and morphology of glochidial shells of Amazonian Hyriidae (Mollusca: Bivalvia: Unionida). American Malacological Bulletin 30: 73–84. Ricci, C. N., L. C. F. Alvarenga & A. C. S. Coelho, 1990. Gloquı́deo de Diplodon Spix, 1827: D. (D.) multistriatus (Lea, 1831) (Mollusca, Bivalvia, Hyriidae). Boletim do Museu Nacional – Nova Série Zoologia 344: 1–10. Rumi, A., D. E. G. Gregoric, V. Núñez & G. A. Darrigran, 2008. Malacologı́a latinoamericana: moluscos de agua dulce de Argentina. International Journal of Tropical Biology 56: 77–111. Santos, S. B., S. Thiengo, M. A. Fernandez, I. C. Miyahira, I. C. B. Gonçalves, R. F. Ximenes, M. C. D. Mansur & D. Pereira, 2012. Espécies de moluscos lı́mnicos invasores no Brasil. In Mansur, M. C. D., C. P. Santos, D. Pereira, I. C. P. Paz, M. L. L. Zurita, M. T. R. Rodriguez, M. V. Nehrke & P. E. A. Bergonci (org), Moluscos Lı́mnicos Invasores no Brasil: Biologia, Prevenção, Controle. Redes Editora, Porto Alegre: 25–49. Scarabino, F., 2004. Conservación de la malacofauna uruguaya. Comunicaciones de La Sociedad Malacologica del Uruguay 8: 257–273. Scarabino, F. & C. Clavijo, 2009. Especies de moluscos prioritarias para la conservación. In: Soutullo, A., E. Alonso, D. Arrieta, R. Beyhaut, S. Carreira, C. Clavijo, J. Cravino, L. Delfino, G. Fabiano, C. Fagundez, F. Haretche, E. Marchesi, C. Passadore, M. Rivas, F. Scarabino, B. Sosa & N. Vidal (eds), Especies Prioritarias para la Conservación en Uruguay. Proyecto Fortalecimiento del Proceso de Implementación del Sistema Nacional de Áreas Protegidas, DINAMA, Montevideo, Serie de informes 16. Scarabino, F. & M. C. D. Mansur, 2007. Lista sistemática de los Bivalvia dulciacuı́colas viventes de Uruguay. Comunicaciones de La Sociedad Malacologica del Uruguay 9: 89–99. Serrano, M. A. S., R. S. Tietböhl & M. C. D. Mansur, 1998. Sobre a ocorrência de moluscos Bivalvia no Pantanal de Mato Grosso, Brasil. Biociências 6: 131–144. Simone, L. R. L., 1994. Anatomical characters and sytematics of Anodontites trapesialis (Lamarck, 1819) from South America (Mollusca, Bivalvia, Unionoida, Muteloidea). Studies Neotropical Fauna and Environment 29: 169–185. Simone, L. R. L., 1997. Anatomy and systematic of Anododontites elongatus (Swainson) from Amazonian and Paraná Basins, Brazil (Mollusca, Bivalvia, Unionoida, Mycetopodidae). Revista Brasileira de Zoologia 14: 877–888. Simone, L. R. L., 1999. Anatomy and systematics of Anticorbula fluviatilis (H. Adams, 1860) (Bivalvia: Lyonsiidae) from the Amazon Basin, Brazil and Peru. The Nautilus 113: 48–56. Simone, L. R. L., 2006. Land and Freshwater Mollusks of Brazil. EGB, FAPESP, São Paulo. Simpson, C. T., 1900. Sinopsis of the naiades or pearly freshwater mussels. Proceedings of the United States National Museum 22: 501–1044. Simpson, C. T., 1914. A Descritive Catalogue of the Naiades or Pearly Freshwater Mussels. Bryant Walker, Michigan. Souza, J. R. B., C. M. C. Rocha & M. P. R. Lima, 2005. Ocorrência do bivalve exótico Mytilopsis leucophaeta (Conrad) (Mollusca: Bivalvia), no Brasil. Revista Brasileira de Zoologia 22: 1204–1206. Sowerby, G. T., 1864. Monograph of the genus Unio. In Reeve, L. A. (ed.), Conchologia Iconica, Vol. 16. L. Reeve, London. Sowerby, G. T., 1867. Monograph of the genus Anodon. In Reeve, L. A. (ed.), Conchologia Iconica, Vol. 17. L. Reeve, London. Sowerby, G. T., 1868. Monograph of the genus Mycetopus. In Reeve, L. A. (ed.), Conchologia Iconica, Vol. 16. L. Reeve, London. Sowerby, G. T., 1869a. Monograph of the genus Hyria. In Reeve, L. A. (ed.), Conchologia Iconica, Vol. 17. L. Reeve, London. Sowerby, G. T., 1869b. Monograph of the genus Castalia. In Reeve, L. A. (ed.), Conchologia Iconica, Vol. 17. Reeve, London. Spix, J. B. 1827. In: J. A. Wagner (ed.), Testacea Fluviatilia quae in Itenere per Brasiliensia Ani MDCCCXVII – MDCCCXX Collegit et Pigenda Curavit Dr. J.B. Spix, Digessit Descripsit et Observationibus Illustravit D. J. A. Wagner. Schrank & Martius, Munich. Takeda, A. M., M. C. D. Mansur & D. S. Fujita, 2005. Ocorrência de moluscos bivalves em diferentes reservatórios. In Rodrigues, L., S. M. Thomaz, A. A. Agostinho & L. C. Gomes (org), Biocenoses em Reservatórios: Padrões Espaciais e Temporais. RiMa, São Carlos: 161–167. 123 Hydrobiologia Valdovinos, C. & P. Pedreros, 2007. Geographic variations in shell growth rates of the mussel Diplodon chilensis from temperate lakes of Chile: implication for biodiversity conservation. Limnologica 37: 63–75. Vaz, J. F., 1986. Hermann von Ihering. Boletim Informativo da Sociedade Brasileira de Malacologia 60: 13–15. Veitenheimer, I. L., 1973a. Contribuição ao estudo do gênero Leila Gray, 1840 (Mycetopodidae-Bivalvia). Iheringia Série Zoologia 42: 64–89. Veitenheimer, I. L., 1973b. Anodontites Bruguière, 1792 no Guaı́ba-RS (Bivalvia: Mycetopodidae) I. Anodontites trapesialis forbesianus (Lea, 1860). Iheringia Série Zoologia 44: 32–49. Veitenheimer, I. L. & M. C. D. Mansur, 1978a. Morfologia, histologia e ecologia de Mycetopoda legumen (Martens, 1988) – (Bivalvia, Mycetopodidae). Iheringia Série Zoologia 52: 33–71. Veitenheimer, I. L. & M. C. D. Mansur, 1978b. Mycetopoda legumen (Martens, 1988): lası́dio e desenvolvimento parasitário (Bivalvia, Mycetopodidae). Revista Brasileira de Biologia 38: 531–536. 123 Wächtler, K., M. C. D. Mansur & T. Richter, 2001. Larval types and early postlarval biology in Naiads (Unionoida). In Bauer, G. & K. Wächtler (eds), Ecology and Evolotion of the Freshwater Mussels Unionoida. Springer-Verlag, Berlin: 93–125. Walker, J. M., J. P. Curole, D. E. Wade, E. G. Chapman, A. E. Bogan, G. T. Walter & W. R. Hoeh, 2006. Taxonomic distribution and phylogenetic utility of gender-associated mitochondrial genomes in the Unionoida (Bivalvia). Malacologia 48: 265–282. Wares, J. P., & T. F. Turner, 2003. Phylogeography and diversification in aquatic mollusks. In Lydeard, C. & D. R. Lindberg (ed), Molecular Systematics and Phylogeography of Mollusks: 229–269. Wesselingh, F. P., 2006. Miocene long-lived lake Pebas as a stage of mollusc radiations, with implications for landscape evolution in western Amazonia. Scripta Geologica 133: 1–17. Wolfe, L. M., 2002. Why alien invaders succeed: Support for the escape-from-enemy hypothesis. American Naturalist 160: 705–711.