Academia.eduAcademia.edu
58 Bol. Asoc. Herpetol. Esp. (2015) 26(1) On the syntopy of Saurodactylus brosseti and Saurodactylus fasciatus, a new record Alberto Sanchez-Vialas1,2, Alex Torres1, Daniel Bustillos3, David Herrero4, Karim Ben-Said5 & Rafa Monico3 1 Asociación Bio+. Av de América, 64. 7ºB. 28028 Madrid. C.e.: alberto.alytes@gmail.com Museo Nacional de Ciencias Naturales (CSIC). Cl. Jose Gutierrez Abascal, 2. 28006 Madrid. 3 Facultad de Ciencias Biológicas. Universidad Complutense de Madrid. Cl. José Antonio Novais, 12. 28040 Madrid. 4 Cl. Embajadores, 161. 3-C. 28045 Madrid. 5 Universidad de las Islas Baleares. Cra. de Valldemossa. 07800 Palma de Mallorca. 2 Fecha de aceptación: 12 de enero de 2015. Key words: Saurodactylus, semi-arid, syntopy, endemic, distribution, Morocco. RESUMEN: La presente nota proporciona el segundo registro sobre sintopía entre Saurodactylus fasciatus y Saurodactylus brosseti. Ambas especies fueron encontradas separadas por escasos metros en las inmediaciones de Oulad Ayad, provincia de Beni Mellal (Marruecos). The genus Saurodactylus contains three small gecko species endemic to the Magreb: Saurodactylus mauritanicus (Duméril & Bibron, 1836), Saurodactylus brosseti (Bons & Pasteur, 1957) and Saurodactylus fasciatus (Werner, 1931). The taxonomic status of each species is well supported. However the relationships within the genus and between Saurodactylus (S. fasciatus especially) and the other sphaerodactyl geckoes remains unclear (Gamble et al., 2008; Rato & HaFoto Alberto Sanchez Vialas It is not unusual that species of the same genus co-occur in the same habitat (Rivas, 1964). Among sauropsids, there are numerous examples of intra-genus syntopy, showing ecological segregation depending on several factors such as prey preferences (Robles & Halloy, 2008) or microhabitat selection (Faria & Araujo, 2004; Martínez-Freiría, 2009; Galán et al., 2013). Syntopy among species of the same genus in Morocco has been recorded for species within the genera Mesalina, Acanthodactylus, Natrix, among others, which shows different microhabitat use or different ecological requirements (Bons & Geniez, 1996). To understand patterns of clades’ distribution it is required an understanding of speciation modes (Martínez-Freiría, 2009). Geological barriers like the uplift of the Atlas and Rif mountains in Morocco drives populations toward vicariant process in many species (Brown et al., 2002; Fritz et al., 2006; Sanchez & Escoriza, 2014). Nevertheless within Saurodactylus, little is known about the processes that have promoted the species formation. Rato & Harris (2008) suggest that speciation among Saurodactylus predates these geological barriers. Figure 1: S. fasciatus in the syntopic area. Figura 1: S. fasciatus en la zona de sintopía. Bol. Asoc. Herpetol. Esp. (2015) 26(1) rris, 2008; Pyron et al., 2013). According to Rato & Harris (2008) and Pyron et al. (2013), the genus Saurodactylus is paraphyletic, with S. fasciatus more closely related to the genus Teratoscincus. Nevertheless, the monophyly of the genus Saurodactylus is obtained by Gamble et al. (2011). S. mauritanicus is the only member of the genus that can be found out of Morocco and Western Sahara, with its distribution encompassing the north east of Morocco to western Algeria. S. brosseti and S. fasciatus are Moroccan endemics (including Western Sahara), the first one with a western range in Morocco, through the Atlantic coastal areas to the western slopes of the Atlas Mountains, and extending to the Draa Valley; it also ranges accross the northern coastal part of the Western Sahara (Bons & Geniez, 1996; Geniez et al., 2004). The distribution of S. fasciatus fits between those of S. brosseti and S. mauritanicus, consisting of a few areas situated north and west of the High and Middle Atlas and south west of the Rif (Bons & Geniez, 1996; Scheilch et al., 1996). S. fasciatus and S. mauritanicus are separated by the Rif, with the distances between the closest localities of both species being about 75 km (Bons & Geniez, 1996). While the only locality known 59 with syntopy of S. fasciatus and S. brosseti is in Afouer (Bons, 1967), these taxa have been also recorded less than 25 km from each other in the Khénifra region (Mellado & Mateo, 1992; Bons & Geniez, 1996). In this note we provide a new record, 25 km east to Afourer, where S. fasciatus occurs in syntopy with S. brosseti. On the 19th of April 2014 at 20:00 h, both species were found around Oulad Ayad (gps data: 32.18° N / 6.794° W) 100 m from each other. The habitat structure where we found S. fasciatus consists on grassland with many stones, dispersed shrubs and cultivated trees, while S. brosseti was occupying a sloping surface characterized by a highly rocky area with shrubs. The locality is 670 masl with semi-arid stage, where the annual rainfall average is 415 mm and 19 ºC of average annual temperature; the warmest month of the year is August while January is the coldest one, with an average temperature of 27.8 ºC and 11.2 ºC respectively (Climate-data.org, 2014). Generally, S. brosseti inhabits more arid stages than S. fasciatus; Saharan, semi-arid and arid bioclimatic zones are occupied by S. brosseti, whereas S. fasciatus inhabits semi-arid and sub-humid localities (Bons & Geniez, 1996; Fahd Foto D. Herrero González & Pleguezuelos, 1996; Harris et al., 2008; Barata et al., 2011). Thus, semi-arid regions are suitable for the presence of both species. Syntopy between these two species should be investigated in the Khènifra region (Mellado & Mateo, 1992) as well as in the area between Beni Mellal and Bzou. Likewise, in the area that comprises Boulaouane and Had Mzoura, where their distribution patterns overlap in a semi-arid stage, new fieldwork should also be carried out. ACKNOWLEDGEMENTS: We thank to A. Hinckley and D. Figure 2: S. brosseti in the syntopic area. Figura 2: S. brosseti en la zona de sintopía. Escoriza for their comments. Our gratitude also extends to the constructive comments of the anonymous referees. 60 Bol. Asoc. Herpetol. Esp. (2015) 26(1) References Barata, M., Perera, A., Harris, D.J., van der Meijden, A., Carranza, S., Ceacero, F., García-Muñoz, E., Gonçalves, D., Henriques, S., Jorge, F., Marshall, J.C., Pedrajas, L. & Sousa, P. 2011. New observations of amphibians and reptiles in Morocco, with a special emphasis on the eastern region. Herpetological Bulletin, 116: 4-14. Bons, J. 1967. Recherches sur la Biogéographie et la Biologie des Amphibiens et Reptiles du Maroc. PhD thesis. University of Montpellier. Montpellier, France. Bons, J. & Geniez, P. 1996. Anfibios y Reptiles de Marruecos (Incluido Sahara Occidentales). Atlas Biogeográfico. Asociación Herpetológica Española. Barcelona. Brown, R.P., Suárez, N.M. & Pestano, J. 2002. The Atlas mountains as a biogeographical divide in North–West Africa: evidence from mtDNA evolution in the Agamid lizard Agama impalearis. Molecular Phylogenetics and Evolution, 24: 324-332. Climate-data.org. 2014. <http://es.climate-data.org/location/723685/> [Consulta: 14 diciembre 2014]. Fahd, S. & Pleguezuelos, J.M. 1996. Los Reptiles del Rif (norte de Marruecos), I: Quelonios, Saurios. Revista Española de Herpetología, 10: 55-89. Faria, R.G. & Araujo, A.F.B. 2004. Sintopy of two Tropidurus lizard species (Squamata: Tropiduridae) in a rocky Cerrado habitat in Central Brazil. Brazilian Journal of Biology, 64: 775-786. Fritz, U., Barata, M., Busack, S.D., Fritzsch, G. & Castilho, R. 2006. Impact of mountain chains, sea straits and peripheral populations on genetic and taxonomic structure of a freshwater turtle, Mauremys leprosa (Reptilia, Testudines, Geoemydidae). Zoologica Scripta, 35: 97-108. Galán, P., Santín, J.E.N., Graña, R.V. & Pérez, J.F. 2013. Simpatría y sintopía de cinco especies de lacértidos en una zona de los Montes Aquilianos (León). Boletín de la Asociación Herpetológica Española, 24: 27-33. Gamble, T., Bauer, A.M., Greenbaum, E. & Jackman, T.R. 2008. Evidence for Gondwanan vicariance in an ancient clade of gecko lizards. Journal of Biogeography, 35: 88-104. Gamble, T., Bauer, A.M., Colli, G.R., Greenbaum, E., Jackman, T.R., Vitt, L.J. & Simons, A.M. 2011. Coming to America: multiple origins of New World geckos. Journal of evolutionary biology, 24: 231-244. Geniez, P., Mateo, J.A., Geniez, M. & Pether, J. 2004. The amphibians and reptiles of the Western Sahara (former Spanish Sahara) and adjacent regions. Edition Chimaira. Frankfurt. Harris, D.J., Carretero, M.A., Brito, J.C., Kaliontzopoulou, A., Pinho, C., Perera, A., Vasconcelos, R., Barata, M., Barbosa, D., Carvalho, S., Fonseca, M.M., Perez-Lanuza, G. & Rato, C. 2008. Data on the distribution of the terrestrial herpetofauna of Morocco: records from 2001-2006. Herpetological bulletin, 103: 19-28. Martínez-Freiría, F. 2009. Biogeografía y ecología de las víboras ibéricas (Vispera aspis, V. latastei y V. seoanei) en una zona de contacto en el norte peninsular. PhD Thesis. University of Salamanca. Salamanca. Mellado, J. & Mateo, J.A. 1992. New records of Moroccan herpetofauna. Herpetological journal, 2: 58-61. Pyron, R.A., Burbrink, F.T. & Wiens, J.J. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC evolutionary biology, 13: 93. Rato, C. & Harris, D.J. 2008. Genetic variation within Saurodactylus and its phylogenetic relationships within the Gekkonoidea estimated from mitochondrial and nuclear DNA sequences. Amphibia-Reptilia, 29: 25-34. Rivas, L.R. 1964. A Reinterpretation or the Concepts “Sympatric” and “Allopatric” with Proposal or the Additional Terms “Syntopic” and “Allotopic”. Systematic Zoology, 13: 42-43. Robles, C. & Halloy, M. 2008. Seven-year relative abundance in two syntopic neotropical lizards, Liolaemus quilmes and L. ramiraze (Liolaemidae), form Northwestern Argentina. Cuadernos de Herpetología, 22: 73-79. Sanchez, A. & Escoriza, D. 2014. Checkerboard worm lizard (Trogonophis wiegmanni) new records and description of its ecological niche in North-Western Africa. Bulletin de la Societé Herpétologique de France, 152: 29-36. Schleich, H.H., Kästle, W. & Kabisch, K. 1996. Amphibians and Reptiles of North Africa. Biology, Systematics, Field Guide. Koeltz Scientific Books. Koenigstein, Germany. New records of Chelonia mydas off the Spanish Mediterranean coast Juan A. Pujol1, Federico Wattenberg2 & Francisco J. Wattenberg2 1 2 Torrevieja City Hall. Plaza Constitución, 1. 03180 Torrevieja. Alicante. C.e.: torrevieja.japujol@gmail.com Dive Center “Les Basetes”. Ctra. Calpe-Moraira, km 2. 03720 Benissa. Alicante. Fecha de aceptación: 28 de enero de 2015. Key words: Spain, green turtle, Mediterranean Sea, Calpe. RESUMEN: La mayoría de las observaciones de Chelonia mydas en las costas españolas corresponde a ejemplares juveniles procedentes de las distintas zonas de puesta existentes en el Océano Atlántico. En la presente nota se proporciona información sobre dos observaciones (una de ellas fotografiada)