Operational Plan: Large-Mesh Bottom Trawl Survey of Crab and Groundfish: Kodiak, Chignik, South Peninsula, and Eastern Aleutian Management Districts–Standard Protocol 2015–2019

by

Kally Spalinger

July 2015

Alaska Department of Fish and Game

Divisions of Sport Fish and Commercial Fisheries

Symbols and Abbreviations

The following symbols and abbreviations, and others approved for the Système International d'Unités (SI), are used without definition in the following reports by the Divisions of Sport Fish and of Commercial Fisheries: Fishery Manuscripts, Fishery Data Series Reports, Fishery Management Reports, and Special Publications. All others, including deviations from definitions listed below, are noted in the text at first mention, as well as in the titles or footnotes of tables, and in figure or figure captions.

Weights and measures (metric)		General		Mathematics, statistics	
centimeter	cm	Alaska Administrative		all standard mathematical	
deciliter	dL	Code	AAC	signs, symbols and	
gram	g	all commonly accepted		abbreviations	
hectare	ha	abbreviations	e.g., Mr., Mrs.,	alternate hypothesis	H _A
kilogram	kg		AM, PM, etc.	base of natural logarithm	е
kilometer	km	all commonly accepted		catch per unit effort	CPUE
liter	L	professional titles	e.g., Dr., Ph.D.,	coefficient of variation	CV
meter	m		R.N., etc.	common test statistics	(F, t, χ^2 , etc.)
milliliter	mL	at	a	confidence interval	CI
millimeter	mm	compass directions:		correlation coefficient	
		east	E	(multiple)	R
Weights and measures (English)		north	Ν	correlation coefficient	
cubic feet per second	ft ³ /s	south	S	(simple)	r
foot	ft	west	W	covariance	cov
gallon	gal	copyright	©	degree (angular)	0
inch	in	corporate suffixes:		degrees of freedom	df
mile	mi	Company	Co.	expected value	Ε
nautical mile	nmi	Corporation	Corp.	greater than	>
ounce	OZ	Incorporated	Inc.	greater than or equal to	≥
pound	lb	Limited	Ltd.	harvest per unit effort	HPUE
quart	qt	District of Columbia	D.C.	less than	<
yard	yd	et alii (and others)	et al.	less than or equal to	\leq
	J	et cetera (and so forth)	etc.	logarithm (natural)	ln
Time and temperature		exempli gratia		logarithm (base 10)	log
day	d	(for example)	e.g.	logarithm (specify base)	\log_2 etc.
degrees Celsius	°C	Federal Information	-	minute (angular)	, ,
degrees Fahrenheit	°F	Code	FIC	not significant	NS
degrees kelvin	Κ	id est (that is)	i.e.	null hypothesis	Ho
hour	h	latitude or longitude	lat. or long.	percent	%
minute	min	monetary symbols	-	probability	Р
second	S	(U.S.)	\$, ¢	probability of a type I error	
		months (tables and		(rejection of the null	
Physics and chemistry		figures): first three		hypothesis when true)	α
all atomic symbols		letters	Jan,,Dec	probability of a type II error	
alternating current	AC	registered trademark	®	(acceptance of the null	
ampere	А	trademark	ТМ	hypothesis when false)	β
calorie	cal	United States		second (angular)	
direct current	DC	(adjective)	U.S.	standard deviation	SD
hertz	Hz	United States of		standard error	SE
horsepower	hp	America (noun)	USA	variance	
hydrogen ion activity	pH	U.S.C.	United States	population	Var
(negative log of)			Code	sample	var
parts per million	ppm	U.S. state	use two-letter	۰. ۲	
parts per thousand	ppt,		abbreviations		
	%o		(e.g., AK, WA)		
volts	V				
watts	W				

REGIONAL OPERATIONAL PLAN CF.4K.2015.20

OPERATIONAL PLAN: LARGE-MESH BOTTOM TRAWL SURVEY OF CRAB AND GROUNDFISH: KODIAK, CHIGNIK, SOUTH PENINSULA, AND EASTERN ALEUTIAN MANAGEMENT DISTRICTS–STANDARD PROTOCOL, 2015–2019

by

Kally Spalinger

Alaska Department of Fish and Game, Division of Commercial Fisheries, Kodiak

Alaska Department of Fish and Game Division of Commerical Fisheries

July 2015

The Regional Operational Plan Series was established in 2012 to archive and provide public access to operational plans for fisheries projects of the Divisions of Commercial Fisheries and Sport Fish, as per joint-divisional Operational Planning Policy. Documents in this series are planning documents that may contain raw data, preliminary data analyses and results, and describe operational aspects of fisheries projects that may not actually be implemented. All documents in this series are subject to a technical review process and receive varying degrees of regional, divisional, and biometric approval, but do not generally receive editorial review. Results from the implementation of the operational plan described in this series may be subsequently finalized and published in a different department reporting series or in the formal literature. Please contact the author if you have any questions regarding the information provided in this plan. Regional Operational Plans are available on the Internet at: http://www.adfg.alaska.gov/sf/publications/

Kally Spalinger, Alaska Department of Fish and Game, Division of Commercial Fisheries, 351 Research Court, Kodiak, AK 99615, USA

This document should be cited as:

Spalinger, K. 2015. Operational plan: Large-mesh bottom trawl survey of crab and groundfish: Kodiak, Chignik, South Peninsula, and Eastern Aleutian management districts-standard protocol, 2015–2019. Alaska Department of Fish and Game, Regional Operational Plan ROP.CF.4K.2015.20, Kodiak.

The Alaska Department of Fish and Game (ADF&G) administers all programs and activities free from discrimination based on race, color, national origin, age, sex, religion, marital status, pregnancy, parenthood, or disability. The department administers all programs and activities in compliance with Title VI of the Civil Rights Act of 1964, Section 504 of the Rehabilitation Act of 1973, Title II of the Americans with Disabilities Act (ADA) of 1990, the Age Discrimination Act of 1975, and Title IX of the Education Amendments of 1972.

If you believe you have been discriminated against in any program, activity, or facility please write: ADF&G ADA Coordinator, P.O. Box 115526, Juneau, AK 99811-5526 U.S. Fish and Wildlife Service, 4401 N. Fairfax Drive, MS 2042, Arlington, VA 22203

Office of Equal Opportunity, U.S. Department of the Interior, 1849 C Street NW MS 5230, Washington DC 20240

The department's ADA Coordinator can be reached via phone at the following numbers:

(Juneau TDD) 907-465-3646, or (FAX) 907-465-6078

For information on alternative formats and questions on this publication, please contact: ADF&G, Division of Sport Fish, Research and Technical Services, 333 Raspberry Rd, Anchorage AK 99518 (907) 267-2375

SIGNATURE PAGE

Project Title:	Large-Mesh Bottom Trawl Survey of Crab and Groundfish
Project Leader(s):	Kally Spalinger, Fishery Biologist II
Division, Region, and Area:	Division of Commercial Fisheries, Region IV, Kodiak, Chignik, South Peninsula, and Eastern Aleutian
Project Nomenclature:	
Period Covered:	2015–2019
Field Dates:	June-September
Plan Type:	Category I

Approval

Title	Name	Signature	Date
Project Leader	Kally Spalinger		7/23/15
Section Supervisor	Wayne Donaldson		7/27/15

ii

TABLE OF CONTENTS

Page

LIST OF TABLES	iv
LIST OF FIGURES	iv
LIST OF APPENDICES	iv
PURPOSE	1
BACKGROUND	1
OBJECTIVES	2
METHODS	3
Survey Area and Design	3
Vessel and Fishing Gear	3
Temperature and Depth Data Logger	4
Catch Sampling	4
Determining Catch Weight	
Species Composition Sampling	
Shellfish Sampling Fish Sampling	
Additional Sampling Considerations	
Data Entry	
Data Analysis	11
Density Estimates	
Abundance Indices	
Size Composition	
Tanner Crab Fishery Calculations Survey Limitations	
SCHEDULE AND DELIVERABLES	
RESPONSIBILITIES	
REFERENCES CITED	15
TABLES AND FIGURES	17
APPENDIX A. GLOSSARY	33
APPENDIX B. FORMS	
APPENDIX C. FISH SAMPLING	49
APPENDIX D. CRAB SAMPLING	53

LIST OF TABLES

Table		Page
1.	Standard large-mesh trawl survey station areas by district	18
2.	Species whole-haul sampled during large-mesh trawl survey.	21
3.	Species subsampled and measured on large-mesh trawl survey	22
	List of species identified on the large-mesh trawl survey	
	Species collection list of rarely encountered organisms on large-mesh trawl survey	

LIST OF FIGURES

Figure		Page
1.	Tanner crab management districts surveyed during the large-mesh trawl surveys.	28
2.	Historic trawl survey areas (1963-1980) and current Tanner crab management sections in the Kodiak	
	District.	29
3.	Standard large-mesh trawl survey stations.	
4.	Diagram of 400 eastern otter trawl used in large-mesh survey.	
5.	Diagram of rigging for 400 eastern otter trawl used in large-mesh survey.	

LIST OF APPENDICES

Appendix	
----------	--

Apper	ndix	Page
ĀĪ.	Definition of terms in large-mesh trawl survey operational plan.	
B1.	Skipper Trawl Record Form	40
B2.	On-deck Sampling Form – Species Composition	
B3.	Specimen Collection Form.	
B4.	ADF&G Trawl Survey Crab Data Form.	45
B5.	Specimen Form.	
C1.	Biological measurements for finfish, sharks, skates, and scallops	
C2.	Sex determination for sharks and skates	51
D1.	Crab measurements.	54
D2.	Sexual dimorphism of abdominal flaps of mature Tanner, king, and Dungeness crabs	
D3.	Shell condition determination.	
D4.	Crab diseases and parasites.	
D5.	Clutch fullness for female Tanner, king, and Dungeness crabs	
D6.	Tanner crab chela height measurement.	

PURPOSE

The goal of the large-mesh bottom trawl survey is to provide fishery managers with current stock status information for Tanner crab *Chionoecetes bairdi*, red king crab *Paralithodes camtschaticus*, and commercially important groundfish stocks in the Kodiak, Chignik, South Alaska Peninsula, and Eastern Aleutian Tanner crab districts of Westward Registration Area J. The large-mesh bottom trawl survey utilizes a 400-mesh eastern otter trawl to survey these districts and provide crab abundance estimates, size frequency distributions, density estimates, and spatial distribution of commercially important crab and groundfish to support fisheries management.

Keywords: bottom trawl survey, Tanner crab, Chionoecetes bairdi, red king crab, Paralithodes camtschaticus, groundfish, Kodiak, Area J, stock status, commercial fisheries

BACKGROUND

Alaska Department of Fish and Game (ADF&G) began bottom trawl surveys in the Kodiak District (Figure 1) in 1963. Early surveys focused on red king crab *Paralithodes camtschaticus* and targeted Long Island Bank (Reynolds and Powell 1964), Marmot Flats (McMullen 1967a), Portlock Bank (McMullen 1967b), Albatross Bank (McMullen 1968), and Alitak and Kaguyak bays (Kingsbury and James 1971; Figure 2). Trawl surveys to assess Tanner crab *Chionoecetes bairdi* in the Kodiak District were initiated in 1980 in North Shelikof Strait (Colgate and Hicks 1982) and expanded to other areas of the Kodiak and Chignik districts in 1981 (Colgate and Hicks 1983), and to Pavlof Bay in the South Peninsula District in 1984 (Colgate 1984). The first comprehensive trawl survey of the Kodiak District was conducted in 1987 (Jackson 1990) and in 1988 became the standard Tanner crab stock assessment tool in the Kodiak, Chignik, and South Peninsula districts (Urban and Vining 1999). The Eastern Aleutian District bottom trawl survey was added to the survey program in 1990 and generally continued on a triennial basis until 2003. Beginning in 2004, selected locations of the Eastern Aleutian District have been annually surveyed to support Tanner crab fishery management.

From 1973 to 1986 Tanner crab were surveyed as an adjunct to ADF&G's king crab pot surveys (Colgate and Hicks 1983). The final transition to a trawl survey in 1988 occurred for the following reasons:

- 1. Trawl gear is assumed to be less size/sex selective in capturing crabs than pot gear and is therefore a better tool to assess abundance and predict future recruitment. Catchability of crabs by pots varies depending on bait characteristics and crab size and sex (Colgate and Hicks 1982).
- 2. Trawl survey catch per unit effort (CPUE) is a direct measure of crab and fish density which allows for consistent spatial and temporal expansion estimates across survey stations. The catch of sublegal male and female crab by pots does not appear to be proportionate to their abundance in the population and suggests that crab behavior affects pot survey CPUE (Colgate 1984).
- 3. A trawl net allows faster surveying of an area (Urban 1991), which allows a single trawl vessel to survey the amount of area in one season that previously was surveyed by multiple pot survey vessels, providing cost savings.

4. Trawl surveys allow for collection of species composition and size frequencies of commercially and ecologically important species. National Marine Fisheries Service (NMFS) currently incorporates walleye pollock *Gadus chalcogrammus* abundance estimates and biological information collected from the ADF&G trawl survey into their Stock Assessment and Fishery Evaluation (SAFE) report. NMFS is also developing methods to incorporate ADF&G trawl survey data from Pacific cod *Gadus macrocephalus*, northern rock sole *Lepidopsetta polyxstyra* and southern rock sole *L. bilineata* into the SAFE report for those species.

In 1999, ADF&G developed a Tanner crab harvest strategy for the Kodiak, Chignik, and South Peninsula districts that set minimum abundance threshold levels for opening commercial fishing and brought Tanner crab management into compliance with Alaska Board of Fisheries (BOF) regulation on harvest strategies (5 AAC 35.080¹; Urban et al. 1999). The abundance threshold to consider opening a section to fishing was defined as half the long-term (1973-1998, Kodiak; 1974-1998, Chignik; 1974-2004, South Peninsula; 1990-2000, Eastern Aleutian) average abundance of mature males (carapace width ≥ 115 mm; Urban and Vining 1999). Tanner crab guideline harvest levels (GHLs) are primarily determined using trawl survey results to estimate the number of molting mature male crab in a district or section and applying a harvest rate based on composition of the male population. Additional precautionary measures are contained within the harvest strategy to ensure conservative management when stocks are rebuilding (Urban and Vining 1999).

A glossary of terms used in this report are in Appendix A1.

OBJECTIVES

The primary objectives of the crab and groundfish large-mesh bottom trawl survey are as follows:

- 1. Estimate relative abundance and condition of Tanner and red king crabs for each management unit surveyed.
- 2. Determine spatial distribution, species composition, size frequency distribution, and density of commercially important groundfish species for each management unit surveyed.

Secondary objectives include the following:

- 1. Determine size frequency distribution of weathervane scallop *Patinopecten caurinus* in the survey area.
- 2. Determine sex composition of skate species *Raja* spp. and *Bathyraja* spp. in the survey area.
- 3. Measure chela height of male Tanner crab in the Kodiak District.
- 4. Collect otoliths from walleye pollock in the survey area.

¹ Alaska Administrative Code: *Harvest strategy*

METHODS

This report documents standard sampling procedures from 2015 to 2019 applicable to the Kodiak, Chignik, South Peninsula, and Eastern Aleutian districts' trawl survey. Changes to standard sampling procedures, or special projects added to the survey are described in an annual special projects operational plan (Spalinger 2015). Yearly survey schedules and station maps are included in the annual special projects operational plan.

Product names used in this report are included for completeness but do not constitute product endorsement.

SURVEY AREA AND DESIGN

The Kodiak, Chignik, South Peninsula, and Eastern Aleutian Tanner crab districts of Westward Registration Area J (Figure 1) include Pacific Ocean waters south of the latitude of Cape Douglas (58°51.10' N lat), west of 149°W long., and east of 172°W long., and Bering Sea waters south of 54°36.00' N lat and east of 172°W long.

The large-mesh bottom trawl survey is conducted in known Tanner crab habitat, using a fixed grid station design. Fixed grid station design distributes stations uniformly throughout an area to provide information on species distribution in the survey area (Figure 3) and allow for consistent and comparable survey time series data. Survey stations represent approximately 15,500 km² (Table 1) of crab and fish habitat greater than 20 fathoms deep. Offshore stations average approximately 74.6 km² each and inshore stations average approximately 21.0 km² each. Station size variation results from irregular coastline topography and bathymetry.

VESSEL AND FISHING GEAR

The research vessel *Resolution* (28.0 m) has been used to conduct the large-mesh bottom trawl survey annually since 1988. The R/V *Resolution* is a house-forward stern trawler equipped with an aft net reel, telescoping deck crane, and paired hydraulic trawl winches.

The trawl survey net is a 400-mesh eastern otter trawl (Figure 4) designed to sweep a 12.2 m path. The net mouth is constructed with 10.2 cm stretch mesh, net body with 8.9 cm stretch mesh, and the codend with a 3.2 cm stretch mesh liner. The net has a 21.3 m headrope with 18 floats 20.3 cm in diameter. The footrope is 29.0 m long with a 1.0 cm diameter chain attached every 25.4 cm to ensure the footrope tends bottom. The dandylines are 45.7 m long, each consisting of an 18.3 m section of 1.5 cm cable and a pair of 27.4 m sections of 1.3 cm cable, one attached to the top and the other to the bottom of each net wing (Figure 5). Astoria "V" type doors weighing 340 kg and measuring 1.5 m x 2.1 m are used to spread the net.

Within each station, the trawl net is towed on bottom at an average speed of 4.0 to 4.5 km/h for 1.85 km, equivalent to 1 nmi. The haul length provides a representative sample of fishery resources from each survey station without exceeding weight limitations of vessel equipment. Irregular bottom type, net hang ups, or exceptionally large catches may cause haul lengths to differ from 1.85 km. Haul length is determined by Global Positioning System and is assumed to be the distance traveled over ground by the vessel from when the footrope contacts bottom until the footrope leaves bottom. The vessel captain estimates corrections in distance for hauls that are not straight. Haul location within station is limited to trawlable substrate as determined from nautical charts and bottom mapping software on the vessel. All hauls are made during daylight hours. Haul location, distance, time, and depth are recorded on ADF&G skipper trawl record

forms (Appendix B1). Quality of net performance is rated and a haul is discarded and repeated when the skipper and cruise leader determine the net did not adequately sample the bottom.

Temperature and Depth Data Logger

Depths and bottom temperatures are recorded by an XR-420-TD data logger (RBR Ltd., Ottawa, Canada) during each haul. The data logger is attached to the net's headrope and is approximately 2 m above sea floor when fishing. Water temperature and depth are recorded in one-minute intervals for each haul. At the end of survey data from the logger is downloaded; temperatures recorded when the footrope is on bottom are averaged to determine water temperature.

CATCH SAMPLING

Determining Catch Weight

Total catch weight from each haul is determined by weighing the full trawl codend with an electronic crane scale (MSI 9300; Measurement Systems International, Seattle, USA; ± 1.0 kg), emptying the codend into on-deck sorting bins, and subtracting the empty codend weight from the full codend weight. Total weight and empty codend weight are recorded on the on-deck sampling form (Appendix B2).

If total catch is too heavy to be lifted by the crane (exceeds scale capacity; 4,500 kg) or sea state does not permit accurate weighing, catch weight is estimated by the cruise leader in consultation with the skipper. Volumetric catch estimation may be used to estimate catch weight (AFSC 2013).

Species Composition Sampling

Prior to emptying trawl catch from the codend, a 1.5 m^2 subsampling net is tied into the on-deck sorting bin. After emptying the entire catch into on-deck sorting bin, selected species (Table 2; whole-haul) are weighed using a motion compensated electronic scale (Marel 1500, Gardabaer, Iceland; $\pm 0.01 \text{ kg}$), counted, and measured ($\pm 1.0 \text{ cm}$) when applicable. Species names and weights are recorded on the on-deck sampling form (Appendix B2). A check mark is placed in the 100% column when a species is whole-haul sampled to indicate all organisms present of a species are accounted for either by weight, count, or measurement. As whole-haul species are removed from on-deck sorting bin for sampling, the subsampling net is lifted by crane through remaining catch (subsample) and placed on the sorting table for species composition sampling. Data recorded for organisms in the subsample will be used post survey to expand results to the entire haul catch.

All species on the sorting table are identified, weighed, and recorded on the on-deck sampling form (Appendix B2). In addition to whole-haul sampled crab and groundfish species, other commercially important groundfish in the subsample are measured using a magnetic fish measuring board (Table 3). The cruise leader must be familiar with the species list (Table 4) to ensure remaining organisms are correctly identified, counted, weighed, and recorded. Unknown or unidentifiable species are weighed and recorded on the on-deck sampling form, the specimen retained for post-survey identification, and a specimen collection form (Appendix B3) is completed. Human-made products, kelp, empty shells, regurgitated fish, rocks, etc. in the subsample are classified as "debris", weighed, and recorded.

Animals weighed and measured are recorded in the *measured weights* column of the on deck sampling form. Weights of unmeasured animals are recorded in the *unmeasured weights* column.

Counts of animals weighed and unmeasured are recorded in the *count of unmeasured: weighed* column. Counts are entered in the *unweighed* column when the cruise leader determines too many organisms are present in a whole-haul sample to reasonably sort and weigh. In that case organisms are counted by crew when returned to the water and an average weight is applied using data from the subsample.

Shellfish Sampling

Length or width measurements are taken from selected shellfish species that are typically wholehaul sampled (Table 2). Measurements and biological data are entered directly into the shellfish measurement database located on the on-deck computer.

Crab Measurement

Typically all crab are sorted by sex, weighed, and measured. Tanner, king, and Dungeness crabs have a target sample size per haul of 200 measurements per sex. Large crab tend to be sorted first, so to avoid bias and ensure a representative sample, the cruise leader selects crab for measurement from the first and last baskets sorted. Unmeasured crab are sexed, weighed, and counted when returned to the water.

Tanner crab carapace width (CW) is measured perpendicular to the carapace midline, between the lateral margin spines; however, legal status (meets minimum size requirement to retain in a fishery) is determined including lateral margin spines (Appendix D1). King crab are measured for carapace length (CL) from the right eye socket to the medial posterior edge of the carapace whereas legal status is determined by measuring perpendicular to the carapace midline including lateral margin spines. Dungeness crab are measured for CW and checked for legal status across the carapace immediately anterior to the tenth anterolateral spine (Appendix D1). Explanations of terms used to characterize crabs and minimum legal size requirements are included in Appendix A1.

Measurements are electronically recorded using digital calipers accurate to ± 0.01 mm (measurements are rounded to the nearest mm for data analysis) and linked to the shellfish measurement database. Should the on-deck computer fail, data is manually recorded on the trawl survey crab data form (Appendix B4).

Biological Crab Data

In addition to providing size frequency of crab captured in a haul, other biological information is collected to evaluate the condition of the surveyed population. During sorting, sex of crab is determined using abdominal flap shape (Appendix D2).

During measurement crabs are examined free of slime and mud, under adequate lighting and categorized by shell condition (Appendix D3). Crabs exhibiting signs of bitter crab disease, black mat, nemertean worms, or parasitic barnacles (Appendix D4; Jadamec et al. 1999, Donaldson and Byersdorfer 2005) are noted in the shellfish measurement database. Clutch fullness of mature female Tanner, king, and Dungeness crabs is estimated by examining egg clutch and assigning a fractional clutch size relative to the size of the abdominal flap (Appendix D5). Embryo development is noted by the presence or absence of eyed eggs. The amount of dead eggs present or, if eggs are absent, the condition of the pleopods, is recorded as clutch condition. Additionally, from each haul in the Northeast, Eastside, and Westside sections of the Kodiak District (Figure 1) chela height is measured from 50 male Tanner crab with CW greater than 60

mm. Measurement is taken at the greatest height, excluding spines (Appendix D6), on the right chela. Chela height is not measured from crab with a regenerated claw. All biological information is entered on deck using a computer containing the shellfish measurement database.

Crab Sampling Methods

A primary survey objective is to account for number and condition of crabs captured; however, it is critical to return crab to the water quickly. To accomplish both, the following methods may be employed by the cruise leader.

Whole-haul vs. subsample

During sampling, ideally all crab in the catch are accounted for by some combination of measuring, counting, or weighing; however, the cruise leader may use alternate sampling methods to reduce handling time, particularly when large amounts of juvenile crab are captured.

When the subsampling net is placed on the sorting table, but before crew begins sorting crab from the on-deck sorting bin, the cruise leader visually estimates the number of crab on the sorting table. If more than 200 male and 200 female crab of a species are on the sorting table, and if crab size and species composition on the sorting table is representative of total catch, subsample only from the sorting table. When subsampling crab from the sorting table, crab remaining in the on-deck sorting bin are not sampled and returned to the water immediately.

- 1. When whole-haul sampling crab the methods described below are used while sorting crab from the entire catch, including the sorting table and on-deck sorting bins.
- 2. When subsampling crab the methods described below are used while sorting crab from the sorting table only, as crab from the on-deck sorting bins are immediately returned to the water prior to sorting.

Preferred method

- 1. Sex, weigh, and measure 200 male and 200 female crab
- 2. Sex, weigh, and count unmeasured crab

The preferred method is utilized for whole-haul sampling or subsampling during the vast majority of sampling events; however when large numbers of juvenile crab are caught which require extensive amounts of time to sort and measure, and the cruise leader is concerned about returning crab alive to the water, the following alternate methods can be employed at either the whole-haul or subsample level.

Alternate method 1

- -Use with large juvenile crab catches to reduce handling time spent counting crab
- 1. Sex, weigh, and measure 200 male and 200 female crab, recording weights in *measured weights* column
- 2. <u>Sex</u> and <u>weigh</u> unmeasured crab, recording weights in *unmeasured weights* column
- 3. After the haul calculate:

a. average crab weight by
$$sex = \frac{weight of measured crab by sex}{number of crab measured by sex}$$

b. number of unmeasured crab by $sex = \frac{weight of unmeasured crab by sex}{average crab weight by sex}$

Alternate method 2

-Use with extremely large catches of small, evenly sized juvenile crab to reduce handling time spent sexing and counting

- 1. Sex, weigh, and measure 200 male and 200 female crab, recording weights in *measured weights* column
- 2. <u>Weigh</u> unmeasured crab, recording weights in *unmeasured weights* column and noting they are unsexed
- 3. Determine sex composition of crab by weight:
 - a. Sex and weigh crab by sex from a predetermined subset (e.g. sorting table or 1-2 baskets/totes depending on total number of crab. Cruise leader ensures large enough sample size to obtain a representative sex composition).
- 4. After the haul calculate:

a. average crab weight by sex =
$$\frac{\text{weight of measured crab by sex}}{\text{number of crab measured by sex}}$$

b. sex composition % by weight = $\frac{\text{weight by sex from step 3}}{\text{male + female sex composition sample weight}}$

c. weight of unmeasured crab by sex = (sex composition % by weight * total unmeasured crab weight from step 2)

d. number of unmeasured crab by $sex = \frac{weight of unmeasured crab by sex}{average crab weight by sex}$

An accurate count of unmeasured crab in each haul is essential for determining abundance and potential fishery openings. Unmeasured crab counts are recorded in *count of unmeasured: weighed* column.

Weathervane Scallop Measurement

Weathervane scallops caught on trawl wires are not considered part of the haul catch and are discarded. Remaining scallops in the trawl net are whole-haul sampled. All scallops are weighed, shell height measurements from 20 scallops per haul are recorded, and unmeasured scallops are counted. Scallop shell height is measured using calipers accurate to ± 0.01 mm (measurements are rounded to the nearest mm for data analysis), taking the straight-line distance from the umbo to the outer shell margin (Appendix C1). Only the top valve is measured, which is shorter in shell height than the bottom valve with narrower radiating ribs. Broken or badly chipped shells are weighed but not measured and are included in the *unmeasured weight* and in the *count of unmeasured: weighed* columns on the on-deck sampling form. Measurements are transmitted directly to the shellfish measurement database using digital calipers and on-deck computer. The numbers of unmeasured scallops are entered in the *count of unmeasured: weighed* column.

Fish Sampling

Length measurements are taken from selected finfish species (Tables 2 and 3). Measurements are recorded on deck directly in the fish measurement database except for Pacific halibut *Hippoglossus stenolepis* and skate measurements which are written on the on-deck sampling

form and entered into the database after the haul. Pacific halibut and skates are often difficult to fit on the scale, so weights are estimated from length data.

Fish Measurement

Commercial finfish species are measured from snout to mid-point of the caudal fin (Appendix C1). Sharks are measured from snout to tip of caudal fin. Skates are measured along the dorsal surface from the snout to the anterior notch of the pectoral fin. All sharks and skates are measured and sexes recorded. Sex is determined by the presence or absence of claspers (Appendix C2). Sharks and skates that are difficult to sex are recorded as unknown.

Measurements are recorded on deck with a magnetic fish measuring board that transmits data directly into the fish measurement database. Target sample size is 30 to 50 measurements per species. To avoid bias and ensure a representative sample the cruise leader collects length samples from a predetermined quadrant of the sampling table. Deviations from standard sampling procedures are described on the on-deck sampling form.

Data collected on walleye pollock, Pacific cod, northern rock sole, and southern rock sole, including abundance, length frequencies, and otoliths, are used annually by NMFS for stock assessment. Data informs fishery managers in 2 ways, it provides an annual time series that complements the NMFS biennial survey by providing information in years when NMFS does not survey, and it provides information on nearshore populations the NMFS survey does not sample.

Adult Walleye Pollock Sampling

Generally, walleye pollock are whole-haul sampled (Table 2); however, there are hauls when pollock are so abundant they cannot all be sampled in a timely manner. In those instances the cruise leader uses the following guidelines to determine the best sampling plan.

- 1. If less than 30 pollock are brought to the sorting table in the subsampling net pollock are whole-haul sampled. All pollock in the catch must be accounted for by weight or count. Target sample size is 30 to 50 pollock measurements from the sorting table and the ondeck sorting bin. Remaining pollock are weighed and returned to the water (*Unmeasured Weights*), or counted as they are released over the side of the vessel (*Count of unmeasured: unweighed*). Average weight of the measured fish is used to estimate the weight or count of unmeasured fish.
- 2. If more than 30 pollock are brought to the sorting table in the subsampling net subsampling methods are used. Target sample size is 30 to 50 pollock measurements from the sorting table. Remaining pollock on the sorting table are weighed and returned to the water (*Unmeasured Weights*). Pollock left in the on-deck sorting bin are returned to the water immediately with the rest of the catch.

These guidelines are also used when large catch of Pacific cod, sablefish, rockfish, or other typically whole-haul sampled fish species are encountered.

Juvenile Walleye Pollock and Pacific Cod Sampling

Walleye pollock and Pacific cod <20 cm are considered juveniles and subsampled independently from adult fish >20 cm. Juveniles are sorted strictly from the subsample and up to 50 measurements collected in addition to the 30 to 50 fish sample size of adult fish.

Walleye Pollock Otolith Collection

In 2016 and 2018 approximately 600 walleye pollock otoliths each year are collected for NMFS for age determination. To obtain a sample representative of the surveyed population, 20 walleye pollock otoliths are collected every other day throughout the survey. Sampled fish are measured, sex is determined, and otoliths removed and stored in vials containing a specimen number. Haul number, fish length, and sex is recorded electronically on deck and provided to NMFS in spreadsheet format, or recorded on a specimen form (Appendix B5).

Additional Sampling Considerations

Specimen Collection

Photos of rarely encountered species (Table 5) are used to update the marine fish and invertebrate field guide (Byersdorfer and Watson 2010). Organisms are placed on a white or black background to show contrast, and multiple pictures taken of dorsal, ventral, and lateral views. Fins or legs are spread as much as possible and close-up pictures of distinguishing characteristics taken. If identification of any organism is questionable the animal is photographed and frozen with a completed specimen identification form (Appendix B3) included in the sample bag.

Crab Pots

Crab pots are routinely caught in the survey net, particularly inside bays with a history of crab fishing. The cruise leader and vessel captain determine if fishing ability was compromised by using information about when during towing the pot may have been caught (vessel speed may have changed) and where in the net it was caught or snagged (drag on the wires or net damage). If fishing ability is compromised the haul is considered unsuccessful and will be repeated.

Pots are usually removed from the net as the net is brought onboard, before the codend is weighed. Those pots are emptied before being disposed of and animals inside the pot included with the remainder of the catch. If the pot is retained in the codend it is weighed with the total catch. Upon removal, animals inside the pot are included with the remainder of the catch, and the empty pot weighed separately. The weight is entered on the on-deck sampling form as *Whole-hauled debris weight*.

Large Debris Items

Large debris (rocks, logs, 50-gallon drums, etc.) are sometimes captured in the codend. These items are weighed separately and entered on the sampling form as *Whole-hauled debris weight*. Small debris items in the subsampling net are treated as part of the subsample.

When an item is caught in the net but unable to make it to the codend it is removed and discarded without weighing. The cruise leader and vessel captain determine if fishing ability was compromised and repeat the haul if necessary.

Mud or Shell Hash in Catch

In some survey areas the seafloor is mostly mud and the net can pick up a substantial amount of substrate. If the cruise leader estimates more than 10% of catch is mud, then the proportion of mud in the catch is estimated. This is done by weighing a portion of the catch with mud included,

washing the mud from the catch, and reweighing. The proportion of mud is expanded to the total catch, and subtracted from the total animal weight.

Hauls containing large volumes of shell hash (broken shells) mixed with small invertebrates may require additional subsampling. As an alternative to sorting all the shell hash mixture in the subsample the cruise leader weighs and sorts a representative portion (sub-subsample) of the unsorted mix. All organisms in the sub-subsample are identified, weighed, and counted and broken shells are weighed as debris. The remaining unsorted mixture is weighed. Composition of the sub-subsample is expanded to the unsorted shell hash mixture.

Unrepresentative Subsample

When the subsampling net does not contain a representative sample of total catch, the cruise leader may direct crew to add catch to the subsample. This can be accomplished by using deck shovels to add catch to the subsampling net before it is taken to the table, or by filling baskets with catch from the on-deck sorting bin and adding to the subsample table. The cruise leader supervises this procedure to assure a representative sample is taken. Alternatively the cruise leader directs the crew to sort the entire catch.

Small Total Catch

When the total catch is 250 kg or less the cruise leader may decide to sort the entire catch. The entire contents of the codend are emptied directly onto the sorting table, sorted, weighed, and measured according to standard sampling procedures.

Data Entry

After all catch from each haul has been sorted, identified, weighed, measured, and returned to the water, data not entered into a database during the sampling process must be entered. Halibut and skate lengths written on the on-deck sampling form are manually entered into the fish length database. Once data from the shellfish and fish measurement databases are electronically incorporated into the catch database, species and weight data recorded on the on-deck sampling form are manually entered into the catch database.

Data from skipper forms is manually entered into a haul database at the end of each day.

Upon completion of the season all data is verified, edited as needed, and given to the database manager for incorporation into the large-mesh trawl survey database where it will be summarized and analyzed.

Data Forms and Sample Custody

The cruise leader completes all data forms and removes samples and data from vessel after each survey leg, including making backup copies of electronic data. Data forms and electronic data removed from vessel are taken to the large-mesh trawl survey project leader. Frozen samples are labeled with project, year, location, and contact name and transferred to the freezer at the ADF&G warehouse where samples may be stored until delivered to the appropriate researcher. Samples preserved in formalin are stored in a hazardous material locker or van with adequate ventilation until shipped. The project leader must be notified of the location of all stored samples.

DATA ANALYSIS

Density Estimates

Survey catch data is converted to density estimates for each haul by dividing the number or weight of animals caught in the haul by the area swept by the trawl during the haul. The area swept is the product of the assumed net width of 12.2 m and the distance towed.

$$density = \frac{number \ or \ weight \ of \ animals}{net \ width \ * \ distance \ towed}$$

Abundance Indices

Abundance indices for Tanner and king crabs are derived from trawl survey data using the area swept technique (Alverson and Pereyra 1969). Density estimates are multiplied by the station area to estimate station abundance.

station abundance = density * station area

The sum of abundances from stations in a geographic area provides a total abundance index for the area.

total district or section abundance =
$$\sum$$
 station abundance

Size Composition

Length or carapace width compositions are calculated at the population level by applying the sampled length frequency to the total catch for each species by length, sex, and/or shell condition category at each station.

Tanner Crab Fishery Calculations

To determine potential Tanner crab fishery openings mature male abundances from the most recent survey are compared with abundance thresholds (½ the average long-term abundance of mature males) established in regulation (5 AAC 35.507). If abundances are above thresholds additional factors are used to determine the appropriate level of harvest. Those factors include molting mature male abundance (Appendix A1) and legal male abundance. The average weight of legal males captured during the survey is determined using carapace width measurements and is used to convert the proposed harvest of legal males from numbers to pounds.

Survey Limitations

The large-mesh trawl survey operates under the assumption that survey catch rates are proportional to true abundance of the species of interest; however, the survey has limitations in its ability to estimate abundance across all species. Species whose populations extend into areas untrawlable by the survey gear or species whose populations extend beyond the depth range and area covered by the survey may be underrepresented.

Determining abundance from trawl survey data requires fish distribution, fish behavior in relation to the trawl, and trawl performance to be constant over time. By maintaining standardized gear and fishing practices within and between annual surveys we assume that:

- 1. Trawl performance is constant under various conditions
- 2. Area swept by the trawl is known and constant under various conditions

3. Species and size selection by the trawl is constant under various conditions.

The large-mesh trawl survey assumes 100% of the population of interest is accessible to survey gear, and all animals in the trawl path are captured. This may not be the case, as smaller animals can pass through the larger net mesh to avoid capture (size selectivity), some animals may be able to outswim the trawl, or escape under the footrope (escapement) and some fish may actually be "herded" into the trawl path by the doors and bridles in front of the net. These limitations may result in biased population estimates; however, standardized fishing gear and fishing practices provide constant and proportional bias allowing estimates to be compared year to year.

Because of these limitations the abundance estimates derived using trawl survey data are best considered relative abundance indices used to monitor changes in populations over time.

SCHEDULE AND DELIVERABLES

Date	Activity
June	Northeast Kodiak Survey
June–July	Eastside, Southeast, Southwest Kodiak Survey
July-August	Chignik, South Peninsula, Eastern Aleutian Survey
September	Westside, North Mainland Kodiak Survey
September 15	Final data delivered to CFD-Kodiak for editing and analysis
October 15	Final data results for walleye pollock distributed to NMFS
October 31	Final data results and potential Tanner crab fishery openings determined and distributed to fishery managers for consideration.
November 30	Final data results for Pacific cod and rock sole distributed to NMFS
June 1	Draft annual report to management supervisor

Annual schedule of activities for large-mesh trawl survey:

Large-mesh trawl survey data is maintained by ADF&G, Commercial Fisheries Division, in Kodiak. Electronic data is stored in a database on a network server in Kodiak, accessible by ADF&G staff and available to the public upon request. An exception is crab abundance information by sampling location which may not be released until the close of the fishing season for which the survey was conducted (AS $16.05.815(c)^1$).

¹ Alaska Statute: Confidential nature of certain reports and records

RESPONSIBILITIES

List of personnel and duties:

Fisheries Biologist II: Project leader, manage survey budgets, prepare sampling gear, develop survey schedule, act as cruise leader as needed, and perform data verification/editing, data analysis and report writing. Oversee field activities and assist with sampling, data collection, and data entry.

Fisheries Biologist III: Act as cruise leader as needed, oversee field activities and assist with sampling, data collection, and data entry.

Fisheries Biologist II: Act as cruise leader as needed, oversee field activities and assist with sampling, data collection, and data entry.

Fish and Wildlife Technician V: Act as cruise leader as needed, oversee field activities and assist with sampling, data collection, and data entry.

Fish and Wildlife Technician III: Assist with sampling, data collection, and data entry.

Fish and Wildlife Technician III: Assist with sampling, data collection, and data entry.

Fish and Wildlife Technician II: Assist with sampling, data collection, and data entry.

Boat Officer IV: Operate survey vessel.

Boat Officer III: Vessel engineer, deploy/retrieve survey gear, assist with catch sampling.

Boat Officer II: Deploy/retrieve survey gear, assist with catch sampling.

Analyst/Programmer IV: Program and manage the trawl survey database, load new data and create data verification queries.

REFERENCES CITED

- (AFSC) Alaska Fisheries Science Center. 2013. 2014 Observer sampling manual. Fisheries Monitoring and Analysis Division, North Pacific Groundfish Observer Program. AFSC, 7600 Sand Point Way N.E., Seattle, Washington, 98115.
- (AFSC) Alaska Fisheries Science Center. 2014. Species codebook April 2014. Resource Engineering and Conservation Engineering Division. AFSC, 7600 Sand Point Way N.E., Seattle, Washington, 98115.
- Colgate, W. A. 1984. Westward Region Tanner crab *Chionoecetes bairdi*, population index surveys. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Report to Industry, Kodiak.
- Colgate, W. A., and D. M. Hicks. 1983. Investigations of life history and fishery for Tanner crab *Chionoecetes bairdi* in the Westward Region, Alaska, 1982. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report 96, Kodiak.
- Donaldson, W. E., and S. C. Byersdorfer. 2005. Biological field techniques for Lithodid crabs. Alaska Sea Grant College Program, Fairbanks.
- Jackson, D. R. 1990. A bottom trawl survey of crab and groundfish in the Kodiak Island and Alaska Peninsula areas, June through September, 1989. Alaska Department of Fish and Game, Division of Commercial Fisheries, Westward Region, Regional Information Report 4K90-22, Kodiak.
- Jadamec, L. S., W. E. Donaldson, and P. Cullenberg. 1999. Biological field techniques for *Chionoecetes* crabs. Alaska Sea Grant College Program, Fairbanks.
- Kingsbury, A. P., and K. E. James. 1971. Abundance and composition of king crabs in the Alitak and Kaguyak Bay areas during April and June 1970. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet 152, Kodiak.
- McMullen, J. C. 1967a. King crab Paralithodes camtschatica (Tilesius) offshore breeding study on Marmot Flats, Kodiak Island, spring of 1967. Alaska Department of Fish and Game, Division of Commercial Fisheries, Research Section, Informational Leaflet 112, Kodiak.
- McMullen, J. C. 1967b. A preliminary study of king crab *Paralithodes camtschatica* (Tilesius) ocean reproduction and the delineation of the Kodiak District continental shelf environmental zones. Alaska Department of Fish and Game, Division of Commercial Fisheries, Research Section, Informational Leaflet 93, Kodiak.
- McMullen, J. C. 1968. Investigation of king crab ocean reproduction and brood stock composition, Kodiak Island. Alaska Department of Fish and Game, Division of Commercial Fisheries, Research Section, Informational Leaflet 126, Kodiak.
- Orr, J. W., and A. C. Matarese. 2000. Revision of the genus Lepidopsetta Gill, 1862 (Teleostei: Pleuronectidae) based on larval and adult morphology, with the description of a new species from the North Pacific Ocean and Bering Sea. Fisheries Bulletin 98: 539-84.
- Reynolds, R. E. and Powell, G. C. 1964. King crab *Paralithodes camtschatica* (Tilesius), trawl survey of Long Island Bank, east of Kodiak Island, Alaska, June 1963. Alaska Department of Fish and Game, Division of Biological Research, Informational Leaflet 44, Kodiak.
- Spalinger, K. 2015. Special project plan: 2015 large-mesh bottom trawl survey of crab and groundfish for Kodiak, Chignik, South Peninsula, and Eastern Aleutian Districts. Alaska Department of Fish and Game, Regional Operational Plan 4K15–03, Kodiak.

TABLES AND FIGURES

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				2	k District					
Northea	ast Section	n				Eastside Se	ection				
Chiniak Gully	/		Chiniak B	ay		Ugak Bay			Barnabas G	ully	
Station	KM^2	NM^2	Station	KM^2	NM^2	Station	KM^2	NM ²	Station	KM^2	NM^2
369X	150.9	44.0	CHA	5.5	1.6	UGAA	16.0	4.7	486A	27.9	8.1
395	85.8	25.0	CHB	7.9	2.3	UGAB	4.7	1.4	486B	29.4	8.6
420	85.8	25.0	CHE	20.6	6.0	UGAC	3.2	0.9	510B	63.0	18.4
421	85.8	25.0	CHF	12.7	3.7	UGB	5.8	1.7	510C	40.7	11.9
443	85.8	25.0	CHG	34.6	10.1	UGC	17.5	5.1	511A	42.9	12.5
444	85.8	25.0	СНЈ	11.3	3.3	UGD	11.0	3.2	511B	42.9	12.5
	579.7	169.0	CHK	8.6	2.5	UGE	12.7	3.7	533A	42.9	12.5
Marmot Bay	2	2	CHL	14.1	4.1	UGF	15.8	4.6	533B	42.9	12.5
Station MOEV	$\frac{KM^2}{2(2)}$	$\frac{\text{NM}^2}{10.6}$	V:-hh	115.2	33.6	UGG	11.0	3.2	534B	21.6	6.3
MOEX	36.2	10.6	<u>Kizhuyak</u>		ND (2	UGI	21.4	6.3	534D	28.3	8.3
MOGX MOLX	65.9 27.4	19.2 8.0	Station KZA	KM ² 11.7	$\frac{\rm NM^2}{\rm 3.4}$	UGJ UGM	21.4 16.8	6.3 4.9	535A 535B	21.4 21.4	6.3 6.3
	75.5	22.0	KZA KZB	2.7	0.8	UUM	157.3	45.9	535C	21.4 21.4	6.3
MONX MOPX	27.8	8.1	KZC	12.3	0.8 3.6	Kiliuda Bay	137.5	43.9	535C 535D	21.4 21.4	6.3
						-	KM ²	ND 42			
MOQ	21.4	6.3	KZD KZE	23.7	6.9	Station		$\frac{NM^2}{(1)}$	559 5(0	85.8	25.0
MOT	19.9 13.0	5.8 3.8	KZE KZF	27.4 20.6	8.0	KLA KLB	20.9 9.3	6.1 2.7	560 561	85.8 85.8	25.0 25.0
MOX MOXX	13.0 29.5	5.8 8.6	kzg	20.8	6.0 6.2	KLC	9.3 19.6	2.7 5.7	587	85.8	25.0 25.0
255	29.5 68.6	20.0	KZJ	21.3	6.3	KLC	19.0	5.3	588	85.8	25.0
256	85.8	25.0	KZK	21.4	6.3	KLE	8.2	2.4	589	85.8	25.0
250	85.8	25.0	KZO	21.4	6.3	KLF	15.1	4.4	619	85.8	25.0
283	65.2	19.0	KZR	13.7	4.0	KLG	16.5	4.8	620	85.8	25.0
284	85.8	25.0	KZS	3.1	0.9	KLH	16.8	4.9	621	85.8	25.0
285	85.8	25.0		200.8	58.6	KLI	21.4	6.25	654	85.8	25.0
313	85.8	25.0				KLL	21.4	6.25	655	85.8	25.0
314	85.8	25.0					167.4	48.8	656	85.8	25.0
255X	60.0	17.5							695	85.8	25.0
283X	63.5	18.5							696	85.8	25.0
	1,088.4	317.3								1,668.6	486.5
		outheast					S	Southwe	st Section		
South Sitkalic			Offshore 7			Alitak Flats			Alitak Bay		
Station	KM ²	NM ²	Station	KM ²	NM ²	Station	KM ²	NM ²	Station	KM ²	NM ²
THA	15.1	4.4	618A	42.9	12.5	645B	34.3	10.0	ALA	3.1	0.9
THC	19.6	5.7	585X	94.3	27.5	646A	27.1	7.9	ALB	17.8	5.2
THD	28.6	8.3	614	64.1	18.7	646B	16.5	4.8	ALC	8.1	2.4
THF THG	22.3 21.4	6.5 6.3	615 651	99.5 85.8	29.0 25.0	646C 646D	29.2 37.4	8.5 10.9	ALD ALF	13.0 21.4	3.8 6.3
THH	19.2	5.6	031	386.6	112.7	682B	23.0	6.7	ALF	19.9	5.8
THI	21.6	6.3	Horse's H		112.7	683A	23.0	6.7	ALU	19.9	5.8 4.7
ТНЈ	17.8	5.2	Station	KM ²	NM ²	683B	20.9	6.1	ALI	16.6	4.9
THK	16.5	4.8	586	85.8	25.0	683D	9.3	2.7	ALJ	15.1	4.4
THL	9.3	2.7	688	85.8	25.0	684A	23.0	6.7	ALK	9.9	2.9
THM	10.6	3.1	725	85.8	25.0	684B	10.3	3.0	ALL	8.2	2.4
THN	5.1	1.5	726	85.8	25.0	684C	8.6	2.5	ALM	16.1	4.7
	207.1	60.4	727	85.8	25.0		262.4	76.5	ALO	16.8	4.9
			728	85.8	25.0				ALP	19.2	5.6
			729	85.8	25.0				ALQ	14.4	4.2
			759	85.8	25.0				ALR	13.4	3.9
			760	85.8	25.0					229.3	66.9
			761	85.8	25.0						
				857.5	250.0						
					-con	tinued-					

Table 1.–Standard large-mesh trawl survey station areas by district.

-continued-

				Kodiak	District (continued)					
	st Section			We	estside So				N. Mainla	and Section	
Offshore	Southeast		Uyak Bay			Kupreanof-					
Station	KM^2	NM ²	Station	KM ²	NM^2	Station	KM ²	NM^2	Station	KM ²	NM ²
608X	171.5	50.0	UYBX	21.5	6.3	KUD	27.1	7.9	2	85.8	25.0
676X	171.5	50.0	UYEX	29.9	8.7	KUF	11.3	3.3	3	85.8	25.0
677X	171.5	50.0	UYFX	22.1	6.4	KUG	15.4	4.5	31	83.7	24.4
678X	171.5	50.0	UYHX	4.1	1.2	KUI	6.4	1.9	60	85.8	25.0
712X	171.5	50.0	UYKX	13.9	4.0	KUJ	17.0	5.0	61	85.8	25.0
748X	171.5	50.0	UYMX	20.8	6.1	KUK	14.1	4.1	90	80.3	23.4
750X	171.5	50.0	UYO	3.4	1.0	KUL	2.7	0.8	91	85.8	25.0
781X	171.5	50.0	UYQX	7.7	2.2	KUM	10.5	3.1	117	97.8	28.5
815X	171.5	50.0	UYSS	6.0	1.8	KUY	4.1	1.2	118	85.8	25.0
816X	171.5	50.0	UYT	2.7	0.8	KULX	2.1	0.6	119	85.8	25.0
881X	171.5	50.0		132.0	38.5	KUYX	2.6	0.8	120	85.8	25.0
	1,886.5	550.0					113.2	33.0	121	85.8	25.0
			West Afognak			Uganik Bay	,		144	60.7	17.7
			Station	KM^2	NM^2	Station	KM^2	NM^2	145	85.8	25.0
			RAA	6.7	2.0	KUNX	10.6	3.1	146	85.8	25.0
			PAA	15.1	4.4	KUP	13.3	3.9	147	85.8	25.0
			MAA	10.6	3.1	KUQ	20.6	6.0	171	11.4	3.3
				32.4	9.5	KUS	12.1	3.5	171X	8.1	2.4
						KUT	9.4	2.7	171Y	29.1	8.5
	Kodiak Dis	trict total	S			KUU	13.7	4.0	172	89.2	26.0
	SECTION		KM ²	NM ²		KUV	4.1	1.2	173	85.8	25.0
	Northeast		1,984.1	578.5		KUW	5.2	1.5	174	85.8	25.0
	Eastside		1,993.3	581.2		KUX	4.1	1.2	198	85.8	25.0
	Southeast		1,451.2	423.1		KUXX	5.6	1.6	199	85.8	25.0
	Southwest		2,378.2	693.4			98.6	28.8	200	85.8	25.0
	Westside		376.3	109.7					222	113.2	33.0
	N. Mainlan	d	2,202.6	642.2					223	85.8	25.0
	Kodiak Dis	trict	10,385.8	3,027.9					224	85.8	25.0
										2,202.6	642.2
				Ch	nignik Di	strict					
Chignik	Bay		Ivanof Bay			Kujulik Ba	у		Mitrofani	a Island	
Station	KM^2	NM^2	Station	KM^2	NM^2	Station	KM^2	NM^2	Station	KM^2	NM ²
4256	24.0	7.0	400X	5.6	1.6	4290	21.4	6.3	4025	37.6	11.0
4262	21.4	6.3	4000	15.8	4.6	4296	10.3	3.0	4026	40.1	11.7
4264	20.1	5.9	4007	59.3	17.3	4298	19.2	5.6	4035	68.6	20.0
4265	6.6	1.9	4008	42.1	12.3	4301	21.4	6.3	4036	67.9	19.8
4266	19.6	5.7	4024	65.7	19.2	4302	21.0	6.1	4037	45.2	13.2
4267	21.4	6.3	4900	10.7	3.1	4308	17.2	5.0	4038	41.0	12.0
4270	17.1	5.0	4915	51.7	15.1		110.5	32.2	4043	32.6	9.5
4271	10.3	3.0		250.8	73.1				4048	14.7	4.3
4272	15.9	4.6							4049	57.2	16.7
4274	21.4	6.3							4063	57.2	16.7
4277	21.4	6.3	<u>(</u>	Chignik Di	strict tota	als			4064	57.2	16.7
4278	21.4	6.3		SECTION		KM ²	NM ²		4065	80.0	23.3
4282	21.4	6.3		Chignik Ba	y	325.0	94.7		4066	28.9	8.4
4286	21.4	6.3		lvanof Bay		250.8	73.1		4067	28.9	8.4
4287	29.7	8.7		Kujulik Ba		110.5	32.2		4068	28.9	8.4
4312	21.9	6.4		Mitrofania		722.1	210.5		4095	36.1	10.5
						1,408.4	410.6				210.5
4964	9.6	2.8		Chignik Di	strict	1,408.4	410.0			722.1	210.5

-continued-

Sanak Isla	nd		Pavlof/Volcano Bay			isla District Cold/Belk	ofski Bav		Stepovak Bay			
Station	KM ²	NM ²	Station	KM ²	NM ²	Station	KM ²	NM ²	Station	KM ²	NM ²	
113	77.2	22.5	228	93.5	27.3	157A	21.0	6.1	368A	45.6	13.3	
125	77.2	22.5	245	87.7	25.6	156A	44.2	12.9	STA	21.0	6.1	
126	83.9	24.45	PAEX	41.6	12.1	BEBX	15.9	4.6	STB	18.9	5.5	
137	85.8	25.0	PAIX	38.3	11.2	BECX	25.7	7.5	STD	22.7	6.6	
138A	46.3	13.5	PAH	15.1	4.4	BEE	21.4	6.3	STE	15.5	4.5	
138B	18.4	5.37	PALX	42.9	12.5	BEF	15.7	4.6		123.7	36.1	
138C	56.9	16.6	PAOA	6.7	2.0	BEG	20.3	5.9				
	445.6	129.9	PAP	20.8	6.1	COB	21.1	6.2	Beaver/Ba	Ŭ		
			PARA	19.1	5.6	COC	15.3	4.5	Station	KM ²	NM ²	
Morzhovo			PARB	21.1	6.1	COE	21.1	6.2	278	71.4	20.8	
Station	KM^2	NM^2	PAU	21.4	6.3	COF	11.5	3.4	311A	15.5	4.5	
87AX	42.9	12.5	PAV	20.6	6.0	COGA	9.8	2.9	311B	20.4	6.0	
87D	22.3	6.5	VOA	22.4	6.5	COGB	3.6	1.1	311C	17.3	5.0	
MOB	19.9	5.8	VOBX	43.8	12.8	COH	7.8	2.3	329B	21.4	6.3	
MOD	16.1	4.7	VOD	20.8	6.1	COM	18.5	5.4	329C	21.4	6.3	
MOF	21.4	6.25	VOFB	15.5	4.5	COO	22.4	6.5	348	85.8	25.0	
MOG	21.4	6.25	VOG	23.0	6.7		295.5	86.1	BAA	12.0	3.5	
MOH MOI	16.8 21.4	4.9 6.25	VOH VOI	21.7 22.1	6.3 6.4	West Nag	ai Strait		BAC BAD	16.9 10.4	4.9 3.0	
						-		ND (2				
MOK	21.4	6.25	VOLX	27.3	8.0	Station	KM ²	NM ²	BAE	12.7	3.7	
MOL	21.4	6.25	VOMB VON	16.8	4.9	301	85.8	25.0	BAF	10.8	3.2	
MOOX MORX	56.1 58.7	16.35 17.1	VON VOP	22.4 21.4	6.5 6.3	318 337	85.8 85.8	25.0 25.0	BVA BVB	15.3 14.0	4.5 4.1	
MOXX	37.7	11.0	VOI VOQ	15.9	4.6	332B	42.9	12.5	BVB BVC	14.0	5.5	
MOSA	377.6	110.1	VOQ VOR	21.1	6.2	334	85.8	25.0	DVC	364.2	106.2	
	511.0	110.1	von	723.1	210.8	335	85.8	25.0		501.2	100.2	
	5	S. Peninsu	la District tota		210.0	353	86.1	25.1				
	-	Section		KM ²	NM ²	354	85.8	25.0				
		Sanak Islai	nd	445.6	129.9	371	80.6	23.5				
		Morzhovoi		377.6	110.1	373A	41.8	12.2				
		Cold/Belko		295.5	86.1	373B	20.5	6.0				
]	Pavlof/Vol	cano Bay	723.1	210.8	393	47.4	13.8				
		West Naga		833.9	243.1		833.9	243.1				
			lboa/Unga	364.2	106.2							
		Stepovak E		123.8	36.1							
	9	S. Peninsu	la District	3,163.7	922.4							
TT 1 1 /	V 1 1 / D		<u>)(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>		ern Aleu	tian District			DI			
Unalaska/l			Makushin		2	Akutan Ba		2	Beaver In		2	
Station	$\frac{KM^2}{10}$	$\frac{NM^2}{5.7}$	Station	KM ²	$\frac{NM^2}{4}$	Station	KM ²	NM ²	Station	KM ²	$\frac{\text{NM}^2}{5.1}$	
KAA	19.6	5.7	MKB	15.8	4.6	AKA	33.3	9.7	BIB	17.5	5.1	
UNC	22.6	6.6	MKC	18.5	5.4	AKC	21.3 23.3	6.2 6.8	BID	18.9	5.5	
UND UNE	11.7 17.8	3.4 5.2	MKE MKK	29.2 37.4	8.5 10.9	AKD AKG	23.3 21.6	6.8 6.3	BIG BIK	22.6 13.0	6.6 3.8	
UNE	21.6	6.3	MKF	20.9	6.1	AKU	21.6	6.3	BIN	13.0	5.0	
UNG	21.6	6.3	MKJ	20.7	6.9	AKL	121.0	35.3	DIN	89.5	26.1	
UNI	19.9	5.8	MKN	26.1	7.6				District total		20.1	
UNJ	21.6	6.3	MKP	12.3	3.6		-	. i neutiun	District total	KM ²	NM ²	
UNJ	156.4	45.6	WINT	12.3	53.6		-	Akutan		121.1	35.3	
Pumicesto		45.0		103.0	55.0			Beaver Inlet		89.5	26.1	
Station	KM ²	NM ²						Jnalaska/Ka		156.4	45.6	
PUA	4.8	1.4						Jilalaska/Ka Makushin	norta	183.8	43.0 53.6	
PUA PUB	4.8 15.1	4.4						Pumicestone	•	185.8	5.8	
100	19.9	5.8					_	E. Aleutian		449.7	131.1	
	17.7	0.0					1			. 12.7		

Table 1.–Page 3 of 3.

Common name	Species name	Counted?	Weighed?	Measured?
Alaska skate	Bathyraja parmifera			\checkmark
Aleutian skate	Bathyraja aleutica			\checkmark
Armhook squid	Berryteuthis magister	\checkmark	\checkmark	
Atka mackerel	Pleurogrammus monopterygius		\checkmark	\checkmark
Bering skate	Bathyraja interrupta			\checkmark
Bering wolffish	Anarhichas orientalis	\checkmark	\checkmark	
Big skate	Raja binoculata			\checkmark
Box crab	Lopholithodes foraminatus	\checkmark	\checkmark	
Dungeness crab	Metacarcinus magister		\checkmark	\checkmark
Giant Pacific octopus	Octopus dofleini	\checkmark	\checkmark	
Giant wrymouth	Cryptocanthodes giganteus	\checkmark	\checkmark	
Golden king crab	Lithodes aequispinus		\checkmark	\checkmark
Horsehair crab	Erimacrus isenbeckii	\checkmark	\checkmark	
Lingcod	Ophiodon elongates		\checkmark	\checkmark
Longnose skate	Raja rhina			\checkmark
Pacific cod	Gadus macrocephalus	\checkmark	\checkmark	\checkmark
Pacific halibut	Hippoglossoides stenolepis			\checkmark
Pacific herring	Clupea pallasii		\checkmark	\checkmark
Pacific sleeper shark	Somniosus pacificus		\checkmark	\checkmark
Red king crab	Paralithodes camtschatica		\checkmark	\checkmark
Red sea cucumber	Parastichopus californicus	\checkmark	\checkmark	
Rockfish spp.	Sebastes spp. and Sebastolobus spp.		\checkmark	\checkmark
Sablefish	Anoplopoma fimbria		\checkmark	\checkmark
Salmon spp.	Onchorynchus spp.		\checkmark	\checkmark
Salmon shark	Lamna ditropis		\checkmark	\checkmark
Sleeper shark	Somniosus pacificus		\checkmark	\checkmark
Spiny dogfish	Squalus acanthius		\checkmark	\checkmark
Snow crab	Chionoecetes opilio		\checkmark	\checkmark
Tanner crab	Chionoecetes bairdi	\checkmark	\checkmark	\checkmark
Walleye pollock	Gadus chalcogrammus	\checkmark	\checkmark	\checkmark
Weathervane scallop	Patinopectin caurinus	\checkmark	\checkmark	\checkmark
Wolf eel	Anarrhichthys ocellatus	\checkmark	\checkmark	

Table 2.–Species whole-haul sampled during large-mesh trawl survey.

Table 3.-Species subsampled and measured on large-mesh trawl survey.

Common name	Scientific name	
Alaska plaice	Pleuronectes quadrituberculatus	
Arrowtooth flounder	Atheresthes stomias	
Butter sole	Isopsetta isolepis	
Dover sole	Microstomus pacificus	
English sole	Parophrys vetulus	
Flathead sole	Hippoglossiodes elassodon	
uvenile Pacific cod	Gadus macrocephalus	
uvenile pollock	Gadus chalcogrammus	
Kelp greenling	Hexagrammos decagrammus	
Northern rock sole	Lepidopsetta polyxystra	
Rex sole	Glyptocephalus zachirus	
Rock sole unidentified	<i>Lepidopsetta</i> sp.	
Sand sole	Psettichthys melanostictus	
Slender sole	Lyopsetta exilis	
Southern rock sole	Lepidopsetta bilineata	
Starry flounder	Platichthys stellatus	
White-spotted greenling	Hexagrammos stelleri	
Yellowfin sole	Limanda aspera	

Common name	Scientific name	Common name	Scientific name
fish larvae unident.		Poachers continued	
Sharks		blackfin poacher	Bathyagonus nigripinnis
salmon shark	Lamna ditropis	sturgeon poacher	Podothecus accipenserinus
spiny dogfish shark	Squalus acanthius	Aleutian alligatorfish	Aspidophoodas bartoni
Pacific sleeper shark	Somniosus pacificus	fourhorn poacher	Hypsagonus quadricornis
Skates		Wolf-eel	Anarrhichthys ocellatus
skate egg case unident.	Rajidae egg case	Bering wolffish	Anarhichas orientalis
big skate	Raja binoculata	sablefish (or black cod)	Anoplopoma fimbria
Bering skate	Bathyraja interrupta	unident. Deep sea smelt	Bathylagidae
longnose skate	Raja rhina	northern ronquil	Ronquilus jordani
Alaska skate	Bathyraja parmifera	searcher	Bathymaster signatus
Aleutian skate	Bathyraja aleutica	Pacific herring	Clupea pallasi
Flatfish		Sculpins	
flatfish larvae	Pleuronectiformes larvae	sculpin unident.	Cottidae
arrowtooth flounder	Atheresthes stomias	threaded sculpin	Gymnocanthus pistilliger
Pacific halibut	Hippoglossus stenolepis	armorhead sculpin	Gymnocanthus galeatus
flathead sole	Hippoglossiodes elassodon	red Irish lord	Hemilepidotus hemilepidotus
slender sole	Lyopsetta exilis	yellow Irish lord	Hemilepidotus jordani
English sole	Parophrys vetulus	scissortail sculpin	Triglops forficata
Dover sole	Microstomus pacificus	spectacled sculpin	Triglops specticua
rex sole	Glyptocephalus zachirus	ribbed sculpin	Triglops pingeli
yellowfin sole	Limanda aspera	roughspine sculpin	Triglops macellus
starry flounder	Platichthys stellatus	great sculpin	Myoxocephalus polyacanthocephalus
sand sole	Psettichthys melanostictus	plain sculpin	Myoxocephalus jaok
rock sole unident.	Lepidopsetta sp.	Pacific staghorn sculpin	Leptocottus armatus
northern rock sole	Lepidopsetta polyxystra	soft sculpin	Gilbertidia sigalutes
southern rock sole	Lepidopsetta bilineata	Eunophrys sp.	Enophrys sp.
butter sole	Isopsetta isolepis	spinyhead sculpin	Dasycottus setiger
Alaska plaice	Pleuronectes quadrituberculatus	crested sculpin	Blepsias bilobus
Poachers		silverspotted sculpin	Blepsias cirrhosus
tubenose poacher	Pallasina barbata	grunt sculpin	Rhamphocottus richardsonii
sawback poacher	Leptagonus frenatus	bigmouth sculpin	Hemitripterus bolini
spinycheek starsnout	Bathyagonus infraspinatus	thorny sculpin	Icelus spiniger

Table 4.-List of species identified on the large-mesh trawl survey

Table 4.–Page 2 of 4.

Common name	Scientific name	Common name	Scientific name
Pacific sandfish	Trichodon trichodon	Pricklebacks continued	
Gadids		longsnout prickleback	Lumpenella longirostris
Pacific tomcod	Microgadus proximus	decorated warbonnet	Chirolophis decoratus
Pacific cod	Gadus macrocephalus	whitebarred prickleback	Poroclunus rothrocki
juvenile cod	Gadus macrocephalus	prowfish	Zaprora silenus
pacific cod-tagged	Gadus macrocephalus	Eelpouts	
saffron cod	Eleginus gracililis	eelpout unident.	Zoarcidae
walleye pollock	Gadus chalcogrammus	Alaska eelpout	Bothrocara pusillum
juvenile pollock	Gadus chalcogrammus	wattled eelpout	Lycodes palearis
greenling unident.	Hexagrammidae	shortfin eelpout	Lycodes brevipes
lingcod	Ophiodon elongatus	Rockfishes	
Atka mackerel	Pleurogrammus monopterygius	rockfish unident.	Sebastes sp.
whitespotted greenling	Hexagrammos stelleri	shortspine thornyhead	Sebastolobus alascanus
kelp greenling	Hexagrammos decagrammus	rougheye rockfish	Sebastes aleutianus
smooth lumpsucker	Aptocyclus ventricosus	blackspotted rockfish	Sebastes melanostictus
Pacific spiny lumpsucker	Eumicrotremus orbis	Pacific ocean perch	Sebastes alutus
Snailfish		silvergray rockfish	Sebastes brevispinis
snailfish unident.	Liparidae	dark rockfish	Sebastes ciliatus
marbled snailfish	Liparis dennyi	dusky rockfish	Sebastes variabilis
variegated snailfish	Liparis gibbus	darkblotched rockfish	Sebastes crameri
blotched snailfish	Crystallichthys cyclospilus	yellowtail rockfish	Sebastes flavidus
monster snailfish (spectral)	Careproctus phasma	quillback rockfish	Sebastes maliger
eulachon	Thaleichthys pacificus	black rockfish	Sebastes melanops
capelin	Mallotus villosus	tiger rockfish	Sebastes nigrocinctus
rainbow smelt	Osmerus mordax	northern rockfish	Sebastes polyspinis
chinook salmon	Oncorhynchus tshawytscha	yelloweye rockfish	Sebastes ruberrimus
pink salmon	Ochorhynchus gorbuscha	redbanded rockfish	Sebastes babcocki
chum salmon	Oncorhynchus keta	harlequin rockfish	Sebastes variegatus
dwarf wrymouth	Cryptacanthodes aleutensis	sharpchin rockfish	Sebastes zacentrus
giant wrymouth	Cryptacanthodes giganteus	jellyfish unident.	Schyphozoa
Pricklebacks		gorgonian coral unident.	Gorgonacea
daubed shanny	Lumpenus maculatus	Kamchatka coral	Paragorgia arborea
slender eelblenny	Lumpenus fabricii	orange sea pen	Ptilosarcus gurneyi
snake prickleback	Lumpenus sagitta	sea whip unident.	Virgulariidae

-continued-

Table 4.–Page 3 of 4.

Common name	Scientific name	Common name	Scientific name
sea anemone unident.	Actinaria	Crabs continued	
Worms		golden king crab	Lithodes aequispinus
polychaete worm unident.	Polychaeta	rhinocerous crab	Rhinolithodes wosnessenskii
worm unident.		red king crab	Paralithodes camtschaticus
tube worm unident.		scaled crab	Placetron wosnessenskii
sea mouse unident.	Aphroditidae	hair crab	Erimacrus isenbeckii
scale worm unident.	<i>Eunoe</i> sp.	hyas unident.	Hyas sp.
isopod unident.	Isopoda	kelp crab unident.	<i>Pugettia</i> sp.
barnacle unident.	Thoracica	Chitons	
Shrimp		chiton unident.	Polyplacophora
dock shrimp	Pandalus danae	giant Pacific chiton	Cryptochiton stelleri
pink shrimp (or northern shrimp)	Pandalus eous	Snails	
yellowleg pandalid	Pandalus tridens	snail eggs	gastropod eggs
spot shrimp	Pandalus platyceros	nudibranch unident.	Nudibranchia
humpy shrimp	Pandalus goniurus	moonsnail	Cryptonatica sp.
coonstripe shrimp	Pandalus hypsinotus	Colus sp.	Colus sp.
sidestripe shrimp	Pandalopsis dispar	left-hand whelk	Pyrulofusus harpa
Eualus sp.	<i>Eualus</i> sp.	shouldered whelk	Volutopsius stefanssoni
shortscale eualid	Eualus suckleyi	Kennicott's beringius	Beringius kennicottii
candy stripe shrimp	Lebbeus grandimana	thick-cord whelk	Beringius crebricostatus
spiny lebbeid	Lebbeus groenlandicus	Beringius undatus	Beringius undatus
Crangon sp.	<i>Crangon</i> sp.	Neptunea sp.	Neptunea sp.
Arctic argid	Argis dentata	Pribilof neptune (or Prib. whelk)	Neptunea pribiloffensis
Pacific glass shrimp	Pasiphaea pacifica	ribbed neptune	Neptunea lyrata
Crabs		keeled aforia	Aforia circinata
Dungeness crab	Metacarcinus magister	hairy triton (or Oregon triton)	Fusitriton oregonensis
pygmy cancer crab	Cancer oregonensis	Buccinum sp.	Buccinum sp.
pea crab	Pinnixa occidentalis	sinuous whelk	Buccinum plectrum
graceful decorator crab	Oregonia gracilis	silky buccinum (or ladder whelk)	Buccinum scalariforme
Tanner crab	Chionoecetes bairdi	Alaska volute	Arctomelon stearnsii
Pacific lyre crab	Hyas lyratus	Bivalves	
helmet crab	Telmessus cheiragonus	bivalve unident.	Bivalvia
hermit crab unident.	Paguridae	mussel unident.	Mytilidae
box crab	Lopholithodes foraminatus	Chlamys sp.	Chlamys sp.

-continued-

Table 4.–Page 4 of 4.

Common name	Scientific name	Common name	Scientific name
Bivalves continued		Sea Stars continued	
weathervane scallop	Patinopecten caurinus	Solaster sp.	<i>Solaster</i> sp.
cockle unident.		striped sun sea star	Solaster stimpsoni
smoothcockle (was Greenland)	Serripes sp.	rose sea star	Crossaster papposus
Alaska falsejingle	Pododesmus macrochisma	tesselated slime star	Pteraster tesselatus
Cephalopods		pincushion sea star	Diplopteraster multipes
giant octopus	Octopus dofleini	purple-orange sea star	Asterias amurensis
eastern Pacific bobtail	Rossia pacifica	common mud star (or Ninja star)	Ctenodiscus crispatus
magistrate armhook squid	Berryteuthis magister	Northern sand star	Dipsacaster borealis
juvenile armhook squid	Berryteuthis magister	Fragile star	Cheiraster dawsoni
Sea Stars	· · · ·	Sea Urchins	
mottled sea star	Evasterias troschelii	green sea urchin	Strongylocentrotus droebachiensis
giant sea star	Evasterias echinosoma	red sea urchin	Strongylocentrotus franciscanus
redbanded sea star	Orthasterias koehleri	orange-pink (fragile) sea urchin	Allocentrotus fragilis
sunflower sea star	Pycnopodia helianthoides	heart urchin	Brysaster latifrons
long-rayed star	Stylasterias forreri	sand dollar unident.	Clypeasteroida
blackspined sea star	Lethasterias nanimensis	brittle star unident.	Ophiuridae
Henricia sp.	Henricia sp.	basket star	Gorgonocephalus eucnemis
Leptasterias sp.	Leptasterias sp.	Sea Cucumbers	
Swift's sea star	Gephyreaster swifti	red (CA) sea cucumber	Parastichopus californicus
pseudarchaster parelii	Pseudarchaster parelii	sweet sea potato	Molpadia intermedia
pseudarchaster alascensis	Pseudarchaster alascensis	crescent sea cucumber	Pentamera sp.
CA spiny star	Hippasteria californica	Bathyplotes sp.	Bathyplotes sp.
spiny red sea star	Hippasteria spinosa	sea football	Cucumaria fallax
vermilion sea star	Mediaster aequalis	sponge unident.	Porifera
red bat (cookie)star	Ceramaster japonicus	flatworm unident.	Platyhelminthes
orange bat (cookie) star	Ceramaster patagonicus	peanutworm unident.	Echiura
CA spiny star	Hippasteria californica	bryozoan unident.	Bryozoa
spiny red sea star	Hippasteria spinosa	lampshell unident.	Brachiopoda
vermilion sea star	Mediaster aequalis	Tunicates	
red bat (cookie)star	Ceramaster japonicus	tunicate unident.	Ascidiacea
orange bat (cookie) star	Ceramaster patagonicus	sea potato	Styela rustica
arctic bat (cookie) star	Ceramaster arcticus	bristly tunicate	Halocynthia (hilgendorfi) igaboja
Sand star	Luidia foliolata	sea peach	Halocynthia aurantium
leather sea star	Dermasterias imbricata	sea blob	Synoicum sp.

			~ ·
Common name ^a	Species	Common name ^b	Species
Salmon shark	Lamna ditropis	Redstripe rockfish	Sebaster proriger
Darkblotched rockfish	Sebastes crameri	Bocaccio	Sebastes paucispinis
Wolf eel	Anarchichthys ocellatus	Brown Irish lord	Hemilepidotus spinosus
White-spotted greenling	_	Longfin Irish lord	Hemilepidotus zapus
Spectacled sculpin	Triglops scepticus	Butterfly sculpin	Hemilepidotus papilio
Pacific staghorn sculpin	Leptocottus armatus	Fourhorn sculpin	Myoxocephalus quadricornis
Thorny sculpin	Icelus spiniger	Arctic sculpin	Myoxocephalus scorpioides
Ribbed sculpin	Triglops pingelii	Warthead sculpin	Myoxocephalus niger
Northern ronquil	Ronquilus jordani	Frog sculpin	Myoxocephalus stelleri
Sand sole	Psettichthys melanostictus	Small-mouth ronquil	Bathymaster leurolepis
Barbed eualid	Eualus barbatus	Polar eelpout	Lycodes polaris
Short-scaled eualid	Eualus suckleyi	Marbled eelpout	Lycodes raridens
Stefansson's melon snail	/	Black eelpout	Lycodes diapterus
shouldered whelk	Volutopsius stefanssoni	Ebony eelpout	Lycodes concolor
Keeled aforia	Aforia circinata	Twoline eelpout	Bothrocara brunneum
Vermillion sea star	Mediaster aequalis	Pallid eelpout	Lycodapus mandibularis
Sand star	Luidia foliolata	Bering flounder	Hippoglossoides robustus
Northern sand star	Dipsacaster borealis	Giant rock scallop	Crassadoma gigantes
		Spiny scallop	Chlamys hastate
		Island scallop	Chlamys islandica
		Flat-tip piddock	Penitella penita
		Chimney piddock	Penitella penita
		Setose hermit crab	Pagurus setosus
		Bluespined hermit crab	Pagurus kennerlyi
		Pribilof hermit crab	Pagurus undosus
		Long-hand hermit crab	Pagurus tanneri
		Horny-hand hermit crab	Pagurus cornutus
		Northern sun star	Solaster endeca
		Morning sun star	Solaster dawsoni
		Evening sun star	Solaster paxillatus
		Grooved sun star	Crossaster borealis
		Greenland sea star	Leptasterias groenlandica
		Sheathed sea star	Leptasterias stolocantha
		Knobless 6-rayed star	Leptasterias hexactic
		White sea urchin	Strongylocentrotus pallidus
		Purple urchin	Strongylocentrotus purpuratus
		Bubble jelly	Aequorea sp.
		Lion's mane jelly	Cyanea sp.
		Two-spined crangon	Crangon communis
		Ridged crangon	Crangon dalli

Table 5.-Species collection list of rarely encountered organisms on large-mesh trawl survey.

a

These organisms on the large-mesh species list are always identified. These organisms are not required to be identified to species, but if positive ID is made are photographed and collected. b

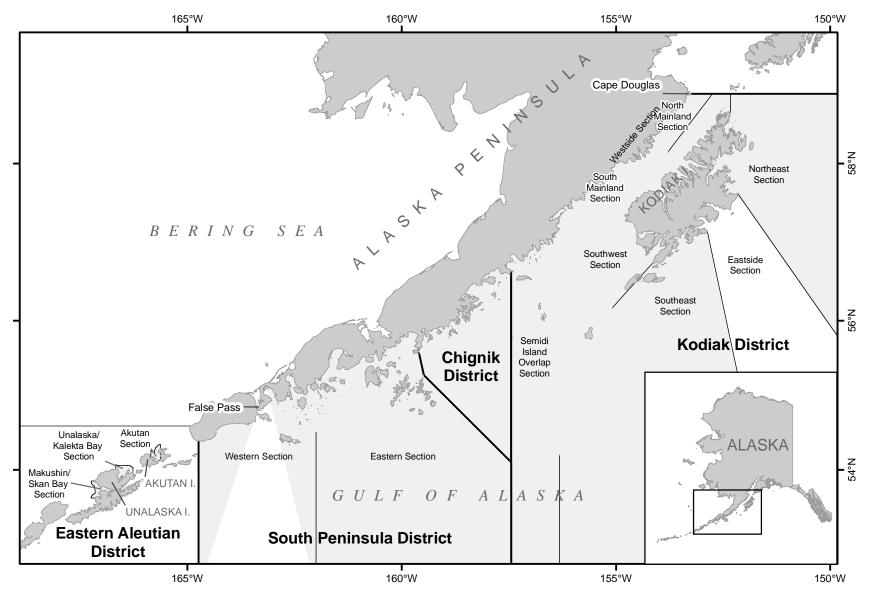


Figure 1.-Tanner crab management districts surveyed during the large-mesh trawl surveys.

28

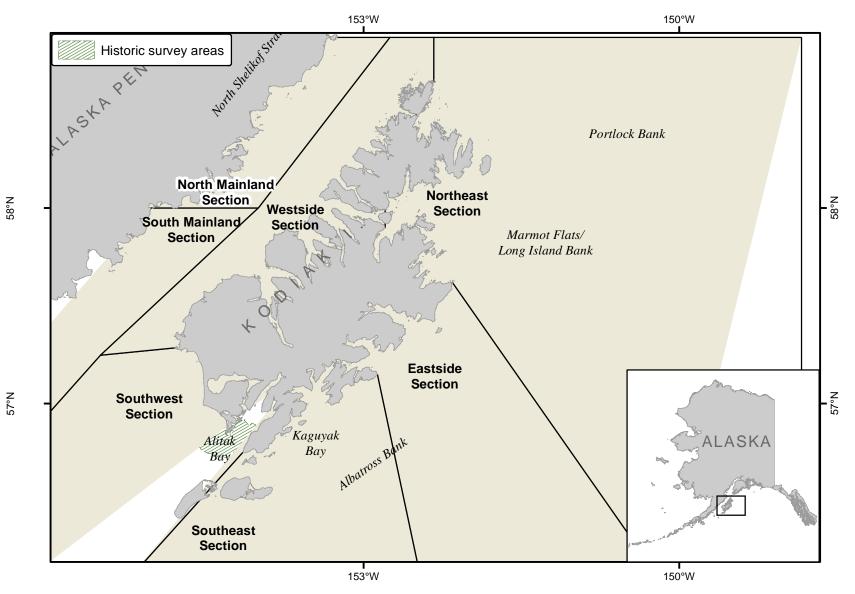


Figure 2.-Historic trawl survey areas (1963-1980) and current Tanner crab management sections in the Kodiak District.

29

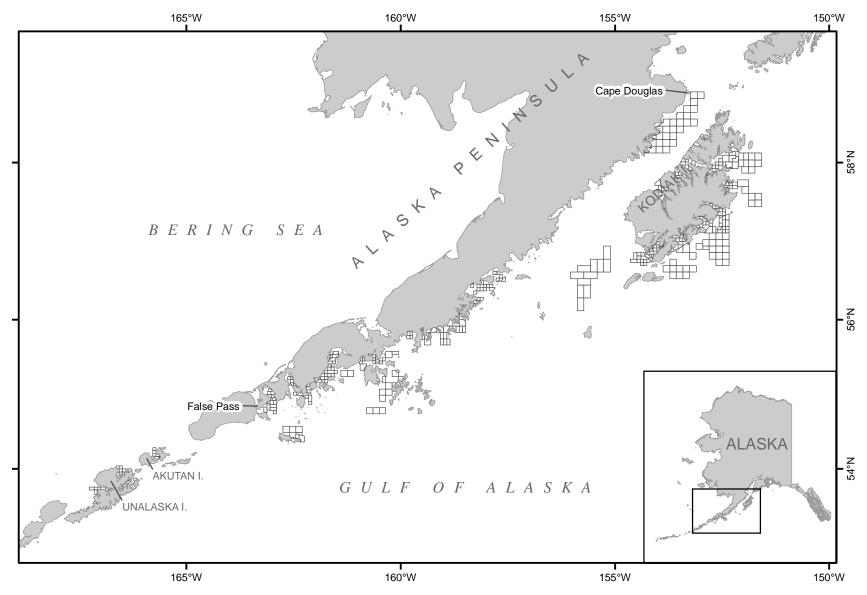


Figure 3.–Standard large-mesh trawl survey stations.

30

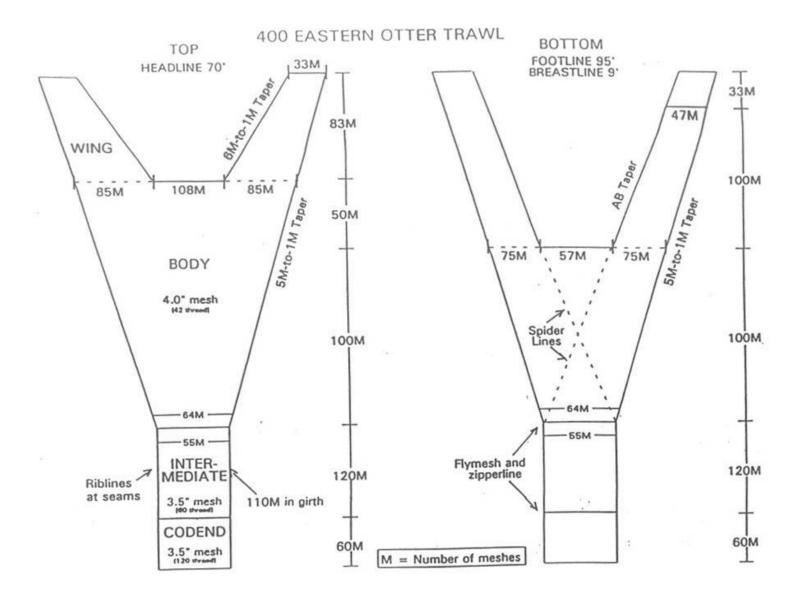


Figure 4.-Diagram of 400 eastern otter trawl used in large-mesh survey.

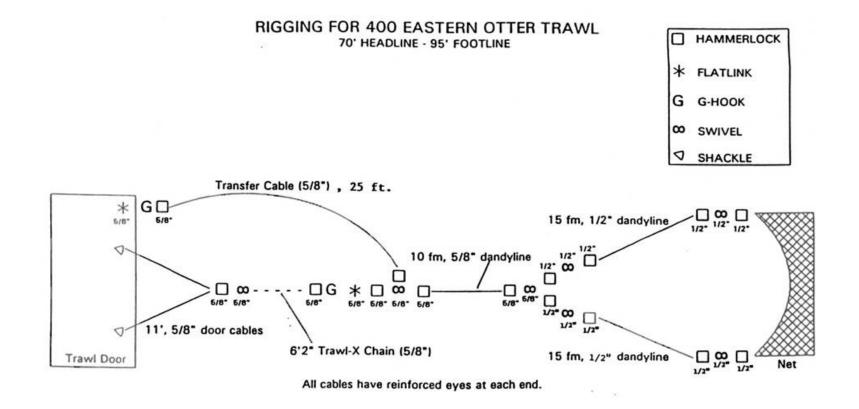


Figure 5.–Diagram of rigging for 400 eastern otter trawl used in large-mesh survey.

APPENDIX A. GLOSSARY

Appendix A1.–Definition of terms in large-mesh trawl survey operational plan.

	Large-mesh trawl survey: Definitions of terms				
<u>Crab Terms</u> abdominal flap	Crab abdomen folded underneath body. From posterior side can be lifted to reveal reproductive appendages. The shape of abdominal flap can be used to determine crab sex. Males have a triangular shaped abdominal flap. Female abdominal flaps are more rounded.				
anterolateral spines	Spines on the margin of anterior half of carapace.				
carapace	Main part of crab shell which covers body of crab. It is divided into the gastric, branchial, and cardiac regions.				
carapace length	The biological size measurement of all species of king crabs taken as the straight-line distance from the posterior margin of the right eye orbit to the medial posterior carapace margin.				
<i>carapace width</i> Crab measurement taken as the greatest straight-line distance perper line midway between the eyes to the medial-posterior margin measurements do not include spines.					
chela height	Measurement of the right claw of the crab taken at the greatest height, excluding spines.				
clutch	Eggs present beneath a mature female abdominal flap.				
eyed eggs	Stage of egg development when dark eyespots are present and visible to the human eye.				
juvenile	An animal that has not reached sexual maturity.				
lateral margin	The outer edge of the crab shell or carapace.				
legal size	The minimum size of an animal that may be retained by regulation. For Tanner crab males legal size is 5.5 inches (140 mm) carapace width including the lateral margin spines. For king crab males it is 7.0 inches (177.8 mm) carapace width in the Kodiak Area and 6.5 inches (165.1 mm) carapace width in the Alaska Peninsula and Aleutian Island areas, including the lateral margin spines. For Dungness crab the minimum legal size is 6.5 inches (165.1 mm) carapace width, immediately anterior to the tenth anterolateral spine.				
mature female	A female animal that has reached sexual maturity. For Tanner crab mature females have a circular abdominal flap that covers most of the ventral surface of the crab while juvenile females have an abdominal flap that covers only about $\frac{2}{3}$ of the ventral surface.				
mature male	A male animal that has reached sexual maturity. For Tanner crab mature males are considered to be all males that are >114 mm carapace width.				
medial posterior edge	The middle of the back edge of the carapace.				
midline	The median plane of the body of an animal. For crabs this is an imaginary line running along the carapace from between the eyes to the medial posterior edge.				
pleopods	Reproductive appendages of female crab to which eggs attach. Under the abdominal flap.				
shell condition	A description of the appearance of a crab's exoskeleton, and is determined by examining characteristics that show wear with time.				
spines	Pointed processes along the edge of a crab carapace.				

<u>Trawl Net Terms</u> codend	The trailing end of a tapered trawl net where catch accumulates during towing.
dandylines	Also called bridles. Cables between trawl door and side of trawl net.
doors	Steel boards that are attached between the vessel and the trawl net, positioned in such a way that while being towed hydrodynamic forces push them outward and spread the opening of the net.
footrope	The line running along lower mouth of net. Net used during large-mesh trawl survey has footrope weighted with chain to keep it on bottom.
headrope	The line running along upper mouth of net with floats attached to keep the net open.
mesh	An open fabric of line or cord, the intersections of which are looped or knotted into various sized spaces and sewn together to form a net.
net performance	A rating on how the net was fishing during a haul.
sweep	The width net covers when towed over the seafloor.
trawl wires	Cables that attach trawl doors and net to winches on vessel.
wing	The portion of the trawl net forward of the main body of the net.
Sampling Terms catch	Quantity of animals caught in trawl net. Measured in numbers or weight of animals.
catch weight database	The onboard database used to enter weights of all species identified during the haul. All information is entered upon completion of catch sampling. Data from the shellfish and fish measurement databases are automatically incorporated.
cruise leader	Biologist in charge of coordinating biological sampling activities during the survey and responsible for the quality of collected data while on the vessel.
debris	Contents of the trawl net that are not alive or an animal, including rocks, empty shells, seaweed, or human made objects.
fish measurement database	The onboard database used to collect fish measurements. Measurements can be entered directly from the magnetic fish measuring board, or entered into the database manually using a networked input program from a network connected device.
haul	From the time the trawl net reaches the bottom and is towed in an attempt to fish to the time the vessel stops moving and begins retrieving the net.
haul database	The onboard database to store information associated with the fishing process for each haul. Data from skipper trawl record forms are manually entered at the end of each day
length to weight regressions	Equations allowing for calculation of expected weight of a given fish species using measured fish length.
onboard databases	Databases in use during the trawl survey include: fish measurement database, shellfish measurement database, catch weight database, and haul database.
on-deck sorting bin	An area located on the back deck of the survey vessel contained by removable boards where the catch from the codend is emptied after every haul, prior to sorting and removal of the subsample.

Appendix A1.-Page 3 of 4.

shell hash	Dominated by loose shell accumulations, broken or whole shells, often mixed with small living invertebrates that must be accounted for in the catch.
shellfish measurement database	Onboard database used to collect crab measurements and biological information. Measurements and crab information can be entered directly using electronic calipers and the crab keyboard, or by using a standard keyboard.
sorting table	Table located on the forward part of deck where the subsample is sorted for species composition, weighing, and measuring.
species composition sampling	The sorting, identification, and weighing of organisms in the catch to determine the proportion and total weight of each species in the catch.
species list	Master list of all species that should be identified during the large-mesh trawl survey, including which species are acceptable to group. This list is based on historical survey records.
station	Survey area sampling units. Each station is towed once during the annual survey.
subsample	A representative and random subset of the total sample.
subsampling net	The net used to obtain the subsample. This net is tied into the on-deck sorting bin and the catch is emptied into the bin. The subsampling net is then untied and lifted through the catch to capture a representative subsample that is sorted at the sorting table.
sub-subsample	A subset of the subsample that may be taken in instances where the contents of the subsample still contain too many individual organisms to sort and identify within a reasonable time frame. Data from the sub-subsample is expanded to the subsample, and later to the entire catch. This is a less desirable sampling technique than whole-haul sampling or subsampling.
tare	A setting that is pre-determined and recorded in the platform scale to account for the weight of empty baskets and totes used during the survey so they are not included as part of the animal weight.
whole-haul	When 100% of the trawl catch of a specific species is accounted for by weight, count, or measurement, or a combination. In instances when there is a small total catch, when 100% of the total trawl catch is sorted and weighed.
whole-hauled debris	Large debris items captured in the codend that are weighed separately from debris in the subsample are 100% sampled.
Management Terms	
abundance threshold	Level of mature male Tanner crab abundance described in regulation that must be met in order to consider opening a commercial fishery.
GHL	Guideline Harvest Level. Catch quota established prior to the beginning of each fishing season. GHLs for Tanner crab are based on large-mesh trawl survey data.
legal males	The minimum size crab that may be retained by regulation. Only male crab are considered legal to retain.
long-term average abundance	The average abundance of mature male Tanner crab from 1967-1998 as determined using a combination of trawl survey data, commercial catch history, and pot survey catches, and used to establish regulatory abundance thresholds.

Appendix A1.–Page 4 of 4.

management district	Regulatory unit to facilitate resource management.
management section	Management districts are divided into sections to facilitate management of the Tanner crab fisheries and are based on local distributions and migration patterns. Each section has a separate GHL.
molting mature male abundance	Estimated abundance of 100% newshell and 15% oldshell male Tanner crab that are >114 mm carapace width.
Other Biological Terms	
anterior	Toward the front, near the head, or rostral end of a crab.
caudal fin	The tail of a fish.
claspers	A paired organ of male sharks and skates used to assist the transfer of spermatozoa into the body of a female during copulation.
dorsal	The back or part of an organism away from the ground. Refers to the hinge area of a scallop shell.
inclement weather	Severe, rough, harsh, or stormy.
otolith	Bony structures located behind the brain of fishes (often called ear bones) that regulate balance, orientation, and sound detection. As the fish grows the otoliths form ring-like layers that can be used to determine age.
pectoral fin	Either of a pair of fins situated behind the head, one on each side of the body.
posterior	The rear, away from the head.
shell height	The straight-line distance from the umbo the the outer scallop shell margin, perpendicular to the hinge. Scallop shell heights are measured on the left (top) valve.
Umbo	Beak-like projections at the dorsal part of a shell; it is the oldest part of a bivalve shell.
Valve	One of the 2 parts of a bivalve shell, 2 valves make up one shell.
Data Analysis Terms	
area swept	The sea floor area covered by the trawl during a haul.
catchability	The relationship between the proportion of a population available to the survey gear and the proportion of the population in the trawl path retained by the survey net.
density	The number or weight of a species present per unit of area.
distance towed/haul length	Distance the vessel travels between the time the trawl net footrope contacts bottom and the time the center of footrope leaves bottom.
escapement	The act of an organism in the trawl path evading capture by the trawl net.
relative abundance indices	Indices that track changes in population size, but do not estimate the actual population size.
size selectivity	The consequence of fishing gear capturing organisms of different sizes at different rates.
true abundance	The actual number of animals present in the area of interest.

APPENDIX B. FORMS

ALASKA DEPARTMENT OF FISH AND GAME 2015 TRAWL SURVEY SKIPPER TRAWL RECORD

Skipper's Name Survey Area Cruise Haul Region Survey Stratum Station Vessel Date Number Number Number Code month day Агеа year 5 5 0 3 0 1 1 (1) Starting Position Compass Heading Trawl Time Dist-Start Latitude Longitude (magnetic) Towed End degrees/mins/decimalmins degrees/mins/decimalmins (nm) (2) Haul Back Position Elapsed 5 1 Position X Position Y (minutes) Weather Bottom Depth (fathoms) Gear Scope Cloud Wind Swell Maximum Minimum (fathoms) Perf. Temp. (°C) Avg. Skipper's Comments (gear problems, snags, weather, tides, etc.): Code Wind Speed (Beaufort Scale) Cloud Cover Code Swell (feet) Code Clear 1 Calm; sea surface smooth and mirror like 0 0 - 2 1 1/8 obscured Light air; scaly ripples, no foam crests 2 1 2 - 4 2 3 Light breeze; small wavelets, crests glassy, not breaking 1/4 obscured 4 - 6 3 2 3/8 obscured 4 Gentle breeze, large wavelets, crests begin to break, scattered whitecaps 3 6 - 8 4 1/2 obscured 5 Moderate breeze, waves 1-4 ft becoming longer, numerous whitecaps 5 4 8 - 10 6 Fresh breeze; waves 4-8 ft, longer form, many whitecaps, some spray 5/8 obscured 5 10 - 12 6 Strong breeze; waves 8-13 ft, whitecaps common, more spray 3/4 obscured 12 - 14 7 7 6 Near gale; sea heaps up, waves 13-20 ft, foam streaks off breakers 7 8 7/8 obscured 14 - 16 8 Completely overcast 9 Gale; waves 13-20 ft, greater length, crest edges break, foam streaks 8 Over 16 9 Strong gale; waves 20 ft, sea rolls, dense foam streaks, spray 9 Gear Performance Gear Performance Code Code Unsatisfactory; ripped net Good performance 0 7 Satisfactory ; unspecified minor problems Unsatisfactory; net off bottom for part/all of tow 8 1 Unsatisfactory; caught crab pot Satisfactory; minor hangup or rip 2 9 Unsatisfactory ; unable to reach bottom due to currents 10 Satisfactory; net off bottom for short part of tow 3 Unsatisfactory; net not properly configured Satisfactory ; caught crab pot 4 11 Unsatisfactory ; crossed doors Unsatisfactory ; net mudded down Unsatisfactory ; unspecified problem 5 12 Unsatisfactory ; net hung up 6 13

Initials:

Appendix B1.–Page 2 of 2.

Skipper Trawl Record Instructions

This form records each haul: area, date, position, time trawled, depth, length of tow, gear performance, and weather conditions.

Cruise Number	Last 2 digits of year followed by sequential cruise number. The large- mesh survey is the first trawl survey of the season, so in 2016 the cruise number is "1601"
Haul Number	Beginning with 1, each haul is numbered sequentially through each cruise regardless of gear performance.
Region Survey area Stratum	not used not used not used
Station Number	Consult charts provided by cruise leader or special projects operational plan for station name.
Vessel Code	Code for vessel conducting survey. Prefilled with "30"=Resolution.
Date	Month/day/year
Starting Position <i>Latitude, Longitude</i>	degrees/minutes/decimal minutes where trawl net reaches bottom
Compass Heading	Direction of tow according to magnetic compass
Trawl time Start End	Time trawl net reaches bottom, use 24 hour clock Time trawl net retrieval begins, use 24 hour clock
Dist- Towed	Length of the haul in nautical miles, determined by skipper
Haul Back Position Latitude, Longitude	degrees/minutes/decimal minutes where trawl net retrieval begins
Elapsed	Amount of time in minutes net was fishing
Depth Maximum Minimum Depth Avg. Depth	Maximum depth of haul in fathoms Minimum depth of haul in fathoms Average depth of haul in fathoms, determined by skipper
Weather <i>Cloud</i> , <i>Wind</i> , <i>Swell</i>	Use criteria on data sheet
Scope	Fathoms of trawl wire deployed
Gear Perf.	Use Gear Performance codes on skipper trawl record form. Written explanation should accompany problem tows.
Bottom Temp.	Recorded in database upon download of temperature logger attached to net. Not entered while vessel is at sea.
Initials	Initials of person entering data into the haul database.

		SAMPLING		ECES C	-			
Haul	Vessel	Resolution	_Cruise		Total			
Date I Recorder's Name	ocation					tare) Wt. -hauled deb		
	100%							unt of
Species Name	10070	Measured	Weights	Unmea (D)	sured V UMPE	Weights RS)	unme	asured:
Halibut	-						weighter	1
0 0								
Y b								
0 0 0 0 0 0 0								
đ								
Q								
Arrowtooth								
Flathead								
Pollock	Y or N							

Species/Sex count:		100% coun	.+-	*Halibut a	1.01			

Appendix B2.–On-deck Sampling Form – Species Composition.

<u>On-aeck Sampling Fo</u>	rm - species Composition Instructions						
Header Information:							
Haul	Sequential number for current haul						
Date	Date of current haul						
Recorder's Name	Last name of person recording data on the form						
Vessel	Name of vessel conducting survey – prefilled with "Resolution"						
Location	Nearest bay, headland, or gully						
Cruise	Last 2 digits of the year followed by sequential cruise number. The large- mesh survey is the first trawl survey of the season, so in 2016 the cruise is "1601".						
Total Wt.	Weight of catch and codend before it is emptied into sorting bin.						
Bag (tare) Wt.	Weight of empty codend after catch is emptied. This weight differs depending on where on the net the crane lifts from.						
Whole-hauled debris weight	Weight of large debris items such as crab pots, buckets, rocks, logs, etc. that are in the codend.						
Data fields: Species Name	List species name, common or scientific, for each species in the haul. List males and females separately if sexed. Some of the most common species are prefilled.						
100%	Check this column for all species/sexes that are whole-haul sampled. Circle "Y" or "N" for the prefilled "Pollock" row. If Tanner crab are subsampled specify "No" in this column.						
Measured Weights	Enter weights of all baskets/totes of measured animals. Halibut and skates do not get weighed, instead record all lengths on this form.						
Unmeasured Weights (DUMPERS)	Enter weights of all baskets/totes of animals that are not measured.						
Count of unmeasured: weighed	Enter number of individuals that have been weighed, but not measured. All animals, if possible, are to be enumerated if not measured.						
Count of unmeasured: unweighed	Enter number of individuals not weighed or measured. This only applies to species such as pollock or Pacific cod that are counted over the vessel from the sorting bins.						
	This information can be completed during data entry and helps verify that corded on the form are entered into the database.						
Species/Sex count	Enter total number of species and sexes recorded during the haul.						
100% count	Enter total number of species and sexes whole-haul sampled during the haul.						
Initial the circle in th	e bottom right corner of the form after data has been entered into the catch						

On-deck Sampling Form - Species Composition Instructions

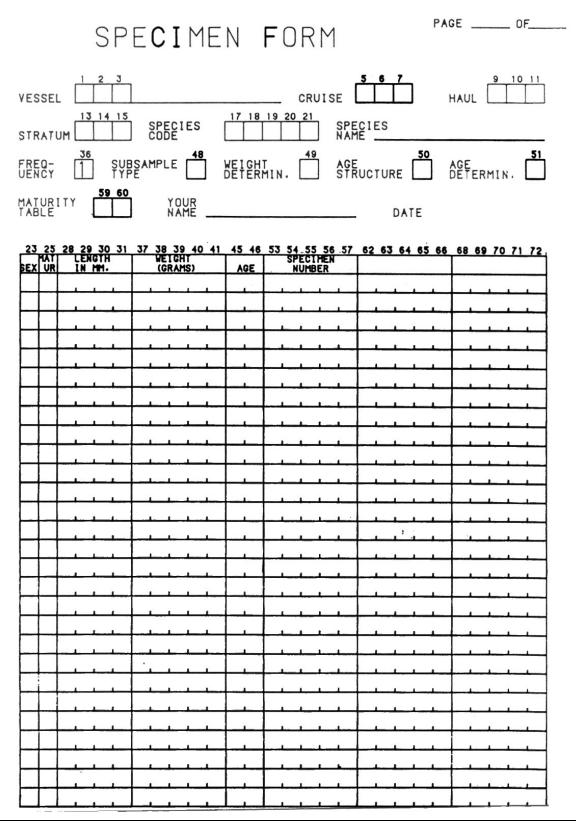
initial the circle in the bottom right corner of the form after data has been entered into the catc database.

Appendix B3.–Specimen Collection Form.

Spacir	non collocti	on form			
Specimen collection form					
F	R/V Resolutic	on			
Species (suspected):					
Date:					
Haul Number:					
General Location:					
Collector:					
Photo Taken?	yes	no			
file name and location:					
Reason for collection:	Conf	irm ID			
	Special	l Project			
	Guide I	nclusion			
	other (specify)				

Specimen collection form instructions

This form is completed and included in the sample bag of each specimen collected during the trawl survey.

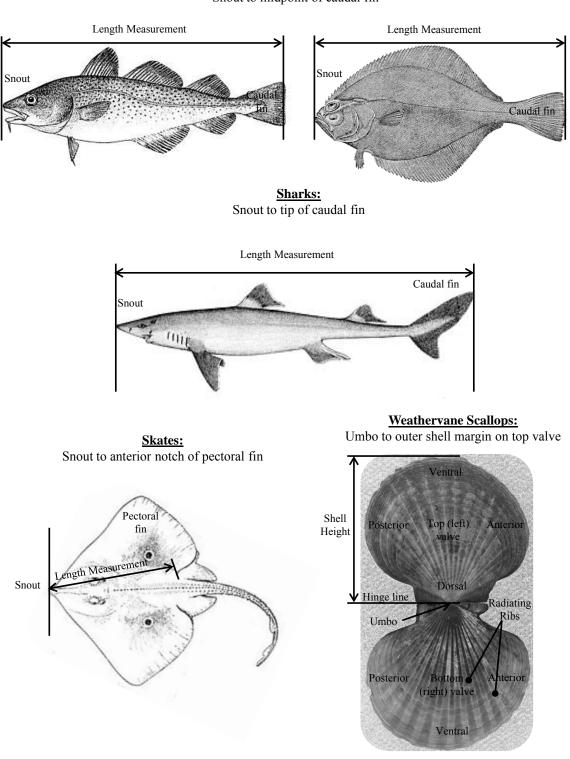

Species (suspected)	Species name or common name if known of animal collected. If the identification is in question, record the name of the possible identification based on preliminary examination.
Date	Date animal was captured
Haul Number	Sequential number for the haul animal was captured
General Location	Nearest bay, headland, or gully
Collector	Name of the person directing collection of the animal
Photo Taken? Yes/No	Circle whether a picture was taken
File name and location	Where on the survey computer the picture file is saved.
Reason for collection	Check the box with the reason the sample was collected. If a "Special Project" or "other", specify the project or reason on the bottom line.

SP	SPECIES STATION NUMBER													
VE	SSE	L		TRAWL HAUL NU				AUL NU	MBER			_		
DA	ΤE				-		SURVEY NUMBER			R Page of _				
							CLU	тсн		BITTER	R CRAB SAMPLE			LAB USE
	S E X C O D E	LEGAL CODE	FEM MATURITY	CARAPACE SIZE (0.01 MM)	S H L L	D I S E A S E	FULL- NESS	C O N D I T I O N	E G D E V E L	BCS SLIDE NO. <u>SAMPLER</u> INITIALS	PCR WELL NO. <u>SAMPLER</u> INITIALS	PCR TRAY NO	COMMENTS	BCS SLIDE RESULT <u>READER</u> INITIALS
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														
11														
12														
13														
14														
15														
16														
17														
18														
19														
20														
21														
22														
23														
24						<u> </u>		<u> </u>						
25														<u> </u>
26						<u> </u>		<u> </u>		 				├
27						<u> </u>								├───┤
28						<u> </u>		<u> </u>	<u> </u>					
29						-								├
30														
	SPEC	IFS		FEMALE N	ATUR	NTY_	DISE	ASE C	ODF	-	CLUTCH FULLNESSCLUTCH			
	2. P. CAMTSCHATICUS 1. Juvenile Female			rasitic			0. empty		1. Dead Eggs No					
	6. C. BAIRDI 2. Adult Female			emerte tter cra		orms			2. Dead Eggs < 2					
	9. C. MAGISTER SHELL CONDITION SEX CODE. 1. Soft/New Pliable			ack Ma			2. 1/8 to 1/4 3. Dead Eggs 3. 1/4 to 1/2 4. Barren with		 Dead Eggs > 2 Barren with Cl 					
1. Ma				2. New		-							5. Barren with "M	
2. Fei	nale			3. Old			1. Ur	neyed	eggs		5. 3/4 to full empty Egg Cases			
LEG/	L CO	DE		4. Very Old	/Very	Very (Old 2. Ey	ed eg	gs				6. Barren with no	
	-	Male					3. Ha	atching	J-eyed	l eggs and			k here when crat	
2. Legal Male (returned to water after sampling)				emp	empty egg cases been entered into crab databas				o database					

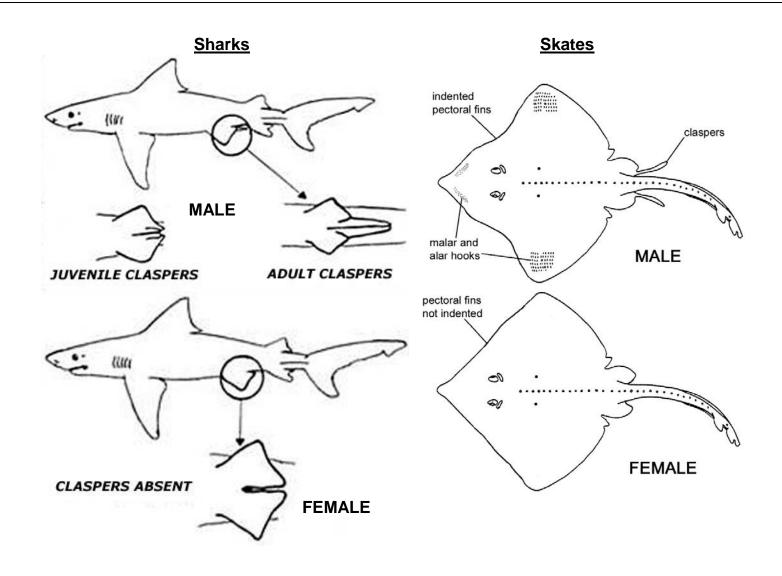
ADF&G TRAWL SURVEY CRAB DATA FORM

ADF&G Trawl Surve	<u>y Crab Data Form Instructions</u>
Species	Code (at bottom of form) followed by common name or scientific name of crab (one species per form)
Vessel	Name of vessel conducting survey
Date	Month, day, year when information is collected and recorded
Station Number	Number or name assigned to specific location of trawl
Trawl Haul Number	r Sequential number for current haul (one haul per form)
Sex Code	Code (at bottom of form) for sex of crab sampled
Legal Code	Code (at bottom of form) applies to male crab only, and represents legal status of crab sampled
Fem Maturity	Code (at bottom of form) applies to female crab only, and represents maturity status of crab sampled
Carapace size	Indicate to nearest 0.01 millimeter. For Tanner and Dungeness crabs measurement is carapace width, for king crab it is carapace length.
Shell	Code (at bottom of form) describes the condition of crab shell, including wear, discoloration, epibionts, etc.
Disease	Codes (at bottom of form) describe the most common parasites/diseases encountered during the survey. Multiple parasites/diseases may be present. Parasites or diseases not listed should be noted in the comments column.
Clutch	
Fullness	Code (at bottom of form) describes the relative amount of eggs in the abdomen of an adult female crab
Condition	Code (at bottom of form) describes the physical condition of eggs in abdomen, or setae if eggs are not present.
Egg Devel	Code (at bottom of form) describes visible signs of egg development in the abdomen if present.
Bitter Crab Sample	
BCS Slide No.	Sequential sample number of slide with blood smear of crab sampled. Include initials of person making blood smear at top.
PCR Well No.	Location of well in PCR tray with blood from crab sampled. Include initials of person injecting blood in wells at top.
PCR Tray No.	Sequential number of PCR tray containing well with blood from crab sampled.
Comments	Record comments related to crab sampled such as parasites, morbidity, lack of blood smear during bitter crab sampling, etc.
Lab Use	BCS Slide Result Results of bitter crab sample blood smear examination under microscope describing degree of parasitization. Include initials of person examining blood smear at top.

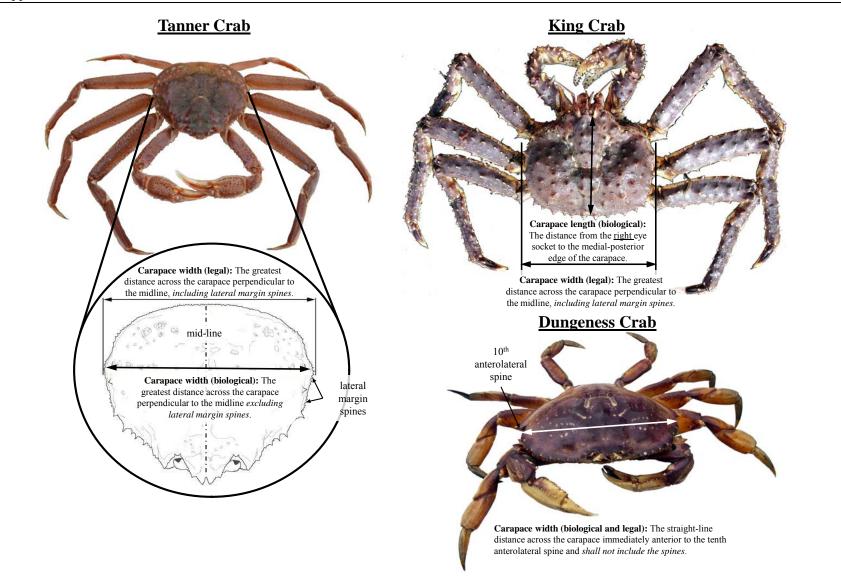
ADF&G Trawl Survey Crab Data Form Instructions

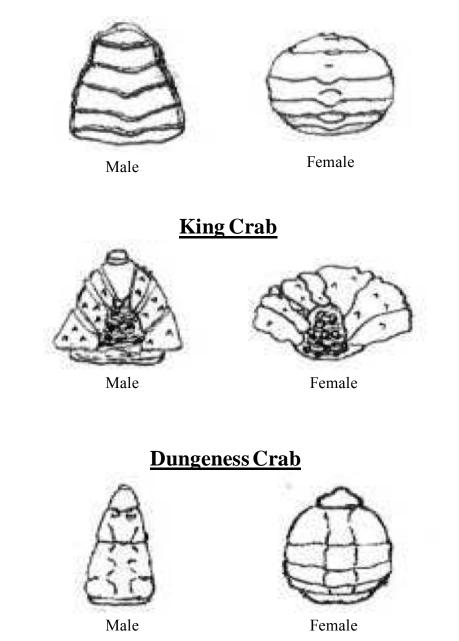

Appendix B5.–Page 2 of 2.

Specimen Form Instructions


This form records length, sex and corresponding otolith number for walleye pollock otolith sampling.

Vessel	Name of vessel conducting survey
Cruise	Last 2 digits of the year followed by sequential cruise number. The large-mesh survey is the first trawl survey of the season, so in 2016 the cruise is "1601"
Haul	Sequential number for current haul. If multiple hauls on one form leave blank
Stratum	Leave blank
Species Code	5 digit species code (walleye pollock=21740; AFSC 2014)
Species Name	Enter common name
Frequency Subsample Type Weight Determination Age Structure Age Determination Maturity Table	Leave blank Leave blank Leave blank Leave blank Leave blank Leave blank
Your Name	Last name of sampler
Date	Date of the haul when fish were captured. If multiple dates on one form leave blank.
Sex	Enter sex codes (1=male, 2=female)
Maturity	Leave blank
Length	Length from tip of snout to midpoint of caudal fin (cm, convert to mm)
Weight	Leave blank
Age	Leave blank
Specimen Number	Enter sequential number corresponding to label on the specimen vial
Blank 1	Use for haul number if multiple hauls per form
Blank 2	Use for date if multiple days per form


APPENDIX C. FISH SAMPLING


<u>Finfish:</u> Snout to midpoint of caudal fin

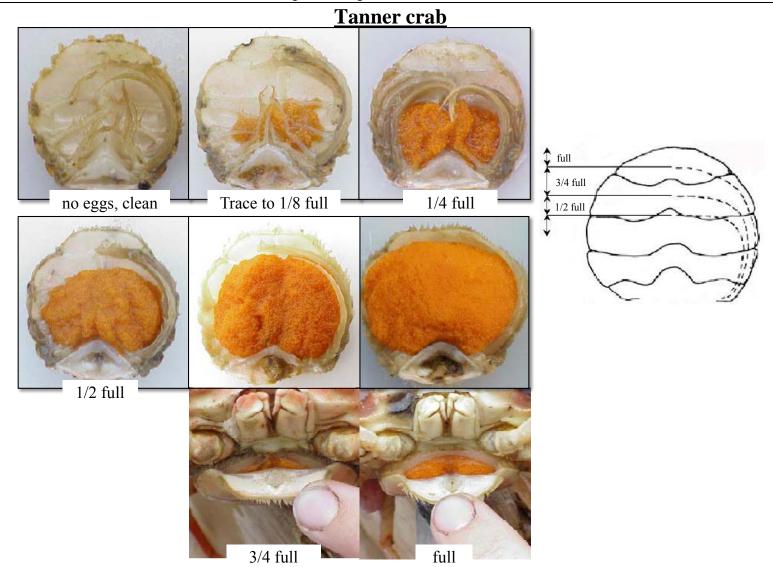
APPENDIX D. CRAB SAMPLING

Tanner Crab

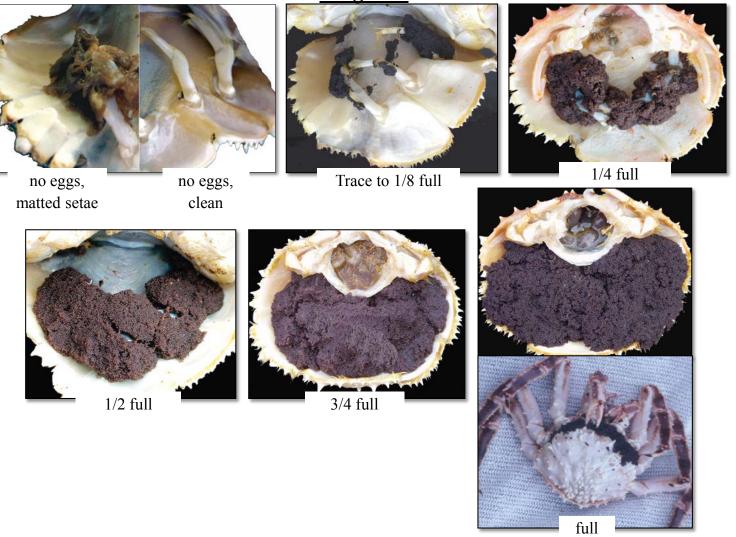
Appendix D3.–Shell condition determination.

Shell condition is a general description of the appearance of a crab's exoskeleton and is determined by examining characteristics that show wear with time. Shell rigidity, shell color, spine, chelae, and dactyl wear, the amount of scratching or abrasions, and epibiont growth are all indicators of shell condition. Both the dorsal and ventral sides of each crab should be examined and, using standard definitions, classified into a shell condition. A crab can exhibit characters from more than one shell condition, and it is the sampler's responsibility to determine which characters are more prevalent and classify the crab accordingly.

The ADF&G trawl survey program recognizes 4 shell condition categories. The following are descriptions developed for Tanner crab, but can be adapted to other crab species.


- Soft/New Pliable 1) The exoskeleton is soft, flaccid, similar in texture to skin, and loses shape out of water. No scratches, abrasions, or epibionts are present. OR 2) Carapace and chela are firm, but thin and flexible and can be easily indented with slight thumb pressure. Legs are easily compressed when pinched. Colors are bright. Iridescence is common. Abdominal flap may appear translucent. Spines, chela tips, chela teeth, and dactyl tips are sharp if not pliable. No scratches, abrasions, or epibionts are present.
- New Carapace and chela are hard and will crack when pressure is applied. Legs are not easily compressed when pinched and will break if bent. Colors are bright. Iridescence, particularly on the chelae, is often visible. Ventral surface can be any variation of white or pink. Spines, chela tips, chela teeth, and dactyl tips are sharp. Abdomen, coxae, and legs have little or no scratches and abrasions. Slight fouling may be present, including but not limited to: leech egg cases, small barnacles, and encrusting bryozoans. On Tanner crab females, subtle grasping mark imprints may be present on the first 2 pairs of legs.
- Old Colors are dull. Iridescence on the chelae may be visible. Ventral surface typically appears yellow to brown. Spines, chela tips, chela teeth, and dactyl tips may show wear. Abdomen, coxae, and legs have few to numerous scratches and abrasions, which may be slightly darker than the shell. Slight fouling may be present, including but not limited to: leech egg cases, barnacles, bryozoans, tubeworm casings, and anemones. On Tanner crab females, grasping marks are often present and discolored on the first 2 pairs of legs.

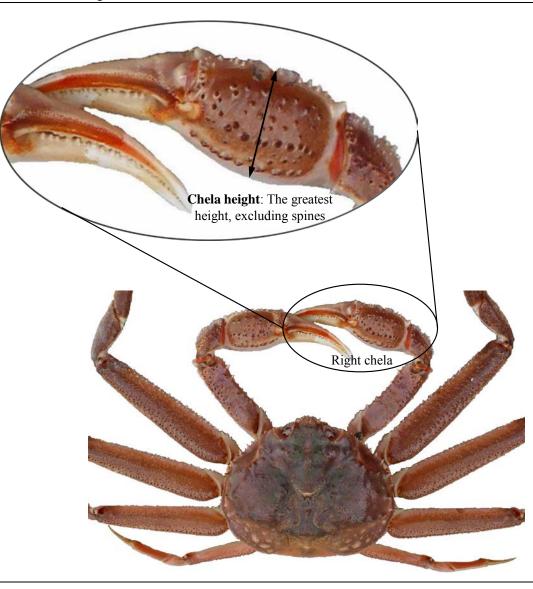
Very Old/Very Very
1) Colors are dull and often dark on the dorsal surface. Ventral surface typically appears yellow to brown with darker areas. Spines, chela tips, chela teeth, and dactyl tips are heavily worn. Legs are commonly damaged or missing. Abdomen, coxae, and legs have numerous scratches and abrasions, which are typically darker than the shell. Slight to moderate fouling is common, including but not limited to: leech egg cases, large barnacles, bryozoans, hydroids, tubeworm casings, and anemones. On Tanner crab females, multiple grasping marks are often present and discolored on the first 2 pairs of legs. OR 2) Carapace may be soft and spongy because of decay. Colors are dark overall. Spines, chela tips, chela teeth, and dactyl tips are heavily worn. Legs are commonly damaged or missing. Moderate to extensive fouling is common.


Appendix D4.-Crab diseases and parasites.

When present, the following diseases and parasites are noted in the crab measurement database.

Bitter crab disease	A fatal disease of crustaceans caused by a parasitic dinoflagellate of the genus <i>Hematodinium</i> known to infect <i>Chionoecetes</i> spp. crabs. Live crabs in the later stages of infection have an exaggerated pink carapace or legs and white opaque hemolymph that can be observed if a leg is cracked. Crabs infected with this parasite are unmarketable because of an astringent aspirin aftertaste.
Black mat	A systemic fungal infection (<i>Trichomaris invadens</i>) that forms nondiscrete blotches of a black, tar-like mass on the carapace and legs. It has a fibrous like texture when scraped.
Nemertean worms	Egg parasites in clutches of adult female crabs that prey on developing embryos. Worms are small, red in color, and often 's' shaped during early stages of development and are most obvious in clutches with a high number of dead embryos.
Parasitic barnacle	The rhizocephalan barnacle <i>Briarosaccus callosus</i> exclusively parasitizes king crab species. The visible externa of the parasite is located in the abdominal flap of both sexes and varies in size from as small as a jellybean to as large as a chicken egg and in color from pale yellow to deep red. It causes castration in infected crabs and is uncommon around Kodiak and along the Alaska Peninsula.
Other diseases and parasites that may be encountered are listed below.	
Torch	Caused by a chitin-digesting bacterium that consumes the chitin in the shells of crab and results in dark exoskeletal lesions that pit the exoskeleton and a blackened necrotic region.
'Cottage cheese' disease	A microsporidian infection recognizable by white, large curd cottage cheese-like appearance of the viscera. Obvious when the carapace is removed but is also evident in the swollen abdomens of infected crab.
Pepper crab	Similar in appearance to black mat. Cause is unknown, but is visibly dispersed in discrete black grains across the carapace and legs, as opposed to the nondiscrete blotches of black mat.

King crab



Dungeness crab

Note: Not all clutch fullnesses are shown here

Appendix D6.–Tanner crab chela height measurement.

