

SPECIES AND HABITAT DATA FOR MARINE CONSERVATION ZONE AREAS OF INTEREST: RATHLIN ISLAND; BALLYCASTLE BAY; OUTER BELFAST LOUGH

Delivered under the Service Level Agreement between the Agri-Food and Biosciences Institute (AFBI) and the Department of Environment (DoE), Environment and Marine Group, Water Management Unit & Marine Division in respect of scientific and technical services (2014-2015) **October 2015**

Author: AFBI Fisheries and Aquatic Ecosystems Branch

Document version control:

Version	Issue date	Modifier	Note	Issued to and date
1.1	11/03/2015	AFBI-AC	MS to also review	DOE, MS- 11/03/2015
1.2	23/09/2015	DOE	Joe Breen, Nuala McQuaid	AFBI, AC- 23/09/2015
1.3	09/10/2015	AFBI-AC	Final edits	DOE - 09/10/2015

Further information

Dr. Annika Clements SSO Seabed Habitat Mapping Project Leader Fisheries & Aquatic Ecosystems Branch Newforge Lane Belfast BT9 5PX

Tel: 028-90255153 Fax: 028-90255004 Email: annika.clements@afbini.gov.uk

http://www.afbini.gov.uk/index/services/services-specialist-advice/coastal-science/coastal-science-seabedmapping.htm

Recommended citation:

.

AFBI. 2015. Species and habitat data for Marine Conservation Zone Areas of Interest: Rathlin Island, Ballycastle Bay, Outer Belfast Lough. Report to the Department of the Environment.

Table of Contents

1.	IN	ITRODUCTION	
	1.1 H	abitats and species of known conservation interest	
	1.2 R	ationale for site selection	6
	1.3 P	hysical conditions	7
	1.	3.1 Rathlin Island and Ballycastle Bay	7
	1.	3.2 Belfast Lough	
2.	М	ETHODOLOGY	
	2.1. \	/ideo survey	
	2.2. E	Benthic grabs	
	2.3 V	ideo footage analysis	
	2.4 B	enthic grab analysis	
3.	RI	ESULTS	
	3.1 H	abitats: Identified Biotopes	
	3.2	Rathlin Deeps	
	3.3	Ballycastle Bay / Carrickmannanon Rock	
	3.5	Outer Belfast Lough	
4.	D	ISCUSSION	
5.	RI	EFERENCES	
Ack	nowle	dgements	
AN	NEX I	Priority Marine Features (Northern Ireland) not included on pMCZ features list	
AN	NEX I	I: Multivariate analysis of infaunal data from CO2414 Rathlin and Ballycastle grab samples	
AN	NEX I	II: Grab sampling notes: CO2414 and CO0715	

Table of Figures and Tables

Table 1.2. Priority Marine Feature Habitats for the Northern Ireland MCZ designation process. 5
Table 1.3. Priority Marine Feature limited/low mobility species for the Northern Ireland MCZ designation process. 5
Table 1.4. Priority Marine Feature highly mobile species for the Northern Ireland MCZ designation process. 5
Table 1.5. Translation table between EUNIS and JNCC habitats, biotope complexes and biotopes and the equivalent Northern Ireland pMCZ habitats. Note that exact equivalency is not possible due to the nature of the existing classification systems, and this should only be used as a general guide. 6
Figure 1. Predicted substrates/broadscale habitats as per EMODnet Seabed Habitats via EU SeaMap, based on British Geological Survey (BGS) data and JNCC modelling for the UK SeaMap (2010) project
Figure 2. Predicted Belfast Lough substrates/broadscale habitats as published in EU SeaMap Atlantic Habitats (harmonised), using UKSeaMap (2010) and BGS data
Table 3.2. Dates and positions of video tows and grab samples used in full biotope analysis for this project
Table 3.3. Species and substratum information and biotope classification from video tows. Video tows were broken into segments where there was notable change in substratum or major characterising species. Table also provided in Excel workbook with this report. 16
Figure 3. Spatial distribution of biotopes and biotope complexes over the Rathlin Area of Interest, overlain on multibeam bathymetry from JIBS and AFBI sources. Grab sample sites are shown as stars and labelled to facilitate cross-referencing with sample species lists. The grabs containing living <i>Modiolus modiolus</i> are shown as red stars (to the North-west of the study area).
Table 3.4. Species lists from video tows for the Rathlin AoI. 18
Figure 4. Spatial distribution of biotopes and biotope complexes over the Ballycastle Bay (Carrickmannanon Rock) Area of Interest, overlain on multibeam bathymetry from JIBS sources. Grab sample sites are shown as stars and labelled to facilitate cross-referencing with sample species lists
Table 3.5. Species lists from video tows for the Ballycastle Bay/Carrickmannanon Rock AoI. 21
Figure 5. Spatial distribution of biotopes and biotope complexes over the Outer Belfast Lough Area of Interest, overlain on multibeam bathymetry. Grab sample sites are shown as stars. A number of acoustic facies/'seabed-types' have been mapped across the site. Bathymetric contour lines are also shown based on UKHO data
Table 3.6. Species lists from video tows for the Outer Belfast Lough AoI

1. INTRODUCTION

AFBI has undertaken a number surveys to support the provision of evidence for consideration in the Marine Conservation Zone (MCZ) designation process by the Department of the Environment (DOE). Surveys have concentrated on "Areas of Interest" (AoIs) as identified by DOE, using appropriate methods to sample the biological communities and capture habitat information.

This report describes the subtidal benthic communities, defined as the species living in and on the seabed, and the physical environment in which they exist at: (1) Rathlin Island; (2) Ballycastle Bay, and (3) Outer Belfast Lough. Species and habitats of conservation importance are highlighted where these are identified within these areas

1.1 Habitats and species of known conservation interest

In Northern Ireland, species and habitats considered of conservation importance for inclusion in the MCZ designation process (following the Marine Act (Northern Ireland) 2013) were selected through the amalgamation of the following:

- The OSPAR list of Threatened and/or Declining Species and Habitats (OSPAR T&D);
- The UK Biodiversity Action Plan list (UK BAP);
- Northern Ireland List of Priority Habitats and Species (NI Priority);
- Species of Conservation Concern (SOCC), and
- Nationally Important Marine Features (NIMF).

The species and habitats identified through this process were then reviewed through stakeholder consultation. A resulting list of Priority Marine Features (species and habitats) was thus produced (see Tables 1.2 to 1.4, and Annex I)^{1,2}. Table 1.2 below provides the Priority Marine Feature (PMF) Habitats for Northern Ireland that have been subsequently selected for specific inclusion in the MCZ designation process for the inshore region, and Tables 1.3 and 1.4 show the PMF species which have been selected. Other PMF habitats and species that are considered to be already adequately represented in existing Marine Protected Areas (MPAs, e.g. through marine SACs – Special Areas of Conservation) are detailed in Annex I. Note "pMCZ" means "proposed Marine Conservation Zone".

¹<u>http://www.doeni.gov.uk/consultation_document_on_draft_guidance_on_selection_and_designation_of_marine_cons_ervation_zones_mczs_in_ni_inshore_region.pdf</u>

² <u>http://www.doeni.gov.uk/justification_report_for_selection_of_pmczs_features-version1.0.pdf</u>

pMCZ Habitat	Component (sub-scale) habitats
Deep sea bed	Cold water coral reefs ²
Low energy circalittoral (subtidal) rock	Estuarine rocky habitats
Sublittoral (subtidal) biogenic reefs	Horse Mussel (Modiolus modiolus) beds
	Blue Mussel (Mytilus edulis) beds
	Brittlestar beds
Sublittoral (subtidal) muds	Mud habitats in deep water
	Sea-pen and burrowing megafauna communities
	Blue Mussel (<i>Mytilus edulis</i>) beds
Sublittoral (subtidal) sand	Circalittoral sand and gravel communities
	Tide-swept channels
	 Native oyster (Ostrea edulis) beds
	Brittlestar beds
Sublittoral (subtidal) mixed sediments	Brittlestar beds

Table 1.2. Proposed MCZ Habitats for the Northern Ireland MCZ designation process (including examples of component habitats).

pMCZ Limited/low mobility species
Arctica islandica (Ocean Quahog)
Atrina fragilis (Fan Mussel) ⁴

Table 1.3. Proposed MCZ limited/low mobility species for the Northern Ireland MCZ designation process.

pMCZ Highly mobile species								
Dipturus batis (Common Skate)								
Cepphus grylle (Black Guillemot)								

Table 1.4. Proposed MCZ highly mobile species for the Northern Ireland MCZ designation process.

The identified pMCZ features provide a basis for identifying areas of interest for proposed MCZs, therefore a sound knowledge of the distribution and condition of these features is necessary to underpin the MCZ designation process.

Northern Ireland is revising the list of MNCR/EUNIS biotope complexes or biotopes (levels 4 or above) which form components of the pMCZ or PMF habitats, and a provisional list of EUNIS and MNCR habitats, biotope complexes and biotopes is included below in Table 1.5.

EUNIS level	EUNIS code 2007-11	EUNIS name 2007-11	JNCC 04.05 code	pMCZ broadscale habitat	pMCZ component habitat (NB. Not exhaustive)				
3	A5.6	Sublittoral biogenic reefs	SS.SBR	Sublittoral (subtidal) biogenic reefs	Horse mussel beds, Blue mussel beds, Brittlestar beds				
3	A5.1	Sublittoral coarse sediment	SS.SCS	Sublittoral (subtidal) sand (incorporates gravel communities)	Circalittoral sand and gravel communities				
3	A5.3	Sublittoral mud	SS.SMu	Sublittoral (subtidal) muds	Mud habitats in deep water, Seapen and burrowing megafauna communities, Blue mussel beds				
3	A5.4	Sublittoral mixed sediments	SS.SMx	Sublittoral (subtidal) mixed sediments	Brittlestar beds				
3	A5.2	Sublittoral sand	SS.SSa	Sublittoral (subtidal) sand	Circalittoral sand and gravel communities, Tide-swept channels, Native oyster beds, Brittlestar beds				
4	A5.62	Sublittoral mussel beds on sediment	SS.SBR.SMus	Sublittoral (subtidal) biogenic reefs	Blue mussel beds				
4	A5.36	Circalittoral fine mud	SS.SMu.CFiMu	Sublittoral (subtidal) muds					
4	A5.35	Circalittoral sandy mud	SS.SMu.CSaMu	Sublittoral (subtidal) muds					
4	A5.34	Infralittoral fine mud	SS.SMu.IFiMu	Sublittoral (subtidal) muds					
4	A5.33	Infralittoral sandy mud	SS.SMu.ISaMu	Sublittoral (subtidal) muds					
4	A5.25	Circalittoral fine sand	SS.SSa.CFISa	Sublittoral (subtidal) sand	Arctica islandica habitat				
4	A5.26	Circalittoral muddy sand	SS.SSa.CMuSa	Sublittoral (subtidal) sand	Arctica islandica habitat				
4	A5.23	Infralittoral fine sand	SS.SSa.IFiSa	Sublittoral (subtidal) sand	Arctica islandica habitat				
4	A5.24	Infralittoral muddy sand	SS.SSa.IMuSa	Sublittoral (subtidal) sand	Arctica islandica habitat				
5	A4.111	[Balanus crenatus] and [lubularia indivisa] on extremely tide- swept circalitoral rock	CR.HCR.FaT.BalTub	Sublittoral (subtidal) sand	Tide-swept channels				
5	A4.134	[Flustra foliacea] and colonial ascidians on fide-swept moderately wave-exposed circalittoral rock	CR.HCR.XFa.FluCoAs	Sublittoral (subtidal) sand	Tide-swept channels				
5	A3.212	[Laminaria hyperborea] on tide-swept, infralittoral rock	IR.MIR.KR.LhypT	Sublittoral (subtidal) sand	Tide-swept channels				
5	A3.213	[Laminaria hyperborea] on tide-swept infralittoral mixed substrata	IR.MIR.KR.LhypTX	Sublittoral (subtidal) sand	Tide-swept channels				
5	A6.611	Deep-sea [Lophelia pertusa] reefs	SS.SBR.Crl.Lop	Deep sea bed - deeper than current "circalittoral" definition but not same as EUNIS level 2 "Deep-sea bed"	Cold water coral reefs (as yet not found)				
5	A5.624	[Modiolus modiolus] beds with [Chlamys varia], sponges, hydroids and bryozoans on slightly tide-swept very sheltered circalittoral mixed substrata	SS.SBR.SMus.ModCvar	Sublittoral (subtidal) biogenic reefs	Horse mussel beds				
5	A5.623	[Modiolus modiolus] beds with fine hydroids and large solitary ascidians on very sheltered circalittoral mixed substrata	SS.SBR.SMus.ModHAs	Sublittoral (subtidal) biogenic reefs	Horse mussel beds				
5	A5.622	[Modiolus modiolus] beds on open coast circalittoral mixed sediment	SS.SBR.SMus.ModMx	Sublittoral (subtidal) biogenic reefs	Horse mussel beds				
5	A5.621	[Modiolus modiolus] beds with hydroids and red seaweeds on tide-swept circalittoral mixed substrata	SS.SBR.SMus.ModT	Sublittoral (subtidal) biogenic reefs	Horse mussel beds				
5	A5.625	[Mytilus edulis] beds on sublittoral sediment	SS.SBR.SMus.MytSS	Sublittoral (subtidal) biogenic reefs	Blue mussel beds				
5	A5.361	Seapens and burrowing megafauna in circalittoral fine mud	SS.SMu.CFiMu.SpnMeg	Sublittoral (subtidal) muds	Seapen and burrowing megafauna communities				
5	A5.343	[Philine aperta] and [Virgularia mirabilis] in soft stable infralittoral mud	SS.SMu.IFiMu.PhiVir	Sublittoral (subtidal) muds					
5	A5.444	[Flustra foliacea] and [Hydrallmania falcata] on tide-swept circalittoral mixed sediment	SS.SMx.CMx.FluHyd	Sublittoral (subtidal) mixed sediments	Tide-swept channels				
5	A5.445	[Ophiothrix fragilis] and/or [Ophiocomina nigra] brittlestar beds on sublittoral mixed sediment	SS.SMx.CMx.OphMx	Sublittoral (subtidal) mixed sediments	Brittlestar beds				
5	A5.445	[Ophiothrix fragilis] and/or [Ophiocomina nigra] brittlestar beds on sublittoral mixed sediment	SS.SMx.CMx.OphMx	Sublittoral (subtidal) mixed sediments	Tide-swept channels				
5	A5.435	[Ostrea edulis] beds on shallow sublittoral muddy mixed sediment	SS.SMx.IMx.Ost	Sublittoral (subtidal) mixed sediments	Native oyster beds				
6	A4.1122	[Alcyonium digitatum] with dense [Tubularia indivisa] and anemones on strongly tide-swept circalittoral rock	CR.HCR.FaT.CTub.Adig		Tide-swept channels				
6	A4.1342	[Flustra foliacea], small solitary and colonial ascidians on tide- swept circalittoral bedrock or boulders	CR.HCR.XFa.FluCoAs.SmAs		Tide-swept channels				
6	A4.3112	Dense brittlestars with sparse [Ascidia mentula] and [Ciona intestinalis] on sheltered circalittoral mixed substrata	CR.LCR.BrAs.AmenCio.Bri		Brittlestar beds				
6	A5.5211	Red seaweeds and kelps on tide-swept mobile infralittoral cobbles and pebbles	SS.SMp.KSwSS.LsacR.CbPb	Sublittoral (subtidal) mixed sediments	Tide-swept channels				

Table 1.5. Translation table between EUNIS and JNCC habitats, biotope complexes and biotopes and the equivalent Northern Ireland pMCZ habitats. Note that exact equivalency is not possible due to the nature of the existing classification systems, and this should only be used as a general guide.

1.2 Rationale for site selection

Rathlin is of interest to the DOE because of the depth of water and associated habitats, and the fact that the survey area is believed not to have been subjected to any form of intensive fishing by trawling or dredging. The reason for this is a probably a combination of water depth, strong currents, exposure and the proximity of a busy Traffic Separation Zone.

Ballycastle Bay is of interest to the DOE because it is a site in which large Common Skate are regularily caught by recreational sea anglers, and may be proposed as a potential MCZ in the

future if required to re-enforce the ecological coherence of the wider NI/UK Marine Protected Area network.

Belfast Lough pMCZ has been identified by DOE as a site with a known bed of Ocean Quahogs, and the Department needs additional information on the nature of the habitat in which the species is found to support the establishment of an appropriate MCZ boundary.

1.3 Physical conditions

1.3.1 Rathlin Island and Ballycastle Bay

Strong tidal flows occur through the Rathlin Sound and due to the complex bathymetry, there are several tidal races, overfalls and eddies that are subject to variations in current direction and force. Where the tidal wave is forced between Rathlin Island and the mainland current speeds can exceed 3ms⁻¹ on a spring tide and 2 ms⁻¹ on a neap tide, with similar values occurring immediately offshore of major headlands, such as Fair Head (InYourFootsteps, 2011, as published in DETI, 2011). Maximum surface speeds that exceed 4 ms⁻¹ have also been observed at this location. Over a tidal cycle on both spring and neap tides current speeds remain over 1 ms⁻¹ for approximately 8hrs in this area (UKHO, 1995).

The north coast is exposed to strong Atlantic Ocean swell, with prevailing westerly winds, resulting in high wave exposure along the north coast of Rathlin Island. Ballycastle Bay is afforded some protection by Rathlin Island from the swell, although significant wave heights have been recorded within the Bay. Moderate to strong tidal currents result in mobile sedimentary bedforms which are a prevailing feature of the seabed, and result in a dominance of coarse substratum throughout much of the region (north, east and west of Rathlin Island, and within Ballycastle Bay).

Sediments within the local region include bedrock outcrops, boulders, mobile cobbles and coarse sands and gravels (of glacial and local origins), with sand and muddy sand also noted from broadscale British Geological Survey mapping (see Figure 1 below, taken from EU SeaMap Atlantic Habitats (harmonised)³, using UKSeaMap (2010) and BGS data). However, the Northern Ireland nearshore habitat mapping project Ballycastle Bay map (Mitchell and Service, 2004) did not find muddy sand sediments in this area, and instead identified only coarse sands and gravels, with small pockets of muddy gravel just offshore from the mouth of the Margy river which flows into Ballycastle Bay.

³ Available from: <u>http://www.emodnet.eu/seabed-habitats</u>

Figure 1. Predicted substrates/broadscale habitats as per EMODnet Seabed Habitats via EU SeaMap, based on British Geological Survey (BGS) data and JNCC modelling for the UK SeaMap (2010) project.

At a landscape level, the whole of the North Channel is considered as either a moderate or high energy environment with respect to benthic habitat classification (McBreen *et al.*, 2011).

1.3.2 Belfast Lough

Belfast Lough is a large semi-enclosed water body adjacent to the North Channel. The entrance to Belfast Lough lies more or less at right angles to the course of the tidal stream setting into or out of the North Channel to the Irish Sea. These streams run with considerable force across the mouth of the lough and have a marked effect on the water movement within the lough itself, particularly the area to the seaward of a line joining Grey Point and Kilroot Point where the tidal streams are particularly complex (Maxwell 1978). Sediments within the local region include bedrock outcrops, boulders, cobbles and coarse sands and gravels (of glacial and local origins), with fine sand and muds also noted from broadscale British Geological Survey mapping (see Figure 2 below, taken from EMODnet Seabed Habitats/EU SeaMap, based upon UKSeaMap (2010) and BGS data)

Figure 2. Predicted Belfast Lough substrates/broadscale habitats as published in EU SeaMap Atlantic Habitats (harmonised), using UKSeaMap (2010) and BGS data.

2. METHODOLOGY

Two survey campaigns were completed for the Rathlin Aol, and one campaign for Ballycastle Bay (Carrickmannanon Rock) Aol and Outer Belfast Lough Aol. Survey locations were determined based on (a) analysis of existing high resolution bathymetric and acoustic backscatter data from multibeam sonar (Joint Irish Bathymetric Survey (JIBS) data and AFBI data on the north coast, and AFBI data in Belfast Lough), and (b) DOE specified sites. All surveys were completed aboard the RV *Corystes* on the following cruises:

- CO2414 sites surveyed over 18-20th June 2014 (SIC: Annika Clements)
- CO0715 sites surveyed over 10-11th February 2015 (SIC: Annika Clements)

2.1. Video survey

The video system used was an Osprey camera deployed on an epibenthic sledge with halogen lights, fitted with an auxiliary Go-Pro video camera. The Osprey camera is angled for an oblique view, while the Go-Pro camera is deployed facing directly below, between the sledge runners. A dGPS overlay was recorded on the Osprey video footage, and notes taken of cable layback to allow estimation of the sledge's position on the seabed. An Ultra-Short Baseline (USBL) acoustic tracking system was also deployed (ORE LXT Tracker) on the sledge to allow accurate positioning. These data were saved on a laptop and corrected positions appended to video records. During the cruise CO0715 four lasers were also used on the sledge to facilitate accurate scaling of images. The field of view of the video camera is approximately 1m² when the sledge is in contact with the seafloor. The epibenthic sledge was chosen above the drop frame due to the very strong currents at the Rathlin and Ballycastle Bay sites, which led to the drop frame spinning in the vigorous hydrodynamic regime (worsened by the significant swell during CO0715). The epibenthic sledge proved to be a more stable platform for recording video footage. Modifications were made to the sledge to add further weight for the deep tows off the north of Rathlin Island and tows were attempted only on slack tides due to the strong tidal currents. Due to the depth of these sites, long video tows were practicable rather than many short tows, due to deployment and recovery time and dependency on slack tides.

2.2. Benthic grabs

A 0.1m² Day grab was deployed to assist with sampling of infaunal communities and sediment characterisation. Where adequate sediment was collected by the grab and particle size sub-sample was taken, and the remaining sample sieved using a 1mm sieve and residue stored in buffered formalin for faunal analysis. Due to the nature of the sediments at the Rathlin and Ballycastle Bay sampling stations, there was low success in grabbing adequate sediment for particle size analysis (PSA). The ground was heterogeneous and many cobbles were found in the coarse sand/gravel regions, which often blocked open the jaws of the Day grab resulting in loss of sediment upon reaching the survey vessel. Only six PSA samples and 10 infaunal samples were adequate for further processing from the CO2414 cruise, and only six PSA and infaunal samples

from the CO0715 cruise. The PSA samples from CO2414 were processed by Kenneth Pye Associates Ltd. and the infaunal samples containing more than single cobbles were processed by Fugro EMU Ltd. (NMBAQC accredited) to generate full abundance and biomass data for all species. The samples from CO0715 were analysed by DOE.

Grab sampling field notes are provided in Annex III. Results tables from the PSA and infaunal processing are included as Excel spreadsheets accompanying this report to DOE.

2.3 Video footage analysis

The footage was analysed following the "Recommended operating guideline" (Coggan *et al.,* 2007), allowing discrimination of biotopes through analysis of characterising substratum, seafloor relief and characterising species.

Due to the hydrodynamic regime at the sites, footage was sometimes faster than ideal, however conspicuous epibiota of ~2cm body size and larger were identified with adequate confidence for biotope assignment. Visibility during the February 2015 cruise was poorer than June 2014 possibly due to recent passage of storms in the area. At the Outer Belfast Lough site, visibility was greatly affected by the near passage of ferries, resulting in a sediment plume which reduced visibility to near zero for periods of minutes.

Where there appeared to be a notable change in substratum that persisted for more than 5m², or a notable change in characterising species (such as *Ophiothrix fragilis*) persisting for more than 5m² the location was noted as a boundary between biotopes. Biotopes were classified according to the UK MNCR classification (Connor *et al.*, 2004), with a minimum of level 4 biotopes identified ("biotope complexes"), and, where data allowed, classification to levels 5 and 6 ("biotope" and "sub-biotope").

In many footage segments it was clear that a mosaic of two of more biotopes co-existed spatially, for instance where boulders with epifaunal communities were surrounded by patches of coarse sediments with mobile cobbles. In these cases the biotopes were considered as a "matrix" and mapped as such.

Where time has allowed, all oblique angle video footage has been reviewed at least twice and Go Pro footage also reviewed, however due to time constraints in some instances only a first review (initial observations) has been possible. This is noted in the species tables for each site.

The locations of identified biotopes were plotted in a Geographical Information System (GIS) to overlay upon the multibeam data.

2.4 Benthic grab analysis

The infaunal data (both abundance and biomass of species) were examined in Excel and the data entered into a separate spreadsheet for processing in the statistical package PRIMER (Plymouth

Routines in Multivariate Ecological Research). A resemblance matrix was created from the data using the Bray-Curtis dissimilarity routine. A cluster analysis was then performed on these data, using a 90% cut off, and the resulting clusters stored as "factors" for further analysis. A multidimensional scaling plot was generated from the resemblance matrix showing the separation between samples. Finally the SIMPER routine was completed to extract the characterising species from each cluster. The results of this analysis are available in Annex I.

3. RESULTS

3.1 Habitats: Identified Biotopes

Table 3.1 below details the biotopes identified from review of the video footage and grab sample data, and whether any of these are contained within the Northern Ireland pMCZ habitats. Where appropriate, mention is also made of whether a biotope could be an Annex I (EC Habitats Directive) habitat, following guidance regarding the classification of "stony reef" provided by Irving (2009).

MNCR Biotope/Biotope complex	MNCR Title	EUNIS code	EUNIS level	EUNIS title	PMCZ habitat?	Annex I habitat?
CR.HCR.XFa	Mixed faunal turf communities	A4.13	4	Mixed faunal turf communities on circalittoral rock	Unlikely, except if considered as "deep sea bed"	Stony reef and bedrock reef
SS.SMX.OMx	Offshore circalittoral mixed sediment	A5.45	4	Deep circalittoral mixed sediments	Yes - Sublittoral (subtidal) mixed sediments broadscale habitat	No
SS.SSA.CMuSa	Circalittoral muddy sand	A5.26	4	Circalittoral muddy sand	Yes - Sublittoral (subtidal) sand broadscale habitat	No
CR.MCR.EcCr.FaAlCr	Faunal and algal crusts on exposed to moderately wave-exposed circalittoral rock	A4.214	5	Faunal and algal crusts on exposed to moderately wave-exposed circalittoral rock	Unlikely, except if considered as "deep sea bed"	Stony reef and bedrock reef
CR.MCR.EcCr.UrtScr	Urticina felina and sand-tolerant fauna on sand-scoured or covered circalittoral rock	A4.213	5	[Urticina felina] and sand-tolerant fauna on sand-scoured or covered circalittoral rock	Unlikely, except if considered as "deep sea bed"	Stony reef and bedrock reef
SS.SCS.CCS.PomB	Pomatoceros triqueter with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles	A5.141	5	[Pomatoceros triqueter] with barnacles and bryozoan crusts on unstable circalittoral cobbles and pebbles	Yes - circalittoral sand and gravel communities	No
SS.SMU.CFiMu.SpnMeg	Seapens and burrowing megafauna in circalittoral fine mud	A5.361	5	Seapens and burrowing megafauna in circalittoral fine mud	Yes - seapen and burrowing megafauna communities	No
SS.SMU.CSaMu.VirOphPmax	Virgularia mirabilis and Ophiura spp. with Pecten maximus on circalittoral sandy or shelly mud	A5.354	5	[Virgularia mirabilis] and [Ophiura] spp. with [Pecten maximus] on circalittoral sandy or shellymud	Yes - sublittoral muds broadscale habitat	No
SS.SMX.CMx.FluHyd	Flustra foliacea and <i>Hydrallmania falcata</i> on tide-swept circalittoral mixed sediment	A5.444	5	[Flustra foliacea] and [Hydrallmania falcata] on tide-swept circalittoral mixed sediment	Yes - circalittoral sand and gravel communities	No
SS.SMX.CMx.OphMx	Ophiothrix fragilis and/or <i>Ophiocomina nigra</i> brittlestar beds on sublittoral mixed sediment	A5.445	5	[Ophiothrix fragilis] and/or [Ophiocomina nigra] brittlestar beds on sublittoral mixed sediment	Yes - brittlestar beds	No
CR.HCR.FaT.CTub.Adig	Alcyonium digitatum with dense Tubularia indivisa and anemones on strongly tide-swept circalittoral rock	A4.1122	6	[Alcyonium digitatum] with dense [Tubularia indivisa] and anemones on strongly tide- swept circalittoral rock	Unlikely, except if considered as "deep sea bed"	Stony reef and bedrock reef
CR.MCR.EcCr.FaAlCr.Adig	Alcyonium digitatum, Pomatoceros triqueter, algal and bryozoan crusts on wave-exposed circalittoral rock	A4.2142	6	[Acyonium digitatum], [Pomatoceros triqueter], algal and bryozoan crusts on wave- exposed circalittoral rock	Unlikely, except if considered as "deep sea bed"	Stony reef and bedrock reef
CR.MCR.EcCr.FaAlCr.Bri	Brittlestars on faunal and algal encrusted exposed to moderately wave-exposed circalittoral rock	A4.2144	6	Brittlestars on faunal and algal encrusted exposed to moderately wave-exposed circalittoral rock	Yes - brittlestar beds	Stony reef and bedrock reef
CR.MCR.EcCr.FaAlCr.Pom	Faunal and algal crusts with <i>Pomatoceros triqueter</i> and sparse <i>Alcyonium digitatum</i> on exposed to moderately wave-exposed circalittoral rock	A4.2145	6	Faunal and algal crusts with [Pomatoceros triqueter] and sparse [Acyonium digitatum] on exposed to moderately wave-exposed circalittoral rock	Unlikely, except if considered as "deep sea bed"	Stony reef and bedrock reef

Table 3.1 Biotope complexes, biotopes and sub-biotopes identified from video review and sediment sample analysis.

The locations and survey dates of the video tows and grab samples which were successfully completed over the two research cruises and used in full biotope analysis are detailed below in Table 3.2. The biotopes identified from these video tows are presented in full detail in Table 3.3 below.

PSA sample?	Infaunal sample?	Depth (m)	Longitude (DecDeg)	Latitude (DecDeg)	Survey Date:	Grab Site/Replicate:	End - Longitude (DecDeg)	End - Latitude (DecDeg)	Start - Longitude (DecDeg)	Start - Latitude (DecDeg)	Survey Date:	Video Site/Fow :
z	~	187	-6.31985	55.31655	19/06/2014	Rathlin N S1_1	-6.249822	55.233570	-6.255768	55.234240	18/06/2014	Ballycastle Bay_East Carrickmananon Rock_a
z	×	197	-6.3039833	55.3222167	19/06/2014	Rathlin N S1_2	-6.238314	55.233062	-6.249822	55.233570	18/06/2014	Ballycastle Bay_East Carrickmananon Rock_b
z	×	197	-6.27595	55.3195	19/06/2014	Rathlin N S2_1	-6.260795	55.319640	-6.291446	55.316102	19/06/2014	Rathlin Deeps_T1_a
Y	×	186	-6.209383	55.324933	19/06/2014	Rathlin NS 3_1	-6.252644	55.319167	-6.260795	55.319640	19/06/2014	Rathlin Deeps_T1_b
z	×	210	-6.272733	55.318767	19/06/2014	Rathlin NS 4_1	-6.250361	55.319123	-6.252644	55.319167	19/06/2014	Rathlin Deeps_T1_c
Y	×	210	-6.278583	55.316167	19/06/2014	Rathlin NS 4_2	-6.245515	55.319265	-6.250361	55.319123	19/06/2014	Rathlin Deeps_T1_d
×	~	180	-6.2837	55.313983	19/06/2014	Rathlin NS 4_3	-6.248561	55.323803	-6.220910	55.320143	19/06/2014	Rathlin Deeps_T2_a
Y	×	186	-6.21915	55.323217	19/06/2014	Rathlin NS6_1	-6.105838	55.304227	-6.095193	55.296264	20/06/2014	Rathlin Deeps (East)_T3_a
¥	~	191	-6.2161 -	55.320833 5	19/06/2014 2	Rathlin NS6_2	-6.243133 -	55.222431 5	-6.232589 -	55.220994	20/06/2014 2	Ballycastle Bay_T1_a
×	×	55	6.240933	55.222317	0/06/2014 1	Ballycastle S1_1	-6.251545 -	55.225627 E	6.243133 -	55.222431 E	9/06/2014 2	Ballycastle Bay_T1_b
Y	×	24	-5.59715 -	54.70845 5	2/02/2015 1:	Outer Belfast Lough_1_A	6.254288 +	5.227110 5	6.251545 -	5.225627 5	0/06/2014 2	Ballycastle Bay_T1_c
Y	×	25	-5.59795 -	4.708583	2/02/2015 1:	Outer Belfast Lough_1_B	6.257987 -	5.229680 5	6.254288 -	5.227110 5	0/06/2014 2	Ballycastle Bay_T1_d
×	~	25	5.597633 4	54.7088 5	2/02/2015 10	Outer Belfast Lough_1_C	6.277999	5.239388 5	6.274638 4	5.238896 5	0/06/2014 20	Ballycastle Bay_T2_a
z	z	200	6.189567 -	5.322183 5	0/02/2015 10	Rathlin_1_1	6.278707 -	5.239471 5	6.2779999 -	5.239388 5	0/06/2014 20	Ballycastle Bay_T2_b
z	z	200	6.191183 -6	5.322017 5	02/2015 10	Rathlin_1_2	6.285913 -6	5.240375 5	6.278707 -4	5.239471 5	006/2014 20	Ballycastle Bay_T2_c
z	z	260	6.143133 -	5.316867 5	0/02/2015 10	Rathlin_2_A	6.286279 -(5.240421 5	6.285913 -6	5.240375 5	0/06/2014 20	Ballycastle Bay_T2_d
z	z	250	6.14515 -6	5.320633 5	V02/2015 10	Rathlin_2_B	3,291946 -6	5.240605 55	3.286279 -6	5.240421 55	V06/2014 20	Ballycastle Bay_T2_e
z	z	260	152217 -6	55.3184 55	/02/2015 11	Rathlin_2_C	 1,294313 -6	.240684 55	1,291946 -6	6.240605 55	/06/2014 10	Ballycastle Bay_T2_f
z	z	210	1,265483 -6	5.355683	/02/2015 11	Rathlin_3_A	1,251363 -6	5.333410 55	1,259623 -6	5.333940 55	/02/2015 10	Rathlin Deeps_T1_a
z	z	220	1263433 -6	55.3534 55	/02/2015 11	Rathlin_3_B	 1,248247 -6	5.333460 55	1,251363 -6	5.333410 55	/02/2015 10	Rathlin Deeps_T1_b
z	z	210	.266717 -6	.354033 55	02/2015 11	Rathlin_3_C	 .242572 -6	.333180 55	.248247 -6	.333460 55	02/2015 10	Rathlin Deeps_T1_c
Y	~	227	.215367 -6	.344633 55	02/2015 11/	Rathlin_4_A	 .155775 -6	.329837 55	.134032 -6	.319999 55	02/2015 10	Rathlin Deeps_T2_a
Y	~	230	.203283 -6.	.344317 5	02/2015 11/	Rathlin_4_B	 .182100 -6.	.348583 55	.205058 -6.	.350781 55	02/2015 10/	Rathlin Deeps_T3_a
×	~	229	.202467	5.3441	02/2015	Rathlin_4_C	.176033 -6.	.347850 55	.182100 -6.	.348583 55	02/2015 11/	Rathlin Deeps_T3_b
							 267647 -6.	.353556 55	271514 -6.	.355117 55	02/2015 11/	Rathlin Deeps_T4_a
							 .251017 -6.	.349133 55	.267647 -6.	.353556 55	02/2015 11/	Rathlin Deeps_T4_b
							237508 -6.	.346372 55.	251017 -6.	.349133 55.	02/2015 114	Rathlin Deeps_T4_c
							320533 .	345717 1	293952	336517 5	02/2015 1	Rathlin Deeps_T5_a
							-5.590738	54.700622	-5.587433	54.697050	11/02/2015	Outer Belfast Lough_T1_a
							-5.592850	54.702733	-5.590738	54.700622	11/02/2015	Outer Belfast Lough_T1_b
							-5.598450	54.709317	-5.592850	54.702733	11/02/2015	Outer Belfast Lough_T1_c

Table 3.2. Dates and positions of video tows and grab samples used in full biotope analysis for this project.

	-	-			-	_		0	-			r	_	_	_		-		-	-			_		_						
Site and Video Tow Segment (split by predominant biotope):	Ballycastle Bay_East Carrickmananon Rock_a	Ballycastle Bay_East Carrickmananon Rock_b	Rathlin Deeps_T1_a	Rathlin Deeps_T1_b	Rathlin Deeps_T1_c	Rathlin Deeps_T1_d	Rathlin Deeps_T2_a	athlin Deeps (East)_T3_s	Ballycastle Bay_T1_a	Ballycastle Bay_T1_b	Ballycastle Bay_T1_c	Ballycastle Bay_T1_d	Ballycastle Bay_T2_a	Ballycastle Bay_T2_b	Ballycastle Bay_T2_c	Ballycastle Bay_T2_d	Ballycastle Bay_T2_e	Ballycastle Bay_T2_f	Rathlin Deeps_T1_a	Rathlin Deeps_T1_b	Rathlin Deeps_T1_c	Rathlin Deeps_T2_a	Rathlin Deeps_T3_a	Rathlin Deeps_T3_b	Rathlin Deeps_T4_a	Rathlin Deeps_T4_b	Rathlin Deeps_T4_c	Rathlin Deeps_T5_a	uter Belfast Lough_T1_a	uter Belfast Lough_T1_b	uter Belfast Lough_T1_c
Bedrock	0	0						22 5															_						0	0	0
bearook								5																							
Boulders_over1024mm Boulders_512to1024m	10					1	1	6		3			1	1	1	1	1	2	2		1	2		5			2			5	
	10						2	5		2			5	5	5	5	5	4	5		5	0		0			2			5	
Boulders_256to512mm	5	15		5		4	2	25			5	5	4	4	4	4	4	7	28		16	15		2		20	8			15	
256mm	80	40		10		30	35	40		3	5	5	90	90	90	90	90	85	20	30	25	35				10	70	5		20	
Pebbles 4mm to 64mm	3	40	5	10	5	40	5	10	2	5	10	10	2	2	2	2	2	2	20	10	20		70	50	5	10		20	2		2
Shells_Empty	_	_	60	40	60	10	15	2	3										18	38	10	30	18	18	15	2		5	1	2	1
Granule 2mm to 4mm Shell_2mm to 16mm	2	5	25	25	25	5	10	3	5	2				_					2	2	5	10	2	2	5 5	3	5		1	2	-
Sand 0.063mm to 2mm			10	10	10	10	30		90	85	80	80							5	20	20		10	15	65	50	12	20	86	48	53
0.063mm																									5	5	3	50	10	8	44
BIOTOPE	CR.MCR.EcCr.FaAlCr.Bri / SS.SMX.CMx.OphMx	CR.MCR.EcCr.FaAlCr.Pom / SS.SCS.CCS.PomB	CR.MCR.EcCr.UrtScr / SS.SMX.OMx SS.SMX.CMx.FluHyd	SS.SMX.OMx / SS.SMX.CMx.FluHyd	SS.SMX.OMx / SS.SMX.CMx.FluHyd	CR.MCR.EcCr.UrtScr / SS.SMX.OMx SS.SMX.CMx.FluHyd	CR.MCR.EcCr.UrtScr / SS.SMX.OMx SS.SMX.CMx.FluHyd	CR.MCR.EcCr.UrtScr / CR.HCR.FaT.CTub.Adig	SS.SCS.CCS.PomB	SS.SCS.CCS.PomB / CR.MCR.EcCr.FaAlCr.Pom	CR.MCR.EcCr.FaAlCr.Bri / SS.SMX.CMx.OphMx	CR.MCR.EcCr.FaAlCr.Bri / SS.SMX.CMx.OphMk	CR.MCR.EcCr.FaAlCr.Bri	CR.MCR.EcCr.FaAlCr / CR.HCR.XFa	CR.MCR.EcCr.FaAlCr.Bri	CR.MCR.EcCr.FaAlCr / CR.HCR.XFa	CR.MCR.EcCr.FaAlCr.Bri	CR.MCR.EcCr.FaAlCr / CR.HCR.XFa	CR.MCR.EcCr.UrtScr / SS.SMX.OMx	SS.SMX.OMx / CR.MCR.EcCr.FaAlCr.Pom	CR.MCR.EcCr.UrtScr / SS.SMX.OMx	CR.MCR.EcCr.UrtScr / CR.HCR.FaT.CTub.Adig	SS.SMX.OMx / SS.SMX.CMx.FluHyd	CR.MCR.EcCr.UrtScr / SS.SMX.OMx	SS.SMX.OMx / SS.SMX.CMx.FluHyd	CR.MCR.EcCr.UrtScr / CR.HCR.FaT.CTub.Adig / SS.SMX.OMx	CR.MCR.EcCr.UrtScr / CR.HCR.FaT.CTub.Adig	SS.SMX.CMx.FluHyd / CR.MCR.EcCr.FaAlCr.Adig	SS.SSA.CMuSa / SS.SMX.CMx.FluHyd	SS.SMX.CMx.FluHyd / SS.SMU.CSaMu.VirOphPmax	SS.SMU.CFiMu.SpnMeg
Species Name																										в					
Aequipecten opercularis													_		_								_			ĸ					
Alcyonidium gelatinosum?	R	R	0	R	0		R R												-						R						
Alcyonium digitatum	0	0	-		-	С		S			R	R	R	R					0		0	F			R	С	С	F	R		
Anserapoda placenta Antedon bifida?													R	_												R	R			R	
Aplidium punctum?	2		R		R		_												_											_	
Axinellidae (cup sponge)	ĸ	ĸ	ĸ		ĸ	ĸ	0	0					ĸ	к R	R		R	R	ĸ		ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	ĸ	F	ĸ
Branching yellow sponge -			Б																												
Bryozoan & hydrozoan			ĸ		ĸ								_																		
turf Buccipum undatum		F	0	0	0	0	R	0	R	R	0	0	F	С	F	F	F	F	0	R	0	R	0	F	F	F	F	0	R	0	
Bugula sp			0	0	0	0	0	0			0	0	0	F	F	F	F	F	0	R	0	R	0	0	0	0	0	R			
Cancer pagurus Carvophyllia sp	R	R					R	R		R		R	R		R R	R	R	R												R	
Cliona celata			_	_		_	_	_		_	_	_	R	_	R	-						_	_		_	_					
Crisiidae Crossaster papposus	R	R	R O	R O	R O	R R	R O	R O	R	R R	R R	R R	R R	R R	0	0	0	0	R R		R R	R R	R R	R R	R R	O R	O R			R	
Echinus esculentus	0	0	R	R	R	R			R			R	R	R		_			R		R	0									
Eledone cirrnosa Encrusting bryozoans			0	0	0	0	0	R	R	R	0	0	F	С	0	к О	0	0	R	R	R	R	0	F	0	0	0	0			
Eucratea loricata			0	0	0	0	0	0			0	0	0	F	F	F	F	F	0	R	0	R	0	0	0	0	0	R			
Fliograna Impiexa Flustra foliacea	F	F	F	С	С	С	A		R		0	С	R						R	R	R		0	0	С	к С	F	A	R	R	
Henricia sp Hydrallmania falcata?							R	R			R	R	R			R						R							R	R	
Hymedesmia paupertas				R							K	K	R		R																
Hymedesmia sp																											0	D			
Leucoraja naevus													_	_									_				к	к	0	0	R
Luidia ciliaris	R	R				R	R		R			R											R	R	R	R	R		•		
Luidia sarsi Macropodia sp			R		R	R							R	_					-			R		R							
Marthasterias glacialis		R								R					R								R	R	R	R	R				
Maxillopoda (Verrucidae & Balanidae)	0	0	0	о	о	0	0	A	R	R	0	0	A	A	с	с	с	с	F	R	F	0	0	о	0	0	0	0			
Molva molva																						R					R				
sp?		R						R													R										
Nemertesia antennina			R		R														R		R									R	
Ophiocomina nigra				R							0	С																			Ŭ
Ophiothrix fragilis Pachymatisma iohnstonia	С	F R											S R		S		S R	R	-			R									
Pagurus sp							R	R				R							R		R	R	R	R	0	0	0	0			
Pecten maximus Polymastia boletiformis		R				0			R	R	0	0	R	R	R	R														R	
Porania pulvillus		R								D		R				R	R	R									R				
Raspailia ramosa?								R		~				H			R	R													
Sabella pavonina Scyliorhinus canicula or			F	0	С	R	R										\square		0	R	0	R	R	R	0	0	0	0			\square
stellaris?							R									R	R	R		R				R		_					
Securiflustra securifrons			\vdash	\vdash	\square									\square		R	R	R	R	R	R	H						R			\square
Spirobranchus triqueter	S	A	F	F	F	F	0	A	R	R	0	0	s	S	A	A	A	A	F	0	F	0	F	F	F	F	F	С			
Suberites sp Tubularia indivisa		R		R	\square	R		R		R				\square	R	R	R	R			R		R	R O	R	R	R				
Urticina sp			С	A	C	С	A	S		R	0	0	R	R	_	F	-	-	F	R	C	F	0	0	0	F	F	0	0	R	R
v esicularia spinosa Virgularia mirabilis			0	0	0	0	0	A			0	0	U	г	r	r	г	F	0	ĸ	0	κ 	0	J	0	0	0	ĸ		R	0
White crater-like sponge (massive)															R																$ \neg$
White encrusting sponge	R	R																													
Yellow encrusting sponge							R	R		F	F		F	F																	

Table 3.3. Species and substratum information and biotope classification from video tows. Video tows were broken into segments where there was notable change in substratum or major characterising species. Table also provided in Excel workbook with this report.

3.2 Rathlin Deeps

Figure 3 below shows the distribution of the biotopes identified from video analysis at the areas of interest, overlain on multibeam bathymetry where such data are available.

Figure 3 shows a distribution of deep mobile sediments, mostly shell debris, coarse sands and cobbles with boulders, with proportions of these varying across the site. Many of these areas could be considered as offshore mixed sediments (SS.CMX.OMx biotope complex), which may be considered as a component of "Deep- sea bed" pMCZ habitat, and harbour a range of species characteristic of scoured environments with little sediment deposition. In some areas, more stable cobbles and boulders support erect epifauna, including Tubularia indivisa and Alcyonium digitatum, but the majority of hard surfaces are encrusted by scour-tolerant fauna such as encrusting bryozoans, the keel worms Spirobranchus triqueter and barnacles. The dahlia anemone Urticina sp. was characteristic throughout the site, with some very high densities recorded particularly in the deepest areas. The Peacock worm, Sabella pavonina, was also observed throughout the site. This species is more commonly associated with shallower muddy sites. Deep accumulations of whole shell were noted, many of which were clearly Modiolus modiolus. In some areas there were patches of notable bryozoan turf, including clumps of Flustra foliacea; this was found where sediments appears more stable and there was less shell accumulated, with pebbles and cobbles providing attachment sites. Flustra is associated with areas of strong currents and can withstand sediment abrasion in such environments. The grab samples showed that even areas which appeared on the multibeam as possible sand megaripples are in fact shell and cobble ripples overlain on coarse sands. To the north and north-west of the site some finer sediments were noted mixed in with the sands, shell gravels and cobbles - in this area live Modiolus modiolus clumps were retrieved by the grab samples (sites 3 and 4, collected on CO0715) although living Modiolus clumps were not visible on the video footage (due possibly to visibility issues). At site 4, particle size analysis of the two grabs samples here revealed that the sediment is "sandy gravel" and "gravelly sand" (Folk classification), however due to the coarser sediments allowing some loss of material from the jaws of the grab, it is possible that finer sediments were washed out prior to grab retrieval as the grab was less than half full for all replicates at this site (whole shell debris was noted, which can partially jam open the grab jaws). Further review and processing of the Go Pro footage may allow better detection of *Modiolus* beds in this area. The cuckoo ray (Leucoraja naevus) was also found in this area.

Table 3.4 provides the full species list for Rathlin Deeps. It should be noted that the stage of analysis is also provided in the table; due to time constraints further analysis has not been possible yet. Table 3.3 above also provides the SACFOR abundances for each species and the substratum composition from the video analysis.

Figure 3. Spatial distribution of biotopes and biotope complexes over the Rathlin Area of Interest, overlain on multibeam bathymetry from JIBS and AFBI sources. Grab sample sites are shown as stars and labelled to facilitate cross-referencing with sample species lists. The grabs containing living *Modiolus modiolus* are shown as red stars (to the North-west of the study area).

Site and Tow:	Rathlin Deeps_T1	Rathlin Deeps_T2	Rathlin Deeps (East)_T3	Rathlin Deeps_T1	Rathlin Deeps_T2	Rathlin Deeps_T3	Rathlin Deeps_T4	Rathlin Deeps_T5		
Survey Date:	19/06/2014	19/06/2014	20/06/2014	10/02/2015	10/02/2015	10/02/2015	11/02/2015	11/02/2015		
Depth at start of tow(m):	192	210	170	198	218	220	225	209		
Video analysis stage	Review of DVD & Go Pro	Review of DVD	Review of DVD	Review of DVD	Review of DVD	Initial observations	Initial observations	Initial observations		
Video-derived Species	Alcyonidium gelatinosum?	Alcyonium digitatum	Alcyonium digitatum	Alcyonium digitatum	Alcyonium digitatum	Alcyonium digitatum	Aequipecten opercularis	Alcyonium digitatum		
	Alcyonium digitatum	Alyconidium diaphanum	Asterias rubens	Asterias rubens	Asterias rubens	Asterias rubens	Alcyonidium gelatinosum?	Asterias rubens		
	Alyconidium diaphanum	Asterias rubens	Maxillopoda (Verrucidae & Balanidae)	Maxillopoda (Verrucidae & Balanidae)	Maxillopoda (Verrucidae & Balanidae)	Maxillopoda (Verrucidae & Balanidae)	Alcyonium digitatum	Maxillopoda (Verrucidae & Balanidae)		
	Aplidium punctum?	Maxillopoda (Verrucidae & Balanidae)	Bryozoan turf	Bryozoan turf	Bryozoan turf	Bryozoan turf	Anseropoda placenta	Bryozoan turf		
	Asterias rubens	Bryozoan turf	Buccinum undatum	Bugula sp	Bugula sp	Bugula sp	Asterias rubens	Bugula sp		
	Branching yellow sponge - Stelligera stuposa?	Bugula sp	Bugula sp	Crossaster papposus	Cancer pagurus	Crossaster papposus	Maxillopoda (Verrucidae & Balanidae)	Crossaster papposus		
	Bugula sp	Cancer pagurus	Crossaster papposus	Echinus esculentus	Crossaster papposus	Echinus esculentus	Bryozoan turf	Echinus esculentus		
	Cancer pagurus	Crossaster papposus	Echinus esculentus	Encrusting bryozoans	Echinus esculentus	Encrusting bryozoans	Buccinum undatum	Encrusting bryozoans		
	Crossaster papposus	Encrusting bryozoans	Encrusting bryozoans	Eucratea loricata	Encrusting bryozoans	Eucratea loricata	Bugula sp	Eucratea loricata		
	Encrusting bryozoans	Eucratea loricata	Eucratea loricata	Flustra foliacea	Eucratea loricata	Flustra foliacea	Crisia sp	Flustra foliacea		
	Eucratea loricata	Flustra foliacea	Flustra foliacea	Macropodia sp	Flustra foliacea	Luidia sarsi	Crossaster papposus	Modiolus clumps??		
	Flustra foliacea	Henricia sp	Henricia sp	Munida rugosa/Galathea sp?	Henricia sp	Marthasterias glacialis	Echinus esculentus	Pagurus sp		
	Henricia sp	Luidia ciliaris	Munida rugosa/Galathea sp?	Pagurus sp	Macropodia sp	Pagurus sp	Encrusting bryozoans	Leucoraja naevus		
	Hymedesmia sp	Pagurus sp	Pagurus sp	Sabella pavonina	Molva molva	Sabella pavonina	Eucratea loricata	Sabella pavonina		
	Luidia ciliaris	Polymastia boletiformis	Polymastia boletiformis	Scyliorhinus canicula or stellaris?	Pachymatisma johnstonia	Scyliorhinus canicula or stellaris?	Filograna implexa?	Securiflustra securifrons		
	Luidia sarsi	Sabella pavonina	Raspailia ramosa?	Securiflustra securifrons	Pagurus sp	Spirobranchus triqueter	Flustra foliacea	Spirobranchus triqueter		
	Nemertesia antennina	Scyliorhinus canicula or stellaris?	Sabella pavonina	Spirobranchus triqueter	Sabella pavonina	Suberites sp	Leucoraja naevus	Urticina sp		
	Ophiothrix fragilis	Spirobranchus triqueter	Scyliorhinus canicula or stellaris?	Tubularia indivisa	Scyliorhinus canicula or stellaris?	Urticina sp	Molva molva	Vesicularia spinosa		
	Pagurus sp	Urticina sp	Spirobranchus triqueter	Urticina sp	Spirobranchus triqueter	Vesicularia spinosa	Pagurus sp			
	Polymastia boletiformis	Vesicularia spinosa	Urticina sp	Vesicularia spinosa	Urticina sp		Porania pulvillus			
	Sabella pavonina	Yellow encrusting sponge	Vesicularia spinosa		Vesicularia spinosa		Leucoraja naevus			
	Securiflustra securifrons		Yellow encrusting sponge				Sabella pavonina			
	Spirobranchus triqueter						Spirobranchus triqueter			
	Urticina sp						Urticina sp			
	Vesicularia spinosa						Vesicularia spinosa			

Table 3.4. Species lists from video tows for the Rathlin Aol.

Following preliminary multivariate analysis, the grab sample data showed three distinct clusters, with sites "NS6" and one replicate of "NS3" most distinct from the other samples. These were located in the same geographical region and particle size analysis classified this (according to the Folk (1954) method) as very fine gravels and coarse sands respectively. The similarity in fauna was not great (<30%) but characterising species were those typical of scoured environments and represented mostly encrusting fauna that would be found on shell and stones. Sites "NS6" also harboured the holothurian *Leptosynapta minuta*, which was not identified at other sites. Site "NS3" showed very low diversity as was very clean coarse sand. The other sites showed higher diversity and also included many epifaunal encrusting species and scour tolerant bryozoans. *Sabellaria spinulosa* was notable in samples "NS1" to the west of the site.

3.3 Ballycastle Bay / Carrickmannanon Rock

Figure 4 below shows the distribution of the biotopes identified from video analysis at the areas of interest, overlain on multibeam bathymetry.

Figure 4. Spatial distribution of biotopes and biotope complexes over the Ballycastle Bay (Carrickmannanon Rock) Area of Interest, overlain on multibeam bathymetry from JIBS sources. Grab sample sites are shown as stars and labelled to facilitate cross-referencing with sample species lists.

Figure 4 shows the notable distribution of brittlestar beds throughout the region. These were dominated by *Ophiothrix fragilis* at high densities. To the south-east of the area a region of mobile sediments is clear from the multibeam data, and this was verified by video as coarse sand waves with cobbles in the troughs. Due to the high mobility of the seabed here the cobbles supported very little epifauna with the exception of keel worms (*Spirobranchus triqueter*), barnacles and tiny encrustations of bryozoans. In this area a thornback ray was noted (*Raja clavata*). The more stable substratum to the west supported an increasing diversity of epifauna, including some erect, cup and cushion sponges, as well as the Ross coral (*Pentapora fascialis*).

Table 3.5 provides the full species list for Ballycastle Bay. It should be noted that the stage of analysis is also provided in the table; due to time constraints further analysis has not been possible yet. Table 3.3 above also provides the SACFOR abundances for each species and the substratum composition from the video analysis.

Only one grab sample from this Aol was processed, which following multivariate analysis clustered distinctly from the Rathlin Aol grab samples. The particle size analysis determined that this sediment type is moderately sorted coarse sand (Folk (1954) method from mean particle size), and had a low diversity of species mostly characterised by scour tolerant fauna such as encrusting bryozoans.

Site and Tow:	Ballycastle Bay_East Carrickmananon Rock	Ballycastle Bay T1	Ballycastle Bay T2			
Survey Date:	18/06/2014	20/06/2014	20/06/2014			
Depth at start of tow(m):	71	45	65			
Video analysis stage	Initial observations	Review of DVD	Review of DVD			
Video-derived Species	Alcyonium digatatum	Alcyonium digitatum	Alcyonium digitatum			
	Asterias rubens	Maxillopoda (Verrucidae & Balanidae)	Anserapoda placenta			
	Cancer pagurus	Bryozoan turf	Axinellidae (cup sponge)			
	Echinus esculentus	Bugula sp	Maxillopoda (Verrucidae & Balanidae)			
	Flustra foliacea	Cancer pagurus	Bugula sp			
	Luidia ciliaris	Caryophyllia sp	Cancer pagurus			
	Luidia sarsi	Crossaster papposus	Cliona celata			
	Marthasterias glacialis	Echinus esculentus	Crossaster papposus			
	Munida rugosa	Encrusting bryozoans	Echinus esculentus			
	Ophiothrix fragilis	Eucratea loricata	Eledone cirrhosa			
	Pachymatisma johnstonia	Flustra foliacea	Encrusting bryozoans			
	Polymastia boletiformis	Henricia sp	Eucratea loricata			
	Porania pulvillus	Hydrallmania falcata?	Flustra foliacea			
	Spirobranchus triqueter	Luidia ciliaris	Henricia sp			
	Suberites sp	Marthasterias glacialis	Hymedesmia paupertas			
	Urticina sp.	Ophiocomina nigra	Luidia sarsi			
	White encrusting sponge	Ophiothrix fragilis	Marthasterias glacialis			
		Polymastia boletiformis	Ophiothrix fragilis			
		Porania pulvillus	Pachymatisma johnstonia			
		Raja clavata	Polymastia boletiformis			
		Spirobranchus triqueter	Porania pulvillus			
		Tubularia indivisa	Raspailia ramosa?			
		Urticina sp	Scyliorhinus canicula or stellaris?			
		Vesicularia spinosa	Sheet-like dark grey sponge			
			Spirobranchus triqueter			
			Tubularia indivisa			
			Urticina sp			
			Vesicularia spinosa			
			White crater-like sponge			
			(massive)			
			Yellow encrusting sponge			

Table 3.5. Species lists from video tows for the Ballycastle Bay/Carrickmannanon Rock Aol.

3.5 Outer Belfast Lough

Figure 5 below shows the distribution of the biotopes identified from video analysis at the areas of interest, overlain on multibeam bathymetry where such data are available.

Figure 5. Spatial distribution of biotopes and biotope complexes over the Outer Belfast Lough Area of Interest, overlain on multibeam bathymetry. Grab sample sites are shown as stars. A number of acoustic facies/'seabed-types' have been mapped across the site. Bathymetric contour lines are also shown based on UKHO data.

The Outer Belfast Lough is a far shallower, smaller site than the other Areas of Interest reported here, and harbours a less complex matrix of biotopes. To the south-east of the area cobbles and small boulders, surrounded by fine sands/muddy sand characterise the region. The cobbles and boulders support bryozoans and hydrozoan turf, including Flustra foliacea. Due to visibility it was difficult to distinguish many species from the video footage. Some king scallop (*Pecten maximus*) shells were observed and a more recent DOE diver survey found scallops in this area (J. Breen., pers.comm.) There is a clear boundary both on the video footage and existing multibeam data from the mixed substratum to stable sediments, which have a notable fines component (grading from fine sands to sandy muds). The three grab samples taken in the centre of the area had a sediment classification of "slightly gravelly muddy sand" following particle size analysis (Folk classification). This finer sediment area is characterised by Nephrops norvegicus burrows and smaller burrows (possibly from other mud-burrowing shrimps or polychaetes). The seapen Virgularia mirabilis is also notable in this area. Some shell debris could be identified as Arctica islandica. The assigned biotope is "Seapens and burrowing megafauna in circalittoral fine mud" although from inspection of the grab samples it is likely the sediment is sandy mud rather than fine mud, but the species component of this biotope is consistent with that identified from the video footage. The grabs also yielded broken Arctica islandica shell and juvenile Arctica islandica. As A. islandica is mostly infaunal it was impossible to see these on the video footage.

Table 3.6 provides the full species list for Outer Belfast Lough AoI. It should be noted that the stage of analysis is also provided in the table; due to time constraints further analysis has not been possible yet. Table 3.3 above also provides the SACFOR abundances for each species and the substratum composition from the video analysis.

Site:	Outer Belfast Lough
Date:	11/02/2015
Depth (m) at start of tow:	21
Video analysis stage	Initial observations
Video-derived Species	Alcyonium digitatum
	Antedon bifida?
	Asterias rubens
	Cancer pagurus
	Crossaster papposus
	Flustra foliacea
	Henricia sp
	Liocarcinus sp
	Nemertesia antennina
	Nephrops norvegicus
	Pagurus sp
	Pecten maximus
	Urticina sp
	Virgularia mirabilis

Table 3.6. Species lists from video tows for the Outer Belfast Lough Aol.

Grab sample infauna collected from this AoI have yet to be processed; however the turrit shell *Turritella communis* was clearly identifiable, which is characteristic of muddy sediments in shallow water, along with a juvenile *Arctica islandica*.

4. **DISCUSSION**

The sites examined by the two survey campaigns have yielded species and habitat data which may be used to support assessment of their conservation value. The 'Rathlin Deeps' area is a considerable challenge to survey due to the exceptionally strong tidal currents and exposure to Atlantic swell; survey effort is therefore limited to targeting neap tides and undertaking video tows during slack tide.

The Rathlin Aol harbours large areas of deep "offshore mixed sediment", with stony reef interspersed where local hydrodynamic conditions and sediment stability permit growth of notable epifauna. There are quite likely bedrock outcrops just below the "stony reef" areas, which have been overlain by a veneer of coarse sediments and deep accumulations of shell. To the far east of the site (outside of the Aol) bedrock is exposed, and harbours a greater erect epifaunal community, with the greatest densities of *Alcyonium digitatum*.

To the immediate north of Rathlin Island, close inshore but in deep water, coarser sediments dominate with grab samples showing the presence of *Saballaria spinulosa*. It is not possible from these samples to ascertain whether *S. spinulosa* forms dense aggregations in this area, and it wasn't visible on the video footage. Further north and north-west, some finer sediments were evident mixed with the cobbles, shell and sands, and here grab sampling confirmed the presence of living *Modiolus modiolus*. The dahlia anemone *Urticina* sp. was characterising throughout the area, along with *Sabella pavonina* and on larger boulders the hydroid *Tubularia indivisa* and soft coral *Alcyonium digitatum*. It is of interest that *Sabella pavonina* was found so frequently in deep waters, and on fairly coarse substratum, and would be useful to sample this species if possible to confirm its identification. *S. pavonina* was also noted during a DOE Remotely Operated Video dive in 2009 at the base of Rathlin Island North Wall in 173m depth, in a pocket of sediment between bedrock (Breen *et al.*, 2009).

Large starfish, including *Luidia sarsi, Luidia ciliaris* and *Marthasterias glacialis,* were often noted in the Rathlin AoI. Ling (*Molva molva*) and cuckoo rays (*Leucoraja naevus*) were also found in the area.

The Ballycastle Bay AoI encompasses a range of habitats from clean coarse megarippled sands, with cobbles in the troughs, to cobbles and boulders representing stony reef, with a significant diversity of epifauna including some erect sponges, and often covered by extensive areas of dense brittlestars (*Ophiothrix fragilis*). The cuckoo ray (*Raja clavata*) was found over the clean sand area. Such habitat may also be considered as potentially suitable Common Skate (*Dipturus batis*) habitat, according to this species' known habitat preferances (e.g. MARLIN Biological Traits Information Catalogue⁴).

The Outer Belfast Lough AoI harbours a large area of bioturbated stable, muddy sands, characterised by *Nephrops norvegicus* and the seapen *Virgularia mirabilis*. The ocean quahog, *Arctica islandica*, is also clearly present on the same habitat. To the southeast of the site, the substratum becomes more mixed with a notable proportion of cobbles and associated increase in epifauna (mostly bryozoan and hydroid turf). The visibility at this site is greatly affected by the passing of ferries which result in a prolonged sediment plume; consequently towed video could not

⁴ <u>http://www.marlin.ac.uk/biotic/browse.php?sp=4257</u>

detect siphon holes of *A. islandica* at the site, although further analysis of the Go Pro footage may improve this. A recent DOE diver survey has identified live *A. islandica* at this site (J. Breen., *pers. comm.*).

A number of the species identified during these surveys are Priority Marine Features (PMFs) not included on the pMCZ features list, and these are therefore not discussed in depth here, however reference should be made to the PMF list provided in Annex I for further consideration.

5. **REFERENCES**

Breen J, Hanna, J.E., and Harrison, T. 2006. A survey of the marine environment of Rathlin Island. DOE Internal Report (unpublished).

Coggan, R., Mitchell, A., White, J. and Golding, N. 2007. Recommended operating guidelines (ROG) for underwater video and photographic imaging techniques. MESH project, available online: <u>http://www.emodnet-seabedhabitats.eu/PDF/GMHM3_Video_ROG.pdf</u>

Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L. M., Northen, K.O. and Reker, J.B. 2004. The Marine Habitat Classification for Britain and Ireland Version 04.05 JNCC, Peterborough. ISBN 1 861 07561 8 (internet version). www.jncc.defra.gov.uk/MarineHabitatClassification

DETI, 2011. Regional Locational Guidance (RLG) for Offshore Renewable Energy Developments in NI Waters.

Folk, R. L., 1954. The distinction between grain size and mineral composition in sedimentary rock nomenclature. Journal of Geology, 62, 344-359.

Irving, R., 2009. The identification of the main characteristics of stony reef habitats under the Habitats Directive. Summary report of an inter-agency workshop 26-27 March 2008. *JNCC Report* No. 432

Maxwell, T.H. 1978. The plankton of Belfast Lough. PhD Thesis, Queen's University Belfast.

Mitchell, A.J. and Service, M., 2004. Northern Ireland Nearshore Subtidal Habitat Mapping Project: QUB / DARD Report to EHS.

McBreen, F., Askew, N., Cameron, A., Connor, D., Ellwood, H. and Carter, A. 2011. UKSeaMap 2010: Predictive mapping of seabed habitats in UK waters. JNCC Report, No. 446.

UKHO, 1995. Tidal stream atlas (United Kingdom Hydrographic Office).

Acknowledgements

The author wishes to thank the master and crew of the RV *Corystes* for their facilitation of the surveys, and in particular Raymond Gilmore (AFBI), Nuala McQuaid (DOE Marine Division), Jonathan Beattie (AFBI), Matthew Service (AFBI) and Gareth Barker (AFBI) for their assistance in data collection. The author also extends her thanks to Ruth Plets and Rory Quinn at the University of Ulster for providing access to the processed JIBS multibeam backscatter and bathymetry.

ANNEX I: Priority Marine Features (Northern Ireland) not included on pMCZ features list⁵

Table 1.1 Priority Marine Feature (PMF) Habitats considered to be afforded protection under existing MPA network in the Northern Ireland inshore region - these cover the range of representative and threatened, rare or declining habitats in Northern Irish waters.

HABITAT	CONSERVATION STATUS	JUSTIFICATION
Countral authors and	11// 040	This behiet is supported for dealers to the under Date States (A.C. Markauch
Coastal saitmarsh	UK BAP	This habitat is currently afforded protection under Bann Estuary SAC, Muriougn
	NIPHORIty	SAC, North Antrim Coast SAC and Strangford Lough SAC (notified features are
		Annex I Atlantic sait meadows [Glouco-Puccinellietalia maritimae] and
For all an annual and bearing		Salicornia and other annuals colonising mud and sand).
Fragile sponge and anthozoan	UK BAP	This habitat is currently afforded protection under Rathlin Island SAC, Maldens
communities on subtidal rocky	NIPriority	CSAC and the Skerries and Causeway CSAC (notified feature is Annex I 'keer').
Rive museel hade (intertidel)	OSDAD TRD	Although this holist is surroutly present within avisting ACCIs and is offered
Blue mussel beds (intertidal)	USPARTAD	Although this habitat is currently present within existing Assis and is afforded
	NI Priority	Indirection protection, the ASSI reature list will be amended to include this habitation a patified feature
Intestidal avad@ata	NIPHORIty	nabitat as a notified feature.
Intertidal mudriats	UKPAR	Inis habitat is currently afforded protection under Bailymacormick Point ASSI, Carlingford Lough ASSI, Killaugh Bay 8, Strand Lough ASSI, Outer Arde ASSI, Tyralla
	NI Priority	Carlingtord Lough ASSI, Killough Bay & Strand Lough ASSI, Outer Ards ASSI, Tyrella
	NIPHOREY	& Minerstown ASSI, Muriough SAC and Strangford Lough SAC (notified feature is
Intertidal under baulder	LIK BAB	Atheven this habitat is surreatly assess within existing ASSIs and is afferded
Intertidal under-boulder	NI Priority	Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI (nature list will be amended to include this babitat as
communities	NIPHOREY	indirect protection, the ASSI reactive list will be amended to include this habitat as
Litteral shalk communities	OSDAD TRD	a notified reactive.
Littoral chaik communities	UK PAD	Although this habitat is currently present within existing Assis and is afforded
	NI Priority	indirect protection, the ASSI feature list will be amended to include this habitat as
Manual hands	NI Priority	a notified reature.
Maeri beds	USPARTOD	This habitat is currently arrorded protection under Red bay and Kathlin Island
	UK BAP	SACS (notified reature is Annex 1 Sandbanks signify covered by seawater all of
	NIPriority	the time").
HABITAT	CONSERVATION STATUS	JUSTIFICATION
HABITAT Sabellaria alveolata reefs	CONSERVATION STATUS	This habitat is currently afforded protection under Tyrella & Minerstown ASSI
HABITAT Sabellaria alveolata reefs	CONSERVATION STATUS UK BAP NI Priority	This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats').
HABITAT Sabellaria alveolata reefs Saline lagoons	UK BAP NI Priority UK BAP	This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network
HABITAT Sabellaria alveolata reefs Saline lagoons	UK BAP NI Priority UK BAP NI Priority UK BAP NI Priority	This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle,
HABITAT Sabellaria alveolata reefs Saline lagoons	UK BAP NI Priority UK BAP NI Priority UK BAP NI Priority	This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3).
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds	UK BAP NI Priority UK BAP NI Priority UK BAP NI Priority OSPAR T&D	This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds	UK BAP NI Priority UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP	This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority	JUSTIFICATION This habitat is currently afforded protection under Tyrelia & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority	JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority	JUSTIFICATION Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex 1'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats').
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP	JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex1 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP NI Priority	JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI feature list will be amended to include this habitat as
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP NI Priority	JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI feature list will be amended to include this habitat as a notified feature.
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels Subtidal chalk	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP NI Priority OSPAR T&D	JUSTIFICATION JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI feature list will be amended to include this habitat as a notified feature. This habitat is currently afforded protection under Rathlin Island SAC and the
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels Subtidal chalk	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP	JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI feature list will be amended to include this habitat as a notified feature. This habitat is currently afforded protection under Rathlin Island SAC and the Skerries and Causeway cSAC (notified feature is Annex I 'Reef').
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels Subtidal chalk	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority NI Priority	This habitat is currently afforded protection under Tyrelia & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI feature list will be amended to include this habitat as a notified feature. This habitat is currently afforded protection under Rathlin Island SAC and the Skerries and Causeway cSAC (notified feature is Annex I 'Reef').
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels Subtidal chalk Tide-swept channels	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP	JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI feature list will be amended to include this habitat as a notified feature. This habitat is currently afforded protection under Rathlin Island SAC and the Skerries and Causeway cSAC (notified feature is Annex I 'Reef').
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels Subtidal chalk Tide-swept channels	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority	JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI feature list will be amended to include this habitat as a notified feature. This habitat is currently afforded protection under Rathlin Island SAC and the Skerries and Causeway cSAC (notified feature is Annex I 'Reef'). This habitat is currently afforded protection under Rathlin Island SAC, Maidens cSAC and the Skerries and Causeway cSAC (notified feature is Annex I 'Reef').
HABITAT Sabellaria alveolata reefs Saline lagoons Seagrass (Zostera) beds Sheltered muddy gravels Subtidal chalk Tide-swept channels	CONSERVATION STATUS UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP NI Priority OSPAR T&D UK BAP NI Priority UK BAP NI Priority UK BAP NI Priority	JUSTIFICATION This habitat is currently afforded protection under Tyrella & Minerstown ASSI (notified feature is 'Intertidal mudflats and sandflats'). This habitat is currently afforded protection through the existing ASSI network (Inner Belfast Lough, Killough Bay & Strand Lough, Larne Lough, Lough Foyle, Strangford Lough Parts 1&3). This habitat is currently afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, Strangford Lough SACs; notified features are Annex 1 'Sandbanks which are slightly covered by seawater all of the time' and 'Mudflats and sandflats not covered by seawater at low tide' and Lough Foyle and Carlingford Lough ASSIs; notified feature is 'Intertidal mudflats'). Although this habitat is currently present within existing ASSIs and is afforded indirect protection, the ASSI feature list will be amended to include this habitat as a notified feature. This habitat is currently afforded protection under Rathlin Island SAC and the Skerries and Causeway cSAC (notified feature is Annex 1 'Reef'). This habitat is currently afforded protection under Rathlin Island SAC, Maidens cSAC and the Skerries and Causeway cSAC (notified feature is Annex 1 'Reef').

⁵ <u>http://www.doeni.gov.uk/justification report for selection of pmczs features-version1.0.pdf</u>

Table 1.2 Priority Marine Feature (PMF) Limited/low mobility species considered to be afforded protection under the existing MPA network (SAC, ASSI) in the Northern Ireland inshore region. These cover the range of representative and threatened, rare or declining species in Northern Irish waters.

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Ascophyllum nodosum	Alga – Brown	NI Priority	Although this species is currently present within an existing ASSI (Strangford
ecad var mackayi (mackaji)			Lough Parts 283) and is afforded indirect protection, the ASSI feature list will be amended to include this as a notified feature.
Carpomitra costata	Alga – Brown	socc	This species is already afforded protection under the existing MPA network (Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reef').
Desmarestia dresnayi	Alga – Brown	NI Priority NIMF	This species is already afforded protection under the existing MPA network (Rathlin Island and The Maidens SACs; notified feature is Annex I 'Sandbanks slightly covered by seawater all of the time').
Atractophora hypnoides	Alga – Red	SOCC	Although this species is ephemeral and rare it is associated with craline algae. It is mainly a western species in the British Isles with records from the Inner Hebrides of Scotland, Galway and County Cork in the south of Ireland, a few records from Wales and south-western England. There are only four records from Northern Ireland: County Antrim from Rathlin Island SAC and Loughan Bay (Torr Head) and in County Down at Greenore Point and near the entrance of Strangford Lough (SAC/MCZ)and five from the Republic of Ireland.
Cruoria cruoriaeformis	Alga – Red	UK BAP NI Priority NIMF	This species is already afforded protection under the existing MPA network (Rathlin Island and Red Bay SACs; notified feature is Annex I habitat 'Sandbanks which are slightly covered by seawater all of the time').
Schmitzia hiscockiana	Alga – Red	SOCC	This species is already afforded protection under the existing MPA network (Rathlin Island and The Maidens SACs; notified feature is Annex I 'Sandbanks slightly covered by seawater all of the time').
Schmitzia neapolitana	Alga – Red	SOCC	This species is already afforded protection under the existing MPA network (Red Bay SAC; notified feature is Annex I 'Sandbanks slightly covered by seawater all of the time').

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Stenogramme interrupta	Alga – Red	SOCC	This species is already afforded protection under the existing MPA network (Rathlin Island, Red Bay, The Maidens and Strangford Lough SACs; notified features are Annex I 'Sandbanks slightly covered by seawater all of the time' and 'Reef').
Sabellaria alveolata	Annelida	SOCC	This species is already afforded protection under the existing MPA network (Tyrella & Minerstown and Mournes Coast ASSIs; notified feature is 'Intertidal sandflats and mudflats')
Bugula turbinata	Bryozoa – an erect bryozoan	socc	This species is already afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, The Maidens and Strangford Lough SACs; notified feature is Annex I 'Reefs').
Pentapora foliacea	Bryozoa – Ross coral/Potato crisp bryozoan	NI Priority	This species is already afforded protection under the existing MPA network (Skerries & Causeway and Rathlin Island SACs; notified feature is Annex I 'Reefs').
Alcyonium hibernicum	Cnidaria – Soft coral	SOCC NIMF	This species is already afforded protection under the existing MPA network (Rathlin Island SAC; notified feature is Annex I 'Reefs').
Arachnanthus sarsi	Cnidaria – Anemone	NI Priority UK BAP NIMF	This species is already afforded protection under the existing MPA network (Rathlin Island SAC; notified feature is Annex I 'Sandbanks slightly covered by seawater all of the time'). Are we content with this?
Aureliania heterocera	Cnidaria – Emperor/Imperial anemone	SOCC	This species is already afforded protection under the existing MPA network (Rathlin Island, The Maidens and Strangford Lough SACs; notified features are Annex I 'Sandbanks which are slightly covered by seawater all of the time' and 'Large shallow inlets and bays').
Caryophyllia inornata	Cnidaria – Cup coral	NI Priority NIME	This species is already afforded protection under the existing MPA network (Rathlin Island SAC: notified feature is Annex I 'Reefs').
Caryophyllia smithii	Cnidaria – Cup coral	NIMF	This species is already afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, The Maidens and Strangford Lough SACs; notified feature is Annex I 'Reefs').

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Diphasia alata	Cnidaria –	NI Priority	This species is already afforded protection under the existing MPA network
	Hydroid	NIME	(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Diphasia nigra	Cnidaria –	NI Priority	This species is already afforded protection under the existing MPA network
	Hydroid	NIME	(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Edwardsia timida	Cnidaria –	NI Priority	This species is already afforded protection under the existing MPA network
	Anemone	UK BAP	(Rathlin Island and Strangford Lough SACs; notified feature is Annex I
		NIMF	'Sandbanks slightly covered by seawater all of the time').
Halecium plumosum	Cnidaria –	SOCC	This species is already afforded protection under the existing MPA network
	Hydroid		(Skerries & Causeway, Rathlin Island, The Maidens and Strangford Lough
			SACs; notified feature is Annex I 'Reefs'). This has also been removed from
			the NI Priority List.
Haliclystus auricula	Cnidaria –	UK BAP	This species is already afforded protection under the existing MPA network
	Stalked jellyfish	NI Priority	(Skerries & Causeway, Rathlin Island SACs; notified feature is Annex I
		NIME	'Reefs').
Lytocarpia	Cnidaria –	NI Priority	This species is already afforded protection under the existing MPA network
myriophyllum	Hydroid		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Parazoanthus	Cnidaria –	SOCC	This species is already afforded protection under the existing MPA network
anguicomus	Anemone	NIME	(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Parazoanthus axinellae	Cnidaria –	NI Priority	This species is already afforded protection under the existing MPA network
	Yellow trumpet		(Rathlin Island SAC; notified feature is Annex I 'Reef').
	anemone		
Polyplumaria flabellata	Cnidaria –	NI Priority	This species is already afforded protection under the existing MPA network
	Hydroid	NIME	(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Stomphia coccinea	Cnidaria –	NI Priority	This species is already afforded protection under the existing MPA network
	Anemone		(Rathlin Island and Strangford Lough SACs; notified feature is Annex I
			'Reefs').

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Tamarisca tamarisca	Cnidaria – Hydroid	socc	This species is already afforded protection under the existing MPA network (Rathlin Island and Strangford Lough SACs; notified feature is Annex I 'Reefs').
Atelecyclus rotundatus	Crustacea – Circular crab	NI Priority	This species is already afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island and Strangford Lough SACs; notified features are Annex I 'Sandbanks slightly covered by seawater all of the time' and 'Large shallow inlets and bays').
Cestopagurus timidus	Crustacea – Hermit crab	NI Priority	This species is already afforded protection under the existing MPA network (Rathlin Island SAC; notified features are Annex I 'Reef' and 'Sandbanks which are slightly covered by seawater all of the time').
Corystes cassivelaunus	Crustacea – Masked crab	socc	This species is already afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island and Red Bay SACs; notified feature is Annex I 'Sandbanks which are slightly covered by seawater all of the time').
Homarus gammarus	Crustacea – European lobster	socc	This species is already afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, The Maidens and Strangford Lough SACs; notified feature is Annex I 'Reefs'). This is also protected by fisheries management measures and populations are currently stable.
Inachus leptachirus	Crustacea — Spider crab	NI Priority	This species is already afforded protection under the existing MPA network (Rathlin Island and Strangford Lough SACs; notified features are Annex I 'Reefs' and 'Sandbanks which are slightly covered by seawater all of the time'). There are no recent records – this has been attributed to the difficulty of identification <i>in situ</i> .
Munida rugosa	Crustacea – Squat lobster	NI Priority	This species is already afforded protection under the existing MPA network (Rathlin Island, The Maidens and Strangford Lough SACs; notified feature is Annex I habitat of 'Reef').

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Palinurus elephas	Crustacea – Spiny lobster	NI Priority UK BAP NIMF WANE	This species is already afforded protection under the existing MPA network (Rathlin Island SAC; notified feature is Annex I 'Reef'). In addition, this species is protected under the WANE Act and there are fishery protection measures in place (minimum landing size).
Anseropoda placenta	Echinodermata – Goosefoot starfish	NI Priority	This species is already afforded protection under the existing MPA network (Red Bay and The Maidens SACs; notified feature is Annex I 'Sandbanks which are slightly covered by seawater all of the time').
Antedon petasus	Echinodermata – Feather star	NIMF	This species is already afforded protection under the existing MPA network (Skerries & Causeway and Rathlin Island SACs; notified feature is Annex I 'Reefs').
Asterina phylactica	Echinodermata – Cushion star	SOCC	This species is already afforded protection under the existing MPA network (Strangford Lough SAC; notified feature is Annex I 'Large shallow inlets and bays').
Asteropecten irregularis	Echinodermata – Starfish	NI Priority	This species is already afforded protection under the existing MPA network (Rathlin Island and Murlough SACs; notified feature is Annex I 'Sandbanks which are slightly covered by seawater all of the time').
Labidoplax media	Echinodermata – Sea cucumber	NI Priority	This species is recorded in one site in the existing MPA network although records are poor (only 3 records exist for this species from 1982-1985). It is likely that this species is already afforded protection through the existing MPA network (Strangford Lough SAC; notified feature is Annex I 'Large shallow inlets and bays').
Leptasterias muelleri	Echinodermata – Starfish	SOCC	This species is already afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, The Maidens, Strangford Lough and Murlough SACs; notified features are Annex I 'Reefs' and 'Sandbanks which are slightly covered by seawater all of the time'). This has already been removed from the NI Priority List.

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Leptosynapta bergensis	Echinodermata – Sea cucumber	NI Priority	This species is already afforded protection under the existing MPA network (Strangford Lough SAC; notified feature is Annex I 'Large shallow inlets and bays').
Paracucumaria hyndmani	Echinodermata – Hyndman's sea cucumber	NI Priority	This species is already afforded protection under the existing MPA network through association with <i>Modiolus</i> beds (Skerries & Causeway and Strangford Lough SACs; notified feature is Annex I 'Reefs').
Porania pulvillus	Echinodermata – Cushion star	SOCC	This species is already afforded protection under the existing MPA network (Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Solaster endeca	Echinodermata – Sunstar	NI Priority	This species is already afforded protection under the existing MPA network (Strangford Lough SAC; notified features are Annex I 'Reefs' and 'Large shallow inlets and bays').
Thyonidium drummondi	Echinodermata – Sea cucumber	NI Priority	This species is already afforded protection under existing MPA network (Strangford Lough SAC; notified features are Annex I 'Reef' and 'Large shallow inlets and bays'). <i>Thyonidium drummondi</i> is associated with Horse Mussel (<i>Modiolus modiolus</i>) beds.
Glossobalanus sarniensis	Hemichordata – Acorn worm	NI Priority	This species is already afforded protection under the existing MPA network (Strangford Lough SAC; notified feature is Annex I 'Large shallow inlets and bays').
Aequipecten opercularis	Mollusca – Queen scallop	None	This species is already afforded protection under the existing MPA network (Rathlin Island, Red Bay, The Maidens and Strangford Lough SACs, notified features are Annex I 'Reefs', 'Sandbanks which are slightly covered by seawater all of the time' and 'Large shallow inlets and bays').
Cerastoderma glaucum	Mollusca - Brackish cockle	SOCC	This species is already afforced protection under the existing MPA network (Glynn ASSI and has recently been recorded in Strangford Lough SAC).
Chlamys varia	Mollusca – Variegated scallop	NI Priority	This species is already afforded protection under existing MPA network (Strangford Lough SAC; notified feature are Annex I 'Reef' and 'Large shallow inlets and bays').

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Crenella decussata	Mollusc – Bivalve mussel	socc	This species is already afforded protection under the existing MPA network (Strangford Lough SAC; notified feature is Annex I 'Large shallow inlets and bays').
Cumanotus beaumonti	Mollusca — Nudibranch	NI Priority	Although this species is ephemeral and rare it is indirectly protected through its food source. It feeds on the solitary hydroid <i>Corymorpha nutans</i> , which is already afforded protection under the existing MPA network (Rathlin Island, The Maidens and Murlough SACs; notified feature is Annex I 'Sandbanks which are slightly covered by seawater all of the time').
Cuthona concinna	Mollusca – Nudibranch	SOCC	This species is already afforded protection under the existing MPA network (Rathlin Island and Strangford Lough SACs; notified feature is Annex I 'Reefs'). In addition, this species feeds on the bryozoans Sertularia argentea, which is already afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island, The Maidens and Strangford Lough SACs; notified feature is Annex I 'Reefs').
Erato voluta	Mollusca – Egg cowrie	NI Priority	This species is already afforded protection under the existing MPA network (Rathlin Island SAC: notified feature is Annex I 'Reefs').
Eubranchus doriae	Mollusca – Nudibranch	NI Priority	Although this species is ephemeral it is indirectly protected through its food source. It feeds on the hydroid <i>Kirchenpaueria similis</i> , which is present under the existing MPA network (Skerries & Causeway SAC; notified feature is Annex I 'Reefs').
Palio dubia	Mollusca – Nudibranch	NI Priority	Although this species is ephemeral and rare (this has not been recorded in Northern Ireland since the original record in 1978) it is indirectly protected through its food source. It feeds on the bryozoan <i>Eucratea loricata</i> , which is already afforded protection under the existing MPA network (Skerries & Causeway, Rathlin Island and Strangford Lough SACs; notified features are Annex I 'Reefs' and 'Sandbanks which are slightly covered by seawater all of the time').

SPECIES	GROUP	CONSERVATION	JUSTIFICATION
		STATUS	
Pecten maximus	Mollusca –	SOCC	This species is already afforded protection under existing MPA network
	King scallop		(Skerries & Causeway, Rathlin Island, The Maidens and Strangford Lough
			SACs; notified features are Annex I 'Reef', 'Sandbanks which are slightly
			covered by seawater all of the time' and 'Large shallow inlets and bays').
Thecacera pennigera	Mollusca –	SOCC	Although this species is ephemeral with few NI records it is indirectly
	Nudibranch		protected through its food source. It feeds on the bryozoan Bugula
			plumosa, which is widespread and already afforded protection under the
			existing SAC network (Skerries & Causeway, Rathlin Island, The Maidens and
			Strangford Lough SACs; notified features are Annex I 'Reefs' and 'Sandbanks
			which are slightly covered by seawater all of the time').
Tonicella marmorea	Mollusca –	NI Priority	This species is already afforded protection under the existing MPA network
	Chiton		(Strangford Lough SAC, notified feature is Annex I 'Large shallow inlets and
			bays'). In particular it is found under stones and boulders on muddy gravel).
Amphilectus ovulum	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge		(Strangford Lough SAC; notified feature is Annex I 'Reefs').
Antho brattegardi	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Axinella damicornis	Porifera -	SOCC	This species is already afforded protection under the existing MPA network
	Sponge	NIME	(Skerries & Causeway and Rathlin Island SACs; notified feature is Annex I
			'Reefs').
Axinella dissimilis	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge		(Skerries & Causeway, Rathlin Island and The Maidens SACs; notified
			feature is Annex I 'Reefs').
Biemna variantia	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge		(Strangford Lough SAC; notified features are Annex I 'Reef' and 'Large
			shallow inlets and bays').
Clathria barleei	Porifera -	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge	NIME	(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Eurypon coronula	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge		(Strangford Lough SAC; notified feature is Annex I 'Reefs').
Hymedesmia	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
cohesibacilla	Sponge		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Hymedesmia rathlinia	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs).
Hymerhabdia typica	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs).
lophon hyndmani	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island, The Maidens and Strangford Lough SACs; notified feature is
			Annex I 'Reefs'). It has also been removed from the NI Priority List.
Lissodendoryx	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
jenjonesae	Sponge		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Microciona elliptichela	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Mycale cf. contarenii	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge		(Strangford Lough SAC, notified features are Annex I 'Reefs' and 'Large
			shallow inlets and bays').
Mycale lingua	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island SAC; notified feature is Annex I 'Reefs').
Mycale similaris	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge	NIME	(Strangford Lough SAC; notified features are Annex I 'Reefs' and 'Large
			shallow inlets and bays'). It has also been removed from the NI Priority List.
Myxilla cf. rosacea	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge		(Skerries & Causeway, Rathlin Island, The Maidens and Strangford Lough
			SACs; notified feature is Annex I 'Reefs').
Plocamiancora arndti	Porifera –	SOCC	This species is already afforded protection under the MPA network (Rathlin
	Sponge		Island and The Maidens SACs; notified feature is Annex I 'Reefs').

SPECIES	GROUP	CONSERVATION	JUSTIFICATION
		STATUS	
Pyura microcosmus	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge	NIME	(Skerries & Causeway, Rathlin Island and Strangford Lough SACs; notified
		SOCC	feature is Annex I 'Reefs').
Spanioplon armaturum	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island and The Maidens SACs, notified feature is Annex I 'Reefs').
Spongionella pulchella	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge	NIME	(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Stelletta grubii	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island SAC; notified feature is Annex I 'Reefs').
Stryphnus ponderosus	Porifera –	SOCC	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island SAC; notified feature is Annex I 'Reefs').
Tethya hibernica	Porifera –	NI Priority	This species is already afforded protection under the existing MPA network
	Sponge		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Archidistoma	Tunicata -	SOCC	This species is already afforded protection under the existing MPA network
aggregatum	Sea squirt		(Rathlin Island and The Maidens SACs; notified feature is Annex I
			'Sandbanks which are slightly covered by seawater all of the time').
Boltenia echinata	Tunicata –	SOCC	This species is already afforded protection under the existing MPA network
	Sea squirt		(Rathlin Island and The Maidens SACs; notified feature is Annex I 'Reefs').
Diazona violacea	Tunicata –	NIME	This species is already afforded protection under the existing MPA network
	Football sea squirt		(Rathlin Island SAC; notified feature is Annex I 'Reefs').
Pycnoclavella stolonialis	Tunicata –	NI Priority	This species is already afforded protection under the existing MPA network
	Sea squirt		(Skerries & Causeway, Rathlin Island, The Maidens and Strangford Lough
			SACs; notified feature is Annex I 'Reefs').
Synoicum incrustatum	Tunicata –	SOCC	This species is already afforded protection under the existing MPA network
	Sea squirt	NIME	(Skerries & Causeway, Rathlin Island and The Maidens SACs; notified
			feature is Annex I 'Reefs').

Table 1.3 Priority Marine Feature (PMF) Limited/low mobility species excluded from consideration as a focus for MCZ designation and justification for exclusion. These cover the range of representative and threatened, rare or declining species in Northern Irish waters.

SPECIES	GROUP	CONSERVATION STATUS	JUSTIFICATION
Ahnfeltiopsis devoniensis	Alga – Red	NI Priority	This species has been excluded as originally was thought to be a type locality but is now known that it originates from Canada.
Gelidiella calcicola	Alga – Red	NIMF SOCC	This species has been excluded as there is only one record from 1980s for this species and this lies outside the existing MPA network. Further work on its current status and distribution is needed before consideration as an MCZ feature.
Anemonactis mazeli	Cnidaria – Anemone	NIMF SOCC	This species has been excluded as there is only one record from NISS (1982- 85). The site was re-surveyed in 2006-08 and the species was not found.
Lucernariopsis campanulata	Cnidaria – Stalked jellyfish	UK BAP NI Priority NIMF	This species has been excluded as there are only two records from 1980s for this species and these lie outside the existing MPA network.
Arrhis phyllonyx	Crustacea – Amphipod	UK BAP NI Priority NIMF	This species has been excluded as it is a pelagic species thought to inhabit deep offshore waters. There is limited knowledge on its distribution in Northern Irish waters making site based protection likely to be unsuitable.
Amphiura securigera	Echinodermata – Brittle star	socc	Records of distribution are limited (only three records exist for this species from 1982-1985 and all are outside the MPA network). Further work on its current status and distribution is needed before consideration as an MCZ feature.
Hippocampus guttulatus	Fish – Spiny seahorse	UK BAP NI Priority OSPAR WANE Schedule 5, 6 & 7	This species has been excluded as there are no recent records of its presence in Northern Irish waters. There are two historical records for this species – a female in 1893 and a male in 1961.

SPECIES	GROUP	CONSERVATION	JUSTIFICATION
		STATUS	
Hippocampus	Fish -	UK BAP	This species has been excluded as there are no records (recent or historical)
hippocampus	Short snouted	NIME	of its presence in Northern Irish waters.
	seahorse	OSPAR T&D	
		WANE Schedule 5.	
		6&7	
Philinoglossa	Mollusca –	SOCC	This species has been excluded as there is limited information on its
helgolandica	Opisthobranch		distribution (this is a tiny shell-less mollusc found in shell gravel and is a
-			meiofaunal community constituent). There are no records of this species
			on Marine Recorder for Northern Ireland.
Embletonia pulchra	Mollusca –	SOCC	This species has been excluded as it is under-recorded, ephemeral and rare
	Nudibranch		and is not associated with a particular habitat or food source therefore site
			based protection is likely to be unsuitable. There are no records of this
			species on Marine Recorder.
Hero formosa	Mollusca –	SOCC	This species has been excluded as it is ephemeral and rare therefore site
	Nudibranch		based protection is likely to be unsuitable. It is believed that the most
			recent record for this was 1988 however there are no records of this species
			on Marine Recorder.
Phakellia rugosa	Porifera –	SOCC	This species has been excluded as there are only rare and historic records
	Sponge		for its presence and may no longer be present in Northern Ireland. This
			species is at the southern extent of its range in Northern Ireland therefore
			site based protection is likely to be unsuitable. No records of this species on
			Marine Recorder.

ANNEX II: Multivariate analysis of infaunal data from CO2414 Rathlin and Ballycastle grab samples

SIMPER Similarity Percentages - species contributions

One-Way Analysis

Parameters Resemblance: S17 Bray Curtis similarity Cut off for low contributions: 90.00%

Factor GroupsSampleSIMPROFBally S1_1aRathlin NS1_1cRathlin NS1_2cRathlin NS4_2cRathlin NS4_3cRathlin NS4_1bRathlin NS4_1bRathlin NS4_1dRathlin NS6_1dRathlin NS6_2d					
<i>Group a</i> Less than 2 samples in group					
<i>Group c</i> Average similarity: 43.66					
Species Verruca stroemia NEMATODA Sabellaria spinulosa Thelepus cincinnatus Notoproctus Golfingiidae (juv.) Hiatella arctica POLYCHAETA Plagioecia patina Disporella hispida Electra pilosa Pyripora catenularia Flustridae Flustra foliacea Scrupocellaria Hippothoa divaricata Escharella immersa Escharella ventricosa Leptochiton asellus Modiolula phaseolina Amphipholis squamata Phisidia aurea Polycirrus medusa Anomiidae (juv.) Notomastus Fenestrulina malusii Turbicellepora avicularis Dipolydora flava Alcyonidium diaphanum Amphiblestrum flemingii Cellaria fistulosa Didemnidae PORIFERA Sertularia Tubuliporidae Cellaria Cliona (agg.) Eudendrium Nephasoma minutum Syllis variegata Crisia Schizomavella linearis Aphelochaeta "species A" Sycon ciliatum Laonice bahusi ensis ASCIDIACEA Echinocyamus pusillus	Av. Abund 6. 64 3. 06 3. 94 1. 82 2. 17 1. 46 1. 35 1. 00 1. 00 0. 75 0. 75	Av. Sim 4. 06 2. 43 1. 98 1. 28 1. 22 1. 05 0. 99 0. 63 0. 62 0. 62 0. 55 0. 25 0. 25	$\begin{array}{c} \text{Si m/SD} \\ 3.\ 08 \\ 4.\ 03 \\ 1.\ 69 \\ 4.\ 79 \\ 0.\ 73 \\ 2.\ 99 \\ 5.\ 56 \\ 5.\ 73 \ 5.\ 73 \ 5.\ 73 \ 5.\ 73 \ 5.\ 73 \ 5$	Contrib% 9. 29 5. 58 4. 52 2. 94 2. 92 2. 80 2. 42 2. 28 2. 20 1. 42 1. 20 1. 20 1. 00 1. 00 1. 00 1. 00 0. 69 0. 60 0. 58 0. 58 0. 52	$\begin{array}{c} \text{Cum. \%}\\ 9, 29\\ 14, 87\\ 19, 39\\ 22, 33\\ 25, 25\\ 28, 05\\ 30, 47\\ 32, 75\\ 35, 02\\ 37, 30\\ 39, 58\\ 41, 85\\ 44, 13\\ 46, 40\\ 48, 68\\ 50, 96\\ 53, 23\\ 55, 51\\ 57, 31\\ 59, 09\\ 60, 63\\ 55, 51\\ 57, 31\\ 59, 09\\ 60, 63\\ 62, 07\\ 63, 50\\ 64, 91\\ 66, 18\\ 67, 46\\ 68, 73\\ 69, 92\\ 71, 12\\ 72, 32\\ 74, 72\\ 75, 80\\ 77, 96\\ 79, 04\\ 80, 05\\ 81, 05\\ 82, 05\\ 84, 06\\ 85, 75\\ 86, 93\\ 87, 51\\ 88, 03\\ \end{array}$
Sphaerosyllis bulbosa ASCIDIACEA (juv.)	0.60 1.10	0.21 0.21	0. 41 0. 41	0.49 0.48	88.52 89.00

Glycera lapidum Odontosyllis fulgurans Aonides paucibranchiata	0. 68 0. 60 0. 68	0. 18 0. 18 0. 18	0. 41 0. 41 0. 41	0. 41 0. 41 0. 41	89. 41 89. 82 90. 24
<i>Group b</i> Average similarity: 44.03					
Species Leptochiton asellus Modiolula phaseolina PORIFERA Cliona (agg.) Hydrallmania falcata Sertularia NEMERTEA NEMATODA Aonides paucibranchiata Sabellaria spinulosa Verruca stroemia Glycymeris glycymeris Tubuliporidae Disporella hispida Electra pilosa Pyripora catenularia Amphiblestrum flemingii Escharella immersa Escharella labrosa <i>Group d</i> Average similarity: 26.28	Av. Abund 1. 98 1. 83 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 37 1. 37 2. 30 1. 72 1. 00 1. 00	Av. Sim S 3. 30 ## 2. 69 ## 1. 90 ##	Si m/SD ####################################	$\begin{array}{c} \text{Contrib}\%\\ 7.48\\ 6.11\\ 4.32$	Cum. % 7. 48 13. 59 17. 91 22. 23 26. 55 30. 87 35. 19 39. 52 43. 84 48. 16 52. 48 56. 80 61. 12 65. 44 69. 76 74. 08 78. 40 82. 72 87. 04 91. 36
Species Polygordius Disporella hispida Electra pilosa Puellina bifida Verruca stroemia Glycera lapidum Socarnes erythrophthalmus Crisidia cornuta Crisia Tubuliporidae Pyripora catenularia Scrupocellaria Amphipholis squamata Goodallia triangularis Plagioecia patina Cellaria fistulosa	Av. Abund 4. 64 1. 00 1. 00 2. 61 0. 67 5 1. 05 0. 67 0. 67 0. 67 0. 80 0. 80 0. 80 0. 67 0. 67	Av. Sim 3. 68 2. 98 2. 98 2. 98 1. 98 1. 44 0. 99 0. 84 0. 84 0. 84 0. 84 0. 84 0. 84 0. 70 0. 70 0. 70 0. 70	Si m/SD 3. 68 2. 53 2. 53 2. 53 0. 58 0. 58	Contri b% 14. 00 11. 35 11. 35 11. 35 7. 52 5. 48 3. 76 3. 21 3. 21	Cum. % 14. 00 25. 35 36. 70 48. 04 55. 56 61. 04 64. 80 68. 01 71. 22 74. 42 77. 63 80. 84 84. 05 86. 70 89. 36 92. 02

ANNEX III: Grab sampling notes: CO2414 and CO0715

Grab_ID	Rep No.	Date	Time	Latitude (decimal degrees)	Longitude (decimal degrees)	Depth (m)	Sample Description	Comment	
Rathlin N S1	1	19/06/2014	12:42	55.31655	-6.31985	187	Coarse Sediment, Piece of Ammonite, Broken Shell including Modiolus Shell	Infaunal sample, No PSA. Grab 1/6 full	
Rathlin N S1_2	2	19/06/2014	13:47	55.32222	-6.303983	197	Alcyonidium gelatinosum,small yellow sponge, Stones-cobbles; Hydroids, Pomatoceros, Ophiopholis, Cellaria, Bryozoan Crust, Tiny Ascidians(A. conchilega), Tiny crab - maybe Hyas, Some broken Shell	Infaunal sample, No PSA. Grab 1/6 full	
Rathlin N S2_1	1	19/06/2014	14:22	55.3195	-6.27595	197	Whole Shell (incl. Modiolus), Pebbles & shell fragments	Infaunal sample, No PSA. Grab 1/5 full	
Rathlin N S2_2	2	19/06/2014	14:31	55.31863	-6.26785	197	No sample	No sample	
Rathlin N S2_3	3	19/06/2014	14:56	55.32042	-6.277617	200	2 stones in mouth of grab.		
Rathlin NS 3_1	1	19/06/2014	15:45	55.32493	-6.209383	186	Broken shell & gravel	Infaunal sample (4.5kg of 9.15kg fixed) & PSA sample taken. Grab 80% full.	
Rathlin NS 3_2	2	19/06/2014	15:54	55.32533	-6.198667	180	No sample, grab empty		
Rathlin NS 4_1a	1	19/06/2014	19:00	55.3204	-6.268933	210	No sample, two small stones with Keel worm and chiton		
Rathlin NS 4_1b	1	19/06/2014	19:11	55.31877	-6.272733	210	Sand (medium & course) & shell	Infaunal sample taken; No PSA. Grab 1/5 full	
Rathlin NS 4_2	2	19/06/2014	19:23	55.31617	-6.278583	210	Medium & coarse sand; Whole shell & Shell gravel; Polychaetes; Bivalves; Hydroids	Infaunal & PSA samples taken. Grab 1/3 full	
Rathlin NS 4_3	3	19/06/2014	19:30	55.31398	-6.2837	180	Medium & coarse sand; Whole shell & Shell gravel.	Infaunal & PSA samples taken. Grab 1/5 full	
Rathlin NS5_1a	1	19/06/2014	20:01	55.31935	-6.231667	228	No sample, grab empty		
Rathlin NS5_1b	2	19/06/2014	20:15	55.31752	-6.230883	228	6 Stones with Hyroids & brittlestars (Ophiothrix fragilis, Ophiocomina nigra)	No infaunal or PSA sample taken, photos taken of biota on stones & brittlestars	
Rathlin NS6_1	1	19/06/2014	20:25	55.32322	-6.21915	186	Shell, shell fragments & whole shell	Infaunal sample (4.5kg of 9.15kg fixed) & PSA sample taken. Grab 80% full.	
Rathlin NS6_2	2	19/06/2014	20:43	55.32083	-6.2161	191	Shell, shell fragments & whole shell	Infaunal sample (5kg of 10.2kg fixed) & PSA sample taken. Grab 90% full.	
Rathlin NS7_1 East Rathlin	1	20/06/2014	08:15	55.28068	-6.095183	140	Shells, pebbbles with hydroid. Very small sample	Very small sample so discarded. No PSA sample taken either.	
Rathlin NS7_2 East Rathlin	2	20/06/2014	08:22	55.2836	-6.101467	155	Single basaltic cobble, Pomatoceros, hydroids.	Very small sample so discarded. No PSA sample taken either.	
Rathlin ES1_1	3	20/06/2014	08:46	55.27842	-6.106	150	1 cobble with biota attached - Cellaria ?fistulosa?; Pomatoceros, Ophiothrix, Unkown pale white-beige mass; Nemertesia	No infaunal or PSA sample taken, photos taken of biota on cobble	
Ballycastle S1_1	1	20/06/2014	12:30	55.23527	-6.245467	80	1 stone and brittlestar. Sample too small to retain	Very small sample so discarded. No PSA sample taken either.	
Ballycastle S1_1	2	20/06/2014	12:54	55.2234	-6.2439	53	Coarse sand & broken shell but too little to process (stone must have wedged in jaws of grab	Tiny sample so discarded. No PSA taken either	
Ballycastle S1_1	3	20/06/2014	13:00	55.22232	-6.240933	55	Coarse sand with comminuted shell & whole shell gravel. Some medium sand. No obvious fauna.	Infaunal & PSA samples taken. Grab 80% full. No subsample	

Station	Grab_code	Date	Time	Depth_m	PSA	C_N	Infauna_ 1mm	Phot os	Prop_full	Notes	LatDD	LongDD
Outer Belfast Lough	1_A	12/02/2015	00:47	24	Y	Y	Y	Y	3/4	Muddy sand or sandy mud? Tusk shells, some comminuted shell	54.70845	-5.59715
Outer Belfast Lough	1_B	12/02/2015	01:01	25	Y	Y	Y	Y	3/4	Muddy sand or sandy mud? Tusk shells, some comminuted shell	54.70858	-5.59795
Outer Belfast Lough	1_C	12/02/2015	01:11	25	Y	Y	Y	Y	3/4	Muddy sand or sandy mud? Dead Arctica shell; possibly juvenile Arctica (photos taken)	54.7088	-5.59763
Rathlin1	1_1	10/02/2015	10:55	200	N	N	N	Y	1/10	Samples not retained as small sample and jaws had jammed open; clean pebbles of various lithologies (sedimetary and igneous), 1 broken shell; Spirobranchus sp., enc bryozoans	55.32218	-6.18957
Rathlin1	1_2	10/02/2015	11:18	200	N	N	N	Y	Scraped stones	No proper sample- looks like scraped off cobbles; Tubularia indivisa, bryozoan and hydrozoan turf, Alcyonium digitatum	55.32202	-6.19118
Rathlin2	2_A	10/02/2015	15:58	260	N	N	N	Y	Scraped stones	No proper sample- looks like scraped off cobbles; Tubularia indivisa, bryozoan and hydrozoan turf, Filograna implexa?, Rissoid gastropod?, Crisia sp.	55.31687	-6.14313
Rathlin2	2_B	10/02/2015	16:02	250	N	N	N	Y	2 cobbles	2 cobbles; Tubularia indivisa, Anomia sp., enc bryozoa, Surpulid worms, Ophiothrix fragilis, Omalosecosa ramulosa, Crisia sp., Rissoid gastropod? (photos taken)	55.32063	-6.14515
Rathlin2	2_C	10/02/2015	16:38	260	N	N	N	Y	Scraped stones	No proper sample- looks like scraped off cobbles; Ophiothrix fragilis, Tubularia indivisa, Alcyonium digitatum, Cellaria sp., Modiolula sp	55.3184	-6.15222
Rathlin3	3_A	11/02/2015	10:15	210	N	N	N	Y	1 cobble & 1 pebble	Cobble and pebble retained only plus one living Modiolus (retained); chitons, bryozoan turf, Crisia sp., Cellaria sp., Nemertesia sp., Anomia sp., Spirobranchus sp., Ophiothrix fragilis, Ophiopholis sp.	55.35568	-6.26548
Rathlin3	3_B	11/02/2015	10:58	220	N	N	N	Y	Few pebbles & cobbles	Pebbles and cobbles, Pandalus sp., Surpulid worms, Spirobranchus sp., encrusting bryozoans, bryozoan and hydrozoan turf	55.3534	-6.26343
Rathlin3	3_C	11/02/2015	11:26	210	N	N	N	Y	1 boulder	1 small boulder and dead shell clump with living Modiolus (attached to shells by byssus threads; retained and frozen); surpulid worms, Spirobranchus, A. digitatum, enc bryozoans	55.35403	-6.26672
Rathlin4	4_A	11/02/2015	13:01	227	Y	N	Y	Y	1/4	Coarse sand/comminuted shell with some finer sand; whole dead shell (Modiolus inc); clumped living Modiolus; hydroid/bryo turf; surpulid worms; Anomia sp; Ophiothrix fragilis; Circomphalus casina	55.34463	-6.21537
Rathlin4	4_B	11/02/2015	13:22	230	Y	N	Y	Y	1/2	Coarse sand/shell gravel; some fines but most washed out, cobbles, whole dead shell (much Modiolus); Circomphalus casina, other bivalves, Surpulid worms, enc bryozoans	55.34432	-6.20328
Rathlin4	4_C	11/02/2015	13:43	229	Y	N	Y	Y	1/4	Coarse sand/shell gravel; some fines but most washed out, cobbles, whole dead shell (much Modiolus); 1 crushed living Modiolus, Ophiothrix fragilis, Surpulid worms, enc bryozoans	55.3441	-6.20247