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Abstract. Network flows and specifically water flow in open canals can be
modeled by systems of balance laws defined on graphs. The shallow water

or Saint-Venant system of balance laws is one of the most used model and
present two phases: fluvial or sub-critical and torrential or super-critical. Phase

transitions may occur within the same canal but transitions related to networks

are less investigated. In this paper we provide a complete characterization of
possible phase transitions for a case study of a simple scenario with two canals

and one junction. However, our analysis allows the study of more complicate

networks. Moreover, we provide some numerical simulations to show the theory
at work.

1. Introduction. The dynamics of network flows is usually modelled by systems
of Partial Differential Equations (briefly PDEs), most of time balance laws. The
dynamics is defined on a topological graph with evolution on arcs given by sys-
tem of PDEs, while additional conditions must be assigned at network nodes, e.g.
conservation of mass and momentum. There is a large literature devoted to these
problems and we refer to [5] for a extensive survey and for additional references.

In particular, here we focus on water flows on a oriented network of open canals
and the model given by Saint-Venant or shallow water equations. The latter form
a non linear system of balance laws composed by a mass and momentum balance
laws. In water management problems, these equations are often used as a funda-
mental tool to describe the dynamics of canals and rivers, see [1] and papers in same
volume, and various control techniques were proposed, see [2, 3, 17, 15, 19, 23, 26]
and references therein. Moreover, the need of dynamic models in water manage-
ment is well documented, see [25]. The shallow water system is hyperbolic (except
when water mass vanishes) and has two genuinely nonlinear characteristic fields.
Moreover, it exhibits two regimes: fluvial or sub-critical, when one eigenvalue is
negative and one positive, and torrential or super-critical, when both eigenvalues
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are positive. This is captured by the so called Froude number, see (1). For a com-
plete description of the physics of the problem one needs to supply the equations
with conditions at nodes, which represent junctions. The junction conditions are
originally derived by engineers in the modeling of the dynamic of canals and rivers.
The first and most natural condition is the conservation of water mass which is
expressed as the equality between the sum of fluxes from the incoming canals and
that from outgoing ones. One single condition is not sufficient to isolate a unique so-
lution, thus different additional condition were proposed in the literature. Physical
reasons motivate different choices of conditions, among which the equality of water
levels, of energy levels and conservation of energy. For the assessment of coupling
conditions on canals networks and for more details on the existence of solutions in
the case of subcritical flows, we refer the reader to [9, 18, 16, 20, 14, 22, 24]. For
discussion on supercritical flow regimes, we refer the reader to [18] and references
there in.

Then, to construct solutions one may resort to the concept of Riemann solver at
a junction, see [13]. A Riemann solver at a junction is a map assigning solutions to
initial data which are constant on each arc. Alternatively one may assign bound-
ary conditions on each arc, but, due to the nonlinearity of equations, one has to
make sure that boundary values are attained. This amounts to look for solutions
with waves having negative speed on incoming channels and positive on outgoing
ones: in other words waves do not enter the junction. A Riemann solver with such
characteristics is called consistent, see also [12].

In this paper we are interested in transitions between different flow regimes, when
the transition occurs at a junction of a canals network. We assume to have incoming
canals which end at the junction and outgoing canals which start at the junction.
Thus we formulate a left-half Riemann problem for incoming canals and a right-
half Riemann problem for outgoing canals to define the region of admissible states
such that waves do not propagate into the junction. This corresponds to identify
the regions where Riemann solvers can take values in order to be consistent. Such
regions are enclosed by the Lax curves (and inverted Lax curves) and the regime
change curves. To help the geometric intuition, we developed pictures showing such
curves and the regions they enclose.

The definitions described above and given in Section 4, are the necessary basis
for an analysis on a complex network. Due to the complexity of the problem, we
consider as case study the specific case of two identical canals interconnected at
a junction (simple junction). We start focusing on conservation of water through
the junction and equal height as coupling conditions. It is typically expected the
downstream flow to be more regular, thus we consider three cases: fluvial to fluvial,
torrential to fluvial and torrential to torrential. In the fluvial to fluvial case there
exists a unique solution. However such solution may be different than the solution
to the same Riemann problem inside a canal (without the junction) and may exhibit
the appearance of a torrential regime. The torrential to fluvial case is more delicate
to examine. Three different cases may happen: the solution propagates the fluvial
regime upstream, the solution propagates the torrential regime downstream or no
solution exits. Finally, in the torrential to torrential case, if the solution exists then
it is torrential.

To illustrate the achieved results we perform simulations using a Runge-Kutta
Discontinuous Galerkin scheme [6]. The RKDG method is an efficient, effective and
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compact numerical approach for simulations of water flow in open canals. Specifi-
cally, it is a high-order scheme and compact in the sense that the solution on one
computational cell depends only on direct neighboring cells via numerical fluxes,
thus allowing for easy handling the numerical boundary condition at junctions.
In the first example we show a simulation where an upstream torrential regime is
formed starting from special fluvial to fluvial conditions. The second example shows
how a torrential regime may propagate downstream.

We conclude by discussing the possible solutions if the water height condition is
replaced by the equal energy condition.

The paper is organized as follows: in Section 2, we present the model starting
from the one-dimensional shallow water equations. In Section 3, we give useful
notations and preliminary results that allow to determine the admissible states for
the half-Riemann problems discussed in the following Section 4. In Section 5 we
study possible solutions at a simple junction for different flow regimes and different
junction conditions. Finally, in Section 6 we illustrate the results of the previous
section with a couple of numerical tests.

2. Flow classification and governing equations. The most common and inter-
esting method of classifying open-channel flows is by dimensionless Froude number,
which for a rectangular or very wide channel is given by the formula:

Fr =
|v|√
gh
, (1)

where v is the average velocity and h is the water depth. The three flow regimes
are:

• Fr < 1 subcritical flow or fluvial regime;
• Fr = 1 critical flow;
• Fr > 1 supercritical flow or torrential regime.

The Froude-number denominator (gh)1/2 is the speed of an infinitesimal shallow-
water surface wave. As in gas dynamics, a channel flow can accelerate from sub-
critical to critical to supercritical flow and then return to subcritical flow through
a shock called a hydraulic jump, see [11] and references there in.

We are interested in the transition between different flow regimes when it occurs
at a junction of a canals network. On each canal the dynamics of water flow is
described by the following system of one-dimensional shallow water equations(

h
hv

)
t

+

(
hv

hv2 + 1
2gh

2

)
x

= 0. (2)

The quantity q = hv is often called discharge in shallow water theory, since it
measures the rate of water past a point. We write the system as:

∂tu+ ∂xf(u) = 0, (3)

where

u =

(
h
hv

)
, f(u) =

(
hv

hv2 + 1
2gh

2

)
. (4)

For smooth solutions, these equations can be rewritten in quasi-linear form

∂tu+ f ′(u)∂xu = 0, (5)

where the Jacobian matrix f ′(u) is given by

f ′(u) =

(
0 1

−v2 + gh 2v

)
. (6)
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The eigenvalues of f ′(u) are

λ1 = v −
√
gh, λ2 = v +

√
gh, (7)

with corresponding eigenvectors

r1 =

(
1
λ1

)
, r2 =

(
1
λ2

)
. (8)

The shallow water equations are strictly hyperbolic away from h = 0 and both 1-th
and 2-th fields are genuinely nonlinear (∇λj(u) · rj(u) 6= 0, j = 1, 2). Note that λ1

and λ2 can be of either sign, depending on the magnitude of v relative to
√
gh, so

depending on the Froude number.
Solutions to systems of conservation laws are usually constructed via Glimm

scheme of wave-front tracking [10, 21]. The latter is based on the solution to Rieman
problems: 

∂tu+ ∂xf(u) = 0,

u(x, 0) =

{
ul if x < 0,
ur if x > 0.

(9)

Here u(x, 0) = (h(x, 0), q(x, 0)) and ul = (hl, ql) and ur = (hr, qr). The solution
always consists of two waves, each of which is a shock or rarefaction, thus we first
describe these waves.

(R) Centered Rarefaction Waves. Assume u+ lies on the positive i-rarefaction
curve through u−, then we get

u(x, t) =

 u− for x < λi(u
−)t,

Ri(x/t;u
−) for λi(u

−)t ≤ x ≤ λi(u+)t,
u+ for x > λi(u

+)t,

where, for the 1-family

R1(ξ;u−) :=

(
1
9 (v− + 2

√
h− − ξ)2

1
27 (v− + 2

√
h− + 2ξ)(v− + 2

√
h− − ξ)2

)
for ξ ∈ [v+ −

√
h−, v− + 2

√
h−), and for the second family

R2(ξ;u−) :=

(
1
9 (−v− + 2

√
h− − ξ)2

1
27 (v− − 2

√
h− + 2ξ)(−v− + 2

√
h− − ξ)2

)
for ξ ∈ [λ2(u−),∞).

(S) Shocks. Assume that the state u+ is connected to the right of u− by an i-
shock, then calling λ = λi(u

+, u−) the Rankine-Hugoniot speed of the shock,
the function

u(x, t) =

{
u− if x < λt
u+ if x > λt

provides a piecewise constant solution to the Riemann problem. For strictly
hyperbolic systems, where the eigenvalues are distinct, we have that

λi(u
+) < λi(u

−, u+) < λi(u
−), λi(u

−, u+) =
q+ − q−

h+ − h−
.



FLUVIAL TO TORRENTIAL PHASE TRANSITION IN OPEN CANALS 667

(h0, v0)

C+

C−

R1

R2

R−1
1

R−1
2

S1

S−1
1

S2

S−1
2

(h0, q0)

C̃+

C̃−

R̃1

R̃2

R̃−1
2

S̃1 R̃−1
1

S̃−1
1

S̃2

S̃−1
2

Figure 1. Shocks, rarefaction and critical curves 10-14 on the
plane (h, v) (up) and on the plane (h, q) (down).

3. The geometry of Lax and regime change curves. To determine a solution
for problems on a network, we need to analyze in detail the shape of shocks and
rarefaction curves and, more generally, of Lax curves (which are formed by joining
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Figure 2. Graph of φl and φr defined in 15 and 16 respectively.

shocks and rarefaction ones, see [4]). We start fixing notations and illustrating the
shapes of curves.

For a given point (h0, v0), we use the following notations for shocks and rarefac-
tion curves:

for h < h0, v = R1(h0, v0;h) = v0 − 2(
√
gh−

√
gh0);

for h > h0, v = S1(h0, v0;h) = v0 − (h− h0)
√
g h+h0

2hh0
;

for h > h0, v = R2(h0, v0;h) = v0 − 2(
√
gh0 −

√
gh);

for h < h0, v = S2(h0, v0;h) = v0 − (h0 − h)
√
g h+h0

2hh0
.

(10)

Moreover, we define the inverse curves:

for h > h0, v = R−1
1 (h0, v0;h) = v0 + 2(

√
gh0 −

√
gh);

for h < h0, v = S−1
1 (h0, v0;h) = v0 + (h0 − h)

√
g h+h0

2hh0
.

(11)

Similarly, we set:

for h < h0, v = R−1
2 (h0, v0;h) = v0 + 2(

√
gh−

√
gh0);

for h > h0, v = S−1
2 (h0, v0;h) = v0 + (h− h0)

√
g h+h0

2hh0
.

(12)

We will also consider the regime transition curves: the 1-critical curve is given by

v = C+(h) =
√
gh (13)

and the 2-critical curve by

v = C−(h) = −
√
gh. (14)
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In Figure 1 we illustrate the shape of these curves.
To construct a solution to a Riemann problem (ul, ur), we define the Lax curves.

Given a left state ul = (hl, ql) the Lax curve is given by:

φl(h) := R1(hl, vl;h) ∪ S1(hl, vl;h). (15)

For the right state ur = (hr, qr), we define the inverse Lax curve:

φr(h) := R−1
2 (hr, vr;h) ∪ S−1

2 (hr, vr;h). (16)

Remark 1. The Riemann problem for shallow water equations 2 with left state
ul and right state ur has a unique solution if and only if the Lax curves φl(h) and
φr(h) have a unique intersection. In that case, the intersection will be called the
middle state um. As shown in Figure 2, the function v = φl(h) is strictly decreasing,
unbounded and starting at the point vl+2

√
ghl and, v = φr(h) is strictly increasing,

unbounded, with minimum vr − 2
√
ghr. Thus, the Riemann problem for shallow

water has a unique solution in the region where

vl + 2
√
ghl ≥ vr − 2

√
ghr. (17)

When working with (h, q) variables we use the following notations for Lax curves
and regime transition curves:

φ̃l(h) = hφl(h), φ̃r(h) = hφr(h) and C̃+(h) = hC+(h), C̃−(h) = hC−(h).

Moreover, for a given value (hi, vi) (or (hi, qi)) we set

Fi =
vi√
ghi

, or F̃i =
qi

hi
√
ghi

. (18)

3.0.1. The Lax curve φ̃l(h). In this subsection we study in detail the properties of

the function q = φ̃l(h). For a given left state ul = (hl, ql),

φ̃l(h) =

 h
(
vl + 2

√
ghl − 2

√
gh
)
, 0 < h ≤ hl,

h

(
vl −

√
g

2hl
(h− hl)

√
h+hl

h

)
, h > hl

with

lim
h→0+

φ̃l(h) = 0 and lim
h→+∞

φ̃l(h) = −∞.

By computing its first and second derivatives,

φ̃′l(h) =

 vl + 2
√
ghl − 3

√
gh, 0 < h ≤ hl,

vl −
√

g
2hl

(
4h2+hlh−h2

l

2
√

h(h+hl)

)
, h > hl

and

φ̃′′l (h) =

 −
3
2

√
g
h , 0 < h ≤ hl,

−
√

g
2hl

(
8h3+12hlh+3h2

l h+h3
l

4h(h+hl)
√

h(h+hl)

)
, h > hl,

we can conclude that φ̃l ∈ C2(]0,+∞[). Specifically, in ]0,+∞[ φ̃′′l < 0, φ̃′l(h) is

strictly decreasing and φ̃l is a strictly concave function. As

φ̃′l(0) = vl + 2
√
ghl and lim

h→+∞
φ̃l(h) = −∞

we investigate two different cases:
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ul

u−l,S

u+
l,R
↓

ul

u−l,R

ul

u+
l,S

u−l,S

C̃+

C̃−

Figure 3. Graph of q = φ̃l(h) for different values of left state ul
and its intersections with critical curves q = C̃+(h) and q = C̃−(h).
The left state ul have been chosen such that: Fl > 1 (dotted green
line ), |Fl| < 1 (blue dashed line) and −2 ≤ Fl < −1 (red dotted
line).

Case 1. If vl ≤ −2
√
ghl, φ̃l is a strictly negative decreasing concave function and

specifically φ̃l(h) < C̃−(h) for h > 0. Therefore, in this case φ̃l never intersects the

critical curves C̃+ and C̃−.

Case 2. If vl > −2
√
ghl, the function φ̃l admits a maximum point hmax

l , so it is

increasing in (0, hmax
l ) an decreasing in (hmax

l ,+∞). In this case the function φ̃l
intersects the two critical curves C̃+ and C̃−. The intersection points vary with the
choice of the left state ul, see Figure 3. To compute this points, we distinguish the
following subcases: ul is such that −2 ≤ Fl ≤ 1 or such that Fl > 1.

Case 2.1. For −2 < Fl ≤ 1, it is the rarefaction portion of φ̃l to intersect the
1-critical curve C̃+ at u+

l,R = (h+
l,R, C̃+(h+

l,R)) with

h+
l,R =

1

9g

(
vl + 2

√
ghl

)2

, (19)

and we have that the maximum point hmax
l is such that φ̃l(h

max
l ) ≡ C̃+(hmax

l ), i.e.
hmax
l ≡ h+

l,R. In the special case Fl = 1 we get hmax
l ≡ hl. Moreover,

φ̃l(h) = 0⇔ h =
1

4g
(vl + 2

√
ghl)

2.
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Notice that for −2 < Fl ≤ −1 the rarefaction portion of φ̃l intersects C̃− at u−l,R =

(h−l,R, C̃−(h−l,R)) with

h−l,R =
1

g

(
vl + 2

√
ghl

)2

; (20)

while for−1 < Fl ≤ 1, the shock portion of φ̃l intersects C̃− at u−l,S = (h−l,S , C̃−(h−l,S))

with h−l,S given by the following condition:

vl − (h−l,S − hl)

√√√√g
h−l,S + hl

2hlh
−
l,S

+
√
gh−l,S = 0; (21)

Case 2.2. For Fl > 1, the maximum value of φ̃l is reached by the shock portion
and so hmax

l > hl. The shock portion intercepts the critical curve C̃+ at u+
l,S =

(h+
l,S , C̃+(h+

l,S)) with

h+
l,S such that vl − (h+

l,S − hl)

√√√√g
h+
l,S + hl

2hlh
+
l,S
−
√
gh+

l,S = 0; (22)

and the curve C̃− at u−l,S defined in 21.
Notice that for h ≥ hl the equation

ql = φ̃l(h) = hS1(hl, vl;h)

has two solutions:

h = hl and h = h∗l =
hl
2

(
−1 +

√
1 + 8F2

l

)
. (23)

Moreover, for Fl > 1, we have h∗l > h+
l , where the height h+

l = (q2
l /g)

1
3 is given by

the intersection between C̃+ and the horizontal line q = ql. That is:

(
q2
l

g
)

1
3 <

hl
2

(−1 +
√

1 + 8F2
l ), for Fl > 1.

Indeed, using the relation q2
l = gh3

lF2
l , if Fl > 1 then 2F

4
3

l − F
2
3

l − 1 > 0. So, for
(hl, ql) supercritical, the point (h∗l , ql) is subcritical, i.e. |F∗l | < 1.

3.0.2. The Lax curve φ̃r(h). Here we study the properties of the function φ̃r(h),
given by:

φ̃r(h) =

 h
(
vr − 2

√
ghr + 2

√
gh
)
, 0 < h ≤ hr,

h

(
vr +

√
g

2hr
(h− hr)

√
h+hr

h

)
, h > hr.

By straightforward computations we get its derivatives:

φ̃′r(h) =

 vr − 2
√
ghr + 3

√
gh, 0 < h ≤ hr,

vr +
√

g
2hr

(
4h2+hrh−h2

r

2
√

h(h+hr)

)
, h > hr.

φ̃′′r (h) =


3
2

√
g
h , 0 < h ≤ hr,√
g

2hr

(
8h3+12hrh+3h2

rh+h3
r

4h(h+hr)
√

h(h+hr)

)
, h > hr.
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Then, φ̃r(h) ∈ C2(]0,+∞[) and in ]0,+∞[ φ̃′′l > 0, φ̃′l(h) is strictly increasing and

φ̃l is a strictly convex function. As

φ̃′r(0) = vr − 2
√
ghr and lim

h→+∞
φ̃r(h) = +∞

we investigate two different cases:

Case 1. If vr ≥ 2
√
ghr, φ̃r is a strictly positive increasing convex function and

specifically φ̃r(h) > C̃+(h), for h > 0. Therefore, φ̃r never intersects the critical

curves C̃+ and C̃−.

Case 2. If vr < 2
√
ghl, the function φ̃r admits a minimum point hmin

r . In this

case the function φ̃r intersects the two critical curves C̃+ and C̃−. As done before
we distinguish two subcases:

Case 2.1. For −1 < Fr ≤ 2, the rarefaction portion of φ̃r intersects the 2-critical
curve C̃− at u−r,R = (h−r,R, C̃−(h−r,R)), with

h−r,R = 1
9g

(
−vr + 2

√
ghr
)2

(24)

and we have that the minimum point hmin
r is such that φ̃r(hmin

r ) ≡ C̃−(hmin
r ), i.e.

hmin
r ≡ h−r,R. In the special case Fr = 1 we get hmin

r ≡ hr. Moreover,

φ̃r(h) = 0⇔ h =
1

4g
(−vr + 2

√
ghr)2.

For 1 < Fr ≤ 2 the rarefaction portion of φ̃r intersects C̃+ at u+
r,R = (h+

r,R, C̃+

(h+
r,R)), with

h+
r,R = 1

g

(
−vr + 2

√
ghr
)2
, (25)

while for −1 < Fr ≤ 1, the shock portion of φ̃r intersects C̃+ at u+
r,S = (h+

r,S , C̃+

(h+
r,S)), with h+

r,S such that

vr + (h+
r,S − hr)

√√√√g
h+
r,S + hr

2hrh
+
r,S

+
√
gh+

r,S = 0. (26)

Case 2.2. For Fr < −1, the minimum value of φ̃r is reached by the shock portion
and so hmin

r > hr. The shock portion intercepts the critical curves C̃− at u−r,S =

(h−r,S , C̃−(h−r,S)), with

h−r,S such that vr + (hr − h+
r,S)

√√√√g
h−r,S + hr

2hrh
−
r,S

+
√
gh−r,S = 0

and curve C̃+ at u+
r,S given by 26.

Notice that the equation

qr = φ̃r(h) = hS−1
2 (hr, vr;h), h ≥ hr,

has two solutions:

h = hr and h = h∗r =
hr
2

(
−1 +

√
1 + 8F2

r

)
. (27)

Moreover, for Fr < −1 we have h∗r > h−r = (q2
r/g)

1
3 , where the height h−r is given

by the intersection between C̃− and the horizontal line q = qr. So, for (hr, qr)
supercritical, the point (h∗r , qr) is subcritical.
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u+
l,R

u−l,S

ul

IA2

IA3

IA1
↙

C̃−

q = S̃2(u−
l,S ;h)

Figure 4. Left-half Riemann problem, Section 4.1. Region
NA(ul) = IA1

⋃
IA2
⋃
IA3 defined by 29-31. Following our notation

S̃2(u−l,S ;h) = hS2(h−l,S , C−(h−l,S);h).

4. The half Riemann problems.

4.1. Left-half Riemann problem. [The case of an incoming canal] We fix a left
state and we look for the right states attainable by waves of non-positive speed.

Fix ul = (hl, ql), we look for the set N (ul) of points û = (ĥ, q̂) such that the
solution to the Riemann problem ∂tu+ ∂xf(u) = 0,

u(x, 0) =

{
ul if x < 0
û if x > 0

(28)

contains only waves with non-positive speed. We distinguish three cases:

• Case A: the left state ul is such that |F̃l| < 1;

• Case B : the left state ul is such that F̃l > 1;
• Case C : the left state ul is such that F̃l < −1.

4.1.1. Case A. For this case we refer to Figure 4. We identify the set NA(ul)
as the union of three regions IA1 , IA2 and IA3 defined in the plane (h, q). The

first region is identified by all points that belong to the curve φ̃l(h) such that

C̃−(h) ≤ φ̃l(h) ≤ C̃+(h), i.e.

IA1 =
{

(ĥ, q̂) : h+
l,R ≤ ĥ ≤ h

−
l,S , q̂ = φ̃l(ĥ)

}
, (29)
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ul u∗l

u−l,SI∗,A2

I∗,A3

I∗,A1
↙

C̃−

q = S̃
2 (u ∗,−

l,S ;h)

Figure 5. Left-half Riemann problem, Section 4.1. Region

NB(ul) = I∗,A1

⋃
I∗,A2

⋃
I∗,A3 given in 32.

where the points h+
l,R and h−l,S are given in 19 and 21 respectively. The second

region is defined as follows

IA2 =
{

(ĥ, q̂) : 0 < ĥ ≤ h−l,S , q̂ ≤ ĥS2(h−l,S , C−(h−l,S); ĥ)
}

⋃{
(ĥ, q̂) : ĥ > h−l,S , q̂ ≤ C̃−(ĥ)

}
.

(30)

The last region IA3 is defined by the set of all possible right states û that can be
connected by a 2-shock with non-positive speed to an intermediate state um lying
on φ̃l(h) curve such that |F̃m| ≤ 1 and

λ(um, û) =
qm − q̂
hm − ĥ

≤ 0.

To define this region, we have to look for values q = hS2(hm, vm;h) as h < hm such
that q ≥ qm. That is,

qm − q = (hm − h)

(
vm +

√
g

2hm

√
h(h+ hm)

)
≤ 0, h < hm.

This inequality is verified for −1 ≤ Fm < 0 and for all h ≤ h∗m with h∗m given by

h∗m =
hm
2

(
−1 +

√
1 + 8F2

m

)
.

We obtain (see Figure 4),

IA3 =
{

(ĥ, q̂) : for all (hm, qm) which vary on φ̃l such that − 1 ≤ F̃m < 0,

0 < ĥ ≤ h∗m, q̂ = ĥS2(hm, vm; ĥ)
}
.

(31)
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u−l,R

ul

NC(ul)

C̃−

q = S̃2(u−
l,R ;h)

Figure 6. Left-half Riemann problem, Section 4.1. Region
NC(ul) bounded by q = S̃2(u−l,R;h) and q = C̃−(h) as defined
in 33.

4.1.2. Case B. For this case we refer to Figure 5. It is always possible to connect the
left value ul to a value u∗l by a 1-shock with zero speed (vertical shock). Specifically,
we set h∗l > hl such that q∗l = ql, i.e.

h∗l =
1

2

(
−1 +

√
1 + 8F2

l

)
hl

as previously computed in 23. Moreover, as previously observed at the end of
subsection 3.0.1 the value (h∗l , ql) falls in the subcritical region, then

NB(ul) = NA(ul) \
{
û = (ĥ, q̂) : h+

l,S ≤ ĥ ≤ h
∗
l , q̂ = φ̃l(ĥ)

}
, (32)

where NA(ul) falls under the previous Case A.

4.1.3. Case C. For this case we refer to Figure 6. We have that: if Fl ≤ −2 then

NC(ul) =
{

(ĥ, q̂) : ĥ > 0, q̂ < C̃−(ĥ)
}

;

otherwise if −2 < Fl < 1 the intersection point u−l,R between hR1(hl, vl;h) and

C̃−(h) given in 20 is different from zero and defines the admissible region

NC(ul) =
{

(ĥ, q̂) : 0 < ĥ ≤ h−l,R, q < ĥS2(h−l,R, v
−
l,R; ĥ)

}
⋃{

(ĥ, q̂) : ĥ > h−l,R, q̂ < C̃−(ĥ)
}
.

(33)
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4.2. Right-half Riemann problem. [The case of an outgoing canal] We fix a
right state and we look for the left states attainable by waves of non-negative speed.
For sake of space the figures illustrating these cases will be postponed to the Ap-
pendix.

Fix ur = (hr, qr), we look for the set P(ur) of points ũ = (h̃, q̃) such that the
solution to the Riemann problem ∂tu+ ∂xf(u) = 0,

u(x, 0) =

{
ũ if x < 0
ur if x > 0

(34)

contains only waves with non-negative speed. As in the previous case we identify
three cases:

• Case A: the right value ur is such that |F̃r| < 1.

• Case B : the right value ur is such that F̃r > 1
• Case C : the right value ur is such that F̃r < −1.

4.2.1. Case A. For this case we refer to Figure 12 in the Appendix. We identify
the set PA(ur) as the union of three regions OA

1 , OA
2 and OA

3 defined in the plane

(h, q). The first region is defined by all points that belong to the curve φ̃r(h) such

that C̃−(h) ≤ φ̃r(h) ≤ C̃+(h), i.e.

OA
1 =

{
(h̃, q̃) : h−r,R ≤ h̃ ≤ h

+
r,S , q̃ = φ̃r(h̃)

}
, (35)

where the points h−r,R and h+
r,S are given in 24 and 26 respectively.

The second region is such that

OA
2 =

{
(h̃, q̃) : 0 < h̃ ≤ h+

r,S , q̃ ≥ h̃S
−1
1 (h+

r,S , v
+
r,S ; h̃)

}
⋃{

h̃ ≥ h+
r,S , q̃ ≥ C̃+(h̃)

}
.

(36)

The third region is defined by the set of all possible left states ũ that can be
connected by a 1-shock with non-negative speed to a middle state um lying on
φ̃r(h) curve such that |F̃m| ≤ 1 and

λ(um, ũ) =
qm − q̃
hm − h̃

≥ 0.

To define this region we have to look for values q = hS−1
1 (hm, vm;h) for h < hm such

that qm ≥ q. Then, following the same reasoning done for the left-half Riemann
problem we get

OA
3 =

{
(h̃, q̃) : for all (hm, qm) which vary on φ̃r such that 0 < F̃m ≤ 1

0 < h̃ ≤ h∗m, q̃ = h̃S−1
1 (hm, vm; h̃)

}
.

(37)

4.2.2. Case B. For this case we refer to Figure 13 in the Appendix. If F ≥ 2 then

PB(ur) =
{

(h̃, q̃) : h̃ ≥ 0, q̃ ≥ C̃+(h̃)
}

;
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ur

ul
ub↙

NB(ul)

PB(ur)

Figure 7. Case Fluvial → Fluvial, system 42. In this case curves
φ̃l and φ̃r intersect inside the subcritical region. The solution is
the intersection point ub.

otherwise, if 1 ≤ F < 2 the intersection point u+
r,R between R−1

2 (ur;h) and C+(h),
given in 24 is different from zero and defines the admissible region

PB(ur) =
{

(h̃, q̃) : 0 < h̃ ≤ h+
r,R, q̃ ≥ h̃S

−1
1 (u−r,R; h̃)

}
⋃{

(h̃, q̃), h̃ > h−r,R, q̃ ≥ C̃+(h̃)
}
.

(38)

4.2.3. Case C. For this case we refer to Figure 14 in the Appendix. It is always
possible to connect the right value ur to a value u∗r by a 2-shock with zero speed
(vertical shock). Specifically, we set h∗r > hr such that q∗r = qr, i.e.

h∗r =
1

2

(
−1 +

√
1 + 8F2

r

)
hr

as done in 27. Moreover, as previously observed at the end of subsection 3.0.2, the
point (h∗r , qr) is subcritical and then

PC(ur) = PA(u∗r) \
{

(h, q) : h−r,S ≤ h ≤ h
∗
r , q = φ̃r(h)

}
, (39)

where PA(u∗r) falls under the previous Case A.

5. A simple junction. We consider here as case study a fictitious network formed
by two canals intersecting at one single point, which artificially represents the junc-
tion. The junction is straight and separates two equal canals, one is the continuation
of the other. This simple scenario appears to be like considering a problem for one
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ur

ul

u+
l,R

NA(ul)

PA(ur)

Figure 8. Case Fluvial → Fluvial, system 42: curves φ̃l and φ̃r
have empty intersection inside the subcritical region and hr < hl.
The solution is the critical point u+

l,R.

straight canal, but by adding a fictitious junction we mimic a network and we pro-
vide the first analysis necessary for addressing more complicated networks for which
the solution strongly depends on the given assumptions at the junction.

We name the canals such that 1 is the incoming canal and 2 is the outgoing ones.
We indicate by ub = (hb, vbhb) = (hb, qb) the traces at the junction. The flow is
given by the one-dimensional shallow-water equations 2 in each canal coupled with
special conditions at the junction. Our aim is to define and solve Riemann problems
at the junction.

A Riemann Problem at a junction is a Cauchy Problem with initial data which
are constant on each canal incident at the junction. So, assuming constant initial
conditions u0

1, u0
2 on canal 1 and 2 respectively, the Riemann solution consists of

intermediate states ub1 and ub2 such that ub1 ∈ N (u0
1) and ub2 ∈ P(u0

2) and verifying
given coupling conditions. Here, we are interested in evaluating possible solutions
for different types of initial data belonging to different flow regimes. We start
assuming, as junction conditions, the conservation of mass

qb1 = qb2 (40)

and equal heights

hb1 = hb2. (41)

In the following we study the boundary solution ub at the junction in the following
interesting cases: A→A, the water flow is fluvial in both incoming and outgoing
canals around the junction; B→A, the water flow is torrential with positive velocity
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ur

ul

u−r,R

NA(ul)

PA(ur)

Figure 9. Case Fluvial → Fluvial, system 42: curves φ̃l and φ̃r
have empty intersection inside the subcritical region and hl < hr.
The solution is the critical point u−r,R.

in the incoming canal while it is fluvial in the outgoing one; B→B, the water flow
is torrential with positive velocity in both incoming and outgoing canals.

Case A→A (Fluvial → Fluvial). Here we assume to have a left state ul and a
right state ur such that |Fl| < 1 and |Fr| < 1. The solution at the junction consists
of two waves separated by intermediate states ub1 and ub2 such that

ub1 ∈ NA(ul),

ub2 ∈ PA(ur),

qb1 = qb2 = qb,

hb1 = hb2,

(42)

with hb1, h
b
2 > 0.

Proposition 1. Under the subcritical condition on ul and ur, the system 42 admits
a unique solution.

Proof. We distinguish two cases:

Case 1. The two curves φ̃l and φ̃r intersect inside the subcritical region (Figure
7). In this case the solution is trivially the intersection point.

Case 2. The two curves φ̃l and φ̃r do not intersect inside the subcritical region. If
hr < hl (specifically h+

r,S < h+
l,R, see Figure 8) then the only point that verifies the

junction conditions 42 is the critical point u+
l,R given in 19, thus

ub1 = ub2 = u+
l,R. (43)
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If hr > hl (specifically h−r,R > h−l,S , see Figure 9) the only point that verifies the

junction conditions 42 is the critical point u−r,R given in 24, then

ub1 = ub2 = u−r,R. (44)

Remark 2. Notice that the proposed procedure may give a solution which is dif-
ferent from the classical solution of the Riemann problem on a single channel, given
by the intersection point of φl and φr curves, see Remark 1.

Case B→A (Torrential → Fluvial). Here we assume to have a left state ul and
a right state ur with Fl > 1 and |Fr| < 1. The solution at the junction consists of
two waves separated by intermediate states ub1 and ub2 such that

ub1 ∈ NB(ul),

ub2 ∈ PA(ur),

qb1 = qb2 = qb,

hb1 = hb2,

(45)

with hb1, h
b
2 > 0. Next Proposition provides the results about solutions, while the

illustrating figures are postponed to the Appendix.

Proposition 2. System 45 admits a solution if the two regions NB and PA inter-
sect in the subcritical set {(h, q) : h > 0, C̃−(h) ≤ q ≤ C̃+(h)} or if ul ∈ PA(ur).

Proof. We distinguish two cases:

Case 1. The two curves hS1(h∗l , v
∗
l ;h) and φ̃r(h) intersect inside the subcritical

region (Figure 15 of the Appendix). If ul /∈ PA(ur) the solution is trivially the inter-
section point. On the contrary, if ul ∈ PA(ur) we have two possible solutions: the
intersection point inside the subcritical region or the starting supercritical value ul.
So, we may obtain both fluvial or torrential regime. Coherently with the solution
that would be obtained in a single channel we choose the fluvial regime assigning
as solution the intersection point inside the subcritical region.
Case 2. The two curves hS1(h∗l , v

∗
l ;h) and φ̃r(h) do not intersect inside the sub-

critical region. We distinguish the two subcases shown in Figure 16 and in Figure
17 of the Appendix.

Case 2.1. Referring to Figure 16, the point ul may fall or not in the PB(ur)
region. If ul ∈ PA(ur) the only possible solution is ul self and ub1 = ub2 = ul; if on
the contrary ul /∈ PA(ur), system 45 does not admit a solution.

Case 2.2. Referring Figure 17, if ul /∈ PA(ur) the only possible solution is the
critical point u−r,R defined in 24, then ub1 = ub2 = u−r,R; If ul ∈ PA(ur), both ul self

and the critical point u−r,R are admissible solutions. Coherently with the solution
obtained in the previous subcase, we select again ul as solution and we assign
ub1 = ub2 = ul. So, the torrential regime propagates on the outgoing canal.

Case B→B (Torrential → Torrential). As shown in Figure 18 of the Appendix,
the two admissible regionsNB and PB may have empty intersection. So, in this case
there exists a solution at the junction which verifies the conditions of conservation
of the mass and of equal heights, if and only if ul ∈ PB(ur), i.e. ub1 = ub2 = ul.
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5.1. Other possible conditions at the junction. Assuming different conditions
at the junction give rise to new possible solutions. In canals network problems, it
is usual to couple the conservation of the mass with the conservation of energy at
the junctions. The specific energy E is a useful parameter in channel flow and it is
defined as

E = h+
v2

2g
. (46)

For a given flow rate, there are usually two states possible for the same specific
energy. Studying E as a function of h for constant q, there is a minimum value of
E at a certain value of h called the critical depth,

h = hc =

(
q2

g

) 1
3

. (47)

Critical depth hc corresponds to some critical channel velocity vc defined by Fc = 1.
For E < Emin solution does not exists, and thus such a flow is impossible physically.
For E > Emin solutions are possible: large depth with |F| < 1 subcritical flow, and
small depth with |F| > 1 supercritical flow.

In our case, assuming equal energy at the junction gives

v2
1

2
+ gh1 =

v2
2

2
+ gh2. (48)

Moreover, assuming qb1 = qb2 = qb to be constant (and known) we get from 48

gh1F2
1

2
+ gh1 =

gh3
1F2

1

2h2
2

+ gh2,

where F1 = v1/
√
gh1 and where we used the following relations

v2
1 = gh1F2

1 and v2
2 =

v2
1h

2
1

h2
2

=
gh3

1F2
1

h2
2

.

Then, we have two possible solution for the heights values at the junction:

hb1 = hb2 (equal heigths) (49)

or

hb2
hb1

=
F2

1

4

(
1 +

√
1 +

8

F2
1

)
. (50)

So, for hb1 6= hb2 we get new possible solutions at the junction with (hb1, q
b) subcritical

and (hb2, q
b) supercritical or vice-versa. Specifically, case Torrential→Fluvial and

case Torrential→Torrential may admit solution even if their admissible regions have
empty intersection in the subcritical set.

Remark 3. In the case of a simple junction, the natural assumption (consistent
with the dynamic of shallow-water equations) should be to assume the conservation
of the momentum. With our notation, the relation 49 or 48 sholud be replaced by
the following:

q2
1

h1
+

1

2
gh2

1 =
q2
2

h2
+

1

2
gh2

1. (51)

By the same reasoning used before in the case of the conservation of energy, from
51 we get (

h2

h1

)3

−
(
2F2

1 + 1
)(h2

h1

)
+ 2F2

1 = 0.
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Fr < 1 Fr > 1 Fr < 1

←

Fr < 1 Fr > 1 Fr < 1

Figure 10. Numerical test case for the configuration given in Fig. 9.

Then, we have again two possible relations for the heights values at the junction:

hb1 = hb2 (equal heigths) (52)

or
hb2
hb1

=
1

2

(
−1 +

√
1 + 8F2

1

)
. (53)

So again, for hb1 6= hb2 we get new possible solutions at the junction. Case Torrential→
Fluvial and case Torrential→Torrential may have solution and specifically we have
that in Figure 16, points (h∗l , ql) and (hl, ql) verify 53 (see 23) and if ul ∈ PA(ur)
they are candidate to be the new solution. Even in the case described in Figure 18,
if ul ∈ PB(ur) the points (h∗l , ql) and (hl, ql) are the solution at the junction.

Let us conclude observing that for appropriate values of (hl, ql), for Torrential→
Fluvial we would get the same solution considering our simple network as a simple
canal, i.e. a stationary shock called hydraulic jump characterized indeed by the
conservation of the momentum in the transition from a supercritical to subcritical
flow [11].

6. Numerical tests. In this Section we illustrate the results of Section 5 by means
of numerical simulations. We first give a sketch of the adopted numerical procedure
and then we focus on two numerical tests which illustrate the regime transitions
from fluvial to torrential and viceversa. The latter depend on well chosen initial
conditions for Riemann problems at the junction.

We consider again a network formed by two canals intersecting at one single
point, which represents the junction. Following [6], we use a high order Runge-
Kutta Discontinuous Galerkin scheme to numerically solve system 3 on both canals
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Fr > 1 Fr < 1→

Fr > 1 Fr < 1

Figure 11. Numerical test case for the configuration given in Fig. 16.

1 and 2:
∂tu1 + ∂xf(u1) = 0, for x < 0,

∂tu2 + ∂xf(u2) = 0, for x < 0.
(54)

The 1D domain of each canal is discretized into cells Cm = [xm− 1
2
, xm+ 1

2
], with

xm = (xm− 1
2
+xm+ 1

2
)/2, m = 1, . . . ,M , being M the total number of computational

cells. The DG method for 3 is formulated by multiplying the equation system by
some test functions w, integrating over each computational cell, and performing
integration by parts. Specifically, we seek the approximation U = (u1, u2) with
ui ∈ W∆x = {w : w|Cm

∈ P k(Cm),m = 1, . . . ,M}, i = 1, 2, where P k(Cm) is the
space of polynomials of degree at most k on cell Cm, such that ∀ w ∈W∆x∫

Cm

w(x)∂tUdx =

∫
Cm

f(U)∂xw(x)dx −
(
f̂m+ 1

2
w−

m+ 1
2

− f̂m− 1
2
w+

m− 1
2

)
.(55)

Terms w±
m+ 1

2

denote left and right limits of the function values and the numerical

fluxes f̂m± 1
2

= f(U−
m± 1

2

, U+
m± 1

2

) are approximate Riemann solvers. In our simula-

tions, we use the Lax-Friedrich flux. For implementation, each component of the
approximate solution U , e.g. u1, on mesh Cm is expressed as

u1(x, t) =

k∑
l=0

û1,l
m (t)ψl

m(x), (56)

where {ψl
m(x)}kl=0 is the set of basis functions of P k(Cm). Specifically, we choose the

Legendre polynomials as local orthogonal basis of P k(Cm) and take the test function
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w(x) in eq. 55 exactly as the set of basis functions ψl
m(x), l = 0 · · · k, assuming the

polynomial degree k = 2. The equation system 55 can then be evolved in time via
the method of lines approach by a TVD RK method. More implementation details
for RKDG methods can be found in the original paper [7] and the review article [8].

Once the numerical procedure on both canals has been settled, the two systems
in 55 have to be coupled with boundary conditions. At the junction the boundary
values is settled as follows: at each time step and at each RK stage via the method-
of-line approach, we set as left state in 42 (or 45) the approximate solution from
canal 1 at the left limit of the junction, i.e.

ul ≈ Ul = lim
x→x−

M+1
2

U1(x, ·)

with [xM− 1
2
, xM+ 1

2
] being the right-most cell in the 1D discretization of the incoming

canal 1, and as right state in 42 (or 45) the approximate solution from canal 2 at
the right limit of the junction, i.e.

ur ≈ Ur = lim
x→x+,2

1
2

U2(x, ·),

with [x 1
2
, x 3

2
] being the left-most cell in the 1D discretization of the outgoing canal

2. With this two values, we compute the intermediate states ub1 and ub2 by solving
42 (or 45) and, preserving the mass we directly assign the numerical fluxes at the
junction as

f̂M+
1
2

.
= f(ub1) for the canal 1, f̂ 1

2

.
= f(ub2) for the canal 2.

Finally, in our simulations we assume Neumann boundary conditions at the free
extremity of the channels.

Applying this numerical procedure, in Figure 10 and 11 we give two examples
which illustrate the solution that is obtained in the regime transitions from fluvial to
torrential and viceversa. In Figure 10, we assume to have a starting configuration
given by the following subcritical constant states: ul = (0.25, 0.025) on canal 1
(left) and ur = (2.5, 0.25) on canal 2 (right). We are in the situation showed in
Figure 9 and the boundary value at the junction is defined by the critical value
u−rR ≈ (1.088,−3.55). The solution is a backward water movement along canal
1 with a torrential regime. In Figure 11, we assume as initial state on canal 1
the supercritical constant value ul = (0.2, 3) and on canal 2 the subcritical constant
value ur = (1.8, 4). We are in the configuration given in Figure 16 and the boundary
value at the junction is defined by the starting point ul. The solution is a forward
movement with positive velocity, so the torrential regime propagates on canal 2.

7. Conclusions. This paper deals with open canal networks. The interest stems
out of applications such as irrigation channels water management. We base our
investigations on the well-known Saint-Venant or shallow water equations. Two
regimes exist for this hyperbolic system of balance laws: the fluvial, corresponding
to eigenvalues with different sign, and the torrential, corresponding to both positive
eigenvalues. Most authors focused the attention on designing and analysing network
dynamics for the fluvial regime, while here we extend the theory to include regime
transitions. After analyzing the Lax curves for incoming and outgoing canals, we
provide admissibility conditions for Riemann solvers, describing solutions for con-
stant initial data on each canal. Such analysis allows to define uniquely dynamics
according to a set of conditions at junctions, such as conservation of mass, equal
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water height or equal energy. More precisely, the simple case of one incoming and
outgoing canal is treated showing that, already in this simple example, regimes tran-
sitions appear naturally at junctions. Our analysis is then visualized by numerical
simulations based on Runge-Kutta Discontinuous Galerkin methods.

Acknowledgments. M. Briani is a member of the INdAM Research group GNCS.

ur
u−r,R

u+
r,S

OA
2

OA
3

OA
1

↖

C̃+

q = S̃
−1
1

(u
+
r,S

;h)

Figure 12. Right-half Riemann problem, Section 4.2. Region
PA(ur) = OA

1

⋃
OA

2

⋃
OA

3 defined by 35-37 where ur is such that

|F̃r| < 1.

Appendix. Here we collect additional figures illustrating attainable regions for
half-riemann problems and solutions for a simple channel. Figures 12–14 refer to
the right-half Riemann problem described in Section 4.2. They show the regions of
admissible states such that waves on the outgoing canals do not propagate into the
junction, given a right state ur such that |F̃r| < 1, F̃r > 1 and F̃r < −1 respectively.

Figures 15–18 refer to Section 5 in which we study the possible solutions at a
simple junction for different flow regimes, assuming the conservation of mass and
equal heights at the junction. Specifically, Figures 15–17 illustrate the possible
configurations and their associated solution that may occur during the transition
from torrential to fluvial regime. The last Figure 18 shows instead the only possible
configuration that admits a solution for the torrential flow regime.
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[20] M. Herty and M. Seäıd, Assessment of coupling conditions in water way intersections, Inter-

national Journal for Numerical Methods in Fluids, 71 (2013), 1438–1460.

[21] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Applied

Mathematical Sciences. Springer Berlin Heidelberg, 2015.
[22] G. Leugering and J. P. G. Schmidt, On the modelling and stabilization of flows in networks

of open canals, SIAM journal on control and optimization, 41 (2002), 164–180.
[23] X. Litrico, V. Fromion, J.-P. Baume, C. Arranja and M. Rijo, Experimental validation of a

methodology to control irrigation canals based on saint-venant equations, Control Engineering

Practice, 13 (2005), 1425–1437.
[24] A. Marigo, Entropic solutions for irrigation networks, SIAM Journal on Applied Mathematics,

70 (2010), 1711–1735.

[25] P. C. D. Milly, J. Betancourt, M. Falkenmark, R. M. Hirsch, Z. W. Kundzewicz, D. P.
Lettenmaier and R. J. Stouffer, Stationarity is dead: Whither water management?, Science,

319 (2008), 573–574.

http://www.ams.org/mathscinet-getitem?mr=MR3561145&return=pdf
http://dx.doi.org/10.1007/978-3-319-32062-5
http://www.ams.org/mathscinet-getitem?mr=MR2525202&return=pdf
http://dx.doi.org/10.3934/nhm.2009.4.177
http://dx.doi.org/10.3934/nhm.2009.4.177
http://www.ams.org/mathscinet-getitem?mr=MR1816648&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3200227&return=pdf
http://dx.doi.org/10.4171/EMSS/2
http://dx.doi.org/10.4171/EMSS/2
http://www.ams.org/mathscinet-getitem?mr=MR3531001&return=pdf
http://dx.doi.org/10.1007/s10915-016-0172-2
http://dx.doi.org/10.1007/s10915-016-0172-2
http://www.ams.org/mathscinet-getitem?mr=MR983311&return=pdf
http://dx.doi.org/10.2307/2008474
http://dx.doi.org/10.2307/2008474
http://www.ams.org/mathscinet-getitem?mr=MR1873283&return=pdf
http://dx.doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.1023/A:1012873910884
http://www.ams.org/mathscinet-getitem?mr=MR2438778&return=pdf
http://dx.doi.org/10.1137/070690298
http://www.ams.org/mathscinet-getitem?mr=MR3468916&return=pdf
http://dx.doi.org/10.1007/978-3-662-49451-6
http://www.ams.org/mathscinet-getitem?mr=MR2879692&return=pdf
http://dx.doi.org/10.1007/s12572-011-0047-6
http://www.ams.org/mathscinet-getitem?mr=MR2328174&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2605255&return=pdf
http://dx.doi.org/10.1090/psapm/067.2/2605255
http://www.ams.org/mathscinet-getitem?mr=MR3104077&return=pdf
http://dx.doi.org/10.1142/S021989161350015X
http://www.ams.org/mathscinet-getitem?mr=MR3003284&return=pdf
http://dx.doi.org/10.1016/j.matpur.2012.06.004
http://dx.doi.org/10.1016/j.matpur.2012.06.004
http://www.ams.org/mathscinet-getitem?mr=MR2304344&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2483821&return=pdf
http://dx.doi.org/10.1016/j.anihpc.2008.01.002
http://dx.doi.org/10.1016/j.anihpc.2008.01.002
http://www.ams.org/mathscinet-getitem?mr=MR2055319&return=pdf
http://dx.doi.org/10.1002/mma.471
http://dx.doi.org/10.1002/mma.471
http://www.ams.org/mathscinet-getitem?mr=MR3728372&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3039443&return=pdf
http://dx.doi.org/10.1002/fld.3719
http://www.ams.org/mathscinet-getitem?mr=MR3443431&return=pdf
http://dx.doi.org/10.1007/978-3-662-47507-2
http://www.ams.org/mathscinet-getitem?mr=MR1920161&return=pdf
http://dx.doi.org/10.1137/S0363012900375664
http://dx.doi.org/10.1137/S0363012900375664
http://www.ams.org/mathscinet-getitem?mr=MR2587777&return=pdf
http://dx.doi.org/10.1137/09074783X


690 MAYA BRIANI AND BENEDETTO PICCOLI

[26] C. Prieur and J. J. Winkin, Boundary feedback control of linear hyperbolic systems: Appli-
cation to the Saint-Venant-Exner equations, Automatica J. IFAC , 89 (2018), 44–51.

Received April 2018; revised August 2018.

E-mail address: m.briani@iac.cnr.it

E-mail address: piccoli@camden.rutgers.edu

http://www.ams.org/mathscinet-getitem?mr=MR3762031&return=pdf
http://dx.doi.org/10.1016/j.automatica.2017.11.028
http://dx.doi.org/10.1016/j.automatica.2017.11.028
mailto:m.briani@iac.cnr.it
mailto:piccoli@camden.rutgers.edu

	1. Introduction
	2. Flow classification and governing equations
	3. The geometry of Lax and regime change curves
	4. The half Riemann problems
	4.1. Left-half Riemann problem
	4.2. Right-half Riemann problem

	5. A simple junction
	Case AA (Fluvial  Fluvial)
	Case BA (Torrential  Fluvial)
	Case BB (Torrential  Torrential)
	5.1. Other possible conditions at the junction

	6. Numerical tests
	7. Conclusions
	Acknowledgments
	Appendix
	REFERENCES

