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Abstract

Exploration of the lower surface of the Ross Ice Shelf in Antarctica by the Submersible Capable of under-Ice
Navigation and Imaging (SCINI) remotely operated vehicle discovered a new species of sea anemone living in this
previously undocumented ecosystem. This discovery was a significant outcome of the Coulman High Project’s
geophysical and environmental fieldwork in 2010-2011 as part of the ANDRILL (ANtarctic geologic DRILLing)
program. Edwardsiella andrillae n. sp., lives with most of its column in the ice shelf, with only the tentacle crown
extending into the seawater below. In addition to being the only Antarctic representative of the genus, Edwardsiella
andrillae is distinguished from all other species of the genus in the number of tentacles and in the size and
distribution of cnidae. The anatomy and histology of Edwardsiella andrillae present no features that explain how this
animal withstands the challenges of life in such an unusual habitat.
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Introduction

The biota associated with glacial ice is poorly documented
because the habitat is largely inaccessible and is
technologically difficult to access. As part of the multi-national
ANtarctic geological DRILLing (ANDRILL) program, a remotely
operated vehicle called the Submersible Capable of under-Ice
Navigation and Imaging (SCINI) [1] was deployed from the
Ross Ice Shelf (Figure 1) through a 30-cm hole drilled by a hot
water drill at two distinct locations [2]. This provided an
unexpected and astonishing glimpse into this subsurface world,
discovering an unusual and likely unique marine biological
community dominated by anemones living inside burrows in the
lower surface of the ice shelf.

At 77° 31.6’ S 171° 20.1’ E (Figure 1, site A), the upward-
facing cameras on SCINI captured images of a field of
approximately 100 m2 inhabited by small, tentaculate animals
living with most of their body inside the ice shelf, with tentacles
dangling into the water below. A second field of animals was
discovered approximately 6 km away at 77° 28.03’ S 171°
36.28’ E (Figure 1, site B). In both places, the animals appear
similar in size and are spaced more or less uniformly (Figure
2A, B). The ice shelf is approximately 250-260 m thick at these

sites; mean sea level below the ice shelf surface is
approximately 40 m.

These animals are sea anemones of a new species, here
described as Edwardsiella andrillae. Edwardsiella is a genus of
Edwardsiidae, a family of burrowing anemones reported from
habitats ranging from the deepest trenches [3] to hypersaline
[4] and hyposaline [5,6] coastal estuaries. All previously
described species belonging to Edwardsiella are from coastal
waters.

This is the first species of sea anemone reported to live in
ice. Previously described species of sea anemones from
Antarctica are reported from hard [7-9] or soft [10-12]
substrates, but always below the anchor ice.

The unprecedented habitat of Edwardsiella andrillae raises
questions about the biology, physiology, and life history of the
animal that cannot be answered given the present material.
The means by which these animals burrow into the ice shelf is
unclear, as are the physiological mechanisms that enable them
to live in ice. Burrowing by sea anemones has been described
as a process of serial expansion and deflation of the pedal disc
[11,13] or digging with the tentacles [10]; neither of these
strategies would seem possible in solid ice. These animals are
significantly larger than those reported from brine channels
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[14]. Annelid worms living in glaciers have physiological
mechanisms including novel strategies for producing and using
energy [16] and for stabilizing tubulin [17] to facilitate life at
extremely low temperatures. As is the case in the ice worm
Mesenchytraeus solifugus [17], the morphology of Edwardsiella
andrillae does not suggest any adaptation to the unusual
environment it inhabits.

Materials and Methods

Specimens were removed from the ice using an improvised
suction sampler mounted on the outside of the SCINI remotely
operated vehicle. The sampler consists of a plastic tube with an
opening positioned within the SCINI forward camera’s field of
view that is connected through a one-way valve to a water filter
and chamber where the samples are collected and stored until
the vehicle is recovered to the surface. An external, inverted
tunnel thruster powered by the vehicle is connected to the
distal end of the plastic tube and sampling chamber to provide

water suction. The SCINI vehicle was flown under the ice shelf
and positioned so that the tube opening was close to the
seawater-ice interface and thus able to capture the organisms
as they floated by or were extracted from their ice shelf
burrows. Hot water from the drill system was pumped down
from the surface of the ice shelf and used to flood the basal ice
to stun the organisms and assist with the extraction process.
Once the vehicle was recovered, the suction sampler was
disassembled and the specimens were placed in ethanol for
the helicopter trip back to McMurdo Station, where some
samples were transferred to formalin for long-term preservation
and further study. More than 20 samples were collected using
this device mounted on the SCINI vehicle during a series of
dives through the ice shelf.

The samples were collected through the U.S. Antarctic
Program (USAP) by Event G

75 049-M (PI = F. Rack) based on a permit request that was
processed by the U.S. National Science Foundation (NSF)

Figure 1.  Known localities of Edwardsiella andrillae, n. sp.  The site labeled A is at 77° 31.6’ S 171° 20.1’ E ; this corresponds
to “Site 3” for the 2010-2011 SCINI dive series. The site labeled B is at 77° 28.03’ S 171° 36.28’ E ; this corresponds to “Site 4
(CH-1)” for the for the 2010-2011 SCINI dive series (Rack et al., 2012).
doi: 10.1371/journal.pone.0083476.g001
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pursuant to the Antarctic Conservation Act as amended by the
Antarctic Science, Tourism and Conservation Act (NSF Form
1078). NSF determined that no specific permit was required to
collect marine anemones from under the Ross Ice Shelf at this
location.

Whole formalin-fixed specimens were examined and
photographed under a dissecting microscope. Four formalin-
fixed specimens were dehydrated and embedded in paraffin,
serially-sectioned at 10 µm, and stained in Heidenhain’s Azan
[18]. Nematocyst preparations were made by cutting a small
(>0.5 mm2) piece of tissue from each of two formalin-fixed
specimens, floating this tissue in water on a microscope slide
and then smashing and smearing the tissue with a coverslip.
Because of the small size of specimens, sampling for cnidae
was destructive and thus the number of samples examined is
limited. Nematocyst measurements were made following [19]
and capsules were identified following [20,21].

Nomenclatural acts
The electronic edition of this article conforms to the

requirements of the amended International Code of Zoological
Nomenclature, and hence the new names contained herein are
available under that Code from the electronic edition of this
article. This published work and the nomenclatural acts it
contains have been registered in ZooBank, the online
registration system for the ICZN. The ZooBank LSIDs (Life
Science Identifiers) can be resolved and the associated
information viewed through any standard web browser by
appending the LSID to the prefix "http://zoobank.org/". The
LSID for this publication is:
urn:lsid:zoobank.org:pub:BB12B7B1-89F4-4DE3-
ADCA-66CE0EA8D149. The electronic edition of this work was
published in a journal with an ISSN, and has been archived
and is available from the following digital repositories: PubMed
Central, LOCKSS. The holotype and paratypes have been
deposited in the American Museum of Natural History.

Figure 2.  External anatomy and habitus of Edwardsiella andrillae n. sp.  A. Close up of specimens in situ. Image captured by
SCINI. B. “Field” of Edwardsiella andrillae n. sp. in situ. Image captured by SCINI. Red dots are 10 cm apart.
doi: 10.1371/journal.pone.0083476.g002

A New Sea Anemone from Antarctic Ice

PLOS ONE | www.plosone.org 3 December 2013 | Volume 8 | Issue 12 | e83476



Taxonomic treatment
Order Actiniaria
Family Edwardsiidae Andres, 1881
Definition.  Actiniaria with elongate, vermiform body usually

divisible into two or more regions: between long scapus
provided with periderm and short capitulum may be short
scapulus lacking periderm and ectodermal specializations.
Aboral end rounded, may be differentiated into physa. No
sphincter or Acontia. Mesenteries divisible into macro- and
micro-cnemes; always eight perfect macrocnemes and at least
four microcnemes. Macrocnemes comprise two pairs of
directives and four lateral mesenteries, two on each side,
whose retractors face ventral directives. Retractors diffuse to
strongly restricted; parietal muscles always distinct [19].

Genus Edwardsiella Andres, 1883
Definition.  Edwardsiidae with column clearly differentiated

into capitulum and scapus. Three or more cycles of tentacles.
Tentacles hexamerously arranged, those of innermost cycle
longest. Capitulum ridged; nematocysts concentrated on
ridges. Scapus generally bears periderm, always lacks
nemathybomes or tenaculi. Aboral end rounded but not
differentiated into a physa. Ciliated tracts of filaments short,
discontinuous [22].

Type species.  Edwardsia carnea Gosse, 1856 by
subsequent designation [23].

Edwardsiella andrillae n. sp.
Figures 2-4; Table 1 urn:lsid:zoobank.org:act:

42A55C7F-86B8-41F0-A6B6-2CD0221A8FF3
Diagnosis.  Edwardsiella with tapering, elongate column and

20-24 tapering tentacles (Figure 2B); inner tentacles notably
longer. Column and tentacles opaque white, without periderm.
Length of column of whole contracted specimens 16-20 mm,
column diameter to 6 mm.

External anatomy.  Column naked: no periderm or cuticle.
In preserved specimens, capitulum short, same yellowish-white
color as scapus, ridges faint; scapus long, smooth, tapers from
widest point at junction with capitulum to slightly pointed aboral
end (Figure 2). Regionation of the column not very
pronounced. Capitulum not visible in most specimens because
capitulum and base of tentacles contracted and pulled inside
scapus. Mesenterial insertions visible as unbroken, straight
furrows along length of column; highly contracted animals have
deeper furrows than relaxed animals. Aboral end tapered
rather than swollen or rounded, not differentiated from scapus;
highly contracted individuals may have small pore at tip,
suggesting that proximal-most part of aboral end is contracted
inside the column. Tentacles in two crowded cycles
differentiated by size: 8 tentacles in inner cycle longer, thicker
than 12-16 tentacles of outer cycle.

Internal anatomy and histology.  Longitudinal muscles of
tentacles (Figure 3B) and radial muscles of oral disc (Figure
3C) ectodermal; muscles of disc weaker than those of
tentacles. Tentacle with endodermal musculature at junction
with oral disc (Figure 3J). Column without marginal sphincter
muscle (Figure 3L). Ectoderm of capitulum thicker, more
columnar than that of scapus (compare Figure 3L, 3M);
ectoderm of aboral end slightly thicker but otherwise not
differentiated from scapus (Figure 3N).

Eight macrocnemes of equal size and development (Figure
3A) span length of column. Two pairs directives; ventral pair
attaches to single, deep, ventral siphonoglyph (Figure 3A).
Siphonoglyph glandular, without nematocysts; ectoderm of
actinopharynx columnar, containing glandular cells and
nematocysts (Figure 3F). At least four pairs of microscopic
microcnemes (Figure 3E); microcnemes without muscles,
reproductive tissue, filaments, extend less than 1 mm below
tentacle, not visible in every specimen or section because of
unequal contraction of specimens.

Parietal muscle strongly restricted, with thick mesoglea and
few, globular folds; muscle approximately equally developed on
both surfaces but not symmetrical (Figure 3H). Macrocnemic
mesenteries very thin between retractor and parietal muscle.
Retractor muscles circumscribed, reniform, with many thin,
highly branched folds (Figure 3I). Branches of retractor similar
in height, widely spaced, with few ramifications. All
macrocnemes fertile below region of actinopharynx; sexes
apparently separate, only female specimens sectioned (Figure
3D). Eggs large (200-500 µm), yolky, with trophonema (Figures
3D, 3G). Basilar muscles absent; mesentery has microscopic
expansion of mesoglea and slight fold at junction with aboral
end (Figure 3K).

Cnidom Spirocysts, basitrichs, microbasic p-mastigophores
(Figure 4, Table 1).

Material examined.  Specimens were observed at 77° 31.6’
S 171° 20.1’ E and 77° 28.03’ S 171° 36.28’ E (Figure 1A, B
respectively). Samples collected from these two sites, within 50
m of the drill hole at the lower surface of the Ross Ice Shelf.
Holotype: AMNH 5350, whole specimen, from 77° 31.6’ S 171°
20.1’ E (Figure 1, site A). Paratypes: AMNH 5351, two whole
specimens, 77° 31.6’ S 171° 20.1’ E (Figure 1, site A); AMNH
5352, 16 cross-section histological slides, 77° 31.6’ S 171°
20.1’ E (Figure 1, site A); AMNH 5353, whole specimen, 77°
28.03’ S 171° 36.28’ E (Figure 1, site B); AMNH 5354, 13
longitudinal-section histological slides, 77° 28.03’ S 171° 36.28’
E (Figure 1, site B).

Etymology.  This species is named after the Antarctic
Drilling program that resulted in the collection of the
specimens.

Discussion

Although most edwardsiids are burrowers in soft sediments
[5,19,22,24], members of Edwardsiella also live in vegetation
mats, in crevices, and in skeletons of dead Lophelia corals [23].
Unlike many other groups of anemones whose dispersal
potential is limited, some members of Edwardsiella may
disperse larger distances because of associations with other
animals: members of Edwardsiella carnea (Gosse 1856) and
Edwardsiella lineata (Verrill, 1873) parasitize ctenophores as
juveniles, using the host for dispersal and food [5,25,26]. Such
associations are not known for all species in the genus.

Most species of Edwardsiella are described from the
northern hemisphere [27]; only Edwardsiella ignota Carlgren
1959 has been reported from the southern hemisphere (Chile).
Edwardsiella andrillae differs most notably from Edwardsiella
ignota in cnidom (Table 1). The actiniarian fauna of Antarctica
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Figure 3.  Internal anatomy and histology of Edwardsiella andrillae n. sp.  All scale bars =100µm unless otherwise noted. A.
Cross section through actinopharynx showing mesenteries and siphonoglyph. Scale = 500µm. B. Cross section through tentacle
showing relatively strong ectodermal musculature and abundant spirocysts. C. Longitudinal section through oral disc showing
relatively weak ectodermal musculature. Scale bar =20 µm. D. Gametogenic region of mesentery of female specimen. E. Cross
section through distal column showing microcnemes. F. Close-up view of actinopharynx, showing histological differentiation of
siphonoglyph. G. Trophonema of mature oocyte. Scale bar =30 µm. H. Retractor and parietal muscle of macrocnemic mesentery. I.
Retractor muscle of Macrocneme. J. Musculature of base of tentacle. K. Junction between aboral end and mesentery. Note absence
of basilar muscles. Scale bar =25 µm. L. Longitudinal section through distal column showing transition between tentacle and
capitulum. M. Longitudinal section through scapus. Scale bar =30 µm. N. Longitudinal section through aboral end.
Abbreviations: Apx, actinopharynx; Cap; capituluar ectoderm; DD, dorsal directive mesentery; DL, dorsolateral mesentery; G,
gastrodermal side of body wall; P; junction of mesentery and retractor muscle; S, siphonoglyph; T, tentacle; VD, ventrolateral
directive mesentery; VL, ventrolateral mesentery.
doi: 10.1371/journal.pone.0083476.g003
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Figure 4.  Cnidae of Edwardsiella andrillae n. sp.  Scale at bottom, in µm, applies to all images. See Table 1 for size ranges for
each capsule type in each tissue. A. Basitrich. B. Spirocyst. C. Spirocyst. Although this capsule is smaller and has a thinner tubule
than the spirocyst in Figure 4A, spirocysts show continuous variation in capsule size and robustness. D. Small basitrich. E.
Basitrich. F. Small microbasic mastigophore. The small size of these cnidae precludes distinguishing them as b- or p-
mastigophores. G. Spirocyst. H. Basitrich. I. Microbasic p-mastigophore. J. Small basitrich. K. Basitrich. L. Microbasic p-
mastigophores.
doi: 10.1371/journal.pone.0083476.g004
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includes at least two other species of Edwardsiidae: Edwardsia
meridionalis Williams 1981 and Scolanthus intermedius
(McMurrich 1893). These differ from Edwardsiella andrillae in
having nemathybomes, small batteries of nematocysts in the
column ectoderm. Furthermore, E. meridionalis also has fewer
tentacles [10], and S. intermedius has much smaller retractor
muscles despite having a generally larger body size [25,26].

All eggs in the sectioned individuals are at approximately the
same developmental stage (Figure 3D): some of these appear

Table 1. Size range (in μm) of the cnidae of Edwardsiella
andrillae.

 
Edwardsiella
andrillae S N

Edwardsiella ignota
(from [30])

Tentacles     
Small basitrichs none seen   17-19.7 x 3-3.5

Basitrichs (A)
(29.5) 33.1-46.6
(48.5) x 3.5-5.3

2:2 58 17-24 x 4.2-5.6

Spirocysts (B, C)
19.5-37.1 (39.9) x
2.9-6.3

2:2 62 none reported

Column     
Small basitrichs (D) 15.4-20.2 x 2.2-3.0 2:2 16 14-21.5 x 3.5-4.2

Basitrichs (E) 41.2-46.6 x 4.3-5.1 2:2 6
(22.6) 26.8- 36.7 x
5.6-8.5

Small mi.
mastigophores (F)

9.9-13.7 x 2.4-4.0 2:2 22 none reported

Spirocysts (G) 24.0-32.4 x 3.9-6.0 2:2 9 none reported

Filaments     
Small basitrichs none seen   15.5-19.7 x 2.5
Basitrichs (H) 16.0-24.7 x 2.3-3.5 3:3 33 22.6-25.4 x 3.5-5

Mi. p-mastigophores (I)
18.3-27.5 x (4.3)
4.3-6.7

3:3 65 18.3-24.0 x 3.5-5.6

Actinopharynx     
Small basitrichs (J) 20.0-31.3 x 2.0-3.1 2:2 14 15.5-19.7 x 2.8
Basitrichs (K) 39.6-54.3 x 3.0-5.3 2:2 35 none reported
Mi. p-mastigophores (L) 17.3-28.6 x 4.4-6.3 2:2 28 21.0-24.0 x 3.0-3.5

Specimens (S) indicates how many of the sampled specimens contained a
particular type of cnida; Number (N) is the total number of capsules measured. The
letter in parentheses after each type refers to Figure 4. Where multiple sizes of
e.g., basitrichs are reported, the capsules within any specimen show discontinuous
rather than overlapping size ranges. The small microbasic mastigophores of the
column could not be distinguished as p- or b-mastigophores; these overlap in size
with the small basitrichs but differ in capsule shape and tubule morphology (see
Figure 4). Spirocysts are more common in the column than the measurement
imply: many broken or partially discharged spirocysts were seen in the column
samples. Abbreviation: Mi.= microbasic.
doi: 10.1371/journal.pone.0083476.t001

smaller (or larger) in section because the sections are
tangential. All have a clearly defined nucleolus and are thus at
the “late vitellogenic oocycte” stage as defined in [28]. This
suggests that Edwardsiella andrillae undergoes seasonal
rather than continuous reproduction, as is common in many
Antarctic invertebrates [28].

The means by which Edwardsiella andrillae achieves it
relatively large numbers is not clear. Edwardsiella lineata and
the edwardsiid Nematostella vectensis Stephenson 1935 are
able to reproduce asexually via transverse fission [29]; this can
lead to large numbers of coincident individuals. Even
edwardsiids that are not known to undergo asexual
reproduction can achieve high densities, through high
recruitment, low dispersal, or unrecognized asexual
reproduction: Edwardsia meridionalis occurs at densities in
excess of 10,000 individuals per square meter in waters 20-65
m deep in Antarctica (Cape Bird, New Harbor, and the jetty off
McMurdo Station: [8]) and Edwardsia isimangaliso Daly et al.
2012 and Edwardsia elegans Verrill 1869 can achieve densities
in the tens to hundreds of individuals per meter [4], (MD pers
obs). Although not testable with the present material, these
alternatives can be distinguished because they predict different
population genetics and demography: Low larval dispersal or
high larval recruitment would lead to genetically heterogeneous
populations of individuals at many sizes or developmental
stages, whereas asexual reproduction would lead to genetically
homogenous populations of individuals of the same size or
developmental stage.
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