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COHOMOLOGY OF UNITS AND L-VALUES AT ZERO

JÜRGEN RITTER AND ALFRED WEISS

Dedicated to A. Fröhlich on his 80th birthday

Let K/k be a finite Galois extension of number fields with Galois group G, and
let S be a finite G-stable set of primes of K containing all archimedean primes.
We denote the G-module of S-units of K by E = ES and let ∆S be the kernel of
the augmentation map ZS → Z which sends each basis element p ∈ S to 1. We
are concerned with invariants of K/k which are associated to a G-homomorphism
ϕ : ∆S → E inducing Q⊗∆S ' Q⊗ E.

These invariants were defined by Tate [Ta2] and Chinburg [Ch1] when S is large,
i.e. when S contains all ramified primes of K/k and the S-class group cl = clS of K
is trivial. There are two of them and each is a function of the complex characters χ
ofG. The first, Aϕ, hasAϕ(χ) equal to the Tate regulator at χ divided by the leading
coefficient c(χ) of the Taylor expansion at s = 0 of the Artin L-function L(s, χ)
with the Euler factors at primes of S omitted. According to Stark’s conjecture [St]
in Tate’s form, Aϕ takes algebraic values which satisfy

Aϕ(χσ) = Aϕ(χ)σ

for all automorphisms σ of C.
To describe the second invariant qϕ we fix a subfield F of C so that F/Q is finite

Galois with Galois group Γ and so that every representation of G is realizable over
F. Let o be the ring of integers of F. The fields K/k and F are related only in F
housing the invariants which we attach to K/k. Now qϕ(χ) is a fractional ideal of
o which comes from the cohomology of E. Its definition requires an exact sequence

E � A→ B � ∆S

in which A,B are finitely generated cohomologically trivial G-modules and which
has been constructed by Tate [Ta1] for large S.

The main result of this paper is

Theorem A. Suppose K/k is contained in a cyclotomic extension of Q. If 2 does
not ramify in K, then

qϕ(χ) = Aϕ(χ̌)o

for all characters χ of G (where χ̌ denotes the contragredient character). Without
the ramification hypothesis about 2 the equation remains true on replacing o by o[ 12 ].
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This was conjectured by Chinburg [Ch1] to hold for completely general K/k
after Tate [Ta2] had proved it for all Q-valued characters χ. The notion of relating
L-values and orders of certain cohomology groups has also been addressed, in two
different formalisms, by Lichtenbaum [Li2] and Fröhlich [Fr2]. For connections to
Tate’s setting see [Ch2, So] and [RW1] respectively. A consequence of Theorem A is
Chinburg’s root number conjecture [Ch3, p.358] modulo D(ZG) for the extensions
K/k of the theorem. According to [GH] however, this can also be obtained by
different methods.

The basic idea of our proof is to generalize the definitions of Aϕ, qϕ to arbitrary
sets S and so also to the smallest possible S which is the set of all archimedean
primes. This eventually allows us to involve the Main Conjecture of Iwasawa theory
via Leopoldt’s conjecture and Fröhlich’s relation between resolvents and Galois
Gauss sums. Our difficulties with the prime 2 are due entirely to the present status
of the Main Conjecture. Much of the proof is completely general and some of it
is capable of generalization. However the first barrier to a generalization is that
we need to use Stark’s conjecture in a very explicit form and not just the Galois
equivariance above.

Our generalization to small sets S starts from [RW2] where a general Tate se-
quence

E � A→ B � ∇
was constructed. Here A,B are still cohomologically trivial but ∇ is more compli-
cated than ∆S : there is an exact sequence

cl � ∇� ∇
where ∇ is a ZG-lattice of known structure. Letting r = rS be the number of
G-orbits of ramified primes of K/k which are not in S, then the invariants are now
attached to G-isogenies

ϕ : ∇ → Ẽ = E ⊕ (ZG)r ,

which are G-homomorphisms with finite kernel and cokernel.
By means of the above sequence we obtain a generalized qϕ. We then adapt Aϕ

to these ϕ in order to establish

Theorem B. For arbitrary K/k the ratio a(χ) =
(
Aϕ(χ̌)

)/
qϕ(χ) is independent

of ϕ and S.

This result does not even depend on Stark’s conjecture on interpreting a(χ), as
in [Fr2], as a rank-1 o-module on C, i.e. a product a · z with a a fractional o-ideal
and z 6= 0 in C. The proof of Theorem B comprises the first seven sections of the
paper. The first two sections are preliminary: §1 makes a crucial local construction
and §2 is a review of the Tate sequence for small S. In §3 we make the definitions of
Aϕ, qϕ for small S and then break the proof of Theorem B into three steps in §4.
Each of §5, §6, §7 then completes one of these steps. The last step 3 is essentially
in [Ch1], the middle step 2 works because the definition of Aϕ is devised to make
it so. That step 1 then works is surprising, but essential for what follows.

The next two sections prepare for the proof of Theorem A by bringing Theorem
B to bear. For this proof we need to construct explicit isogenies ϕ : ∇ → Ẽ.
In §8, which works for arbitrary K/k, we show how to get a ϕ from an isogeny
ϕ : ∆S → E when S is not large, and reduce the calculation of aϕ(χ) to ϕ up

to fractional o-ideal factors which divide |G|. And then in §9, assuming now that
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Stark’s conjecture holds, we use the induction and inflation properties of a, which
hold for small S because of Theorem B, to reduce the study of prime factors of
a(χ) above a rational prime l to the case of l-adic linear characters χ for which
l does not divide |G/ ker(χ)|. The problem of Theorem A is thus translated into
establishing an l-adic analogue a(l)(χ) = (1) for all primes l.

Finally in §10, we specialize to K/k contained in a cyclotomic field Q(ζ), and
construct an explicit isogeny ϕ : ∆S → E on taking S to be the set of all infinite
primes ofK. This isogeny ϕ comes naturally from the construction of Ramachandra

units, which allows us to eliminate the complex L-value part cS(χ) of a(l). Then, in
§11, we apply the preliminary results of §§8,9 to give the proof of Theorem A. For
each prime l we distinguish three cases according as χ is odd, imaginary or even.
In the odd case the assertion a(l)(χ) = 1 amounts to a conjecture of Brumer which
has been proved by Wiles [Wi2]. The imaginary case, for which k is not real, is a
sort of analogue for l = 2 and has been settled by Greither [Gc]. Both cases are
applications of the Main Conjecture [MW, Wi1].

Most of the remaining effort is concerned with the even case in which we are left
with proving a Ramachandra-Gras conjecture, i.e. the reformulation of a conjecture
of Gras for Ramachandra units. Following the strategy of Greenberg [Gr1] we are
reduced to computing a certain module index and to making connections again
with the Main Conjecture. The module index calculation, in §12, depends on the
l-adic logarithm, which, on the one hand, brings in the l-adic Ll(1, χ), and on the
other, the l-adic additive Galois module structure. Since l is prime to the group
order, we are in the tame situation and can apply results of Fröhlich. In §13 the
main results of [Wi1] are brought to bear to finish the proof.

1. Local constructions

In this section only the extensionK/k is not the given one but its completion at a
finite prime p. In particular, G now is the old decomposition group at p. Denote by
I its inertia subgroup and by φ the Frobenius automorphism of the corresponding
residue field extension; set G = G/I, e = |I|, f = |G|. As always, if H is a group,

∆H is the augmentation ideal in the integral group ring ZH , and Ĥ =
∑
h∈H

h ∈ ZH .

Definition ([GW]). The inertial lattice W attached to K/k is the free Z-module
on the basis

wg = (g − 1, 1 + φ+ . . .+ φa(g)−1) ∈ ∆G⊕ ZG , g ∈ G,
where g = (g mod I) = φa(g) and 1 ≤ a(g) ≤ f . The G-action is given by

hwg = whg − wh + ah,gw1 , h ∈ G,
with ah,g = 0 or 1 according as a(h) + a(g) ≤ f or > f .

Observe that W ' ZG if K/k is unramified.
The inertial lattice W comes equipped with a short exact sequence Z � W �

∆G , 1 7→ w1, from which Q⊗Z W ' QG follows. The Z-dual of this sequence is

∆G0 � W 0 ι� Z .

The map ι, which, of course, is the evaluation at w1, is called the inertial augmen-
tation.



516 JÜRGEN RITTER AND ALFRED WEISS

Define the elements η, κ, ρ ∈W 0 = Hom(W,Z) by

η(wg) =

{
1,
0,

κ(wg) =

{
0 if g = 1,
−1 if g 6= 1,

ρ(wg) =

 1 if g = 1,
1 + e if 1 6= g ∈ I,
e if g 6∈ I.

Also, if V is a CG-module, let V̌ = HomC(V,C) be its contragredient.

Proposition 1. (a) The image of ∆G0 in W 0 is generated by κ as a ZG-module.

Also Ĝη = Ĝρ.
(b) If β ∈ W 0 has augmentation 0, then β = (

∑
g 6=1 xgg)κ with xg = β(wg).

In particular, there exists y ∈ ZG, unique up to adding a multiple of Ĝ, such that
yκ = (|G| − Ĝ)ρ . Also we have (|G| − Ĝ)η = −e∑g 6=1 a(g)gκ .

(c) Given a CG-module V , let yV denote the right action f 7→ fy by the above y
on HomCG(V̌ ,C⊗∆G0), where (fy)(v̌) = f(v̌)y for f ∈ HomCG(V̌ ,C⊗∆G0), v̌ ∈
V̌ . Then

det(yV ) det(1− φ | V I/V G) = (−e|G|)dimV−dimV G .

(d) The ZG-submodule of W 0 generated by ρ has finite index.

Proof. (a) Denote by {ηg : g ∈ G} the dual basis ofW 0 to {wg : g ∈ G}; thus η = η1.
Then {ηg : 1 6= g ∈ G} is a Z-basis for the kernel of the inertial augmentation. Since
for g 6= 1, (gκ)(wh) = κ(g−1wh) = κ(wg−1h−wg−1 + ag−1,hw1) = κ(wg−1h)+ 1, we

have gκ = ηg. Moreover, ι(κ) = 0 and, as Ĝwh = ea(h)w1, (Ĝν)(wg) = ν(Ĝwg) =
ea(g)ι(ν) for ν ∈W 0.

Taking ν = κ yields (
∑

g∈G agg)κ =
∑

g 6=1(ag − a1)gκ =
∑
g 6=1(ag − a1)ηg, and

this equals 0 if, and only if, ag = a1 for all g. Hence ZG/Ĝ ' ZGκ. Also ν = ρ− η
has vanishing inertial augmentation.

(b) From (a) we obtain β = (
∑

g 6=1 xgg)κ =
∑
g 6=1 xgηg. Evaluating at wh shows

xh = β(wh). Substituting (|G|−Ĝ)ρ for β yields xh = e|G| or e|G|−ea(h) according

as 1 6= h ∈ I or h 6∈ I, since (Ĝρ)(wh) = ea(h).

We subtract |G|(e − 1)Ĝ from
∑
h 6=1 xhh with the above xh and get the

element y = e
∑f−1
i=1 iφ

−iÎ − |G|(e − Î), where, by abuse of notation, φ−i is some

representative in G for φ−i ∈ G. Here we have observed that a(g) = f−i, if g ≡ φ−i
mod I. Since Ĝκ = 0, yκ = (|G| − Ĝ)ρ. The case β = (|G| − Ĝ)η is similar.

(c) V̌ and ∆G0 are left G-modules by the usual contragredient convention, so,
for example, (gv̌)(v) = v̌(g−1v), v ∈ V, v̌ ∈ V̌ , g ∈ G. Since ∆G is a right
G-module as well, ∆G0 actually carries a (G,G)-bimodule structure: [gd0h](d) =
d0(g−1dh−1), d0 ∈ ∆G0, d ∈ ∆G, g, h ∈ G. This induces the right CG-structure
on HomCG(V̌ ,C⊗∆G0) used in the assertion.

We first claim that we have isomorphisms

HomCG(V̌ ,C⊗∆G0)
'→ HomCG(C⊗∆G, V )

'→ V/V G .

The second one is the evaluation of f ′ ∈ HomCG(C ⊗ ∆G, V ) at the idempotent

1− Ĝ
|G| which projects to 0 in V G. To describe the first one, write 〈 · , · 〉V for the

canonical pairing V̌ ×V → C and 〈 · , · 〉∆ for the one with respect to C⊗∆G. Then
the map in question sends f ∈ HomCG(V̌ ,C ⊗∆G0) to f ′ ∈ HomCG(C ⊗∆G, V )
where

〈v̌, f ′(d)〉V = 〈f(v̌), d〉∆ for d ∈ C⊗∆G, v̌ ∈ V̌ .
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It follows that (fy)′(d) = f ′(dy̌), where y̌ is obtained from y by the involution
on CG induced by g 7→ g−1, g ∈ G. This holds because

〈v̌, (fy)′(d)〉V = 〈(fy)(v̌), d〉∆ = 〈f(v̌)y, d〉∆ = 〈f(v̌), dy̌〉∆ = 〈v̌, f ′(dy̌)〉V .

Thus the right action of y on HomCG(V̌ ,C⊗∆G0) corresponds to the left action of y̌

on V/V G. Namely, fy corresponds to f ′((1− Ĝ
|G|)y̌) = f ′(y̌(1− Ĝ

|G|)) = y̌f ′(1− Ĝ
|G|),

as 1− Ĝ
|G| ∈ CG is central and f ′ is a G-homomorphism.

We have arrived at det(yV ) = det(y̌|V/V G). Because of y = e
∑f−1
i=1 iφ

−iÎ −
|G|(e− Î) the action of y̌ on V/V G fits into the commutative diagram

V I/V G � V/V G � V/V I

↓ ỹ ↓ y̌ ↓ −|G|e
V I/V G � V/V G � V/V I

with multiplication by −|G|e on the right vertical arrow and multiplication by ỹ =

e2
∑f−1

i=1 iφ
i on the left one. Hence det(y̌|V/V G) = (−e|G|)dimV/V I ·det(ỹ|V I/V G)

and ỹ(1− φ) = e2
∑f−1

i=1 iφ
i(1 − φ) = e2( ˆ〈φ〉 − f), so

det(y̌|V/V G) det(1 − φ | V I/V G) = (−e|G|)dimV/V I (−e|G|)dimV I/V G

= (−e|G|)dimV/V G ,

since ˆ〈φ〉V I ⊂ V G.

(d) By (c), y ∈ QG/ĜQG is a unit. Thus yκ = (|G|−Ĝ)ρ generates a submodule
of finite index in ∆G0 = ZGκ. Since ρ itself has inertial augmentation 6= 0, the
assertion follows readily.

Remark. Eventually, in §6, the point of §1 will be that det(1−φp | V Ip/V Gp) is an
Euler factor at s = 0.

2. The Tate sequence; ∇ modulo torsion

We return to our original notation in which K/k is an extension of number fields
and, from now on, label the objects defined in §1 by the appropriate primes. In

particular, Gp, Wp, W
0
p

ιp−→ Z are the decomposition group, the inertial lattice
and the inertial augmentation at p, respectively. Once and for all we fix a choice
∗ of G-orbit representatives in the set of all primes of K. For a G-stable subset S
then S∗ is the intersection of S and ∗.

Set

Sram = {p ramified in K/k, p 6∈ S},
Sram = S ∪ Sram,
0W = 0WS =

⊕
p∈Sram∗

indGGp
W 0

p ,
0∆ = 0∆S =

⊕
p∈Sram∗

indGGp
∆G0

p,

∇ = ∇S = ker(ZS ⊕ 0W
ι′−→ Z) ,

where ι′ is the augmentation on ZS and indGGp
ιp (followed by the augmentation

indGGp
Z→ Z) on indGGp

W 0
p .
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The right hand end ∇ in the Tate sequence associated to S,

ES � A→ B � ∇,

originates from a unique extension

clS � ∇� ∇

which is described in [RW2]; however, for the purposes of this paper it usually
suffices to know ∇ modulo its torsion clS , i.e. ∇. The ZG-modules A,B are
cohomologically trivial and stably free, respectively.

In the following sections we need to compare Tate sequences for sets S1 ⊂ S2.
In order to do so we use

Theorem 2. Given S1 ⊂ S2, it is possible to choose Tate sequences for S1 and S2

as the rows in the commutative diagram

E1 � A1 → B1 � ∇1

↓ ↓ ↓ ↓
E2 � A2 → B2 � ∇2

in which the outer vertical
maps are the natural ones.

Proof. The theorem is actually a direct consequence of the construction of the Tate
sequence. In its proof all references are to [RW2]. Choose a sufficiently large set S′

of primes containing S2 and look at the diagram

CK

J2

J1

V

VS′

VS′

∆G

WS′,2

WS′,1

�

�

�

�

�

�

↓ ↓ ↓

���
��

���
��

���
��

AAU
AA

AAU
AA

AAU
AA

=

in which Ji denotes the Si-ideles and CK the idele class group of K, and where

WS′,i = (
⊕

p∈S∗,i
indGGp

∆Gp)⊕ (
⊕

p∈S′∗\S∗,i
indGGp

Wp) .

For VS′ and V see §1 of [RW2] (as usual); they, together with the rows in the above
diagram, are determined by the local and global fundamental classes. The left and
right triangles are the obvious ones. The top face is built from the local diagrams of
Proposition 2. Theorem 1 provides a surjective map VS′ → V making the diagram
commute. The modules VS′ ,V are cohomologically trivial and so the snake lemma
yields

E1 � A1 → RS′,1 � cl1
↓ ↓ ↓ ↓
E2 � A2 → RS′,2 � cl2

with cohomologically trivial A1, A2.
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We next build the commutative prism

∆G

WS′,2

WS′,1

ZG

NS′,2

NS′,1

Z

M∗,2

M∗,1

�

�

�

�

�

�

↓ ↓ ↓

���
��

���
��

���
��

AAU
AA

AAU
AA

AAU
AA

in which the front and the back face are as in diagram 4 (of [RW2]) and the top face
is assembled from local diagrams mostly with identity maps; the only complicated
case being p ∈ (S2∩Sram

1 )∗ when the relevant local diagram is described in Lemma
5c). It follows that M∗,1 → M∗,2 is induced by the inertial augmentations. On
taking kernels we obtain the top face of

cl2

RS′,2

cl1

RS′,1

∇2

B2

∇1

B1

∇2

∇2

∇1

∇1

�

�

�

�

�

�

�

�

↙

↙

↙

↙

↙

↙

? ?
=

=

?

↓ ↓ ↓

;

its left face is taken from the second diagram and the rest follows by pushing out.
Applying the construction at the end of §4 then yields the claim of the theorem.

We close this section by presenting two useful exact sequences involving ∇:

∆S � ∇� 0W , 0∆ � ∇� ∆Sram .

Here, ∇ � 0W is the restriction of the projection ZS ⊕ 0W � 0W and the map
∇� ∆Sram is, on the one hand, induced by the embedding S ⊂ Sram and, on the
other hand, by indGGp

W 0
p � indGGp

Z.
As a consequence,

Q⊗Z ∇ ' Q⊗Z ∇ ' Q⊗Z ∆S ⊕Q⊗Z
0W ' Q⊗Z (E ⊕ ZGr)

with the r that is already defined in the introduction, i.e.

r = rS = number of G-orbits of ramified primes of K/k which are not in S.

Remark. For a discussion of the dependence on the choice ∗ see [RW2, Theorem 6].

3. Definition of q-index and A for small S

Let S be arbitrary, put r = rS and choose an isogeny ϕ : ∇ → Ẽ = E ⊕ ZGr.
The definitions we are going to make below generalize those of Tate [Ta2] for large
S.

We define the q-index qϕ.
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Let χ be a character of G and V = Vχ be an FG-module affording χ and M an
oG-lattice on V . Following Tate [Ta2, p.60] when S is large, we abbreviate by ϕM
the composite map

ϕM : Homo(M,∇)G
Ĝ−→ Homo(M,∇)G

ϕ−→ Homo(M, Ẽ)G

from G-coinvariants to G-invariants. We resolve the obvious difficulty with the
above notation by adopting the convention that ∇, Ẽ are to be read o⊗Z∇, o⊗Z Ẽ.
Indeed we will use this convention of letting the context determine the obvious
extension of scalars rather consistently throughout the rest of the paper.

Definition. qϕ(χ) = `o(coker(ϕM ))/`o(ker(ϕM )), where the length `o(X) of a
finite o-module X is `o(X) =

∏m
i=0 li, if X = X0 ⊃ X1 ⊃ . . . ⊃ Xm ⊃ Xm+1 = 0 is

a composition series with Xi/Xi+1 ' o/li .

Lemma 3. (a) qϕ(χ) does not depend on the choices of F, V and M .
(b) If χ is irreducible, qϕ(χ) is a fractional o-ideal in F which is generated by

a fractional ideal of the field Q(χ) of character values of χ.
(c) qϕ(χ)γ = qϕ(χγ) for γ ∈ Γ.

Proof. (a) is shown exactly along the lines of Tate’s proof [Ta2, Chapter 2] by just
replacing his 4-term sequence [Ta2, p.54] by

Ẽ � Ã→ B � ∇ ,

which is obtained by adding ZGr , with identity map, to E and A.
For (b) and (c) see, for example, [We, Proposition 7].

We next define the generalized A-number attached to characters of G.

Definition. Aϕ(χ) = Rϕ(χ) /

(
cS(χ)[

∏
p∈Sram∗

ep log(Np) ]χ(1)

)
.

Here, cS(χ) is the leading coefficient in the Taylor expansion at zero of the Artin
L-function for χ with the Euler factors at p ∈ S removed and Np is the absolute
norm of p. So it remains to define the generalized Stark-Tate regulator Rϕ(χ).

For this we need a generalized Dirichlet map

λ̃ : R⊗Z Ẽ
'−→ R⊗Z ∇

which replaces the original Dirichlet isomorphism

λ : R⊗Z E
'−→ R⊗Z ∆S

that takes a unit u ∈ E to
∑

p∈S log |u|pp with |u|p = absolute value of u at p

normalized in the usual way.
We define λ̃ as a dotted map making

R⊗ E � R⊗ Ẽ � RGr
↓ λ ↓ · ↓ ρ̃

R⊗∆S � R⊗∇ � R⊗ 0W

commute, where ρ̃(1p) = − log(Np)⊗ ρp on viewing ZGr as
⊕

p∈Sram∗

indGGp
ZGp ; ρp

is as in Proposition 1.
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We are now ready to define the regulator Rϕ(χ) that is attached to a complex
character χ of G and an isomorphism

ϕ : C⊗∇ −→ C⊗ Ẽ .

To that end let V̌ be a CG-module affording χ̌, the contragredient of χ, and denote
by [λ̃ϕ | HomCG(V̌ ,∇)] the endomorphism of HomCG(V̌ ,C ⊗Z ∇) which sends a

map s to λ̃ϕs.

Definition. Rϕ(χ) = det[λ̃ϕ | HomCG(V̌ ,∇)].

This definition is justified by the following lemma.

Lemma 4. Rϕ(χ) does not depend on the choice of λ̃ making the above diagram
commute.

Proof. Namely, two such λ̃ (multiplicatively) differ by a map ν making

R⊗∆S � R⊗∇ � R⊗ 0W
‖ ↓ ν ‖

R⊗∆S � R⊗∇ � R⊗ 0W

commute. Applying HomCG(V̌ ,C⊗R · ) to the diagram we see that the determinant
of the map on HomCG(V̌ ,C⊗∇) induced by ν is 1.

In the lemma to follow we display an explicit λ̃ in terms of an auxiliary map
a which often is quite easy to come by. Namely let a be a QG-map making the
following triangle commute:

QGr
a

↙ ↓
Q⊗ Eram −→ Q[Sram] .

Here Eram is the group of Sram-units in K, the vertical map sends 1p to p (p ∈ Sram∗ )
and the horizontal u ∈ Eram to

∑
p∈Sram vp(u)p with vp denoting the p-valuation.

Lemma 5. The map λ̃ : R ⊗ Ẽ → R[S] ⊕ (R ⊗ 0W ) satisfying λ̃(u) = λ(u) for

u ∈ E and λ̃(1p) =
∑

p′∈S log |a(1p)|p′p′ − log(Np) ⊗ ρp for p ∈ Sram takes its

values in R⊗∇ and induces ρ̃ on RGr.

Proof. The second claim directly follows from ∇ → 0W being the restriction of the
projection ZS⊕0W → 0W to ∇. In order to see the first one, we compute (inertial)
augmentations.

(i)
∑

p′∈S log |a(1p)|p′ +
∑

p′′∈Sram log |a(1p)|p′′ = 0, as a(1p) ∈ Q ⊗ Eram (here we

have extended | · |p′′ to Q⊗ Eram in the obvious way).

(ii) a(1p) has image p ∈ Q[Sram], hence |a(1p)|p′′ = 1 or (Np)−1 according to
p′′ 6= p or p′′ = p in Sram. Consequently,

∑
p′′∈Sram log |a(1p)|p′′ = − log(Np). The

assertion follows by combining with ιp(ρp) = 1.

Remark. Observe that if S is small, then the choice ∗ of G-orbit representatives
of the primes of K is involved in the map ϕ, since ∇ depends on ∗ [RW2], and so
there is no ambiguity in writing Rϕ(χ) or Aϕ(χ).
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4. Proof strategy for Theorem B

Given an isogeny ϕ : ∇ → Ẽ, we define

aϕ(χ) = Aϕ(χ̌)/qϕ(χ) .

Proposition 6. If ϕ1, ϕ2 : ∇ → Ẽ are two isogenies, then aϕ1(χ) = aϕ2(χ) .

Proof. This can be read off from Chinburg’s work [Ch1] and, in any case, from the
proof of Proposition 8 in [We], but is included for completeness. Here is what we
precisely show:

Aϕ1(χ̌)/Aϕ2(χ̌) belongs to F× and generates qϕ1(χ)/qϕ2(χ) .

Since, over Q, ϕ1 and ϕ2 become isomorphisms, there exists an automorphism θ
of Q ⊗Z ∇ such that ϕ1 = ϕ2θ. Choose an FG-module V affording the character
χ. Then there is a commutative triangle

HomFG(V, F ⊗∇)
ϕ2↘

↑ θ HomFG(V, F ⊗ Ẽ)
ϕ1↗

HomFG(V, F ⊗∇)

with obvious maps. After tensoring the triangle with C over F and composing with

the map HomCG(C ⊗F V,C ⊗Z Ẽ)
λ̃→ HomCG(C ⊗F V,C ⊗Z ∇) at the right hand

side, we deduce that

Rϕ1(χ̌) = det(θ | HomCG(C⊗F V,C⊗Z ∇)) ·Rϕ2(χ̌) .

The determinant factor thus belongs to F× and is the quotient Aϕ1(χ̌)/Aϕ2(χ̌).
Regarding the quotient of the q-indices, we use the commutative diagrams,1 for

i = 1, 2,

T∇ � Homo(M,∇)G � L∇
ϕi ↓ ϕi,M ↓ ϕi ↓
TE � Homo(M, Ẽ)G � LE

in which T∇ and TE are the respective torsion submodules of Homo(M,∇)G and

Homo(M, Ẽ)G, and where ϕ
i
, ϕi are the maps induced by ϕi,M . Here ker(ϕi) = 0,

since L∇ is a lattice and all maps are isogenies.
So by [Ta2, pp.58,59],

qϕi(χ) =
`(cokerϕ

i
)

`(kerϕ
i
)
· `(cokerϕi) , ` = `o .

Since T∇ and TE are o-torsion modules, the exact sequence ker(ϕ
i
) � T∇

ϕ
i−→

TE � coker(ϕ
i
) implies that `(coker(ϕ

i
))/`(ker(ϕ

i
)) = `(TE)/`(T∇). Hence

qϕ1(χ)/qϕ2(χ) =
`(coker(ϕ1))

`(coker(ϕ2))
.

1With ∇, Ẽ inside Homo meaning o⊗Z ∇, o⊗Z Ẽ by our convention.
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We next exploit the commutative diagrams

Homo(M,∇)G
ϕi,M→ Homo(M, Ẽ)G

↓ Ĝ ↓
HomFG(V, F ⊗∇)

ϕi→ HomFG(V, F ⊗ Ẽ)

where the right ver-
tical map is just the
extension of scalars,

in order to identify ϕi as the restriction of ϕi to L∇. In particular, by the triangle
above, ϕ1 = ϕ2θ and so

qϕ1(χ)/qϕ2(χ) =
[LE : ϕ1(L∇)]

[LE : ϕ2(L∇)]
= [ϕ2(L∇) : ϕ2θ(L∇)]

= [L∇ : θ(L∇)] = det θ · o .
This finishes the proof of Proposition 6.

Because of the proposition, aϕ depends only on S rather than on the particular
ϕ, so we put aS(χ) = aϕ(χ). Theorem B asserts that aS(χ) is even independent of
S. Its proof is based on the equality aS(χ) = aS′(χ) for any sufficiently large set
S′ containing S. So, if S1 and S2 are two sets of primes, then both are contained
in the same sufficiently large S′ and we get aS1(χ) = aS′(χ) = aS2(χ).

The equality aS(χ) = aS′(χ) is proved in three steps, each of which will fill an
extra section. Step 1 in §5 concerns adjoining G-orbits of primes of absolute degree
1 to S. It is always possible to adjoin a set of generators of the S-class group of
K in this way because it is the primes of degree 1 that carry all of the Dirichlet
density in the usual proofs of the existence of primes representing given elements
of the class group. So in step 2, in §6, we begin with a set S for which clS = 0
and enlarge it by adjoining all ramified primes of K/k. Finally, in step 3 in §7, the
initial set S is large in the sense of Tate and we must now enlarge it arbitrarily.
The arguments used in this last step are not really new, see [Ch1] or [We].

The computations to be carried out in the following three sections will be easier
to follow if we make use of some further notation. The Tate cohomology groups
Hi(G,Homo(M,X)), where i ∈ Z, X is a finitely generated ZG-module and M
a fixed oG-lattice with character χ, will be denoted by Hi(X). Moreover, with
respect to evaluating the length of artinian o-modules we shall mainly work in the
Grothendieck group K0T (o) of the category of finitely generated torsion o-modules.
We write [T ] for the element in K0T (o) induced by the o-torsion module T . Observe
that applying `o to artinian o-modules yields a homomorphism from K0T (o) into
the fractional o-ideals of F . For an isogeny f : Y → Y ′ between finitely generated
o-modules we set [f ] = [coker(f)] − [ker(f)]. An example of such an f is the

map tM : Homo(M,Y )G
Ĝ→ Homo(M,Y )G

t→ Homo(M,Y ′)G associated to any
G-isogeny t : Y → Y ′. In particular, qϕ(χ) = `o([ϕM ]).

We close this section by recalling a formula which follows from the definition of
the Euler factors (see [We, Proposition 6]).

Lemma 7.

cS1(χ̌)/cS(χ̌) =
∏

p∈(S1\S)∗

(
log(Np)

fp
)dim V̌ Gp

det(1− φp |V̌ Ip/V̌ Gp) for S1 ⊇ S.
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5. Step 1

Let S1 ⊃ S be a finite G-stable set of primes of K such that the S1-class group
of K is trivial and such that each p ∈ S1 \ S has absolute degree 1. We use the
subscript 1 in order to distinguish the objects associated to S1 from those to S.
We have Sram

1 = Sram, and the notation 0W is unambiguous as is the number r.
Observe that Z[S1 \ S] is ZG-free. The inclusion ZS ⊂ ZS1 together with the
identity map on 0W induces the short exact sequence

∇� ∇1 � Z[S1 \ S] .(1)

The map u 7→ ∑
p∈S1\S vp(u)p injects E1/E into Z[S1 \ S] and has cokernel cl,

the S-class group of K. Namely, if
∏

p∈S1\S pbp = (1) in cl, then there exists a

b ∈ K with vp(b) = bp for p 6∈ S and so, in particular, vp(b) = 0 for p 6∈ S1, i.e.
b ∈ E1. Since the S1-class group of K is trivial, the cokernel is all of cl. Hence the
multiplication by h = |cl| on Z[S1 \ S] has its image in E1/E. The induced map
Z[S1 \ S]→ E1/E is denoted by h′:

Z[S1 \ S] = Z[S1 \ S]
↓ h′ ↓ h

E1/E � Z[S1 \ S] � cl .
(2)

Start with an isogeny ϕ : ∇ → Ẽ which vanishes on the torsion of ∇ and so
induces ϕ : ∇ → Ẽ:

cl � ∇ � ∇
↓ ϕ ↓ ϕ
Ẽ = Ẽ .

(3)

The existence of a map ϕ1 in the commutative diagram below is due to Z[S1 \S]
being free:

∇ � ∇1 � Z[S1 \ S]
↓ ϕ ↓ ϕ1 ↓ h′
Ẽ � Ẽ1 � E1/E .

(4)

We are going to show that

q1(χ)/q(χ) = (h)
|S1\S|
|G| χ(1) .

To that end we prove

(a) [(ϕ1)M ]− [ϕM ]− [h′M ] = −[ker(H1(Ẽ)→ H1(Ẽ1))],

(b) [h′M ]− [hM ] = −[ĜHomo(M, cl)],

(c) [ϕM ]− [ϕM ] = [ĜHomo(M, cl)] + [ker(H−1(∇)→ H−1(∇1))]

in K0T (o). Adding up we obtain

[(ϕ1)M ]− [ϕM ]− [hM ] =

−[ker(H1(Ẽ)→ H1(Ẽ1))] + [ker(H−1(∇)→ H−1(∇1))] = 0

on account of Theorem 2 (on adding ZGr, with identity map, to get Ẽ, Ã, Ẽ1, Ã1).
Observe that Homo(M,C) is cohomologically trivial whenever C is [Se, p.153].
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Hence the formula stated above will follow from

(d) `o([hM ]) = (h)
|S1\S|
|G| χ(1)

and it remains to show (a),(b),(c),(d).
For the proof of (a) apply Homo(M, o⊗ · ) to diagram (4) and takeG-coinvariants

and G-invariants. The vanishing of H i(C) for a cohomologically trivial G-module
C then yields

Homo(M,∇)G � Homo(M,∇1)G � Homo(M,Z[S1 \ S])G
↓ ϕM ↓ (ϕ1)M ↓ h′′

Homo(M, Ẽ)G � Homo(M, Ẽ1)
G � ker(Homo(M,E1/E)G → H1(Ẽ))

where h′′ is induced by h′M . The snake lemma implies [(ϕ1)M ]− [ϕM ] = [h′′]. The
short piece

Homo(M, Ẽ1)
G e→ Homo(M,E1/E)G

d→ H1(Ẽ)
f→ H1(Ẽ1)

of the long cohomology sequence associated to Ẽ � Ẽ1 � E1/E gives im(e) '
ker(d) and coker(e) ' ker(f); so [coker(h′′)]=[coker(h′M )]− [coker(e)]=[coker(h′M )]

−[ker(f)] and [h′′] = [h′M ]− [ker(H1(Ẽ)→ H1(Ẽ1))] .
Turning to (b) we apply diagram (2) in order to get

Homo(M,Z[S1\S])G = Homo(M,Z[S1\S])G

↓h′M ↓hM
Homo(M,E1/E)G � Homo(M,Z[S1\S])G � im(Homo(M,Z[S1\S])G→Homo(M,cl)G))

and so [h′M ]− [hM ] = −[im(Homo(M,Z[S1 \ S])G → Homo(M, cl)G)] .
Because of H0(Z[S1 \ S]) = 0 we have

Homo(M,Z[S1 \ S])G = ĜHomo(M,Z[S1 \ S]),

so the surjectivity of Homo(M,Z[S1 \ S]) � Homo(M, cl) implies

[im(Homo(M,Z[S1 \ S])G → Homo(M, cl)G)] = [ĜHomo(M, cl)] .

With respect to (c) we start from diagram (3) and obtain

Homo(M,cl)G
ker(Homo(M,cl)G→Homo(M,∇)G) � Homo(M,∇)G � Homo(M,∇)G

↓ ϕM ↓ ϕM
Homo(M, Ẽ)G = Homo(M, Ẽ)G

and consequently

[ϕM ]− [ϕM ] = −[ker(H−1(cl)→ H−1(∇))] + [Homo(M, cl)G]

= −[H−1(cl)] + [ker(H−1(∇)→ H−1(∇))] + [Homo(M, cl)G]

= [ker(H−1(∇)→ H−1(∇))] + [ĜHomo(M, cl)]

by the cohomology sequence H−1(cl)→ H−1(∇)→ H−1(∇) induced by cl � ∇�
∇ and the definition of H−1(cl). By (1), H−1(∇) = H−1(∇1).

We are left with proving (d). The kernel of hM is H−1(Z[S1 \ S]) = 0, and the
cokernel is

Homo(M,Z[S1 \ S])G/hĜHomo(M,Z[S1 \ S])

= Homo(M,Z[S1 \ S])G/hHomo(M,Z[S1 \ S])G ,
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as H0(Z[S1 \ S]) = 0. Because Z[S1 \ S] is G-free on |S1\S|
|G| generators, the rank of

the o-lattice Homo(M,Z[S1 \ S])G is |S1\S|
|G| χ(1).

Turning now to A it suffices to show

A1(χ̌)/A(χ̌) = (−h)|(S1\S)∗|χ(1) .

To that end we make use of

c1(χ̌)/c(χ̌) =
∏

p∈(S1\S)∗

(log(Np))χ(1)

which follows from Lemma 7, because all primes p ∈ S1 \S have absolute degree 1,
hence fp = 1, Gp = 1, Ip = 1. Since Sram

1 = Sram, this reduces to showing

R1(χ̌)/R(χ̌) =
∏

p∈(S1\S)∗

(−h log(Np))χ(1).

Choosing a λ̃ which makes the front face of the diagram

R⊗∆S

R⊗ E
R⊗∆S1

R⊗ E1

R⊗∇

R⊗ Ẽ
R⊗∇1

R⊗ Ẽ1

R⊗ 0W

RGr

R⊗ 0W

RGr

�

�

�

�

�

�

�

�

↗

↗

↗

↗

↗

↗

? ? =

=

?

λ1 λ̃1

λ λ̃

↓ ↓ ↓

commute, we get a unique map λ̃1 : R ⊗ Ẽ1 → R ⊗ ∇1 which makes the whole
diagram commute. We combine diagram (4), tensored with R, with the middle face
(and its cokernels) of the above diagram to obtain

R⊗∇ � R⊗∇1 � R[S1 \ S]
↓ ϕ ↓ ϕ1 ↓ h′

R⊗ Ẽ � R⊗ Ẽ1 � R⊗ E1/E

↓ λ̃ ↓ λ̃1 ↓
R⊗∇ � R⊗∇1 � R[S1 \ S] .

By diagram (2), tensored with R, it follows that the right composite map is

µ : p 7→ −h log(Np) · p .
Applying HomCG(V,C⊗ · ) to the diagram we get

R1(χ̌)/R(χ̌) = det(µ|HomCG(V,C[S1 \ S])) .

From Frobenius reciprocity and the decomposition of S1 \ S into G-orbits, all of
which have length |G|, we obtain HomCG(V,C[S1 \ S]) ' HomC(V,C[(S1 \ S)∗]).
Since µ induces the diagonal matrix with diagonal entries −h log(Np), p ∈ (S1\S)∗,
on HomC(V,C[(S1 \ S)∗]), the assertion follows.
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6. Step 2

This section is concerned with enlarging a set S satisfying clS = 0 to S1 =
Sram = S ∪ Sram.

From the end of §2 we recall

0∆ � ∇� ∇1(1)

by observing that ∇ = ∇ and ∆S1 = ∇1. Since Sram = S1 and so Eram = E1, we
get an auxiliary map a as in the triangle preceding Lemma 5, which we can and
will assume to be already defined on the integral level. Namely, ZGr , with r = rS ,
is free and Eram → Z[Sram] is surjective, as follows from the triviality of the S-class
group.

Hence

ZGr
a

↙ ↓
E � E1 � Z[Sram] .

(2)

The triangle provides the short exact sequence

∆ � Ẽ � E1(3)

where ∆ =
⊕

p∈Sram∗
indGGp

∆Gp is the kernel of its vertical map. Of course, Ẽ → E1

sends (u, c) ∈ E ⊕ ZGr to u+ a(c), hence ∆→ Ẽ sends x to the pair (−a(x), x).2
We next build a commutative diagram

0∆ � ∇ � ∇1

↓ δ ↓ ϕ ↓ ϕ1

∆ � Ẽ � E1

(4)

in which the rows are (1) and (3), with isogenies ϕ and ϕ1, and with δ induced

by local maps δp : κp 7→ n(|Gp| − Ĝp) for some integer n 6= 0, remembering
∆G0

p = ZGp ·κp (see Proposition 1(a)). Namely choosing ϕ′1 to be any isogeny and
taking the δ with n = 1, the diagram (4) tensored with Q can be completed by a
ϕ′ because of Maschke’s theorem and then we get a diagram (4) by scaling by a
suitable n.

We claim that

q1(χ)/q(χ) =
∏

p∈Sram∗

ndimV Gp−dimV |Gp|2 dimV Gp−dimV .

In order to prove the claim we first proceed as in §5. From diagram (4) we get

H−2(∇) →H−2(∇1) → Homo(M,0∆)G
e→ Homo(M,∇)G � Homo(M,∇1)G

↓δM ↓ϕM ↓(ϕ1)M

Homo(M,∆)G � Homo(M,Ẽ)G
f→ Homo(M,E1)

G→ H1(∆)

and so

• [ϕM ]− [(ϕ1)M ] = −[coker(f)] + [δM ] + [ker(e)], since im((ϕ1)M ) ⊂ im(f) and
ker(e) ⊂ ker(δM ),

• coker(f) ' coker(H0(Ẽ)→ H0(E1)) by the definition of H0,

2Whenever it is convenient we will write units additively!
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• ker(e) ' coker(H−2(∇) → H−2(∇1)), as follows from the top row in the
diagram above,
• ker(e) ' coker(f) because of Theorem 2.

Collecting together we see that

[ϕM ]− [(ϕ1)M ] = [δM ] .(a)

In order to show

[δM ] =
∑

p∈Sram∗

[(δp)M ](b)

we use the following lemma, the proof of which is delayed to the end of the section.

Lemma 8. Let M be an oG-lattice and N an oH-module with H a subgroup of
G. Then n 7→ 1 ⊗ n induces a map θ : Homo(M,N) → Homo(M, indGHN) which

induces an isomorphism θ : Homo(M,N)H → Homo(M, indGHN)G .

From the lemma we obtain the commutative diagram

Homo(M,∆G0
p)Gp

Ĝp→ Homo(M,∆G0
p)
Gp

δp→ Homo(M,∆Gp)
Gp

' ↓ θ ' ↓ θ′ ' ↓ θ′

Homo(M, indGGp
∆G0

p)G
Ĝ→ Homo(M, indGGp

∆G0
p)
G indδp→ Homo(M, indGGp

∆Gp)
G

and thus (b). Here θ′, the map of Frobenius reciprocity, sends s to s̃ where s̃(m) =∑
g g ⊗ s(g−1m) and g runs through a set of coset representatives of Gp in G.
So our formula for the quotient of the q-indices follows from

`o([(δp)M ]) = ndimV−dimV Gp |Gp|dimV−2 dimV Gp
.(c)

We prove this whenever M is an oGp-lattice spanning the FGp-space V .
Since δp is an isogeny between the two ends of the “Tate-sequence” ∆Gp �

ZGp → ZGp � ∆G0
p that is obtained from ∆Gp � ZGp � Z and its dual, we are

allowed to replace M by any oGp-lattice affording χ [Ta2, Lemme 7, p.60].
In the computations to follow we may as well drop the index p and assume that

χ is irreducible. Moreover, we may assume that n = 1. Denoting, temporarily, our
δ by δ(n) we have δ(n) = n · δ(1). Hence

[δ(n)M ] = [δ(1)M ] + [coker(Homo(M,∆)G
n→ Homo(M,∆)G)].

The second summand has length n(χ,∆G) = ndimV−dimV G .
If χ is trivial, we are in the situation o = Z, M = Z and, observing (∆G0)G =

0 = (∆G)G, we have

`o(δZ) = 1/`o((∆G
0)G) = `o(H

−1(G,∆G0))−1 = `o(H
0(G,Z))−1 = |G|−1o .

If χ is non-trivial, we employ the commutative diagram

∆G0 � ZG � ZG
↓ δ ‖ ↓

∆G � ZG � Z
with κ 7→ |G| − Ĝ , ZG = ZG/(|G| − Ĝ) and
with the augmentation on the right hand side.
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We obtain

H−2(ZG) � Homo(M,∆G0)G → Homo(M,ZG)G � Homo(M,ZG)G
↓ δM ↓ Ĝ ↓

Homo(M,∆G)G � Homo(M,ZG)G → Homo(M,Z)G � H1(∆G) .

As χ 6= 1, Homo(M,Z)G = 0 and so H−2(ZG) = H−1(∆G0) = H0(Z) = 0. Also,

the middle Ĝ is an isomorphism, since ZG is free. Hence [δM ] = [Homo(M,ZG)G].
The length of this has been computed in [Ch1]; see also [We, §13, after the Claim
in Step 1 of the proof of Theorem 8]:

`o(Homo(M,ZG)G)

= `o

(
coker(Homo(M,ZG)G

|G|−→ Homo(M,ZG)G)
)

= |G|dim V̌ o .

We now pass to A and show that also

A1(χ̌)/A(χ̌) =
∏

p∈Sram∗

ndimV Gp−dimV |Gp|2 dimV Gp−dimV .

For that we recall from Lemma 7 that

c1(χ̌)/c(χ̌) =
∏

p∈Sram∗

(
log(Np)

fp
)dim V̌ Gp

det(1 − φp |V̌ Ip/V̌ Gp),

and so

A1(χ̌)/A(χ̌) = R1(χ̌)c(χ̌)
∏

p∈Sram∗

(ep log(Np))χ̌(1)R(χ̌)−1c1(χ̌)−1

=
R1(χ̌)

R(χ̌)

∏
p∈Sram∗

(ep log(Np))dim V̌ fdim V̌ Gp

p (log(Np))− dim V̌ Gp

× det(1− φp | V̌ Ip/V̌ Gp)−1.

(d)

In order to compute the quotient of the regulators stack diagram (4), tensored with
R, on top of

R⊗∆ � R⊗ Ẽ � R⊗ E1

↓ d ↓ λ̃ ↓ λ1

R⊗ 0∆ � R⊗∇ � R⊗∇1 ,

(5)

the rows of which are (3) and (1). The left vertical map d is defined by the diagram.
It follows readily that R1(χ̌)/R(χ̌) = det(dδ | HomCG(V,C ⊗ 0∆))−1. By (4),

dδ sends a generator 1 ⊗ κp ∈ R ⊗ ∆G0
p to d(1 ⊗ n(|Gp| − Ĝp)). To compute

this we view it as an element of R ⊗ ∇, by means of (5), which, by (3), equals

λ̃(−a(1⊗ n(|Gp| − Ĝp)), 1 ⊗ n(|Gp| − Ĝp)) which, in turn, by Lemma 5 is

λ
(−a(1⊗ n(|Gp| − Ĝp))

)
+ n(|Gp| − Ĝp)λ̃(1⊗ 1p)

= −
∑
p′∈S

log |a(n(|Gp| − Ĝp))|p′ ⊗ p′

+ n(|Gp| − Ĝp)(− log(Np)⊗ ρp +
∑
p′∈S

log |a(1p)|p′ ⊗ p′)

= −n log(Np)⊗ (|Gp| − Ĝp)ρp = −n log(Np)⊗ ypκp ,
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by Proposition 1(b). It follows from Frobenius reciprocity that under the identifi-
cation

HomCG(V,C⊗ 0∆) =
⊕

p∈Sram∗

HomCGp(V,∆G0
p)

the map dδ corresponds to
⊕

p∈Sram∗
(−n log(Np)(yp)V̌ ), in the notation of Propo-

sition 1(c).
Thus

R1(χ̌)/R(χ̌) =
∏

p∈Sram∗

(−n log(Np))−(χ,∆G0
p) det((yp)V̌ )−1

=
∏

p∈Sram∗

(−n log(Np))dim V̌ Gp−dim V̌ det((yp)V̌ )−1 ,

as (χ,∆G0
p) = (χ̌,∆Gp) = dim V̌ − dim V̌ Gp . By combining this with Proposition

1(c), we obtain from (d), with the abbreviation z = dim V̌ Gp − dim V̌ ,

A1(χ̌)/A(χ̌) =
∏

nz(log(Np))z det(1− φp)ezp|Gp|zedim V̌
p (log(Np))dim V̌

× |Gp|dim V̌ Gp
e− dim V̌ Gp

p (log(Np))− dim V̌ Gp
det(1− φp)−1

=
∏
p

ndim V̌ Gp−dim V̌ |Gp|2 dim V̌ Gp−dim V̌ .

Proof of Lemma 8. Clearly θ is surjective. Moreover, since θ′ in the commutative
diagram

Homo(M,N)H
θ−→ Homo(M, indGHN)G

↓ Ĥ ↓ Ĝ
Homo(M,N)H

θ′−→ Homo(M, indGHN)G

is an isomorphism, we have

ker(θ) � H−1(H,Homo(M,N)) � H−1(G,Homo(M, indGHN)).

Thus ker(θ) = 0 if, and only if, the map on H−1 is an isomorphism. Since M is an
oG-lattice, this assertion can be shifted to dimension 0.

7. Step 3

In this section we start out from a set S satisfying S = Sram and clS = 0, and
let S1 = S ∪Gp1 for a prime p1 of K.

We are going to compare q-indices and A-numbers by means of the commutative
diagram

∇ � ∇1 � Z[Gp1]
↓ ϕ ↓ ϕ1 ↓ n
E � E1 � Z[Gp1]

in which the upper row is induced by Z[S] � Z[S1] � Z[Gp1], on taking ∇ =
∆S , ∇1 = ∆S1 into account, and the lower row by u1 7→

∑
g mod Gp1

vgp1(u1)gp1

for u1 ∈ E1.
Moreover, we have chosen an isogeny ϕ′ : ∇ → E and the identity map on

Q[Gp1] in order to get a ϕ′1 : Q⊗∇1 → Q⊗ E1, making the diagram commute on
the Q-level, and obtain ϕ, ϕ1, n by scaling with an appropriate 0 6= n ∈ Z.
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We first show that

q1(χ)/q(χ) = (n|Gp1 |)dim V̌ Gp1 det(1 − φp1 | V̌ /V̌ Gp1 )−1o .

Namely, from the diagram above we obtain

H−2(Z[Gp1])
δ−2−→ Homo(M,∇)G → Homo(M,∇1)G � Homo(M,Z[Gp1])G

↓ϕM ↓(ϕ1)M ↓nM
Homo(M,E)G � Homo(M,E1)

G → Homo(M,Z[Gp1])
G → H1(E) → H1(E1)

and so

[(ϕ1)M ]− [ϕM ] = [im(δ−2)] + [nM ]− [ker(H1(E)→ H1(E1))]

= [ker(H−1(∇)→ H−1(∇1))] + [nM ]− [ker(H1(E)→ H1(E1))]

= [nM ] ,

by Theorem 2. From the definition of the map nM and Z[Gp1] = indGGp1
Z we get

[nM ] = [H0(Z[Gp1])]− [H−1(Z[Gp1])] + [coker(n|HomoG(M, indGGp1
Z))]

= [H0(Gp1 , M̌)]− [H−1(Gp1 , M̌)] + [coker(n|M̌Gp1 )]

by Shapiro’s lemma with M̌ = Homo(M, o) and by Frobenius reciprocity. Taking
lengths and noting that Gp1 is cyclic we get

q1(χ)/q(χ) = (Herbrand quotient of Gp1 acting on M̌) × (n)dim V̌ Gp1

= (n|Gp1 |)dim V̌ Gp1 det(1− φp1 | V̌ /V̌ Gp1 )−1o .

The Herbrand quotient part of this is additive in χ̌, hence can be checked on
irreducible characters of Gp1 [We, Proposition 8].

Turning finally to A it suffices to show that

A1(χ̌)/A(χ̌) = (−n|Gp1 |)dim V̌ Gp1 det(1 − φp1 | V̌ /V̌ Gp1 )−1 .

Because of Lemma 7 this reduces to proving

R1(χ̌)/R(χ̌) = (−n log(Np1))
dim V̌ Gp1 ,

which directly follows by combining the commutative diagram

C⊗ E � C⊗ E1 � C[Gp1]
↓ λ ↓ λ1 ↓ − log(Np1)

C⊗∇ � C⊗∇1 � C[Gp1]

with the diagram at the beginning of this section and applying HomCG(V, · ).
8. General reductions

For the purpose of stating the following proposition and its corollary we write
aK/k(χ) for the ideal a(χ) in Theorem B.

Proposition 9. (a) aK/k is additive, i.e. aK/k(χ1 + χ2) = aK/k(χ1)aK/k(χ2) for
characters χ1, χ2 of G.

(b) aK/k(1) = (1).
(c) Let G′ be a subgroup of G with fixed field K ′. Then for any character χ′ of

G′ we have aK/K′(χ′) = aK/k(indGG′χ′).
(d) If G′ is normal in G and χ a character of G = G/G′, then aK′/k(χ) =

aK/k(inflGGχ).
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(a), (b), and (c) follow from [Ta2, pp.31,60] with a replaced by aS for a large

set S; (d) has been observed in [Ch1] in the form aϕ′(χ) = aϕ(inflGGχ) for a given

isogeny ∆S
ϕ→ E and a derived ϕ′ : ∆S′ → E′, where S′ is the set of all primes of

K ′ which lie below the ones in a sufficiently large set S. For details see [We, §11].
So Proposition 9 is a direct consequence of Theorem B, since a is independent of S
and the special choice of an isogeny.

Corollary. aK/k(χ) is determined by the aK′/k′(χ
′), where K ′/k′ runs through the

cyclic subextensions of K/k and χ′ through the corresponding characters.

This is merely the above proposition combined with the Brauer induction the-
orem by which we can write a given χ as a Z-linear combination of characters
induced from linear characters of subgroups G′ of G.

We next start out from a given embedding ϕ : ∆S → E and describe a procedure

by means of which we obtain an isogeny ϕ : ∇ → Ẽ = E ⊕ ZGr, r = rS . Our
ultimate goal in this section is to give a(χ) in terms of ϕ.

We begin by choosing and fixing an infinite prime, say ∞, in S∗ and defining

firstly, σ∞ : ZS → ∆S ⊕ Z by p 7→ (|G|p − Ĝ∞, 1)
and secondly, for p ∈ Sram

∗ ,

σp : W 0
p → ∆G0

p ⊕ Z by W 0
p 3 ν 7→

(
|Gp|ν − ιp(ν)Ĝpηp, ιp(ν)

)
where ιp is

the inertial augmentation at p and ηp is as in Proposition 1(a),

δp : ∆G0
p → ∆Gp by κp 7→ |Gp| − Ĝp.

These are ZG-maps, respectively ZGp-maps, which fit into the commutative dia-
grams

∆S � ZS � Z
↓ ·|G| ↓ σ∞ ‖
∆S � ∆S ⊕ Z � Z
↓ ϕ ↓ ϕ⊕ 1 ‖
E � E ⊕ Z � Z

∆G0
p � W 0

p � Z
↓ ·|Gp| ↓ σp ‖
∆G0

p � ∆G0
p ⊕ Z � Z

↓ δp ↓ ϕp ↓ ·|Gp|
∆Gp � ZGp � Z

where ϕp abbreviates the composite of the map δp⊕1 and the map ∆Gp⊕Z→ ZGp

given by (x, z) 7→ x + zĜp. We combine these maps and arrive at the map ϕ+ in
the following diagram:

∇ � ZS ⊕ 0W � Z
↓ ϕ ↓ ϕ+ ‖
Ẽ � E ⊕ Z⊕ ZGr � Z

On ZS this map is determined by the left diagram above; on 0W it is

( 0,
∑

p∈Sram∗

indGGp
ιp,

∑
p∈Sram∗

indGGp
(ϕpσp) ) .

The lower row maps (u, z, x) to z.

Definition. The isogeny ϕ : ∇ → Ẽ associated to the given ϕ : ∆S → E is the

composite map ∇ → ∇ ϕ→ Ẽ, where ϕ is defined by the above diagram.
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Proposition 10. Let G be abelian and define o′ = o[ 1
|G| ]. If χ is an irreducible

character of G with representation space V , then

a(χ) · o′ =
det(λϕ | HomCG(V,C⊗∆S))

cS(χ̌)
· `o′((o

′ ⊗ cl)χ)
`o′((o′ ⊗ coker(ϕ))χ)

where cl is the S-class group of K and Xχ = eχX is the χ-eigenspace of the o′G-
module X.

The proof of the proposition splits into two parts, one being concerned with q
and the other with A. We first turn to qϕ(χ), where χ is a linear character of the
abelian group G, and let M = o′Geχ = o′eχ be the o′G-lattice affording χ, where
eχ = 1

|G|
∑
g∈G χ(g−1)g is the primitive idempotent belonging to χ.

Claim. qϕ(χ)o′ = `o′
(
(o′ ⊗ coker(ϕ))χ

)
/`o′ ((o

′ ⊗ cl)χ) .
The o′-ideal qϕ(χ)o′ is the q-index localized by o → o′, so the computations to

follow will take place in K0T (o′) rather than in K0T (o). This has the benefit that
the localized Tate cohomology groups Hi(G,Homo′(M, o′⊗ZX)) are all zero, where
X is a finitely generated ZG-module.

We first look at the diagram

cl � ∇ � ∇
↓ ϕ ↓ ϕ
Ẽ = Ẽ

which yields
[ϕM ]− [ϕM ] = [Homo′(M, o′ ⊗ cl)G]
=[Homo′(M, o′ ⊗ cl)G]
=[Homo′G(o′eχ, o′ ⊗ cl)] = [(o′ ⊗ cl)χ] and

[ϕM ]− [ϕM ] = −[(o′ ⊗ cl)χ].a)

By restricting ϕ+ to 0W → ZGr we arrive at the commuting diagram

∆S � ∇ � 0W
↓ ϕ ↓ ϕ ↓ ϕ+

E � Ẽ � ZGr ,

which, in K0T (o′), gives

[ϕM ]− [ϕ
M

] = [(ϕ+)M ].b)

From the definition of ϕ
M

: Homo′(o
′eχ,∆S)G

Ĝ→ Homo′(o
′eχ,∆S)G

ϕ→
Homo′(o

′eχ, E)G we obtain

[ϕ
M

] = [(o′ ⊗ coker(ϕ))χ],c)

since we are in K0T (o′) and since taking χ -eigenspaces is thus an exact functor.
Adding a), b), c) and applying `o′ will give the claim once we have shown that

[(ϕ+)M ] = 0 in K0T (o′). To that end write ϕ+ =
⊕

p∈Sram∗
indGGp

(ϕpσp) and use

Frobenius reciprocity in order to arrive at

[(ϕ+)M ] = [(o′ ⊗ coker(ϕ+))χ] =
∑

p∈Sram∗

[(o′ ⊗ coker(ϕpσp))
χp ],

where χp is the restriction of χ toGp. We are left with proving [(o′⊗coker(ϕpσp))
χp ]

= 0 in K0T (o′).
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For this we suppress the index p. If χ is non-trivial, then eχ(o
′ ⊗ 0W ) = eχo′κ

and ϕσ sends the element eχκ to

eχϕσ(κ) = eχϕ(|G|κ, 0) = eχ|G| (|G| − Ĝ) = |G|2eχ.

If χ is trivial, then eχ(o
′ ⊗ 0W ) = eχo

′η and eχη is sent to

eχϕ( (|G| − Ĝ)η , 1 ) = eχϕ( −e
∑
g 6=1

a(g)gκ , 1 )

= eχ(|G| − Ĝ)
∑
g 6=1

−ea(g)g + eχĜ = |G|eχ,

where we have used Proposition 1(b). Since |Gp| is a unit in o′, we see that indeed
[(o′ ⊗ coker(ϕσ))χp ] = 0.

Turning to Aϕ, we define λ+ : E ⊕ Z⊕ ZGr → C⊗ (ZS ⊕ 0W ) by λ+(a, z, b) =

λ̃(a, b) + z
|G| (Ĝ∞, 0) in order to get the following commutative diagram:

C⊗∇ � C⊗ (ZS ⊕ 0W ) � C
↓ ϕ ↓ ϕ+ ‖

C⊗ Ẽ � C⊗ (E ⊕ Z⊕ ZGr) � C
↓ λ̃ ↓ λ+ ‖

C⊗∇ � C⊗ (ZS ⊕ 0W ) � C

Composing the vertical arrows and applying HomCG(V,−) we get

det(λ̃ϕ | HomCG(V,C⊗∇)) = det
(
λ+ϕ+ | HomCG(V,C⊗ (ZS ⊕ 0W ))

)
.d)

To handle this we build the commutative diagram

C⊗ ZS � C⊗ (ZS ⊕ 0W ) � C⊗ 0W
↓ γ1 ↓ λ+ϕ+ ↓ γ2

C⊗ ZS � C⊗ (ZS ⊕ 0W ) � C⊗ 0W

where γ1(p) = λϕ(|G|p − Ĝ∞) + 1
|G|Ĝ∞ for p ∈ S∗ while γ2(ρp) = − log(Np)⊗

(yp(|Gp| − Ĝp) + Ĝp)ρp for p ∈ Sram
∗ . This holds because

λ+ϕ+(p, 0) = λ+

(
ϕ(|G|p − Ĝ∞), 1, 0

)
= λ̃

(
ϕ(|G|p − Ĝ∞), 0

)
+

1

|G| (Ĝ∞, 0)

=

(
λϕ(|G|p− Ĝ∞) +

1

|G| Ĝ∞ , 0

)
while λ+ϕ+(0, ρp) = λ+ (0, 1, ϕpσp(ρp)) with

ϕpσp(ρp) = ϕp(|Gp|ρp − Ĝpηp , 1) = ϕp

(
(|Gp| − Ĝp)ρp , 1

)
= ϕp(ypκp , 1) = yp(|Gp| − Ĝp) + Ĝp.



COHOMOLOGY OF UNITS AND L-VALUES AT ZERO 535

By Proposition 1(a),(b) this yields

λ+ϕ+(0, ρp) = λ+

(
0, 1, yp(|Gp| − Ĝp) + Ĝp

)
= λ̃

(
0, yp(|Gp| − Ĝp) + Ĝp

)
+

(
1

|G| Ĝ∞, 0
)

whose image in C⊗ 0W is

ρ̃
(
yp(|Gp| − Ĝp) + Ĝp

)
= − log(Np)⊗

(
yp(|Gp| − Ĝp) + Ĝp

)
ρp.

Now we get

det
(
λ+ϕ+ | HomCG(V,C⊗ (ZS ⊕ 0W ))

)
= det (γ1 | HomCG(V,C⊗ ZS)) · det

(
γ2 | HomCG(V,C⊗ 0W )

)
e)

and we use the obvious diagram

C⊗∆S � C⊗ ZS � C
↓ |G|λϕ ↓ γ1 ‖

C⊗∆S � C⊗ ZS � C

to get

det (γ1 | HomCG(V,C⊗ ZS)) = |G|(χ,∆S) det
(
λϕ | HomCG(V,C⊗∆S)

)
.f)

We next compute the determinant of γ2 using the identification

HomCG(V,C⊗ 0W ) = eχ(C⊗ 0W ),

which originates in V = CGeχ, and the C-basis {eχρp : p ∈ Sram∗ } of eχ(C⊗ 0W ),
which comes from the CG-basis {ρp} of C⊗ 0W, to compute

γ2(eχρp) = − log(Np) · χ
(
yp(|Gp| − Ĝp) + Ĝp

)
eχρp

and therefore

det
(
γ2 | HomCG(V,C⊗ 0W )

)
=

∏
p∈Sram∗

[− log(Np) · χ
(
yp(|Gp| − Ĝp) + Ĝp

)
].g)

Combining the formulas d), e), f), g) with the definition of Aϕ we then get

Aϕ(χ̌) =
det(λϕ | HomCG(V,C⊗∆S))

cS(χ̌)

· |G|(χ,∆S)
∏

p∈Sram∗

[
− 1

ep
χ
(
yp(|Gp| − Ĝp) + Ĝp

)]

which together with the claim reduces to showing that χ(yp(|Gp| − Ĝp) + Ĝp) is a
unit in o′.
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If χ|
Gp

= 1 this is |Gp|; if χ|
Gp
6= 1 it is |Gp|χ(yp) with yp as in Proposition 1.

But if χ|Ip 6= 1 we get χ(yp) = −|Gp|ep, while if χ|Ip = 1 then (
∑fp−1

i=1 iφ−ip ) ×
(1−φ−1

p ) = 〈φ̂p〉− fp implies χ(yp) = e2pχ(
∑fp−1

i=1 iφ−ip ) =
−e2pfp

1−χp(φ−1
p )

is again of the

type required.

9. l-adic reductions

In this section, which, for the convenience of the reader, repeats the contents of
[We, §14], we assume the validity of Stark’s conjecture, so, by Lemma 3, a(χ) is a
fractional o-ideal in F satisfying a(χ)γ = a(χγ) for γ ∈ Γ.

For a prime l denote by Cl a fixed completion of an algebraic closure of the l-
adic rationals Ql. Let Fl be a subfield of Cl so that Fl/Ql is finite Galois containing
a primitive |G|th root of unity. Suppose il : F → Fl is a field embedding. If
χl is a Cl-character of G, then χl = ilχ for some F -character χ and we define
a(l)(χl) = il

(
a(χ)

)
ol where ol is the ring of integers of Fl.

Proposition 11. (a) a(l) is independent of the choice of il.

(b) Suppose a
(l)
K′/k′ (χl) = (1) whenever χl is a non-trivial linear Cl-character of

a cyclic subextension K ′/k′ of K/k which has degree prime to l. Then aK/k(χ) is
relatively prime to l for all characters χ of G.

(c) Let K/Q be abelian. Then the above statement in (b) remains true with
K ′/k′ replaced by cyclic subextensions of K/Q of degree prime to l such that k′/Q
are cyclic l-extensions.

Proof. (a) If i′l is another embedding, then i′l = ilγ for some γ ∈ Γ, so χl = i′lχ
′

implies χl = ilχ with χ = (χ′)γ , hence il (a(χ)) = il (a(χ′)γ) = i′l (a(χ′)) .
(b) The embedding il induces a prime l on F above l. Let I denote the inertia

subgroup of l in Γ with fixed field F ′. Let χ′ = m
∑
γ∈I χ

γ , an F ′-rational character

(m ∈ Z appropriate). Then a(χ′) = [
∏
γ∈I a(χ)γ ]m. As I fixes l, a(χ′) is prime to l

if, and only if, l is prime to a(χ).
Now ilχ

′ is defined over F ′l which is the maximal unramified subfield in Fl/Ql.

By the claim below some power of il (a(χ′)) ol = a(l) (il(χ
′)) is the product of values

of a(l) on characters induced from those in the hypothesis, from which (b) follows
by the l-analogue of Proposition 9.

Claim. Assume that F ′l /Ql is an unramified extension containing all |G|th roots of
unity of order prime to l. Then every F ′l -character of G is a Q-linear combination
of characters induced from linear characters of cyclic subquotients of G of order
prime to l.

Proof of the Claim. By Artin’s induction theorem we may assume that G is cyclic.
Decompose G = Gl × G′ into l- and l′-parts. Since the l-power cyclotomic poly-
nomials are irreducible over F ′l , there is a unique faithful irreducible F ′l -character
of Gl and this is a Z-linear combination of permutation characters. On the other
hand, F ′lG

′ splits completely.

The proof of (c) is similar. Induce the given χ up to G(K/Q), then decompose
and inflate. Once more by the l-adic analogue of Proposition 9 it is enough to
look at the situation when k = Q and K/Q is cyclic. Applying (b) then gives the
assertion.
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10. The Ramachandra isogeny

From now on K/k is an extension of number fields which is contained in a
cyclotomic field and S is the set of all infinite primes of K.

• Q(ζn)
|
• K

G { |
• k
|
• Q

Choose and fix a positive integer n 6≡ 2 mod 4 so
that K can be identified with a subfield of Q(ζ),
where ζ = ζn is a primitive nth root of unity.
Then ζ 7→ e2πi/n embeds Q(ζ) into C and the
restriction to K shall be our distinguished infinite
prime ∞ ∈ S∗.

As in [Wa, p.147] we write n =
∏s
i=1 p

ei
i and nI =

∏
i∈I p

ei
i for each proper

subset I of {1, . . . , s}.

Definition. (i) ξn =
∏
I(1 − ζnI )(1− ζ−nI ).

(ii) ξK = NQ(ζ)/K(ξn), where NQ(ζ)/K denotes the norm from Q(ζ) to K.

Observe that ξσ−1 is a real unit in Q(ζ) for any σ in the Galois group G (Q(ζ)/Q)
of Q(ζ) over Q. Since the G-stabilizer of∞ fixes ξK , there is a unique G-homomor-
phism ZS → K× sending ∞ to ξK . It restricts to a map ∆S → E which we define
to be ϕ.

Proposition 12. Let χ be a non-trivial irreducible character of G with represen-
tation space V . Then

det
(
λϕ | HomCG(V,C ⊗∆S)

)
cS(χ̌)

=
∏
ψ|χ
even

−4
∏
pi-fψ

(
Φ(peii ) + 1− ψ̌(pi)

)∏
ψ|χ
odd

(−B1,ψ̌)−1

where ψ runs through all characters of G(K/Q) extending χ and fψ is the conductor

of ψ. The symbol ψ̌(pi) is the value of ψ̌ on the Frobenius automorphism for pi, i.e.

ψ̌ is interpreted as a Dirichlet character modulo n/peii . We say that ψ is even if

infl
G(Q(ζ)/Q)
G(K/Q) ψ is trivial on complex conjugation; otherwise it is odd, and B1,ψ̌ is the

generalized Bernoulli number [Wa, p.30]. Finally, Φ is the Euler phi function.

Proof. As before, let eχ = 1
|G|
∑

g∈G χ(g−1)g be the primitive idempotent for

χ. Thus eχ =
∑
ψ|χ eψ, V = CGeχ and so, as χ 6= 1,

HomCG(V,C⊗∆S) = eχ(C⊗∆S) = eχCS =
∑
ψ|χ

eψCS =
∑
ψ|χ
even

eψCS.

It follows that {eψ∞ : ψ|χ, ψ even} is a basis of HomCG(V,C ⊗ ∆S) under the
above identification. On writing eψ = 1

[K:Q]

∑
σ∈G(K/Q) ψ(σ−1)(σ− 1) and K+ for
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the maximal real subfield of K we compute

λϕ(eψ∞)

=
1

[K : Q]

∑
σ

ψ(σ−1)λ(ξσ−1
K )

=
1

[K : Q]

∑
σ

ψ(σ−1)
1

[K : K+]

∑
σ′

log |ξσ−1
K |σ′∞σ′∞

=
1

[K : K+][K : Q]

∑
σ,σ′

ψ(σ−1) log |ξ(σ′)−1(σ−1)
K |∞σ′∞

=
1

[K : K+][K : Q]

∑
σ,σ′

ψ
(
(σσ′)−1

)
log |ξ(σ′)−1(σσ′−1)

K |∞σ′∞

=
1

[K : K+][K : Q]

∑
σ

∑
σ′
ψ(σ−1) log |ξσK |∞ψ

(
(σ′)−1

)
σ′∞

− 1

[K : K+][K : Q]

∑
σ′

∑
σ

ψ(σ−1)ψ
(
(σ′)−1

)
log |ξ(σ′)−1

K |∞ σ′∞

=
1

[K : K+]

(∑
σ

ψ(σ−1) log |ξσK |∞
)
eψ∞− 0.

Hence, with respect to the chosen basis, λϕ has diagonal matrix with diagonal
entries

1

[K : K+]

∑
σ

ψ(σ−1) log |ξσK |∞ =
∑

σ∈G(Q(ζ)/Q)

ψ(σ−1) log |ξσn |

= 2
∑

σ∈G(Q(ζ)/Q)

ψ̌(σ)
∑
I

log |(1− ζnI )σ|,

since | . |∞ = | . |[K:K+] and ξn =
∏
I(−ζ−nI )(1 − ζnI )2. Identifying G (Q(ζ)/Q)

and (Z/n)× we arrive at

2
∑

a∈(Z/n)×
ψ̌(a)

∑
I

log |1− ζanI | = −2τw(ψ̌)L(1, ψ)
∏
pi-fψ

(
Φ(peii ) + 1− ψ̌(pi)

)
by combining the formulae3 on lines -1 and -7 in [Wa, p.149]. Because of the
functional equation for the L-series, which in our situation reads [Wa, p.35](

fψ
π

)s/2
Γ(s/2)L(s, ψ̌) = Wψ̌

(
fψ
π

)(1−s)/2
Γ

(
1− s

2

)
L(1− s, ψ),

where Wψ̌ is the Artin root number of ψ̌, we obtain, since Γ(1/2) = π1/2 and Γ has

a simple pole with residue 1 at s = 0 : 2L′(0, ψ̌) = Wψ̌f
1/2
ψ L(1, ψ) = τw(ψ̌)L(1, ψ).

Collecting terms we have

det
(
λϕ | HomCG(V,C⊗∆S)

)
=
∏
ψ|χ
even

[ −4L′(0, ψ̌)
∏
pi-fψ

(Φ(peii ) + 1− ψ̌(pi)) ] .

3Later on we will have to look at Galois Gauss sums as appearing in [Fr1]. Washington’s Gauss

sum, which for clarity reasons we denote by τw(ψ̌), will then have to be replaced by an l-adic
Gauss sum.
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So the proposition follows from the identity

cS(χ̌) =
∏
ψ|χ
even

L′(0, ψ̌)
∏
ψ|χ
odd

L(0, ψ̌) =
∏
ψ|χ
even

L′(0, ψ̌)
∏
ψ|χ
odd

(−B1,ψ̌) ,

which holds because of [Wa, p.31] and

ind
G(K/Q)
G χ =

∑
ψ|χ

ψ , L(s, χ̌) =
∏
ψ|χ

L(s, ψ̌) ,

L(s, ψ̌) =

{
L′(0, ψ̌)s+ · · · if ψ is even,

L(0, ψ̌) + · · · if ψ is odd.

Remark. The proposition implies that ϕ is an isogeny and that Stark’s conjecture
is true in our situation.

11. Plan of proof of Theorem A

In order to show that a(χ) = (1) we show that a(χ) is relatively prime to l for
every prime l and every character χ.

Fix a prime l. By Proposition 11 it suffices to prove a(l)(χ) = (1) for every
non-trivial linear Cl-character χ = χl in the special case when K/Q is cyclic with
l - [K : k] and [k : Q] an l-power. Moreover, by the l-adic analogue of Proposition
9 we may assume χ is faithful.

Let ol be the ring of integers of a field Fl ⊂ Cl as in §9 and large enough that
there is an embedding il : F → Fl. With S and ϕ : ∆S → E as in §10 we can
combine Propositions 11 and 12 to obtain

a(l)(χ) =

∏
ψ|χ
even

(
4
∏
pi-fψ (Φ(peii ) + 1− ψ̌(pi))

)
∏
ψ|χ,oddB1,ψ̌

· `((ol ⊗ cl)χ)
`((ol ⊗ coker ϕ)χ)

(1)

because il takes o′ = o[1/|G|] into ol, as l - |G|. Here, ` = `ol and ψ runs through
the linear Cl-characters of G(K/Q) extending χ.

Let us say that χ is even, respectively odd, if k is real and χ is trivial, respectively
non-trivial, on complex conjugation when restricted to K (so considered in G). In
particular, k is now real until the last step.

Examining the lengths in the above formulae we will show

`((ol ⊗ cl)χ)

`((ol ⊗ coker ϕ)χ)
=

`((ol⊗cl)χ)
`((ol⊗µ)χ) if χ is odd,
`((ol⊗ZlG(M/K))χ)

Ll(1,χ)

∏
ψ|χ

( 2
∏
pi-fψ

(Φ(peii ) + 1− ψ̌(pi)) )−1 if χ is even,

(2)

where M denotes the maximal abelian l-extension of K which is unramified outside
l, Ll(s, χ) is the l-adic L-function and µ is the group of roots of unity in K.

This result for χ odd follows by tensoring the diagram below with ol and
taking χ-eigenspaces, because complex conjugation acts trivially on E/µ, hence
(ol ⊗ E/µ)χ = 0 :

∆S = ∆S
↓ ϕ ↓

µ � E � E/µ
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In the even case K is real. Consider the natural embedding E → ∏
P|l UP,

where UP denotes the units of the completion KP of K at a prime P|l. It induces
α : Zl ⊗E →

∏
P|l U

1
P with U1

P the principal units in KP, since l - |UP : U1
P|. By a

theorem of Brumer [Br] α is injective. From [Gr1, pp.153–154] or [Wa, p.268, take
the l -part] we know that coker(α) is canonically isomorphic to the Galois group
G(M/L) where L is the maximal unramified l-extension of K, hence G(L/K) '
Zl⊗ cl. Since K is real, the cyclotomic l-extension K∞ of K equals Kk∞, with k∞
denoting the cyclotomic l-extension of k, and so K∞/k is abelian. Moreover, M
is finite over K∞ by [Wa, pp.266–267]. Since χ 6= 1, this implies the finiteness of
(ol ⊗Zl G(M/K))

χ
.

We compose α with ϕ in order to get the injection

Zl ⊗∆S
ϕ

� Zl ⊗ E α�
∏
P|l

U1
P.

Tensoring with ol over Zl we obtain

`((ol ⊗ cl)χ)

`((ol ⊗ coker(ϕ))χ)
=
`((ol ⊗Zl G(L/K))χ) · `((ol ⊗Zl G(M/L))χ)

`((ol ⊗Zl coker(αϕ))χ)
(3)

and apply Theorem 14 in §12 in order to arrive at (2).
Combining (1) and (2) yields

a(l)(χ) =

{
L(0, χ̌)−1 `((ol⊗cl)χ)

`((ol⊗µ)χ) if χ is odd,
`((ol⊗G(M/K))χ)

2−[k:Q]Ll(1,χ)
if χ is even,

since, in the odd case,
∏
ψ|χ(−B1,ψ̌) =

∏
ψ|χ L(0, ψ̌) = L(0, χ̌), with the last equal-

ity reflecting the induction property of the L-series.
From Iwasawa theory we finally get that a(l)(χ) = (1) in both cases of the above

formula, by Theorem 15 in the even case and by [Wi2, Theorem 3] in the odd case.
With respect to the latter observe that in Wiles’ theorem the field Fχ is our K

and so the groupHχ there is the class group cl, up toG-isomorphism. Consequently,
by the theorem,

|(ol ⊗ cl)χ| ∼l L(0, χ̌)[ol:Zl]|(ol ⊗ µ)χ| ,
as its extra hypothesis is satisfied by [Wi2, p.556, line -4], since l 6= 2 if χ is odd.
The odd case follows because of the relation |ol ⊗X |ol = `(ol ⊗ X)[ol:Zl] between
the group order and the ol-length of a finite group X .

Finally we must reduce the general case to the case that k is real. Let k+ be the
maximal real subfield of k and assume k 6= k+. Since k/Q has l-power degree this
forces l = 2.

k+

K+k

�
�

K

�
�

@
@

@
@

Decompose ind
G(K/k+)
G χ into irreducible characters and let

χ+ be the character of G(K+/k+), with K+ the maximal
real subfield of K, which inflates to one of the two con-

stituents of ind
G(K/k+)
G χ. Then the extensions of χ+ to

characters of G(K+/Q) inflate to the even extensions ψ of
χ.
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By (1) we thus have, using an obvious notation,

a(2)(χ)

a(2)(χ+)
=
∏
ψ|χ
odd

B−1
1,ψ̌
· `((o2 ⊗ cl)χ) · `((o2 ⊗ coker ϕ+)χ

+

)

`((o2 ⊗ cl+)χ+) · `((o2 ⊗ coker ϕ)χ)
.

At this stage we look at

∆S
res−→ ∆S+

↓ ϕ ↓ ϕ+

µ � E
N−→ E+ � E+/N(E)

where N = NK/K+ is the
norm map.

The action of G on ∆S+ and E+ can, via the natural isomorphism G ' G+ =
G(K+/k+), be identified with that of G+. Taking now χ-eigenspaces we obtain, in
K0T (o2),

[(o2 ⊗ coker ϕ+)χ
+

]− [(o2 ⊗ coker ϕ)χ] = [(o2 ⊗ E+/N(E))χ
+

]− [(o2 ⊗ µ)χ] .

The exact sequence E/µE+
N� E+/(E+)2 � E+/N(E) , with left term E/µE+

a cyclic group of order 1 or 2 [Wa, Theorem 4.12, p.39], hence G-trivial, yields

[(o2 ⊗ E+/N(E))χ
+

] = [(o2 ⊗ E+/(E+))2)χ
+

], as χ 6= 1.
Since Q2⊗E+ ' Q2⊗∆S+ and since G+ has odd order, we have o2⊗(E+/±1) '

o2 ⊗ ∆S+, hence `((o2 ⊗ E+/(E+)2)χ
+

) = `((o2 ⊗ ZS+/2ZS+)χ
+

) = 2[k+:Q]o2,

because χ+ 6= 1 and ZS+ has G+-character [k+ : Q] indG
+

1 (1).
As a(2)(χ+) = 1 by k+ real, we have

a(2)(χ) =
`((o2 ⊗ cl−)χ)

`((o2 ⊗ µ)χ)
· (
∏

oddψ|χ

1

2
B1,ψ̌)−1 ,

where cl− is defined by the exact sequence cl− � cl
N� cl+ [Wa, Theorem 10.1,

p.184].
Assume now that 2 does not ramify in K. Then µ = {±1}, so `((o2⊗µ)χ) = (1).

Therefore a(2)(χ) = (1) is equivalent to

`((o2 ⊗ cl−)χ) =
∏

oddψ|χ

1

2
B1,ψ̌ ,

which follows from [Gc, Theorem A, p.453] on writing

`((o2 ⊗ cl−)χ) =
∏

oddψ|χ
`((o2 ⊗ cl−)ψ) .

12. l-adic logarithms and L-functions, resolvents and Gauss sums

We shall need a small variation of an old trick [Wa, p.71].

Lemma 13. Let G be a subgroup of an abelian group H and f : H → Cl a function
satisfying f(hg) = f(h)χ(g) for h ∈ H, g ∈ G, where χ is a linear character of G.
Then, if X is a set of coset representatives of G in H,

det
(
f(xy−1)

)
x,y∈X =

∏
ψ|χ

(
1

|G|
∑
h∈H

ψ(h−1)f(h) )

where the product runs over all linear characters ψ of H extending χ.
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Proof. Consider the Cl-linear map on ClHeχ given by multiplication by f̃ =∑
x∈X f(x)x−1. With respect to the basis {x−1eχ : x ∈ X} it has matrix(
f(xy−1)x,y∈X

)
; with respect to the basis {eψ : ψ|χ} it has diagonal matrix

with diagonal entries
∑

x∈X f(x)ψ(x−1) = 1
|G|
∑

h∈H f(h)ψ(h−1) since f(hg) =

f(h)χ(g).

Theorem 14. Let K/k be an extension of real subfields of Q(ζn) with cyclic Galois
group G of order prime to l. If χ is a non-trivial linear Cl-character of G, then

`
(
(ol ⊗Zl coker αϕ)χ

)
= Ll(1, χ)

∏
ψ|χ

( 2
∏
pi-fψ

(Φ(peii ) + 1− ψ̌(pi)) )

with α and ϕ as in (3) of §11.

Proof. We begin by composing αϕ with the l-adic logarithm log =
∏

P|l logP to
get

Zl ⊗∆S
ϕ→ Zl ⊗ E α→

∏
P|l

U1
P

log−→
∏
P|l

KP .

This permits us to use ol-lattice indices on the space Fl ⊗Ql
∏

P|lKP (which are

defined for arbitrary pairs of lattices on the same space). We prove

`
(
(ol ⊗Zl coker(αϕ))χ

)
=

ol ⊗Zl
∏
P|l

OP

χ

:
(
ol ⊗Zl im(logαϕ)

)χ / `

(ol ⊗Zl
∏
P|l

KP)χ

 ,

(1)

where OP and KP are the ring of integers and the residue field of KP, respectively.
To that effect we work in K0T (ol) and choose a sufficiently large natural integer

t so that (ol⊗Zl im(αϕ))χ ⊃ (ol⊗Zl
∏

P|l(1+Pt))χ and so that logP : 1+Pt → Pt

is an isomorphism. Then

[(ol ⊗Zl coker(αϕ))χ] = [(ol ⊗Zl
∏

U1
P/1 + Pt)χ]−

[(
ol ⊗Zl

im(αϕ)∏
(1 + Pt)

)χ]
.

Since im(αϕ) ' Zl ⊗∆S has no torsion,[(
ol ⊗Zl im(αϕ)/

∏
(1 + Pt)

)χ]
=
[(

ol ⊗Zl im(logαϕ)/
∏

Pt
)χ]

,

while
[(

ol ⊗Zl
∏
U1

P/1 + Pt
)χ]

=
[
(ol ⊗Zl

∏
OP/P

t)
χ] − [(ol ⊗Zl

∏
OP

/
P
)χ]

in

K0T (ol) follows from

[
U1

P/1 + Pt
]

=
t−1∑
i=1

[
1 + Pi/1 + Pi+1

]
=

t−1∑
i=1

[
Pi/Pi+1

]
=
[
P/Pt

]
=
[
OP/P

t
]− [OP/P]
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in K0T (ZlGP) by inducing to G and taking eigenspaces. Combining these two
equations yields[(

ol ⊗Zl coker(αϕ)
)χ]

=

[(
ol ⊗Zl

∏
OP∏
Pt

)χ]
−
[(

ol ⊗Zl
im(logαϕ)∏

Pt

)χ]
−
[(

ol ⊗Zl
∏

KP

)χ]
,

from which (1) follows by taking lengths.

The elements eχ(1 ⊗ p) ∈ (ol ⊗ ZS)χ = (ol ⊗ ∆S)χ, p ∈ S∗, form an ol-basis
of (ol ⊗ ∆S)χ. We write (logαϕ)eχ(1 ⊗ p) as an Fl-linear combination of a given
ol-basis v1, . . . , v[k:Q] of (ol ⊗Zl

∏
OP)χ :

(logαϕ) (eχ(1⊗ p)) =

[k:Q]∑
i=1

ai,pvi, p ∈ S∗.(a)

Thus ol ⊗Zl
∏
P|l

OP

χ

:
(
ol ⊗Zl im(logαϕ)

)χ = det(ai,p)ol.(2)

The group G acts on the right on the set of Q-embeddings of K into Cl. Let
{s : K → Cl} be a set of orbit representatives. Each s extends to an Fl-algebra
homomorphism

Fl ⊗Ql
∏
P|l

KP = Fl ⊗Ql (Ql ⊗Q K) = Fl ⊗Q K
s→ Cl,

which when applied to (a) gives the equation(
s(logαϕ)(eχ(1⊗ p))

)
p,s

= (ai,p)p,i(svi)i,s(b)

of matrices over Cl. Taking determinants yields

det(ai,p) = det
(
s(logαϕ)(eχ(1⊗ p))

)
/ det(svi).(3)

We first turn to the numerator and prove

det
(
s(logαϕ)(eχ(1 ⊗ p))

)
s,p

∼l
∏
ψ|χ

2τl(ψ)Ll(1, ψ)(1− ψ(l)

l
)−1

∏
pi-fψ

(Φ(peii ) + 1− ψ̌(pi))

 ,
(4)

where ∼l means equality up to l-units in Cl and τl(χ) is the “l-adic Gauss sum”
of the l-adic character χ. Namely, if χ = il(χ

′) for an F -character χ′ and an
embedding il : F → Cl, then τl(χ) is defined to be il (τ(χ

′)) with τ(χ′) denoting
the usual Galois Gauss sum [Ma, p.48]. Changing the embedding varies χ′ by Galois
conjugation over Q and so, by a theorem of Fröhlich [Ma, p.50], τl(χ) is well-defined
up to multiplication by a root of unity, which is irrelevant in (4).

To prove (4) we define X to be the set of coset representatives of G in H =
G(K/Q) such that S∗ = {x∞ : x ∈ X}. Fix an embedding s1 in the set of all



544 JÜRGEN RITTER AND ALFRED WEISS

Q-embeddings of K into Cl and choose {s1y−1 : y ∈ X} as our set {s : K → Cl} of
G-orbit representatives. With p = x∞ and s = s1y

−1 we have

s(logαϕ)(eχ(1⊗ p)) = s(logα)

 1

|G|
∑
g∈G

χ(g−1)⊗ ξgx−1
K /ξx−1

K


=

1

|G|s1y
−1

∑
g∈G

χ(g−1)⊗ log ξ
(g−1)x
K


=

1

|G|
∑
g∈G

χ(g−1)s1 log(ξ
xy−1(g−1)
K ).

On writing s1 log = logl s1 with logl : C×l → Cl defined as in [Wa, p.50] the above

is 1
|G|
∑
g∈G χ(g−1) logl s1(ξ

xy−1g
K ) because χ 6= 1. With f(h) = 1

|G|
∑

g∈G χ(g−1)×
logl s1(ξ

hg
K ) we obtain from Lemma 13

det
(
s(logαϕ)(eχ(1 ⊗ p))

)
s,p

=
∏
ψ|χ

 1

|G|2
∑
h∈H

ψ(h−1)
∑
g∈G

χ(g−1) logl s1(ξ
hg
K )


=
∏
ψ|χ

[
1

|G|
∑
h∈H

ψ(h−1) logl s1(ξ
h
K)

]

by substituting h−1g for h. Let ζ = ζn. SinceK is real, ξK = NQ(ζ)/K(
∏
I(1−ζnI ))2

and so, inflating ψ to G(Q(ζ)/Q), the above ψ-term equals

1

|G|
∑

h∈G(Q(ζ)/Q)

ψ̌(h) logl s1(
∏
I

(1− ζnI )h)2

∼l 2
∑

a∈(Z/n)×
ψ̌(a) logl(

∏
I

(1− (s1ζ)
anI )) .

By the l-adic class number formula [Wa, p.63] and the calculation given at the end
of p. 152 and the beginning of p. 153 in [Wa] we get that our determinant

∼l
∏
ψ|χ

2τl(ψ)Ll(1, ψ)(1− ψ(l)

l
)−1

∏
pi-fψ

(Φ(peii ) + 1− ψ̌(pi))


where we have replaced Washington’s Gauss sum τw(ψ̌) by τl(ψ). These agree by
the functional equation; compare [Wa, p.29] and [Ma, p.48].

We now turn to the denominator in (3) and show

det(svi)s,i ∼l
∏
q|l
d
1/2
kq/Qlτl(χq)(5)

where dkq/Ql is the discriminant of kq/Ql and where χq is the restriction of χ to a
decomposition group GQ of q.
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In order to prove (5) we choose the basis {vi} according to the decomposition

(ol ⊗Zl
∏
P|l

OP)χ = ( ol ⊗Zl
∏
q|l

∏
P|q

OP )χ

=
∏
q|l

( ol ⊗Zl
∏
P|q

OP )χ =
∏
q|l

(ol ⊗Zl OQ)χq ,

where Q denotes a fixed prime of K above q. The last equation is Frobenius
reciprocity from

∏
P|q OP = indGGQ

(OQ).

We now put special ol-bases {v(q)
iq

: 1 ≤ iq ≤ [kq : Ql]} of (ol⊗Zl OQ)χq together

in order to arrive at a basis {vi} which will be appropriate for proving (5). Since
l - |G|, the extension K/k is tame and so OQ free over oqGQ (with oq denoting the
ring of integers in kq). Hence if aQ ∈ OQ generates an integral normal basis, then

(ol⊗ZlOQ)χq is free on eχq(1⊗aQ) over ol⊗Zloq. We set v
(q)
iq

= (1⊗u(q)
iq

)eχq(1⊗aQ)

with {u(q)
iq

: 1 ≤ iq ≤ [kq : Ql]} a Zl-basis of oq.

We also work with a well-chosen set {s : K → Cl}. We are allowed to do so
because (3) is independent of the choice of embeddings and (4) is changed by the
root of unity

∏
s χ(gs), if s is replaced by sgs with gs ∈ G, since (sgs)(logαϕ)eχ =

s(logαϕ)gseχ = χ(gs)s(logαϕ)eχ.

For each q|l fix an embedding sQ : K → Cl inducing our Q on K and a set Xq

of left coset representatives of GsQkq in GQl (with GL, for a field L, denoting the
absolute Galois group of L). Then our set {s : K → Cl} shall be

⋃
q|l{γqsQ : γq ∈

Xq}. Here the extended Fl-algebra homomorphism sQ : Fl ⊗Q
∏

P|lKP → Cl has

sQ′(v
(q)
iq

) = 0 if q′ 6= q. Thus we obtain

det(svi)s,i =
∏
q|l

det(γqsQv
(q)
iq

)γq,iq .

For (5) it therefore suffices to show det(γqsQv
(q)
iq

)γq,iq ∼l d1/2
kq/Qlτl(χq) for each q.

Now

γqsQv
(q)
iq

= γqsQu
(q)
iq
· 1

|GQ|
∑
g∈GQ

χq(g
−1)(γqsQ)(gaQ)

and so

det(γqsQv
(q)
iq

) ∼l det(γqsQu
(q)
iq

)
∏

γq∈Xq

(
∑
g∈GQ

χq(g
−1)(γqsQ)(gaQ) ) .

The first factor is d
1/2
sQkq/Ql = d

1/2
kq/Ql .

To deal with the second factor we do transport of structure via sQ. The natural
identification g ←→ γ of GQ = G(KQ/kq) with ΓQ = G(sQKQ/sQkq) satisfies
sQg = γsQ; it defines χ′q on ΓQ by χ′q(γ) = χq(g). Hence∑

g∈GQ

χq(g
−1)(γqsQ)(gaQ) =

∑
γ∈ΓQ

χ′q(γ
−1)(γqγsQ)(aQ)

= γq(
∑
γ

(γ−1
q χ′q)(γ

−1) γ(sQaQ)) = γq(sQaQ | γ−1
q χ′q)
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where ( · | · ) is the resolvent of [Fr1, p.29].4 Taking the product over γq ∈ Xq gives
the norm resolvent NsQkq/Ql(sQaQ|χ′q) [Fr1, p.31] and this, in turn, is ∼l τl(χ′q) ∼l
τl(χq) by [Fr1, p.127, Theorem 23]. This proves (5).

In order to complete the proof of our theorem we finally show∏
ψ|χ

τl(ψ) ∼l d1/2
k/Qτl(χ) ∼l

∏
q|l
d
1/2
kq/Qlτl(χq),(6)

Ll(1, χ) =
∏
ψ|χ

Ll(1, ψ),(7)

∏
ψ|χ

(1− ψ(l)

l
)−1 ∼l `((ol ⊗Zl

∏
P|l

KP)χ).(8)

Together with (4) these yield

det
(
s(logαϕ)(eχ(1⊗ p))

)
s,p

∼l τl(χ)d
1/2
k/QLl(1, χ)`((ol ⊗Zl

∏
P|l

KP)χ)
∏
ψ|χ

(2
∏
pi-fψ

(Φ(peii ) + 1− ψ̌(pi))).

This multiplied with the inverse of the right hand side of (5) becomes

det(ai,p) ∼l Ll(1, χ)`((ol ⊗Zl
∏
P|l

KP)χ)
∏
ψ|χ

(2
∏
pi-fψ

(Φ(peii ) + 1− ψ̌(pi))) ,

by (3). Then (1) and (2) finish the proof of Theorem 14.

Proof of (6). From [Ma, p.48] (where W∞(ψ̃) is a unit) we get∏
ψ|χ

τl(ψ) ∼l (
∏
ψ|χ

W (ψ̌)f
1/2
ψ ) = W (ind

G(K/Q)
G χ̌)(f

ind
G(K/Q)
G χ

)1/2

= W (χ̌)Nk/Q(fχ)
1/2d

1/2
k/Q ∼l τl(χ)d

1/2
k/Q [Ma, pp.18,22–23].

The discriminant part of the second relation is standard while the Gauss sum part
follows from

τ(χ) =
∏

finite q

τ(χq) [Ma, p.49] and τ(χq) ∼l 1 for q - l [Ma, p.39].

Proof of (7). By [Gr2, p.81] we have Ll(s, χ)=Ll(s, ind
G(K/Q)
G (χ))=

∏
ψ|χ Ll(s, ψ).

Proof of (8). For P|q|l let e and f denote the absolute ramification index and

residue degree of q, respectively, and I the inertia group of P|q. Also, let kq be the
residue field of k at q. Then∏

P|l
KP =

∏
q|l

∏
P|q

KP =
∏
q|l

indGI (kq) =
∏
q|l

indGI (Ffl ) = (indGI Fl)[k:Q]/e

and ol ⊗Zl
∏

P|lKP = (indGI (ol/lol))
[k:Q]/e. Since l - |G|, the χ-eigenspace has

length

l (χ , [k:Q]
e indGI (1)) ol =

{
l[k:Q]/e ol if χ|I = 1,
1 else .

4Our Galois action is on the left.
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On the other hand,
∏
ψ|χ
(
1− ψ(l)

l

)−1

=
∏

ψ|χ
l-fψ

l
l−ψ(l) ∼l lb with b counting

the ψ above χ whose conductor is coprime to l, hence ψ(l) is a root of unity. Look
now at the diagram below in which I ′ is the inertia group of P|l, so I = I ′ ∩G.

I

I ′G

�
�

GI ′

G(K/Q)

�
�

@
@

@
@

By [Se, pp.109,111], fψ 6≡ 0 mod l if, and only if,
ψ|I ′ = 1. Of course, there are [G(k/Q) : GI ′] =
[k : Q]/e many of these if χ|I = 1, otherwise there
are none.

13. The connection to Iwasawa theory

This section pieces together facts from the literature which yield

Theorem 15. Let l be a prime, K/k a cyclic extension of real fields of degree prime
to l, and M the maximal abelian l-extension of K which is unramified outside l. If
l = 2 assume that K/Q is abelian and not ramified at 2. Then, if χ is a non-trivial
faithful linear Cl-character of G = G(K/k),

` ((ol ⊗Zl G(M/K))χ) = 2−[k:Q]Ll(1, χ)ol ,

where ol is unramified over Zl and large enough to contain the values of all Cl-
characters of G.

In the proof of the theorem we shall have to look at characteristic polynomials
of finitely generated modules over the Iwasawa algebra Λ = ol[[T ]] [Wa, p.114],
[Ko, p.12]. If f, g ∈ Λ, then the notation f ∼ g indicates an equality f = gh with
a unit h ∈ Λ. With respect to ∼ we can write each characteristic polynomial as
a product lmG∗(T ) where m ≥ 0 and G∗(T ) is a distinguished polynomial [Wa,
§7.1]. Since K ∩ k∞ = k, as follows from l - [K : k] [“χ is of type S”] , we have
Ll(1 − s, χ) = Gχ(us − 1) with Gχ(T ) ∈ Λ [Wi1, p.494]. Here u ∈ Z×l satisfies
ηγ = ηu for all l-power roots of unity η and a topological generator γ for the
Galois group Γ = G(k∞/k) of the cyclotomic Zl-extension k∞ of k.5 The first main
ingredient of our proof now is

(i) Ll(1− s, χ) ∼
{

lmχG∗χ(us − 1) if l 6= 2,

2[k:Q]G∗χ(us − 1) if l = 2.

Supposedly mχ = 0 but we will not need this. So only the case l = 2 has to be

explained. As K/Q is abelian, all irreducible Cl-constituents θ of ind
G(K/Q)
G (χ)

are linear. They are of type S, since the ramification assumption on K implies
K ∩ Q∞ = Q. By the induction property of the l-adic L-series [Gr2] formula (i)
for l = 2 follows from the corresponding formula with respect to the base field Q
which holds because of the vanishing of Iwasawa’s µ-invariant for Q [Wa, Theorem
7.15, p.130]: for this implies that the power series f(T, θ) ∈ Z2[[T ]] in L2(s, θ) =
f(us − 1, θ) of [Wa, Theorem 7.14, p.127] is precisely divisible by 2 in Z2[[T ]].

5Not to be confused with the earlier mentioned Galois group G(F/Q) which does not show up
in this section.
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We now turn to the case l 6= 2 and draw a diagram which displays the fields we
have to work with.

k

K
G
�
�
�

H
D′

�
�
�

K∞

H∞

@
@

@
@

@
@

@

@
@

@
@

@
@

@

M �
�
�

N ∩ L
M ′
∞

L

�
�
�

N

M∞

@
@

@
@

@

.

.

ζl is a primitive root of unity of order l and
H = K(ζl), D

′ = G(H/K). SetD = G(H/k),
so G = D/D′.

K∞ is the cyclotomic l-extension of K,
H∞ = H ·K∞;

M ′∞ is the maximal abelian l-ramified l-
extension of K∞, L = M ′

∞ ·H∞;

M∞ is the maximal abelian l-ramified l-
extension of H∞, N the maximal abelian ex-
tension of H in M∞ and M = M ′

∞ ∩ (N ∩L).

We first list some observations.
(1) H∞ is the cyclotomic l-extension of H.
(2) L is the maximal abelian extension of K∞ in M∞. For, if L′ denotes

that field, then L′ ⊃ L and G(L′/K∞) splits into the direct product of its Sylow
l-subgroup and a subgroup isomorphic to D′. The fixed field of the subgroup is
M ′
∞, as it is an l-ramified l-extension of K∞ containing M ′

∞.
(3) N ∩ L is the maximal abelian extension of K in M∞. This results from

N ∩ L/K and M ′∞/K being Galois extensions, so M/K is one as well. Since
(|N ∩ L : M |, l) = 1, the group [G(N ∩ L/H), G(N ∩ L/M)] of commutators of
elements in G(N ∩L/H) and G(N ∩L/M) vanishes and N ∩L/K is thus abelian.
On the other hand, the maximal abelian extension of K in M∞ contains H and so
is contained in N . As it also contains K∞, it is a subfield of L by (2).

(4) The D′-invariant elements in G(N/N∩L) are trivial. Set U = G(N/N∩L).

So U is an abelian l-group and H±1(D′, U) = 0. Consequently, UD
′
= ND′U and

kerND′ = ID′U (in the obvious notation). Now, U/ID′U is the Galois group
of an extension F/N ∩ L, F ⊂ N , which uniquely corresponds to an extension
F ′/L, F ′ ⊂ LN ⊂M∞.

We show that F ′ is abelian over K∞. Since both N and N ∩ L are Galois
extensions of K∞, so is F as ID′U is D′-stable. Moreover, U/ID′U is D′-trivial and
consequently F/K∞ is abelian. Therefore F ′ = LF is abelian over K∞.

From (2) we obtain F ′ = L and thus F = N ∩L and ID′U = U . So kerND′ = U
and ND′ = 1.

(5) M is the maximal abelian extension of K in M ′∞. By (3) it is abelian.
If there was a bigger abelian extension, then its compositum with N ∩ L would
properly contain N ∩L, contradicting (3). As a corollary, M is indeed the maximal
abelian l-ramified l-extension of K.

(6) Inflate χ from G to D. Then ol⊗ZlG(N/N ∩L) is an olD-module satisfying
(ol ⊗Zl G(N/N ∩ L))χ = 1. Namely, σx = χ(σ)x = x for σ ∈ D′ and x ∈
(ol ⊗Zl G(N/N ∩ L))χ. Apply (4).
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Set Y = G(M∞/H∞), Y = G(N ∩ L/H∞) and Γ = G(K∞/K) = G(H∞/H).
Then by the definition of N, YΓ = G(N/H∞), and by (3), Y Γ = Y . We can identify
Y and G(M/K∞). Now, on tensoring the two exact sequences

G(N/N ∩ L) � YΓ � Y , G(M/K∞) � G(M/K) � G(K∞/K)

with ol over Zl and then taking χ-eigenspaces we arrive at

(ol ⊗Zl YΓ)χ = (ol ⊗Zl Y )χ , by (6),

(ol ⊗Zl G(M/K))χ = (ol ⊗Zl G(M/K∞))χ,

since, as has already been observed in §11, K∞/k is abelian and χ 6= 1.
Remember that we are interested in (ol ⊗Zl G(M/K))χ. Because of the above

we may replace this group by (ol ⊗Zl YΓ)χ and are in position to apply results of
[Wi1].

By the Main Conjecture [Wi1, Theorem 1.3, p.496] (ol ⊗Zl Y )χ is a finitely

generated Λ-torsion module and has characteristic polynomial lm
′
χG∗χ(T ) with some

m′
χ ≥ 0 and the G∗χ from (i).
By [Gr3, p.91] or [Ko, p.42, Corollary 1.7.10] (where the F there is our H and

the X is our Y , see p.25) Y , and so (ol⊗Zl Y )χ, are without finite submodules, from
which together with [Wa, p.318] or [Ko, p.14, Proposition 1.4.1] it follows, firstly,
that `(((ol ⊗Zl Y )χ)Γ) = (1) and, secondly, that

`(((ol ⊗Zl Y )χ)Γ) = lm
′
χG∗χ(0)ol.

As H∞/k is abelian, eχ and γ commute and so ((ol⊗Zl Y )χ)Γ = (ol⊗Zl YΓ)χ. Thus
we have arrived at

`((ol ⊗Zl YΓ)χ) = lm
′
χ−mχLl(1, χ)ol .

We are left with showing mχ = m′
χ.

Let ω denote the Teichmüller character and X∞ the Galois group of the maximal
abelian unramified l-extension of H∞. Then

lm
′
χG∗χ(T ) = characteristic polynomial of (ol ⊗Zl X∞)χ

−1ωat u(1 + T )−1 − 1 .

This is [Ko, p.61, Theorem 1.9.9]6 with the following changes in the notation: in
the diagram of fields on p. 56 in [Ko] we identify E with our k, F with our H , ∆
with our D, F∞ with our H∞ and his K with the fixed field of ker(χ−1ω), which
is totally complex since χ−1ω is odd as χ is even.

Combining the above formula with [Wi1, p.497, Theorem 1.4] gives the desired
equality of the µ-invariants:

m′
χ = µ(G(χ−1ω)−1ω(u(1 + T )−1 − 1)) = µ(lmχG∗χ(u(1 + T )−1 − 1)) = mχ .

6It is also possible to get this by generalizing arguments from [Iw, §5], [Gr1, §2], [Li1, §§6,7],
using [Wi1, Theorems 1.2,1.3].
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We finally consider the case l = 2 and, to that end, look at the field diagram

k

K �
�
�
H = K(i)

�
�
�

K∞

H∞

@
@

@
@

. L∞

M �
�
�

M∞

M ′ .

.

.

in which i =
√−1.

K∞, H∞ are the cyclotomic 2-extensions
of K and H , respectively.

M∞,M ′ are the maximal abelian 2-
extensions of K∞, K, respectively, which
are unramified outside 2 and the infinite
primes.

L∞ is the maximal abelian unramified 2-
extension of H∞.

Set X = G(L∞/H∞) and Y =
G(M∞/K∞).

Because K/Q is abelian and not ramified at 2, hence K ∩ Q∞ = Q, we are in
the situation of [Gr1, §2]. Define ψ = χ−1ω, where ω is, as before, the Teichmüller
character.7 Since χ is faithful on G, the odd character ψ is faithful on G(H/k) and
is of type S. By [Wi1, Theorem 11.1, p.539]

G∗χ(u(1 + T )−1 − 1)(ii)

is the characteristic polynomial of γ − 1 acting on (F2 ⊗Z2 X)ψ.
The assumption ψρ(p) 6= 1 made in the quoted theorem is satisfied for each

linear character ρ of G(k∞/k) and each prime p of k above 2. For G(Hk∞/K)
is the inertia group for p in Hk∞/k because p is unramified in K/k and totally
ramified in k∞(i)/k. Since ψρ is odd, its kernel does not contain G(Hk∞/K).

Define X ′ to be the Pontrjagin dual8 of the direct limit of the Sylow 2-subgroups
cln(2) of the class groups cln in the nth field Hn in the cyclotomic tower H∞/H ,
where the maps cln(2) → clm(2) are induced by the inclusions Hn � Hm for
m ≥ n. Then X ′ is quasi-isomorphic to X as follows from [Iw, Theorem 11, p.266];

see also [Gr1, p.145]. Because of [Gr1, §2] (F2 ⊗Z2 Ẋ
′)ψ and (F2 ⊗Z2 Y )χ have the

same characteristic polynomials. Here the dot on X ′ refers to a new action ◦ of γ
on X ′, namely γ ◦ x = u · γ−1(x), x ∈ X ′.

Combining with (ii) we see that G∗χ(T ) is the characteristic polynomial of γ − 1
on (F2 ⊗Z2 Y )χ.

By [Gr1, Proposition 8, p.151] the torsion subgroup of o2 ⊗Z2 Y is pseudo-
isomorphic to Λ/(2)[G(K/Q)], hence that of (o2⊗Z2 Y )χ to (Λ/(2)[G(K/Q)])χ. As
χ has multiplicity [k : Q] in the regular representation of G(K/Q), (o2 ⊗Z2 Y )χ

has µ-invariant 2[k:Q] and thus characteristic polynomial 2[k:Q]G∗χ(T ). From [Gr3,
pp.93–94] we know that Y has no non-trivial finite Λ-submodules. As in the odd
case we deduce, by (i),

`((o2 ⊗Z2 YΓ)χ) = 2[k:Q]G∗χ(0) = L2(1, χ) .

7So the role of ψ and χ is the opposite of [Wi1, Gr1].
8In [Gr1] X and X′ have just the opposite meaning.
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Now YΓ = G(M ′/K) is an extension of G(M/K) by G(M ′/M). We show

(iii) G(M ′/M) ' Z/(2)[G(K/Q)]

as G(K/Q)-modules and obtain, on taking χ-eigenspaces, (o2 ⊗Z2 G(M ′/M))χ '
(o2/(2))[k:Q], from which the theorem follows.

Proof of (iii). Denote by M̃ ′, M̃ the maximal abelian extensions of K which are
unramified outside 2 and infinity, respectively outside 2 only. Let Ē′, Ē be the
closures of the units E of K in Σ×∏P|2 UP ,

∏
P|2 UP , respectively. Here UP is

the unit group in the completion KP of K at P and Σ is the direct product of cyclic
groups Cv = {±1} with v running through the real infinite primes of K. The map
E → UP is induced by the embedding K → KP; E → Cv is the signature of v on
E. From [Wa, Corollary 13.6, p.268] we get the exact sequence Ē �

∏
P|2 UP �

G(M̃/Kh) with Kh denoting the Hilbert class field of K. In the same way, namely
by replacing U ′ by Σ×∏P|2 UP and U ′′ by

∏
v real R

×
>0×

∏
v complex C××∏P-2 UP

in [Wa, p.268], we obtain Ē′ � Σ ×∏P|2 UP � G(M̃ ′/Kh). Observe that both

sequences are G(K/Q)-module sequences. They yield the commutative diagram

Σ � Σ×∏P|2 UP �
∏

P|2 UP

↓' ↓ ↓
G(M̃ ′/M̃) � G(M̃ ′/Kh) � G(M̃/Kh)

with surjective vertical maps. So our claim follows on taking 2-parts, because
Σ ' Z/(2)[G(K/Q)].
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47, Birkhäuser (1984) MR 86e:11112

[Wa] Washington, L., Introduction to Cyclotomic Fields. Springer-Verlag (1982) MR 85g:11001
[We] Weiss, A., Multiplicative Galois module structure. Fields Institute Monographs 5, AMS

(1996) CMP 96:11
[Wi1] Wiles, A., The Iwasawa conjecture for totally real fields. Annals of Math. 131 (1990),

493-540 MR 91i:11163
[Wi2] , On a conjecture of Brumer. Annals of Math. 131 (1990), 555-565 MR 91i:11164

Institut für Mathematik der Universität, D-86135 Augsburg, Germany

Department of Mathematics, University of Alberta, Edmonton, Canada T6G 2G1


