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IVERSEN’S FORMULA FOR THE SECOND CHERN CLASSES
OF REGULAR SURFACES IN ANY CHARACTERISTIC

I. B. ZHUKOV

Dedicated to the 100th anniversary of D. K. Faddeev’s birth

Abstract. The formula mentioned in the title is proved.

Introduction

Let S, T be complete nonsingular surfaces over an algebraically closed field k of any
characteristic, and let h : T → S be a finite separable morphism of degree n. We establish
a formula that expresses the Euler characteristic (understood as the degree of the second
Chern class

∫
c2,T ) of T via the Euler characteristic of S and some local terms associated

with components of the branch divisor Bh = h∗Rh of h and with certain points on Bh

(here Rh is the ramification divisor).
Let Bh =

∑
i biBi, where the Bi are prime divisors on S. Then

χT − nχS =
∑

i

biχBi
+

∑
Q

λf (ÔT,Q/ÔS,h(Q)).

Here Q runs over the closed points of T , and λf (A′/A) is a certain invariant defined
explicitly for an extension of complete 2-dimensional regular local rings A′/A and for a
(sufficiently general) element f of the maximal ideal of A; this element must be a local
equation of a curve at h(Q) in any fixed sufficiently good pencil of curves on S. This
invariant is defined in terms of the different of all A′/q over A/(q ∩A), the invariants of
singularity of arcs corresponding to A′/q and A/(q∩A), and the invariants of intersection
of the latter arc with the branch divisor, where q runs over the prime divisors of f in A′.
(For the precise statement, see the definitions in §§1, 3, 4 and Theorem 7.4.)

The term λf (ÔT,Q/ÔS,h(Q)) does not vanish only for a finite number of points Q, all
of them lying on the ramification divisor of f .

What is also important, this term depends on the infinitesimal (rather than merely
local) behavior of h, i.e., on the properties of extensions of completed local rings, and
this reduces the further analysis to some questions related only to complete regular local
rings.

The formula under discussion is a 2-dimensional analog of the Riemann–Hurwitz for-
mula. In characteristic 0 it was established by Iversen in [Iv].

Remark 0.0.1. I was not able to avoid the dependence on f in the definition of the term λ
that describes ramification in codimension 2. However, I expect that λf is independent of
f (and, therefore, the formula is in its final form) in case there is no ferocious ramification.
(This condition means that all morphisms of curves induced by the given finite morphism
of surfaces are separable.)
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In the good (nonferocious) case, we can show directly that, at all “nonexceptional”
points, λf does not depend on the choice of a pencil of curves if the pencils are “sufficiently
general”. Then the exceptional points can be managed presumably by a local-global
argument such as that in [L].

A considerable part of this research was done during the author’s stay at Humboldt
Univerität zu Berlin under the support of the Alexander von Humboldt Foundation and
at the Max-Planck-Institut für Mathematik in Bonn. The work was completed under
the support of the Rückkehrstipendium of the Humboldt Foundation and INTAS grant.
I am very much grateful to all these organizations. Also, I would like to thank A. N.
Parshin and H. Kurke for numerous inspiring discussions.

§1. Definitions, notation, and preliminary facts

For an arbitrary domain A, we denote by Ã the integral closure of A; δ(A) = lA(Ã/A);
ν(A) is the number of maximal prime ideals in Ã; qA is the conductor of A, i.e., {c ∈ Ã |
cÃ ⊂ A}; Q(A) is the field of fractions.

If C is a reduced irreducible curve and P is a closed point on it, we denote νP (C) =
ν(OC,P ).

If A is a 1-dimensional domain, a ∈ A, and a �= 0, we denote ordA a = lA(A/aA).
If A is a 1-dimensional local domain, ω ∈ ΩA, and v is the valuation in Ã, we denote

v(ω) = v(g), where ω = g dt, and t is any prime element of Ã.
If A is a local ring, we denote by mA the maximal ideal of A and by Â the completion

of A.
Si denotes the set of i-dimensional points of a scheme S.
k(S) denotes the field of rational functions on an integral scheme S.
Let C be a divisor on a complete regular surface S over a perfect field k. Its arithmetic

genus is defined as

pa(C) = 1 +
1
2
(C + KS .C).

Lemma 1.1. Let A be a 1-dimensional local domain such that Ã is finite over A. Let
m1, . . . , mn be all maximal ideals of Ã. Then for any a ∈ A, a �= 0, we have

ordA a =
n∑

i=1

ordÃmi
a · [Ãmi

/miÃmi
: A/mA].

Proof. See [F, Example A.3.1]. �

Corollary 1.1.1. Under the assumptions of Lemma 1.1, suppose that A is a k-algebra,
where k is a field. Then

dimk(A/a) =
n∑

i=1

dimk(Ãmi
/a).

Wild different. Let B/A be a finite separable extension of complete discrete valuation
rings. The order of the different DB/A can be written in the form

vB(DB/A) = eB/A − 1 + d(B|A),

where d(B|A) ≥ 0, and d(B|A) = 0 if and only if the extension is tame. The term d(B|A)
is called the wild different of B/A; we agree that d(B|A) = ∞ if B/A is nonseparable.

Let O be a complete 2-dimensional regular local ring with a coefficient subfield k.
Suppose b ∈ O and a ∈ m \ {0}, where m is the maximal ideal of O. In this situation we
introduce the quantity d(a, b) ∈ N ∪ {+∞}.
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If b is an irreducible element, we denote by a the image of a in B = Õ/b. Then

d(a, b) = d(B|k[[a]])

if a �= 0, and d(a, b) = +∞ otherwise. In the general case, if b = ε
∏

i pri
i is a canonical

factorization, we put
d(a, b) =

∑
i

rid(a, pi).

Let A be a complete discrete valuation ring with a coefficient subfield k and valuation v.

Lemma 1.2. For any f ∈ mA, f �= 0, we have v(df) = v(f) − 1 + d(A|k[[f ]]).

Proof. Choose an arbitrary prime element π ∈ A. Then A = A0[π], where A0 = k[[f ]];
f = F (π) for some F ∈ Xk[[X]]. Let F0 ∈ A0[X] be the characteristic polynomial
of π. Then f − F (π) = 0 implies F (X) − f = F0(X)ρ(X) for some ρ ∈ A0[[X]], and
vA0(f) = vA0(F0(0)) = 1 implies vA0(ρ(0)) = 0. We obtain

F ′(X) = F ′
0(X)ρ + F0ρ

′,

and F ′(π) = F ′
0(π)ρ(π). Therefore,

v(df) = v(F ′(π)dπ) = v(F ′(π)) = v(F ′
0(π)) = v(DA/A0)

by [Se, Chapter III, Proposition 11, Corollary 2]. �
Finite determinacy. Let k be an algebraically closed field, let m be the maximal ideal
of k[[X0, . . . , Xn]], and let f ∈ m. The Tyurina ideal of f is defined as follows:

j(f) =
(

f,
∂f

∂X0
, . . . ,

∂f

∂Xn

)
.

Proposition 1.3. Suppose f ∈ m and ml ⊂ j(f). Then for any g ≡ f mod m2l+1 we
have k[[X, Y ]]/(f) ∼= k[[X, Y ]]/(g).

Proof. This is exactly [GK, Lemma 2.6]. �
Generalization of the Weierstrass preparation lemma. Here k is an arbitrary
perfect field.

Lemma 1.4. Let f ∈ k[[X, Y ]] be irreducible. Then, after a possible exchange of X and
Y , we have f = uf0, where u ∈ k[[X, Y ]]∗, and

f0 = Y n + a1Y
n−1 + · · · + an−1Y + an

is a separable polynomial in Y , where ai ∈ Xk[[X]].

Proof. This is exactly [Iv, Lemma 2.4]. �
Corollary 1.4.1. Let O be a complete 2-dimensional local ring with coefficient subfield
k, and let π be an irreducible element of O. Then dπ /∈ πΩO/k.

Proof. Since ΩO/k is a free O-module with a basis ds, dt, an equivalent statement is that

either π � ∂π
∂s , or π � ∂π

∂t . But this follows from Lemma 1.4. �

Ramification divisor and branch divisor. For a finite separable morphism of two-
dimensional schemes h : T → S of degree n, we consider the corresponding ramification
divisor

Rh =
∑
η∈T1

lOT,η
(ΩT/S,η) · Dη,

where Dη is a prime divisor with the generic point η, and the branch divisor

Bh = f∗Rh.
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§2. Analytic adjunction formula

Let A be a 1-dimensional complete local domain with an algebraically closed coefficient
subfield k. Assume that emb dim A ≤ 2. In other words, A is isomorphic to k[[X, Y ]]/(f),
where f is an irreducible element of the maximal ideal of k[[X, Y ]].

Proposition 2.1. There exists an irreducible polynomial f ∈ Xk[X, Y ]+Y k[X, Y ] such
that A is isomorphic to k[[X, Y ]]/(f).

Proof. By Corollary 1.4.1, the Tyurina ideal j(f) is an ideal of definition in k[[X, Y ]],
and we are done by Proposition 1.3. �

Proposition 2.2. We have
dimk(Ã/qA) = 2δ(A).

Proof. Let A0 = (k[X, Y ]/(f))(X,Y ), where f is as in Proposition 2.1. Then A is the
completion of A0, dimk(Ã/qA) = dimk(Ã0/qA0), and δ(A) = δ(A0). It remains to show
that dimk(Ã0/qA0) = 2δ(A0), but this is [Sa, Theorem 5]. �

Let s, t be generators of the maximal ideal of A such that f � ∂f
∂t , let v be the valuation

in Ã, and let x be the class of x ∈ k[[X, Y ]] in A.

Proposition 2.3. We have v(ds) < ∞, and

v(qA) + v(ds) = v
(∂f

∂t

)
.

Proof. Indeed, dimk(Ã/qA) = dimk(Ã0/qA0) as in the preceding proof; we may assume
that s, t ∈ A0. It remains to apply [Sa, Theorem 3bis]. �

Theorem 2.4. Let s, t be as above. Then

2δ(A) + v(ds) = v
(∂f

∂t

)
.

Proof. This follows from Propositions 2.2 and 2.3. �

§3. Tame and wild singularity

In this section k is an algebraically closed field, O is a 2-dimensional complete regular
local ring with the coefficient field k, and K is the fraction field of O. If f, g ∈ O are
such that (f, g) is an ideal of definition, we denote (f.g) = dimk O/(f, g); it is easy to
verify the bimultiplicativity of (f.g).

Let π1, . . . , πr be pairwise nonassociated prime elements of O, and let f = π1 . . . πr.
We introduce the tame singularity of f :

singt
O f = 2

∑
i

δ(O/πi) − r +
∑
i �=j

(πi.πj) + 1.

Next, we introduce the wild singularity singw
O f of f . Assume that there exist regular

local parameters s, t of O such that

(i) d(f, s), d(s, f), d(f, ∂f
∂t ), d(s, ∂f

∂t ) are all finite, and

(ii) πi � ∂πi

∂t for any i; s � ∂f
∂t .

Then

singw
O f = −d(f, s) + d(s, f) + d

(
f,

∂f

∂t

)
− d

(
s,

∂f

∂t

)
.
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(In Corollary 3.3.1 we shall see that this value is independent of the choice of s, t.) If no
required s, t exist, we put singw

O f = ∞.

Our plan is to express the Milnor number µ(f) =
(

∂f
∂s . ∂f

∂t

)
as the sum of tame and

wild singularities. It is easily seen that this value is independent of the choice of s and t.

Remark 3.0.1. In the prime characteristic case, the Milnor number is not an invariant of
O/(f), i.e., ε ∈ O∗ does not imply µ(εf) = µ(f) (see [GK, Subsection 2.1]). However, it
is easy to show that ε ∈ k[[f ]]∗ implies µ(εf) = µ(f).

Lemma 3.1. The local parameters s, t in O can be chosen so that

1) πi � ∂πi

∂t for every i;

2) s � ∂f
∂t ;

3) if char k = p > 0, then the conditions s′ ≡ s mod (s, t)2 and s′ ∈ k[[s, tp]] imply

s′ � ∂f
∂t .

Proof. Let s0 and t0 be arbitrary regular local parameters in O. Put

s = s0 + αt0 + βt20,

t = t0,

where α, β are some elements of k. It is easily seen that

∂

∂s
=

∂

∂s0
,

∂

∂t
=

∂

∂t0
− α

∂

∂s0
− 2βt

∂

∂s0
.

By Corollary 1.4.1, we have πi � dπi for any i, i.e., πi � ∂πi

∂s0
or πi � ∂πi

∂t0
. It follows that the

set M of all pairs (α, β) satisfying condition 1) is nonempty (because k is infinite) and
open on the plane.

After a possible intermediate change of variables, we may assume that (0, 0) ∈ M .

The relation πi � ∂πi

∂t0
implies that πi � ∂f

∂t0
, whence df �= 0. Let fN denote the form in

f of minimal degree such that dfN �= 0. Observe that either of the conditions s|∂f
∂t and

s′|∂f
∂t implies

(1) s|∂fN

∂t
+

∂fN+1

∂t

in O/(s0, t0)N+1; in this ring we put

∂fN

∂t
+

∂fN+1

∂t
= s ·

(N−2∑
i=0

gis
N−2−i
0 ti0 +

N−1∑
i=0

his
N−1−i
0 ti0

)
.

After the substitution s = s0 + αt0 + βt20, we obtain

∂f

∂t
=

N−1∑
i=0

(gi + αgi−1)sN−1−i
0 ti0 +

N∑
i=0

(hi + αhi−1 + βgi−2)sN−i
0 ti0.
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On the other hand, put

fN =
N∑

i=0

ais
N−i
0 ti0;

fN+1 =
N+1∑
i=0

bis
N+1−i
0 ti0.

In the same factor ring we compute

∂f

∂t
=

N−1∑
i=0

((i + 1)ai+1 − α(N − i)ai)sN−1−i
0 ti0

−
N∑

i=0

((N − i − 1)bi+1 + α(N − i + 1)bi + 2β(N − i + 1)ai−1)sN−i
0 ti0.

Note that the gi and hi (but not ai and bi) depend on α and β.
Comparing forms of degree N − 1, we obtain the following system of relations:

g0 = a1 − α · Na0,

g1 + αg0 = 2a2 − α · (N − 1)a1,

g2 + αg1 = 3a3 − α · (N − 2)a2,

. . .

gN−2 + αgN−3 = (N − 1)aN−1 − α · 2aN−2,

αgN−2 = NaN − α · aN−1,

whence

(2) N(an − αaN−1 + α2aN−2 − · · · ± αNa0) = 0.

Suppose that the statement to be proved is false; this means in particular that (1) is
satisfied for all α such that (α, 0) ∈ M , i.e., for infinitely many values of α. Then (2) is
valid for infinitely many α’s, and we see that N = 0 in k. This concludes the proof in
the case where char k = 0, whereas for char k = p > 0 we obtain p|N , whence

(3) gi = (i + 1)ai+1, i = 0, 1, . . . , N − 2.

Next, comparing forms of degree N , we obtain the system of relations

(4) hi + αhi−1 + βgi−2 = (N − i − 1)bi+1 + α(N − i + 1)bi + 2β(N − i + 1)ai−1,

i = 0, . . . , N (here we agree that g−2 = g−1 = 0, etc.). Assuming β = 0, we obtain

bN+1 − αbN + α2bN−1 − · · · ± αN+1b0 = 0

for infinitely many values of α, whence bi = 0 for any i.
Finally, let β take any nonzero value such that (α, β) ∈ M for infinitely many values

of α. Relations (3) and (4) imply that

hi + αhi−1 = (−3)β(i − 1)ai−1,

i = 0, . . . , N . Therefore,
N−1∑
i=0

(−1)i(N − 1 − i)βaN−1−iα
i = 0.

Since the value of a polynomial vanishes for infinitely many values of α, all the coefficients
must be zero, i.e., an = 0 if p � n. We obtain fN ∈ k[[sp

0, t
p
0]], in contradiction with

dfN �= 0. �
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Lemma 3.2. Suppose s, t are regular local parameters, q is an irreducible element of O,
and q|∂q

∂t . Then q = q1ε, where q1 ∈ k[[s]][t], ε ∈ O∗, and ∂q1
∂t = 0.

Proof. This follows immediately from the Weierstrass preparation lemma. �

Corollary 3.2.1. Let s, t be regular local parameters, and let q be a prime ideal of height
1 in O such that ds = 0 in ΩO/q, where s is the class of s in O/q. Then the ideal q has
a generator q such that ∂q

∂t = 0 and q ≡ s mod (s, t)2.

Proof. Let q0 be an arbitrary generator of q; then dq0 = ∂q0
∂s ds+ ∂q0

∂t dt implies
(

∂q0
∂t

)
·dt =

0, whence
(

∂q0
∂t

)
= 0. �

Proposition 3.3. Let s, t be any regular local parameters of O satisfying the conditions

of Lemma 3.1. Assume that µ(f) < ∞. Then d(f, s), d(s, f), d
(
f, ∂f

∂t

)
, and d

(
s, ∂f

∂t

)
are

all finite, and

µ(f) = singt
O f − d(f, s) + d(s, f) + d

(
f,

∂f

∂t

)
− d

(
s,

∂f

∂t

)
.

Proof. First, we show that d
(
f, ∂f

∂t

)
< ∞, d

(
s, ∂f

∂t

)
< ∞, and

(5) µ(f) =
(
f .

∂f

∂t

)
+ d

(
f,

∂f

∂t

)
−

(
s .

∂f

∂t

)
− d

(
s,

∂f

∂t

)
.

It suffices to check that d(f, q) < ∞, d(s, q) < ∞, and

(6) (f.q) =
(∂f

∂s
. q

)
− d(f, q) + (s.q) + d(s, q),

where q is any irreducible divisor of ∂f
∂t . It is a commonplace that all other terms on

both sides of the relation are also finite.
By Corollary 1.1.1, for any a ∈ O such that q � a we have (a.q) = v(a), where a is the

class of a in O/q, and v is the valuation in Õ/q. Since df = ∂f
∂s ds + ∂f

∂t dt, we obtain

df = ∂f
∂s ds̄ in ΩO/q.

Suppose that ds = 0 in O/q. Only the case where char k = p > 0 is nontrivial. By
Corollary 3.2.1, a generator s′ of the ideal (q) can be chosen so that s′ ≡ s mod (s, t)2,

s′ ∈ k[[s, tp]]. Then by Lemma 3.1 we obtain s′ � ∂f
∂t , in contradiction with q|∂f

∂t .
Thus, v(ds) < ∞ and v(df) < ∞. Applying Lemma 1.2 twice, we see that d(f, q) and

d(s, q) are finite, and

v(f̄) = v(df̄) + 1 − d(f, q)

= v
(∂f

∂s

)
+ v(ds̄) + 1 − d(f, q)

= v
(∂f

∂s

)
+ v(s̄) − d(f, q) + d(s, q),

which proves (6) and (5).
Similarly, considering ΩO/s instead of ΩO/q, we obtain d(f, s) < ∞ and

(7) (f.s) − 1 =
(∂f

∂t
. s

)
− d(f, s).
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We combine (5) and (7):

µ(f) =
(
f .

∂f

∂t

)
− ((f.s) − 1) + d

(
f,

∂f

∂t

)
− d

(
s,

∂f

∂t

)
− d(f, s).

It remains to show that d(s, f) < ∞, and

(
f .

∂f

∂t

)
− ((f.s) − 1) = d(s, f) + singt

O f.

It suffices to check the relation(
πi .

∂πi

∂t

)
− (πi.s) = 2δ(O/πi) − 1 + d(s, πi)

for every i. By Corollary 1.1.1, this is equivalent to

(8) v
(∂πi

∂t

)
− v(s̄) + 1 − d(s, πi) = 2δ(O/πi),

where v is the valuation in Õ/πi. By Lemma 1.2, ds̄ �= 0 implies d(s, πi) < ∞, and (8)
can be rewritten as

v
(∂πi

∂t

)
− v(ds̄) = 2δ(O/πi).

However, this identity is none other than the analytic adjunction formula of Theorem
2.4 for the ring O/πi. �

Corollary 3.3.1. singw
O f is independent of the choice of s, t.

Examples. Let x, y be any system of regular local parameters in O.
1. Let f = xl − ym, p � l, p � m. Then singw

O f = 0.
2. Let f = yp + yM − x2, p � M . Taking s = x, t = y, we compute

d(f, s) = d(s, f) = d(s,
∂f

∂t
) = 0,

and

d(f,
∂f

∂t
) = M − p,

whence singw
O f = M − p.

3. Let f = yp − x2. Then d(f, x) = ∞, whence for any choice of regular local

parameters s, t we have d(f, ∂f
∂t ) = ∞, and singw

O f = ∞.

§4. Extensions of 2-dimensional complete regular local rings

In this section O′/O is a finite separable extension of complete 2-dimensional regular
local rings of some degree n, both having an algebraically closed coefficient subfield k.

Proposition 4.1. Let π be a prime element of O that does not divide a local equation
β of the branch divisor of O′/O, and let π = π1 . . . πr, where π1, . . . , πr are irreducible
elements of O′. Then

singt
O′ π − n singt

O π = (β.π) − (n − 1) −
r∑

i=1

d((O′/πi)|(O/π)).
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Proof. We choose regular local parameters s, t in O so that π � ∂π
∂t . This can be done

by Lemma 3.1. Fixing j, we choose regular local parameters u, v in O′ so that πj � ∂πj

∂v .

Denote Aj = Õ′/πj .
Now we do some computations in ΩQ(Aj)/k; the elements of O′ (respectively, of ΩO′/k)

will be denoted by the same letters as their images in Aj (respectively, in ΩQ(Aj)/k). First,
we have

∂πj

∂u
du +

∂πj

∂v
dv = dπj = 0.

Next, the derivations ∂
∂s and ∂

∂t of Q(O) can be uniquely extended up to continuous

derivations of Q(O′), also denoted by ∂
∂s and ∂

∂t . We have

∂

∂u
=

∂s

∂u
· ∂

∂s
+

∂t

∂u
· ∂

∂t
,

because these derivations coincide on the elements s and t, and Q(O′) is separable over
Q(O) = Q(k[[s, t]]). Therefore, the identity

ds =
( ∂s

∂u

∂πj

∂v
du +

∂s

∂v

∂πj

∂v
dv

)(∂πj

∂v

)−1

=
( ∂s

∂u

∂πj

∂v
du − ∂s

∂v

∂πj

∂u
du

)(∂πj

∂v

)−1

=

∣∣∣∣∣∣
∂s
∂u

∂s
∂v

∂πj

∂u
∂πj

∂v

∣∣∣∣∣∣ (∂πj

∂v

)−1
du

in ΩQ(Aj)/k implies

(9)

(∂π

∂t

)−1
ds =

(∂π

∂t

)−1

∣∣∣∣∣∣
∂s
∂s

∂s
∂t

∂πj

∂s
∂πj

∂t

∣∣∣∣∣∣
∣∣∣∣∣∣

∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣∣∣ (∂πj

∂v

)−1
du

=
(∂π

∂t

)−1 ∂πj

∂t

∣∣∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣∣∣ (∂πj

∂v

)−1
du

=
∏
i �=j

π−1
i

∣∣∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣∣∣ (∂πj

∂v

)−1
du.

We shall apply the analytic adjunction formula of Theorem 2.4. Let wj and w be the
valuations in Aj and A = Õ/π, respectively, and let ej = e(Aj/A), dj = d(Aj |A). We
denote by ρj and ρ any local parameters in Aj and A, respectively. We write the left-
hand side and the right-hand side of (9) in the form Ldρj = L0dρ and Rdρj , respectively,
and compute the valuations of L and R.

From the exact sequence

ΩA/k ⊗A Aj → ΩAj/k → ΩAj/A → 0

it is clear that dρ = adρj , where a is a generator of the different of Aj/A, that is,

wj(a) = ej − 1 + dj . We have w(L0) = −w
(

∂π
∂t

)
+ w(ds). From this it follows that
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wj(L) =
(
−w

(
∂π
∂t

)
+ w(ds)

)
ej + ej − 1 + dj . Next,

wj(R) = −
∑
i �=j

wj(πi) + wj

(∣∣∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣∣∣
)
− wj

(∂πj

∂v

)
+ wj(du).

Thus, we have

(
−w

(∂π

∂t

)
+w(ds)

)
ej + ej −1+dj = −

∑
i �=j

wj(πi)+wj

(∣∣∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣∣∣
)
−wj

(∂πj

∂v

)
+wj(du).

We apply the analytic adjunction formula to both sides, and apply Corollary 1.1.1 on
the right-hand side:

(−2δ(O/π) + 1)ej + dj = 1 −
∑
i �=j

(πi.πj) + (β′.πj) − 2δ(O′/πj),

where β′ is an equation of the ramification divisor in O′/O. Finally, we sum over j:

−n(singt
O π − 1) +

∑
j

dj = −(singt
O′ π − 1) + (β.π). �

Definition of λf . For the branch divisor of O′/O (viewed as a closed subscheme in
SpecO), denote by βi the equations of its prime components and by bi their multiplicities.
We take an element f ∈ O that is a product of pairwise nonassociated prime elements
in O such that singw

O f < ∞ and none of the βi divides f . Let f = π′
1 . . . π′

r be a
factorization of f in O′. Every π′

i divides exactly one prime divisor πi of f in O; we
denote by A′

i and Ai the integral closures of O′/π′
i and O/πi, respectively. We define

λf (O′/O) =
∑

i

bi(1 − d(f, βi)) − (n − 1) −
r∑

i=1

d(A′
i|Ai) + singw

O′ f − n singw
O f.

Conjecture 4.2. Assume that there is no ferocious ramification in O′/O. Let f, f ′ ∈
O be elements such that λf (O′/O) and λf ′(O′/O) are defined. Then λf (O′/O) =
λf ′(O′/O).

Example. An ample series of examples can be constructed if for the role of O′ we take
the integral closure of O in the extension of the fraction field of O given by the equation
xp − x = t−pm+1u−pn, where t, u are fixed regular local parameters in O, and m, n are
nonnegative integers. In is easily seen that such an O′ is always regular.

In this paper we only consider an example of a nonexceptional point on a component
of the branch divisor without ferocious ramification. For this, take m > 0 and n = 0.
(The notion of an exceptional point is due to Deligne [D]; see also Brylinski [Br]. Roughly
speaking, these are the points on the ramification divisor where the codimension 2 ram-
ification invariants take their nongeneric values.)

Let y = tmx. Then yp − t(p−1)my = t, whence O′ ⊃ O[y] = k[[y, u]]. Since O[y] is
regular, we have O[y] = O′, and

t = yp − yp+(p−1)(pm−1) + O(yp+2(p−1)(pm−1)).

The branch divisor B consists of one component t = 0, and b1 = (p − 1)pm.
Let f = t − ui, i > 0, (i, p) = 1. Then the expansion of f in k[[y, u]] is

f = F (y, u) = yp − yp+(p−1)(pm−1) − ui + O(yp+2(p−1)(pm−1)).
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We have

singw
O′ f = d(f, y) − d(y, f) − d

(
f,

∂f

∂u

)
+ d

(
y,

∂f

∂u

)
= 0 − 0 − (i − 1)d

(
k[[y]]|k[[F (y, 0)]]

)
+ 0

= (i − 1)(p − 1)(pm − 1).

It follows that

λf (O′/O) = (p − 1)pm − (p − 1) − d
( ˜k[[y, u]]/f |k[[u]]

)
+ (i − 1)(p − 1)(pm − 1)

= (p − 1)(pm − 1) − i(p − 1)(pm − 1) + (i − 1)(p − 1)(pm − 1) = 0.

§5. Severi’s formula

In this section, S is a regular geometrically irreducible complete surface over a perfect
field k; K is the field of functions on S.

Lemma 5.1. Let s, t be regular local parameters at P ∈ S. Then for any point P ′ in
some neighborhood of P , the functions s−s(P ′) and t−t(P ′) are regular local parameters
at P ′.

Proof. Let U be a neighborhood of P such that s and t are regular functions on U .
Consider the morphism f : U → A2

k determined by the pair of functions s, t. Obviously,
f is unramified at P , whence f is also unramified at all points of some neighborhood
of P . �

Let ω be a nonzero rational 1-differential on S, i.e., ω ∈ ΩK/k, and ω �= 0. We define
a divisor (ω) and a 0-cycle 〈ω〉 on S.

Let P ∈ S, and let s, t be regular local parameters at P . Then ω = fP ·(aP ds+bP dt),
where aP and bP are coprime in OS,P , and fP ∈ K. Then (ω) is defined as the divisor
on S such that in a neighborhood of any closed point P it coincides with the divisor of
the function fP ; this can be done in view of Lemma 5.1. Finally, by definition,

〈ω〉 =
∑

P∈S0

dimk OS,P /(aP , bP ) · P.

Theorem 5.2. In the group A0(S) we have

c2,S = 〈ω〉 + (ω) · KS − (ω) · (ω).

Proof. See [Y, Corollary to Theorem 2′], or [K]. See also the proof involving higher adèles
in [P]. �

§6. Computation of the second Chern class with the help

of a pencil of curves

Let S be as in the preceding section; k is assumed to be algebraically closed. Here a
pencil of curves on S is treated as a dominant rational map of S in P1

k. In other words,
this is a surjective morphism

C : S \ B → P1
k

that cannot be extended to any point of B; B is a closed subset of S, the so-called set
of base points of a given pencil of curves. Theorem 3 in [Sh, Chapter II, §3] implies that
dimB = 0.

We shall consider only pencils C of curves satisfying the following condition:
(∗) the fiber of C over any point s ∈ P1

k is a reduced subscheme.
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The closure of C−1(s) ⊂ S \B in S will be denoted by Cs. The theorem on dimension
of fibers of a morphism (see, e.g., [H, Chapter II, Example 3.22]) implies that Cs is of
pure dimension 1. The schemes Cs are called curves in C.

It is easily seen that all curves in C belong to one and the same divisor class on
S. Therefore, for an arbitrary divisor D on S the intersection multiplicity (Cs.D) is
independent of s; it will be denoted simply by (C.D).

We require also that the following condition be fulfilled:
(∗∗) for any base point b all curves in C pass through b and any two of them meet at

b transversally.
If s = C(P ), the curve Cs will be denoted also by CP .
For P ∈ S \ B, we put singw

P C = singw

ÔS,P
(ts ◦ C) and singt

P C = singt

ÔS,P
(ts ◦ C),

where s = C(P ) and ts is a local parameter at s. Clearly, singt
P C is independent of ts.

Remark 3.0.1 shows that singw
P C is also independent of ts. Our third requirement is as

follows.
(∗∗∗) singw

P C < ∞ for all P ∈ S \ B.
We say that a pencil C on S is separable if it satisfies conditions (∗), (∗∗), and (∗∗∗).

Proposition 6.1. Let S be a regular projective surface, and let C1, . . . , Cn be prime
divisors. Then there exists a pencil of curves C on S with the set of base points B such
that:

– for any i we have B ∩ Ci = ∅;
– for any i, C induces a separable morphism Ci → P1

k;
– C is separable.

Proof. The proposition is obvious in the case of S = P2
k; the general case can easily be

derived by applying the following two lemmas. �

Lemma 6.2. Under the conditions of Proposition 6.1, S admits a finite separable mor-
phism g onto P2

k such that C1, . . . , Cn are not components of its ramification divisor
Rg.

Proof. Assume that S ⊂ PN . We choose arbitrary closed points Pi ∈ Ci, i = 1, . . . , n,
and let Hi be the projective closure of the tangent plane to S at Pi embedded into PN .
Choose a projective subspace W

∼= PN−3 in PN that meets neither S nor any of Hi. Then
the projection with the center W determines a finite morphism of S onto P2 unramified
at any of the Pi. �

Lemma 6.3. Let h : T → S be a finite separable morphism of surfaces, and let C be a
separable pencil on S such that the curves in C have no common components with the
branch divisor Bh. Then the pencil D = C ◦ h on T is also separable.

Proof. Let b be any base point of D. Since h is unramified at b, regular local parameters
at h(b) generate the maximal ideal of OT,b. In other words, if two curves are regular
at h(b) and meet transversally at this point, the same is true for their preimages with
respect to the point b. This proves that D satisfies (∗∗). Condition (∗) can be verified
by a similar argument applied to any regular point on a given curve in D such that h is
unramified at that point.

To verify condition (∗∗∗), it suffices to note that the Jacobi matrix of h is of rank 2
at any point of T . �

For a separable pencil C on S, we introduce the 0-cycle

sing C =
∑

P∈S\B

(singt
P C + singw

P C)P.
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Since all curves in C belong to the same divisor class, their arithmetic genera are the
same; this common value will be denoted by pa(C).

Proposition 6.4. Let C be a separable pencil of curves on S with the set of base points B.
Then ∫

c2,S =
∫

sing C − #B − 4(pa(C) − 1).

Proof. We pick any rational function on the projective line such that its divisor of zeros
as well as its divisor of poles has degree 1. (If we choose the point at infinity suitably,
any such function is of the form λX−α

X−β for some α, β, λ ∈ k.) Let f denote the inverse
image of this function in k(S). The idea of the proof is to apply Theorem 5.2 to df .

The above explicit description of the original function implies that any other choice
of such a function would change f to af+b

cf+d , where a, b, c, d ∈ k, ad − bc �= 0. It follows
that 〈df〉 =

∑
P∈S0

nP P is independent of this choice.
Now we compute nP for P /∈ B. Let D be any curve in C that is distinct from CP .

If the divisor of f is CP − D, then f is a local equation of CP at P . If s and t are local

parameters at P , then df = ∂f
∂s ds + ∂f

∂t dt. We have

nP =
(

∂f

∂s
.
∂f

∂t

)
= µÔS,P

(f) = singt
P C + singw

P C;

i.e., the 0-cycles 〈df〉 and sing C have equal coefficients at P .
Now, let P ∈ B. For any choice of f , its divisor is C − D, where C and D are curves

in C that meet transversally at P . Then f can be written as g/q, where g and q are local
equations of C and D at P . We have

df =
g dq − q dg

g2
,

whence nP = 1.
Thus, we obtain

(10) 〈df〉 = sing C +
∑
P∈B

P.

Next, we compute (df). The divisor of f is C − D, where C and D are some curves
in C; we shall prove that

(11) (df) = −2D.

Take any P /∈ B, and let s and t be regular local parameters. If P ∈ C, then, as we

saw in the calculation of 〈df〉, here ∂f
∂s and ∂f

∂t are coprime, i.e., P /∈ Supp(df). If P ∈ D,
then df = −f2 · d(f−1) and, as above, P /∈ Supp(d(f−1)). Finally, if P /∈ C ∪ D, then
P belongs to the zero divisors of f − f(P ), and this case can be reduced to the case of
P ∈ C by replacing f with f − f(P ).

Substituting (10) and (11) in the formula of Theorem 5.2, we obtain the following
identity in A0(S):

c2,S = sing C +
∑
P∈B

B − 2(C.KS) − 4(C.C),

where C is an arbitrary curve in C. Clearly, condition (∗∗) in the definition of a separable
pencil implies that (C.C) =

∑
P∈B B. Therefore,

c2,S = sing C −
∑
P∈B

B − 2(C.KS) − 2(C.C).
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Now it suffices to calculate the degrees and to apply the definition of the arithmetic
genus. �

We prove another property of pencils.

Proposition 6.5 (generalized Plücker equation). Let C be a pencil of curves on S with
the set of base points B, let D be a reduced irreducible curve on S that is not a component
of any curve in C, and let D ∩B = ∅. Assume that the restriction ϕ of the morphism C
to D is a separable morphism of D onto a projective line. Then∑

P∈D

(
(CP .D)P − νP (D) + dP

)
= 2(C.D) + 2pg(D) − 2,

where dP is the sum of the wild differents of ϕ at all points of the normalization of D
over P .

Proof. We denote by λ : D̃ → D the normalization morphism. Let P ∈ D. For P ′ ∈
λ−1(D), let eP ′ denote the ramification index of ϕ ◦ λ at P ′. Corollary 1.1.1 implies∑

P ′∈λ−1(P )

eP ′ = (CP .D)P .

It is easily seen that deg(ϕ ◦ λ) = (C.D), and it remains to apply the Riemann–Hurwitz
formula to the morphism ϕ ◦ λ. �

§7. Morphisms of surfaces

In this section we consider a finite separable morphism h : T → S of degree n.
It is known (see, e.g., [Ii]) that in A1(T ) we have

(12) KT = h∗KS + Rf .

A local equation of the ramification divisor can be determined as follows.

Lemma 7.1. Let u, v be regular local parameters at Q ∈ T , and let s, t be regular local

parameters at h(Q). Then

∣∣∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣∣∣ is a local equation of Rf at Q.

Proof. In the exact sequence

ΩOS,h(Q)/k ⊗OS,h(Q) OT,Q → ΩOT,Q/k → ΩOT,Q/OS,h(Q)
→ 0,

the first arrow is a homomorphism of two free OT,Q-modules with bases ds, dt and du, dv

(respectively); ds and dt are mapped to ∂s
∂udu + ∂s

∂v dv and ∂t
∂udu + ∂t

∂v dv. Localizing
with respect to all prime ideals of OT,Q of height 1, we see that for any prime divisor
containing Q with generic point η we have

lOT,η
(ΩT/S,η) = vη

(∣∣∣∣∣∣
∂s
∂u

∂s
∂v

∂t
∂u

∂t
∂v

∣∣∣∣∣∣
)

,

where vη is the valuation of k(T ) associated with η. �
We fix a pencil C as in Proposition 6.1 and denote by D the pencil of curves C ◦ h on

T (the components of Bh are taken for the role of C1, . . . , Cn), and by B and B′ the sets
of base points of C and D, respectively.

It is clear that #B′ = n · #B. Therefore, by Proposition 6.4,

(13) χT − nχS =
∫

singD − n

∫
sing C − 2((2pa(D) − 2) − n(2pa(C) − 2)).
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Lemma 7.2 (Zeuthen). Let C be a divisor on S, and let D = h∗C. Then

(2pa(D) − 2) − n(2pa(C) − 2) = (C.Bh).

Proof. Using (12) and the projection formula, we obtain

2pa(D) − 2 = (D.D) + (KT .D)

= n(C.C) + (h∗KS .D) + (Rh.D)

= n(C.C) + n(KS .C) + (Bh.C)

= n(2pa(C) − 2) + (Bh.C). �

By definition, we have∫
singD − n

∫
sing C

=
∑

P∈S\B

( ∑
Q∈h−1(P )

singt
Q DQ − n singt

P CP +
∑

Q∈h−1(P )

singw
Q DQ − n singw

P CP

)
.

For an effective divisor C on S without multiple components and without common
components with Bh, and for a point Q on T , we introduce the notation

dQ(C) =
∑
π,π′

d
((
ÔT,Q/π′)∣∣(ÔS,h(Q)/π

))
,

where π runs over the nonassociated prime divisors in ÔS,h(Q) of a local equation of C

at h(Q), and π′ runs over the nonassociated prime divisors of π in ÔT,Q.

Proposition 7.3. Let C be an effective divisor on S without multiple components and
without common components with Bh, let P be any point of SuppC, and let f be a local
equation of Ch(Q) at h(Q). Then∑

Q �→P

singt

ÔT,Q
(f ◦ h) − n singt

ÔS,P
f = (C.Bh)P − (n − #h−1(P )) −

∑
Q �→P

dQ(C).

Proof. We can immediately reduce the proposition to a similar statement in which S is
the spectrum of a complete 2-dimensional regular local ring. Next, it reduces to the case
where T is connected, i.e., is also the spectrum of a complete 2-dimensional regular local
ring.

Let C =
∑

Ci, where the Ci are prime divisors. For i �= j we have

n(Ci.Cj)P =
∑

Q∈h−1(P )

(h∗Ci.h
∗Cj)Q.

Therefore, the proposition reduces immediately to the case where C is a prime divisor,
and this case is none other than Proposition 4.1. �

Theorem 7.4. Let Bh =
∑

biBi be the branch divisor of h. Let C be any separable
pencil on S such that none of the Bi is a component of any curve in C. Then

(14) χT − nχS =
∑

i

bi(2pg(Bi) − 2) +
∑
Q

λf (ÔT,Q/ÔS,h(Q)),

where f is a local equation of Ch(Q) at h(Q).
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Proof. Proposition 7.3 implies∫
singD − n

∫
sing C =

∑
P∈S\B

(
(CP .Bh)P − (n − #h−1(P )) −

∑
Q �→P

dQ(CP )

+
∑

Q �→P

singw
Q DQ − n singw

P CP

)
P.

Together with (13) and Lemma 7.2, this yields

χT − nχS = −2(C.Bh) +
∑

P∈S\B

(
(CP .Bh)P − (n − #h−1(P )) −

∑
Q �→P

dQ(CP )

+
∑

Q �→P

singw
Q DQ − n singw

P CP

)
.

Therefore,

χT − nχS = −2
∑

i

bi(C.Bi) +
∑

i

∑
P∈S

bi((CP .Bi)P − νP (Bi))

+
∑
P

(∑
i

biνP (Bi) − (n − #h−1(P )) −
∑

Q �→P

dQ(CP )

+
∑

Q �→P

singw
Q DQ − n singw

P CP

)
.

Note that for any i the morphism ϕi : Bi → P1
k determined by C is separable. Indeed, if

P ∈ Bi is any point of Bi regular on Bh and such that CP meets Bh at P transversally,
then a local parameter at ϕi(P ) on P1

k is mapped to a local parameter at P on Bi. Thus,
we can apply Proposition 6.5, obtaining

χT − nχS =
∑

i

bi(2pg(Bi) − 2)

+
∑
P

(∑
i

(
−bi

∑
P ′

d
(
Ô

B̃i,P ′

∣∣ ̂OP1
k,ϕi(P )

)
+ biνP (Bi)

)
− (n − #h−1(P )) −

∑
Q �→P

dQ(CP ) +
∑

Q �→P

singw
Q DQ − n singw

P CP

)
,

where P ′ runs over the points over P of the normalization B̃i of Bi. Obviously,

n − #h−1(P ) =
∑

Q �→P

(nQ − 1),

where nQ is the degree of ÔT,Q over ÔS,P . It remains to rewrite bi as a sum over Q �→ P
of similar infinitesimal terms. This completes the proof of Theorem 7.4. �
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