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IVERSEN’S FORMULA FOR THE SECOND CHERN CLASSES
OF REGULAR SURFACES IN ANY CHARACTERISTIC

1. B. ZHUKOV

Dedicated to the 100th anniversary of D. K. Faddeev’s birth

ABSTRACT. The formula mentioned in the title is proved.

INTRODUCTION

Let S,T be complete nonsingular surfaces over an algebraically closed field k of any
characteristic, and let h : T'— S be a finite separable morphism of degree n. We establish
a formula that expresses the Euler characteristic (understood as the degree of the second
Chern class f ca,1) of T' via the Euler characteristic of S and some local terms associated
with components of the branch divisor B, = h*Ry, of h and with certain points on By,
(here Ry, is the ramification divisor).

Let By, = Zz b; B;, where the B; are prime divisors on S. Then

xr —nxs =Y _bixs, + > _ A (0r0/Osn@)-
i Q

Here @ runs over the closed points of T, and Af(A’/A) is a certain invariant defined
explicitly for an extension of complete 2-dimensional regular local rings A’/A and for a
(sufficiently general) element f of the maximal ideal of A; this element must be a local
equation of a curve at h(Q) in any fixed sufficiently good pencil of curves on S. This
invariant is defined in terms of the different of all A’/q over A/(qN A), the invariants of
singularity of arcs corresponding to A’/q and A/(qNA), and the invariants of intersection
of the latter arc with the branch divisor, where q runs over the prime divisors of f in A’.
(For the precise statement, see the definitions in §§Il B @ and Theorem [T41)

The term A f(@ / O%)) does not vanish only for a finite number of points @, all
of them lying on the ramification divisor of f.

What is also important, this term depends on the infinitesimal (rather than merely
local) behavior of h, i.e., on the properties of extensions of completed local rings, and
this reduces the further analysis to some questions related only to complete regular local
rings.

The formula under discussion is a 2-dimensional analog of the Riemann—Hurwitz for-
mula. In characteristic 0 it was established by Iversen in [Iv].

Remark 0.0.1. T was not able to avoid the dependence on f in the definition of the term A
that describes ramification in codimension 2. However, I expect that Ay is independent of
f (and, therefore, the formula is in its final form) in case there is no ferocious ramification.
(This condition means that all morphisms of curves induced by the given finite morphism
of surfaces are separable.)
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In the good (nonferocious) case, we can show directly that, at all “nonexceptional”
points, A¢ does not depend on the choice of a pencil of curves if the pencils are “sufficiently
general”. Then the exceptional points can be managed presumably by a local-global
argument such as that in [L].

A considerable part of this research was done during the author’s stay at Humboldt
Univeritat zu Berlin under the support of the Alexander von Humboldt Foundation and
at the Max-Planck-Institut fir Mathematik in Bonn. The work was completed under
the support of the Riickkehrstipendium of the Humboldt Foundation and INTAS grant.
I am very much grateful to all these organizations. Also, I would like to thank A. N.
Parshin and H. Kurke for numerous inspiring discussions.

§1. DEFINITIONS, NOTATION, AND PRELIMINARY FACTS

For an arbitrary domain A, we denote by A the integral closure of A; 6(A) = 14(A/A);
v(A) is the number of maximal prime ideals in A; g4 is the conductor of 4, i.e., {c € A |
cA C A}; Q(A) is the field of fractions.

If C is a reduced irreducible curve and P is a closed point on it, we denote vp(C) =
V(Oc,p).

If A is a 1-dimensional domain, a € A, and a # 0, we denote ord4 a = l4(A/aA).

If A is a 1-dimensional local domain, w € 4, and v is the valuation in A, we denote
v(w) = v(g), where w = gdt, and ¢ is any prime element of A.

If A is a local ring, we denote by m4 the maximal ideal of A and by A the completion
of A.

S; denotes the set of +-dimensional points of a scheme S.

k(S) denotes the field of rational functions on an integral scheme S.

Let C be a divisor on a complete regular surface S over a perfect field k. Its arithmetic
genus is defined as

1
pa(C) =1+ 5(0 + Ks.C).

Lemma 1.1. Let A be a 1-dimensional local domain such that A is finite over A. Let
my,...,m, be all maximal ideals of A. Then for any a € A, a # 0, we have

ordga = Zord[gm_ a-[Ap,/miAy,  A/ma].

i=1
Proof. See [F, Example A.3.1]. O

Corollary 1.1.1. Under the assumptions of Lemma 1.1, suppose that A is a k-algebra,
where k is a field. Then

dimy,(A/a) = Z dimy, (A, /a).

Wild different. Let B/A be a finite separable extension of complete discrete valuation
rings. The order of the different Dp,4 can be written in the form

vp(Dp/a) = epa — 1+ d(B|A),
where d(B|A) > 0, and d(B|A) = 0 if and only if the extension is tame. The term d(B|A)
is called the wild different of B/A; we agree that d(B|A) = oo if B/A is nonseparable.
Let O be a complete 2-dimensional regular local ring with a coefficient subfield k.

Suppose b € O and a € m\ {0}, where m is the maximal ideal of O. In this situation we
introduce the quantity d(a,b) € NU {+o0}.
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If b is an irreducible element, we denote by @ the image of a in B = 6/7) Then
d(a,b) = d(B|k[[a]])

if @ # 0, and d(a,b) = +o00 otherwise. In the general case, if b = ¢ [[, p* is a canonical
factorization, we put

d(a,b) = Zrid(a,pi)-
i
Let A be a complete discrete valuation ring with a coefficient subfield & and valuation v.

Lemma 1.2. For any f € mga, f # 0, we have v(df) = v(f) — 1 + d(A|k[[f]])-

Proof. Choose an arbitrary prime element 7 € A. Then A = Ag[r], where A9 = k[[f]];
f = F(r) for some F € XEk[[X]]. Let Fy € Ag[X] be the characteristic polynomial
of m. Then f — F(m) = 0 implies F(X) — f = Fy(X)p(X) for some p € Ap[[X]], and
VA, (f) = va, (Fo(0)) = 1 implies va,(p(0)) = 0. We obtain

FI(X) = Fy(X)p+ Fop',
and F'(m) = Fj(m)p(r). Therefore,
v(df) = v(F'(m)dm) = v(F'(7)) = v(F(7)) = v(Daysa,)
by [Sel, Chapter III, Proposition 11, Corollary 2]. ]

Finite determinacy. Let k be an algebraically closed field, let m be the maximal ideal
of k[[Xo, ..., X,]], and let f € m. The Tyurina ideal of f is defined as follows:

iD= (150 50 )
Proposition 1.3. Suppose f € m and m! C j(f). Then for any g = f mod m?+1 we
have k[[X,Y]]/(f) = k[[X, Y]]/(9).
Proof. This is exactly [GK| Lemma 2.6]. O

Generalization of the Weierstrass preparation lemma. Here k is an arbitrary
perfect field.

Lemma 1.4. Let f € k[[X,Y]] be irreducible. Then, after a possible exchange of X and
Y, we have f = ufy, where u € k[[X,Y]]*, and
fo=Y"4+aY" '+ da, 1Y +a,
is a separable polynomial in' Y, where a; € Xk[[X]].
Proof. This is exactly [Ivl Lemma 2.4]. O

Corollary 1.4.1. Let O be a complete 2-dimensional local ring with coefficient subfield
k, and let © be an irreducible element of O. Then dr ¢ Q0 sy,

Proof. Since Q¢ y, is a free O-module with a basis ds, dt, an equivalent statement is that

either %, or %. But this follows from Lemma [[.4] |

Ramification divisor and branch divisor. For a finite separable morphism of two-
dimensional schemes h : T' — S of degree n, we consider the corresponding ramification
divisor
Ry = Z lor.,(Q1/5.n) - Dn;
neT
where D,, is a prime divisor with the generic point 7, and the branch divisor

By = f.Rp.
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§2. ANALYTIC ADJUNCTION FORMULA

Let A be a 1-dimensional complete local domain with an algebraically closed coefficient
subfield k. Assume that emb dim A < 2. In other words, A is isomorphic to k[[X, Y]]/(f),
where f is an irreducible element of the maximal ideal of k[[X, Y]].

Proposition 2.1. There exists an irreducible polynomial f € Xk[X,Y]+YE[X,Y] such
that A is isomorphic to k[[X,Y]]/(f).

Proof. By Corollary [L41] the Tyurina ideal j(f) is an ideal of definition in k[[X, Y]],
and we are done by Proposition O

Proposition 2.2. We have
dimy,(A/qa) = 26(A).

Proof. Let Ay = (k[X,Y]/(f))(x,v), where f is as in Proposition 21l Then A is the
completion of Ag, dimy(A/q4) = dimg(Ag/qa,), and §(A) = §(Ao). It remains to show
that dimy(Ao/qa,) = 20(Ap), but this is [Sa, Theorem 5]. O

Let s,t be generators of the maximal ideal of A such that f 1 %—{, let v be the valuation
in A, and let Z be the class of z € k[[X,Y]] in A.

Proposition 2.3. We have v(ds) < oo, and

of
ds) =v(=).
o(aa) + v(ds) = v( )
Proof. Indeed, dimy(A/q4) = dimk(%/qu) as in the preceding proof; we may assume
that s,t € Ag. It remains to apply [Sal, Theorem 3bis]. |

Theorem 2.4. Let s,t be as above. Then

25(A) + v(ds) = v(%).

Proof. This follows from Propositions and |

§3. TAME AND WILD SINGULARITY

In this section k is an algebraically closed field, O is a 2-dimensional complete regular
local ring with the coefficient field k, and K is the fraction field of O. If f,g € O are
such that (f,g) is an ideal of definition, we denote (f.g) = dimg O/(f, g); it is easy to
verify the bimultiplicativity of (f.g).

Let m,...,m, be pairwise nonassociated prime elements of O, and let f = 7y ... 7.
We introduce the tame singularity of f:

singl, f = 225((’)/771) —r+ Z(m.wj) +1.
i i#j
Next, we introduce the wild singularity singg, f of f. Assume that there exist regular
local parameters s,t of O such that

(i) d(f,s), d(s, f), d( ,%), d(s, %) are all finite, and

(ii) mf% for any i; SJ[%.

Then

of of
) —d(s, %)

singg f = —d(f,s) +d(s, f) + d(f7 Bt s, ot
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(In Corollary B3 Tl we shall see that this value is independent of the choice of s,¢.) If no
required s, t exist, we put singg f = oc.

Our plan is to express the Milnor number x(f) = (2£.9/) as the sum of tame and
wild singularities. It is easily seen that this value is independent of the choice of s and t.

Remark 3.0.1. In the prime characteristic case, the Milnor number is not an invariant of
O/(f), i.e., e € O* does not imply u(ef) = u(f) (see [GKL Subsection 2.1]). However, it
is easy to show that e € k[[f]]* implies u(ef) = u(f).

Lemma 3.1. The local parameters s,t in O can be chosen so that
1) v
2) st 55

3) if chark = p > 0, then the conditions s' = s mod (s,t)? and s’ € k[[s,t?]] imply
s %.

Proof. Let sp and ty be arbitrary regular local parameters in O. Put

s = so+at0+ﬂt%,
t = to,

where «, 3 are some elements of k. It is easily seen that

9_0
Os B 880’

0 0 0

a B 6_t0 880 25 680

By Corollary [LZT] we have ; { dm; for any i, i.e., m; t d’” or i { 57 ‘9’” . It follows that the
set M of all pairs (a, 3) satisfying condition 1) is nonempty (because k is infinite) and
open on the plane.

After a possible intermediate change of variables, we may assume that (0,0) € M.

The relation 7; { % 8”' implies that m; ¢ g—tfo, whence df # 0. Let fy denote the form in

f of minimal degree such that dfy # 0. Observe that either of the conditions s|% and
s |% implies

8 0
Ofn L fN+1

S ot ot

in O/(sg,to)N*!; in this ring we put
N-1
0 0 L L
O | s (z il 3 s ),
i=0
After the substitution s = sg + aty + 5t(2), we obtain

N-1 N

= Z(%"‘a% 1)50 - zto"‘z: h +ah;_1 + Bgi— 2) _ité'
1=0 1=0

of
ot
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On the other hand, put
N
N—igi,
fr= syt
i=0

N+1
N+1—iyi
fN—‘rl = Z biSO + zt:)
i=0

In the same factor ring we compute

af N_l ..
5 = > (i + Daiyr — o(N = i)a;)sg it
=0

N
=Y (N —i— b1 + a(N — i+ 1)b; + 28(N — i + L)a;_1)s) 't
=0

Note that the g; and h; (but not a; and b;) depend on « and g.
Comparing forms of degree N — 1, we obtain the following system of relations:

go = a1 — a - Nao,
g1 +ago=2az —a- (N —1)a,
g2 +agr =3az — a- (N — 2)as,

gN-2 +agN-—3 = (N — 1)@]\171 —a-2an_9,
agn—2 = Nany —a-an_1,
whence
(2) N(an —aan-_1+ OéQCLN,Q == aNao) =0.

Suppose that the statement to be proved is false; this means in particular that (D) is
satisfied for all « such that («,0) € M, i.e., for infinitely many values of a. Then (2]) is
valid for infinitely many «’s, and we see that N = 0 in k. This concludes the proof in
the case where char k = 0, whereas for char k = p > 0 we obtain p|N, whence

(3) gi = (i + Dajtq, 1=0,1,...,N =2
Next, comparing forms of degree IV, we obtain the system of relations
(4) hi +ahi—1+ 0gi—o = (N —i—1)bjy1 + a(N —i+ 1)b; + 26(N — i + 1)a;—1,
i=0,...,N (here we agree that g_o = g_1 =0, etc.). Assuming 3 = 0, we obtain
byi1 —aby + by — -+ a¥ by =0
for infinitely many values of «, whence b; = 0 for any 1.

Finally, let 5 take any nonzero value such that («, 3) € M for infinitely many values
of a. Relations (@) and (@) imply that
hi +ahi—y = (=3)B(i — 1)a;1,

1=20,...,N. Therefore,

N-1 _ '

(71)Z(N —-1- i)ﬂaN_l_ia’ =0.

i=0
Since the value of a polynomial vanishes for infinitely many values of «, all the coefficients
must be zero, i.e., a, = 0 if p f n. We obtain fy € k[[sh,}]], in contradiction with
dfn # 0. O
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Lemma 3.2. Suppose s,t are regular local parameters, q is an irreducible element of O,
and q|%. Then q = qie, where ¢1 € E[[s]][t], € € O, and % =0.
Proof. This follows immediately from the Weierstrass preparation lemma. |

Corollary 3.2.1. Let s,t be regular local parameters, and let q be a prime ideal of height
1 in O such that ds = 0 in Qo /q, where 5 is the class of s in O/q. Then the ideal q has

a generator q such that % =0 and g =s mod (s,t)?.

Proof. Let go be an arbitrary generator of q; then dgo = %2 ds+ % dt implies (%°)-df =

0, whence (%) =0. O

Proposition 3.3. Let s,t be any regular local parameters of O satisfying the conditions

of Lemma Bl Assume that u(f) < co. Then d(f,s), d(s, f), d( ’E)’ and d( s, Bt) are
all finite, and

8f)

() = singly £ — d(£.5) +d(s. £) + a(£. ) — (s, %

Proof. First, we show that d(f, %) < 00, d(s, dt) < 00, and

6 w0 = (5 2y a2y - (5.9 —as. %,

It suffices to check that d(f,q) < oo, d(s,q) < oo, and
(6) (fq) = (% -q) —d(f.q) + (s.q) + d(s,9),

where ¢ is any irreducible divisor of % It is a commonplace that all other terms on
both sides of the relation are also finite.
By Corollary [LT.T], for any a € O such that ¢ J( a we have (a.q) = v(a), where @ is the

class cia in O/q, and v is the valuation in O/q. Since df = 8—]; ds + % dt, we obtain
df = %L ds in Qo .

Suppose that ds = 0 in @/q. Ouly the case where chark = p > 0 is nontrivial. By
Corollary B.2.11 a generator s’ of the ideal (¢) can be chosen so that s’ = s mod (s,t)?,

s" € k[[s,t?]]. Then by Lemma [B1] we obtain s t %, in contradiction with q|%

Thus, v(d5) < oo and v(df) < co. Applying Lemma [[2 twice, we see that d(f,q) and
d(s,q) are finite, and

o(f) =v(df) +1—d(f,q)

_ U(Z_J;) +o(ds) +1—d(f,q)

= o(%0) o) d(1,0) + d(s,0)

which proves (@) and (&).
Similarly, considering Q¢ /, instead of Q¢ /4, we obtain d(f,s) < oo and

(7 (F3) 1= (F5) —d(f.s).
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We combine () and (7):

w1 = (79— () =1+, Sy — s, 9) — atys).

It remains to show that d(s, f) < oo, and
of

(f- e

It suffices to check the relation

(m; - %7?) — (m;.8) = 20(0/m;) — 1+ d(s,m;)

) = ((f-s) = 1) = d(s, f) + sing, f.

for every i. By Corollary [[.TT] this is equivalent to

(8) v(aa?) —v(8)+1—d(s,m)=26(0/m),

where v is the valuation in (57;2 By Lemma [[2] ds # 0 implies d(s,m;) < oo, and (§)
can be rewritten as

v(aa?) — v(ds) = 26(O/m;).
However, this identity is none other than the analytic adjunction formula of Theorem
2.4 for the ring O/m;. O

Corollary 3.3.1. singg f is independent of the choice of s,t.

Examples. Let x,y be any system of regular local parameters in O.
1. Let f =al —y™, ptl, ptm. Then sing f = 0.
2. Let f =y? +yM — 22, pt M. Taking s = x,t = y, we compute

0
(f,5) = dis, f) = d(s, 50) =0,
and
of
b N V7
d(f, %) P,
whence singp f = M — p.
3. Let f = y? — 2%, Then d(f,z) = oo, whence for any choice of regular local

parameters s,t we have d(f, %) = 00, and singg f = oco.

§4. EXTENSIONS OF 2-DIMENSIONAL COMPLETE REGULAR LOCAL RINGS

In this section @’/0O is a finite separable extension of complete 2-dimensional regular
local rings of some degree n, both having an algebraically closed coefficient subfield k.

Proposition 4.1. Let w be a prime element of O that does not divide a local equation
B of the branch divisor of O'/O, and let 1 = my ... 7., where m,..., 7 are irreducible
elements of O'. Then

r

singly ™ — nsingly 7 = (B.1) — (n— 1) = > _ d((O'/m;)|(O/7)).

=1
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Proof. We choose regular local parameters s,¢ in O so that  { %—Ttr. This can be done

by Lemma Bl Fixing j, we choose regular local parameters u,v in O’ so that 7; { %.

Denote A; = O’ /x;.

Now we do some computations in g (4,),x; the elements of O’ (respectively, of Qo /)
will be denoted by the same letters as their images in A; (respectively, in Qg a,)/x). First,
we have

o, om;

Next, the derivations % and % of Q(O) can be uniquely extended up to continuous

derivations of Q(0’), also denoted by 2 and £. We have

0 _0s 0 o 0
ou Ou O0s Ou Ot
because these derivations coincide on the elements s and ¢, and Q(O’) is separable over
Q(O) = Q(K[[s,t]]). Therefore, the identity

_ (95075 4, 1 9505 4y (9T
dsj(au 8vdu+3v 8vdv)(8v)
_ (950m5 g, 0505 4y (OTiy =
7<8u ov du ov 8udu)(8v)
8_2 8—i o\ -1
“lon om| () ™
ou ov
in Qga,)/r implies
on. — 87r)—1 % % % % (%)_161’&

1
(52) 45=(57) |om om|loc o| a0

Js ot du ov

_,Om\—107; gs G5 9my\ 1
©) =) o | w) (B)
ou  Ov
=H7r-_1 % % (%)_1du.
ALt ot ot Qv
i#] ou  Ov

We shall apply the analytic adjunction formula of Theorem 24l Let w; and w be the
valuations in A; and A = O/, respectively, and let e; = e(A4,/A4), d; = d(A4,|A). We
denote by p; and p any local parameters in A; and A, respectively. We write the left-
hand side and the right-hand side of (@) in the form Ldp; = Lodp and Rdp;, respectively,
and compute the valuations of L and R.

From the exact sequence

QA/k ®A Aj _>QAj/k _>QAJ~/A —>0
it is clear that dp = adp;j, where a is a generator of the different of A;/A, that is,
w;(a) = e; — 1+ dj. We have w(Ly) = fw(%—f) + w(ds). From this it follows that
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wj(L) = (—w(ZE) +w(ds))e; + ej — 1 +dj. Next,

95 s .
w;(R) = =) w;(m) +wj< u Oy ) —wj(%) + w; (du).

ot ot
i#£] du v
Thus, we have
on 05 9s om;
(710(5) +U)(d5))€j+€j 71+dj = gw](m)erJ( ?i: g > 7wj(871)]) +wj(du).
17] ou ov

We apply the analytic adjunction formula to both sides, and apply Corollary [[L.T.I] on
the right-hand side:

(—26(0/m) + D)ej +dj = 1= (mp.my) + (B.75) — 26(0O' /my),
i#£]

where 8’ is an equation of the ramification divisor in O’/O. Finally, we sum over j:

—n(singly m — 1) + Z d;j = —(singly m — 1) + (B.7). O
J

Definition of As. For the branch divisor of O'/O (viewed as a closed subscheme in
Spec O), denote by (; the equations of its prime components and by b; their multiplicities.
We take an element f € O that is a product of pairwise nonassociated prime elements
in O such that singg f < oo and none of the §; divides f. Let f = 7} ...7 be a
factorization of f in O'. Every =} divides exactly one prime divisor m; of f in O; we
denote by A} and A; the integral closures of O'/x, and O/m;, respectively. We define

Ap(0')0) = Z bi(1—d(f, ;) — (n—1) = Y d(Aj|A;) + singls, f — nsing f.

i=1

Conjecture 4.2. Assume that there is no ferocious ramification in O'/O. Let f, f' €
O be elements such that A;(O'/O) and Ap(O'/O) are defined. Then \;(O'/O) =
Ap(O']0).

Example. An ample series of examples can be constructed if for the role of O’ we take
the integral closure of O in the extension of the fraction field of O given by the equation
aP — x = t7PmHly =P where t,u are fixed regular local parameters in O, and m,n are
nonnegative integers. In is easily seen that such an O’ is always regular.

In this paper we only consider an example of a nonexceptional point on a component
of the branch divisor without ferocious ramification. For this, take m > 0 and n = 0.
(The notion of an exceptional point is due to Deligne [D]; see also Brylinski [Br]. Roughly
speaking, these are the points on the ramification divisor where the codimension 2 ram-
ification invariants take their nongeneric values.)

Let y = t™x. Then y? — tP~U™my =t whence O’ O O[y] = k[[y,u]]. Since O[y] is
regular, we have Ofy] = O’ and

t=qyP — yp+(p*1)(pm*1) + O(yp+2(p71)(pmfl)).

The branch divisor B consists of one component ¢ = 0, and b; = (p — 1)pm.
Let f =t —u% i >0, (i,p) = 1. Then the expansion of f in k[[y,u]] is

_ — P _ o p+(=1)(pm=1) _ i p+2(p—1)(pm—1)
f=F(yu)=y"—y u'+ Oy )-
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We have

of of
%) +d(y, %)

singey f=d(f,y) —d(y, f) d(f’
k[[F(y,0)]]) +0

=0-0— (i — 1)d(k[[y]]|
=(i—1(p—1)(pm—1)
It follows that

A (O')0) = (p— 1)ypm — (p— 1) — d(k{[y, ull/fIE[[u]]) + (i = 1)(p — 1) (pm — 1)
=p@-1Em-1)—ip-1)(pm—-1)+(GE—-1)(p—1)(pm —1) =0.

§5. SEVERI'S FORMULA

In this section, S is a regular geometrically irreducible complete surface over a perfect
field k; K is the field of functions on S.

Lemma 5.1. Let s,t be reqular local parameters at P € S. Then for any point P’ in
some neighborhood of P, the functions s—s(P') and t —t(P') are regular local parameters
at P’.

Proof. Let U be a neighborhood of P such that s and t are regular functions on U.
Consider the morphism f: U — A? determined by the pair of functions s,¢. Obviously,
f is unramified at P, whence f is also unramified at all points of some neighborhood
of P. O

Let w be a nonzero rational 1-differential on S, i.e., w € Qg /i, and w # 0. We define
a divisor (w) and a 0-cycle (w) on S.

Let P € S, and let s,t be regular local parameters at P. Then w = fp-(ap ds+bp dt),
where ap and bp are coprime in Og p, and fp € K. Then (w) is defined as the divisor
on S such that in a neighborhood of any closed point P it coincides with the divisor of
the function fp; this can be done in view of Lemma [5.Il Finally, by definition,

<w> = Z lel]C Os,p/(ap,bp) - P.
PeSy

Theorem 5.2. In the group Ao(S) we have
2,5 = (W) + (w) - Ks — (w) - (w).

Proof. See [Yl Corollary to Theorem 2], or [K]. See also the proof involving higher adéles
in [P]. |

86. COMPUTATION OF THE SECOND CHERN CLASS WITH THE HELP
OF A PENCIL OF CURVES

Let S be as in the preceding section; k is assumed to be algebraically closed. Here a
pencil of curves on S is treated as a dominant rational map of S in P;. In other words,
this is a surjective morphism

C:S\B—Pj
that cannot be extended to any point of B; B is a closed subset of S, the so-called set
of base points of a given pencil of curves. Theorem 3 in [Shl Chapter II, §3] implies that
dim B = 0.
We shall consider only pencils C of curves satisfying the following condition:
() the fiber of C over any point s € P} is a reduced subscheme.
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The closure of C™1(s) € S\ B in S will be denoted by Cs. The theorem on dimension
of fibers of a morphism (see, e.g., [H, Chapter II, Example 3.22]) implies that Cy is of
pure dimension 1. The schemes Cy are called curves in C.

It is easily seen that all curves in C belong to one and the same divisor class on
S. Therefore, for an arbitrary divisor D on S the intersection multiplicity (Cs.D) is
independent of s; it will be denoted simply by (C.D).

We require also that the following condition be fulfilled:

(xx) for any base point b all curves in C pass through b and any two of them meet at
b transversally.

If s = C(P), the curve Cs will be denoted also by Cp.

For P € S\ B, we put singpC = singg/s\P(ts 0 C) and sing,, C = sing%s\}?(tS oC),

where s = C(P) and t, is a local parameter at s. Clearly, sing’ C is independent of .
Remark B:0.J] shows that sing’s C is also independent of ts. Our third requirement is as
follows.

(##%) sings C < oo for all P € S\ B.

We say that a pencil C on S is separable if it satisfies conditions (x), (s*), and (sxx).

Proposition 6.1. Let S be a reqular projective surface, and let C1,...,C,, be prime
divisors. Then there exists a pencil of curves C on S with the set of base points B such
that:

— for any i we have BN C; = @;

~ for any i, C induces a separable morphism C; — Pj;

- C 1is separable.

Proof. The proposition is obvious in the case of S = Pi; the general case can easily be
derived by applying the following two lemmas. O

Lemma 6.2. Under the conditions of Proposition [6.1l S admits a finite separable mor-
phism g onto IP’% such that Cq,...,C, are not components of its ramification divisor
R,.

Proof. Assume that S C PN. We choose arbitrary closed points P, € C;, i = 1,...,n,
and let H; be the projective closure of the tangent plane to S at P; embedded into PV .
Choose a projective subspace W = PV=3 in PV that meets neither S nor any of H;. Then
the projection with the center W determines a finite morphism of S onto P? unramified
at any of the P;. O

Lemma 6.3. Let h : T — S be a finite separable morphism of surfaces, and let C be a
separable pencil on S such that the curves in C have no common components with the
branch divisor By. Then the pencil D =Coh on T is also separable.

Proof. Let b be any base point of D. Since h is unramified at b, regular local parameters
at h(b) generate the maximal ideal of Orj. In other words, if two curves are regular
at h(b) and meet transversally at this point, the same is true for their preimages with
respect to the point b. This proves that D satisfies (xx). Condition (*) can be verified
by a similar argument applied to any regular point on a given curve in D such that h is
unramified at that point.

To verify condition (xxx), it suffices to note that the Jacobi matrix of h is of rank 2
at any point of 7. O

For a separable pencil C on S, we introduce the 0-cycle

singC = Z (sing®, C + sing's C) P.
PeS\B
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Since all curves in C belong to the same divisor class, their arithmetic genera are the
same; this common value will be denoted by p.(C).

Proposition 6.4. Let C be a separable pencil of curves on S with the set of base points B.
Then

/0275 = /singC —#B —4(p.(C) — 1).

Proof. We pick any rational function on the projective line such that its divisor of zeros
as well as its divisor of poles has degree 1. (If we choose the point at infinity suitably,

any such function is of the form )\f(:g for some a, 3, A € k.) Let f denote the inverse

image of this function in k(S). The idea of the proof is to apply Theorem to df.
The above explicit description of the original function implies that any other choice
of such a function would change f to Z}Jf_ts, where a,b,c,d € k, ad — bc # 0. It follows
that (df) = > peg, npP is independent of this choice.
Now we compute np for P ¢ B. Let D be any curve in C that is distinct from Cp.
If the divisor of f is Cp — D, then f is a local equation of Cp at P. If s and ¢ are local

parameters at P, then df = %ds + %dt. We have

of of . - w
np = <%a) = u@(f) = sing’, C + sing’y C;
i.e., the O-cycles (df) and singC have equal coefficients at P.

Now, let P € B. For any choice of f, its divisor is C' — D, where C' and D are curves
in C that meet transversally at P. Then f can be written as g/q, where g and ¢ are local
equations of C' and D at P. We have

dg—qd
i =Y q92q g
whence np = 1.
Thus, we obtain
(10) (df) =singC+ > P.
PeB

Next, we compute (df). The divisor of f is C — D, where C and D are some curves
in C; we shall prove that

(11) (df) = —-2D.

Take any P ¢ B, and let s and ¢ be regular local parameters. If P € C, then, as we
saw in the calculation of (df), here % and % are coprime, i.e., P ¢ Supp(df). If P € D,
then df = —f2-d(f~') and, as above, P ¢ Supp(d(f~!)). Finally, if P ¢ C' U D, then
P belongs to the zero divisors of f — f(P), and this case can be reduced to the case of
P € C by replacing f with f — f(P).

Substituting (I0) and () in the formula of Theorem (2] we obtain the following
identity in Ag(S):

co.5 = singC + Z B —2(C.Ks) — 4(C.0),
PeB

where C'is an arbitrary curve in C. Clearly, condition (*x) in the definition of a separable
pencil implies that (C.C') = 3", B. Therefore,

Ca,5 =singC— > B—2(C.Kg) —2(C.C).
PeB
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Now it suffices to calculate the degrees and to apply the definition of the arithmetic
genus. O

We prove another property of pencils.

Proposition 6.5 (generalized Pliicker equation). Let C be a pencil of curves on S with
the set of base points B, let D be a reduced irreducible curve on S that is not a component
of any curve in C, and let DN B = &. Assume that the restriction @ of the morphism C
to D is a separable morphism of D onto a projective line. Then

> ((Cp.D)p — vp(D) +dp) = 2(C.D) + 2py(D) — 2,
PeD

where dp is the sum of the wild differents of ¢ at all points of the normalization of D
over P.

Proof. We denote by A : D — D the normalization morphism. Let P € D. For P’ €
A7L(D), let eps denote the ramification index of p o A at P’. Corollary [LT.1l implies

Z epr = (CPD)P
Prex-1(pP)
It is easily seen that deg(p o A) = (C.D), and it remains to apply the Riemann-Hurwitz
formula to the morphism ¢ o A. ]
§7. MORPHISMS OF SURFACES

In this section we consider a finite separable morphism i : T — S of degree n.
It is known (see, e.g., [Ii]) that in A;(7T") we have

(12) Kt :h*Ks+Rf.
A local equation of the ramification divisor can be determined as follows.

Lemma 7.1. Let u,v be regular local parameters at Q € T, and let s,t be regular local

9s  9s
parameters at h(Q). Then ‘:;;‘ ‘;’; is a local equation of Ry at Q).
du v

Proof. In the exact sequence
Q05 gy /k POs @) OT.@ = Qorg/k = Q01,0/05 1) — 05
the first arrow is a homomorphism of two free Or g-modules with bases ds, dt and du, dv

(respectively); ds and dt are mapped to %du + %dv and g—;du + %dv. Localizing
with respect to all prime ideals of Or g of height 1, we see that for any prime divisor
containing ) with generic point 77 we have

Os  0Os
— ou ov
lor, Qr/sn) =w| |50 5| )
ou ov
where v, is the valuation of k(T) associated with 7. O
We fix a pencil C as in Proposition and denote by D the pencil of curves C o h on
T (the components of By, are taken for the role of C1,...,C}), and by B and B’ the sets

of base points of C and D, respectively.
It is clear that #B’ = n - #B. Therefore, by Proposition [6.4],

(13)  xr—nys = / singD — / sing C — 2((2pa(D) — 2) — n(2pa(C) — 2)).



IVERSEN’S FORMULA 789

Lemma 7.2 (Zeuthen). Let C be a divisor on S, and let D = h*C. Then
(2pa (D) —2) — n(2pa(C) — 2) = (C.Bp,).
Proof. Using ([I2) and the projection formula, we obtain
2pq(D) —2 = (D.D) + (Kr.D)
n(C.C)+ (h*Kg.D) + (Ry.D)
=n(C.C) 4+ n(Ks.C) + (B.C)
— 1(20a(C) — 2) + (Bu.C). 0

By definition, we have

/singD—n/SingC

= Z < Z sinth Dg — nsing’ Cp + Z singg; Dg —nsingﬁcp).
PcS\B Qeh~1(P) Qeh—1(P)

For an effective divisor C' on S without multiple components and without common
components with By, and for a point () on T, we introduce the notation

do(C) = 3" d((Orqg/m)|(Osn@)/T)).

!

—_—
where 7 runs over the nonassociated prime divisors in Og j () of a local equation of C
—_—

at h(Q), and 7’ runs over the nonassociated prime divisors of 7 in Or .

Proposition 7.3. Let C be an effective divisor on S without multiple components and
without common components with By, let P be any point of Supp C, and let f be a local
equation of Cp(q) at h(Q). Then

Y singg—(f o h) — nsing— f = (C.Bu)p — (n— #h™'(P)) = Y do(O).
Q—P Q—P

Proof. We can immediately reduce the proposition to a similar statement in which S is
the spectrum of a complete 2-dimensional regular local ring. Next, it reduces to the case
where T' is connected, i.e., is also the spectrum of a complete 2-dimensional regular local
ring.

Let C' =Y C;, where the C; are prime divisors. For i # j we have

Qeh=1(P)

Therefore, the proposition reduces immediately to the case where C' is a prime divisor,
and this case is none other than Proposition 411 a

Theorem 7.4. Let By, = > b;B; be the branch divisor of h. Let C be any separable
pencil on S such that none of the B; is a component of any curve in C. Then

(14) Xr —nxs = Y bi(2pg(Bi) —2) + Y A (Orq/Os @),
i Q

where f is a local equation of Cy(qy at h(Q).
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Proof. Proposition [[.3] implies

/singD—n/singC: Z <(Cp Bh)p—(n—#h Z do(Cp)
PES\B QP
+ Z singg; Do — nsingp CP)P
Q—P

Together with (I3) and Lemma [T2] this yields

XT—TLXSZ—Q(C.Bh)+ Z ((Cp Bh)p—(n—#h Z dQ Cp
PeS\B Q—P
+ Z singg) Dg — nsingp Cp).
Q—P
Therefore,
XT_nXS:—QZb (C.B)+ 3> bil(Cp.Bi)p — vp(By))
i PeS

+Z(Zbl/p —(n—#h7'(P)) = > do(Cp)

Q—P

+ Z singg, Do — nsingp Cp).
Q—P

Note that for any i the morphism ¢; : B; — P} determined by C is separable. Indeed, if
P € B; is any point of B; regular on By and such that Cp meets By at P transversally,
then a local parameter at ¢;(P) on ]P’,l€ is mapped to a local parameter at P on B;. Thus,
we can apply Proposition [6.5] obtaining

XT — NXS = sz'(ng(Bi) —2)
2 (S S,
P %

—(n—#h™'(P)) = Y do(Cp)+ > sing® Dg — nsing} cp>,
Q—P Q—P

OP17LP1(P ) + bZVP(BZ)>

where P’ runs over the points over P of the normalization E of B;. Obviously,

n—#h"(P)= Y (ng—1),

Q—P

where ng is the degree of @ over (7573. It remains to rewrite b; as a sum over Q) — P
of similar infinitesimal terms. This completes the proof of Theorem [7.4 O
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